US20160158595A1 - Adjustable Stride Length in an Exercise Machine - Google Patents
Adjustable Stride Length in an Exercise Machine Download PDFInfo
- Publication number
- US20160158595A1 US20160158595A1 US14/957,950 US201514957950A US2016158595A1 US 20160158595 A1 US20160158595 A1 US 20160158595A1 US 201514957950 A US201514957950 A US 201514957950A US 2016158595 A1 US2016158595 A1 US 2016158595A1
- Authority
- US
- United States
- Prior art keywords
- connection assembly
- arm support
- foot pedal
- adjustment link
- exercise machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/012—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using frictional force-resisters
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/22—Resisting devices with rotary bodies
- A63B21/225—Resisting devices with rotary bodies with flywheels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0002—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
- A63B22/001—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/04—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
- A63B2022/067—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on opposite sides of the exercising apparatus with respect to the frontal body-plane of the user, e.g. the crank is behind and handles are in front of the user
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0664—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
- A63B2022/0676—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user
- A63B2022/0682—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user with support elements being cantilevered, i.e. the elements being supported only on one side without bearing on tracks on the floor below the user
Definitions
- Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Typically, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise.
- Popular forms of aerobic exercise include running, jogging, swimming, and cycling among other types of aerobic exercise.
- anaerobic exercise typically involves high intensity exercises over a short duration of time.
- Popular forms of aerobic exercise include strength training and short distance running.
- aerobic exercise machine Many choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user will use an aerobic exercise machine to have an aerobic workout indoors.
- One such type of aerobic exercise machine is an elliptical exercise machine, which often includes foot supports that move in reciprocating directions when moved by the feet of a user. Often, the foot supports will be mechanically linked to arm levers that can be held by the user during the workout. The arm levers and foot supports move together and collectively provide resistance against the user's motion during the user's workout.
- Other popular exercise machines that allow a user to perform aerobic exercises indoors include treadmills, rowing machines, stepper machines, and bikes to name a few.
- variable stride exercise device utilizes various configurations of linkage assemblies, cam members, and other components, connected with a frame to allow a user to dynamically vary the user's stride path during exercise.
- the exercise device allows for a foot engagement member travel path that adapts to the change in stride length rather than forcing the user into a fixed size path.
- a user's exertion level may have several components impacting the stride length provided by the machine, such as leg power, torso power, and (in versions of the exercise apparatus with arm supports or exercise components) arm power.
- the exercise device may include a lockout device that selectively eliminates the variable stride features of the exercise device and allows the user to exercise in a stepping motion.
- a lockout device that selectively eliminates the variable stride features of the exercise device and allows the user to exercise in a stepping motion.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- the exercise machine comprises a first stride adjustment link is slideably connected to the first arm support at a first connection assembly.
- the exercise machine comprises a second stride adjustment link is slideably connected to the second arm support at a second connection assembly.
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly.
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly.
- slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector.
- the second stride adjustment link comprises a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly.
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- the first actuator and the second actuator are mechanical actuators.
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly.
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- the first actuator comprises a first screw mechanism arranged to move the first slideable connector.
- the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- the first screw mechanism and the second screw mechanism include a push rod connected to a thread form on a first end and connected the first slideable connector or the second slideable connector on a second end.
- the first screw mechanism and the second screw mechanism include a piston head connected to a thread form and configured to compress a chamber of gas as the first actuator or the second actuator is actuated.
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- a first stride adjustment link is slideably connected to the first arm support at a first connection assembly
- a second stride adjustment link is slideably connected to the second arm support at a second connection assembly
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly
- the first actuator and the second actuator are mechanical actuators.
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly
- the first actuator comprises a first screw mechanism arranged to move the first slideable connector and the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- an exercise machine comprises a frame.
- a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- a first arm support and a second arm support are pivotally attached to the frame.
- the first arm support is mechanically linked to the first foot pedal
- the second arm support is mechanically linked to the second foot pedal
- a first stride adjustment link is slideably connected to the first arm support at a first connection assembly
- a second stride adjustment link is slideably connected to the second arm support at a second connection assembly
- the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly
- the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly
- the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly
- the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly
- the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly
- each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- FIG. 1 illustrates a perspective view of an example of an exercise machine in accordance with the present disclosure.
- FIG. 2 illustrates a side view of the exercise machine of FIG. 1 .
- FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 4 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 5 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure.
- FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure.
- An exercise machine such as an elliptical exercise machine, includes foot pedals that are mechanically linked together.
- Such foot pedals are often mechanically linked to arm supports that move with the foot pedals of the elliptical exercise machine.
- arm supports that move with the foot pedals of the elliptical exercise machine.
- a user can stand on the foot pedals and move his feet along a reciprocating path traveled by the foot pedals while moving the arm supports back and forth.
- a user gets a workout when the collective movement of the foot pedals and arm supports is resisted.
- the resistance to the foot pedal's movement is adjustable. Such resistance may be achieved through any appropriate mechanism.
- a magnetic unit is positioned near a flywheel such that the magnetism of the magnetic unit resists the movement of the flywheel. To adjust the magnetic resistance force, the magnetic unit may be moved closer to or away from the flywheel.
- the magnetic force is proportional to electrical energy applied to the magnetic unit, and the strength of the magnetic field can be adjusted by applying a different level of electrical energy to the flywheel.
- tensioning units, compression pads, pneumatic mechanisms, hydraulic mechanisms, other mechanisms, or combinations thereof are adjusted to change the resistance.
- a resistance mechanism includes those components that directly interact to cause an added degree of resistance during the user's workout.
- a resistance mechanism may include a flywheel when the exercise machine has components that can adjustably impose resistance to the movement of the flywheel, such as imposing a magnetic force on the flywheel to prevent the flywheel's rotation.
- the flywheel is included in the resistance mechanism when other components interact with the flywheel to directly resist the flywheel's movement.
- braking pads, tensioning elements, fan blades, or other components can be used to directly resist the movement of the flywheel.
- both the flywheel and the components interact to adjustably resist the movement of the flywheel and are included as part of the resistance mechanism.
- FIGS. 1-2 depict an example of an exercise machine 100 , such as an elliptical exercise machine.
- the exercise machine 100 includes a base 102 that is attached to a frame 104 .
- a lower portion 106 of the frame 104 includes a housing 108 that supports a first flywheel 110 and a second flywheel 112 .
- the first flywheel 110 and the second flywheel 112 are attached to one another through a crank assembly 114 .
- the crank assembly 114 includes a crank arm that is attached to a first shaft that is connected to the first flywheel 110 on a first end and attached to a second shaft 122 that is connected to the second flywheel 112 at a second end 124 .
- the base 102 may be any appropriate base in accordance with the principles described in the present disclosure.
- the base 102 is flat and has a center of gravity that is close to a floor or other type of foundation upon which the exercise machine 100 resides.
- the base 102 may be made of a continuous beam of metal with a curvature such that multiple portions of the continuous beam are positioned to make connections with the lower portion of the frame 104 .
- cross bars connect the multiple portions of the base 102 .
- the frame includes just horizontally positioned beams that are aligned with the floor or the other type of foundation.
- the base 102 may include a vertical support member that is intended to carry a vertical load.
- the first shaft is attached to an underside of a first track 126 that supports a first foot pedal 128
- the second shaft 122 is attached to an underside of a second track 130 that supports a second foot pedal 132 .
- the crank assembly 114 is shaped such that the first shaft and the second shaft 122 follow reciprocating paths. Consequently, the first foot pedal 128 follows the path of the first shaft, and the second foot pedal 132 follows the path of the second shaft 122 .
- the first foot pedal 128 is slideable along the length of the first track 126 .
- the second foot pedal 132 is slideable slide along the length of the second track 130 .
- the first foot pedal 128 and the second foot pedal 132 are configured to move down the length of the tracks and with the reciprocating paths traveled by the first shaft and the second shaft 122 .
- the first foot pedal 128 is connected to a first arm support 134 through a first mechanical linkage 136
- the second foot pedal 132 is connected to a second arm support 138 through a second mechanical linkage 140
- the first arm support 134 is connected to the frame 104 at a first arm pivot connection 142
- the second arm support 138 is connected to the frame 104 at a second arm pivot connection 144
- the first mechanical linkage 136 includes a first bottom section of the first arm support 134 being connected to a first far end of the first track 126 at a first joint.
- the second mechanical linkage 140 includes a second bottom section of the second arm support 138 being connected to a second far end of the second track 130 at a second joint.
- a console 158 is connected to a portion of the frame 104 .
- the console 158 may include multiple buttons, a display, a cooling vent, a speaker, another device, or combinations thereof.
- the console 158 can include a resistance input mechanism that allows the user to control how much resistance is applied to the movement of the first foot pedal 128 , the second foot pedal 132 , the first arm support 134 , and the second arm support 138 .
- the console 158 may also provide the user with an ability to control other functions of the exercise machine 100 .
- the console 158 may be used to control a level of a climate control, to control an incline angle between the frame 104 and the base 102 , to control speaker volume, to select a preprogrammed workout, to control entertainment through the speakers of the display of the console 158 , to monitor a health parameter of the user during a workout, to communicate with a remote trainer or computer, to control other functions, or combinations thereof.
- the first and second foot pedals 128 , 132 are movably attached to the first and second tracks 126 , 130 respectively so that the foot pedals can slide along the length of the tracks 126 , 130 .
- the rotary position of the crank assembly 114 can be locked so that the foot pedals 128 , 132 do not travel in circular paths while sliding along the length of the tracks 126 , 130 .
- a resistance mechanism can be incorporated into the tracks 126 , 130 to add resistance to the sliding motion of the foot pedals 128 , 132 .
- Such a resistance mechanism may be positioned on the underside of the tracks 126 , 130 .
- the foot pedals 128 , 132 are locked with respect to the tracks 126 , 130 such that the user cannot slide the foot pedals 128 , 132 along the tracks' lengths.
- the crank assembly 114 may be free to rotate such that the foot pedals 128 , 132 can move along reciprocating paths that include circular motion.
- the exercise machine 100 includes a first stride adjustment link 166 that is slideably connected to the first arm support 134 at a first connection assembly 168 , and a second stride adjustment link 170 that is slideably connected to the second arm support 138 at a second connection assembly 172 .
- the first and second connection assemblies 168 , 172 may include a housing that is either attached or integrally formed into the first and second arm supports 134 , 138 .
- the first connection assembly 168 includes a first opening 175 configured to receive a first attachment rod 174 to which a first connection end of the first stride adjustment link 166 can attach.
- the second connection assembly 172 includes a second opening 200 configured to receive a second attachment rod 202 to which a second connection end of the second stride adjustment link 170 can attach.
- the first and second attachment rods can be moved along the lengths of the first and second openings 175 , 202 respectfully.
- the other ends of the stride adjustment links 166 , 170 can be attached to the first and second tracks 126 , 130 respectfully proximate the first and second foot pedals 128 , 132 .
- the other ends of the stride adjustment links 166 , 170 can be attached to portions of the crank assembly 114 or other portions of the exercise machine 100 that travel along the reciprocating path.
- the position of the first attachment rod 174 within the first opening 175 of the first connection assembly 168 may be controlled by the first actuator.
- the position of the second attachment rod 202 within the second opening 200 of the second connection assembly 172 may be controlled by the second actuator.
- the first and second attachment links restrict the amount of movement that the tracks 126 , 130 and/or the first and second foot pedals 128 , 132 can move.
- the reciprocating paths may shrink.
- the stride length of the user using the exercise machine 100 accordingly shrinks as well.
- the first and second attachment links increase the amount movement available to the tracks 126 , 130 and/or the first and second foot pedals 128 , 132 .
- the length of the reciprocating paths may increase.
- the stride length of the user using the exercise machine 100 accordingly enlarges as well.
- a user may adjust the stride length of the exercise machine 100 according to the user's height and/or other preferences.
- the user may adjust the stride length to target specific muscle groups or train for specific types of events where training with a specific stride length can be advantageous.
- a rotary dial 180 may be positioned on the first and/or second connection assemblies 168 , 172 . Such a rotary dial 180 may be rotated in a first direction to cause the stride length to increase. Likewise, such a rotary dial 180 may be rotated in a second direction to cause the stride length to decrease.
- Other mechanical types of input mechanism may be used. For example, linear dials, levers, sliders, push buttons, other types of mechanical inputs mechanisms, or combinations thereof may be used in accordance with the principles described in the present disclosure.
- electronic-type input mechanisms may also be used. For example, a touch screen or another type of electronic-type input mechanism may be incorporated.
- some examples include a single input mechanism that may be used to control both the first and second stride adjustment links.
- just one of the stride adjustment links may incorporate an actuator that includes an input mechanism.
- Such an input mechanism may be in communication with both the local actuator as well as the actuator associated with the other stride adjustment link.
- an electronic signal may be transmitted to both of the stride adjustment links in response to the input mechanism receiving input from the user. Such a signal may cause both of the actuators to move at the same rate and/or distance. As a result, the user does not have to determine whether each of the stride adjustment links is set at the same stride lengths.
- FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure.
- the actuator includes a rotary dial 180 as the input mechanism.
- a rotary dial 180 include a knob 300 positioned in the center of the input mechanism.
- Numeral characters 302 surround the rotary dial 180 and represent the stride length in inches at which the exercise machine 100 is currently set.
- the numeral indicators 302 may represent another unit of length.
- other symbols, besides numeral indicators 302 are used to represent the stride length.
- FIG. 4 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure.
- the actuator 400 includes a screw mechanism with a thread form 402 that is connected to a rotary dial input mechanism 404 .
- the thread form 402 rotates in a corresponding direction causing a carrier 406 to move in a downward direction.
- the carrier 406 is connected to a push rod 408 that is attached to the attachment rod 410 .
- the attachment rod 410 will likewise move in the downward direction.
- the stride length adjustment link will move causing the stride length to decrease.
- the thread form 402 rotates in a corresponding direction causing the carrier 406 to move in an upward direction.
- the carrier 406 is connected to a push rod 408 that is attached to the attachment rod 410 .
- the attachment rod 410 will also move in the upward direction.
- the stride length adjustment link will move causing the stride length to increase.
- FIG. 5 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure.
- the actuator 400 includes the screw mechanism with the thread form 402 that is connected to the rotary dial input mechanism 404 .
- the thread form 402 rotates in a corresponding direction causing a carrier 406 to move in a downward direction.
- the carrier 406 is connected to a piston head 500 , which moves downward with the carrier 406 .
- the piston head 500 , an internal surface of the housing of the connection assembly, and a body that carries the attachment rod collectively form a gas chamber that has a characteristic such that when the piston head 500 moves downward that gas in the gas chamber compresses. In such an example, the force from the compressed gas may cause the body carrying the piston to also move downward, thus changing the position of the stride length adjustment link.
- the thread forms may also rotate in the second direction causing the carrier 406 to move upward.
- the piston head 500 also moves in the upward direction.
- the upward movement of the piston head may relieve at least some of the pressure within the gas chamber resulting in a weaker force pushing the body carrying the adjustment rod downward.
- a force is continuously urging the body carrying the attachment rod upward.
- Such a force may be applied by a spring, an elastomeric material, another mechanism, or combinations thereof.
- the upward force may overcome the downward force resulting in the body moving upward.
- the attachment rod moves upward causing the stride adjustment link to also move upward and modify the stride length.
- FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure.
- the input mechanism 600 includes a display 602 , an increase button 604 , and a decrease button 606 .
- the user can instruct the exercise machine 100 to change the stride length by pressing either the increase button 604 or the decrease button 606 .
- an electronic signal may be generated to cause the actuator to move the stride adjustment link.
- the signals may be sent to a single stride adjustment link or the signals may be sent to both stride adjustment links.
- the signal may be transmitted to yet other exercise machines with adjustable strides such that the stride length of the other exercise machines may be controlled remotely through the input mechanism 600 .
- the display 602 may present the current stride adjustment length of both or just the corresponding stride.
- the input mechanisms may include mechanical input mechanisms, electric input mechanisms, other type of input mechanisms, or combinations thereof.
- the examples above have been described with reference to specific types of actuators, any appropriate type of actuator may be used in accordance with the principles described herein.
- such an actuator may include screw type mechanisms, hydraulic mechanisms, pneumatic mechanisms, linear actuators, motors, analog/digital converters, springs, gears, levers, other types of actuators, or combinations thereof.
- the exercise machine may include any number of flywheels.
- the principles described in the present disclosure can be applied to exercise machines that incorporate just a single flywheel or no flywheel at all.
- the examples above have been described with specific reference to an elliptical exercise machine that provides a user the ability to both work out by sliding the foot pedals and rotating the crank assembly, the principles described in the present disclosure can be applied to exercise machines that provide just one of these types of aforementioned workouts.
- any appropriate type of exercise machine may incorporate the principles described in the present disclosure.
- any appropriate connector and/or fastener may be used to make the attachment.
- a ball and socket connection may be used.
- the stride adjustment link may slide within track where a flange of the stride adjustment link retains the stride adjustment link within the track.
- other types of connection mechanisms may be used.
- the invention disclosed herein may provide an exercise machine that has a convenient mechanism for adjusting the stride length of the exercise machine. For example, users of different heights and/or stride lengths may use the same exercise machine and conveniently adjust the stride. Further, users may conveniently adjust the stride to target different muscle groups.
- the stride adjustment mechanisms may include an input mechanism that is located within a convenient arms reach of a user standing on the foot pedals of the exercise machine.
- the user can adjust the stride while exercising or at least without having to get off of the exercise machine.
- a user may adjust the stride length before getting onto the exercise machine just to find that the adjusted stride is undesirable. In such situations, the user can refine the stride adjustment while still standing on the exercise machine's foot pedals.
- a stride adjustment link may connect the arm support to the foot pedal independent of other mechanical linkages.
- the stride adjustment link may restrict the movement of such mechanical linkages such that the stride length is set at a certain distance.
- the input mechanism is a rotary dial where turning the rotary dial in a first direction causes the stride length to increase while turning the rotary dial in a second direction causes the stride length to decrease.
- any appropriate type of actuator to causes the stride length to adjust may be used in accordance with the principles described in the present disclosure.
- Examples of screw type actuators and pneumatic actuators are described above.
- other types of actuator may be used.
- such actuators may include linear actuators, motors, digital/analog converters, springs, gears, and so forth.
- any appropriate type of input mechanism that is convenient for the user to operate while in a position to use the exercise machine may be used.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Rehabilitation Tools (AREA)
Abstract
Description
- This application claims priority to U.S. Patent Application Ser. No. 62/087,895 titled “Adjustable Stride Length in an Exercise Machine” and filed on 5 Dec. 2014, which application is herein incorporated by reference for all that it discloses.
- Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Typically, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise. Popular forms of aerobic exercise include running, jogging, swimming, and cycling among other types of aerobic exercise. In contrast, anaerobic exercise typically involves high intensity exercises over a short duration of time. Popular forms of aerobic exercise include strength training and short distance running.
- Many choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user will use an aerobic exercise machine to have an aerobic workout indoors. One such type of aerobic exercise machine is an elliptical exercise machine, which often includes foot supports that move in reciprocating directions when moved by the feet of a user. Often, the foot supports will be mechanically linked to arm levers that can be held by the user during the workout. The arm levers and foot supports move together and collectively provide resistance against the user's motion during the user's workout. Other popular exercise machines that allow a user to perform aerobic exercises indoors include treadmills, rowing machines, stepper machines, and bikes to name a few.
- One type of elliptical exercise machine is disclosed in U.S. Pat. No. 7,758,473 issued to Andrew P. Lull. In this reference, a variable stride exercise device utilizes various configurations of linkage assemblies, cam members, and other components, connected with a frame to allow a user to dynamically vary the user's stride path during exercise. The exercise device allows for a foot engagement member travel path that adapts to the change in stride length rather than forcing the user into a fixed size path. A user's exertion level may have several components impacting the stride length provided by the machine, such as leg power, torso power, and (in versions of the exercise apparatus with arm supports or exercise components) arm power. The exercise device may include a lockout device that selectively eliminates the variable stride features of the exercise device and allows the user to exercise in a stepping motion. Another type of elliptical exercise machine is described in U.S. Pat. No. 7,938,754 issued to Paul William Eschenbach and U.S. Patent Publication No. 2004/0248706 issued to Rodgers E. Roberts, Jr. Each of these references is herein incorporated by reference for all that they contain.
- In one aspect of the invention, an exercise machine comprises a frame.
- In one aspect of the invention, a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- In one aspect of the invention, the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal.
- In one aspect of the invention, the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- In one aspect of the invention, the first arm support is mechanically linked to the first foot pedal, and the second arm support is mechanically linked to the second foot pedal.
- In one aspect of the invention, the exercise machine comprises a first stride adjustment link is slideably connected to the first arm support at a first connection assembly.
- In one aspect of the invention, the exercise machine comprises a second stride adjustment link is slideably connected to the second arm support at a second connection assembly.
- In one aspect of the invention, the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly.
- In one aspect of the invention, the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly.
- In one aspect of the invention, slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- In one aspect of the invention, the first stride adjustment link comprises a first sliding end attached to the first slideable connector.
- In one aspect of the invention, the second stride adjustment link comprises a second sliding end attached to the second slideable connector.
- In one aspect of the invention, the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly.
- In one aspect of the invention, the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- In one aspect of the invention, the first actuator and the second actuator are mechanical actuators.
- In one aspect of the invention, the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly.
- In one aspect of the invention, the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- In one aspect of the invention, the first actuator comprises a first screw mechanism arranged to move the first slideable connector.
- In one aspect of the invention, the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- In one aspect of the invention, the first screw mechanism and the second screw mechanism include a push rod connected to a thread form on a first end and connected the first slideable connector or the second slideable connector on a second end.
- In one aspect of the invention, the first screw mechanism and the second screw mechanism include a piston head connected to a thread form and configured to compress a chamber of gas as the first actuator or the second actuator is actuated.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- In one aspect of the invention, the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- In one aspect of the invention, an exercise machine comprises a frame.
- In one aspect of the invention, a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- In one aspect of the invention, the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal. In one aspect of the invention, the exercise machine comprises a first arm support and a second arm support are pivotally attached to the frame.
- In one aspect of the invention, the first arm support is mechanically linked to the first foot pedal, and the second arm support is mechanically linked to the second foot pedal.
- In one aspect of the invention, a first stride adjustment link is slideably connected to the first arm support at a first connection assembly, and a second stride adjustment link is slideably connected to the second arm support at a second connection assembly.
- In one aspect of the invention, the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly, and the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- In one aspect of the invention, the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- In one aspect of the invention, the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly, and the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- In one aspect of the invention, the first actuator and the second actuator are mechanical actuators.
- In one aspect of the invention, the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly, and the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- In one aspect of the invention, the first actuator comprises a first screw mechanism arranged to move the first slideable connector and the second actuator comprises a second screw mechanism arranged to move the second slideable connector.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- In one aspect of the invention, the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- In one aspect of the invention, an exercise machine comprises a frame.
- In one aspect of the invention, a foot pedal and a second foot pedal movably attached to the frame and arranged to travel along reciprocating paths.
- In one aspect of the invention, the exercise machine comprises a pedal resistance mechanism integrated into the exercise machine and in resistive communication with the first foot pedal and the second foot pedal. In one aspect of the invention, a first arm support and a second arm support are pivotally attached to the frame.
- In one aspect of the invention, the first arm support is mechanically linked to the first foot pedal, and the second arm support is mechanically linked to the second foot pedal.
- In one aspect of the invention, a first stride adjustment link is slideably connected to the first arm support at a first connection assembly, and a second stride adjustment link is slideably connected to the second arm support at a second connection assembly.
- In one aspect of the invention, the first stride adjustment link includes a first slideable connector disposed within a first opening of the first connection assembly, and the second stride adjustment link includes a second slideable connector disposed within a second opening of the second connection assembly, wherein slideable movement of the first slideable connector and the second slideable connector modifies a reciprocating length of the reciprocating paths.
- In one aspect of the invention, the first stride adjustment link comprises a first sliding end attached to the first slideable connector, and the second stride adjustment link comprising a second sliding end attached to the second slideable connector.
- In one aspect of the invention, the first connection assembly comprises a first actuator to cause the first slideable connector to slide along a first length of the first opening of the first connection assembly, and the second connection assembly comprises a second actuator to cause the second slideable connector to slide along a second length of the second opening of the second connection assembly.
- In one aspect of the invention, the first actuator comprises a first rotary dial that causes the first slideable connector to slide within the first connection assembly, and the second actuator comprises a second rotary dial that causes the second slideable connector to slide within the second connection assembly.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a first end attached to their respective arm support and a second end attached to a track that supports the foot pedals.
- In one aspect of the invention, each of the first stride adjustment link and the second stride adjustment link comprise a joint that connects the first end to the second end.
- In one aspect of the invention, the first foot pedal is movable along a first track connected to the first arm support and the second foot pedal is movable along a second track connected to the second arm support.
- Any of the aspects of the invention detailed above may be combined with any other aspect of the invention detailed herein.
- The accompanying drawings illustrate various embodiments of the present apparatus and are a part of the specification. The illustrated embodiments are merely examples of the present apparatus and do not limit the scope thereof.
-
FIG. 1 illustrates a perspective view of an example of an exercise machine in accordance with the present disclosure. -
FIG. 2 illustrates a side view of the exercise machine ofFIG. 1 . -
FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure. -
FIG. 4 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure. -
FIG. 5 illustrates a cut away view of an example of a stride adjustment link in accordance with the present disclosure. -
FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure. - Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
- An exercise machine, such as an elliptical exercise machine, includes foot pedals that are mechanically linked together. Such foot pedals are often mechanically linked to arm supports that move with the foot pedals of the elliptical exercise machine. Thus, when any of either the foot pedals or either of the arm supports move, each of the foot pedals and each of the arm supports will move. As a result, when a user moves any of these components, each of the components will move together.
- A user can stand on the foot pedals and move his feet along a reciprocating path traveled by the foot pedals while moving the arm supports back and forth. A user gets a workout when the collective movement of the foot pedals and arm supports is resisted. Often, the resistance to the foot pedal's movement is adjustable. Such resistance may be achieved through any appropriate mechanism. In some examples, a magnetic unit is positioned near a flywheel such that the magnetism of the magnetic unit resists the movement of the flywheel. To adjust the magnetic resistance force, the magnetic unit may be moved closer to or away from the flywheel. In alternative examples, the magnetic force is proportional to electrical energy applied to the magnetic unit, and the strength of the magnetic field can be adjusted by applying a different level of electrical energy to the flywheel. In yet other examples, tensioning units, compression pads, pneumatic mechanisms, hydraulic mechanisms, other mechanisms, or combinations thereof are adjusted to change the resistance.
- For purposes of the present disclosure, the term “resistance mechanism” includes those components that directly interact to cause an added degree of resistance during the user's workout. For example, a resistance mechanism may include a flywheel when the exercise machine has components that can adjustably impose resistance to the movement of the flywheel, such as imposing a magnetic force on the flywheel to prevent the flywheel's rotation. The flywheel is included in the resistance mechanism when other components interact with the flywheel to directly resist the flywheel's movement. For example, braking pads, tensioning elements, fan blades, or other components can be used to directly resist the movement of the flywheel. In such examples, both the flywheel and the components interact to adjustably resist the movement of the flywheel and are included as part of the resistance mechanism.
- Particularly, with reference to the figures,
FIGS. 1-2 depict an example of anexercise machine 100, such as an elliptical exercise machine. Theexercise machine 100 includes a base 102 that is attached to aframe 104. Alower portion 106 of theframe 104 includes ahousing 108 that supports afirst flywheel 110 and asecond flywheel 112. Thefirst flywheel 110 and thesecond flywheel 112 are attached to one another through acrank assembly 114. Thecrank assembly 114 includes a crank arm that is attached to a first shaft that is connected to thefirst flywheel 110 on a first end and attached to asecond shaft 122 that is connected to thesecond flywheel 112 at asecond end 124. - The base 102 may be any appropriate base in accordance with the principles described in the present disclosure. In some examples, the
base 102 is flat and has a center of gravity that is close to a floor or other type of foundation upon which theexercise machine 100 resides. The base 102 may be made of a continuous beam of metal with a curvature such that multiple portions of the continuous beam are positioned to make connections with the lower portion of theframe 104. In other examples, cross bars connect the multiple portions of thebase 102. In some examples, the frame includes just horizontally positioned beams that are aligned with the floor or the other type of foundation. In yet other examples, thebase 102 may include a vertical support member that is intended to carry a vertical load. - The first shaft is attached to an underside of a
first track 126 that supports afirst foot pedal 128, and thesecond shaft 122 is attached to an underside of asecond track 130 that supports asecond foot pedal 132. Thecrank assembly 114 is shaped such that the first shaft and thesecond shaft 122 follow reciprocating paths. Consequently, thefirst foot pedal 128 follows the path of the first shaft, and thesecond foot pedal 132 follows the path of thesecond shaft 122. As a user stands on thefirst foot pedal 128 and thesecond foot pedal 132 for a workout, the user's feet will also follow the reciprocating paths of thefirst foot pedal 128 and thesecond foot pedal 132. In some examples, thefirst foot pedal 128 is slideable along the length of thefirst track 126. Likewise, thesecond foot pedal 132 is slideable slide along the length of thesecond track 130. Thus, in some examples, thefirst foot pedal 128 and thesecond foot pedal 132 are configured to move down the length of the tracks and with the reciprocating paths traveled by the first shaft and thesecond shaft 122. - The
first foot pedal 128 is connected to afirst arm support 134 through a firstmechanical linkage 136, and thesecond foot pedal 132 is connected to asecond arm support 138 through a secondmechanical linkage 140. Thefirst arm support 134 is connected to theframe 104 at a firstarm pivot connection 142, and thesecond arm support 138 is connected to theframe 104 at a secondarm pivot connection 144. In the example ofFIGS. 1-2 , the firstmechanical linkage 136 includes a first bottom section of thefirst arm support 134 being connected to a first far end of thefirst track 126 at a first joint. Likewise, the secondmechanical linkage 140 includes a second bottom section of thesecond arm support 138 being connected to a second far end of thesecond track 130 at a second joint. - A
console 158 is connected to a portion of theframe 104. Theconsole 158 may include multiple buttons, a display, a cooling vent, a speaker, another device, or combinations thereof. Theconsole 158 can include a resistance input mechanism that allows the user to control how much resistance is applied to the movement of thefirst foot pedal 128, thesecond foot pedal 132, thefirst arm support 134, and thesecond arm support 138. Theconsole 158 may also provide the user with an ability to control other functions of theexercise machine 100. For example, theconsole 158 may be used to control a level of a climate control, to control an incline angle between theframe 104 and thebase 102, to control speaker volume, to select a preprogrammed workout, to control entertainment through the speakers of the display of theconsole 158, to monitor a health parameter of the user during a workout, to communicate with a remote trainer or computer, to control other functions, or combinations thereof. - In some examples, the first and
second foot pedals second tracks tracks crank assembly 114 can be locked so that thefoot pedals tracks tracks foot pedals tracks foot pedals tracks foot pedals crank assembly 114 may be free to rotate such that thefoot pedals - The
exercise machine 100 includes a firststride adjustment link 166 that is slideably connected to thefirst arm support 134 at afirst connection assembly 168, and a secondstride adjustment link 170 that is slideably connected to thesecond arm support 138 at asecond connection assembly 172. The first andsecond connection assemblies first connection assembly 168 includes afirst opening 175 configured to receive afirst attachment rod 174 to which a first connection end of the firststride adjustment link 166 can attach. Likewise, thesecond connection assembly 172 includes asecond opening 200 configured to receive asecond attachment rod 202 to which a second connection end of the secondstride adjustment link 170 can attach. The first and second attachment rods can be moved along the lengths of the first andsecond openings second tracks second foot pedals crank assembly 114 or other portions of theexercise machine 100 that travel along the reciprocating path. - The position of the
first attachment rod 174 within thefirst opening 175 of thefirst connection assembly 168 may be controlled by the first actuator. Likewise, the position of thesecond attachment rod 202 within thesecond opening 200 of thesecond connection assembly 172 may be controlled by the second actuator. In some examples where the position of theattachment rods tracks second foot pedals exercise machine 100 accordingly shrinks as well. Staying with the same example, as the position of theattachment rods tracks second foot pedals exercise machine 100 accordingly enlarges as well. As a result, a user may adjust the stride length of theexercise machine 100 according to the user's height and/or other preferences. In other examples, the user may adjust the stride length to target specific muscle groups or train for specific types of events where training with a specific stride length can be advantageous. - Any appropriate type of input mechanism may be used to control the first and/or second actuators. For example, a rotary dial 180 may be positioned on the first and/or
second connection assemblies - While the examples above has been described with reference to each of the stride adjustment links having independent input mechanisms attached to their corresponding the connection assemblies, some examples include a single input mechanism that may be used to control both the first and second stride adjustment links. For example, just one of the stride adjustment links may incorporate an actuator that includes an input mechanism. Such an input mechanism may be in communication with both the local actuator as well as the actuator associated with the other stride adjustment link. In some examples, an electronic signal may be transmitted to both of the stride adjustment links in response to the input mechanism receiving input from the user. Such a signal may cause both of the actuators to move at the same rate and/or distance. As a result, the user does not have to determine whether each of the stride adjustment links is set at the same stride lengths.
-
FIG. 3 illustrates a close up view of an example of an actuator of an example of a stride adjustment link in accordance with the present disclosure. In this example, the actuator includes a rotary dial 180 as the input mechanism. Such a rotary dial 180 include aknob 300 positioned in the center of the input mechanism.Numeral characters 302 surround the rotary dial 180 and represent the stride length in inches at which theexercise machine 100 is currently set. In other examples, thenumeral indicators 302 may represent another unit of length. In yet other examples, other symbols, besidesnumeral indicators 302, are used to represent the stride length. -
FIG. 4 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure. In this example, theactuator 400 includes a screw mechanism with athread form 402 that is connected to a rotarydial input mechanism 404. As the rotarydial input mechanism 404 is rotated in a first direction, thethread form 402 rotates in a corresponding direction causing acarrier 406 to move in a downward direction. Thecarrier 406 is connected to apush rod 408 that is attached to theattachment rod 410. Thus, as thecarrier 406 moves in the downward direction, theattachment rod 410 will likewise move in the downward direction. In some examples, as theattachment rod 410 moves in the downward direction, the stride length adjustment link will move causing the stride length to decrease. - Staying with the same example, as the rotary
dial input mechanism 404 is rotated in a second direction, thethread form 402 rotates in a corresponding direction causing thecarrier 406 to move in an upward direction. Thecarrier 406 is connected to apush rod 408 that is attached to theattachment rod 410. Thus, as thecarrier 406 moves in the upward direction, theattachment rod 410 will also move in the upward direction. In some examples, as theattachment rod 410 moves in the upward direction, the stride length adjustment link will move causing the stride length to increase. -
FIG. 5 illustrates a cut away view of a stride adjustment link in accordance with the present disclosure. In this example, theactuator 400 includes the screw mechanism with thethread form 402 that is connected to the rotarydial input mechanism 404. As the rotarydial input mechanism 404 is rotated in a first direction, thethread form 402 rotates in a corresponding direction causing acarrier 406 to move in a downward direction. Thecarrier 406 is connected to apiston head 500, which moves downward with thecarrier 406. Thepiston head 500, an internal surface of the housing of the connection assembly, and a body that carries the attachment rod collectively form a gas chamber that has a characteristic such that when thepiston head 500 moves downward that gas in the gas chamber compresses. In such an example, the force from the compressed gas may cause the body carrying the piston to also move downward, thus changing the position of the stride length adjustment link. - In accordance with the same example, when the rotary dial input mechanism is rotated in the second direction, the thread forms may also rotate in the second direction causing the
carrier 406 to move upward. As a result, thepiston head 500 also moves in the upward direction. The upward movement of the piston head may relieve at least some of the pressure within the gas chamber resulting in a weaker force pushing the body carrying the adjustment rod downward. In some examples, a force is continuously urging the body carrying the attachment rod upward. Such a force may be applied by a spring, an elastomeric material, another mechanism, or combinations thereof. In such examples, when the force urging the body carrying the attachment rod is weakened, the upward force may overcome the downward force resulting in the body moving upward. As a result, the attachment rod moves upward causing the stride adjustment link to also move upward and modify the stride length. -
FIG. 6 illustrates a close up view of an example of an actuator of a stride adjustment link in accordance with the present disclosure. In this example, theinput mechanism 600 includes adisplay 602, anincrease button 604, and adecrease button 606. In such an example, the user can instruct theexercise machine 100 to change the stride length by pressing either theincrease button 604 or thedecrease button 606. In response to the user pressing either theincrease button 604 or thedecrease button 606, an electronic signal may be generated to cause the actuator to move the stride adjustment link. In such an example, the signals may be sent to a single stride adjustment link or the signals may be sent to both stride adjustment links. In yet other examples, the signal may be transmitted to yet other exercise machines with adjustable strides such that the stride length of the other exercise machines may be controlled remotely through theinput mechanism 600. Thedisplay 602 may present the current stride adjustment length of both or just the corresponding stride. - While the examples above have been described with reference to specific types of input mechanisms, any appropriate type of input mechanism may be used in accordance with the principles described in the present disclosure. For example, the input mechanisms may include mechanical input mechanisms, electric input mechanisms, other type of input mechanisms, or combinations thereof. Further, while the examples above have been described with reference to specific types of actuators, any appropriate type of actuator may be used in accordance with the principles described herein. For example, such an actuator may include screw type mechanisms, hydraulic mechanisms, pneumatic mechanisms, linear actuators, motors, analog/digital converters, springs, gears, levers, other types of actuators, or combinations thereof.
- While the examples above have been described with reference to exercise machines that specifically have multiple flywheels, the exercise machine may include any number of flywheels. For example, the principles described in the present disclosure can be applied to exercise machines that incorporate just a single flywheel or no flywheel at all. Further, while the examples above have been described with specific reference to an elliptical exercise machine that provides a user the ability to both work out by sliding the foot pedals and rotating the crank assembly, the principles described in the present disclosure can be applied to exercise machines that provide just one of these types of aforementioned workouts. Further, while the examples above have been described with reference to elliptical machines, any appropriate type of exercise machine may incorporate the principles described in the present disclosure.
- While the examples above have been described with specific reference to an attachment rod connecting the stride adjustment link to the connection assemblies, any appropriate connector and/or fastener may be used to make the attachment. For example, a ball and socket connection may be used. In other examples, the stride adjustment link may slide within track where a flange of the stride adjustment link retains the stride adjustment link within the track. Further, other types of connection mechanisms may be used.
- In general, the invention disclosed herein may provide an exercise machine that has a convenient mechanism for adjusting the stride length of the exercise machine. For example, users of different heights and/or stride lengths may use the same exercise machine and conveniently adjust the stride. Further, users may conveniently adjust the stride to target different muscle groups.
- The stride adjustment mechanisms may include an input mechanism that is located within a convenient arms reach of a user standing on the foot pedals of the exercise machine. Thus, the user can adjust the stride while exercising or at least without having to get off of the exercise machine. In some instances, a user may adjust the stride length before getting onto the exercise machine just to find that the adjusted stride is undesirable. In such situations, the user can refine the stride adjustment while still standing on the exercise machine's foot pedals.
- A stride adjustment link may connect the arm support to the foot pedal independent of other mechanical linkages. The stride adjustment link may restrict the movement of such mechanical linkages such that the stride length is set at a certain distance. In some examples, the input mechanism is a rotary dial where turning the rotary dial in a first direction causes the stride length to increase while turning the rotary dial in a second direction causes the stride length to decrease.
- Any appropriate type of actuator to causes the stride length to adjust may be used in accordance with the principles described in the present disclosure. Examples of screw type actuators and pneumatic actuators are described above. However, other types of actuator may be used. For example, such actuators may include linear actuators, motors, digital/analog converters, springs, gears, and so forth. Likewise, any appropriate type of input mechanism that is convenient for the user to operate while in a position to use the exercise machine may be used.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/957,950 US20160158595A1 (en) | 2014-12-05 | 2015-12-03 | Adjustable Stride Length in an Exercise Machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462087895P | 2014-12-05 | 2014-12-05 | |
US14/957,950 US20160158595A1 (en) | 2014-12-05 | 2015-12-03 | Adjustable Stride Length in an Exercise Machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160158595A1 true US20160158595A1 (en) | 2016-06-09 |
Family
ID=56092444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/957,950 Abandoned US20160158595A1 (en) | 2014-12-05 | 2015-12-03 | Adjustable Stride Length in an Exercise Machine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160158595A1 (en) |
TW (1) | TWI579019B (en) |
WO (1) | WO2016090100A1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170128768A1 (en) * | 2015-11-10 | 2017-05-11 | Superweigh Enterprise Co., Ltd. | Elliptical Machine |
US10369404B2 (en) | 2015-12-31 | 2019-08-06 | Nautilus, Inc. | Pedal assembly for exercise machine |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US10709925B2 (en) | 2013-03-14 | 2020-07-14 | Icon Health & Fitness, Inc. | Strength training apparatus |
US10758767B2 (en) | 2013-12-26 | 2020-09-01 | Icon Health & Fitness, Inc. | Resistance mechanism in a cable exercise machine |
US10786706B2 (en) | 2018-07-13 | 2020-09-29 | Icon Health & Fitness, Inc. | Cycling shoe power sensors |
CN112169259A (en) * | 2019-07-04 | 2021-01-05 | 北京力泰克科技有限公司 | Elliptical machine for rehabilitation and step length adjusting mechanism thereof |
US10918905B2 (en) | 2016-10-12 | 2021-02-16 | Icon Health & Fitness, Inc. | Systems and methods for reducing runaway resistance on an exercise device |
US10932517B2 (en) | 2014-03-10 | 2021-03-02 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US10946238B1 (en) * | 2018-07-23 | 2021-03-16 | Life Fitness, Llc | Exercise machines having adjustable elliptical striding motion |
US10994173B2 (en) | 2016-05-13 | 2021-05-04 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US11000730B2 (en) | 2018-03-16 | 2021-05-11 | Icon Health & Fitness, Inc. | Elliptical exercise machine |
US11013960B2 (en) | 2016-03-18 | 2021-05-25 | Icon Health & Fitness, Inc. | Exercise system including a stationary bicycle and a free weight cradle |
US11033777B1 (en) | 2019-02-12 | 2021-06-15 | Icon Health & Fitness, Inc. | Stationary exercise machine |
US11058913B2 (en) | 2017-12-22 | 2021-07-13 | Icon Health & Fitness, Inc. | Inclinable exercise machine |
US11058914B2 (en) | 2016-07-01 | 2021-07-13 | Icon Health & Fitness, Inc. | Cooling methods for exercise equipment |
US11187285B2 (en) | 2017-12-09 | 2021-11-30 | Icon Health & Fitness, Inc. | Systems and methods for selectively rotationally fixing a pedaled drivetrain |
US11191995B2 (en) | 2016-12-30 | 2021-12-07 | Nautilus, Inc. | Pedal assembly for exercise machine |
US11244751B2 (en) | 2012-10-19 | 2022-02-08 | Finish Time Holdings, Llc | Method and device for providing a person with training data of an athlete as the athlete is performing a swimming workout |
US11298577B2 (en) | 2019-02-11 | 2022-04-12 | Ifit Inc. | Cable and power rack exercise machine |
US11326673B2 (en) | 2018-06-11 | 2022-05-10 | Ifit Inc. | Increased durability linear actuator |
US11451108B2 (en) | 2017-08-16 | 2022-09-20 | Ifit Inc. | Systems and methods for axial impact resistance in electric motors |
US11534651B2 (en) | 2019-08-15 | 2022-12-27 | Ifit Inc. | Adjustable dumbbell system |
US11534654B2 (en) | 2019-01-25 | 2022-12-27 | Ifit Inc. | Systems and methods for an interactive pedaled exercise device |
US11565148B2 (en) | 2016-03-18 | 2023-01-31 | Ifit Inc. | Treadmill with a scale mechanism in a motor cover |
US11673036B2 (en) | 2019-11-12 | 2023-06-13 | Ifit Inc. | Exercise storage system |
US11794070B2 (en) | 2019-05-23 | 2023-10-24 | Ifit Inc. | Systems and methods for cooling an exercise device |
US11850497B2 (en) | 2019-10-11 | 2023-12-26 | Ifit Inc. | Modular exercise device |
US11931621B2 (en) | 2020-03-18 | 2024-03-19 | Ifit Inc. | Systems and methods for treadmill drift avoidance |
US11951377B2 (en) | 2020-03-24 | 2024-04-09 | Ifit Inc. | Leaderboard with irregularity flags in an exercise machine system |
WO2024107413A1 (en) * | 2022-11-15 | 2024-05-23 | Stearns Kenneth W | Stepper exercise apparatus |
US12011638B2 (en) | 2020-03-09 | 2024-06-18 | Life Fitness, Llc | Exercise machines for facilitating elliptical striding motion |
US12029961B2 (en) | 2020-03-24 | 2024-07-09 | Ifit Inc. | Flagging irregularities in user performance in an exercise machine system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108721834B (en) * | 2018-05-29 | 2020-04-07 | 安阳工学院 | Bilateral limb synchronous movement device |
CN113082639B (en) * | 2021-04-15 | 2022-02-08 | 河南省中医院(河南中医药大学第二附属医院) | Cardiovascular patient uses rehabilitation and nursing device |
CN117599385B (en) * | 2023-12-30 | 2024-06-11 | 中国人民解放军空军军医大学 | Nursing device is tempered to atrial fibrillation ablation postoperative |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391130A (en) * | 1989-02-03 | 1995-02-21 | Green; Edward J. | Leg exerciser |
US6053847A (en) * | 1997-05-05 | 2000-04-25 | Stearns; Kenneth W. | Elliptical exercise method and apparatus |
US6135923A (en) * | 1998-04-23 | 2000-10-24 | Stearns; Kenneth W. | Exercise methods and apparatus |
US20020055420A1 (en) * | 1999-11-05 | 2002-05-09 | Stearns Kenneth W. | Exercise apparatus with elliptical foot motion |
US20020077220A1 (en) * | 2000-12-19 | 2002-06-20 | Kuo Hai Pin | Exerciser having adjustable mechanism |
US6450925B1 (en) * | 2001-07-19 | 2002-09-17 | Hai Pin Kuo | Exerciser having adjustable mechanism |
US6454682B1 (en) * | 2001-07-19 | 2002-09-24 | Hai Pin Kuo | Exercizer having adjustable mechanism |
US20020151411A1 (en) * | 2001-04-16 | 2002-10-17 | Stearns Kenneth W. | Exercise apparatus with elliptical foot motion |
US7211029B2 (en) * | 2003-07-04 | 2007-05-01 | Jong Jyr Kau | Foldaway threadmill |
US7214167B2 (en) * | 1997-04-26 | 2007-05-08 | Stearns Kenneth W | Exercise methods and apparatus |
US20070238582A1 (en) * | 2006-04-07 | 2007-10-11 | Lung-Huei Lee | Elliptical exercise apparatus |
US20080214364A1 (en) * | 2006-10-30 | 2008-09-04 | Maresh Joseph D | Ellipical exercise apparatus with flexible unitary force imparting member |
US7682288B1 (en) * | 2007-09-04 | 2010-03-23 | Stearns Kenneth W | Elliptical exercise methods and apparatus |
US20100099541A1 (en) * | 2008-10-21 | 2010-04-22 | Rakesh Patel | Assisted Stair Training Machine and Methods of Using |
US20100248899A1 (en) * | 2009-03-25 | 2010-09-30 | Bedell Daniel J | Exercise apparatus with automatically adjustable foot motion |
US20110172059A1 (en) * | 2009-03-27 | 2011-07-14 | Icon Ip, Inc. | System and method for exercising |
US20120071301A1 (en) * | 2010-09-22 | 2012-03-22 | Jemian Fitness Llc | Adjustable inclining and declining exercise bicycle |
US8469861B1 (en) * | 2008-08-20 | 2013-06-25 | Susan L. McFee | Pushable exercise apparatus for resistance training |
US20140261362A1 (en) * | 2013-03-13 | 2014-09-18 | Douglas L. Boehner | System and Method to Pitch Soccer Balls |
US20140309086A1 (en) * | 2013-04-15 | 2014-10-16 | Yen-Chi Chuang | Oblong Orbital Exercising Machine Having Adjustable and Extendable Trace of Movement |
US20140371032A1 (en) * | 2013-06-14 | 2014-12-18 | Mario Contenti Designs Co., Ltd. | Elliptical treadmill |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788610A (en) * | 1996-09-09 | 1998-08-04 | Eschenbach; Paul William | Elliptical exercise machine with arm exercise |
US6994656B2 (en) * | 2002-06-21 | 2006-02-07 | Johnson Tech, Co., Ltd. | Exercise apparatus |
AU2003255231A1 (en) * | 2002-08-07 | 2004-02-25 | True Fitness Technology, Inc. | Adjustable stride elliptical motion exercise machine and associated methods |
US7530926B2 (en) * | 2003-12-04 | 2009-05-12 | Rodgers Jr Robert E | Pendulum striding exercise devices |
TWM286688U (en) * | 2005-05-27 | 2006-02-01 | Motion Fitness Products Inc | Span adjusting structure of elliptical exercise device |
TWM427169U (en) * | 2011-11-04 | 2012-04-21 | Great Fitness Ind Co Ltd | Drive structure of elliptical machine |
TW201433334A (en) * | 2013-02-25 | 2014-09-01 | Dyaco Int Inc | Elliptical trainer with changeable stroke |
TWM486466U (en) * | 2014-05-21 | 2014-09-21 | Mario Contenti Designs Co Ltd | Elliptical machine |
-
2015
- 2015-12-03 US US14/957,950 patent/US20160158595A1/en not_active Abandoned
- 2015-12-03 WO PCT/US2015/063665 patent/WO2016090100A1/en active Application Filing
- 2015-12-04 TW TW104140803A patent/TWI579019B/en active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391130A (en) * | 1989-02-03 | 1995-02-21 | Green; Edward J. | Leg exerciser |
US7214167B2 (en) * | 1997-04-26 | 2007-05-08 | Stearns Kenneth W | Exercise methods and apparatus |
US6053847A (en) * | 1997-05-05 | 2000-04-25 | Stearns; Kenneth W. | Elliptical exercise method and apparatus |
US6135923A (en) * | 1998-04-23 | 2000-10-24 | Stearns; Kenneth W. | Exercise methods and apparatus |
US20020055420A1 (en) * | 1999-11-05 | 2002-05-09 | Stearns Kenneth W. | Exercise apparatus with elliptical foot motion |
US20020077220A1 (en) * | 2000-12-19 | 2002-06-20 | Kuo Hai Pin | Exerciser having adjustable mechanism |
US20020151411A1 (en) * | 2001-04-16 | 2002-10-17 | Stearns Kenneth W. | Exercise apparatus with elliptical foot motion |
US6450925B1 (en) * | 2001-07-19 | 2002-09-17 | Hai Pin Kuo | Exerciser having adjustable mechanism |
US6454682B1 (en) * | 2001-07-19 | 2002-09-24 | Hai Pin Kuo | Exercizer having adjustable mechanism |
US7211029B2 (en) * | 2003-07-04 | 2007-05-01 | Jong Jyr Kau | Foldaway threadmill |
US20070238582A1 (en) * | 2006-04-07 | 2007-10-11 | Lung-Huei Lee | Elliptical exercise apparatus |
US20080214364A1 (en) * | 2006-10-30 | 2008-09-04 | Maresh Joseph D | Ellipical exercise apparatus with flexible unitary force imparting member |
US7682288B1 (en) * | 2007-09-04 | 2010-03-23 | Stearns Kenneth W | Elliptical exercise methods and apparatus |
US8469861B1 (en) * | 2008-08-20 | 2013-06-25 | Susan L. McFee | Pushable exercise apparatus for resistance training |
US20100099541A1 (en) * | 2008-10-21 | 2010-04-22 | Rakesh Patel | Assisted Stair Training Machine and Methods of Using |
US20100248899A1 (en) * | 2009-03-25 | 2010-09-30 | Bedell Daniel J | Exercise apparatus with automatically adjustable foot motion |
US20110172059A1 (en) * | 2009-03-27 | 2011-07-14 | Icon Ip, Inc. | System and method for exercising |
US20120071301A1 (en) * | 2010-09-22 | 2012-03-22 | Jemian Fitness Llc | Adjustable inclining and declining exercise bicycle |
US20140261362A1 (en) * | 2013-03-13 | 2014-09-18 | Douglas L. Boehner | System and Method to Pitch Soccer Balls |
US20140309086A1 (en) * | 2013-04-15 | 2014-10-16 | Yen-Chi Chuang | Oblong Orbital Exercising Machine Having Adjustable and Extendable Trace of Movement |
US20140371032A1 (en) * | 2013-06-14 | 2014-12-18 | Mario Contenti Designs Co., Ltd. | Elliptical treadmill |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11923066B2 (en) | 2012-10-19 | 2024-03-05 | Finish Time Holdings, Llc | System and method for providing a trainer with live training data of an individual as the individual is performing a training workout |
US11810656B2 (en) | 2012-10-19 | 2023-11-07 | Finish Time Holdings, Llc | System for providing a coach with live training data of an athlete as the athlete is training |
US11322240B2 (en) | 2012-10-19 | 2022-05-03 | Finish Time Holdings, Llc | Method and device for providing a person with training data of an athlete as the athlete is performing a running workout |
US11244751B2 (en) | 2012-10-19 | 2022-02-08 | Finish Time Holdings, Llc | Method and device for providing a person with training data of an athlete as the athlete is performing a swimming workout |
US10953268B1 (en) | 2013-03-14 | 2021-03-23 | Icon Health & Fitness, Inc. | Strength training apparatus |
US11338169B2 (en) | 2013-03-14 | 2022-05-24 | IFIT, Inc. | Strength training apparatus |
US10709925B2 (en) | 2013-03-14 | 2020-07-14 | Icon Health & Fitness, Inc. | Strength training apparatus |
US10967214B1 (en) | 2013-12-26 | 2021-04-06 | Icon Health & Fitness, Inc. | Cable exercise machine |
US10758767B2 (en) | 2013-12-26 | 2020-09-01 | Icon Health & Fitness, Inc. | Resistance mechanism in a cable exercise machine |
US10932517B2 (en) | 2014-03-10 | 2021-03-02 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US9707439B2 (en) * | 2015-11-10 | 2017-07-18 | Superweigh Enterprise Co., Ltd. | Elliptical machine |
US20170128768A1 (en) * | 2015-11-10 | 2017-05-11 | Superweigh Enterprise Co., Ltd. | Elliptical Machine |
US10369404B2 (en) | 2015-12-31 | 2019-08-06 | Nautilus, Inc. | Pedal assembly for exercise machine |
US11794075B2 (en) | 2016-03-18 | 2023-10-24 | Ifit Inc. | Stationary exercise machine configured to execute a programmed workout with aerobic portions and lifting portions |
US11565148B2 (en) | 2016-03-18 | 2023-01-31 | Ifit Inc. | Treadmill with a scale mechanism in a motor cover |
US11013960B2 (en) | 2016-03-18 | 2021-05-25 | Icon Health & Fitness, Inc. | Exercise system including a stationary bicycle and a free weight cradle |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US10994173B2 (en) | 2016-05-13 | 2021-05-04 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US11779812B2 (en) | 2016-05-13 | 2023-10-10 | Ifit Inc. | Treadmill configured to automatically determine user exercise movement |
US11058914B2 (en) | 2016-07-01 | 2021-07-13 | Icon Health & Fitness, Inc. | Cooling methods for exercise equipment |
US10918905B2 (en) | 2016-10-12 | 2021-02-16 | Icon Health & Fitness, Inc. | Systems and methods for reducing runaway resistance on an exercise device |
US11191995B2 (en) | 2016-12-30 | 2021-12-07 | Nautilus, Inc. | Pedal assembly for exercise machine |
US11451108B2 (en) | 2017-08-16 | 2022-09-20 | Ifit Inc. | Systems and methods for axial impact resistance in electric motors |
US11187285B2 (en) | 2017-12-09 | 2021-11-30 | Icon Health & Fitness, Inc. | Systems and methods for selectively rotationally fixing a pedaled drivetrain |
US11058913B2 (en) | 2017-12-22 | 2021-07-13 | Icon Health & Fitness, Inc. | Inclinable exercise machine |
US11000730B2 (en) | 2018-03-16 | 2021-05-11 | Icon Health & Fitness, Inc. | Elliptical exercise machine |
US11596830B2 (en) | 2018-03-16 | 2023-03-07 | Ifit Inc. | Elliptical exercise machine |
US11326673B2 (en) | 2018-06-11 | 2022-05-10 | Ifit Inc. | Increased durability linear actuator |
US12005315B2 (en) | 2018-07-13 | 2024-06-11 | Ifit Inc. | Cycling shoe power sensors |
US10786706B2 (en) | 2018-07-13 | 2020-09-29 | Icon Health & Fitness, Inc. | Cycling shoe power sensors |
US11944866B2 (en) | 2018-07-23 | 2024-04-02 | Life Fitness, Llc | Exercise machines having adjustable elliptical striding motion |
US10946238B1 (en) * | 2018-07-23 | 2021-03-16 | Life Fitness, Llc | Exercise machines having adjustable elliptical striding motion |
US11484749B2 (en) | 2018-07-23 | 2022-11-01 | Life Fitness, Llc | Exercise machines having adjustable elliptical striding motion |
US11534654B2 (en) | 2019-01-25 | 2022-12-27 | Ifit Inc. | Systems and methods for an interactive pedaled exercise device |
US11298577B2 (en) | 2019-02-11 | 2022-04-12 | Ifit Inc. | Cable and power rack exercise machine |
US11452903B2 (en) | 2019-02-11 | 2022-09-27 | Ifit Inc. | Exercise machine |
US11426633B2 (en) | 2019-02-12 | 2022-08-30 | Ifit Inc. | Controlling an exercise machine using a video workout program |
US11033777B1 (en) | 2019-02-12 | 2021-06-15 | Icon Health & Fitness, Inc. | Stationary exercise machine |
US11058918B1 (en) | 2019-02-12 | 2021-07-13 | Icon Health & Fitness, Inc. | Producing a workout video to control a stationary exercise machine |
US11951358B2 (en) | 2019-02-12 | 2024-04-09 | Ifit Inc. | Encoding exercise machine control commands in subtitle streams |
US11794070B2 (en) | 2019-05-23 | 2023-10-24 | Ifit Inc. | Systems and methods for cooling an exercise device |
CN112169259A (en) * | 2019-07-04 | 2021-01-05 | 北京力泰克科技有限公司 | Elliptical machine for rehabilitation and step length adjusting mechanism thereof |
US11534651B2 (en) | 2019-08-15 | 2022-12-27 | Ifit Inc. | Adjustable dumbbell system |
US11850497B2 (en) | 2019-10-11 | 2023-12-26 | Ifit Inc. | Modular exercise device |
US11673036B2 (en) | 2019-11-12 | 2023-06-13 | Ifit Inc. | Exercise storage system |
US12011638B2 (en) | 2020-03-09 | 2024-06-18 | Life Fitness, Llc | Exercise machines for facilitating elliptical striding motion |
US11931621B2 (en) | 2020-03-18 | 2024-03-19 | Ifit Inc. | Systems and methods for treadmill drift avoidance |
US11951377B2 (en) | 2020-03-24 | 2024-04-09 | Ifit Inc. | Leaderboard with irregularity flags in an exercise machine system |
US12029961B2 (en) | 2020-03-24 | 2024-07-09 | Ifit Inc. | Flagging irregularities in user performance in an exercise machine system |
WO2024107413A1 (en) * | 2022-11-15 | 2024-05-23 | Stearns Kenneth W | Stepper exercise apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2016090100A1 (en) | 2016-06-09 |
TW201632230A (en) | 2016-09-16 |
TWI579019B (en) | 2017-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160158595A1 (en) | Adjustable Stride Length in an Exercise Machine | |
US20150182781A1 (en) | Selective Angular Positioning of the Crank of an Elliptical | |
US10046196B2 (en) | Pedal path of a stepping machine | |
EP3341090B1 (en) | Pedal path of a stepping machine | |
US10226664B2 (en) | Exercise machine with multiple exercising modes | |
US9468798B2 (en) | Decoupled arm supports in an elliptical machine | |
US10625114B2 (en) | Elliptical and stationary bicycle apparatus including row functionality | |
US8808148B2 (en) | Elliptical exercise machine with declining adjustable ramp | |
US7731635B2 (en) | Cross training exercise device | |
EP3097956A1 (en) | Exercise machine with upright and recumbent cycling modes | |
JP2013163022A (en) | Exercise device path trace | |
US20160263418A1 (en) | Exercise apparatus having a targeted fluid support system | |
US11110318B2 (en) | Linkage mechanism with elliptical motion trajectory | |
US20060189446A1 (en) | Elliptical step mechanism | |
US8784277B2 (en) | Exercise apparatus having a targeted fluid support system | |
US6976940B2 (en) | Complete body fitness machine | |
US20160184702A1 (en) | Game system having full-body exercise apparatus controller with independently operable appendicular members | |
US20100160120A1 (en) | Programmable universal exercise device | |
US10926132B1 (en) | Linkage mechanism with handles linked to elliptical motion trajectory | |
WO2012161752A1 (en) | Exercise apparatus having a targeted fluid support system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:ICON HEALTH & FITNESS, INC.;HF HOLDINGS, INC.;UNIVERSAL TECHNICAL SERVICES;AND OTHERS;REEL/FRAME:039669/0311 Effective date: 20160803 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ICON HEALTH & FITNESS, INC., UTAH Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:052671/0737 Effective date: 20200427 Owner name: ICON IP, INC., UTAH Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:052671/0737 Effective date: 20200427 |