US20160067213A1 - Combination Treatment of Cardiovascular Disease - Google Patents
Combination Treatment of Cardiovascular Disease Download PDFInfo
- Publication number
- US20160067213A1 US20160067213A1 US14/945,413 US201514945413A US2016067213A1 US 20160067213 A1 US20160067213 A1 US 20160067213A1 US 201514945413 A US201514945413 A US 201514945413A US 2016067213 A1 US2016067213 A1 US 2016067213A1
- Authority
- US
- United States
- Prior art keywords
- cells
- stem cells
- ascorbic acid
- subject
- mesenchymal stem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000024172 Cardiovascular disease Diseases 0.000 title abstract description 25
- 238000011284 combination treatment Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000036542 oxidative stress Effects 0.000 claims abstract description 17
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 68
- 210000004027 cell Anatomy 0.000 claims description 49
- 235000010323 ascorbic acid Nutrition 0.000 claims description 34
- 239000011668 ascorbic acid Substances 0.000 claims description 34
- 229960005070 ascorbic acid Drugs 0.000 claims description 33
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims description 24
- 206010019280 Heart failures Diseases 0.000 claims description 14
- 208000010125 myocardial infarction Diseases 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 2
- 238000003306 harvesting Methods 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 13
- 238000002659 cell therapy Methods 0.000 abstract description 9
- 230000004054 inflammatory process Effects 0.000 abstract description 6
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000004069 differentiation Effects 0.000 abstract description 2
- 230000006698 induction Effects 0.000 abstract description 2
- 230000005764 inhibitory process Effects 0.000 abstract description 2
- 210000000130 stem cell Anatomy 0.000 description 45
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 22
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 22
- 239000003963 antioxidant agent Substances 0.000 description 18
- 235000006708 antioxidants Nutrition 0.000 description 17
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 12
- 210000004700 fetal blood Anatomy 0.000 description 11
- 235000019136 lipoic acid Nutrition 0.000 description 11
- 229960002663 thioctic acid Drugs 0.000 description 11
- 239000003102 growth factor Substances 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000001990 intravenous administration Methods 0.000 description 7
- 210000002826 placenta Anatomy 0.000 description 7
- 108010074051 C-Reactive Protein Proteins 0.000 description 5
- 102100032752 C-reactive protein Human genes 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 230000033115 angiogenesis Effects 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 208000031225 myocardial ischemia Diseases 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 206010007559 Cardiac failure congestive Diseases 0.000 description 4
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 4
- 102100025304 Integrin beta-1 Human genes 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 4
- -1 hesperedin Chemical compound 0.000 description 4
- 238000007634 remodeling Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- 208000031229 Cardiomyopathies Diseases 0.000 description 3
- 102000019197 Superoxide Dismutase Human genes 0.000 description 3
- 108010012715 Superoxide dismutase Proteins 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 210000001671 embryonic stem cell Anatomy 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 238000009168 stem cell therapy Methods 0.000 description 3
- 238000009580 stem-cell therapy Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- DOUMFZQKYFQNTF-WUTVXBCWSA-N (R)-rosmarinic acid Chemical compound C([C@H](C(=O)O)OC(=O)\C=C\C=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-WUTVXBCWSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 description 2
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 description 2
- 206010007513 Cardiac aneurysm Diseases 0.000 description 2
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 2
- 208000006029 Cardiomegaly Diseases 0.000 description 2
- 208000002330 Congenital Heart Defects Diseases 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 208000000059 Dyspnea Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 2
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 208000035478 Interatrial communication Diseases 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- 208000018262 Peripheral vascular disease Diseases 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 2
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 206010000891 acute myocardial infarction Diseases 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 208000013914 atrial heart septal defect Diseases 0.000 description 2
- 206010003664 atrial septal defect Diseases 0.000 description 2
- 210000004413 cardiac myocyte Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 208000028831 congenital heart disease Diseases 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 238000005138 cryopreservation Methods 0.000 description 2
- 208000002173 dizziness Diseases 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 201000005884 exanthem Diseases 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 229940050526 hydroxyethylstarch Drugs 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000003169 placental effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 238000009781 safety test method Methods 0.000 description 2
- 231100000046 skin rash Toxicity 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LBTVHXHERHESKG-UHFFFAOYSA-N tetrahydrocurcumin Chemical compound C1=C(O)C(OC)=CC(CCC(=O)CC(=O)CCC=2C=C(OC)C(O)=CC=2)=C1 LBTVHXHERHESKG-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229960000103 thrombolytic agent Drugs 0.000 description 2
- 230000002537 thrombolytic effect Effects 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 231100000041 toxicology testing Toxicity 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001228 trophic effect Effects 0.000 description 2
- 208000019553 vascular disease Diseases 0.000 description 2
- 201000003130 ventricular septal defect Diseases 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 1
- RFWGABANNQMHMZ-UHFFFAOYSA-N 8-acetoxy-7-acetyl-6,7,7a,8-tetrahydro-5H-benzo[g][1,3]dioxolo[4',5':4,5]benzo[1,2,3-de]quinoline Natural products CC=C1C(CC(=O)OCCC=2C=C(O)C(O)=CC=2)C(C(=O)OC)=COC1OC1OC(CO)C(O)C(O)C1O RFWGABANNQMHMZ-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 108010049951 Bone Morphogenetic Protein 3 Proteins 0.000 description 1
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 description 1
- 108010049976 Bone Morphogenetic Protein 5 Proteins 0.000 description 1
- 108010049974 Bone Morphogenetic Protein 6 Proteins 0.000 description 1
- 102100028726 Bone morphogenetic protein 10 Human genes 0.000 description 1
- 101710118482 Bone morphogenetic protein 10 Proteins 0.000 description 1
- 102000003928 Bone morphogenetic protein 15 Human genes 0.000 description 1
- 108090000349 Bone morphogenetic protein 15 Proteins 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 description 1
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 description 1
- 102100022526 Bone morphogenetic protein 5 Human genes 0.000 description 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 1
- 102100022545 Bone morphogenetic protein 8B Human genes 0.000 description 1
- 108010084313 CD58 Antigens Proteins 0.000 description 1
- 101100450705 Caenorhabditis elegans hif-1 gene Proteins 0.000 description 1
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 208000034423 Delivery Diseases 0.000 description 1
- HKVGJQVJNQRJPO-UHFFFAOYSA-N Demethyloleuropein Natural products O1C=C(C(O)=O)C(CC(=O)OCCC=2C=C(O)C(O)=CC=2)C(=CC)C1OC1OC(CO)C(O)C(O)C1O HKVGJQVJNQRJPO-UHFFFAOYSA-N 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 1
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 1
- 229920002079 Ellagic acid Polymers 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010090290 Growth Differentiation Factor 2 Proteins 0.000 description 1
- 102100040898 Growth/differentiation factor 11 Human genes 0.000 description 1
- 101710194452 Growth/differentiation factor 11 Proteins 0.000 description 1
- 102100040892 Growth/differentiation factor 2 Human genes 0.000 description 1
- 102100035379 Growth/differentiation factor 5 Human genes 0.000 description 1
- 101710204282 Growth/differentiation factor 5 Proteins 0.000 description 1
- 102100035368 Growth/differentiation factor 6 Human genes 0.000 description 1
- 101710204281 Growth/differentiation factor 6 Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 1
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000899368 Homo sapiens Bone morphogenetic protein 8B Proteins 0.000 description 1
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000994378 Homo sapiens Integrin alpha-3 Proteins 0.000 description 1
- 101000994375 Homo sapiens Integrin alpha-4 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101001008874 Homo sapiens Mast/stem cell growth factor receptor Kit Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014429 Insulin-like growth factor Human genes 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102100032819 Integrin alpha-3 Human genes 0.000 description 1
- 102100032818 Integrin alpha-4 Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 206010048858 Ischaemic cardiomyopathy Diseases 0.000 description 1
- 108010092694 L-Selectin Proteins 0.000 description 1
- 102100033467 L-selectin Human genes 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- PESQCPHRXOFIPX-RYUDHWBXSA-N Met-Tyr Chemical compound CSCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 PESQCPHRXOFIPX-RYUDHWBXSA-N 0.000 description 1
- PESQCPHRXOFIPX-UHFFFAOYSA-N N-L-methionyl-L-tyrosine Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 PESQCPHRXOFIPX-UHFFFAOYSA-N 0.000 description 1
- 102000004722 NADPH Oxidases Human genes 0.000 description 1
- 108010002998 NADPH Oxidases Proteins 0.000 description 1
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- RFWGABANNQMHMZ-HYYSZPHDSA-N Oleuropein Chemical compound O([C@@H]1OC=C([C@H](C1=CC)CC(=O)OCCC=1C=C(O)C(O)=CC=1)C(=O)OC)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RFWGABANNQMHMZ-HYYSZPHDSA-N 0.000 description 1
- 206010031123 Orthopnoea Diseases 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- ZZAFFYPNLYCDEP-HNNXBMFYSA-N Rosmarinsaeure Natural products OC(=O)[C@H](Cc1cccc(O)c1O)OC(=O)C=Cc2ccc(O)c(O)c2 ZZAFFYPNLYCDEP-HNNXBMFYSA-N 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 208000033774 Ventricular Remodeling Diseases 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- 230000002187 allostimulatory effect Effects 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 210000003525 amniotic membrane stem cell Anatomy 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 1
- 229940074393 chlorogenic acid Drugs 0.000 description 1
- 235000001368 chlorogenic acid Nutrition 0.000 description 1
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 1
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229920002770 condensed tannin Polymers 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000021196 dietary intervention Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 229960002852 ellagic acid Drugs 0.000 description 1
- 235000004132 ellagic acid Nutrition 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000025339 heart septal defect Diseases 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000012661 lycopene Nutrition 0.000 description 1
- 229960004999 lycopene Drugs 0.000 description 1
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 1
- 239000001751 lycopene Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000009756 muscle regeneration Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 230000031990 negative regulation of inflammatory response Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 235000011576 oleuropein Nutrition 0.000 description 1
- RFWGABANNQMHMZ-CARRXEGNSA-N oleuropein Natural products COC(=O)C1=CO[C@@H](O[C@H]2O[C@@H](CO)[C@H](O)[C@@H](O)[C@@H]2O)C(=CC)[C@H]1CC(=O)OCCc3ccc(O)c(O)c3 RFWGABANNQMHMZ-CARRXEGNSA-N 0.000 description 1
- 208000012144 orthopnea Diseases 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 208000030613 peripheral artery disease Diseases 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 235000018192 pine bark supplement Nutrition 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 210000004991 placental stem cell Anatomy 0.000 description 1
- 210000005059 placental tissue Anatomy 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 229940106796 pycnogenol Drugs 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 235000021283 resveratrol Nutrition 0.000 description 1
- 229940016667 resveratrol Drugs 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- DOUMFZQKYFQNTF-MRXNPFEDSA-N rosemarinic acid Natural products C([C@H](C(=O)O)OC(=O)C=CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-MRXNPFEDSA-N 0.000 description 1
- TVHVQJFBWRLYOD-UHFFFAOYSA-N rosmarinic acid Natural products OC(=O)C(Cc1ccc(O)c(O)c1)OC(=Cc2ccc(O)c(O)c2)C=O TVHVQJFBWRLYOD-UHFFFAOYSA-N 0.000 description 1
- 235000005493 rutin Nutrition 0.000 description 1
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 1
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 1
- 229960004555 rutoside Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000002948 striated muscle cell Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 230000009677 vaginal delivery Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/375—Ascorbic acid, i.e. vitamin C; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/203—Retinoic acids ; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/385—Heterocyclic compounds having sulfur as a ring hetero atom having two or more sulfur atoms in the same ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/34—Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/44—Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
- A61K38/446—Superoxide dismutase (1.15)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
Definitions
- the invention relates to treatment of cardiovascular disease.
- the invention relates to methods of treatment comprising of, inter alia, combination treatment of cells and antioxidants. More particularly, the invention relates to utilization of antioxidants to enhance efficacy of cells with ability to ameliorate or significantly reduce cardiovascular disease.
- Acute myocardial infarction (heart attack) is a major cause of morbidity and mortality with a reported annual incidence of 1.1 million cases in the United States alone. It is despite the increasing use of cholesterol lowering agents and attentiveness to co-morbid illnesses. Subsequent to infarction, a variety of inflammatory and other changes are known to occur which despite proper reperfusion by thrombolytics and/or stenting, contribute to cardiac remodeling and eventual heart failure. Numerous other cardiac conditions are widely prevalent, particularly myocardial ischemia which is associated with atherosclerosis of arteries feeding myocardial tissue. Congenital and acquired cardiac abnormalities are numerous and range from valvular defects to hypertrophy to septal defects.
- vascular diseases have achieved some degree of success.
- administration of autologous bone marrow stem cells has been demonstrated to benefit patients with end-stage chronic ischemic cardiomyopathy (1, 2).
- administration of similar stem cell populations subsequent to the stunning phase of acute myocardial infarction has been demonstrated to induce an increase in left ventricular ejection fraction as compared to control patients (3).
- the methods by which stem cells induce therapeutic effect in cardiovascular diseases include induction of angiogenesis (4), inhibition of ventricular remodeling (5), and transdifferentiation into cardiomyocytes (6).
- skeletal muscle cells have also been used for treatment of cardiovascular diseases (7).
- U.S. Pat. No. 7,166,280 entitled “Combination growth factor therapy and cell therapy for treatment of acute and chronic heart disease” teaches the combination of growth factor administration together with stem cell administration.
- Some of the growth factors mentioned in the patent have already been used for treatment of heart disease such as FGF and VEGF members. Additionally, it is important to note that others have already demonstrated synergy between administration of these types of growth factors together with stem cells.
- U.S. Pat. No. 6,387,369 entitled “Cardiac muscle regeneration using mesenchymal stem cells” discloses the use of mesenchymal stem cells for cardiac repair, specifically after myocardial infarction.
- the current invention provides, inter alia, a method of increasing efficacy of stem cell therapy through concurrent administration of antioxidants with said stem cell therapy.
- Embodiments herein relate to methods of treating cardiovascular disease comprising: a) identifying a subject suffering from cardiovascular disease; b) administering one or more cell populations capable of ameliorating cardiovascular disease to said subject in a sufficient amount such that said cardiovascular disease is ameliorated; and c) administering an antioxidant to subject in sufficient amount to enhance the amerlioration of cardiovascular disease by said one or more cell populations.
- cardiovascular disease can non-exclusively be selected from a group consisting of: cardiomyopathy, post myocardial infarction scarring, myocardial ischemia, coronary artery disease, peripheral vascular disease, CNS vascular disease, congestive heart failure, ventricular septal defect, a valvular defect, atrial septal defect, a congenital heart defect, ventricular aneurysm, a condition requiring ventricular reconstruction, restenosis, cardiac hypertrophy, and heart failure.
- the one or more cell populations capable of ameliorating cardiovascular disease are selected from the group consisting of: differentiated cells, progenitor cells, and stem cells.
- differentiated cells can be selected from the group consisting of: myocytes, cardiomyocytes, and striated muscle cells.
- progenitor cells can be selected from the group consisting of: endothelial progenitor cells, cardiovascular progenitor cells, and hematopoietic progenitor cells.
- stem cells can be selected from the group consisting of: embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, amniotic membrane stem cells, menstrual blood derived stem cells, endometrial regenerative cells, neuronal stem cells, circulating peripheral blood stem cells, mesenchymal stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells and side population stem cells.
- the one or more cell populations provided herein can include both mesenchymal stem cells and CD34 cells.
- Preferred antioxidants used herein can be selected from the group consisting of: ascorbic acid and derivatives thereof, alpha tocopherol and derivatives thereof, rutin, quercetin, ascorbic acid, allopurinol, hesperedin, lycopene, resveratrol, tetrahydrocurcumin, rosmarinic acid, Ellagic acid, chlorogenic acid, oleuropein, alpha-lipoic acid, glutathione, polyphenols, pycnogenol, retinoic acid, ACE Inhibitory Dipeptide Met-Tyr, recombinant superoxide dismutase, xenogenic superoxide dismutase, and superoxide dismutase, for example.
- the antioxidant can be administered to the subject prior to, concurrently with, or subsequent to the administration of said one or more cell populations and at a concentration sufficient to reduce oxidative stress from inhibiting the ameliorating effects of said one or more cell populations on said cardiovascular disease.
- Further methods can include measuring the oxidative stress in the subject prior to the administration of said one or more cell populations, and wherein the antioxidant is administered at a concentration and frequency based upon said measurement of oxidative stress.
- An additional method of treating cardiovascular disease can include: a) identifying a subject suffering from cardiovascular disease; b) administering a mesenchymal stem cell population to said subject; b) administering a CD34 positive stem cell population to said subject; and c) administering ascorbic acid intravenously to said subject in a combined amount sufficient to ameliorate said cardiovascular disease.
- the mesenchymal stem cell population preferably expresses one or more markers selected from the group consisting of: STRO-1, CD105, CD54, CD106, HLA-I markers, vimentin, ASMA, collagen-1, fibronectin, LFA-3, ICAM-1, PECAM-1, P-selectin, L-selectin, CD49b/CD29, CD49c/CD29, CD49d/CD29, CD61, CD18, CD29, thrombomodulin, telomerase, CD10, CD13, STRO-2, VCAM-1, CD146, and THY-1.
- the mesenchymal stem cell population does not express substantial levels of the markers selected from the group consisting of: HLA-DR, CD117, and CD45.
- the mesenchymal stem cell population can be derived from sources selected from the group consisting of: bone marrow, adipose tissue, umbilical cord blood, placental tissue, peripheral blood mononuclear cells, differentiated embryonic stem cells, and differentiated progenitor cells, for example.
- the CD34 positive stem cell population possesses angiogenic activity. Additionally, the CD34 positive stem cell population can possess hematopoietic activity. CD34 positive stem cell population can be derived from multiple sources, non-exclusively including: mobilized peripheral blood, peripheral blood, cord blood, bone marrow, and embryonic stem cells. The CD34 positive stem cell population can be expanded in vitro prior to adminstration to subject, according to advantageous methods.
- the ascorbic acid is administered to the subject at a frequency and concentration sufficient to enhance the ameliorating effects of said mesenchymal stem cell population and said CD34 positive stem cell population.
- the ascorbic acid can be administered to said subject intravenously at 15-700 grams per week.
- the ascorbic acid is administered together with lipoic acid and/or a water soluble salt of lipoic acid.
- a preferred administration of ascorbic acid is 100-1000 milligrams per day together with lipoic acid and/or a water soluble salt of lipoic acid.
- the ascorbic acid can be administered to said subject at 300-600 milligrams per day together with lipoic acid and/or a water soluble salt of lipoic acid.
- the ascorbic acid is administered to the subject together with lipoic acid and/or a water soluble salt of lipoic acid at a respective ratio of 1:1 to 3500:1.
- the ascorbic acid is administered to the subject together with lipoic acid and/or a water soluble salt of lipoic acid at a respective ratio of 10:1 to 100:1.
- the methods herein can further include administering one or more growth factors to said subject.
- the invention teaches methods of treating cardiovascular disease through administration of cells with cardio-reparative potential in an environment that has been modified through administration of one or more antioxidants.
- cardiovascular conditions are associated with increased levels of oxidative stress and inflammatory changes.
- CRP C-reactive protein
- Elevated levels of CRP are also predictive of coronary heart disease and found increased in valvular heart disease (10, 11). It is believed that causes of inflammation are associated with increased oxidative stress, and in some cases said oxidative stress is actually causative of inflammation.
- an inverse correlation has been demonstrated between plasma ascorbic acid and CRP levels in patients with peripheral artery disease (12).
- Administration of ascorbic acid and various other antioxidants has been demonstrated to decrease CRP levels in patients with a variety of inflammatory associated conditions (13, 14).
- Administration of cellular therapy for treatment of cardiovascular disease is based on the notion of inducing angiogenesis, and/or inducing differentiation into functional tissue, and/or providing trophic support for endogenous cells to replace damaged tissue.
- the introduction of cells to a patient with cardiovascular disease implies cells are implanted in an environment associated with inflammation.
- oxidative stress from the direct ischemia reperfusion injury, as well as subsequent cellular infiltration is associated with increased scar tissue formation and subsequent pathological remodeling (15).
- oxidative stress have been implicated including mitochondria, xanthine oxidase and the non-phagocytic NADPH oxidases (16).
- antioxidant agents inhibit pathological remodeling (17-21).
- patients suffering a myocardial infarction are revascularized using procedures known in the art.
- Said procedures include administration of thrombolytics such as tissue plasminogen activator (TPA) and/or introduction of a single or plurality of stents in order to allow perfusion of the infarct related artery.
- TPA tissue plasminogen activator
- said patients are treated with cells capable of causing cardiac repair.
- Said cells may be, in one embodiment, mesenchymal stem cells. It is known in the art that mesenchymal stem cells induce both anti-inflammatory effects, as well as ability to provide trophic factors that accelerate muscle repair. In conjunction with mesenchymal stem cells, patients are treated with expanded CD34 cells.
- the combination of mesenchymal stem cells and CD34 cells are used to concurrently induce angiogenesis, as well as provide healing and reparative growth factors.
- patients are treated with antioxidants.
- intravenous ascorbic acid is administered concurrently with cell therapy.
- it is necessary to provide intravenous ascorbic acid in order to attain a higher concentration of ascorbic acid in systemic circulation than can be achieved through other means of administration such as oral. It was recently published that only intravenous administration of ascorbic acid, but not oral, can attain certain levels of plasma ascorbic acid necessary to induce pharmacological concentrations of ascorbate in the plasma (33).
- mesenchymal stem cells are provided in absence of cord CD34 cells with the purpose that mesenchymal stem cells will inhibit inflammation and function with enhanced benefit in the presence of one or more antioxidants.
- CD34 cells are provided in absence of mesenchymal stem cells with the purpose that CD34 cells will induce angiogenesis with enhanced benefit in the presence of one or more antioxidants.
- the therapy is performed in combination with a growth factor or a plurality of growth factors.
- a growth factor or a plurality of growth factors includes, without limitation, angiogenic factors and other molecules competent to induce angiogenesis, including acidic and basic fibroblast growth factors, vascular endothelial growth factor, hif-1, epidermal growth factor, transforming growth factor .alpha.
- cells, and/or growth factors, and/or antioxidants may be provided intravascularly, intravenously, intraarterially, intraperitoneally, via intraventricular infusion, via infusion catheter, via balloon catheter, via bolus injection, or via direct application to tissue.
- the invention provides the use of combined administration of stem cells with antioxidants for the treatment of ischemic heart disease. It is known that in ischemic heart disease an increased level of oxidative stress is present (35). Accordingly patients with ischemic heart disease are treated by combined use of cells such as combination of CD34 and mesenchymal stem cells as described above, along with the administration of one or more antioxidants.
- Various other cardiovascular conditions are amenable to treatment with the current invention; these include cardiomyopathy, post peripheral vascular disease, CNS vascular disease, congestive heart failure, ventricular septal defect, valvular defects, atrial septal defect, congenital heart defect, ventricular aneurysm, a condition requiring ventricular reconstruction, restenosis, cardiac hypertrophy, and heart failure.
- ⁇ 50 patients with congestive heart failure (left ventricular ejection fraction ⁇ 35%) are entered into a clinical trial.
- 25 are treated with placebo and stem cells, 25 receive stem cells and intravenous ascorbic acid (active treatment).
- Active treatment comprises of 25 grams of intravenous ascorbic acid given in 250 ml of saline intravenously. The ascorbic acid is allowed to drip for 30 to 40 minutes into the patient. 4 hours after, 5 million CD34 cells derived from cord blood are given intravenously and 3 million mesenchymal stem cells are given intravenously. Cells are given for 4 consecutive days. Followinged up a 2 day rest period. On day 7 cells are administered again, 5 million CD34 and 3 million mesenchymal cells, along with the same concentration of ascorbic acid as given on day 1. After a period of 4 weeks an improvement is seen ejection fraction and clinical heart failure score in both groups as compared to pre-treatment. Improvement is significantly higher in the patients who have received ascorbic acid together with the stem cells.
- Mesenchymal cells are prepared as described in as described in Meng et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007 Nov. 15;5:57). CD34 cells are extracted and expanded as described below.
- Umbilical cord blood is purified according to routine methods ((Rubinstein, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119-10122). Briefly, a 16-gauge needle from a standard Baxter 450-ml blood donor set containing CPD A anticoagulant (citrate/phosphate/dextrose/adenine) (Baxter Health Care, Deerfield, Ill.) is inserted and used to puncture the umbilical vein of a placenta obtained from healthy delivery from a mother tested for viral and bacterial infections according to international donor standards. Cord blood is allowed to drain by gravity so as to drip into the blood bag.
- CPD A anticoagulant citrate/phosphate/dextrose/adenine
- the placenta is placed in a plastic-lined, absorbent cotton pad suspended from a specially constructed support frame in order to allow collection and reduce the contamination with maternal blood and other secretions,
- the 63 ml of CPD A used in the standard blood transfusion bag, calculated for 450 ml of blood, is reduced to 23 ml by draining 40 ml into a graduated cylinder just prior to collection. This volume of anticoagulant matches better the cord volumes usually retrieved ( ⁇ 170 ml).
- NMDP National Marrow Donor Program
- Safety testing includes routine laboratory detection of human immunodeficiency virus 1 and 2, human T-cell lymphotropic virus I and II, Hepatitis B virus, Hepatitis C virus, Cytomegalovirus and Syphilis.
- 6% (wt/vol) hydroxyethyl starch is added to the anticoagulated cord blood to a final concentration of 1.2%.
- the leukocyte rich supernatant is then separated by centrifuging the cord blood hydroxyethyl starch mixture in the original collection blood bag (50 ⁇ g for 5 min at 10° C.).
- the leukocyte-rich supernatant is expressed from the bag into a 150-ml Plasma Transfer bag (Baxter Health Care) and centrifuged (400 ⁇ g for 10 min) to sediment the cells.
- Surplus supernatant plasma is transferred into a second plasma Transfer bag without severing the connecting tube.
- the sedimented leukocytes are resuspended in supernatant plasma to a total volume of 20 ml. Approximately 5 ⁇ 10 8 -7 ⁇ 10 9 nucleated cells are obtained per cord.
- CD34 cells are cryopreserved according to the method described by Rubinstein et al (Rubinstein, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119-10122). for subsequent cellular therapy.
- CD34 cells are expanded by culture.
- CD34+ cells are purified from the mononuclear cell fraction by immuno-magnetic separation using the Magnetic Activated Cell Sorting (MACS) CD34+ Progenitor Cell Isolation Kit (Miltenyi-Biotec, Auburn, Calif.) according to manufacturer's recommendations.
- MCS Magnetic Activated Cell Sorting
- the purity of the CD34+ cells obtained ranges between 95% and 98%, based on Flow Cytometry evaluation (FACScan flow cytometer, Becton-Dickinson, Immunofluorometry systems, Mountain View, Calif.).
- Cells are plated at a concentration of 10.sup.4 cells/ml in a final volume of 0.5 ml in 24 well culture plates (Falcon; Becton Dickinson Biosciences) in DMEM supplemented with the cytokine cocktail of: 20 ng/ml IL-3, 250 ng/ml IL-6, 10 ng/ml SCF, 250 ng/ml TPO and 100 ng/ml flt-3L and a 50% mixture of LPCM.
- LPCM is generated by obtaining a fresh human placenta from vaginal delivery and placing it in a sterile plastic container.
- the placenta is rinsed with an anticoagulant solution comprising phosphate buffered saline (Gibco-Invitrogen, Grand Island, N.Y.), containing a 1:1000 concentration of heparin (1% w/w) (American Pharmaceutical Partners, Schaumburg, Ill.).
- the placenta is then covered with a DMEM media (Gibco) in a sterile container such that the entirety of the placenta is submerged in said media, and incubated at 37.degree. C. in a humidified 5% CO.sub.2 incubator for 24 hours.
- the live placenta conditioned medium LPCM
- VWR sterile 0.2 micron filter
- Patient 242 was diagnosed with dilated, non-ischemic cardiomyopathy in 2002 with an ejection fraction of approximately 30% as measured by echocardiogram (ECHO).
- the clinical presentation at diagnosis was indicative of congestive heart failure, including marked dyspnea, inability to exercise, dizziness, and irregular heart beat.
- ECHO analysis in April 2003 indicated ejection fraction of approximately 40%.
- Quality of life assessment using the Minnesota Living with Heart Failure Questionnaire revealed a score of 90.
- the patient was treated under informed consent in December 2006 with a combination of cord blood expanded allogeneic CD34 cells (2.5 million) and placentally derived allogeneic mesenchymal stem cells (3 million) 3 times over the period of a week.
- Ascorbic acid was administered intravenously during this period at a concentration of 25 grams intravenously given in 250 ml of saline over a 30 to 40 minute period on day 1 and 7 of treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Zoology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Disclosed are methods, compositions of matter and cells for treatment of cardiovascular disease through concurrent inhibition of oxidative stress while administration of a cell therapy. The invention also concerts the modulation of oxidative stress for preferential induction of differentiation while concurrently inhibiting inflammatory processes that decrease efficacy of cellular therapy.
Description
- This application claims priority to and is a continuation of Non-Provisional application Ser. No. 12/108,130, filed Apr. 23, 2008 and entitled “Combination Treatment of Cardiovascular Disease” which claims priority to Provisional Application Ser. No. 60/913,531, filed Apr. 23, 2007 and entitled “Combination Treatment of Cardiovascular Disease”, both of which are expressly incorporated herein by reference in their entireties.
- The invention relates to treatment of cardiovascular disease. Particularly, the invention relates to methods of treatment comprising of, inter alia, combination treatment of cells and antioxidants. More particularly, the invention relates to utilization of antioxidants to enhance efficacy of cells with ability to ameliorate or significantly reduce cardiovascular disease.
- Acute myocardial infarction (heart attack) is a major cause of morbidity and mortality with a reported annual incidence of 1.1 million cases in the United States alone. It is despite the increasing use of cholesterol lowering agents and attentiveness to co-morbid illnesses. Subsequent to infarction, a variety of inflammatory and other changes are known to occur which despite proper reperfusion by thrombolytics and/or stenting, contribute to cardiac remodeling and eventual heart failure. Numerous other cardiac conditions are widely prevalent, particularly myocardial ischemia which is associated with atherosclerosis of arteries feeding myocardial tissue. Congenital and acquired cardiac abnormalities are numerous and range from valvular defects to hypertrophy to septal defects.
- Cellular therapy of cardiovascular diseases has achieved some degree of success. For example, administration of autologous bone marrow stem cells has been demonstrated to benefit patients with end-stage chronic ischemic cardiomyopathy (1, 2). Additionally, administration of similar stem cell populations subsequent to the stunning phase of acute myocardial infarction has been demonstrated to induce an increase in left ventricular ejection fraction as compared to control patients (3). The methods by which stem cells induce therapeutic effect in cardiovascular diseases include induction of angiogenesis (4), inhibition of ventricular remodeling (5), and transdifferentiation into cardiomyocytes (6). Additionally, besides stem cells, skeletal muscle cells have also been used for treatment of cardiovascular diseases (7).
- Numerous patents have been issued on utilizing stem cells for treatment of cardiovascular disease. For example, U.S. Pat. No. 7,166,280 entitled “Combination growth factor therapy and cell therapy for treatment of acute and chronic heart disease” teaches the combination of growth factor administration together with stem cell administration. Some of the growth factors mentioned in the patent have already been used for treatment of heart disease such as FGF and VEGF members. Additionally, it is important to note that others have already demonstrated synergy between administration of these types of growth factors together with stem cells. U.S. Pat. No. 6,387,369 entitled “Cardiac muscle regeneration using mesenchymal stem cells” discloses the use of mesenchymal stem cells for cardiac repair, specifically after myocardial infarction.
- To date, no combination therapy has been reported that concurrently inhibits oxidative stress and administers stem cells. Although reports exist of utilizing nutritional intervention together with stem cell therapy (8), these do not induce substantive antioxidant effect. Given that stem cells are known to be sensitive to oxidative stress, the current invention provides, inter alia, a method of increasing efficacy of stem cell therapy through concurrent administration of antioxidants with said stem cell therapy.
- Embodiments herein relate to methods of treating cardiovascular disease comprising: a) identifying a subject suffering from cardiovascular disease; b) administering one or more cell populations capable of ameliorating cardiovascular disease to said subject in a sufficient amount such that said cardiovascular disease is ameliorated; and c) administering an antioxidant to subject in sufficient amount to enhance the amerlioration of cardiovascular disease by said one or more cell populations.
- The term cardiovascular disease, as used herein can non-exclusively be selected from a group consisting of: cardiomyopathy, post myocardial infarction scarring, myocardial ischemia, coronary artery disease, peripheral vascular disease, CNS vascular disease, congestive heart failure, ventricular septal defect, a valvular defect, atrial septal defect, a congenital heart defect, ventricular aneurysm, a condition requiring ventricular reconstruction, restenosis, cardiac hypertrophy, and heart failure.
- Preferably, the one or more cell populations capable of ameliorating cardiovascular disease are selected from the group consisting of: differentiated cells, progenitor cells, and stem cells. Advantageously, differentiated cells can be selected from the group consisting of: myocytes, cardiomyocytes, and striated muscle cells. In further embodiments, progenitor cells can be selected from the group consisting of: endothelial progenitor cells, cardiovascular progenitor cells, and hematopoietic progenitor cells. In other embodiments, stem cells can be selected from the group consisting of: embryonic stem cells, cord blood stem cells, placental stem cells, bone marrow stem cells, amniotic fluid stem cells, amniotic membrane stem cells, menstrual blood derived stem cells, endometrial regenerative cells, neuronal stem cells, circulating peripheral blood stem cells, mesenchymal stem cells, germinal stem cells, adipose tissue derived stem cells, exfoliated teeth derived stem cells, hair follicle stem cells, dermal stem cells, parthenogenically derived stem cells, reprogrammed stem cells and side population stem cells.
- The one or more cell populations provided herein can include both mesenchymal stem cells and CD34 cells.
- Preferred antioxidants used herein can be selected from the group consisting of: ascorbic acid and derivatives thereof, alpha tocopherol and derivatives thereof, rutin, quercetin, ascorbic acid, allopurinol, hesperedin, lycopene, resveratrol, tetrahydrocurcumin, rosmarinic acid, Ellagic acid, chlorogenic acid, oleuropein, alpha-lipoic acid, glutathione, polyphenols, pycnogenol, retinoic acid, ACE Inhibitory Dipeptide Met-Tyr, recombinant superoxide dismutase, xenogenic superoxide dismutase, and superoxide dismutase, for example.
- In preferred embodiments, the antioxidant can be administered to the subject prior to, concurrently with, or subsequent to the administration of said one or more cell populations and at a concentration sufficient to reduce oxidative stress from inhibiting the ameliorating effects of said one or more cell populations on said cardiovascular disease.
- Further methods can include measuring the oxidative stress in the subject prior to the administration of said one or more cell populations, and wherein the antioxidant is administered at a concentration and frequency based upon said measurement of oxidative stress.
- An additional method of treating cardiovascular disease can include: a) identifying a subject suffering from cardiovascular disease; b) administering a mesenchymal stem cell population to said subject; b) administering a CD34 positive stem cell population to said subject; and c) administering ascorbic acid intravenously to said subject in a combined amount sufficient to ameliorate said cardiovascular disease.
- The mesenchymal stem cell population preferably expresses one or more markers selected from the group consisting of: STRO-1, CD105, CD54, CD106, HLA-I markers, vimentin, ASMA, collagen-1, fibronectin, LFA-3, ICAM-1, PECAM-1, P-selectin, L-selectin, CD49b/CD29, CD49c/CD29, CD49d/CD29, CD61, CD18, CD29, thrombomodulin, telomerase, CD10, CD13, STRO-2, VCAM-1, CD146, and THY-1. According to more specific embodiments, the mesenchymal stem cell population does not express substantial levels of the markers selected from the group consisting of: HLA-DR, CD117, and CD45.
- The mesenchymal stem cell population can be derived from sources selected from the group consisting of: bone marrow, adipose tissue, umbilical cord blood, placental tissue, peripheral blood mononuclear cells, differentiated embryonic stem cells, and differentiated progenitor cells, for example.
- According to other embodiments, the CD34 positive stem cell population possesses angiogenic activity. Additionally, the CD34 positive stem cell population can possess hematopoietic activity. CD34 positive stem cell population can be derived from multiple sources, non-exclusively including: mobilized peripheral blood, peripheral blood, cord blood, bone marrow, and embryonic stem cells. The CD34 positive stem cell population can be expanded in vitro prior to adminstration to subject, according to advantageous methods.
- Preferably, the ascorbic acid is administered to the subject at a frequency and concentration sufficient to enhance the ameliorating effects of said mesenchymal stem cell population and said CD34 positive stem cell population. For example, the ascorbic acid can be administered to said subject intravenously at 15-700 grams per week. According to preferred embodiments, the ascorbic acid is administered together with lipoic acid and/or a water soluble salt of lipoic acid. A preferred administration of ascorbic acid is 100-1000 milligrams per day together with lipoic acid and/or a water soluble salt of lipoic acid. Alternatively, the ascorbic acid can be administered to said subject at 300-600 milligrams per day together with lipoic acid and/or a water soluble salt of lipoic acid. In advantageous embodiments, the ascorbic acid is administered to the subject together with lipoic acid and/or a water soluble salt of lipoic acid at a respective ratio of 1:1 to 3500:1. In still further embodiments, the ascorbic acid is administered to the subject together with lipoic acid and/or a water soluble salt of lipoic acid at a respective ratio of 10:1 to 100:1. The methods herein can further include administering one or more growth factors to said subject.
- The invention teaches methods of treating cardiovascular disease through administration of cells with cardio-reparative potential in an environment that has been modified through administration of one or more antioxidants. It is known that numerous cardiovascular conditions are associated with increased levels of oxidative stress and inflammatory changes. For example, circulating levels of C-reactive protein (CRP), a marker of inflammation are associated with extent of atherosclerosis (9). Elevated levels of CRP are also predictive of coronary heart disease and found increased in valvular heart disease (10, 11). It is believed that causes of inflammation are associated with increased oxidative stress, and in some cases said oxidative stress is actually causative of inflammation. For example, an inverse correlation has been demonstrated between plasma ascorbic acid and CRP levels in patients with peripheral artery disease (12). Administration of ascorbic acid and various other antioxidants has been demonstrated to decrease CRP levels in patients with a variety of inflammatory associated conditions (13, 14).
- Administration of cellular therapy for treatment of cardiovascular disease is based on the notion of inducing angiogenesis, and/or inducing differentiation into functional tissue, and/or providing trophic support for endogenous cells to replace damaged tissue. The introduction of cells to a patient with cardiovascular disease implies cells are implanted in an environment associated with inflammation. For example, subsequent to myocardial infarction, oxidative stress from the direct ischemia reperfusion injury, as well as subsequent cellular infiltration, is associated with increased scar tissue formation and subsequent pathological remodeling (15). Various sources of oxidative stress have been implicated including mitochondria, xanthine oxidase and the non-phagocytic NADPH oxidases (16). There is evidence to suggest that administration of antioxidant agents inhibit pathological remodeling (17-21). There is also evidence to suggest that administration of various types of cells into injured myocardium, or systemically may inhibit pathological remodeling (22, 23). However, to date, there has been no concurrent inhibition of inflammatory responses together with cellular therapy. The importance of the combination is that inflammatory agents are often inhibitory to stem cell activity. For example, it is known that inflammatory agents such as TNF-alpha inhibit ability of stem cells to self renew (24, 25). Additionally, stem cells are known to be particularly sensitive to oxidative stress (26, 27). The particular sensitivity of stem cells to oxidative stress may explain their increased viability and function under conditions of hypoxia (28-32). Accordingly, in an embodiment of the invention, cells with potential to repair cardiovascular tissue is used in conjunction antioxidant administration in order to induce repair of cardiovascular disease.
- In a specific embodiment, patients suffering a myocardial infarction are revascularized using procedures known in the art. Said procedures include administration of thrombolytics such as tissue plasminogen activator (TPA) and/or introduction of a single or plurality of stents in order to allow perfusion of the infarct related artery. Subsequent to revascularization, said patients are treated with cells capable of causing cardiac repair. Said cells may be, in one embodiment, mesenchymal stem cells. It is known in the art that mesenchymal stem cells induce both anti-inflammatory effects, as well as ability to provide trophic factors that accelerate muscle repair. In conjunction with mesenchymal stem cells, patients are treated with expanded CD34 cells. Without being bound to theory, the combination of mesenchymal stem cells and CD34 cells are used to concurrently induce angiogenesis, as well as provide healing and reparative growth factors. In conjunction with cell administration, patients are treated with antioxidants. In one embodiment intravenous ascorbic acid is administered concurrently with cell therapy. In specific embodiments it is necessary to provide intravenous ascorbic acid in order to attain a higher concentration of ascorbic acid in systemic circulation than can be achieved through other means of administration such as oral. It was recently published that only intravenous administration of ascorbic acid, but not oral, can attain certain levels of plasma ascorbic acid necessary to induce pharmacological concentrations of ascorbate in the plasma (33). In other studies it was demonstrated that intravenous administration of ascorbic acid was able to achieve a 140-fold higher dose than those from maximum oral doses (34). The need in some cases to use intravenous administration is due to the tight control of plasma ascorbic acid during oral administration. Depending on clinical outcome, additional cells and/or antioxidants may be provided. In one embodiment, mesenchymal stem cells are provided in absence of cord CD34 cells with the purpose that mesenchymal stem cells will inhibit inflammation and function with enhanced benefit in the presence of one or more antioxidants. In one embodiment, CD34 cells are provided in absence of mesenchymal stem cells with the purpose that CD34 cells will induce angiogenesis with enhanced benefit in the presence of one or more antioxidants. In some embodiments the therapy is performed in combination with a growth factor or a plurality of growth factors. This includes, without limitation, angiogenic factors and other molecules competent to induce angiogenesis, including acidic and basic fibroblast growth factors, vascular endothelial growth factor, hif-1, epidermal growth factor, transforming growth factor .alpha. and .beta., platelet-derived endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor and insulin like growth factor; growth factors; BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Dependent on embodiment, cells, and/or growth factors, and/or antioxidants may be provided intravascularly, intravenously, intraarterially, intraperitoneally, via intraventricular infusion, via infusion catheter, via balloon catheter, via bolus injection, or via direct application to tissue.
- In another embodiment, the invention provides the use of combined administration of stem cells with antioxidants for the treatment of ischemic heart disease. It is known that in ischemic heart disease an increased level of oxidative stress is present (35). Accordingly patients with ischemic heart disease are treated by combined use of cells such as combination of CD34 and mesenchymal stem cells as described above, along with the administration of one or more antioxidants. Various other cardiovascular conditions are amenable to treatment with the current invention; these include cardiomyopathy, post peripheral vascular disease, CNS vascular disease, congestive heart failure, ventricular septal defect, valvular defects, atrial septal defect, congenital heart defect, ventricular aneurysm, a condition requiring ventricular reconstruction, restenosis, cardiac hypertrophy, and heart failure.
- 50 patients with congestive heart failure (left ventricular ejection fraction <35%) are entered into a clinical trial. 25 are treated with placebo and stem cells, 25 receive stem cells and intravenous ascorbic acid (active treatment). Active treatment comprises of 25 grams of intravenous ascorbic acid given in 250 ml of saline intravenously. The ascorbic acid is allowed to drip for 30 to 40 minutes into the patient. 4 hours after, 5 million CD34 cells derived from cord blood are given intravenously and 3 million mesenchymal stem cells are given intravenously. Cells are given for 4 consecutive days. Followed up a 2 day rest period. On day 7 cells are administered again, 5 million CD34 and 3 million mesenchymal cells, along with the same concentration of ascorbic acid as given on day 1. After a period of 4 weeks an improvement is seen ejection fraction and clinical heart failure score in both groups as compared to pre-treatment. Improvement is significantly higher in the patients who have received ascorbic acid together with the stem cells.
- Mesenchymal cells are prepared as described in as described in Meng et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007 Nov. 15;5:57). CD34 cells are extracted and expanded as described below.
- Umbilical cord blood is purified according to routine methods ((Rubinstein, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119-10122). Briefly, a 16-gauge needle from a standard Baxter 450-ml blood donor set containing CPD A anticoagulant (citrate/phosphate/dextrose/adenine) (Baxter Health Care, Deerfield, Ill.) is inserted and used to puncture the umbilical vein of a placenta obtained from healthy delivery from a mother tested for viral and bacterial infections according to international donor standards. Cord blood is allowed to drain by gravity so as to drip into the blood bag. The placenta is placed in a plastic-lined, absorbent cotton pad suspended from a specially constructed support frame in order to allow collection and reduce the contamination with maternal blood and other secretions, The 63 ml of CPD A used in the standard blood transfusion bag, calculated for 450 ml of blood, is reduced to 23 ml by draining 40 ml into a graduated cylinder just prior to collection. This volume of anticoagulant matches better the cord volumes usually retrieved (<170 ml).
- An aliquot of the blood is removed for safety testing according to the standards of the National Marrow Donor Program (NMDP) guidelines. Safety testing includes routine laboratory detection of human immunodeficiency virus 1 and 2, human T-cell lymphotropic virus I and II, Hepatitis B virus, Hepatitis C virus, Cytomegalovirus and Syphilis. Subsequently, 6% (wt/vol) hydroxyethyl starch is added to the anticoagulated cord blood to a final concentration of 1.2%.
- The leukocyte rich supernatant is then separated by centrifuging the cord blood hydroxyethyl starch mixture in the original collection blood bag (50×g for 5 min at 10° C.). The leukocyte-rich supernatant is expressed from the bag into a 150-ml Plasma Transfer bag (Baxter Health Care) and centrifuged (400×g for 10 min) to sediment the cells. Surplus supernatant plasma is transferred into a second plasma Transfer bag without severing the connecting tube. Finally, the sedimented leukocytes are resuspended in supernatant plasma to a total volume of 20 ml. Approximately 5×108-7×109 nucleated cells are obtained per cord. Cells are cryopreserved according to the method described by Rubinstein et al (Rubinstein, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119-10122). for subsequent cellular therapy. CD34 cells are expanded by culture. CD34+ cells are purified from the mononuclear cell fraction by immuno-magnetic separation using the Magnetic Activated Cell Sorting (MACS) CD34+ Progenitor Cell Isolation Kit (Miltenyi-Biotec, Auburn, Calif.) according to manufacturer's recommendations. The purity of the CD34+ cells obtained ranges between 95% and 98%, based on Flow Cytometry evaluation (FACScan flow cytometer, Becton-Dickinson, Immunofluorometry systems, Mountain View, Calif.). Cells are plated at a concentration of 10.sup.4 cells/ml in a final volume of 0.5 ml in 24 well culture plates (Falcon; Becton Dickinson Biosciences) in DMEM supplemented with the cytokine cocktail of: 20 ng/ml IL-3, 250 ng/ml IL-6, 10 ng/ml SCF, 250 ng/ml TPO and 100 ng/ml flt-3L and a 50% mixture of LPCM. LPCM is generated by obtaining a fresh human placenta from vaginal delivery and placing it in a sterile plastic container. The placenta is rinsed with an anticoagulant solution comprising phosphate buffered saline (Gibco-Invitrogen, Grand Island, N.Y.), containing a 1:1000 concentration of heparin (1% w/w) (American Pharmaceutical Partners, Schaumburg, Ill.). The placenta is then covered with a DMEM media (Gibco) in a sterile container such that the entirety of the placenta is submerged in said media, and incubated at 37.degree. C. in a humidified 5% CO.sub.2 incubator for 24 hours. At the end of the 24 hours, the live placenta conditioned medium (LPCM) is isolated from the container and sterile-filtered using a commercially available sterile 0.2 micron filter (VWR). Cells are expanded, checked for purity using CD34-specific flow cytometry and immunologically matched to recipients using a mixed lymphocyte reaction. Cells eliciting a low level of allostimulatory activity to recipient lymphocytes are selected for transplantation. Cells are administered as described above.
- Patient 242 was diagnosed with dilated, non-ischemic cardiomyopathy in 2002 with an ejection fraction of approximately 30% as measured by echocardiogram (ECHO). The clinical presentation at diagnosis was indicative of congestive heart failure, including marked dyspnea, inability to exercise, dizziness, and irregular heart beat. New York Heart Association (NYHA) classification of II. ECHO analysis in April 2003 indicated ejection fraction of approximately 40%. Quality of life assessment using the Minnesota Living with Heart Failure Questionnaire (Middel, Bouma et al. 2001) revealed a score of 90. The patient was treated under informed consent in December 2006 with a combination of cord blood expanded allogeneic CD34 cells (2.5 million) and placentally derived allogeneic mesenchymal stem cells (3 million) 3 times over the period of a week. Ascorbic acid was administered intravenously during this period at a concentration of 25 grams intravenously given in 250 ml of saline over a 30 to 40 minute period on day 1 and 7 of treatment.
- Cellular therapy was well tolerated and no adverse side effects were observed either acutely or as of this writing. The patient did not experience either symptoms of either acute (skin rash of diarrhea) or chronic (skin rash, skin inflammation, mouth lesions, hair loss, indigestion) graft vs. host disease. Two weeks prior to an echocardiogram in April 2007, the patient voluntarily discontinued all above-mentioned medications and supplements. The echocardiogram revealed an ejection fraction of 50-55%. The patient reports profound clinical benefit at time of writing (April , 2008), including resolution of heart-failure associated symptoms of dizziness, fatigue, dyspnea, rapid heart beat, irregular heart beat, depression, blackouts, and loss of sleep secondary to orthopnea. The Minnesota Living with Heart Failure Questionnaire score was zero. The patient has a normal ejection fraction and no symptoms of heart failure and is no longer classifiable on the NYHA scale.
- The invention may be embodied in other specific forms besides and beyond those described herein. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting, and the scope of the invention is defined and limited only by the appended claims and their equivalents, rather than by the foregoing description.
-
- 1. Klein, H. M., Ghodsizad, A., Marktanner, R., Poll, L., Voelkel, T., Mohammad Hasani, M. R., Piechaczek, C., Feifel, N., Stockschlaeder, M., Burchardt, E. R., et al. 2007. Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg Forum 10:E66-69.
- 2. Patel, A. N., Geffner, L., Vina, R. F., Saslaysky, J., Urschel, H. C., Jr., Kormos, R., and Benetti, F. 2005. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 130:1631-1638.
- 3. Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W., et al. 2006. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210-1221.
- 4. Tendera, M., and Wojakowski, W. 2005. Clinical trials using autologous bone marrow and peripheral blood-derived progenitor cells in patients with acute myocardial infarction. Folia Histochem Cytobiol 43:233-235.
- 5. Dawn, B., Zuba-Surma, E. K., Abdel-Latif, A., Tiwari, S., and Bolli, R. 2005.
- Cardiac stem cell therapy for myocardial regeneration. A clinical perspective. Minerva Cardioangiol 53:549-564.
- 6. Zhang, S., Wang, D., Estrov, Z., Raj, S., Willerson, J. T., and Yeh, E. T. 2004. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110:3803-3807.
- 7. Ye, L., Haider, H., and Sim, E. K. 2006. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 231:8-19.
- 8. de Nigris, F., Williams-Ignarro, S., Sica, V., D′Armiento, F. P., Lerman, L. O., Byrns, R. E., Sica, G., Fiorito, C., Ignarro, L. J., and Napoli, C. 2007. Therapeutic effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Int J Cardiol 117:238-243.
- 9. Gotto, A. M., Jr. 2007. Role of C-reactive protein in coronary risk reduction: focus on primary prevention. Am J Cardiol 99:718-725.
- 10. Sanchez, P. L., and Mazzone, A. M. 2006. C-reactive protein in aortic valve disease. Cardiovasc Ultrasound 4:37.
- 11. Genest, J. 2004. Preventive cardiology: Move over low density lipoprotein cholesterol, hello C-reactive protein? Can J Cardiol 20 Suppl B:89B-92B.
- 12. Langlois, M., Duprez, D., Delanghe, J., De Buyzere, M., and Clement, D. L. 2001. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation 103:1863-1868.
- 13. Ullegaddi, R., Powers, H. J., and Gariballa, S.E. 2005. Antioxidant supplementation enhances antioxidant capacity and mitigates oxidative damage following acute ischaemic stroke. Eur J Clin Nutr 59:1367-1373.
- 14. Block, G., Jensen, C., Dietrich, M., Norkus, E. P., Hudes, M., and Packer, L. 2004. Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation. J Am Coll Nutr 23:141-147.
- 15. Neuzil, J., Rayner, B. S., Lowe, H. C., and Witting, P. K. 2005. Oxidative stress in myocardial ischaemia reperfusion injury: a renewed focus on a long-standing area of heart research. Redox Rep 10:187-197.
- 16. Grieve, D. J., Byrne, J. A., Cave, A. C., and Shah, A. M. 2004. Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart Lung Circ 13:132-138.
- 17. Mellin, V., Isabelle, M., Oudot, A., Vergely-Vandriesse, C., Monteil, C., Di Meglio, B., Henry, J. P., Dautreaux, B., Rochette, L., Thuillez, C., et al. 2005. Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure. Eur Heart J 26:1544-1550.
- 18. Qin, F., Yan, C., Patel, R., Liu, W., and Dong, E. 2006. Vitamins C and E attenuate apoptosis, beta-adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ ATPase downregulation after myocardial infarction. Free Radic Biol Med 40:1827-1842.
- 19. Onogi, H., Minatoguchi, S., Chen, X. H., Bao, N., Kobayashi, H., Misao, Y., Yasuda, S., Yamaki, T., Maruyama, R., Uno, Y., et al. 2006. Edaravone reduces myocardial infarct size and improves cardiac function and remodelling in rabbits. Clin Exp Pharmacol Physiol 33:1035-1041.
- 20. Gasparetto, C., Malinverno, A., Culacciati, D., Gritti, D., Prosperini, P. G., Specchia, G., and Ricevuti, G. 2005. Antioxidant vitamins reduce oxidative stress and ventricular remodeling in patients with acute myocardial infarction. Int J Immunopathol Pharmacol 18:487-496.
- 21. Sia, Y. T., Lapointe, N., Parker, T. G., Tsoporis, J. N., Deschepper, C. F., Calderone, A., Pourdjabbar, A., Jasmin, J. F., Sarrazin, J. F., Liu, P., et al. 2002. Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105:2549-2555.
- 22. Singla, D. K., Lyons, G. E., and Kamp, T. J. 2007. Transplanted Embryonic Stem Cells Following Mouse Myocardial Infarction Inhibit Apoptosis and Cardiac Remodeling. Am J Physiol Heart Circ Physiol.
- 23. Kang, H. J., Kim, H. S., Koo, B. K., Kim, Y. J., Lee, D., Sohn, D. W., Oh, B. H., and Park, Y. B. 2007. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am Heart J153:237 e231-238.
- 24. Dybedal, I., Bryder, D., Fossum, A., Rusten, L. S., and Jacobsen, S. E. 2001. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 98:1782-1791.
- 25. Bryder, D., Ramsfield, V., Dybedal, I., Theilgaard-Monch, K., Hogerkorp, C. M., Adolfsson, J., Borge, O. J., and Jacobsen, S.E. 2001. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 194:941-952.
- 26. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa, K., Ikeda, Y., et al. 2006. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446-451.
- 27. Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., et al. 2004. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997-1002.
- 28. Wang, F., Thirumangalathu, S., and Loeken, M. R. 2006. Establishment of new mouse embryonic stem cell lines is improved by physiological glucose and oxygen. Cloning Stem Cells 8:108-116.
- 29. Ingram, D. A., Krier, T. R., Mead, L. E., McGuire, C., Prater, D. N., Bhaysar, J., Saadatzadeh, M. R., Bijangi-Vishehsaraei, K., Li, F., Yoder, M. C., et al. 2007. Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 25 :297-304.
- 30. Moussavi-Harami, F., Duwayri, Y., Martin, J. A., and Buckwalter, J. A. 2004. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop J 24:15-20.
- 31. D′Ippolito, G., Diabira, S., Howard, G. A., Roos, B. A., and Schiller, P. C. 2006. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513-522.
- 32. Lennon, D. P., Edmison, J. M., and Caplan, A. I. 2001. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345-355.
- 33. Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, J. B., Corpe, C. P., Buettner, G. R., Shacter, E., and Levine, M. 2005. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 102:13604-13609.
- 34. Padayatty, S. J., Sun, H., Wang, Y., Riordan, H. D., Hewitt, S. M., Katz, A., Wesley, R. A., and Levine, M. 2004. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 140:533-537.
- 35. Bevan, R. J., Durand, M. F., Hickenbotham, P. T., Kitas, G. D., Patel, P. R., Podmore, I. D., Griffiths, H. R., Waller, H. L., and Lunec, J. 2003. Validation of a novel ELISA for measurement of MDA-LDL in human plasma. Free Radic Biol Med 35:517-527.
Claims (8)
1. A method of amerliorating the effects of myocardial infarction comprising: a) identifying a subject who has suffered from a myocardial infarction b) harvesting mesenchymal stem cells; c) intravenously injecting said mesenchymal stem cells into said subject; and d) administering ascorbic acid or a derivative thereof intravenously to said subject to ameliorate the effects of myocardial infarction.
2. The method of claim 1 , wherein said ascorbic acid is administered intravenously in an amount of 15-700 g/week.
3. The method of claim 2 , wherein said ascorbic acid is administered intravenously in an amount of 25 g/day.
4. The method of claim 1 , wherein said ascorbic acid is intravenously administered to said subject prior to the administration of said mesenchymal stem cells.
5. The method of claim 1 , further comprising measuring oxidative stress in said subject prior to administration of said mesenchymal stem cells and wherein the ascorbic acid is intravenously administrated at a concentration and frequency based upon said measurement of oxidative stress.
6. The method of claim 1 , wherein the subject is tested after being administered the ascorbic acid and mesenchymal cells and there is an improvement in ejection fraction and clinical heart failure score.
7. The method of claim 1 , wherein the subject is tested after being administered the ascorbic acid and mesenchymal stem cells and there is an improvement in ejection fraction.
8. The method of claim 1 , wherein the subject is tested after being administered the ascorbic acid and mesenchymal stem cells and there is an improvement in clinical heart failure score.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/945,413 US20160067213A1 (en) | 2007-04-23 | 2015-11-18 | Combination Treatment of Cardiovascular Disease |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91353107P | 2007-04-23 | 2007-04-23 | |
US12/108,130 US9205112B2 (en) | 2007-04-23 | 2008-04-23 | Combination treatment of cardiovascular disease |
US14/945,413 US20160067213A1 (en) | 2007-04-23 | 2015-11-18 | Combination Treatment of Cardiovascular Disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/108,130 Continuation US9205112B2 (en) | 2007-04-23 | 2008-04-23 | Combination treatment of cardiovascular disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160067213A1 true US20160067213A1 (en) | 2016-03-10 |
Family
ID=39872404
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/108,130 Active 2032-05-01 US9205112B2 (en) | 2007-04-23 | 2008-04-23 | Combination treatment of cardiovascular disease |
US14/945,413 Abandoned US20160067213A1 (en) | 2007-04-23 | 2015-11-18 | Combination Treatment of Cardiovascular Disease |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/108,130 Active 2032-05-01 US9205112B2 (en) | 2007-04-23 | 2008-04-23 | Combination treatment of cardiovascular disease |
Country Status (1)
Country | Link |
---|---|
US (2) | US9205112B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3538114A1 (en) * | 2016-11-11 | 2019-09-18 | Longeveron LLC | Methods of using human mesenchymal stem cells to effect cellular and humoral immunity |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11660317B2 (en) | 2004-11-08 | 2023-05-30 | The Johns Hopkins University | Compositions comprising cardiosphere-derived cells for use in cell therapy |
EP2330889B1 (en) | 2008-08-20 | 2016-10-26 | Anthrogenesis Corporation | Improved cell composition and methods of making the same |
NZ591293A (en) | 2008-08-22 | 2012-10-26 | Anthrogenesis Corp | Methods and compositions for treatment of bone defects with osteogenic placental adherent cells (OPACs) |
WO2010056341A2 (en) * | 2008-11-12 | 2010-05-20 | The University Of Vermont And State Agriculture College | Compositions and methods for tissue repair |
US8367409B2 (en) | 2008-11-19 | 2013-02-05 | Anthrogenesis Corporation | Amnion derived adherent cells |
US20100247495A1 (en) * | 2009-03-30 | 2010-09-30 | Tom Ichim | Treatment of Muscular Dystrophy |
US20120148691A1 (en) | 2009-06-12 | 2012-06-14 | Generex Pharmaceuticals, Inc. | Compositions and methods for the prevention and treatment of hypertension |
WO2011117894A1 (en) * | 2010-03-26 | 2011-09-29 | Kausalya, Srinivas | Pharmaceutical technology of pharmaceutical composition in novel/sequential drug delivery system containing nitric oxide donor |
AU2011237743A1 (en) | 2010-04-08 | 2012-11-01 | Anthrogenesis Corporation | Treatment of sarcoidosis using placental stem cells |
AU2011352036A1 (en) | 2010-12-31 | 2013-07-18 | Anthrogenesis Corporation | Enhancement of placental stem cell potency using modulatory RNA molecules |
ES2707579T3 (en) | 2011-06-01 | 2019-04-04 | Celularity Inc | Pain treatment using placental cytoblast |
US20130142762A1 (en) | 2011-11-07 | 2013-06-06 | Hina W. Chaudhry | Methods of cardiac repair |
US9427450B2 (en) | 2012-01-31 | 2016-08-30 | Xon Cells, Inc. | Therapeutic immune modulation by stem cell secreted exosomes |
US11286463B2 (en) | 2012-03-08 | 2022-03-29 | Advanced ReGen Medical Technologies, LLC | Reprogramming of aged adult stem cells |
WO2014028493A2 (en) | 2012-08-13 | 2014-02-20 | Cedars-Sinai Medical Center | Exosomes and micro-ribonucleic acids for tissue regeneration |
US10772911B2 (en) | 2013-12-20 | 2020-09-15 | Advanced ReGen Medical Technologies, LLC | Cell free compositions for cellular restoration and methods of making and using same |
CR20160307A (en) | 2013-12-20 | 2016-11-08 | Advanced Regen Medical Tech Llc | Compositions for cellular restoration and methods of making and using same |
EP3200808B1 (en) | 2014-10-03 | 2024-07-31 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy |
CN105062969B (en) * | 2015-09-07 | 2018-08-28 | 广州市天河诺亚生物工程有限公司 | A method of improving Cord blood megakaryoblast Differentiation Induction in vitro efficiency |
US20190224240A1 (en) * | 2016-01-11 | 2019-07-25 | Cardiocell, Llc | Cell therapy for the treatment of non-ischemic heart failure |
US11253551B2 (en) | 2016-01-11 | 2022-02-22 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction |
CN109475645A (en) | 2016-04-29 | 2019-03-15 | 先进瑞金医疗技术有限公司 | MicroRNA composition and its preparation and application |
WO2017210652A1 (en) | 2016-06-03 | 2017-12-07 | Cedars-Sinai Medical Center | Cdc-derived exosomes for treatment of ventricular tachyarrythmias |
EP3515459A4 (en) | 2016-09-20 | 2020-08-05 | Cedars-Sinai Medical Center | CARDIOSPHERIC CELLS AND THEIR EXTRACELLULAR VESICLES TO DELAY OR REVERSE THE AGING PROCESS AND AGE-RELATED DISEASES |
WO2018195210A1 (en) | 2017-04-19 | 2018-10-25 | Cedars-Sinai Medical Center | Methods and compositions for treating skeletal muscular dystrophy |
US11660355B2 (en) | 2017-12-20 | 2023-05-30 | Cedars-Sinai Medical Center | Engineered extracellular vesicles for enhanced tissue delivery |
EP3740576A4 (en) | 2018-01-18 | 2021-10-20 | Advanced Regen Medical Technologies, LLC | Therapeutic compositions and methods of making and using the same |
EP3749344A4 (en) | 2018-02-05 | 2022-01-26 | Cedars-Sinai Medical Center | METHODS OF THERAPEUTIC USE OF EXOSOMES AND YRNA |
CN112770754A (en) * | 2018-07-26 | 2021-05-07 | 加利福尼亚大学董事会 | Treatment of vascular obstruction by activation of Notch signaling |
US20210353685A1 (en) * | 2020-05-14 | 2021-11-18 | Brain Cancer Research Institute | Augmentation of Cell Therapy Efficacy by Inhibition of Complement Activation Pathways |
KR20220143379A (en) * | 2021-04-16 | 2022-10-25 | 경희대학교 산학협력단 | Composition containing endothelial progenitor cell and mesenchymal stem cell for preventing or treating occlusive vascular disease and its complications |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284786B1 (en) * | 1999-02-16 | 2001-09-04 | The Center For The Improvement Of Human Functioning, Int'l., Inc. | Treatment of cancer using lipoic acid in combination with ascorbic acid |
-
2008
- 2008-04-23 US US12/108,130 patent/US9205112B2/en active Active
-
2015
- 2015-11-18 US US14/945,413 patent/US20160067213A1/en not_active Abandoned
Non-Patent Citations (5)
Title |
---|
Alenzi et al., 2011, African Journal of Biotechnology, Vol. 10(86), pp. 19929-19940. * |
Kolf et al., 2007, Arthritis Research & Therapy, Vol. 9, p. 204, 10 pages. * |
March et al., 2004, Am J Physiol Heart Circ Physiol, Vol. 287, p. H458-H463. * |
Stamm et al., 2006, Cell Transplantation, Vol. 15, Supplement 1, pp. S47-S56. * |
Wu et al., 2012, Ageing Research Reviews, Vol. 11, p. 32-40. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3538114A1 (en) * | 2016-11-11 | 2019-09-18 | Longeveron LLC | Methods of using human mesenchymal stem cells to effect cellular and humoral immunity |
Also Published As
Publication number | Publication date |
---|---|
US9205112B2 (en) | 2015-12-08 |
US20080260704A1 (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9205112B2 (en) | Combination treatment of cardiovascular disease | |
Liu et al. | Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia | |
McCully et al. | Mitochondrial transplantation: from animal models to clinical use in humans | |
Strauer et al. | Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study | |
Bao et al. | C-Kit Positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner | |
JP5341059B2 (en) | Stem cell suspension | |
Sanchez et al. | State of art: clinical ex vivo lung perfusion: rationale, current status, and future directions | |
US8613906B2 (en) | Treatment of ischemia using stem cells | |
US20080050347A1 (en) | Stem cell therapy for cardiac valvular dysfunction | |
US20110293576A1 (en) | Mesenchymal stromal cell populations and methods of isolating and using same | |
US7658951B2 (en) | Method of improving cardiac function of a diseased heart | |
Huang et al. | A translational approach in using cell sheet fragments of autologous bone marrow-derived mesenchymal stem cells for cellular cardiomyoplasty in a porcine model | |
WO2009103818A1 (en) | Methods for obtaining progenitor cells and uses thereof in the treatment of tissue or organ damage | |
US20110123498A1 (en) | Mesenchymal stromal cell populations and methods of using same | |
Mayfield et al. | Resident cardiac stem cells and their role in stem cell therapies for myocardial repair | |
Lambert et al. | Right ventricular failure secondary to chronic overload in congenital heart diseases: Benefits of cell therapy using human embryonic stem cell–derived cardiac progenitors | |
CN107156111A (en) | A kind of candidate stem cell cell cryopreservation agent | |
Blatt et al. | Intracoronary administration of autologous bone marrow mononuclear cells after induction of short ischemia is safe and may improve hibernation and ischemia in patients with ischemic cardiomyopathy | |
CN104928235A (en) | Composition based on stem cells and application thereof in preparing preparation for coronary heart disease | |
CN106701682A (en) | Method for separating hematopoietic stem cells from umbilical cord blood and amplifying CD34 positive cells | |
KR20050037549A (en) | Medium for culturing autologous human progenitor stem cells and applications thereof | |
ES2679271T3 (en) | Cells derived from cardiac tissue | |
Qayyum et al. | Influence of patient related factors on number of mesenchymal stromal cells reached after in vitro culture expansion for clinical treatment | |
CN117018032A (en) | Biological agent containing skeletal muscle precursor-like cells, and preparation method and application thereof | |
Shim et al. | Dose-dependent systolic contribution of differentiated stem cells in post-infarct ventricular function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ANGIOSTEM INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CREATIVE MEDICAL HEALTH, INC.;REEL/FRAME:037896/0929 Effective date: 20160303 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |