US20160024713A1 - Chemical activation and refining of southern pine kraft fibers - Google Patents
Chemical activation and refining of southern pine kraft fibers Download PDFInfo
- Publication number
- US20160024713A1 US20160024713A1 US14/874,797 US201514874797A US2016024713A1 US 20160024713 A1 US20160024713 A1 US 20160024713A1 US 201514874797 A US201514874797 A US 201514874797A US 2016024713 A1 US2016024713 A1 US 2016024713A1
- Authority
- US
- United States
- Prior art keywords
- pulp
- fibers
- treatment
- metal ion
- refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/12—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
- D21B1/14—Disintegrating in mills
- D21B1/16—Disintegrating in mills in the presence of chemical agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/007—Modification of pulp properties by mechanical or physical means
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/006—Pulping cellulose-containing materials with compounds not otherwise provided for
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/02—Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/002—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/002—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
- D21C9/004—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/16—Bleaching ; Apparatus therefor with per compounds
- D21C9/163—Bleaching ; Apparatus therefor with per compounds with peroxides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/1026—Other features in bleaching processes
- D21C9/1036—Use of compounds accelerating or improving the efficiency of the processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- This invention relates to papermaking and particularly to the treatment of cellulosic material preparatory to use of the treated material to manufacture paper web material.
- paper is commonly formed from wood.
- the industry divides wood used in papermaking into two categories; namely hardwoods and softwoods.
- Softwood fibers come from needle-bearing cornier trees such as pine, spruce, alpine fir, and Douglas fir.
- Hardwood fibers are derived from deciduous trees of various varieties.
- HW hardwood
- SW softwood
- Paper as used herein includes webs or sheets without limitation as to the size or basis weight of the web or sheet.
- HW or SW paper may be employed as “bleached board” (useful in containers for consumer products, for example) or as “container board” or “liner board” (useful in corrugated boxes, for example).
- Printability of a paper is a major consideration with respect to the end use of the paper.
- SW fibers are notoriously problematic as respects the printability of the paper produced from these fibers in that SW fiber papers tend to be inordinately porous, stiff, and must be treated specially to obtain a paper surface which is suitably printable.
- HW and SW must be subjected to specific treatments for converting the wood into a fibrous slurry employed in the formation of a paper web.
- Softwoods are more plentiful and are more readily replaceable, as by tree farming. Softwoods in general are less costly.
- SW fibers be substituted for HW fibers wherever possible in papermaking.
- Southern pine, or mixtures of hardwoods and softwoods, are commonly examined as possible substitutes for end products which have heretofore been manufactured using hardwoods.
- Chemical treatments such as hydrogen peroxide treatments are commonly carried out under alkaline conditions for bleaching or brightening of wood pulps. This condition that is maximized for bleaching, usually does not correlate with the best conditions for maximum oxidation.
- Smoothness and Formation are measures of, among other things, the printability of the paper. “Formation”, as used as a paper characteristic usually, and herein, is a synonym for relative uniformity over a scale of some distance, e.g., 5 to 20 mm. Formation may be judged by viewing it with light from the back and other means. Both smoothness and formation are affected, among other things, fiber length, morphology and collapsibility.
- alteration of the morphology of cellulose fibers, particularly softwood fibers by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting the treated fibers to a refining treatment converts SW fibers to HW-like fibers in many respects.
- the metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers.
- the chemical treatment of the pulp taken alone, is not sufficient to attain the desired modification of the morphology of the fibers, however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires, dramatically less refining energy, e.g., between about 30 and 50% less energy to achieve a desired end point of refinement.
- the pulp treated in accordance with the present invention demonstrates substantially reduced fiber length or fiber length distribution, thereby enabling better uniformity of paper sheet (web) structure as measured by formation or texture. Moreover, the treated fibers are more collapsible during sheet consolidation and result in significantly improved paper surface properties such as smoothness.
- SW fibers treated in accordance with the present invention are substantially functionally equivalent to HW fibers in regards to their usefulness in papermaking.
- the treatment of the present invention may be applied to wood chemical pulps (or pulp mixtures) having various processing histories such as pulping, bleaching or acid hydrolysis, or other combinations of processing of wood into pulp suitable for infeed to a papermaking machine.
- the present invention may be applied to pulp which has already been subjected to refining, chemical treatment, enzyme treatment, microfibrilltion, and/or acid hydrolysis, for example, to increase the pulp freeness or improve drainage during the papermaking process and/or to reduce the cellulose particles suspension viscosity and improving flow characteristic.
- the advantages of the present invention may be achieved employing a hypochlorite treatment at pH 3-9, preferably, pH 3-8 and employing hypochlorous acid as the dominate active agent, followed by subsequent refining of the treated pulp.
- either the metal ion-activated peroxide or the hypochlorous acid treatment may be applied alone to refined fibers for increased freeness/drainage, or on micro-fibrillated cellulose materials for reduced suspension viscosity.
- either embodiment may be employed as a means for controlling the viscosity of a pulp suspension at any of various locations between the initial digestion of the cellulose material to and including the feeding of the pulp suspension into a papermaking machine.
- This latter aspect of the present invention is applicable in the dissolution of pulp for viscose production, for example.
- the beneficial effects of the present invention are exhibited in the calendaring of a paper web or sheet formed from treated SW fibers or combinations of HW fibers and treated SW fibers.
- the present invention may be combined with a fiber fractionation process for the treatment of specific fiber fractions.
- Paper produced employing pulp treated in accordance with the present invention exhibits tear strengths at HW levels, with little material deterioration of tensile strength. Improved bonding of the fibers within the sheet is also provided due to enhanced freeness.
- FIG. 1 is a graph depicting the energy savings attributable to the present invention when refining Southern Pine pulp
- FIG. 2 is a graph depicting fiber length reduction achieved when treating Southern Pine pulp in accordance with the present invention
- FIG. 3 is a graph depicting the shifting of fiber length distribution between treated and untreated softwood pulp in accordance with the present invention
- FIG. 4 is a microphotograph depicting untreated pine fibers
- FIG. 5 is a microphotograph depicting pine fibers treated in accordance with the present invention.
- FIG. 6 is a graph depicting the relationship of bulk vs. smoothness of hardwood pulp, untreated pine pulp and treated pine pulp;
- FIG. 7 is a graph depicting the relationship of bulk vs. freeness of the pulps depicted in FIG. 6 ;
- FIG. 8 is a graph depicting the relationship of tear vs. freeness of the pulps depicted in FIG. 6 ;
- FIG. 9 is a graph depicting bulk and smoothness relationship of untreated hardwood pulp, untreated pine pulp, and various mixtures of hardwood and softwood pulps;
- FIG. 10 is a graph depicting the fiber length reduction of untreated pine pulp and pulp treated in accordance with the present invention, employing low intensity disc refining;
- FIG. 11 is a graph depicting the energy savings associated with disc refining employed as a component of the present invention when processing treated and untreated pine pulp.
- FIG. 12 is a graph depicting the relationship between fiber length reduction and the energy employed in refining untreated pulp and pulp treated in accordance with the present invention.
- a method for the transformation of softwood fibers, particularly Southern pine fibers, into hardwood-like fibers employs the steps of (a) subjecting a SW pulp containing cellulose and hemicellulose, to a solution containing a transitional metal ion and a peroxide at a pH of between about 1 and 9 for a time sufficient to oxidize a substantial portion of the cellulose/hemi-cellulose and to oxidatively degrade the cellulose fibers, and (b) subjecting the treated pulp to a refining operation.
- the pulp thus treated when formed into a web on a papermaking machine exhibits many hardwood-like properties such as overall formability into a web having surface properties like webs formed from hardwood fibers employing conventional papermaking techniques.
- softwood fibers obtained from coniferous trees, and particularly Southern pine trees are converted into a pulp employing the kraft process in which the fibers are treated in a heated alkaline solution to substantially separate the fibers from their again binder, as is well known in the art.
- Southern pine fibers are particularly suitable for treatment employing the present invention, it is recognized that fibers from other coniferous trees may be employed.
- the present invention may be advantageously employed with mixtures of SW and HW fibers, for example mixtures containing between about 50% and 90% by weight of SW pulp and between about 10% and 50% HW pulp.
- the SW pulp or mixture of SW and HW pulps prior to treatment thereof employing the present invention, may comprise pulp which has not undergone any conventional treatment of the pulp subsequent to the digestion step.
- the present invention is useful in treating pulps which, subsequent to digestion, have undergone substantially any of the commonly employed treatments of pulp such as an add hydrolysis for removal of hexauronic add, oxidation/bleaching employing oxygen and/or peroxide, or ozone, on the pulp and/or mechanical treatment of the pulp, ie., refining.
- the pulp or mixture of pulps, to be subjected to the method of the present invention will be a pulp(s) which has been digested and at least washed to remove black liquor.
- the pulp solution at a temperature of between about 40 and 120 degrees C., is subjected to a solution of a transitional metal-activated peroxide for between about 10 and 600 minutes.
- a higher treatment temperature will require leas residence time, and wee versa.
- the treatment be done at 70-79 degrees C., with a residence time between 30-180 minutes.
- the treatment can be carried out in a bleach tower, high-density tower, re-pulper tanks, or any suitable vessel with sufficient mixing and residence time.
- the treatment solution of the present invention includes between about 0.2% and about 5% by wt. hydrogen peroxide and between about 0.002% and about 0.1% of a transitional metal ions, based on pulp.
- Iron (III) salts such as ferric chloride, or iron (II) salts such as ferrous sulfate and ferrous chloride, are especially useful as a source of the metal ions.
- Other metal ions such as copper (II), cobalt(II) may be employed.
- a trace of the transitional metal ions is required to achieve the advantageous results of the present invention, preferably between about 0.002% and about 0.01% of the metal ion.
- the pulp treatment is carried out at a pH of between about 1 and about 9, preferably a pH between about 2 and 7.
- FIG. 2 shows the fiber length reduction (length-weighted average) by refining and indicates that, with catalyzed hydrogen peroxide treatment before refining, the fiber length is substantially reduced after being subsequently refined. While for comparison, the untreated pulp (control) showed little fiber length reduction by PFI refining.
- FIG. 3 further illustrates the fiber length reduction as shown in FIG. 2 .
- FIG. 3 there is demonstrated the fiber length distribution curves, with the treated vs. the untreated (control) southern pine, at the same refining. As seen, the treatment caused a significant shift of fiber length to shorter range than the control.
- Bleached southern pine as employed in Example 1 was treated with 1% hydrogen peroxide based on pulp at pH 4, with 0.006% FE(II) as from ferrous sulfate. The treatment was carried out at the temperature of 70° C. for 1 hour. The treated pulp and control were PFI refined as in Example 1. TAPPI hand sheets were then made from these pulps.
- Bleached southern pine pulp was treated with 1% hydrogen peroxide catalyzed by 0.006% Fe(II) at pH 4 as in the Example 2 above.
- the treated pulps were PFI refined, and made into band sheets for paper physical property evaluations. Results are shown in Table II.
- FIG. 7 depicts the bulk at given freeness, which suggests the advantage of refining the treated pine to lower freeness, such as 400 CSF (depending on drainage or furnish mix requirements on paper machines).
- the treatment impacted significantly the Tear strength, reducing it to the level of hardwood ( FIG. 8 ). This is acceptable when using the treated pine fibers to replace hardwood fibers in a paper furnish.
- the reduction in Tear results from significant fiber length reduction, and the effect of chemistry.
- Example 3 The treated pine as in Example 3 above, refined to 560 CSF, was also mixed with hardwood pulp of a range of freeness, to investigate the mixed furnish paper properties such as bulk and smoothness. The results are listed in Table III.
- FIG. 9 plots the bulk-smoothness curve of the mixed pulp furnish (data from Table III), along with 100% pine and hardwood curves (data from Table II). It is obvious that the treated pine can be used to replace substantial amounts of hardwood pulp. The exact amount of hardwood replacement in the paper mill, however, may also be affected somewhat by the nature, type and optimization of commercial refiners.
- a Voith LR1 Disc Refiner was used to refine bleached southern pine which had been treated with 1% hydrogen peroxide, as catalyzed by Fe(II) at pH4.
- the refiner specific edge load was set at 0.8 Ws/m.
- FIG. 10 energy saving and fiber length reduction were confirmed.
- a Voith LR1 Disc Refiner was used to refine bleached southern pine, which had been treated with 1% hydrogen peroxide, as catalyzed by Fe(II) at pH4.
- the refiner specific edge load was set at 4 km.
- FIGS. 11 , 12 it is seen that energy saving and fiber length reduction were confirmed.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Artificial Filaments (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
A method for alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting Use treated fibers to a refining treatment thereby converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires dramatically less refining energy to achieve a desired end point of refinement and to impart other desirable properties to the pulp. A pulp of modified SW fibers and a mixture of HW fibers and modified HW fibers are disclosed.
Description
- Not Applicable
- Not Applicable
- This invention relates to papermaking and particularly to the treatment of cellulosic material preparatory to use of the treated material to manufacture paper web material.
- As is well known in the art, paper is commonly formed from wood. Generally, the industry divides wood used in papermaking into two categories; namely hardwoods and softwoods. Softwood fibers (tracheids) come from needle-bearing cornier trees such as pine, spruce, alpine fir, and Douglas fir. Hardwood fibers are derived from deciduous trees of various varieties.
- Among the distinguishing differences between hardwood (HW) fibers and softwood (SW) fibers are (a) the length of the individual cellulosic fibers of the wood, (b) the coarseness of the fibers, and (c) the stiffness or collapsibility of the fibers.
- The morphology of softwood fibers, tends to limit the potential uses of the papers producible from such fibers. “Paper” as used herein includes webs or sheets without limitation as to the size or basis weight of the web or sheet. For example, either HW or SW paper may be employed as “bleached board” (useful in containers for consumer products, for example) or as “container board” or “liner board” (useful in corrugated boxes, for example). Printability of a paper is a major consideration with respect to the end use of the paper. SW fibers are notoriously problematic as respects the printability of the paper produced from these fibers in that SW fiber papers tend to be inordinately porous, stiff, and must be treated specially to obtain a paper surface which is suitably printable.
- It is well known in the art that HW and SW must be subjected to specific treatments for converting the wood into a fibrous slurry employed in the formation of a paper web. Softwoods are more plentiful and are more readily replaceable, as by tree farming. Softwoods in general are less costly. Thus, it is desirable that SW fibers be substituted for HW fibers wherever possible in papermaking. Southern pine, or mixtures of hardwoods and softwoods, are commonly examined as possible substitutes for end products which have heretofore been manufactured using hardwoods.
- Heretofore, is attempts to utilize SW fibers in printable paper, it has been proposed to treat the pulped fibers with hydrolytic enzymes. Refining of the enzyme-treated fibers to alter their size, shape, degree of fibrillation, etc., have been employed. Enzyme treatments suffer from sensitivities of the enzyme to process conditions, and a tendency to become inactivated and/or to be carried forward into the papermaking equipment. The lack of cost-effectiveness has also been a long-standing issue.
- Chemical treatments, such as hydrogen peroxide treatments are commonly carried out under alkaline conditions for bleaching or brightening of wood pulps. This condition that is maximized for bleaching, usually does not correlate with the best conditions for maximum oxidation.
- Smoothness and Formation are measures of, among other things, the printability of the paper. “Formation”, as used as a paper characteristic usually, and herein, is a synonym for relative uniformity over a scale of some distance, e.g., 5 to 20 mm. Formation may be judged by viewing it with light from the back and other means. Both smoothness and formation are affected, among other things, fiber length, morphology and collapsibility.
- In accordance with one aspect of the present invention, it has been found that alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting the treated fibers to a refining treatment converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers, however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires, dramatically less refining energy, e.g., between about 30 and 50% less energy to achieve a desired end point of refinement. The pulp treated in accordance with the present invention demonstrates substantially reduced fiber length or fiber length distribution, thereby enabling better uniformity of paper sheet (web) structure as measured by formation or texture. Moreover, the treated fibers are more collapsible during sheet consolidation and result in significantly improved paper surface properties such as smoothness. In these respects, SW fibers treated in accordance with the present invention are substantially functionally equivalent to HW fibers in regards to their usefulness in papermaking. The treatment of the present invention may be applied to wood chemical pulps (or pulp mixtures) having various processing histories such as pulping, bleaching or acid hydrolysis, or other combinations of processing of wood into pulp suitable for infeed to a papermaking machine.
- In one embodiment, the present invention may be applied to pulp which has already been subjected to refining, chemical treatment, enzyme treatment, microfibrilltion, and/or acid hydrolysis, for example, to increase the pulp freeness or improve drainage during the papermaking process and/or to reduce the cellulose particles suspension viscosity and improving flow characteristic.
- In a further embodiment, the advantages of the present invention may be achieved employing a hypochlorite treatment at pH 3-9, preferably, pH 3-8 and employing hypochlorous acid as the dominate active agent, followed by subsequent refining of the treated pulp.
- Moreover, either the metal ion-activated peroxide or the hypochlorous acid treatment may be applied alone to refined fibers for increased freeness/drainage, or on micro-fibrillated cellulose materials for reduced suspension viscosity. Further either embodiment may be employed as a means for controlling the viscosity of a pulp suspension at any of various locations between the initial digestion of the cellulose material to and including the feeding of the pulp suspension into a papermaking machine. This latter aspect of the present invention is applicable in the dissolution of pulp for viscose production, for example. In certain stances, the beneficial effects of the present invention are exhibited in the calendaring of a paper web or sheet formed from treated SW fibers or combinations of HW fibers and treated SW fibers.
- In a still further embodiment, the present invention may be combined with a fiber fractionation process for the treatment of specific fiber fractions.
- Paper produced employing pulp treated in accordance with the present invention exhibits tear strengths at HW levels, with little material deterioration of tensile strength. Improved bonding of the fibers within the sheet is also provided due to enhanced freeness.
- The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
-
FIG. 1 is a graph depicting the energy savings attributable to the present invention when refining Southern Pine pulp; -
FIG. 2 is a graph depicting fiber length reduction achieved when treating Southern Pine pulp in accordance with the present invention; -
FIG. 3 is a graph depicting the shifting of fiber length distribution between treated and untreated softwood pulp in accordance with the present invention; -
FIG. 4 is a microphotograph depicting untreated pine fibers; -
FIG. 5 , is a microphotograph depicting pine fibers treated in accordance with the present invention; -
FIG. 6 is a graph depicting the relationship of bulk vs. smoothness of hardwood pulp, untreated pine pulp and treated pine pulp; -
FIG. 7 is a graph depicting the relationship of bulk vs. freeness of the pulps depicted inFIG. 6 ; -
FIG. 8 is a graph depicting the relationship of tear vs. freeness of the pulps depicted inFIG. 6 ; -
FIG. 9 is a graph depicting bulk and smoothness relationship of untreated hardwood pulp, untreated pine pulp, and various mixtures of hardwood and softwood pulps; -
FIG. 10 is a graph depicting the fiber length reduction of untreated pine pulp and pulp treated in accordance with the present invention, employing low intensity disc refining; -
FIG. 11 is a graph depicting the energy savings associated with disc refining employed as a component of the present invention when processing treated and untreated pine pulp; and -
FIG. 12 is a graph depicting the relationship between fiber length reduction and the energy employed in refining untreated pulp and pulp treated in accordance with the present invention. - In accordance with one aspect of the present invention, there is provided a method for the transformation of softwood fibers, particularly Southern pine fibers, into hardwood-like fibers. The method employs the steps of (a) subjecting a SW pulp containing cellulose and hemicellulose, to a solution containing a transitional metal ion and a peroxide at a pH of between about 1 and 9 for a time sufficient to oxidize a substantial portion of the cellulose/hemi-cellulose and to oxidatively degrade the cellulose fibers, and (b) subjecting the treated pulp to a refining operation. The pulp thus treated, when formed into a web on a papermaking machine exhibits many hardwood-like properties such as overall formability into a web having surface properties like webs formed from hardwood fibers employing conventional papermaking techniques.
- In one embodiment of the present invention, softwood fibers obtained from coniferous trees, and particularly Southern pine trees, are converted into a pulp employing the kraft process in which the fibers are treated in a heated alkaline solution to substantially separate the fibers from their again binder, as is well known in the art. Whereas Southern pine fibers are particularly suitable for treatment employing the present invention, it is recognized that fibers from other coniferous trees may be employed. Further, the present invention may be advantageously employed with mixtures of SW and HW fibers, for example mixtures containing between about 50% and 90% by weight of SW pulp and between about 10% and 50% HW pulp.
- The SW pulp or mixture of SW and HW pulps, prior to treatment thereof employing the present invention, may comprise pulp which has not undergone any conventional treatment of the pulp subsequent to the digestion step. However, the present invention is useful in treating pulps which, subsequent to digestion, have undergone substantially any of the commonly employed treatments of pulp such as an add hydrolysis for removal of hexauronic add, oxidation/bleaching employing oxygen and/or peroxide, or ozone, on the pulp and/or mechanical treatment of the pulp, ie., refining. In the most commonly contemplated process, the pulp or mixture of pulps, to be subjected to the method of the present invention will be a pulp(s) which has been digested and at least washed to remove black liquor.
- In accordance with one aspect of the present invention, the pulp solution, at a temperature of between about 40 and 120 degrees C., is subjected to a solution of a transitional metal-activated peroxide for between about 10 and 600 minutes. In general, a higher treatment temperature will require leas residence time, and wee versa. It is preferable that the treatment be done at 70-79 degrees C., with a residence time between 30-180 minutes. The treatment (either continuous or batch) can be carried out in a bleach tower, high-density tower, re-pulper tanks, or any suitable vessel with sufficient mixing and residence time.
- In a preferred embodiment, and contrary to the conventional peroxide treatment of pulp wherein transitional metal ions are avoided or eliminated to avoid pulp damage or degradation by hydroxyl radicals, the treatment solution of the present invention, includes between about 0.2% and about 5% by wt. hydrogen peroxide and between about 0.002% and about 0.1% of a transitional metal ions, based on pulp. Iron (III) salts such as ferric chloride, or iron (II) salts such as ferrous sulfate and ferrous chloride, are especially useful as a source of the metal ions. Other metal ions, such as copper (II), cobalt(II) may be employed. In any event, as noted, only a trace of the transitional metal ions is required to achieve the advantageous results of the present invention, preferably between about 0.002% and about 0.01% of the metal ion.
- Further contrary to conventional peroxide treatment of pulp wherein the peroxide treatment is carried out with the pulp at a very high pH for bleaching, in the present invention, the pulp treatment is carried out at a pH of between about 1 and about 9, preferably a pH between about 2 and 7.
- Subjection of softwood pulp to the solution of the present invention at a temperature between about 40 C and about 120 C and at a pH between about 1 and about 9, has been found to cause oxidation and oxidative pulp degradation of the long, stiff and coarse kraft fibers. This chemical treatment of the fibers is followed by a mechanical treatment of the treated pulp, e.g., refining employing a conventional disc refiner, to cause fiber morphology change and paper property enhancement with respect to hardwood pulps. It will be understood by one skilled in the art that other mechanical treatment devices which provide equivalent refining of the pulp fibers may be employed.
- Bleached southern pine Kraft pulp from International Paper-Augusta mill was treated at pH 4 with 1% hydrogen peroxide as based on pulp, with 0.01% Fe added as with ferric chloride. The treatment way conducted at the temperature of 80° C. for 1 hour. Both the treated and the control (untreated) pine pulps were refined with a PFI refiner. The data on PFI freeness and average fiber length are shown in Table I
-
TABLE I PFI 2000 4000 6000 Revolutions 0 Rev. Revs. Revs. Revs. Control Freeness 739 CSF 675 CSF 522 CSF 481 CSF Southern Pine Average Fiber 2.50 mm 2.47 mm 2.47 mm 2.42 mm Length, L(L) Treated Freeness 746 CSF 524 CSF 364 CSF — Southern Pine Average Fiber 2.37 mm 1.84 mm 1.64 mm — Length, L(L) - As shown in
FIG. 1 , the results of refining revolution (indication of refining energy) vs. freeness development show that iron catalyzed hydrogen peroxide treatment of pulp enhances pulp refining considerably, resulting in substantial energy savings for reading the same freeness level. -
FIG. 2 shows the fiber length reduction (length-weighted average) by refining and indicates that, with catalyzed hydrogen peroxide treatment before refining, the fiber length is substantially reduced after being subsequently refined. While for comparison, the untreated pulp (control) showed little fiber length reduction by PFI refining. -
FIG. 3 further illustrates the fiber length reduction as shown inFIG. 2 . InFIG. 3 , there is demonstrated the fiber length distribution curves, with the treated vs. the untreated (control) southern pine, at the same refining. As seen, the treatment caused a significant shift of fiber length to shorter range than the control. - Bleached southern pine as employed in Example 1 was treated with 1% hydrogen peroxide based on pulp at pH 4, with 0.006% FE(II) as from ferrous sulfate. The treatment was carried out at the temperature of 70° C. for 1 hour. The treated pulp and control were PFI refined as in Example 1. TAPPI hand sheets were then made from these pulps.
- To illustrate fiber morphology (beyond fiber length distributional and fiber collapsibility, SEM (scanning electron microscopy) images were made of the hand sheet surface of treated vs. the control (untreated) softwood pulps, compared at 4000 Revs of PFI refining. These microphotographs are depicted in
FIGS. 4 (untreated) (control) and 5 (treated) and demonstrate that the treated pine fibers are much more collapsed, or flattened, as compared to the fiber of the control. The collapsed and flattened fibers are desirable for making paper or paperboard with superior surface and printing properties. Some broken or cut fibers (fiber ends) can also be seen from the SEM of treated hand sheet, indicating fiber shortening. - Bleached southern pine pulp was treated with 1% hydrogen peroxide catalyzed by 0.006% Fe(II) at pH 4 as in the Example 2 above. The treated pulps were PFI refined, and made into band sheets for paper physical property evaluations. Results are shown in Table II.
-
TABLE II Tear Basis Sheffield Factor Extensional Weight, Bulk, Smooth- 100*gf/ Stiffness, g/m2 cc/g ness g/m2 lbs/in. Treated Pine Pulp 730CSF 151.9 1.90 375.6 190.9 2960 (Unrefined) 556 CSF 155.2 1.34 165.3 111.9 4780 421 CSF 154.4 1.36 127.2 103.4 5050 304 CSF 155.2 1.26 129.7 98.1 5210 Control Pine Pulp 740CSF 162.4 1.91 380 270.9 3490 (Unrefined) 661 CSF 155.6 1.40 249.6 193.6 4020 625 CSF 159.9 1.35 185.3 188.7 4340 569 CSF 158.5 1.31 191.6 167.4 4540 443 CSF 155.9 1.27 157.8 170.2 4340 Bleached Hardwood Pulp 615 CSF 166 1.88 333 52.3 2040 584 CSF 163.1 1.64 268.6 87.9 2520 544 CSF 164.9 1.53 224.4 100 2840 507 CSF 161.0 1.40 175.2 112.6 3030 462 C5F 160.5 1.36 142.2 126.9 3010 427 CSF 162.8 1.31 127.8 107.8 3480 362 CSF 163.9 1.273 89 123.6 3320 - From this table, it is noted that the treated pine, after refined to −560 CSF or lower freeness (to shorten the fibers also), show improved bulk-smoothness. This is also shown in
FIG. 6 .FIG. 7 depicts the bulk at given freeness, which suggests the advantage of refining the treated pine to lower freeness, such as 400 CSF (depending on drainage or furnish mix requirements on paper machines). - In terms of mechanical properties, the treatment impacted significantly the Tear strength, reducing it to the level of hardwood (
FIG. 8 ). This is acceptable when using the treated pine fibers to replace hardwood fibers in a paper furnish. The reduction in Tear results from significant fiber length reduction, and the effect of chemistry. - Other mechanical properties were only slightly affected, and remain substantially higher than hardwood furnish. Interestingly, as shown in Table II, the elastic stiffness of treated pine can even be higher than that of the control pine.
- The treated pine as in Example 3 above, refined to 560 CSF, was also mixed with hardwood pulp of a range of freeness, to investigate the mixed furnish paper properties such as bulk and smoothness. The results are listed in Table III.
-
TABLE III Sheffield Smoothness Bulk, cc/ g 10% Treated Pine 323 1.83 (560 CSF) + 308 1.83 90% Harwood 171.2 1.37 137.8 1.33 20% Treated Pine 302 1.75 (560 CSF) + 231.8 1.5 80% Hardwood 182.8 1.43 136.6 1.32 50% Treated Pine 318 1.79 (560 CSF) + 182.4 1.41 50% Hardwood 163.4 1.38 147.6 1.29 -
FIG. 9 plots the bulk-smoothness curve of the mixed pulp furnish (data from Table III), along with 100% pine and hardwood curves (data from Table II). It is obvious that the treated pine can be used to replace substantial amounts of hardwood pulp. The exact amount of hardwood replacement in the paper mill, however, may also be affected somewhat by the nature, type and optimization of commercial refiners. - A Voith LR1 Disc Refiner was used to refine bleached southern pine which had been treated with 1% hydrogen peroxide, as catalyzed by Fe(II) at pH4. The refiner specific edge load was set at 0.8 Ws/m. As seers from Table IV,
FIG. 10 , energy saving and fiber length reduction were confirmed. -
TABLE IV Refining Treated Southern Pine Control Southern Pine Energy, Kajaani average Kajaani average kW.h/ton pulp Freeness fiber length, L(L) Freeness fiber length, L(L) 0 750 CSF 2.07 mm 750 CSF 2.11 mm 46 677 CSF 2.05 mm 722 CSF 2.12 mm 78 610 CSF 1.98 mm 677 CSF 2.12 mm 118 455 CSF 1.84 mm 633 CSF 2.14 mm 158 317 CSF 1.66 mm 579 CSF 2.09 mm 198 197 CSF 1.48 mm 538 CSF 2.10 mm - A Voith LR1 Disc Refiner was used to refine bleached southern pine, which had been treated with 1% hydrogen peroxide, as catalyzed by Fe(II) at pH4. The refiner specific edge load was set at 4 km.
- From Table V,
FIGS. 11 , 12, it is seen that energy saving and fiber length reduction were confirmed. -
TABLE V Treated Southern Pine Refining Energy, kW.h/ton 25 46 99 119 — Freeness 590 CSF 442 CSF 185 CSF 115 CSF — Kajaani 1.9 mm 1.72 mm 1.4 mm 1.2 mm — average length L(L) Untreated Pine—Control Refining Energy, KW.h/ ton 0 29 40 75 90 Freeness 730 CSF 671 CSF 657 CSF — 522 CSF Kajaani 2.14 mm — — 2.12 1.93 average length L(L)
Claims (19)
1. A method for modulating the morphology of cellulosic fibers comprising the steps of
subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9 and
subjecting the treated fibers to a refining treatment.
2. The method of claim 1 wherein said metal ion is a transitional metal ion.
3. The method of claim 1 wherein said metal ion is iron.
4. The method of claim 1 wherein said pH is between about 3 and about 7.
5. The method of claim 1 wherein the fibers are subjected to the solution at temperatures between about 40 degrees C. to about. 120 degrees C.
6. The method of claim 1 wherein the fibers are subjected to the solution for between about 10 minutes to about 10 hour.
7. The method of claim 1 wherein said peroxide is present with said solution at a concentration of between about 0.2% and about 5% based on pulp.
8. The method of claim 1 wherein said metal ion is present in said solution at a concentration of between about 0.002% and about 0.1% on pulp.
9. The method of claim 1 wherein said pulp is subjected to said solution for a time sufficient to substantially act on at least the cellulose and hemi-cellulose of the pulp, causing oxidation and oxidative degradation of cellulose fibers.
10. A softwood pulp having a modified morphology, leading to paper making properties substantially functionally equivalent to hardwood pulp papermaking properties.
11. The softwood pulp of claim 10 wherein the fibers of said softwood pulp, after treatment, exhibit a substantially shorter fiber length and distribution, and enhanced fiber collapsibility, than prior to treatment.
12. The softwood pulp of claim 9 wherein said pulp is oxidatively degraded relative to unhealed softwood pulp.
13. The softwood pulp of claim 10 wherein the pulp exhibits a Canadian Standard Freeness of between about 115 and about 590.
14. The softwood pulp of claim 13 wherein the pulp exhibits a Kajaani average fiber length of between about 1.0 and 1.9 mm.
15. A pulp comprising between about 50% and 90% hardwood pulp and the remainder being softwood pulp which has been subjected to a metal ion-activated peroxide treatment carried out at a pH of between about 2 and about 9 and a refining treatment.
16. The pulp of claim 15 wherein said metal ion is a transitional metal.
17. The pulp of claim 15 wherein said metal ion is iron and said pH is between about 3 and about 7.
18. The pulp of claim 15 wherein said pulp is substantially functionally equivalent to a hardwood pulp as respects the usefulness of the pulp in papermaking.
19. The softwood pulp of claim 11 wherein the pulp is used to manufacture a paper web material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/874,797 US20160024713A1 (en) | 2003-09-23 | 2015-10-05 | Chemical activation and refining of southern pine kraft fibers |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/668,387 US8262850B2 (en) | 2003-09-23 | 2003-09-23 | Chemical activation and refining of southern pine kraft fibers |
US13/606,073 US20130098571A1 (en) | 2003-09-23 | 2012-09-07 | Chemical activation and refining of southern pine kraft fibers |
US14/017,954 US20140000825A1 (en) | 2003-09-23 | 2013-09-04 | Chemical Activation and Refining of Southern Pine Kraft Fibers |
US14/874,797 US20160024713A1 (en) | 2003-09-23 | 2015-10-05 | Chemical activation and refining of southern pine kraft fibers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/017,954 Continuation US20140000825A1 (en) | 2003-09-23 | 2013-09-04 | Chemical Activation and Refining of Southern Pine Kraft Fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160024713A1 true US20160024713A1 (en) | 2016-01-28 |
Family
ID=34313471
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/668,387 Expired - Fee Related US8262850B2 (en) | 2003-09-23 | 2003-09-23 | Chemical activation and refining of southern pine kraft fibers |
US11/657,272 Abandoned US20070119556A1 (en) | 2003-09-23 | 2007-01-24 | Chemical activation and refining of southern pine kraft fibers |
US12/152,829 Abandoned US20090054863A1 (en) | 2003-09-23 | 2008-05-16 | Chemical activation and refining of southern pine kraft fibers |
US13/606,073 Abandoned US20130098571A1 (en) | 2003-09-23 | 2012-09-07 | Chemical activation and refining of southern pine kraft fibers |
US14/017,954 Abandoned US20140000825A1 (en) | 2003-09-23 | 2013-09-04 | Chemical Activation and Refining of Southern Pine Kraft Fibers |
US14/874,797 Abandoned US20160024713A1 (en) | 2003-09-23 | 2015-10-05 | Chemical activation and refining of southern pine kraft fibers |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/668,387 Expired - Fee Related US8262850B2 (en) | 2003-09-23 | 2003-09-23 | Chemical activation and refining of southern pine kraft fibers |
US11/657,272 Abandoned US20070119556A1 (en) | 2003-09-23 | 2007-01-24 | Chemical activation and refining of southern pine kraft fibers |
US12/152,829 Abandoned US20090054863A1 (en) | 2003-09-23 | 2008-05-16 | Chemical activation and refining of southern pine kraft fibers |
US13/606,073 Abandoned US20130098571A1 (en) | 2003-09-23 | 2012-09-07 | Chemical activation and refining of southern pine kraft fibers |
US14/017,954 Abandoned US20140000825A1 (en) | 2003-09-23 | 2013-09-04 | Chemical Activation and Refining of Southern Pine Kraft Fibers |
Country Status (9)
Country | Link |
---|---|
US (6) | US8262850B2 (en) |
EP (2) | EP1862587A3 (en) |
CN (1) | CN100575597C (en) |
AT (1) | ATE368766T1 (en) |
CA (1) | CA2539095C (en) |
DE (1) | DE602004007942T2 (en) |
NZ (1) | NZ545801A (en) |
PL (1) | PL1668180T3 (en) |
WO (1) | WO2005028744A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10865520B2 (en) | 2017-09-18 | 2020-12-15 | International Paper Company | Method and apparatus for controlling a fiber fractionation system |
US11332886B2 (en) | 2017-03-21 | 2022-05-17 | International Paper Company | Odor control pulp composition |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8262850B2 (en) * | 2003-09-23 | 2012-09-11 | International Paper Company | Chemical activation and refining of southern pine kraft fibers |
US8007635B2 (en) * | 2005-05-02 | 2011-08-30 | International Paper Company | Lignocellulosic materials and the products made therefrom |
US8268122B2 (en) | 2005-12-02 | 2012-09-18 | Akzo Nobel N.V. | Process of producing high-yield pulp |
WO2008153753A2 (en) | 2007-05-23 | 2008-12-18 | International Paper Company | Compositions and particles containing cellulosic fibers and stabilized- and/or activated- urease inhibitors, as well as methods of making and using the same |
CN101240089B (en) * | 2008-03-11 | 2010-06-30 | 江苏江昕轮胎有限公司 | Rubber activity cut staple |
US9512237B2 (en) | 2009-05-28 | 2016-12-06 | Gp Cellulose Gmbh | Method for inhibiting the growth of microbes with a modified cellulose fiber |
US9511167B2 (en) | 2009-05-28 | 2016-12-06 | Gp Cellulose Gmbh | Modified cellulose from chemical kraft fiber and methods of making and using the same |
BR122013022639A2 (en) | 2009-05-28 | 2019-08-06 | Gp Cellulose Gmbh | ABSORBENT CORES |
US9512563B2 (en) | 2009-05-28 | 2016-12-06 | Gp Cellulose Gmbh | Surface treated modified cellulose from chemical kraft fiber and methods of making and using same |
FI125948B (en) | 2009-06-18 | 2016-04-29 | Stora Enso Oyj | Papermaking procedure |
WO2011088889A1 (en) * | 2010-01-19 | 2011-07-28 | Södra Skogsägarna Ekonomisk Förening | Process for production of oxidised cellulose pulp |
EP2395147A1 (en) | 2010-05-10 | 2011-12-14 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Freeness of paper products |
WO2012170183A1 (en) | 2011-05-23 | 2012-12-13 | Gp Cellulose Gmbh | Softwood kraft fiber having improved whiteness and brightness and methods of making and using the same |
TWI628331B (en) | 2012-01-12 | 2018-07-01 | Gp纖維股份有限公司 | A low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same |
MX364847B (en) | 2012-04-18 | 2019-05-08 | Gp Cellulose Gmbh | The use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products. |
RU2678895C2 (en) | 2013-02-08 | 2019-02-04 | ДжиПи СЕЛЛЬЮЛОУС ГМБХ | SOFTWOOD KRAFT FIBER HAVING IMPROVED α-CELLULOSE CONTENT AND ITS USE IN PRODUCTION OF CHEMICAL CELLULOSE PRODUCTS |
CA2901665A1 (en) | 2013-03-14 | 2014-09-18 | Gp Cellulose Gmbh | A method of making highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process |
JP6521873B2 (en) | 2013-03-15 | 2019-05-29 | ゲーペー ツェルローゼ ゲーエムベーハー | Low viscosity kraft fiber with enhanced carboxyl content and method of making and using the same |
JP2019534391A (en) | 2016-09-16 | 2019-11-28 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Methods for denaturing pulp containing cellulase enzymes and their products |
WO2018093697A1 (en) | 2016-11-16 | 2018-05-24 | Gp Cellulose Gmbh | Modified cellulose from chemical fiber and methods of making and using the same |
JP7113785B2 (en) * | 2019-06-07 | 2022-08-05 | ユニ・チャーム株式会社 | Method for producing softwood-derived paper pulp fiber and softwood-derived paper pulp fiber |
AT524092A2 (en) * | 2020-08-06 | 2022-02-15 | Mondi Ag | Process for manufacturing cellulosic fiber-based packaging products and cellulosic fiber-based packaging product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090054863A1 (en) * | 2003-09-23 | 2009-02-26 | Zheng Tan | Chemical activation and refining of southern pine kraft fibers |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1298553A (en) | 1916-12-02 | 1919-03-25 | Electro Bleaching Gas Company | Bleaching process. |
US1298552A (en) | 1916-12-02 | 1919-03-25 | Electro Bleaching Gas Company | Process of bleaching. |
US1298554A (en) | 1919-02-15 | 1919-03-25 | Electro Bleaching Gas Company | Process or bleaching. |
US1860431A (en) | 1928-06-02 | 1932-05-31 | Brown Co | Process of producing low-viscosity cellulose fiber |
US1890179A (en) * | 1928-06-15 | 1932-12-06 | Champion Fibre Company | Preparing refined bleached pulp |
US2186034A (en) * | 1937-08-24 | 1940-01-09 | Champion Paper & Fibre Co | Pulp bleaching and refining process |
US2178696A (en) | 1938-02-03 | 1939-11-07 | Pittsburgh Plate Glass Co | Material treatment |
US2212338A (en) | 1938-04-28 | 1940-08-20 | Bell Telephone Labor Inc | Frequency modulation |
GB555985A (en) | 1942-03-11 | 1943-09-15 | Henry Dreyfus | Improvements in or relating to the manufacture of cellulose |
US2368527A (en) | 1942-09-10 | 1945-01-30 | Sidney M Edelstein | Treatment of cellulosic pulp |
US2512338A (en) | 1947-04-29 | 1950-06-20 | Hercules Powder Co Ltd | Preparation of cellulose ethers |
US2975169A (en) | 1957-08-22 | 1961-03-14 | Int Paper Canada | Bleaching of cellulose pulp |
US3308012A (en) | 1963-08-19 | 1967-03-07 | Du Pont | Use of sulfamic acid in chlorination step of multistage bleaching process |
CA849982A (en) * | 1967-12-15 | 1970-08-25 | M. Clayton David | Process for producing wood pulp |
GB1317156A (en) | 1969-06-05 | 1973-05-16 | Boots Co Ltd | Babies napkins |
US4022965A (en) | 1975-01-13 | 1977-05-10 | Crown Zellerbach Corporation | Process for producing reactive, homogeneous, self-bondable lignocellulose fibers |
US4454005A (en) | 1975-04-10 | 1984-06-12 | The Regents Of The University Of California | Method of increasing interfiber bonding among fibers of lignocellulosic material, and resultant product |
FI61215B (en) | 1976-11-23 | 1982-02-26 | Defibrator Ab | SAFETY RANGE OF CONTAINER FRAMSTAELLA LIGNOCELLULOSAHALTIGA FIBERMATERIAL |
SE416481B (en) * | 1977-05-02 | 1981-01-05 | Mo Och Domsjoe Ab | METHOD AND DEVICE FOR TREATMENT OF WOOD TIP FOR REMOVAL OF HEAVY METALS AND RESIN |
SE420430B (en) | 1978-02-17 | 1981-10-05 | Mo Och Domsjoe Ab | PROCEDURE FOR WHEATING AND EXTRACTION OF LIGNOCELLULOSALLY MATERIALS WITH PEROXID CONTAINING BLACKS |
US4410397A (en) | 1978-04-07 | 1983-10-18 | International Paper Company | Delignification and bleaching process and solution for lignocellulosic pulp with peroxide in the presence of metal additives |
CA1129161A (en) | 1978-04-07 | 1982-08-10 | Robert C. Eckert | Delignification and bleaching process and solution for lignocellulosic pulp with peroxide in the presence of metal additives |
US4427490A (en) | 1978-04-07 | 1984-01-24 | International Paper Company | Delignification and bleaching process for lignocellulosic pulp with peroxide in the presence of metal additives |
CA1155655A (en) * | 1979-07-13 | 1983-10-25 | Rodney A. Stafford | Tags, particularly ear tags |
US4444621A (en) | 1980-11-21 | 1984-04-24 | Mo Och Domsjo Aktiebolag | Process and apparatus for the deresination and brightness improvement of cellulose pulp |
US4661205A (en) | 1981-08-28 | 1987-04-28 | Scott Paper Company | Method of bleaching lignocellulosic material with peroxide catalyzed with a salt of a metal |
US4783239A (en) | 1983-08-11 | 1988-11-08 | The Procter & Gamble Company | Absorbent vegetable material and process for making same |
US4875974A (en) | 1983-08-11 | 1989-10-24 | The Procter & Gamble Company | Absorbent vegetable material and process for making same |
US4614646A (en) | 1984-12-24 | 1986-09-30 | The Dow Chemical Company | Stabilization of peroxide systems in the presence of alkaline earth metal ions |
SE8501246L (en) | 1985-03-13 | 1986-09-14 | Eka Ab | SET TO MANUFACTURE IN BLEACH, CHEMICAL MECHANICAL AND SEMI-CHEMICAL FIBER MASS USING ONE-STEP IMAGRATION |
US5002635A (en) | 1985-09-20 | 1991-03-26 | Scott Paper Company | Method for producing pulp using pre-treatment with stabilizers and refining |
US4889595A (en) | 1986-06-27 | 1989-12-26 | The Procter & Gamble Cellulose Company | Process for making individualized, crosslinked fibers having reduced residuals and fibers thereof |
US4869783A (en) | 1986-07-09 | 1989-09-26 | The Mead Corporation | High-yield chemical pulping |
US5181989A (en) | 1990-10-26 | 1993-01-26 | Union Camp Patent Holdings, Inc. | Reactor for bleaching high consistency pulp with ozone |
US5607546A (en) | 1990-02-13 | 1997-03-04 | Molnlycke Ab | CTMP-process |
SE466060C (en) | 1990-02-13 | 1995-09-11 | Moelnlycke Ab | Absorbent chemitermomechanical mass and preparation thereof |
US5164044A (en) | 1990-05-17 | 1992-11-17 | Union Camp Patent Holding, Inc. | Environmentally improved process for bleaching lignocellulosic materials with ozone |
US6398908B1 (en) | 1991-04-30 | 2002-06-04 | Eka Nobel Ab | Process for acid bleaching of lignocellulose-containing pulp with a magnesium compound |
FR2688787B1 (en) | 1992-03-23 | 1994-05-13 | Elf Atochem Sa | PROCESS FOR THE OXIDATION OF CATIONIC STARCHES AND CARBOXYLIC AND CATIONIC AMPHOTERIC STARCHES THUS OBTAINED. |
US5302248A (en) * | 1992-08-28 | 1994-04-12 | The United States Of America As Represented By The Secretary Of Agriculture | Delignification of wood pulp by vanadium-substituted polyoxometalates |
US5300358A (en) | 1992-11-24 | 1994-04-05 | E. I. Du Pont De Nemours And Co. | Degradable absorbant structures |
JPH06214365A (en) * | 1992-12-14 | 1994-08-05 | Eastman Kodak Co | Bleaching accelerator, bleaching composition and photographic element |
US5447602A (en) | 1993-08-26 | 1995-09-05 | Henkel Corporation | Process for repulping wet-strength paper |
FI942968A (en) | 1994-06-20 | 1995-12-21 | Kemira Chemicals Oy | Process for delignifying a chemical pulp |
US5529662A (en) * | 1994-07-06 | 1996-06-25 | Macmillan Bloedel Limited | Method of bleaching cellulosic pulps with ozone and a protective amount of an N-alkylated urea |
US6514380B1 (en) * | 1995-03-08 | 2003-02-04 | Andritz Oy | Treatment of chemical pulp |
US5766159A (en) | 1995-07-06 | 1998-06-16 | International Paper Company | Personal hygiene articles for absorbing fluids |
FI105701B (en) * | 1995-10-20 | 2000-09-29 | Ahlstrom Machinery Oy | Method and arrangement for treatment of pulp |
WO1997022749A1 (en) * | 1995-12-19 | 1997-06-26 | Kvaerner Hymac Inc. | Process for treating refiner pulp |
FI103418B1 (en) * | 1996-01-31 | 1999-06-30 | Sunds Defibrator Woodhandling | Method and apparatus for pretreating fibrous material for the production of cellulosic pulp |
US6471727B2 (en) | 1996-08-23 | 2002-10-29 | Weyerhaeuser Company | Lyocell fibers, and compositions for making the same |
US6605350B1 (en) | 1996-08-23 | 2003-08-12 | Weyerhaeuser Company | Sawdust alkaline pulp having low average degree of polymerization values and method of producing the same |
FI104502B (en) * | 1997-09-16 | 2000-02-15 | Metsae Serla Oyj | A method of making a paper web |
US6059927A (en) * | 1997-09-23 | 2000-05-09 | Queen's University At Kingston | Method of reducing brightness reversion and yellowness (B*) of bleached mechanical wood pulps |
ATE252175T1 (en) * | 1998-04-17 | 2003-11-15 | Alberta Res Council | METHOD FOR PRODUCING LIGNOCELLULOSE-CONTAINING PULP FROM NON-WOODY MATERIAL |
US6699358B1 (en) * | 1998-05-15 | 2004-03-02 | National Silicates Partnership | Method for brightening chemical pulp with hydrogen peroxide using a magnesium compound in silicate solution |
WO2000011467A1 (en) | 1998-08-24 | 2000-03-02 | Carter Holt Harvey Limited | Method of selecting and/or processing wood according to fibre characteristics |
WO2000035504A1 (en) | 1998-12-16 | 2000-06-22 | Sca Hygiene Products Zeist B.V. | Acidic superabsorbent polysaccharides |
EP1161592B1 (en) | 1999-02-15 | 2004-09-22 | Kiram AB | Process for oxygen pulping of lignocellulosic material and recovery of pulping chemicals |
WO2000050462A1 (en) | 1999-02-24 | 2000-08-31 | Sca Hygiene Products Gmbh | Oxidized cellulose-containing fibrous materials and products made therefrom |
US6379494B1 (en) | 1999-03-19 | 2002-04-30 | Weyerhaeuser Company | Method of making carboxylated cellulose fibers and products of the method |
US6695950B1 (en) | 1999-08-17 | 2004-02-24 | National Starch And Chemical Investment Holding Corporation | Aldehyde modified cellulose pulp for the preparation of high strength paper products |
US6228126B1 (en) | 1999-08-17 | 2001-05-08 | National Starch And Chemical Investment Holding Corporation | Paper prepared from aldehyde modified cellulose pulp and the method of making the pulp |
US6368456B1 (en) | 1999-08-17 | 2002-04-09 | National Starch And Chemical Investment Holding Corporation | Method of making paper from aldehyde modified cellulose pulp with selected additives |
US6302997B1 (en) | 1999-08-30 | 2001-10-16 | North Carolina State University | Process for producing a pulp suitable for papermaking from nonwood fibrous materials |
DE19953589B4 (en) | 1999-11-08 | 2005-05-25 | Sca Hygiene Products Gmbh | Polysaccharide with functional groups, process for its preparation and products made therefrom |
US7052578B2 (en) | 2000-01-28 | 2006-05-30 | Martin Marietta Magnesia Specialties, Inc. | Process employing magnesium hydroxide in peroxide bleaching of mechanical pulp |
US6540876B1 (en) | 2000-05-19 | 2003-04-01 | National Starch And Chemical Ivnestment Holding Corporation | Use of amide or imide co-catalysts for nitroxide mediated oxidation |
JP2002026701A (en) | 2000-07-10 | 2002-01-25 | Alps Electric Co Ltd | Binarization circuit having noise eliminating function and phase difference detection circuit for vibrator utilizing the binarization circuit |
DE10102248A1 (en) | 2001-01-19 | 2002-07-25 | Clariant Gmbh | Use of transition metal complexes with oxime ligands as bleach catalysts |
US6821383B2 (en) | 2001-03-28 | 2004-11-23 | National Starch And Chemical Investment Holding Corporation | Preparation of modified fluff pulp, fluff pulp products and use thereof |
US7279071B2 (en) | 2001-04-11 | 2007-10-09 | International Paper Company | Paper articles exhibiting water resistance and method for making same |
US20030019596A1 (en) * | 2001-04-17 | 2003-01-30 | Ragauskas Arthur J. | Metal substituted xerogels for improved peroxide bleaching of kraft pulps |
US6702921B2 (en) * | 2001-05-01 | 2004-03-09 | Ondeo Nalco Company | Methods to enhance pulp bleaching and delignification using an organic sulfide chelating agent |
DE10123665A1 (en) | 2001-05-14 | 2002-11-21 | Univ Schiller Jena | Recovery of cellulose from ligno-cellulosics, exposes hot pulped material to hydrogen peroxide and transition metal oxidation catalyst |
US6881299B2 (en) * | 2001-05-16 | 2005-04-19 | North American Paper Corporation | Refiner bleaching with magnesium oxide and hydrogen peroxide |
US6743332B2 (en) * | 2001-05-16 | 2004-06-01 | Weyerhaeuser Company | High temperature peroxide bleaching of mechanical pulps |
FI109550B (en) | 2001-05-23 | 2002-08-30 | Upm Kymmene Corp | Coated printing paper such as machine finished coated printing paper, comprises specific amount of mechanical pulp, and has specific opacity, brightness and surface roughness |
US6916466B2 (en) | 2001-07-11 | 2005-07-12 | Sca Hygiene Products Ab | Coupling of modified cyclodextrins to fibers |
EP1308556A1 (en) | 2001-11-01 | 2003-05-07 | Akzo Nobel N.V. | Lignocellulose product |
US6852904B2 (en) | 2001-12-18 | 2005-02-08 | Kimberly-Clark Worldwide, Inc. | Cellulose fibers treated with acidic odor control agents |
US7094317B2 (en) * | 2002-11-06 | 2006-08-22 | Fiberstar, Inc. | Process of manufacturing and using highly refined fiber mass |
US7497924B2 (en) * | 2003-05-14 | 2009-03-03 | International Paper Company | Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board |
FI20031904A (en) * | 2003-12-23 | 2005-06-24 | Kemira Oyj | Process for modifying a lignocellulosic product |
FI117439B (en) * | 2003-12-23 | 2006-10-13 | Valtion Teknillinen | A process for preparing a fiber composition |
US8007635B2 (en) * | 2005-05-02 | 2011-08-30 | International Paper Company | Lignocellulosic materials and the products made therefrom |
US7520958B2 (en) * | 2005-05-24 | 2009-04-21 | International Paper Company | Modified kraft fibers |
US8328983B2 (en) | 2005-05-24 | 2012-12-11 | International Paper Company | Modified kraft fibers |
WO2008153753A2 (en) | 2007-05-23 | 2008-12-18 | International Paper Company | Compositions and particles containing cellulosic fibers and stabilized- and/or activated- urease inhibitors, as well as methods of making and using the same |
BR122013022639A2 (en) * | 2009-05-28 | 2019-08-06 | Gp Cellulose Gmbh | ABSORBENT CORES |
US9512563B2 (en) * | 2009-05-28 | 2016-12-06 | Gp Cellulose Gmbh | Surface treated modified cellulose from chemical kraft fiber and methods of making and using same |
EP2395147A1 (en) * | 2010-05-10 | 2011-12-14 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Freeness of paper products |
US20130126109A1 (en) * | 2011-11-17 | 2013-05-23 | Buckman Laboratories International, Inc. | Silicate Free Refiner Bleaching |
-
2003
- 2003-09-23 US US10/668,387 patent/US8262850B2/en not_active Expired - Fee Related
-
2004
- 2004-09-22 DE DE602004007942T patent/DE602004007942T2/en not_active Expired - Lifetime
- 2004-09-22 PL PL04769444T patent/PL1668180T3/en unknown
- 2004-09-22 EP EP07012839A patent/EP1862587A3/en not_active Withdrawn
- 2004-09-22 CN CN200480027582A patent/CN100575597C/en not_active Expired - Lifetime
- 2004-09-22 AT AT04769444T patent/ATE368766T1/en not_active IP Right Cessation
- 2004-09-22 NZ NZ545801A patent/NZ545801A/en not_active IP Right Cessation
- 2004-09-22 EP EP04769444A patent/EP1668180B1/en not_active Expired - Lifetime
- 2004-09-22 CA CA2539095A patent/CA2539095C/en not_active Expired - Lifetime
- 2004-09-22 WO PCT/IB2004/003080 patent/WO2005028744A1/en active IP Right Grant
-
2007
- 2007-01-24 US US11/657,272 patent/US20070119556A1/en not_active Abandoned
-
2008
- 2008-05-16 US US12/152,829 patent/US20090054863A1/en not_active Abandoned
-
2012
- 2012-09-07 US US13/606,073 patent/US20130098571A1/en not_active Abandoned
-
2013
- 2013-09-04 US US14/017,954 patent/US20140000825A1/en not_active Abandoned
-
2015
- 2015-10-05 US US14/874,797 patent/US20160024713A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090054863A1 (en) * | 2003-09-23 | 2009-02-26 | Zheng Tan | Chemical activation and refining of southern pine kraft fibers |
US20130098571A1 (en) * | 2003-09-23 | 2013-04-25 | International Paper Company | Chemical activation and refining of southern pine kraft fibers |
US20140000825A1 (en) * | 2003-09-23 | 2014-01-02 | International Paper Company | Chemical Activation and Refining of Southern Pine Kraft Fibers |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11332886B2 (en) | 2017-03-21 | 2022-05-17 | International Paper Company | Odor control pulp composition |
US11613849B2 (en) | 2017-03-21 | 2023-03-28 | International Paper Company | Odor control pulp composition |
US10865520B2 (en) | 2017-09-18 | 2020-12-15 | International Paper Company | Method and apparatus for controlling a fiber fractionation system |
US11834786B2 (en) | 2017-09-18 | 2023-12-05 | International Paper Company | Method and apparatus for controlling a fiber fractionation system |
Also Published As
Publication number | Publication date |
---|---|
EP1668180A1 (en) | 2006-06-14 |
EP1668180B1 (en) | 2007-08-01 |
CA2539095A1 (en) | 2005-03-31 |
PL1668180T3 (en) | 2007-12-31 |
EP1862587A3 (en) | 2010-01-27 |
ATE368766T1 (en) | 2007-08-15 |
EP1862587A2 (en) | 2007-12-05 |
US20130098571A1 (en) | 2013-04-25 |
US20050061455A1 (en) | 2005-03-24 |
DE602004007942T2 (en) | 2008-04-17 |
DE602004007942D1 (en) | 2007-09-13 |
US20090054863A1 (en) | 2009-02-26 |
WO2005028744A1 (en) | 2005-03-31 |
CA2539095C (en) | 2010-08-03 |
CN1856616A (en) | 2006-11-01 |
CN100575597C (en) | 2009-12-30 |
NZ545801A (en) | 2010-03-26 |
US20070119556A1 (en) | 2007-05-31 |
US8262850B2 (en) | 2012-09-11 |
US20140000825A1 (en) | 2014-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160024713A1 (en) | Chemical activation and refining of southern pine kraft fibers | |
CA2862248C (en) | Enzymatic pre-treatment of market pulp to improve fiber drainage and physical properties | |
EP2569481B1 (en) | Freeness of paper products | |
Guo et al. | PULP AND FIBER CHARACTERIZATION OF WHEAT STRAW AND EUCALUPTUS PULPS-A. | |
US20060243403A1 (en) | Microwave pretreatment of logs for use in making paper and other wood products | |
Tripathi et al. | Reduction in refining energy and improvement in pulp freeness through enzymatic treatment–lab and plant scale studies | |
JP4738662B2 (en) | Newspaper | |
Veisi et al. | Mixing bleached white poplar and wheat straw chemimechanical pulps to improve the mechanical and optical characteristics | |
US8673113B2 (en) | Process for reducing specific energy demand during refining of thermomechanical and chemi-thermomechanical pulp | |
Bajpai et al. | Fiber modification | |
CA1089273A (en) | Treating chemically delignified and fiberized cellulosic pulp for pulp property improvement | |
CA2707139C (en) | Process for reducing specific energy demand during refining of thermomechanical and chemi-thermomechanical pulp | |
US20040084161A1 (en) | Method for the production of fiber pulp | |
Sykes et al. | Value-added mechanical pulps for light weight, high opacity paper | |
Klungness et al. | Lightweight, High Opacity Paper: Process Costs and Energy Use Reduction | |
Sykes et al. | Novel bleaching of thermomechanical pulp for improved paper properties | |
Klungness et al. | Synthesis of pulping processes with fiber loading methods for lightweight papers | |
JPH11302990A (en) | Production of deinked pulp having high opacity | |
WO1998020199A1 (en) | Vanadyl catalyzed oxygen treatment of lignocellulosic materials | |
KR19980049307A (en) | Treatment method of corrugated cardboard to improve compressive and burst strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL PAPER COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAN, ZHENG;NGUYEN, XUAN;MAURER, KAREN L.;REEL/FRAME:036898/0070 Effective date: 20030922 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |