US20150354846A1 - Methods and apparatus for control unit with a variable assist rotational interface and display - Google Patents
Methods and apparatus for control unit with a variable assist rotational interface and display Download PDFInfo
- Publication number
- US20150354846A1 US20150354846A1 US14/738,149 US201514738149A US2015354846A1 US 20150354846 A1 US20150354846 A1 US 20150354846A1 US 201514738149 A US201514738149 A US 201514738149A US 2015354846 A1 US2015354846 A1 US 2015354846A1
- Authority
- US
- United States
- Prior art keywords
- display
- display elements
- thermostat
- electronic
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000033001 locomotion Effects 0.000 claims abstract description 67
- 238000012545 processing Methods 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims abstract description 7
- 230000001133 acceleration Effects 0.000 claims description 57
- 238000006073 displacement reaction Methods 0.000 claims description 37
- 230000002829 reductive effect Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 210000003811 finger Anatomy 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000004397 blinking Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000005224 forefinger Anatomy 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000122205 Chamaeleonidae Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- ZRHANBBTXQZFSP-UHFFFAOYSA-M potassium;4-amino-3,5,6-trichloropyridine-2-carboxylate Chemical compound [K+].NC1=C(Cl)C(Cl)=NC(C([O-])=O)=C1Cl ZRHANBBTXQZFSP-UHFFFAOYSA-M 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- F24F11/0086—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0084—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
- B01D46/0086—Filter condition indicators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
- F24F11/58—Remote control using Internet communication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1902—Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1917—Control of temperature characterised by the use of electric means using digital means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R9/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
- H01R9/22—Bases, e.g. strip, block, panel
- H01R9/24—Terminal blocks
- H01R9/2416—Means for guiding or retaining wires or cables connected to terminal blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/39—Monitoring filter performance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
- F24F11/47—Responding to energy costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F24F2011/0091—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/20—Feedback from users
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/40—Noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/60—Energy consumption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- This patent specification relates to systems, methods, and related computer program products for the monitoring and control of energy-consuming systems or other resource-consuming systems. More particularly, this patent specification relates to rotational input devices and user interfaces for control units that govern the operation of energy-consuming systems, household devices, or other resource-consuming systems, including user interfaces for thermostats that govern the operation of heating, ventilation, and air conditioning (HVAC) systems.
- HVAC heating, ventilation, and air conditioning
- HVAC heating, ventilation, and air conditioning
- HVAC thermostatic control systems have tended to fall into one of two opposing categories, neither of which is believed be optimal in most practical home environments.
- a first category are many simple, non-programmable home thermostats, each typically consisting of a single mechanical or electrical dial for setting a desired temperature and a single HEAT-FAN-OFF-AC switch.
- any energy-saving control activity such as adjusting the nighttime temperature or turning off all heating/cooling just before departing the home, must be performed manually by the user. As such, substantial energy-saving opportunities are often missed for all but the most vigilant users.
- thermostats are not provided, such as the ability for the thermostat to be programmed for less energy-intensive temperature setpoints (“setback temperatures”) during planned intervals of non-occupancy, and for more comfortable temperature setpoints during planned intervals of occupancy.
- thermostat having an improved user interface that is simple, intuitive, elegant, and easy to use such that the typical user is able to access many of the energy-saving and comfort-maintaining features, while at the same time not being overwhelmed by the choices presented.
- a method of processing rotational inputs to a control device having an electronic display and user interface such as a programmable thermostat, that controls the operation of one or more energy-consuming systems, household devices, or other resource-consuming systems, such as a heating, ventilation, and air conditioning (HVAC) system.
- HVAC heating, ventilation, and air conditioning
- the programmable device is configured to carry out a method for interacting with a user thereof. The method includes displaying on the electronic display associated with the control device at least a portion of an initial display element selected from a sequence of display elements.
- variable assist scroll engine receives this information and determines an angular movement as provided by the user through the rotational input device.
- the variable assist scroll engine applies one or more heuristics to variably assist with a scrolling movement of a sequence of display elements on the electronic display. Some embodiments may accelerate the scrolling of certain display elements on a display screen as a user operates a rotational input device.
- variable assist scroll engine may reduce the rotational user input required to traverse an arbitrary number of display elements to as little as a quarter-revolution of the rotational input device in order that a user is better able to operate the control device and use the rotational input when navigating the user interface of a control device.
- FIG. 1 is a diagram of an enclosure in which environmental conditions are controlled, according to some embodiments
- FIG. 2 is a diagram of an HVAC system, according to some embodiments.
- FIGS. 3A-3B illustrate a thermostat having a user-friendly interface, according to some embodiments
- FIG. 3C illustrates a cross-sectional view of a shell portion of a frame of the thermostat of FIGS. 3A-3B ;
- FIG. 4 illustrates a thermostat having a head unit and a backplate (or wall dock) for ease of installation, configuration and upgrading, according to some embodiments
- FIGS. 5A-5C illustrate thermostat and several exemplary natural and comfortable hand positions of a user manipulating the thermostat as presented through a user interface displayed on electronic display, according to some embodiments;
- FIG. 5D illustrates a short menu from a user interface having two display elements and a long menu having eight display elements with wider spacing and multiple lines of data in accordance with some embodiments
- FIG. 6 illustrates a logical schematic diagram using a variable assist scroll engine to process user inputs on a control device such as a thermostat in accordance with some embodiments
- FIG. 7 is a schematic block diagram providing an overview of some components inside a thermostat in accordance with embodiments of the present invention.
- FIG. 8 illustrates a flow chart diagram of the operations for processing rotational user inputs and the control of scrolling display elements in accordance with some embodiments
- FIGS. 9A-9D illustrate one application of the variable assist scroll engine to a circular menu of display elements in accordance with some embodiments
- FIG. 10 illustrates one application of a heuristic for affirmatively identifying a display element on a circular menu in accordance with some embodiments
- FIGS. 11A-11B illustrate another application of the variable assist scroll engine to a linear menu of display elements in accordance with some embodiments.
- FIGS. 12A-C illustrate further additional types of menus that have also benefitted from application of the variable assist scroll engine in accordance with some embodiments.
- inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents.
- inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents.
- numerous specific details are set forth in the following description in order to provide a thorough understanding of the inventive body of work, some embodiments can be practiced without some or all of these details.
- certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the inventive body of work.
- HVAC includes systems providing both heating and cooling, heating only, cooling only, as well as systems that provide other occupant comfort and/or conditioning functionality such as humidification, dehumidification and ventilation.
- HVAC thermostats As used herein the terms power “harvesting,” “sharing” and “stealing” when referring to HVAC thermostats all refer to the thermostat are designed to derive power from the power transformer through the equipment load without using a direct or common wire source directly from the transformer.
- the term “residential” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used as a single family dwelling.
- the term “light commercial” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used for commercial purposes, but is of a size and construction that a residential HVAC system is considered suitable.
- An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration.
- thermostat means a device or system for regulating parameters such as temperature and/or humidity within at least a part of an enclosure.
- the term “thermostat” may include a control unit for a heating and/or cooling system or a component part of a heater or air conditioner.
- thermostat can also refer generally to a versatile sensing and control unit (VSCU unit) that is configured and adapted to provide sophisticated, customized, energy-saving HVAC control functionality while at the same time being visually appealing, non-intimidating, elegant to behold, and belovedly easy to use.
- VSCU unit versatile sensing and control unit
- FIG. 1 is a diagram of an enclosure in which environmental conditions are controlled, according to some embodiments.
- Enclosure 100 in this example is a single-family dwelling. According to other embodiments, the enclosure can be, for example, a duplex, an apartment within an apartment building, a light commercial structure such as an office or retail store, or a structure or enclosure that is a combination of the above.
- Thermostat 110 controls HVAC system 120 as will be described in further detail below. According to some embodiments, the HVAC system 120 is has a cooling capacity less than about 5 tons.
- a remote device 112 wirelessly communicates with the thermostat 110 and can be used to display information to a user and to receive user input from the remote location of the device 112 . Although many of the embodiments are described herein as being carried out by a thermostat such as thermostat 110 , according to some embodiments, the same or similar techniques are employed using a remote device such as device 112 .
- FIG. 2 is a diagram of an HVAC system, according to some embodiments.
- HVAC system 120 provides heating, cooling, ventilation, and/or air handling for the enclosure, such as a single-family home 100 depicted in FIG. 1 .
- the system 120 depicts a forced air type heating system, although according to other embodiments, other types of systems could be used.
- heating coils or elements 242 within air handler 240 provide a source of heat using electricity or gas via line 236 .
- Cool air is drawn from the enclosure via return air duct 246 through filter 270 , using fan 238 and is heated heating coils or elements 242 .
- the heated air flows back into the enclosure at one or more locations via supply air duct system 252 and supply air grills such as grill 250 .
- an outside compressor 230 passes gas such a Freon through a set of heat exchanger coils to cool the gas. The gas then goes to the cooling coils 234 in the air handlers 240 where it expands, cools and cools the air being circulated through the enclosure via fan 238 .
- a humidifier 254 is also provided.
- the HVAC system has other known functionality such as venting air to and from the outside, and one or more dampers to control airflow within the duct systems.
- the system is controlled by control electronics 212 whose operation is governed by a thermostat such as the thermostat 110 .
- Thermostat 110 controls the HVAC system 120 through a number of control circuits.
- Thermostat 110 also includes a processing system 260 such as a microprocessor that is adapted and programmed to controlling the HVAC system and to carry out the techniques described in detail herein.
- FIGS. 3A-B illustrate a thermostat having a user-friendly interface, according to some embodiments.
- thermostat 300 preferably has a sleek, simple, uncluttered and elegant design that does not detract from home decoration, and indeed can serve as a visually pleasing centerpiece for the immediate location in which it is installed.
- user interaction with thermostat 300 is facilitated and greatly enhanced over known conventional thermostats by the design of thermostat 300 .
- the thermostat 300 includes control circuitry and is electrically connected to an HVAC system, such as is shown with thermostat 110 in FIGS. 1 and 2 .
- Thermostat 300 is wall mounted, is circular in shape, and has an outer rotatable ring 312 for receiving user input.
- Thermostat 300 is circular in shape in that it appears as a generally disk-like circular object when mounted on the wall.
- Thermostat 300 has a large front face lying inside the outer ring 312 .
- thermostat 300 is approximately 80 mm in diameter.
- the outer rotatable ring 312 allows the user to make adjustments, such as selecting a new target temperature. For example, by rotating the outer ring 312 clockwise, the target temperature can be increased, and by rotating the outer ring 312 counter-clockwise, the target temperature can be decreased.
- the front face of the thermostat 300 comprises a clear cover 314 that according to some embodiments is polycarbonate, and a metallic portion 324 preferably having a number of slots formed therein as shown.
- the surface of cover 314 and metallic portion 324 form a common outward arc or spherical shape gently arcing outward, and this gentle arcing shape is continued by the outer ring 312 .
- the cover 314 has two different regions or portions including an outer portion 314 o and a central portion 314 i .
- the cover 314 is painted or smoked around the outer portion 314 o , but leaves the central portion 314 i visibly clear so as to facilitate viewing of an electronic display 316 disposed thereunderneath.
- the curved cover 314 acts as a lens that tends to magnify the information being displayed in electronic display 316 to users.
- the central electronic display 316 is a dot-matrix layout (individually addressable) such that arbitrary shapes can be generated, rather than being a segmented layout.
- central display 316 is a backlit color liquid crystal display (LCD).
- LCD liquid crystal display
- FIG. 3A An example of information displayed on the electronic display 316 is illustrated in FIG. 3A , and includes central numerals 320 that are representative of a current setpoint temperature.
- metallic portion 324 has number of slot-like openings so as to facilitate the use of a passive infrared motion sensor 330 mounted therebeneath.
- the metallic portion 324 can alternatively be termed a metallic front grille portion. Further description of the metallic portion/front grille portion is provided in the commonly assigned U.S. Ser. No. 13/199,108, supra.
- the thermostat 300 is preferably constructed such that the electronic display 316 is at a fixed orientation and does not rotate with the outer ring 312 , so that the electronic display 316 remains easily read by the user.
- the cover 314 and metallic portion 324 also remain at a fixed orientation and do not rotate with the outer ring 312 .
- the diameter of the thermostat 300 is about 80 mm
- the diameter of the electronic display 316 is about 45 mm.
- an LED indicator 380 is positioned beneath portion 324 to act as a low-power-consuming indicator of certain status conditions.
- the LED indicator 380 can be used to display blinking red when a rechargeable battery of the thermostat (see FIG.
- the LED indicator 380 can be used for communicating one or more status codes or error codes by virtue of red color, green color, various combinations of red and green, various different blinking rates, and so forth, which can be useful for troubleshooting purposes.
- occupancy information is used in generating an effective and efficient scheduled program.
- an active proximity sensor 370 A is provided to detect an approaching user by infrared light reflection
- an ambient light sensor 370 B is provided to sense visible light.
- the proximity sensor 370 A can be used to detect proximity in the range of about one meter so that the thermostat 300 can initiate “waking up” when the user is approaching the thermostat and prior to the user touching the thermostat.
- the ambient light sensor 370 B can be used for a variety of intelligence-gathering purposes, such as for facilitating confirmation of occupancy when sharp rising or falling edges are detected (because it is likely that there are occupants who are turning the lights on and off), and such as for detecting long term (e.g., 24-hour) patterns of ambient light intensity for confirming and/or automatically establishing the time of day.
- the thermostat 300 is controlled by only two types of user input, the first being a rotation of the outer ring 312 as shown in FIG. 3A (referenced hereafter as a “rotate ring” or “ring rotation” input), and the second being an inward push on an outer cap 308 (see FIG. 3B ) until an audible and/or tactile “click” occurs (referenced hereafter as an “inward click” or simply “click” input).
- the outer cap 308 is an assembly that includes all of the outer ring 312 , cover 314 , electronic display 316 , and metallic portion 324 .
- an inward click can be achieved by direct pressing on the outer ring 312 itself, or by indirect pressing of the outer ring by virtue of providing inward pressure on the cover 314 , metallic portion 314 , or by various combinations thereof.
- the thermostat 300 can be mechanically configured such that only the outer ring 312 travels inwardly for the inward click input, while the cover 314 and metallic portion 324 remain motionless. It is to be appreciated that a variety of different selections and combinations of the particular mechanical elements that will travel inwardly to achieve the “inward click” input are within the scope of the present teachings, whether it be the outer ring 312 itself, some part of the cover 314 , or some combination thereof.
- FIG. 3C illustrates a cross-sectional view of a shell portion 309 of a frame of the thermostat of FIGS. 3A-B , which has been found to provide a particularly pleasing and adaptable visual appearance of the overall thermostat 300 when viewed against a variety of different wall colors and wall textures in a variety of different home environments and home settings.
- the outer shell portion 309 is specially configured to convey a “chameleon” quality or characteristic such that the overall device appears to naturally blend in, in a visual and decorative sense, with many of the most common wall colors and wall textures found in home and business environments, at least in part because it will appear to assume the surrounding colors and even textures when viewed from many different angles.
- the shell portion 309 has the shape of a frustum that is gently curved when viewed in cross-section, and comprises a sidewall 376 that is made of a clear solid material, such as polycarbonate plastic.
- the sidewall 376 is backpainted with a substantially flat silver-or nickel-colored paint, the paint being applied to an inside surface 378 of the sidewall 376 but not to an outside surface 377 thereof.
- the outside surface 377 is smooth and glossy but is not painted.
- the sidewall 376 can have a thickness T of about 1.5 mm, a diameter d 1 of about 78.8 mm at a first end that is nearer to the wall when mounted, and a diameter d 2 of about 81.2 mm at a second end that is farther from the wall when mounted, the diameter change taking place across an outward width dimension “h” of about 22.5 mm, the diameter change taking place in either a linear fashion or, more preferably, a slightly nonlinear fashion with increasing outward distance to form a slightly curved shape when viewed in profile, as shown in FIG.
- FIG. 3C only illustrates the outer shell portion 309 of the thermostat 300 , and that there are many electronic components internal thereto that are omitted from FIG. 3C for clarity of presentation, such electronic components being described further hereinbelow and/or in other ones of the commonly assigned incorporated applications, such as U.S. Ser. No. 13/199,108, supra.
- the thermostat 300 includes a processing system 360 , display driver 364 and a wireless communications system 366 .
- the processing system 360 is adapted to cause the display driver 364 and display area 316 to display information to the user, and to receiver user input via the rotatable ring 312 .
- the processing system 360 is capable of carrying out the governance of the operation of thermostat 300 including the user interface features described herein.
- the processing system 360 is further programmed and configured to carry out other operations as described further hereinbelow and/or in other ones of the commonly assigned incorporated applications.
- processing system 360 is further programmed and configured to maintain and update a thermodynamic model for the enclosure in which the HVAC system is installed, such as described in U.S. Ser. No.
- the wireless communications system 366 is used to communicate with devices such as personal computers and/or other thermostats or HVAC system components, which can be peer-to-peer communications, communications through one or more servers located on a private network, or and/or communications through a cloud-based service.
- devices such as personal computers and/or other thermostats or HVAC system components, which can be peer-to-peer communications, communications through one or more servers located on a private network, or and/or communications through a cloud-based service.
- FIG. 4 illustrates a side view of the thermostat 300 including a head unit 410 and a backplate (or wall dock) 440 thereof for ease of installation, configuration and upgrading, according to some embodiments.
- thermostat 300 is wall mounted and has circular in shape and has an outer rotatable ring 312 for receiving user input.
- Head unit 410 includes the outer cap 308 that includes the cover 314 and electronic display 316 .
- Head unit 410 of round thermostat 300 is slidably mountable onto back plate 440 and slidably detachable therefrom.
- the connection of the head unit 410 to backplate 440 can be accomplished using magnets, bayonet, latches and catches, tabs or ribs with matching indentations, or simply friction on mating portions of the head unit 410 and backplate 440 .
- the head unit 410 includes a processing system 360 , display driver 364 and a wireless communications system 366 . Also shown is a rechargeable battery 420 that is recharged using recharging circuitry 422 that uses power from backplate that is either obtained via power harvesting (also referred to as power stealing and/or power sharing) from the HVAC system control circuit(s) or from a common wire, if available, as described in further detail in co-pending patent application U.S. Ser. Nos. 13/034,674, and 13/034,678, which are incorporated by reference herein.
- rechargeable battery 420 is a single cell lithium-ion, or a lithium-polymer battery.
- Backplate 440 includes electronics 482 and a temperature/humidity sensor 484 in housing 460 , which are ventilated via vents 442 . Two or more temperature sensors (not shown) are also located in the head unit 410 and cooperate to acquire reliable and accurate room temperature data. Wire connectors 470 are provided to allow for connection to HVAC system wires. Connection terminal 480 provides electrical connections between the head unit 410 and backplate 440 . Backplate electronics 482 also includes power sharing circuitry for sensing and harvesting power available power from the HVAC system circuitry.
- FIG. 5A illustrates thermostat 300 and several exemplary natural and comfortable hand positions of a user manipulating the thermostat to change some aspect of its configuration or operation as presented through a user interface displayed on electronic display 316 .
- the user interface may include a sequence of display elements arranged in a circular arrangement, a linear arrangement, or combinations thereof and as further described in U.S. Ser. No. 13/269,501, supra.
- the user interface may be navigated through using a rotatable ring 312 , or other rotational input device invoking a series of ring rotations to scroll through the series of display elements and inward clicks to select one of these display elements and gain additional information or access to other portions of a menu.
- Usability of the user interface displayed on thermostat 300 may be positively enhanced when the user's hand position on thermostat 300 remains in a comfortable position throughout all aspects of operating the thermostat 300 .
- the user's hand may initially be comfortably positioned in any one of the circular quadrants 500 (I) through (IV) depending on the user's left or right handedness, height relative to the position of the thermostat, and a variety of other ergonomic factors.
- the user should be able to navigate most, if not all, aspects of the user interface displayed on thermostat 300 while rotating rotatable ring 312 through one or two but preferably no more three of the circular quadrants 500 (I) through (IV). This navigation is preferably done without the user having to lift and reposition their hand.
- a user's hand 502 in starting position initially begins navigation of a user interface displayed on thermostat 300 , as indicated by the approximate position of the forefinger, in circular quadrant (I).
- the user's hand 502 placed on thermostat 300 may then rotate clockwise approximately a quarter-revolution into intermediary position ( FIG. 5B ) and towards the lower boundary of circular quadrant (I), which may happen to be a limit on the user's ability to rotate their wrist and hand.
- intermediary position FIG. 5A
- the user may peer through the open area between the thumb and forefinger to read information displayed on the user interface, reposition a display element on the display, select a display element with a inward click, or other interactions with the user interface.
- the user may then turn an equivalent quarter-revolution counter-clockwise from the intermediary position ( FIG. 5B ) arriving in a final position ( FIG. 5C ) whereupon the user's hand continues to remain engaged to the thermostat 300 and is ready to further interact with the user interface.
- Embodiments of the present invention facilitate keeping the user's hand in a comfortable position and engaged to the thermostat 300 as menus and interactions within the user interface vary in both complexity and number of display elements presented.
- a variable assist scroll engine for rotational inputs also referred to as a variable assist scroll engine, designed in accordance with embodiments of the present invention uses heuristics to provide assistance in scrolling through an arbitrary number of display elements presented on the user interface while in the process also helping keep the user's hand in a natural and comfortable position on the thermostat.
- the user's rotational input in one embodiment may traverse a sequence of display elements preferably using less than a quarter-revolution in order to enhance the user experience and improve the usability of the thermostat.
- variable assist scroll engine may also allow the user to configure the rotational input for scrolling to less than a half-revolution, a three-quarter revolution, or set as a measurement of angular displacement from 0 to 360 degrees.
- FIG. 5D illustrates, a short menu 508 from a user interface having two display elements (i.e., “UNLOCKED” and “LOCKED”) and a long menu 512 having eight display elements with wider spacing and multiple lines of data.
- the variable assist scroll engine may not accelerate the scrolling movement between the two display elements since the element distance 510 (i.e., the distance between the beginning and end of the sequence of elements) is quite short might make using the short menu 508 difficult for the user.
- variable assist scroll engine may select to actually reduce or quickly “dampen” the amount of acceleration on the short menu 508 to a predetermined level. In some embodiments, limiting the acceleration to the predetermined level may improve the interface by providing the user with a more predictable and consistent interaction with the display elements. In comparison, the variable assist scroll engine may detect that a user has subsequently imparted the same rapid rotational acceleration to scroll through long menu 512 . In this case, the variable assist scroll engine may respond by increasing the acceleration of the scrolling movement as the associated element distance 514 is much greater than the short menu 508 .
- variable assist scroll engine assists the user entering rotational input 506 by accelerating the scrolling movement of the sequence of display elements thereby allowing the user to quickly scroll through the more numerous display elements on the long menu 512 .
- the user is able to scroll through the display elements while using less than quarter-revolution of the rotatable ring 312 as indicated.
- FIG. 6 illustrates a logical schematic diagram using a variable assist scroll engine 604 to process user inputs on a control device such as a thermostat in accordance with some embodiments.
- rotational input device 602 may be a rotatable ring located around a periphery of an electronic display centrally mounted on a body of the thermostat or control device, such as rotatable ring 312 shown and described supra with respect to FIG. 3 .
- the rotational input device 602 receives rotational user inputs and provides a measurement of angular displacement at regular time intervals such as once every 1/60th of a second or faster depending on the sampling capabilities of the rotational input device 602 .
- the rotational input device 602 may receive rotational user input and produce instead output linear displacements reflecting a linear representation of the angular distance traveled by the rotational input device 602 in a given time interval.
- variable assist scroll engine 604 receives these linear and/or rotational displacements over time and uses them to determine a scrolling movement for display elements on the electronic display.
- the scrolling movement may be calculated using linear or angular equations describing speed (change in displacement), velocity (speed in a direction), and acceleration (change in velocity over time with direction).
- Variable assist scroll engine 604 may modify the degree of acceleration than provided through rotational input device 602 according to the application of information such as tuning parameters for scrolling display elements 612 (also referred to as tuning parameters 612 ) as well as display elements metadata 610 , which are used to describe the shapes and sizes of display elements as they are rendered on the electronic display of the thermostat.
- tuning parameters 612 help the variable assist scroll engine 604 model the scrolling of the display elements as physical objects having a mass and inertia being accelerated and then damped by friction or other opposing forces.
- Different inertial models used in simulating movement of these display elements may include a flywheel or weighted cylinder spinning around a rod as well as other variations to provide a smooth and attractive appearance of the display elements as they are rendered on the electronic display.
- variable assist scroll engine may dampen the scrolling of the display elements based on tuning parameters 612 and the inertial model.
- tuning parameters 612 may also be selected to accommodate for different menu types, such as a circular menu and a linear menu either with wrapping and non-wrapping effects, and to achieve an overall effect on the scrolling of the display elements on the electronic display.
- these tuning parameters 612 may include an acceleration multiplier, a scroll decay factor, edge bounce decay factor, a center decay factor, and a scroll settle threshold.
- the acceleration multiplier is used to increase or decrease the amount of acceleration applied to a set of scrolling elements. The value may be set to a higher value if a menu has a larger sequence of display elements and it is desirable to scroll quickly through the sequence.
- Scroll decay factor helps simulate the effect of friction and determines how the long the elements may scroll before stopping. If the scroll decay is set to a high value, the scrolling movement may decay quickly and stop. In some embodiments, the scrolling may continue even after a user has stopped providing rotational input to the rotational input device 602 due to simulated force and inertia.
- the edge bounce decay factor is used in a non-wrapping menu when it reaches the terminus element.
- the menu will not stop quickly but “bounce” when it reaches the end and oscillate briefly as the energy decays. Accordingly, edge bounce decay determines how quickly the energy in the terminus element in a sequence of display elements will decay when it reaches the end of the menu.
- the center decay is used to determine how quickly the decay will occur for a display element once it settles into a position.
- a user interface may apply gravity to a display element and cause the display element to settle into simulated notch, groove, or indentation simulated in the user interface. Accordingly, the center decay determines the decay associated with this event and how quickly a display element may settle into position.
- the scroll settle threshold is a threshold value used to determine when a scrolling of elements has effectively stopped. Once the movement of the scrolling elements falls below this threshold, scrolling of the elements will be stopped. In some embodiments, the scroll settle threshold may vary for different menus depending on the simulated forces, inertia, and friction associated with the scrolling movement of the display elements.
- variable assist scroll engine 604 sends these display elements to render engine 606 to be displayed on the electronic display at a frequency determined by the display device.
- the frequency of the electronic display device may be every 1/60th of a second or faster depending on the capabilities of the particular device and how it is configured. As this process repeats, the display elements scrolling over the electronic display appear animated, pleasing to the user and easier to navigate in accordance with embodiments of the invention.
- FIG. 7 a schematic block diagram provides an overview of some components inside a thermostat in accordance with embodiments of the present invention.
- Thermostat 700 is similar to thermostat 300 in FIG. 3 and highlights selected internal components including a Wifi module 702 , a head unit processor 704 with associated memory 710 , a backplate processor 708 with associated memory 714 , and sensors 712 (e.g., temperature, humidity, motion, ambient light, proximity). Further details regarding the physical placement and configuration of the thermostat head unit, backplate, and other physical elements are described in the commonly assigned U.S. Ser. No. 13/199,108, supra.
- the backplate processor 708 is coupled to, and responsible for polling on a regular basis, most or all of the sensors 712 including the temperature and humidity sensors, motion sensors, ambient light sensors, and proximity sensors.
- sensors 712 including the temperature and humidity sensors, motion sensors, ambient light sensors, and proximity sensors.
- ribbon cables or other electrical connections between the head unit and backplate are provided for this purpose.
- Battery 706 supplies power to the electronic display (not shown in FIG. 7 ) used to display scrolling display elements in accordance embodiments of the present invention as well as to Wifi module 702 and both backplate processor 708 and head unit processor 704 .
- memory 710 may include a menu system module 718 , variable assist scroll engine 720 , display render module 722 , HVAC module 724 , communications module 726 , and a runtime environment 728 for managing these modules and their execution on head unit processor 704 .
- menu system module 718 may include the menu systems associated with configuring, controlling, and generally interfacing with thermostat 700 through rotatable ring 716 .
- variable assist scroll engine 720 processes scrolling display elements used in menu system module 718 to interact more efficiently with rotatable ring 716 as well as display more attractively on the electronic display of the thermostat 700 .
- variable assist scroll engine 720 may further accelerate the scrolling of display elements from a menu in menu system module 718 and thereby reduce the required amount of rotational input applied to rotatable ring 716 .
- variable assist scroll engine 720 accelerates the scrolling movement allowing the user to scroll through many display elements in multiple areas of menu system module 718 . In each the areas of the menu, the user may scroll through a variable number of display elements without turning rotatable ring 716 more than a quarter-turn.
- the display render module 722 receives the various display elements from variable assist scroll engine 720 and renders them on the electronic display (not shown) of thermostat 800 .
- HVAC module 724 may further be used to gather commands and data from menu system module 718 in consideration of controlling the HVAC system.
- FIG. 8 illustrates a flow chart diagram of the operations for processing rotational user inputs and controlling the scrolling of display elements in accordance with some embodiments.
- embodiments of the present invention balance usability of the interface with the need to reduce or minimize the amount of rotational input necessary to scroll through display elements on the electronic display of a control device.
- the variable assist engine can assist with the scrolling the display elements but must still leave the user with control over the interface.
- aspects of the present invention may display on the electronic display associated with the control device at least a portion of an initial display element selected from a sequence of display elements.
- the initial display element may be a symbol or image selected from a sequence of display elements arranged along on a circular menu or may be a symbol or image selected from a sequence of display elements arranged in a series on a linear menu. If the initial display element is larger then it may only be partially displayed on the electronic display while a smaller display element from a sequence of display elements may be fully displayed on the electronic display.
- the electronic display is centrally mounted on a body of a control device providing for a smaller overall form factor for the device while in alternate embodiments, the display may be mounted offset or adjacent to the body of the control device.
- determining an angular movement is made from a rotational user input applied to a rotational input device associated with the control device.
- the angular movement may be determined as a measurement of the displacement, velocity, and acceleration of the rotational input device averaged over a time interval.
- a user may impart a rotational user input with their hand using a rotatable ring around a periphery of the electronic display, such as rotatable ring 300 described and shown supra. in FIG. 3 .
- the angular displacement on the rotatable ring sampled at regular time intervals is provided to embodiments of the present invention and used to calculate the angular movement.
- the rotational input device may be a rotatable knob or other mechanism to rotate and scroll through display elements in the interface.
- the rotatable knob may be smaller and positioned adjacent to the display rather than surrounding the electronic display portion and adjustable with a user's fingers.
- one or more heuristics are applied to variably assist with a scrolling movement of the sequence of display elements on the electronic display and reduce the rotational user input necessary to traverse the sequence of display elements.
- the user may preferably configure one embodiment of the variable assist scroll engine to assist in scrolling through the sequence of display elements using a rotational input of less than a quarter-revolution, a half-revolution, a three-quarter revolution, or set as a measurement of an angular displacement from 0 to 360 degrees.
- Alternate embodiments of the variable assist scroll engine may set the default rotational input to less than quarter-revolution if the user selects to not customize or change these settings.
- one embodiment takes into consideration an angular movement associated with the rotational user input and an element distance associated with the sequence of display elements to be displayed on the electronic display. If the angular movement has a larger rotational acceleration component and the element distance is quite long, the engine may increase the assistance with scrolling through the sequence of display elements in one or multiple ways as the user has indicated an imperative to quickly view the sequence of display elements. For example, a user may wish to read a terminus element in a menu having a long list of display elements with text and thus provide a large rotational acceleration to the rotational input device.
- a heuristic to reduce the required rotational user input may cause the engine to increase or decrease the rate of scrolling movement associated with the sequence of display elements compared with a rate of angular movement received from the rotational input device.
- the engine may increase the acceleration of the scrolling movement to meet both the user's request to view the information quickly and reduce the rotational input required to a predetermined amount, such as a quarter-rotation of the rotational ring 312 in FIG. 3 .
- a predetermined amount such as a quarter-rotation of the rotational ring 312 in FIG. 3 .
- one embodiment may use the rotational acceleration component of the angular movement and either add a predetermined amount of acceleration or multiple of the acceleration by a factor such as an acceleration multiplier.
- a heuristic to reduce the required rotational user input may cause the engine to create an extended scrolling movement that continues to display additional display elements from the sequence of display elements after the initial angular movement associated with the rotational user input has stopped.
- a rotational user input with acceleration may impart a simulated force and inertia on the sequence of display elements causing the display elements to scroll after the rotational user input has ended.
- the movement of the display may be modeled as a physical object having mass, inertia, and decay due to friction or opposing rotational forces.
- the extended scrolling movement may be reduced through successive subtraction or division by a scroll decay factor until the scrolling movement falls below a scroll settle threshold and is determined to have stopped.
- a heuristic to reduce the required rotational user input may cause the engine to increase a distance covered by the scrolling movement compared with a distance covered by the angular movement.
- a user may provide a quarter-revolution on a rotatable ring as and input and cause the corresponding elements to scroll a half-revolution on the electronic display.
- the distance travelled by the scrolling elements may be one or several times the distance provided by the user through the rotational input device. This is particularly useful if a user is scrolling through a long sequence of display elements and needs to cover the longer distance quickly.
- a heuristic to reduce the required rotational user input may cause the engine to continue the scrolling movement of the sequence of display elements until at least one has been affirmatively identified on the electronic display.
- a user's rotational input may cause a sequence of display elements to scroll with a scrolling movement and land in an area between two display elements leaving it not possible to select or identify a specific display element in the context of the user interface.
- one embodiment simulates a notch, indentation, or groove coincident with each display element under the force of gravity and friction which in turn causes the scrolling movement to settle on a particular display element.
- a distance calculation may be used to select one display element over another nearby display element as the scrolling movement of the display elements slows and comes close to falling below the scroll settle threshold.
- variable assist scroll engine may determine whether a user has applied a subsequent angular movement in an opposite rotational.
- the user applies the subsequent rotational input to the rotational input device in an opposite direction to the scrolling movement displayed on the electronic display.
- Variable assist scroll engine responds by gradually slowing the scrolling of display elements in proportion to the amount of the subsequent angular movement.
- variable assist scroll engine models the subsequent rotational input as an opposing rotational force upon an object thus the user experience is familiar and expected. In addition, this heuristic further reduces the required rotational user input as the variable assist scroll engine allows the user to quickly slow or stop the scrolling movement with a reduced rotational input.
- FIGS. 9A-9D illustrate one application of the variable assist scroll engine to a circular menu of display elements in accordance with some embodiments.
- a user in this example has applied a rotational force in clockwise direction 908 to a rotatable ring 906 surrounding an electronic display 904 on thermostat 902 .
- the circular menu 912 at t 2 in FIG. 9A has a display elements velocity 926 (hereinafter display velocity) in velocity graph 922 which is also greater than the rotatable ring velocity 924 (hereinafter ring velocity).
- Circular menu 912 also moved through a rotational displacement 928 at t 2 that is at least twice the rotational displacement 920 associated with the rotatable ring 906 of the thermostat 902 .
- the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of the rotatable ring 906 while traversing at least half the sequence of display elements in the circular menu 912 .
- variable assist scroll engine has imparted a rotational inertia and decay to circular menu 912 to further reduce the rotational input required by the user. While not displayed in FIG. 9A , rotational displacement 936 will continue to increase after t 3 until display velocity 934 decays further and circular menu 912 stops.
- a user has applied a rotational force in clockwise direction 908 to a rotatable ring 906 of thermostat 902 .
- the acceleration graph 938 indicates schematically at t 1 the ring acceleration 940 is less than the display acceleration 942 as the variable assist scroll engine has slightly increased the simulated acceleration associated with the animation of circular menu 912 .
- the ring acceleration 940 provided in FIG. 9B is similar to the ring acceleration 916 in FIG. 9A except that it has a much lower magnitude in comparison.
- the variable assist scroll engine has also responded with a lower acceleration for the animation of the circular menu 912 to reflect the user's intent when using the interface.
- the circular menu 912 at t 2 in FIG. 9B has a display velocity 950 in velocity graph 946 which is comparable with the ring velocity 948 . It follows that circular menu 912 has also moved through a rotational displacement 952 at t 2 that is also comparable to the rotational displacement 944 associated with the rotatable ring 906 of the thermostat 902 .
- the variable assist scroll engine has applied one heuristic of allowing the user to make a quarter-rotation of the rotatable ring 906 that more directly controls the scrolling movement of display elements in the circular menu 912 .
- variable assist scroll engine has damped circular menu 912 at t 3 such that display velocity 958 is also negligible or zero and the animation of circular menu 912 has effectively stopped.
- variable assist scroll engine has reduced the effects of any inertial energy in order to provide the user with more control over the scrolling movement of the display elements in circular menu 912 .
- a user has again applied a rotational force in clockwise direction 908 to a rotatable ring 906 associated with a thermostat 902 .
- the acceleration graph 962 indicates schematically at t 1 that ring acceleration 964 is less than the display acceleration 966 as the variable assist scroll engine has increased the simulated acceleration associated with the animation of circular menu 912 .
- the ring acceleration 964 is similar to the ring acceleration 916 in FIG. 9A except that it is at a much higher magnitude in comparison.
- the variable assist scroll engine responds with an even higher acceleration for the animation of the circular menu 912 to reflect the user's intent when using the interface.
- the circular menu 912 at t 2 in FIG. 9C has a display velocity 974 in velocity graph 970 which is significantly greater than the ring velocity 972 .
- circular menu 912 has also moved through a rotational displacement 976 at t 2 that is almost three times the rotational displacement 968 associated with the rotatable ring 906 .
- the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of the rotatable ring 906 while traversing almost three-quarters of the sequence of display elements in the circular menu 912 .
- rotatable ring 991 has travelled at ring velocity 993 at t 5 with a rotational displacement 991 in the opposite direction, for a brief moment, to the rotation of circular menu 912 at t 5 .
- the ring velocity 997 associated with rotatable ring 906 is negligible or zero and the display velocity 998 has reversed direction causing the animation of circular menu 912 to reverse direction traveling counter-clockwise with rotational displacement 999 .
- FIG. 10 illustrates one application of a heuristic for affirmatively identifying a display element on a circular menu in accordance with some embodiments of the present invention.
- a user has applied a rotational input at t 1 to rotatable ring 906 on thermostat 902 .
- electronic display 904 on thermostat 902 displays an indicator 910 on circular menu 912 identifying a symbol “f” on the circular menu 912 .
- Detail 1004 illustrates schematically that each symbol is logically associated with a groove and under the force of simulated gravity identifies a display element under a similarly simulated pawl 911 .
- a rotational displacement 1002 on thermostat 902 at t 1 results in circular menu 912 at t 2 experiencing a rotational displacement 1008 such that indicator 910 momentarily falls between symbols “u” and “v” making it not possible to determine whether “u” or “v” has been identified in the context of the user interface.
- one embodiment at t 3 in FIG. 10 simulating the groove associated with each symbol either advances or retreats circular menu 912 .
- indicator affirmatively identifies a display element, such as symbol “v” as shown in detail 1010 .
- detail 1010 also shows that an audible “Click” sound is provided in the user interface providing a user with audible feedback and providing a sense of added control, confidence, and comfort when operating the thermostat 906 .
- FIGS. 11A-11B illustrate another application of the variable assist scroll engine to a linear menu of display elements in accordance with some embodiments.
- a user has applied a rotational force in clockwise direction 908 to a rotatable ring 906 surrounding an electronic display 904 centrally mounted on a body of a thermostat 902 .
- the acceleration graph 1102 indicates schematically at t 1 the ring acceleration 1104 is less than the display acceleration 1106 as the variable assist scroll engine has increased the simulated acceleration associated with the animation of linear menu.
- linear menu 1108 which operates in the scrolling direction as indicated in FIG. 11A , is a scheduling system for operation of the thermostat at different temperature setpoints in the course of a weeklong period from Monday to Friday with indicator 1109 showing the current display element on the linear menu 1108 pointing to 4 pm on Monday.
- the linear menu 1108 at t 2 in FIG. 11A has a display velocity 1116 in velocity graph 1112 which is also greater than the ring velocity 1114 .
- Linear menu 1108 also moved through a linear displacement at t 2 that is at least twice the rotational displacement 1110 associated with the rotatable ring 906 of the thermostat 902 .
- This linear displacement can be observed as the indicator 1109 at t 1 was indicates 4 pm on Monday while the indicator 1118 at t 2 indicates 8 pm on Thursday.
- the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of the rotatable ring 906 while traversing more than twice a comparable linear distance in the sequence of display elements in the linear menu 1108 .
- variable assist scroll engine has imparted an inertia and linear menu 1108 to further scrolls where indicator 1126 shows 2 pm Friday. While not displayed in FIG. 11A , the linear displacement of linear menu 1108 will continue to increase after t 3 until display velocity 1124 decays further and the scrolling stops.
- the acceleration graph 1130 indicates schematically at t 1 the ring acceleration 1130 is less than the display acceleration 1132 as the variable assist scroll engine has slightly increased the simulated acceleration associated with the animation of linear menu 1108 .
- the ring acceleration 1130 provided in FIG. 11B is similar to the ring acceleration 1104 in FIG. 11A except that it is a lower magnitude in comparison and, more importantly, is used to change a setpoint 1134 rather than a date in the schedule of linear menu 1108 .
- the variable assist scroll engine has also responded with a lower acceleration for the animation of the linear menu 1108 to reflect the user's intent when using the interface.
- the linear menu 1108 at t 2 in FIG. 11B has a display velocity 1142 in velocity graph 1138 which is comparable with the ring velocity 1140 . It follows that linear menu 1108 has also moved through a linear displacement at t 2 that is comparable to the rotational displacement 944 associated with the rotatable ring 906 . For example, a relatively small change between the setpoint 1134 at 76 degrees and the setpoint 1144 at 68 degrees in FIG. 11B does not require a large linear displacement.
- the variable assist scroll engine has applied one heuristic of allowing the user to make a quarter-rotation of the rotatable ring 906 that more directly controls the movement of the scrolling movement of display elements in the linear menu 1108 .
- variable scroll assist engine has damped linear menu 1108 at t 3 such that display velocity 1150 is also negligible or zero and the animation of linear menu 1108 has effectively stopped.
- variable assist scroll engine has reduced the effects of any inertial energy in order to provide the user with more control over the scrolling movement of the display elements in linear menu 1108 .
- FIGS. 12A-C illustrates further additional types of menus that have also benefitted from application of the variable assist scroll engine in accordance with some embodiments.
- settings menu in FIG. 12A a set of display elements shaped discs scroll linearly across the electronic display as physical objects with qualities of mass and inertia.
- temperature setting menu in FIG. 12B is another example of a circular menu with a setpoint tick mark 1212 and a current temperature tick mark 1210 .
- Rotating main menu in FIG. 12C is a circular type menu with settings 1214 to be scrolled using embodiments of the present invention.
- the rotatable ring of the above-described thermostat to be provided in a “virtual,” “static,” or “solid state” form instead of a mechanical form, whereby the outer periphery of the thermostat body contains a touch-sensitive material similar to that used on touchpad computing displays and smartphone displays.
- the manipulation by the user's hand would be a “swipe” across the touch-sensitive material, rather than a literal rotation of a mechanical ring, the user's fingers sliding around the periphery but not actually causing mechanical movement.
- the inward mechanical pressability or “inward click” functionality of the rotatable ring to be provided in a “virtual” or “solid state” form instead of a mechanical form, whereby an inward pressing effort by the user's hand or fingers is detected using internal solid state sensors (for example, solid state piezoelectric transducers) coupled to the outer body of the thermostat.
- solid state sensors for example, solid state piezoelectric transducers
- the inward pressing by the user's hand or fingers would not cause actual inward movement of the front face of the thermostat as with the above-described embodiments, but would otherwise have the same purpose and effect as the above-described “inward clicks” of the rotatable ring.
- an audible beep or clicking sound can be provided from an internal speaker or other sound transducer, to provide feedback that the user has sufficiently pressed inward on the rotatable ring or virtual/solid state rotatable ring.
- an audible beep or clicking sound can be provided from an internal speaker or other sound transducer, to provide feedback that the user has sufficiently pressed inward on the rotatable ring or virtual/solid state rotatable ring.
- implementations of the invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them.
- Apparatus of the invention can be implemented in a computer program product tangibly embodied in a machine readable storage device for execution by a programmable processor; and method steps of the invention can be performed by a programmable processor executing a program of instructions to perform functions of the invention by operating on input data and generating output.
- the invention can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device.
- Each computer program can be implemented in a high level procedural or object oriented programming language, or in assembly or machine language if desired; and in any case, the language can be a compiled or interpreted language.
- Suitable processors include, by way of example, both general and special purpose microprocessors. Generally, a processor will receive instructions and data from a read only memory and/or a random access memory.
- a computer will include one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto optical disks; and optical disks.
- Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto optical disks; CD ROM disks and other non-transitory storage mediums. Any of the foregoing can be supplemented by, or incorporated in, ASICs.
- thermostat with an additional button, such as a “back” button.
- the “back” button could be provided on the side of the device, such as described in the commonly assigned U.S. Ser. No. 13/033,573, supra.
- plural additional buttons such as a “menu” button and so forth, could be provided on the side of the device.
- the actuation of the additional buttons would be fully optional on the part of the user, that is, the device could still be fully controlled using only the ring rotations and inward clicks.
- the device would accommodate and respond accordingly to such “menu” and “back” button inputs.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Air Conditioning Control Device (AREA)
- Thermal Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 13/317,557, filed Oct. 21, 2011 and incorporated herein by reference in its entirety for all purposes. The subject matter of this patent specification relates to the subject matter of the following commonly assigned applications: U.S. Ser. No. 12/881,430 filed Sep. 14, 2010; U.S. Ser. No. 12/881,463 filed Sep. 14, 2010; U.S. Ser. No. 61/415,771 filed Nov. 19, 2010; U.S. Ser. No. 61/429,093 filed Dec. 31, 2010; U.S. Ser. No. 12/984,602 filed Jan. 4, 2011; U.S. Ser. No. 12/987,257 filed Jan. 10, 2011; U.S. Ser. No. 13/033,573 filed Feb. 23, 2011; U.S. Ser. No. 29/386,021, filed Feb. 23, 2011; U.S. Ser. No. 13/034,666, U.S. Ser. No. 13/034,674 and U.S. Ser. No. 13/034,678 filed Feb. 24, 2011; U.S. Ser. No. 13/038,191 filed Mar. 1, 2011; U.S. Ser. No. 13/038,206 filed Mar. 1, 2011; U.S. Ser. No. 29/399,609 filed Aug. 16, 2011; U.S. Ser. No. 29/399,614 filed Aug. 16, 2011; U.S. Ser. No. 29/399,617 filed Aug. 16, 2011; U.S. Ser. No. 29/399,618 filed Aug. 16, 2011; U.S. Ser. No. 29/399,621 filed Aug. 16, 2011; U.S. Ser. No. 29/399,623 filed Aug. 16, 2011; U.S. Ser. No. 29/399,625 filed Aug. 16, 2011; U.S. Ser. No. 29/399,627 filed Aug. 16, 2011; U.S. Ser. No. 29/399,630 filed Aug. 16, 2011; U.S. Ser. No. 29/399,632 filed Aug. 16, 2011; U.S. Ser. No. 29/399,633 filed Aug. 16, 2011; U.S. Ser. No. 29/399,636 filed Aug. 16, 2011; U.S. Ser. No. 29/399,637 filed Aug. 16, 2011; U.S. Ser. No. 13/199,108, filed Aug. 17, 2011; U.S. Ser. No. 13/267,871 filed Oct. 6, 2011; U.S. Ser. No. 13/267,877 filed Oct. 6, 2011; U.S. Ser. No. 13/269,501 filed Oct. 7, 2011; U.S. Ser. No. 29/404,096 filed Oct. 14, 2011; U.S. Ser. No. 29/404,097 filed Oct. 14, 2011; U.S. Ser. No. 29/404,098 filed Oct. 14, 2011; U.S. Ser. No. 29/404,099 filed Oct. 14, 2011; U.S. Ser. No. 29/404,101 filed Oct. 14, 2011; U.S. Ser. No. 29/404,103 filed Oct. 14, 2011; U.S. Ser. No. 29/404,104 filed Oct. 14, 2011; U.S. Ser. No. 29/404,105 filed Oct. 14, 2011; U.S. Ser. No. 13/275,311 filed Oct. 17, 2011; U.S. Ser. No. 13/275,307, filed Oct. 17, 2011; Attorney Docket 00162-000300000, filed Oct. 17, 2011 via Express Mail Receipt, EH 162375377 US entitled, “User Interfaces for Remote Management and Control of Network-Connected Thermostats”. Each of the above-referenced patent applications is incorporated by reference herein. The above-referenced patent applications are collectively referenced hereinbelow as “the commonly assigned incorporated applications.”
- This patent specification relates to systems, methods, and related computer program products for the monitoring and control of energy-consuming systems or other resource-consuming systems. More particularly, this patent specification relates to rotational input devices and user interfaces for control units that govern the operation of energy-consuming systems, household devices, or other resource-consuming systems, including user interfaces for thermostats that govern the operation of heating, ventilation, and air conditioning (HVAC) systems.
- While substantial effort and attention continues toward the development of newer and more sustainable energy supplies, the conservation of energy by increased energy efficiency remains crucial to the world's energy future. According to an October 2010 report from the U.S. Department of Energy, heating and cooling account for 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Along with improvements in the physical plant associated with home heating and cooling (e.g., improved insulation, higher efficiency furnaces), substantial increases in energy efficiency can be achieved by better control and regulation of home heating and cooling equipment. By activating heating, ventilation, and air conditioning (HVAC) equipment for judiciously selected time intervals and carefully chosen operating levels, substantial energy can be saved while at the same time keeping the living space suitably comfortable for its occupants.
- Historically, however, most known HVAC thermostatic control systems have tended to fall into one of two opposing categories, neither of which is believed be optimal in most practical home environments. In a first category are many simple, non-programmable home thermostats, each typically consisting of a single mechanical or electrical dial for setting a desired temperature and a single HEAT-FAN-OFF-AC switch. While being easy to use for even the most unsophisticated occupant, any energy-saving control activity, such as adjusting the nighttime temperature or turning off all heating/cooling just before departing the home, must be performed manually by the user. As such, substantial energy-saving opportunities are often missed for all but the most vigilant users. Moreover, more advanced energy-saving capabilities are not provided, such as the ability for the thermostat to be programmed for less energy-intensive temperature setpoints (“setback temperatures”) during planned intervals of non-occupancy, and for more comfortable temperature setpoints during planned intervals of occupancy.
- In a second category, on the other hand, are many programmable thermostats, which have become more prevalent in recent years in view of Energy Star (US) and TCO (Europe) standards, and which have progressed considerably in the number of different settings for an HVAC system that can be individually manipulated. Unfortunately, however, users are often intimidated by a dizzying array of switches and controls laid out in various configurations on the face of the thermostat or behind a panel door on the thermostat, and seldom adjust the manufacturer defaults to optimize their own energy usage. Thus, even though the installed programmable thermostats in a large number of homes are technologically capable of operating the HVAC equipment with energy-saving profiles, it is often the case that only the one-size-fits-all manufacturer default profiles are ever implemented in a large number of homes. Indeed, in an unfortunately large number of cases, a home user may permanently operate the unit in a “temporary” or “hold” mode, manually manipulating the displayed set temperature as if the unit were a simple, non-programmable thermostat.
- Proposals have been made for so-called self-programming thermostats, including a proposal for establishing learned setpoints based on patterns of recent manual user setpoint entries as discussed in US20080191045A1, and including a proposal for automatic computation of a setback schedule based on sensed occupancy patterns in the home as discussed in G. Gao and K. Whitehouse, “The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns,” Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 67-72, Association for Computing Machinery (November 2009). It has been found, however, that crucial and substantial issues arise when it comes to the practical integration of self-programming behaviors into mainstream residential and/or business use, issues that appear unaddressed and unresolved in such self-programming thermostat proposals. By way of example, just as there are many users who are intimidated by dizzying arrays of controls on user-programmable thermostats, there are also many users who would be equally uncomfortable with a thermostat that fails to give the user a sense of control and self-determination over their own comfort, or that otherwise fails to give confidence to the user that their wishes are indeed being properly accepted and carried out at the proper times. At a more general level, because of the fact that human beings must inevitably be involved, there is a tension that arises between (i) the amount of energy-saving sophistication that can be offered by an HVAC control system, and (ii) the extent to which that energy-saving sophistication can be put to practical, everyday use in a large number of homes. Similar issues arise in the context of multi-unit apartment buildings, hotels, retail stores, office buildings, industrial buildings, and more generally any living space or work space having one or more HVAC systems. It has been found that the user interface of a thermostat, which so often seems to be an afterthought in known commercially available products, represents a crucial link in the successful integration of self-programming thermostats into widespread residential and business use, and that even subtle visual and tactile cues can make an large difference in whether those efforts are successful.
- Thus, it would be desirable to provide a thermostat having an improved user interface that is simple, intuitive, elegant, and easy to use such that the typical user is able to access many of the energy-saving and comfort-maintaining features, while at the same time not being overwhelmed by the choices presented.
- Provided according to one or more embodiments is a method of processing rotational inputs to a control device having an electronic display and user interface, such as a programmable thermostat, that controls the operation of one or more energy-consuming systems, household devices, or other resource-consuming systems, such as a heating, ventilation, and air conditioning (HVAC) system. Further provided are systems, methods, computer program products, and related business methods associated with the user interface and programmable device. For some embodiments, the programmable device is configured to carry out a method for interacting with a user thereof. The method includes displaying on the electronic display associated with the control device at least a portion of an initial display element selected from a sequence of display elements. In response to seeing such information, the user applies a rotational input applied to a rotational input device, such as a rotatable ring around the electronic display. A variable assist scroll engine receives this information and determines an angular movement as provided by the user through the rotational input device. In order to reduce the rotational input required by the user, the variable assist scroll engine applies one or more heuristics to variably assist with a scrolling movement of a sequence of display elements on the electronic display. Some embodiments may accelerate the scrolling of certain display elements on a display screen as a user operates a rotational input device. As a result, the variable assist scroll engine may reduce the rotational user input required to traverse an arbitrary number of display elements to as little as a quarter-revolution of the rotational input device in order that a user is better able to operate the control device and use the rotational input when navigating the user interface of a control device.
- The inventive body of work will be readily understood by referring to the following detailed description in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a diagram of an enclosure in which environmental conditions are controlled, according to some embodiments; -
FIG. 2 is a diagram of an HVAC system, according to some embodiments; -
FIGS. 3A-3B illustrate a thermostat having a user-friendly interface, according to some embodiments; -
FIG. 3C illustrates a cross-sectional view of a shell portion of a frame of the thermostat ofFIGS. 3A-3B ; -
FIG. 4 illustrates a thermostat having a head unit and a backplate (or wall dock) for ease of installation, configuration and upgrading, according to some embodiments; -
FIGS. 5A-5C illustrate thermostat and several exemplary natural and comfortable hand positions of a user manipulating the thermostat as presented through a user interface displayed on electronic display, according to some embodiments; -
FIG. 5D illustrates a short menu from a user interface having two display elements and a long menu having eight display elements with wider spacing and multiple lines of data in accordance with some embodiments; -
FIG. 6 illustrates a logical schematic diagram using a variable assist scroll engine to process user inputs on a control device such as a thermostat in accordance with some embodiments; -
FIG. 7 is a schematic block diagram providing an overview of some components inside a thermostat in accordance with embodiments of the present invention; -
FIG. 8 illustrates a flow chart diagram of the operations for processing rotational user inputs and the control of scrolling display elements in accordance with some embodiments; -
FIGS. 9A-9D illustrate one application of the variable assist scroll engine to a circular menu of display elements in accordance with some embodiments; -
FIG. 10 illustrates one application of a heuristic for affirmatively identifying a display element on a circular menu in accordance with some embodiments; -
FIGS. 11A-11B illustrate another application of the variable assist scroll engine to a linear menu of display elements in accordance with some embodiments; and -
FIGS. 12A-C illustrate further additional types of menus that have also benefitted from application of the variable assist scroll engine in accordance with some embodiments. - A detailed description of the inventive body of work is provided below. While several embodiments are described, it should be understood that the inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents. In addition, while numerous specific details are set forth in the following description in order to provide a thorough understanding of the inventive body of work, some embodiments can be practiced without some or all of these details. Moreover, for the purpose of clarity, certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the inventive body of work.
- As used herein the term “HVAC” includes systems providing both heating and cooling, heating only, cooling only, as well as systems that provide other occupant comfort and/or conditioning functionality such as humidification, dehumidification and ventilation.
- As used herein the terms power “harvesting,” “sharing” and “stealing” when referring to HVAC thermostats all refer to the thermostat are designed to derive power from the power transformer through the equipment load without using a direct or common wire source directly from the transformer.
- As used herein the term “residential” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used as a single family dwelling. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration (1 ton of refrigeration=12,000 Btu/h).
- As used herein the term “light commercial” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used for commercial purposes, but is of a size and construction that a residential HVAC system is considered suitable. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration.
- As used herein the term “thermostat” means a device or system for regulating parameters such as temperature and/or humidity within at least a part of an enclosure. The term “thermostat” may include a control unit for a heating and/or cooling system or a component part of a heater or air conditioner. As used herein the term “thermostat” can also refer generally to a versatile sensing and control unit (VSCU unit) that is configured and adapted to provide sophisticated, customized, energy-saving HVAC control functionality while at the same time being visually appealing, non-intimidating, elegant to behold, and delightfully easy to use.
-
FIG. 1 is a diagram of an enclosure in which environmental conditions are controlled, according to some embodiments.Enclosure 100, in this example is a single-family dwelling. According to other embodiments, the enclosure can be, for example, a duplex, an apartment within an apartment building, a light commercial structure such as an office or retail store, or a structure or enclosure that is a combination of the above.Thermostat 110controls HVAC system 120 as will be described in further detail below. According to some embodiments, theHVAC system 120 is has a cooling capacity less than about 5 tons. According to some embodiments, aremote device 112 wirelessly communicates with thethermostat 110 and can be used to display information to a user and to receive user input from the remote location of thedevice 112. Although many of the embodiments are described herein as being carried out by a thermostat such asthermostat 110, according to some embodiments, the same or similar techniques are employed using a remote device such asdevice 112. -
FIG. 2 is a diagram of an HVAC system, according to some embodiments.HVAC system 120 provides heating, cooling, ventilation, and/or air handling for the enclosure, such as a single-family home 100 depicted inFIG. 1 . Thesystem 120 depicts a forced air type heating system, although according to other embodiments, other types of systems could be used. In heating, heating coils orelements 242 withinair handler 240 provide a source of heat using electricity or gas vialine 236. Cool air is drawn from the enclosure viareturn air duct 246 throughfilter 270, usingfan 238 and is heated heating coils orelements 242. The heated air flows back into the enclosure at one or more locations via supplyair duct system 252 and supply air grills such asgrill 250. In cooling, anoutside compressor 230 passes gas such a Freon through a set of heat exchanger coils to cool the gas. The gas then goes to the cooling coils 234 in theair handlers 240 where it expands, cools and cools the air being circulated through the enclosure viafan 238. According to some embodiments ahumidifier 254 is also provided. Although not shown inFIG. 2 , according to some embodiments the HVAC system has other known functionality such as venting air to and from the outside, and one or more dampers to control airflow within the duct systems. The system is controlled bycontrol electronics 212 whose operation is governed by a thermostat such as thethermostat 110.Thermostat 110 controls theHVAC system 120 through a number of control circuits.Thermostat 110 also includes aprocessing system 260 such as a microprocessor that is adapted and programmed to controlling the HVAC system and to carry out the techniques described in detail herein. -
FIGS. 3A-B illustrate a thermostat having a user-friendly interface, according to some embodiments. Unlike many prior art thermostats,thermostat 300 preferably has a sleek, simple, uncluttered and elegant design that does not detract from home decoration, and indeed can serve as a visually pleasing centerpiece for the immediate location in which it is installed. Moreover, user interaction withthermostat 300 is facilitated and greatly enhanced over known conventional thermostats by the design ofthermostat 300. Thethermostat 300 includes control circuitry and is electrically connected to an HVAC system, such as is shown withthermostat 110 inFIGS. 1 and 2.Thermostat 300 is wall mounted, is circular in shape, and has an outerrotatable ring 312 for receiving user input.Thermostat 300 is circular in shape in that it appears as a generally disk-like circular object when mounted on the wall.Thermostat 300 has a large front face lying inside theouter ring 312. According to some embodiments,thermostat 300 is approximately 80 mm in diameter. The outerrotatable ring 312 allows the user to make adjustments, such as selecting a new target temperature. For example, by rotating theouter ring 312 clockwise, the target temperature can be increased, and by rotating theouter ring 312 counter-clockwise, the target temperature can be decreased. The front face of thethermostat 300 comprises aclear cover 314 that according to some embodiments is polycarbonate, and ametallic portion 324 preferably having a number of slots formed therein as shown. According to some embodiments, the surface ofcover 314 andmetallic portion 324 form a common outward arc or spherical shape gently arcing outward, and this gentle arcing shape is continued by theouter ring 312. - Although being formed from a single lens-like piece of material such as polycarbonate, the
cover 314 has two different regions or portions including an outer portion 314 o and acentral portion 314 i. According to some embodiments, thecover 314 is painted or smoked around the outer portion 314 o, but leaves thecentral portion 314 i visibly clear so as to facilitate viewing of anelectronic display 316 disposed thereunderneath. According to some embodiments, thecurved cover 314 acts as a lens that tends to magnify the information being displayed inelectronic display 316 to users. According to some embodiments the centralelectronic display 316 is a dot-matrix layout (individually addressable) such that arbitrary shapes can be generated, rather than being a segmented layout. According to some embodiments, a combination of dot-matrix layout and segmented layout is employed. According to some embodiments,central display 316 is a backlit color liquid crystal display (LCD). An example of information displayed on theelectronic display 316 is illustrated inFIG. 3A , and includescentral numerals 320 that are representative of a current setpoint temperature. According to some embodiments,metallic portion 324 has number of slot-like openings so as to facilitate the use of a passiveinfrared motion sensor 330 mounted therebeneath. Themetallic portion 324 can alternatively be termed a metallic front grille portion. Further description of the metallic portion/front grille portion is provided in the commonly assigned U.S. Ser. No. 13/199,108, supra. Thethermostat 300 is preferably constructed such that theelectronic display 316 is at a fixed orientation and does not rotate with theouter ring 312, so that theelectronic display 316 remains easily read by the user. For some embodiments, thecover 314 andmetallic portion 324 also remain at a fixed orientation and do not rotate with theouter ring 312. According to one embodiment in which the diameter of thethermostat 300 is about 80 mm, the diameter of theelectronic display 316 is about 45 mm. According to some embodiments anLED indicator 380 is positioned beneathportion 324 to act as a low-power-consuming indicator of certain status conditions. For, example theLED indicator 380 can be used to display blinking red when a rechargeable battery of the thermostat (seeFIG. 4A , infra) is very low and is being recharged. More generally, theLED indicator 380 can be used for communicating one or more status codes or error codes by virtue of red color, green color, various combinations of red and green, various different blinking rates, and so forth, which can be useful for troubleshooting purposes. - Motion sensing as well as other techniques can be use used in the detection and/or predict of occupancy, as is described further in the commonly assigned U.S. Ser. No. 12/881,430, supra. According to some embodiments, occupancy information is used in generating an effective and efficient scheduled program. Preferably, an
active proximity sensor 370A is provided to detect an approaching user by infrared light reflection, and an ambientlight sensor 370B is provided to sense visible light. Theproximity sensor 370A can be used to detect proximity in the range of about one meter so that thethermostat 300 can initiate “waking up” when the user is approaching the thermostat and prior to the user touching the thermostat. Such use of proximity sensing is useful for enhancing the user experience by being “ready” for interaction as soon as, or very soon after the user is ready to interact with the thermostat. Further, the wake-up-on-proximity functionality also allows for energy savings within the thermostat by “sleeping” when no user interaction is taking place or about to take place. The ambientlight sensor 370B can be used for a variety of intelligence-gathering purposes, such as for facilitating confirmation of occupancy when sharp rising or falling edges are detected (because it is likely that there are occupants who are turning the lights on and off), and such as for detecting long term (e.g., 24-hour) patterns of ambient light intensity for confirming and/or automatically establishing the time of day. - According to some embodiments, for the combined purposes of inspiring user confidence and further promoting visual and functional elegance, the
thermostat 300 is controlled by only two types of user input, the first being a rotation of theouter ring 312 as shown inFIG. 3A (referenced hereafter as a “rotate ring” or “ring rotation” input), and the second being an inward push on an outer cap 308 (seeFIG. 3B ) until an audible and/or tactile “click” occurs (referenced hereafter as an “inward click” or simply “click” input). For the embodiment ofFIGS. 3A-3B , theouter cap 308 is an assembly that includes all of theouter ring 312,cover 314,electronic display 316, andmetallic portion 324. When pressed inwardly by the user, theouter cap 308 travels inwardly by a small amount, such as 0.5 mm, against an interior metallic dome switch (not shown), and then springably travels back outwardly by that same amount when the inward pressure is released, providing a satisfying tactile “click” sensation to the user's hand, along with a corresponding gentle audible clicking sound. Thus, for the embodiment ofFIGS. 3A-3B , an inward click can be achieved by direct pressing on theouter ring 312 itself, or by indirect pressing of the outer ring by virtue of providing inward pressure on thecover 314,metallic portion 314, or by various combinations thereof. For other embodiments, thethermostat 300 can be mechanically configured such that only theouter ring 312 travels inwardly for the inward click input, while thecover 314 andmetallic portion 324 remain motionless. It is to be appreciated that a variety of different selections and combinations of the particular mechanical elements that will travel inwardly to achieve the “inward click” input are within the scope of the present teachings, whether it be theouter ring 312 itself, some part of thecover 314, or some combination thereof. However, it has been found particularly advantageous to provide the user with an ability to quickly go back and forth between registering “ring rotations” and “inward clicks” with a single hand and with minimal amount of time and effort involved, and so the ability to provide an inward click directly by pressing theouter ring 312 has been found particularly advantageous, since the user's fingers do not need to be lifted out of contact with the device, or slid along its surface, in order to go between ring rotations and inward clicks. Moreover, by virtue of the strategic placement of theelectronic display 316 centrally inside therotatable ring 312, a further advantage is provided in that the user can naturally focus their attention on the electronic display throughout the input process, right in the middle of where their hand is performing its functions. The combination of intuitive outer ring rotation, especially as applied to (but not limited to) the changing of a thermostat's setpoint temperature, conveniently folded together with the satisfying physical sensation of inward clicking, together with accommodating natural focus on the electronic display in the central midst of their fingers' activity, adds significantly to an intuitive, seamless, and downright fun user experience. Further descriptions of advantageous mechanical user-interfaces and related designs, which are employed according to some embodiments, can be found in U.S. Ser. No. 13/033,573, supra, U.S. Ser. No. 29/386,021, supra, and U.S. Ser. No. 13/199,108, supra. -
FIG. 3C illustrates a cross-sectional view of ashell portion 309 of a frame of the thermostat ofFIGS. 3A-B , which has been found to provide a particularly pleasing and adaptable visual appearance of theoverall thermostat 300 when viewed against a variety of different wall colors and wall textures in a variety of different home environments and home settings. While the thermostat itself will functionally adapt to the user's schedule as described herein and in one or more of the commonly assigned incorporated applications, supra, theouter shell portion 309 is specially configured to convey a “chameleon” quality or characteristic such that the overall device appears to naturally blend in, in a visual and decorative sense, with many of the most common wall colors and wall textures found in home and business environments, at least in part because it will appear to assume the surrounding colors and even textures when viewed from many different angles. Theshell portion 309 has the shape of a frustum that is gently curved when viewed in cross-section, and comprises asidewall 376 that is made of a clear solid material, such as polycarbonate plastic. Thesidewall 376 is backpainted with a substantially flat silver-or nickel-colored paint, the paint being applied to aninside surface 378 of thesidewall 376 but not to anoutside surface 377 thereof. Theoutside surface 377 is smooth and glossy but is not painted. Thesidewall 376 can have a thickness T of about 1.5 mm, a diameter d1 of about 78.8 mm at a first end that is nearer to the wall when mounted, and a diameter d2 of about 81.2 mm at a second end that is farther from the wall when mounted, the diameter change taking place across an outward width dimension “h” of about 22.5 mm, the diameter change taking place in either a linear fashion or, more preferably, a slightly nonlinear fashion with increasing outward distance to form a slightly curved shape when viewed in profile, as shown inFIG. 3C . Theouter ring 312 ofouter cap 308 is preferably constructed to match the diameter d2 where disposed near the second end of theshell portion 309 across a modestly sized gap g1 therefrom, and then to gently arc back inwardly to meet thecover 314 across a small gap g2. It is to be appreciated, of course, thatFIG. 3C only illustrates theouter shell portion 309 of thethermostat 300, and that there are many electronic components internal thereto that are omitted fromFIG. 3C for clarity of presentation, such electronic components being described further hereinbelow and/or in other ones of the commonly assigned incorporated applications, such as U.S. Ser. No. 13/199,108, supra. - According to some embodiments, the
thermostat 300 includes aprocessing system 360,display driver 364 and awireless communications system 366. Theprocessing system 360 is adapted to cause thedisplay driver 364 anddisplay area 316 to display information to the user, and to receiver user input via therotatable ring 312. Theprocessing system 360, according to some embodiments, is capable of carrying out the governance of the operation ofthermostat 300 including the user interface features described herein. Theprocessing system 360 is further programmed and configured to carry out other operations as described further hereinbelow and/or in other ones of the commonly assigned incorporated applications. For example,processing system 360 is further programmed and configured to maintain and update a thermodynamic model for the enclosure in which the HVAC system is installed, such as described in U.S. Ser. No. 12/881,463, supra. According to some embodiments, thewireless communications system 366 is used to communicate with devices such as personal computers and/or other thermostats or HVAC system components, which can be peer-to-peer communications, communications through one or more servers located on a private network, or and/or communications through a cloud-based service. -
FIG. 4 illustrates a side view of thethermostat 300 including ahead unit 410 and a backplate (or wall dock) 440 thereof for ease of installation, configuration and upgrading, according to some embodiments. As is described hereinabove,thermostat 300 is wall mounted and has circular in shape and has an outerrotatable ring 312 for receiving user input.Head unit 410 includes theouter cap 308 that includes thecover 314 andelectronic display 316.Head unit 410 ofround thermostat 300 is slidably mountable ontoback plate 440 and slidably detachable therefrom. According to some embodiments the connection of thehead unit 410 to backplate 440 can be accomplished using magnets, bayonet, latches and catches, tabs or ribs with matching indentations, or simply friction on mating portions of thehead unit 410 andbackplate 440. According to some embodiments, thehead unit 410 includes aprocessing system 360,display driver 364 and awireless communications system 366. Also shown is arechargeable battery 420 that is recharged usingrecharging circuitry 422 that uses power from backplate that is either obtained via power harvesting (also referred to as power stealing and/or power sharing) from the HVAC system control circuit(s) or from a common wire, if available, as described in further detail in co-pending patent application U.S. Ser. Nos. 13/034,674, and 13/034,678, which are incorporated by reference herein. According to some embodiments,rechargeable battery 420 is a single cell lithium-ion, or a lithium-polymer battery. -
Backplate 440 includeselectronics 482 and a temperature/humidity sensor 484 inhousing 460, which are ventilated viavents 442. Two or more temperature sensors (not shown) are also located in thehead unit 410 and cooperate to acquire reliable and accurate room temperature data.Wire connectors 470 are provided to allow for connection to HVAC system wires.Connection terminal 480 provides electrical connections between thehead unit 410 andbackplate 440.Backplate electronics 482 also includes power sharing circuitry for sensing and harvesting power available power from the HVAC system circuitry. -
FIG. 5A illustratesthermostat 300 and several exemplary natural and comfortable hand positions of a user manipulating the thermostat to change some aspect of its configuration or operation as presented through a user interface displayed onelectronic display 316. In some implementations the user interface may include a sequence of display elements arranged in a circular arrangement, a linear arrangement, or combinations thereof and as further described in U.S. Ser. No. 13/269,501, supra. In some embodiments, the user interface may be navigated through using arotatable ring 312, or other rotational input device invoking a series of ring rotations to scroll through the series of display elements and inward clicks to select one of these display elements and gain additional information or access to other portions of a menu. - Usability of the user interface displayed on
thermostat 300 may be positively enhanced when the user's hand position onthermostat 300 remains in a comfortable position throughout all aspects of operating thethermostat 300. In some implementations, the user's hand may initially be comfortably positioned in any one of the circular quadrants 500 (I) through (IV) depending on the user's left or right handedness, height relative to the position of the thermostat, and a variety of other ergonomic factors. Once the user's hand is placed in a comfortable position, the user should be able to navigate most, if not all, aspects of the user interface displayed onthermostat 300 while rotatingrotatable ring 312 through one or two but preferably no more three of the circular quadrants 500 (I) through (IV). This navigation is preferably done without the user having to lift and reposition their hand. - As an example, a user's
hand 502 in starting position (FIG. 5A ) initially begins navigation of a user interface displayed onthermostat 300, as indicated by the approximate position of the forefinger, in circular quadrant (I). The user'shand 502 placed onthermostat 300 may then rotate clockwise approximately a quarter-revolution into intermediary position (FIG. 5B ) and towards the lower boundary of circular quadrant (I), which may happen to be a limit on the user's ability to rotate their wrist and hand. With the user's hand remaining engaged to thethermostat 300 in intermediary position (FIG. 5B ), the user may peer through the open area between the thumb and forefinger to read information displayed on the user interface, reposition a display element on the display, select a display element with a inward click, or other interactions with the user interface. The user may then turn an equivalent quarter-revolution counter-clockwise from the intermediary position (FIG. 5B ) arriving in a final position (FIG. 5C ) whereupon the user's hand continues to remain engaged to thethermostat 300 and is ready to further interact with the user interface. - Embodiments of the present invention facilitate keeping the user's hand in a comfortable position and engaged to the
thermostat 300 as menus and interactions within the user interface vary in both complexity and number of display elements presented. A variable assist scroll engine for rotational inputs, also referred to as a variable assist scroll engine, designed in accordance with embodiments of the present invention uses heuristics to provide assistance in scrolling through an arbitrary number of display elements presented on the user interface while in the process also helping keep the user's hand in a natural and comfortable position on the thermostat. As described hereinabove, the user's rotational input in one embodiment may traverse a sequence of display elements preferably using less than a quarter-revolution in order to enhance the user experience and improve the usability of the thermostat. In alternate embodiments and depending on the user's preference, the variable assist scroll engine may also allow the user to configure the rotational input for scrolling to less than a half-revolution, a three-quarter revolution, or set as a measurement of angular displacement from 0 to 360 degrees. - As a brief example,
FIG. 5D illustrates, ashort menu 508 from a user interface having two display elements (i.e., “UNLOCKED” and “LOCKED”) and along menu 512 having eight display elements with wider spacing and multiple lines of data. In accordance with some embodiments, the variable assist scroll engine may not accelerate the scrolling movement between the two display elements since the element distance 510 (i.e., the distance between the beginning and end of the sequence of elements) is quite short might make using theshort menu 508 difficult for the user. Even if a user imparts a rapid rotational acceleration duringrotational input 504, indicating an imperative to scroll more quickly, some embodiments of variable assist scroll engine may select to actually reduce or quickly “dampen” the amount of acceleration on theshort menu 508 to a predetermined level. In some embodiments, limiting the acceleration to the predetermined level may improve the interface by providing the user with a more predictable and consistent interaction with the display elements. In comparison, the variable assist scroll engine may detect that a user has subsequently imparted the same rapid rotational acceleration to scroll throughlong menu 512. In this case, the variable assist scroll engine may respond by increasing the acceleration of the scrolling movement as the associatedelement distance 514 is much greater than theshort menu 508. The variable assist scroll engine assists the user enteringrotational input 506 by accelerating the scrolling movement of the sequence of display elements thereby allowing the user to quickly scroll through the more numerous display elements on thelong menu 512. In some embodiments, the user is able to scroll through the display elements while using less than quarter-revolution of therotatable ring 312 as indicated. -
FIG. 6 illustrates a logical schematic diagram using a variableassist scroll engine 604 to process user inputs on a control device such as a thermostat in accordance with some embodiments. As described hereinabove,rotational input device 602 may be a rotatable ring located around a periphery of an electronic display centrally mounted on a body of the thermostat or control device, such asrotatable ring 312 shown and described supra with respect toFIG. 3 . In some embodiments, therotational input device 602 receives rotational user inputs and provides a measurement of angular displacement at regular time intervals such as once every 1/60th of a second or faster depending on the sampling capabilities of therotational input device 602. In other embodiments, therotational input device 602 may receive rotational user input and produce instead output linear displacements reflecting a linear representation of the angular distance traveled by therotational input device 602 in a given time interval. - In some embodiments, variable
assist scroll engine 604 receives these linear and/or rotational displacements over time and uses them to determine a scrolling movement for display elements on the electronic display. The scrolling movement may be calculated using linear or angular equations describing speed (change in displacement), velocity (speed in a direction), and acceleration (change in velocity over time with direction). Variableassist scroll engine 604 may modify the degree of acceleration than provided throughrotational input device 602 according to the application of information such as tuning parameters for scrolling display elements 612 (also referred to as tuning parameters 612) as well as display elements metadata 610, which are used to describe the shapes and sizes of display elements as they are rendered on the electronic display of the thermostat. - Some of these tuning
parameters 612 help the variableassist scroll engine 604 model the scrolling of the display elements as physical objects having a mass and inertia being accelerated and then damped by friction or other opposing forces. Different inertial models used in simulating movement of these display elements may include a flywheel or weighted cylinder spinning around a rod as well as other variations to provide a smooth and attractive appearance of the display elements as they are rendered on the electronic display. For example, if a user enters userrotational inputs 608 in the opposite direction to the movement of the scrolling display, variable assist scroll engine may dampen the scrolling of the display elements based on tuningparameters 612 and the inertial model. In some embodiments, tuningparameters 612 may also be selected to accommodate for different menu types, such as a circular menu and a linear menu either with wrapping and non-wrapping effects, and to achieve an overall effect on the scrolling of the display elements on the electronic display. - In some implementations, these tuning
parameters 612 may include an acceleration multiplier, a scroll decay factor, edge bounce decay factor, a center decay factor, and a scroll settle threshold. The acceleration multiplier is used to increase or decrease the amount of acceleration applied to a set of scrolling elements. The value may be set to a higher value if a menu has a larger sequence of display elements and it is desirable to scroll quickly through the sequence. Scroll decay factor helps simulate the effect of friction and determines how the long the elements may scroll before stopping. If the scroll decay is set to a high value, the scrolling movement may decay quickly and stop. In some embodiments, the scrolling may continue even after a user has stopped providing rotational input to therotational input device 602 due to simulated force and inertia. The edge bounce decay factor is used in a non-wrapping menu when it reaches the terminus element. In some embodiments, the menu will not stop quickly but “bounce” when it reaches the end and oscillate briefly as the energy decays. Accordingly, edge bounce decay determines how quickly the energy in the terminus element in a sequence of display elements will decay when it reaches the end of the menu. The center decay is used to determine how quickly the decay will occur for a display element once it settles into a position. In some embodiments, a user interface may apply gravity to a display element and cause the display element to settle into simulated notch, groove, or indentation simulated in the user interface. Accordingly, the center decay determines the decay associated with this event and how quickly a display element may settle into position. The scroll settle threshold is a threshold value used to determine when a scrolling of elements has effectively stopped. Once the movement of the scrolling elements falls below this threshold, scrolling of the elements will be stopped. In some embodiments, the scroll settle threshold may vary for different menus depending on the simulated forces, inertia, and friction associated with the scrolling movement of the display elements. - The variable
assist scroll engine 604 sends these display elements to renderengine 606 to be displayed on the electronic display at a frequency determined by the display device. In some implementations, the frequency of the electronic display device may be every 1/60th of a second or faster depending on the capabilities of the particular device and how it is configured. As this process repeats, the display elements scrolling over the electronic display appear animated, pleasing to the user and easier to navigate in accordance with embodiments of the invention. - Referring to
FIG. 7 , a schematic block diagram provides an overview of some components inside a thermostat in accordance with embodiments of the present invention.Thermostat 700 is similar tothermostat 300 inFIG. 3 and highlights selected internal components including aWifi module 702, ahead unit processor 704 with associatedmemory 710, abackplate processor 708 with associatedmemory 714, and sensors 712 (e.g., temperature, humidity, motion, ambient light, proximity). Further details regarding the physical placement and configuration of the thermostat head unit, backplate, and other physical elements are described in the commonly assigned U.S. Ser. No. 13/199,108, supra. Thebackplate processor 708 is coupled to, and responsible for polling on a regular basis, most or all of thesensors 712 including the temperature and humidity sensors, motion sensors, ambient light sensors, and proximity sensors. Forsensors 712 that may not be located on the backplate hardware itself but rather are located in the head unit, ribbon cables or other electrical connections between the head unit and backplate are provided for this purpose. Notably, there may be other sensors (not shown) for which thehead unit processor 704 is responsible, with one example being a ring rotation sensor that senses the user rotation of theouter ring 716.Battery 706 supplies power to the electronic display (not shown inFIG. 7 ) used to display scrolling display elements in accordance embodiments of the present invention as well as toWifi module 702 and bothbackplate processor 708 andhead unit processor 704. - In some embodiments,
memory 710 may include a menu system module 718, variableassist scroll engine 720, display rendermodule 722,HVAC module 724,communications module 726, and aruntime environment 728 for managing these modules and their execution onhead unit processor 704. In one embodiment, menu system module 718 may include the menu systems associated with configuring, controlling, and generally interfacing withthermostat 700 throughrotatable ring 716. In accordance with some embodiments, variableassist scroll engine 720 processes scrolling display elements used in menu system module 718 to interact more efficiently withrotatable ring 716 as well as display more attractively on the electronic display of thethermostat 700. For example, the variableassist scroll engine 720 may further accelerate the scrolling of display elements from a menu in menu system module 718 and thereby reduce the required amount of rotational input applied torotatable ring 716. In some embodiments, variableassist scroll engine 720 accelerates the scrolling movement allowing the user to scroll through many display elements in multiple areas of menu system module 718. In each the areas of the menu, the user may scroll through a variable number of display elements without turningrotatable ring 716 more than a quarter-turn. This advantageously makes the thermostat 800 or other control devices with a rotational input easier to use since user's hand can control the thermostat without having to remove and reposition multiple times in the midst of navigating a menu, setting a set point on the thermostat, or performing some other task. The display rendermodule 722 receives the various display elements from variableassist scroll engine 720 and renders them on the electronic display (not shown) of thermostat 800.HVAC module 724 may further be used to gather commands and data from menu system module 718 in consideration of controlling the HVAC system. -
FIG. 8 illustrates a flow chart diagram of the operations for processing rotational user inputs and controlling the scrolling of display elements in accordance with some embodiments. In processing the rotational inputs, embodiments of the present invention balance usability of the interface with the need to reduce or minimize the amount of rotational input necessary to scroll through display elements on the electronic display of a control device. In some embodiments, the variable assist engine can assist with the scrolling the display elements but must still leave the user with control over the interface. - In some embodiments, aspects of the present invention may display on the electronic display associated with the control device at least a portion of an initial display element selected from a sequence of display elements. (802) For example, the initial display element may be a symbol or image selected from a sequence of display elements arranged along on a circular menu or may be a symbol or image selected from a sequence of display elements arranged in a series on a linear menu. If the initial display element is larger then it may only be partially displayed on the electronic display while a smaller display element from a sequence of display elements may be fully displayed on the electronic display. In some embodiments, the electronic display is centrally mounted on a body of a control device providing for a smaller overall form factor for the device while in alternate embodiments, the display may be mounted offset or adjacent to the body of the control device.
- In some embodiments, determining an angular movement is made from a rotational user input applied to a rotational input device associated with the control device. (804) The angular movement may be determined as a measurement of the displacement, velocity, and acceleration of the rotational input device averaged over a time interval. For example, a user may impart a rotational user input with their hand using a rotatable ring around a periphery of the electronic display, such as
rotatable ring 300 described and shown supra. inFIG. 3 . The angular displacement on the rotatable ring sampled at regular time intervals is provided to embodiments of the present invention and used to calculate the angular movement. In alternative embodiments, the rotational input device may be a rotatable knob or other mechanism to rotate and scroll through display elements in the interface. The rotatable knob may be smaller and positioned adjacent to the display rather than surrounding the electronic display portion and adjustable with a user's fingers. - In some embodiments, one or more heuristics are applied to variably assist with a scrolling movement of the sequence of display elements on the electronic display and reduce the rotational user input necessary to traverse the sequence of display elements. (806) The user may preferably configure one embodiment of the variable assist scroll engine to assist in scrolling through the sequence of display elements using a rotational input of less than a quarter-revolution, a half-revolution, a three-quarter revolution, or set as a measurement of an angular displacement from 0 to 360 degrees. Alternate embodiments of the variable assist scroll engine may set the default rotational input to less than quarter-revolution if the user selects to not customize or change these settings. In providing assistance with the scrolling movement, one embodiment takes into consideration an angular movement associated with the rotational user input and an element distance associated with the sequence of display elements to be displayed on the electronic display. If the angular movement has a larger rotational acceleration component and the element distance is quite long, the engine may increase the assistance with scrolling through the sequence of display elements in one or multiple ways as the user has indicated an imperative to quickly view the sequence of display elements. For example, a user may wish to read a terminus element in a menu having a long list of display elements with text and thus provide a large rotational acceleration to the rotational input device.
- In some embodiments, a heuristic to reduce the required rotational user input may cause the engine to increase or decrease the rate of scrolling movement associated with the sequence of display elements compared with a rate of angular movement received from the rotational input device. (808) To perform this function, for example, the engine may increase the acceleration of the scrolling movement to meet both the user's request to view the information quickly and reduce the rotational input required to a predetermined amount, such as a quarter-rotation of the
rotational ring 312 inFIG. 3 . To increase the acceleration, one embodiment may use the rotational acceleration component of the angular movement and either add a predetermined amount of acceleration or multiple of the acceleration by a factor such as an acceleration multiplier. - In some embodiments, a heuristic to reduce the required rotational user input may cause the engine to create an extended scrolling movement that continues to display additional display elements from the sequence of display elements after the initial angular movement associated with the rotational user input has stopped. (810) For example, a rotational user input with acceleration may impart a simulated force and inertia on the sequence of display elements causing the display elements to scroll after the rotational user input has ended. As previously described hereinabove, the movement of the display may be modeled as a physical object having mass, inertia, and decay due to friction or opposing rotational forces. Incorporating this type of “virtual inertia” increases the visual attraction of the interface while simultaneously achieving the goal of reducing the rotational input required to scroll through the display elements in a manner understood and expected in the user's physical world (i.e, inertia and decay). In some embodiments, the extended scrolling movement may be reduced through successive subtraction or division by a scroll decay factor until the scrolling movement falls below a scroll settle threshold and is determined to have stopped.
- In some embodiments, a heuristic to reduce the required rotational user input may cause the engine to increase a distance covered by the scrolling movement compared with a distance covered by the angular movement. (812) For example, a user may provide a quarter-revolution on a rotatable ring as and input and cause the corresponding elements to scroll a half-revolution on the electronic display. In some embodiments, the distance travelled by the scrolling elements may be one or several times the distance provided by the user through the rotational input device. This is particularly useful if a user is scrolling through a long sequence of display elements and needs to cover the longer distance quickly.
- In some embodiments, a heuristic to reduce the required rotational user input may cause the engine to continue the scrolling movement of the sequence of display elements until at least one has been affirmatively identified on the electronic display. (814) For example, a user's rotational input may cause a sequence of display elements to scroll with a scrolling movement and land in an area between two display elements leaving it not possible to select or identify a specific display element in the context of the user interface. To keep the required rotational user input reduced or minimized, one embodiment simulates a notch, indentation, or groove coincident with each display element under the force of gravity and friction which in turn causes the scrolling movement to settle on a particular display element. In one embodiment, a distance calculation may be used to select one display element over another nearby display element as the scrolling movement of the display elements slows and comes close to falling below the scroll settle threshold.
- In some embodiments, the variable assist scroll engine may determine whether a user has applied a subsequent angular movement in an opposite rotational. (816) In some embodiments, the user applies the subsequent rotational input to the rotational input device in an opposite direction to the scrolling movement displayed on the electronic display. (816-Yes) For example, the user may see a display element of interest and desire to quickly slow or potentially stop the scrolling of the display elements. Variable assist scroll engine responds by gradually slowing the scrolling of display elements in proportion to the amount of the subsequent angular movement. (818) In one embodiment, variable assist scroll engine models the subsequent rotational input as an opposing rotational force upon an object thus the user experience is familiar and expected. In addition, this heuristic further reduces the required rotational user input as the variable assist scroll engine allows the user to quickly slow or stop the scrolling movement with a reduced rotational input.
-
FIGS. 9A-9D illustrate one application of the variable assist scroll engine to a circular menu of display elements in accordance with some embodiments. Referring toFIG. 9A , a user in this example has applied a rotational force inclockwise direction 908 to arotatable ring 906 surrounding anelectronic display 904 onthermostat 902. Theacceleration graph 914 indicates schematically at ΔTime=t1 (hereinafter t1) the rotatable ring acceleration 916 (hereinafter ring acceleration) is less than the display elements acceleration 918 (hereinafter display acceleration) as the variable assist scroll engine has increased the simulated acceleration associated with the animation ofcircular menu 912. - In one embodiment, the
circular menu 912 at t2 inFIG. 9A has a display elements velocity 926 (hereinafter display velocity) invelocity graph 922 which is also greater than the rotatable ring velocity 924 (hereinafter ring velocity).Circular menu 912 also moved through arotational displacement 928 at t2 that is at least twice therotational displacement 920 associated with therotatable ring 906 of thethermostat 902. In this application, the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of therotatable ring 906 while traversing at least half the sequence of display elements in thecircular menu 912. - At a subsequent time interval t3, the user is no longer moving
rotatable ring 906 and thering velocity 932 as indicated byvelocity graph 930 is negligible or zero. In contrast,circular menu 912 continues to travel at a much moresignificant display velocity 934 reduced in part by a simulated friction or decay. In this embodiment. variable assist scroll engine has imparted a rotational inertia and decay tocircular menu 912 to further reduce the rotational input required by the user. While not displayed inFIG. 9A ,rotational displacement 936 will continue to increase after t3 untildisplay velocity 934 decays further andcircular menu 912 stops. - Referring to
FIG. 9B , in this example a user has applied a rotational force inclockwise direction 908 to arotatable ring 906 ofthermostat 902. Theacceleration graph 938 indicates schematically at t1 thering acceleration 940 is less than thedisplay acceleration 942 as the variable assist scroll engine has slightly increased the simulated acceleration associated with the animation ofcircular menu 912. Thering acceleration 940 provided inFIG. 9B is similar to thering acceleration 916 inFIG. 9A except that it has a much lower magnitude in comparison. As a result, the variable assist scroll engine has also responded with a lower acceleration for the animation of thecircular menu 912 to reflect the user's intent when using the interface. - In one embodiment, the
circular menu 912 at t2 inFIG. 9B has adisplay velocity 950 invelocity graph 946 which is comparable with thering velocity 948. It follows thatcircular menu 912 has also moved through arotational displacement 952 at t2 that is also comparable to therotational displacement 944 associated with therotatable ring 906 of thethermostat 902. In this application, the variable assist scroll engine has applied one heuristic of allowing the user to make a quarter-rotation of therotatable ring 906 that more directly controls the scrolling movement of display elements in thecircular menu 912. - At a subsequent time interval t3 in
FIG. 9B , the user is no longer movingrotatable ring 906 and thering velocity 956 as indicated byvelocity graph 954 is negligible or zero. Likewise, variable assist scroll engine has dampedcircular menu 912 at t3 such thatdisplay velocity 958 is also negligible or zero and the animation ofcircular menu 912 has effectively stopped. In this embodiment, variable assist scroll engine has reduced the effects of any inertial energy in order to provide the user with more control over the scrolling movement of the display elements incircular menu 912. - Referring to
FIG. 9C , in this example a user has again applied a rotational force inclockwise direction 908 to arotatable ring 906 associated with athermostat 902. Theacceleration graph 962 indicates schematically at t1 that ringacceleration 964 is less than thedisplay acceleration 966 as the variable assist scroll engine has increased the simulated acceleration associated with the animation ofcircular menu 912. Thering acceleration 964 is similar to thering acceleration 916 inFIG. 9A except that it is at a much higher magnitude in comparison. As a result, the variable assist scroll engine responds with an even higher acceleration for the animation of thecircular menu 912 to reflect the user's intent when using the interface. - In one embodiment, the
circular menu 912 at t2 inFIG. 9C has adisplay velocity 974 invelocity graph 970 which is significantly greater than thering velocity 972. As a result of the associated relatively high acceleration and velocity,circular menu 912 has also moved through arotational displacement 976 at t2 that is almost three times therotational displacement 968 associated with therotatable ring 906. In this application, the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of therotatable ring 906 while traversing almost three-quarters of the sequence of display elements in thecircular menu 912. - At a subsequent time interval t3 in
FIG. 9C , the user is no longer movingrotatable ring 906 and thering velocity 980 as indicated byvelocity graph 978 is negligible or zero. In contrast,circular menu 912 at t3 continues to travel at a much moresignificant display velocity 982 reduced only partially by the simulated friction or decay. In this embodiment, the inertia imparted a rotational tocircular menu 912 allowed thecircular menu 912 at t3 to complete almost a full-revolution from only a quarter-revolution input torotatable ring 906. Referring toFIG. 9D , the user at t4 has now applied a rotational force to arotatable ring 906 withring acceleration 987 incounter-clockwise direction 909 causingcircular menu 912 at t4 to receive a “negative” acceleration and dampening force. Despite thedisplay acceleration 988 going negative at t4, the animation ofcircular menu 912 does not immediately reverse direction but gradually slows before appearing to reverse direction. Accordingly,circular menu 912 has arotational displacement 990 at t4 and continues to extend torotational displacement 995 in t5 with a display velocity of 994 as indicated byvelocity graph 992. In contrast,rotatable ring 991 has travelled atring velocity 993 at t5 with arotational displacement 991 in the opposite direction, for a brief moment, to the rotation ofcircular menu 912 at t5. At t6 inFIG. 9D , thering velocity 997 associated withrotatable ring 906 is negligible or zero and thedisplay velocity 998 has reversed direction causing the animation ofcircular menu 912 to reverse direction traveling counter-clockwise withrotational displacement 999. -
FIG. 10 illustrates one application of a heuristic for affirmatively identifying a display element on a circular menu in accordance with some embodiments of the present invention. In this embodiment, a user has applied a rotational input at t1 torotatable ring 906 onthermostat 902. In the same time t1,electronic display 904 onthermostat 902 displays anindicator 910 oncircular menu 912 identifying a symbol “f” on thecircular menu 912.Detail 1004 illustrates schematically that each symbol is logically associated with a groove and under the force of simulated gravity identifies a display element under a similarlysimulated pawl 911. - In this example, a
rotational displacement 1002 onthermostat 902 at t1 results incircular menu 912 at t2 experiencing arotational displacement 1008 such thatindicator 910 momentarily falls between symbols “u” and “v” making it not possible to determine whether “u” or “v” has been identified in the context of the user interface. To resolve this dilemma, and further reduce or minimize additional required rotational input from the user, one embodiment at t3 inFIG. 10 simulating the groove associated with each symbol either advances or retreatscircular menu 912. Upon moving circular menu 912 a slight amount, indicator affirmatively identifies a display element, such as symbol “v” as shown indetail 1010. On or about the same moment,detail 1010 also shows that an audible “Click” sound is provided in the user interface providing a user with audible feedback and providing a sense of added control, confidence, and comfort when operating thethermostat 906. -
FIGS. 11A-11B illustrate another application of the variable assist scroll engine to a linear menu of display elements in accordance with some embodiments. Referring toFIG. 11A , in this example a user has applied a rotational force inclockwise direction 908 to arotatable ring 906 surrounding anelectronic display 904 centrally mounted on a body of athermostat 902. Theacceleration graph 1102 indicates schematically at t1 thering acceleration 1104 is less than thedisplay acceleration 1106 as the variable assist scroll engine has increased the simulated acceleration associated with the animation of linear menu. It can also be observed thatlinear menu 1108, which operates in the scrolling direction as indicated inFIG. 11A , is a scheduling system for operation of the thermostat at different temperature setpoints in the course of a weeklong period from Monday to Friday withindicator 1109 showing the current display element on thelinear menu 1108 pointing to 4pm on Monday. - In one embodiment, the
linear menu 1108 at t2 inFIG. 11A has adisplay velocity 1116 invelocity graph 1112 which is also greater than thering velocity 1114.Linear menu 1108 also moved through a linear displacement at t2 that is at least twice therotational displacement 1110 associated with therotatable ring 906 of thethermostat 902. This linear displacement can be observed as theindicator 1109 at t1 was indicates 4 pm on Monday while theindicator 1118 at t2 indicates 8 pm on Thursday. In this application, the variable assist scroll engine has applied one heuristic to reduce the rotational user input to a quarter-rotation of therotatable ring 906 while traversing more than twice a comparable linear distance in the sequence of display elements in thelinear menu 1108. - At a subsequent time interval t3 in
FIG. 11A , the user is no longer movingrotatable ring 906 and thering velocity 1122 as indicated byvelocity graph 1120 is negligible or zero. In contrast,linear menu 1108 continues to travel at a much moresignificant display velocity 1124 reduced in part by a simulated friction or decay. In this embodiment, variable assist scroll engine has imparted an inertia andlinear menu 1108 to further scrolls whereindicator 1126 shows 2 pm Friday. While not displayed inFIG. 11A , the linear displacement oflinear menu 1108 will continue to increase after t3 untildisplay velocity 1124 decays further and the scrolling stops. - Referring to
FIG. 11B , in this example a user has applied a rotational force inclockwise direction 908 to arotatable ring 906 ofthermostat 902. Theacceleration graph 1130 indicates schematically at t1 thering acceleration 1130 is less than thedisplay acceleration 1132 as the variable assist scroll engine has slightly increased the simulated acceleration associated with the animation oflinear menu 1108. Thering acceleration 1130 provided inFIG. 11B is similar to thering acceleration 1104 inFIG. 11A except that it is a lower magnitude in comparison and, more importantly, is used to change asetpoint 1134 rather than a date in the schedule oflinear menu 1108. As a result, the variable assist scroll engine has also responded with a lower acceleration for the animation of thelinear menu 1108 to reflect the user's intent when using the interface. - In one embodiment, the
linear menu 1108 at t2 inFIG. 11B has adisplay velocity 1142 invelocity graph 1138 which is comparable with thering velocity 1140. It follows thatlinear menu 1108 has also moved through a linear displacement at t2 that is comparable to therotational displacement 944 associated with therotatable ring 906. For example, a relatively small change between thesetpoint 1134 at 76 degrees and thesetpoint 1144 at 68 degrees inFIG. 11B does not require a large linear displacement. In this application, the variable assist scroll engine has applied one heuristic of allowing the user to make a quarter-rotation of therotatable ring 906 that more directly controls the movement of the scrolling movement of display elements in thelinear menu 1108. - At a subsequent time interval t3 in
FIG. 11B , the user is no longer movingrotatable ring 906 and thering velocity 1148 as indicated byvelocity graph 1146 is negligible or zero. Likewise, variable scroll assist engine has dampedlinear menu 1108 at t3 such thatdisplay velocity 1150 is also negligible or zero and the animation oflinear menu 1108 has effectively stopped. In this embodiment, variable assist scroll engine has reduced the effects of any inertial energy in order to provide the user with more control over the scrolling movement of the display elements inlinear menu 1108. -
FIGS. 12A-C illustrates further additional types of menus that have also benefitted from application of the variable assist scroll engine in accordance with some embodiments. In settings menu inFIG. 12A , a set of display elements shaped discs scroll linearly across the electronic display as physical objects with qualities of mass and inertia. Further, temperature setting menu inFIG. 12B is another example of a circular menu with asetpoint tick mark 1212 and a currenttemperature tick mark 1210. Rotating main menu inFIG. 12C is a circular type menu withsettings 1214 to be scrolled using embodiments of the present invention. - Although the foregoing has been described in some detail for purposes of clarity, it will be apparent that certain changes and modifications may be made without departing from the principles thereof. By way of example, it is within the scope of the present teachings for the rotatable ring of the above-described thermostat to be provided in a “virtual,” “static,” or “solid state” form instead of a mechanical form, whereby the outer periphery of the thermostat body contains a touch-sensitive material similar to that used on touchpad computing displays and smartphone displays. For such embodiments, the manipulation by the user's hand would be a “swipe” across the touch-sensitive material, rather than a literal rotation of a mechanical ring, the user's fingers sliding around the periphery but not actually causing mechanical movement. This form of user input, which could be termed a “virtual ring rotation,” “static ring rotation”, “solid state ring rotation”, or a “rotational swipe”, would otherwise have the same purpose and effect of the above-described mechanical rotations, but would obviate the need for a mechanical ring on the device. Although not believed to be as desirable as a mechanically rotatable ring insofar as there may be a lesser amount of tactile satisfaction on the part of the user, such embodiments may be advantageous for reasons such as reduced fabrication cost. By way of further example, it is within the scope of the present teachings for the inward mechanical pressability or “inward click” functionality of the rotatable ring to be provided in a “virtual” or “solid state” form instead of a mechanical form, whereby an inward pressing effort by the user's hand or fingers is detected using internal solid state sensors (for example, solid state piezoelectric transducers) coupled to the outer body of the thermostat. For such embodiments, the inward pressing by the user's hand or fingers would not cause actual inward movement of the front face of the thermostat as with the above-described embodiments, but would otherwise have the same purpose and effect as the above-described “inward clicks” of the rotatable ring. Optionally, an audible beep or clicking sound can be provided from an internal speaker or other sound transducer, to provide feedback that the user has sufficiently pressed inward on the rotatable ring or virtual/solid state rotatable ring. Although not believed to be as desirable as the previously described embodiments, whose inwardly moving rotatable ring and sheet-metal style rebounding mechanical “click” has been found to be particularly satisfying to users, such embodiments may be advantageous for reasons including reduced fabrication cost. It is likewise within the scope of the present teachings for the described thermostat to provide both the ring rotations and inward clicks in “virtual” or “solid state” form, whereby the overall device could be provided in fully solid state form with no moving parts at all.
- While examples and implementations have been described, they should not serve to limit any aspect of the present invention. Accordingly, implementations of the invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Apparatus of the invention can be implemented in a computer program product tangibly embodied in a machine readable storage device for execution by a programmable processor; and method steps of the invention can be performed by a programmable processor executing a program of instructions to perform functions of the invention by operating on input data and generating output. The invention can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. Each computer program can be implemented in a high level procedural or object oriented programming language, or in assembly or machine language if desired; and in any case, the language can be a compiled or interpreted language. Suitable processors include, by way of example, both general and special purpose microprocessors. Generally, a processor will receive instructions and data from a read only memory and/or a random access memory. Generally, a computer will include one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto optical disks; and optical disks. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto optical disks; CD ROM disks and other non-transitory storage mediums. Any of the foregoing can be supplemented by, or incorporated in, ASICs.
- By way of further example, although described above as having ring rotations and inward clicks as the exclusive user input modalities, which has been found particularly advantageous in terms of device elegance and simplicity, it is nevertheless within the scope of the present teachings to alternatively provide the described thermostat with an additional button, such as a “back” button. In one option, the “back” button could be provided on the side of the device, such as described in the commonly assigned U.S. Ser. No. 13/033,573, supra. In other embodiments, plural additional buttons, such as a “menu” button and so forth, could be provided on the side of the device. For one embodiment, the actuation of the additional buttons would be fully optional on the part of the user, that is, the device could still be fully controlled using only the ring rotations and inward clicks. However, for users that really want to use the “menu” and “back” buttons because of the habits they may have formed with other computing devices such as smartphones and the like, the device would accommodate and respond accordingly to such “menu” and “back” button inputs.
- By way of even further example, other forms of user input modalities could be provided by the above-described thermostat as additions and/or alternative to the above-described ring rotations and inward clicks without necessarily departing from the scope of the present teachings. Examples include optically sensed gesture-based user inputs similar to those provided with modern video game consoles, and voice inputs implemented using known speech recognition algorithms. It is to be appreciated that there are many alternative ways of implementing both the processes and apparatuses described herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the inventive body of work is not to be limited to the details given herein, which may be modified within the scope and equivalents of the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/738,149 US20150354846A1 (en) | 2010-09-14 | 2015-06-12 | Methods and apparatus for control unit with a variable assist rotational interface and display |
Applications Claiming Priority (40)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/881,463 US8606374B2 (en) | 2010-09-14 | 2010-09-14 | Thermodynamic modeling for enclosures |
US12/881,430 US8510255B2 (en) | 2010-09-14 | 2010-09-14 | Occupancy pattern detection, estimation and prediction |
US41577110P | 2010-11-19 | 2010-11-19 | |
US201061429093P | 2010-12-31 | 2010-12-31 | |
US12/984,602 US9104211B2 (en) | 2010-11-19 | 2011-01-04 | Temperature controller with model-based time to target calculation and display |
US12/987,257 US9092040B2 (en) | 2010-11-19 | 2011-01-10 | HVAC filter monitoring |
US29/386,021 USD660732S1 (en) | 2011-02-23 | 2011-02-23 | HVAC control device |
US13/033,573 US9223323B2 (en) | 2010-09-14 | 2011-02-23 | User friendly interface for control unit |
US13/034,678 US8752771B2 (en) | 2010-11-19 | 2011-02-24 | Thermostat battery recharging during HVAC function active and inactive states |
US13/038,191 US8757507B2 (en) | 2010-11-19 | 2011-03-01 | Thermostat facilitating user-friendly installation thereof |
US13/038,206 US8478447B2 (en) | 2010-11-19 | 2011-03-01 | Computational load distribution in a climate control system having plural sensing microsystems |
US29/399,636 USD687047S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with an animated graphical user interface |
US29/399,618 USD687044S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,627 USD690322S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,623 USD687045S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,633 USD687459S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,614 USD687851S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,637 USD677180S1 (en) | 2011-08-16 | 2011-08-16 | Animated graphical user interface for a display screen or portion thereof for a control unit |
US29/399,630 USD687057S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with an animated graphical user interface |
US29/399,609 USD687043S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,617 USD711916S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US29/399,621 USD691629S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with an animated graphical user interface |
US29/399,625 USD687056S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with an animated graphical user interface |
US29/399,632 USD687046S1 (en) | 2011-08-16 | 2011-08-16 | Display screen with a graphical user interface |
US13/199,108 US8727611B2 (en) | 2010-11-19 | 2011-08-17 | System and method for integrating sensors in thermostats |
US13/267,871 US9261287B2 (en) | 2010-09-14 | 2011-10-06 | Adaptive power stealing thermostat |
US13/267,877 US9026254B2 (en) | 2010-09-14 | 2011-10-06 | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US13/269,501 US8918219B2 (en) | 2010-11-19 | 2011-10-07 | User friendly interface for control unit |
US29/404,104 USD697930S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with a graphical user interface |
US29/404,105 USD701869S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with a graphical user interface |
US29/404,103 USD697526S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with an animated graphical user interface |
US29/404,101 USD687059S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with an animated graphical user interface |
US29/404,096 USD687050S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with a graphical user interface |
US29/404,098 USD696677S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with a graphical user interface |
US29/404,097 USD701515S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with a graphical user interface |
US29/404,099 USD687058S1 (en) | 2011-10-14 | 2011-10-14 | Display screen or portion thereof with an animated graphical user interface |
US13/275,311 US8843239B2 (en) | 2010-11-19 | 2011-10-17 | Methods, systems, and related architectures for managing network connected thermostats |
US13/275,307 US9098279B2 (en) | 2010-09-14 | 2011-10-17 | Methods and systems for data interchange between a network-connected thermostat and cloud-based management server |
US13/317,557 US20120229521A1 (en) | 2010-11-19 | 2011-10-21 | Methods and apparatus for control unit with a variable assist rotational interface and display |
US14/738,149 US20150354846A1 (en) | 2010-09-14 | 2015-06-12 | Methods and apparatus for control unit with a variable assist rotational interface and display |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/317,557 Continuation US20120229521A1 (en) | 2010-09-14 | 2011-10-21 | Methods and apparatus for control unit with a variable assist rotational interface and display |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150354846A1 true US20150354846A1 (en) | 2015-12-10 |
Family
ID=46063215
Family Applications (23)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/984,602 Active 2032-02-23 US9104211B2 (en) | 2010-09-14 | 2011-01-04 | Temperature controller with model-based time to target calculation and display |
US12/987,257 Active 2031-11-07 US9092040B2 (en) | 2010-09-14 | 2011-01-10 | HVAC filter monitoring |
US13/033,573 Active 2031-10-19 US9223323B2 (en) | 2010-09-14 | 2011-02-23 | User friendly interface for control unit |
US13/034,678 Active 2032-08-21 US8752771B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat battery recharging during HVAC function active and inactive states |
US13/034,666 Active 2035-02-01 US9494332B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat wiring connector |
US13/034,674 Active 2034-09-15 US9605858B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat circuitry for connection to HVAC systems |
US13/038,191 Active 2032-12-13 US8757507B2 (en) | 2010-09-14 | 2011-03-01 | Thermostat facilitating user-friendly installation thereof |
US13/038,206 Active 2031-07-31 US8478447B2 (en) | 2010-09-14 | 2011-03-01 | Computational load distribution in a climate control system having plural sensing microsystems |
US13/267,871 Active 2033-12-21 US9261287B2 (en) | 2010-09-14 | 2011-10-06 | Adaptive power stealing thermostat |
US13/267,877 Active 2032-11-10 US9026254B2 (en) | 2010-09-14 | 2011-10-06 | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US13/317,557 Abandoned US20120229521A1 (en) | 2010-09-14 | 2011-10-21 | Methods and apparatus for control unit with a variable assist rotational interface and display |
US13/891,335 Active US8924027B2 (en) | 2010-09-14 | 2013-05-10 | Computational load distribution in a climate control system having plural sensing microsystems |
US14/266,474 Active 2032-05-21 US9696734B2 (en) | 2010-09-14 | 2014-04-30 | Active power stealing |
US14/292,642 Active 2032-03-28 US9684317B2 (en) | 2010-09-14 | 2014-05-30 | Thermostat facilitating user-friendly installation thereof |
US14/548,131 Active 2032-02-14 US9715239B2 (en) | 2010-09-14 | 2014-11-19 | Computational load distribution in an environment having multiple sensing microsystems |
US14/703,661 Active 2032-06-07 US9702579B2 (en) | 2010-09-14 | 2015-05-04 | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US14/724,616 Abandoned US20150260424A1 (en) | 2010-11-19 | 2015-05-28 | Hvac filter monitoring |
US14/738,149 Abandoned US20150354846A1 (en) | 2010-09-14 | 2015-06-12 | Methods and apparatus for control unit with a variable assist rotational interface and display |
US14/789,786 Active 2031-12-14 US10082306B2 (en) | 2010-11-19 | 2015-07-01 | Temperature controller with model-based time to target calculation and display |
US14/933,947 Active US9612032B2 (en) | 2010-09-14 | 2015-11-05 | User friendly interface for control unit |
US15/006,969 Active 2032-04-30 US10082307B2 (en) | 2010-09-14 | 2016-01-26 | Adaptive power-stealing thermostat |
US15/265,305 Active 2031-08-26 US10309672B2 (en) | 2010-09-14 | 2016-09-14 | Thermostat wiring connector |
US15/595,708 Active US10151501B2 (en) | 2010-11-19 | 2017-05-15 | Thermostat facilitating user-friendly installation thereof |
Family Applications Before (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/984,602 Active 2032-02-23 US9104211B2 (en) | 2010-09-14 | 2011-01-04 | Temperature controller with model-based time to target calculation and display |
US12/987,257 Active 2031-11-07 US9092040B2 (en) | 2010-09-14 | 2011-01-10 | HVAC filter monitoring |
US13/033,573 Active 2031-10-19 US9223323B2 (en) | 2010-09-14 | 2011-02-23 | User friendly interface for control unit |
US13/034,678 Active 2032-08-21 US8752771B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat battery recharging during HVAC function active and inactive states |
US13/034,666 Active 2035-02-01 US9494332B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat wiring connector |
US13/034,674 Active 2034-09-15 US9605858B2 (en) | 2010-09-14 | 2011-02-24 | Thermostat circuitry for connection to HVAC systems |
US13/038,191 Active 2032-12-13 US8757507B2 (en) | 2010-09-14 | 2011-03-01 | Thermostat facilitating user-friendly installation thereof |
US13/038,206 Active 2031-07-31 US8478447B2 (en) | 2010-09-14 | 2011-03-01 | Computational load distribution in a climate control system having plural sensing microsystems |
US13/267,871 Active 2033-12-21 US9261287B2 (en) | 2010-09-14 | 2011-10-06 | Adaptive power stealing thermostat |
US13/267,877 Active 2032-11-10 US9026254B2 (en) | 2010-09-14 | 2011-10-06 | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US13/317,557 Abandoned US20120229521A1 (en) | 2010-09-14 | 2011-10-21 | Methods and apparatus for control unit with a variable assist rotational interface and display |
US13/891,335 Active US8924027B2 (en) | 2010-09-14 | 2013-05-10 | Computational load distribution in a climate control system having plural sensing microsystems |
US14/266,474 Active 2032-05-21 US9696734B2 (en) | 2010-09-14 | 2014-04-30 | Active power stealing |
US14/292,642 Active 2032-03-28 US9684317B2 (en) | 2010-09-14 | 2014-05-30 | Thermostat facilitating user-friendly installation thereof |
US14/548,131 Active 2032-02-14 US9715239B2 (en) | 2010-09-14 | 2014-11-19 | Computational load distribution in an environment having multiple sensing microsystems |
US14/703,661 Active 2032-06-07 US9702579B2 (en) | 2010-09-14 | 2015-05-04 | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US14/724,616 Abandoned US20150260424A1 (en) | 2010-11-19 | 2015-05-28 | Hvac filter monitoring |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/789,786 Active 2031-12-14 US10082306B2 (en) | 2010-11-19 | 2015-07-01 | Temperature controller with model-based time to target calculation and display |
US14/933,947 Active US9612032B2 (en) | 2010-09-14 | 2015-11-05 | User friendly interface for control unit |
US15/006,969 Active 2032-04-30 US10082307B2 (en) | 2010-09-14 | 2016-01-26 | Adaptive power-stealing thermostat |
US15/265,305 Active 2031-08-26 US10309672B2 (en) | 2010-09-14 | 2016-09-14 | Thermostat wiring connector |
US15/595,708 Active US10151501B2 (en) | 2010-11-19 | 2017-05-15 | Thermostat facilitating user-friendly installation thereof |
Country Status (4)
Country | Link |
---|---|
US (23) | US9104211B2 (en) |
CA (6) | CA2818373C (en) |
TW (6) | TWI502852B (en) |
WO (5) | WO2012068447A2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9890971B2 (en) | 2015-05-04 | 2018-02-13 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10458669B2 (en) | 2017-03-29 | 2019-10-29 | Johnson Controls Technology Company | Thermostat with interactive installation features |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US10672252B2 (en) | 2015-12-31 | 2020-06-02 | Delta Faucet Company | Water sensor |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10712038B2 (en) | 2017-04-14 | 2020-07-14 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
CN112413834A (en) * | 2019-08-20 | 2021-02-26 | 广东美的制冷设备有限公司 | Air conditioning system, air conditioning instruction detection method, control device and readable storage medium |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US11131474B2 (en) | 2018-03-09 | 2021-09-28 | Johnson Controls Tyco IP Holdings LLP | Thermostat with user interface features |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US11216020B2 (en) | 2015-05-04 | 2022-01-04 | Johnson Controls Tyco IP Holdings LLP | Mountable touch thermostat using transparent screen technology |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
Families Citing this family (523)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7469381B2 (en) | 2007-01-07 | 2008-12-23 | Apple Inc. | List scrolling and document translation, scaling, and rotation on a touch-screen display |
US7412842B2 (en) | 2004-04-27 | 2008-08-19 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system |
US7275377B2 (en) | 2004-08-11 | 2007-10-02 | Lawrence Kates | Method and apparatus for monitoring refrigerant-cycle systems |
US8590325B2 (en) | 2006-07-19 | 2013-11-26 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
US20080216494A1 (en) | 2006-09-07 | 2008-09-11 | Pham Hung M | Compressor data module |
US20090037142A1 (en) | 2007-07-30 | 2009-02-05 | Lawrence Kates | Portable method and apparatus for monitoring refrigerant-cycle systems |
US8019567B2 (en) * | 2007-09-17 | 2011-09-13 | Ecofactor, Inc. | System and method for evaluating changes in the efficiency of an HVAC system |
US8393169B2 (en) | 2007-09-19 | 2013-03-12 | Emerson Climate Technologies, Inc. | Refrigeration monitoring system and method |
US9140728B2 (en) | 2007-11-02 | 2015-09-22 | Emerson Climate Technologies, Inc. | Compressor sensor module |
US8180492B2 (en) | 2008-07-14 | 2012-05-15 | Ecofactor, Inc. | System and method for using a networked electronic device as an occupancy sensor for an energy management system |
US8390473B2 (en) * | 2008-12-19 | 2013-03-05 | Openpeak Inc. | System, method and apparatus for advanced utility control, monitoring and conservation |
US8509954B2 (en) | 2009-08-21 | 2013-08-13 | Allure Energy, Inc. | Energy management system and method |
US9838255B2 (en) | 2009-08-21 | 2017-12-05 | Samsung Electronics Co., Ltd. | Mobile demand response energy management system with proximity control |
US9209652B2 (en) | 2009-08-21 | 2015-12-08 | Allure Energy, Inc. | Mobile device with scalable map interface for zone based energy management |
US8498749B2 (en) | 2009-08-21 | 2013-07-30 | Allure Energy, Inc. | Method for zone based energy management system with scalable map interface |
US10584890B2 (en) | 2010-05-26 | 2020-03-10 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
US9460471B2 (en) | 2010-07-16 | 2016-10-04 | Hartford Fire Insurance Company | System and method for an automated validation system |
WO2012031279A1 (en) | 2010-09-02 | 2012-03-08 | Anker Berg-Sonne | Rules engine with database triggering |
US8843239B2 (en) | 2010-11-19 | 2014-09-23 | Nest Labs, Inc. | Methods, systems, and related architectures for managing network connected thermostats |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US9104211B2 (en) | 2010-11-19 | 2015-08-11 | Google Inc. | Temperature controller with model-based time to target calculation and display |
US8918219B2 (en) | 2010-11-19 | 2014-12-23 | Google Inc. | User friendly interface for control unit |
US8950686B2 (en) | 2010-11-19 | 2015-02-10 | Google Inc. | Control unit with automatic setback capability |
USD711916S1 (en) * | 2011-08-16 | 2014-08-26 | Nest Labs, Inc. | Display screen with a graphical user interface |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US8850348B2 (en) | 2010-12-31 | 2014-09-30 | Google Inc. | Dynamic device-associated feedback indicative of responsible device usage |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US11334034B2 (en) | 2010-11-19 | 2022-05-17 | Google Llc | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US8788103B2 (en) | 2011-02-24 | 2014-07-22 | Nest Labs, Inc. | Power management in energy buffered building control unit |
US8195313B1 (en) | 2010-11-19 | 2012-06-05 | Nest Labs, Inc. | Thermostat user interface |
US9448567B2 (en) | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US10346275B2 (en) | 2010-11-19 | 2019-07-09 | Google Llc | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
US9298196B2 (en) | 2010-11-19 | 2016-03-29 | Google Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US9046898B2 (en) | 2011-02-24 | 2015-06-02 | Google Inc. | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
US9552002B2 (en) | 2010-11-19 | 2017-01-24 | Google Inc. | Graphical user interface for setpoint creation and modification |
US9075419B2 (en) | 2010-11-19 | 2015-07-07 | Google Inc. | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
US9256230B2 (en) | 2010-11-19 | 2016-02-09 | Google Inc. | HVAC schedule establishment in an intelligent, network-connected thermostat |
US9092039B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US8944338B2 (en) | 2011-02-24 | 2015-02-03 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
WO2012118830A2 (en) | 2011-02-28 | 2012-09-07 | Arensmeier Jeffrey N | Residential solutions hvac monitoring and diagnosis |
CN103502973B (en) | 2011-05-06 | 2018-07-17 | 欧保能源公司 | Method and system for selecting similar consumer |
US8718826B2 (en) | 2011-06-01 | 2014-05-06 | Emerson Electric Co. | System for remote control of a condition at a site |
US9080784B2 (en) * | 2011-06-20 | 2015-07-14 | Honeywell International Inc. | HVAC controller with component change notification |
US8613792B2 (en) * | 2011-06-20 | 2013-12-24 | Honeywell International Inc. | Method and systems for setting an air filter change threshold value in an HVAC system |
US8734565B2 (en) * | 2011-06-20 | 2014-05-27 | Honeywell International Inc. | Methods and systems of verifying a filter change in an HVAC system |
US8623117B2 (en) * | 2011-06-20 | 2014-01-07 | Honeywell International Inc. | HVAC air filter monitor with sensor compensation |
US8574343B2 (en) * | 2011-06-20 | 2013-11-05 | Honeywell International Inc. | Methods and systems for setting an air filter change threshold in an HVAC system using a blocking panel |
US9115908B2 (en) | 2011-07-27 | 2015-08-25 | Honeywell International Inc. | Systems and methods for managing a programmable thermostat |
US9462262B1 (en) * | 2011-08-29 | 2016-10-04 | Amazon Technologies, Inc. | Augmented reality environment with environmental condition control |
WO2013033469A1 (en) | 2011-08-30 | 2013-03-07 | Allure Energy, Inc. | Resource manager, system, and method for communicating resource management information for smart energy and media resources |
KR101858938B1 (en) * | 2011-09-19 | 2018-06-29 | 삼성전자주식회사 | Air conditioner |
US8893032B2 (en) | 2012-03-29 | 2014-11-18 | Google Inc. | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
US9222693B2 (en) | 2013-04-26 | 2015-12-29 | Google Inc. | Touchscreen device user interface for remote control of a thermostat |
CN106054958B (en) | 2011-10-21 | 2019-07-12 | 谷歌有限责任公司 | Voluntarily obtain the intelligent domestic device for enabling the qualification of leave state function |
CN103890667B (en) | 2011-10-21 | 2017-02-15 | 谷歌公司 | User-friendly, network connected learning thermostat and related systems and methods |
EP3051377B1 (en) * | 2011-10-21 | 2021-09-08 | Google LLC | Intelligent controller providing time to target state |
WO2013090768A2 (en) * | 2011-12-16 | 2013-06-20 | Illinois Tool Works Inc. | Data usage and aggregation in a food product asset related network |
US9339691B2 (en) | 2012-01-05 | 2016-05-17 | Icon Health & Fitness, Inc. | System and method for controlling an exercise device |
US8964338B2 (en) | 2012-01-11 | 2015-02-24 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
US9832036B2 (en) | 2012-02-09 | 2017-11-28 | Keystone Integrations Llc | Dual-mode vehicular controller |
US10139843B2 (en) | 2012-02-22 | 2018-11-27 | Honeywell International Inc. | Wireless thermostatic controlled electric heating system |
US10191501B2 (en) * | 2012-03-01 | 2019-01-29 | Emerson Electric Co. | Systems and methods for power stealing |
US9092017B2 (en) * | 2012-03-20 | 2015-07-28 | Air System Components, Inc. | Energy recovery ventilation effectiveness calculation and indication |
US9927819B2 (en) * | 2012-03-27 | 2018-03-27 | Honeywell International Inc. | Home energy management devices, systems, and methods |
US10054933B2 (en) * | 2012-03-27 | 2018-08-21 | Sirqul, Inc. | Controlling distributed device operations |
CN104335129B (en) | 2012-03-29 | 2016-09-14 | 谷歌公司 | A kind of method generating energy use report for the HVAC system for being controlled by programmable thermostats |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
EP2833238A4 (en) * | 2012-03-30 | 2015-03-11 | Fujitsu Ltd | Information processing device, control method and program |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
US10054964B2 (en) | 2012-05-07 | 2018-08-21 | Google Llc | Building control unit method and controls |
US10796346B2 (en) | 2012-06-27 | 2020-10-06 | Opower, Inc. | Method and system for unusual usage reporting |
US9074785B2 (en) * | 2012-07-26 | 2015-07-07 | Honeywell International Inc. | Operation of a thermal comfort system |
US9594384B2 (en) | 2012-07-26 | 2017-03-14 | Honeywell International Inc. | Method of associating an HVAC controller with an external web service |
US9732974B2 (en) * | 2012-08-14 | 2017-08-15 | Digi International Inc. | System and method for wiring-relay configuration in digital thermostats |
US20140062725A1 (en) * | 2012-08-28 | 2014-03-06 | Commercial Vehicle Group, Inc. | Surface detection and indicator |
US8748745B2 (en) * | 2012-08-30 | 2014-06-10 | Allure Energy, Inc. | Terminal connector for a wall mounted device |
US9547316B2 (en) | 2012-09-07 | 2017-01-17 | Opower, Inc. | Thermostat classification method and system |
US10332059B2 (en) | 2013-03-14 | 2019-06-25 | Google Llc | Security scoring in a smart-sensored home |
US8659302B1 (en) * | 2012-09-21 | 2014-02-25 | Nest Labs, Inc. | Monitoring and recoverable protection of thermostat switching circuitry |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9046414B2 (en) | 2012-09-21 | 2015-06-02 | Google Inc. | Selectable lens button for a hazard detector and method therefor |
US9166405B2 (en) | 2012-09-24 | 2015-10-20 | Cooper Technologies Company | Energy harvesting load control switch |
US9310439B2 (en) | 2012-09-25 | 2016-04-12 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
US8594850B1 (en) | 2012-09-30 | 2013-11-26 | Nest Labs, Inc. | Updating control software on a network-connected HVAC controller |
US8554376B1 (en) | 2012-09-30 | 2013-10-08 | Nest Labs, Inc | Intelligent controller for an environmental control system |
CN104823119B (en) | 2012-10-01 | 2016-11-16 | 谷歌公司 | Radiant heating for environmental control system controls and method |
US9633401B2 (en) | 2012-10-15 | 2017-04-25 | Opower, Inc. | Method to identify heating and cooling system power-demand |
AU2013337839B2 (en) * | 2012-10-31 | 2017-11-02 | Delta T, Llc | Integrated thermal comfort control system utilizing circulating fans |
US9517429B2 (en) * | 2012-11-13 | 2016-12-13 | Complete Filter Management Llc | Filtration monitoring system |
US20150301697A1 (en) * | 2012-11-20 | 2015-10-22 | Jolla Oy | A graphical user interface for a portable computing device |
CA2836137C (en) | 2012-12-05 | 2020-12-01 | Braeburn Systems Llc | Climate control panel with non-planar display |
US8949731B1 (en) * | 2012-12-13 | 2015-02-03 | Vmware, Inc. | Input from a soft keyboard on a touchscreen display |
US9716530B2 (en) | 2013-01-07 | 2017-07-25 | Samsung Electronics Co., Ltd. | Home automation using near field communication |
US10067516B2 (en) * | 2013-01-22 | 2018-09-04 | Opower, Inc. | Method and system to control thermostat using biofeedback |
TWI571734B (en) * | 2013-02-05 | 2017-02-21 | 新唐科技股份有限公司 | Power management circuit and method thereof and computer system |
US20140216704A1 (en) * | 2013-02-07 | 2014-08-07 | General Electric Company | Method for operating an hvac system |
WO2014128770A1 (en) * | 2013-02-20 | 2014-08-28 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Program and method for controlling portable information terminal |
GB2511538B (en) * | 2013-03-06 | 2016-06-15 | Basic Holdings | Heating Appliance |
US10063499B2 (en) | 2013-03-07 | 2018-08-28 | Samsung Electronics Co., Ltd. | Non-cloud based communication platform for an environment control system |
US9651268B2 (en) * | 2013-03-11 | 2017-05-16 | Rheem Manufacturing Company | Gas fired modular blower control and associated methodology |
US9852481B1 (en) | 2013-03-13 | 2017-12-26 | Johnson Controls Technology Company | Systems and methods for cascaded model predictive control |
US9235657B1 (en) * | 2013-03-13 | 2016-01-12 | Johnson Controls Technology Company | System identification and model development |
CN104884133B (en) | 2013-03-14 | 2018-02-23 | 艾肯运动与健康公司 | Force exercise equipment with flywheel |
US10983040B2 (en) | 2013-03-15 | 2021-04-20 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US9807099B2 (en) | 2013-03-15 | 2017-10-31 | Google Inc. | Utility portals for managing demand-response events |
US9595070B2 (en) | 2013-03-15 | 2017-03-14 | Google Inc. | Systems, apparatus and methods for managing demand-response programs and events |
US9709449B2 (en) | 2013-03-15 | 2017-07-18 | Vermont Energy Investment Corporation | System and methods for assessing whole-building thermal performance |
US9638436B2 (en) | 2013-03-15 | 2017-05-02 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9677990B2 (en) | 2014-04-30 | 2017-06-13 | Particles Plus, Inc. | Particle counter with advanced features |
US9551504B2 (en) | 2013-03-15 | 2017-01-24 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9810442B2 (en) | 2013-03-15 | 2017-11-07 | Google Inc. | Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat |
US10352844B2 (en) | 2013-03-15 | 2019-07-16 | Particles Plus, Inc. | Multiple particle sensors in a particle counter |
US9803902B2 (en) | 2013-03-15 | 2017-10-31 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
US11579072B2 (en) | 2013-03-15 | 2023-02-14 | Particles Plus, Inc. | Personal air quality monitoring system |
US12044611B2 (en) | 2013-03-15 | 2024-07-23 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US20140281991A1 (en) * | 2013-03-18 | 2014-09-18 | Avermedia Technologies, Inc. | User interface, control system, and operation method of control system |
JP6080655B2 (en) * | 2013-04-03 | 2017-02-15 | 三菱電機株式会社 | refrigerator |
CN106030221B (en) * | 2013-04-05 | 2018-12-07 | 艾默生环境优化技术有限公司 | Heat pump system with refrigerant charging diagnostic function |
US9684316B2 (en) | 2013-04-05 | 2017-06-20 | Emerson Electric Co. | Controlling current for power stealing in climate control systems |
TWI512251B (en) * | 2013-04-12 | 2015-12-11 | Gemtek Technology Co Ltd | Air conditioning control device, air conditioning system and air conditioning control method thereof |
NL2010658C2 (en) * | 2013-04-18 | 2014-10-21 | Bosch Gmbh Robert | Thermostat for a hvac. |
US9638435B2 (en) * | 2013-04-18 | 2017-05-02 | Level 3 Communications, Llc | Systems and methods for optimizing the efficiency of HVAC systems |
AU2014254089B2 (en) * | 2013-04-19 | 2017-10-12 | Google Llc | Controlling an HVAC system during demand response events |
US9910449B2 (en) * | 2013-04-19 | 2018-03-06 | Google Llc | Generating and implementing thermodynamic models of a structure |
US9298197B2 (en) | 2013-04-19 | 2016-03-29 | Google Inc. | Automated adjustment of an HVAC schedule for resource conservation |
US10025328B2 (en) * | 2013-04-22 | 2018-07-17 | Emerson Electric Co. | Power stealing for a wireless-enabled thermostat |
US9405303B2 (en) * | 2013-04-22 | 2016-08-02 | Emerson Electric Co. | Power stealing for a wireless-enabled thermostat |
US9806705B2 (en) | 2013-04-23 | 2017-10-31 | Honeywell International Inc. | Active triac triggering circuit |
US9584119B2 (en) | 2013-04-23 | 2017-02-28 | Honeywell International Inc. | Triac or bypass circuit and MOSFET power steal combination |
US9696735B2 (en) * | 2013-04-26 | 2017-07-04 | Google Inc. | Context adaptive cool-to-dry feature for HVAC controller |
US9677776B2 (en) * | 2013-05-02 | 2017-06-13 | Eric Douglass Clifton | Wireless wall thermostat |
US10719797B2 (en) | 2013-05-10 | 2020-07-21 | Opower, Inc. | Method of tracking and reporting energy performance for businesses |
WO2014186359A1 (en) * | 2013-05-13 | 2014-11-20 | CVG Managment Corporation | Surface detection and indicator |
JP6328621B2 (en) * | 2013-05-20 | 2018-05-23 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Control method of air conditioner, air conditioning control system, navigation device, and control device |
JP5964506B2 (en) * | 2013-05-23 | 2016-08-03 | 京セラ株式会社 | Power control apparatus, power control method, and power control system |
US9462663B2 (en) | 2013-05-28 | 2016-10-04 | Abl Ip Holding Llc | Interactive user interface functionality for lighting devices or system |
US9612585B2 (en) | 2013-05-28 | 2017-04-04 | Abl Ip Holding Llc | Distributed building control system |
US9504132B2 (en) | 2013-05-28 | 2016-11-22 | Abl Ip Holding Llc | Distributed processing using resources of intelligent lighting elements of a lighting system |
US20140365017A1 (en) * | 2013-06-05 | 2014-12-11 | Jason Hanna | Methods and systems for optimized hvac operation |
US10001792B1 (en) | 2013-06-12 | 2018-06-19 | Opower, Inc. | System and method for determining occupancy schedule for controlling a thermostat |
US10811892B2 (en) | 2013-06-28 | 2020-10-20 | Ademco Inc. | Source management for a power transformation system |
US9983244B2 (en) | 2013-06-28 | 2018-05-29 | Honeywell International Inc. | Power transformation system with characterization |
WO2014210262A1 (en) | 2013-06-28 | 2014-12-31 | Honeywell International Inc. | A power transformation system with characterization |
US11054448B2 (en) | 2013-06-28 | 2021-07-06 | Ademco Inc. | Power transformation self characterization mode |
US20150073607A1 (en) * | 2013-07-01 | 2015-03-12 | Skydrop, Llc | Networked irrigation controller |
US9912732B2 (en) | 2013-07-01 | 2018-03-06 | Skydrop Holdings, Llc | Automatic detection and configuration of faults within an irrigation system |
US10070280B2 (en) | 2016-02-12 | 2018-09-04 | Crowdcomfort, Inc. | Systems and methods for leveraging text messages in a mobile-based crowdsourcing platform |
WO2015006622A1 (en) * | 2013-07-10 | 2015-01-15 | Crowdcomfort, Inc. | System and method for crowd-sourced environmental system control and maintenance |
US10796085B2 (en) | 2013-07-10 | 2020-10-06 | Crowdcomfort, Inc. | Systems and methods for providing cross-device native functionality in a mobile-based crowdsourcing platform |
US10541751B2 (en) | 2015-11-18 | 2020-01-21 | Crowdcomfort, Inc. | Systems and methods for providing geolocation services in a mobile-based crowdsourcing platform |
US11394462B2 (en) | 2013-07-10 | 2022-07-19 | Crowdcomfort, Inc. | Systems and methods for collecting, managing, and leveraging crowdsourced data |
US10379551B2 (en) | 2013-07-10 | 2019-08-13 | Crowdcomfort, Inc. | Systems and methods for providing augmented reality-like interface for the management and maintenance of building systems |
US9714771B1 (en) * | 2013-07-30 | 2017-07-25 | Alarm.Com Incorporated | Dynamically programmable thermostat |
US10657609B1 (en) | 2013-08-07 | 2020-05-19 | Promanthan Brains LLC, Series Cold Futures only | Smart switch with stochastic optimization |
US9483064B2 (en) * | 2013-08-07 | 2016-11-01 | Hunter Fan Company | Remote controllable thermostat |
US9980351B2 (en) | 2013-08-12 | 2018-05-22 | Abl Ip Holding Llc | Lighting element-centric network of networks |
US10114721B2 (en) * | 2013-08-18 | 2018-10-30 | Sensibo Ltd. | Power consumption assesment of an HVAC system |
US10808961B2 (en) | 2013-08-30 | 2020-10-20 | James Leych Lau | Energy saving controller |
US10047969B2 (en) | 2013-08-30 | 2018-08-14 | James Leych Lau | Energy saving controller |
US10119719B2 (en) | 2013-08-30 | 2018-11-06 | James Leych Lau | Energy saving controller |
US10174966B2 (en) | 2013-08-30 | 2019-01-08 | James Leych Lau | Energy saving controller |
KR20210010661A (en) * | 2013-09-03 | 2021-01-27 | 애플 인크. | Crown input for a wearable electronic device |
US11068128B2 (en) | 2013-09-03 | 2021-07-20 | Apple Inc. | User interface object manipulations in a user interface |
US10503388B2 (en) | 2013-09-03 | 2019-12-10 | Apple Inc. | Crown input for a wearable electronic device |
KR20210008944A (en) | 2013-09-03 | 2021-01-25 | 애플 인크. | User interface for manipulating user interface objects with magnetic properties |
US10273010B2 (en) | 2013-09-04 | 2019-04-30 | The Boeing Company | Systems and methods for refrigerating galley compartments |
USD826271S1 (en) * | 2013-09-13 | 2018-08-21 | Nikon Corporation | Display screen with transitional graphical user interface |
US9646480B2 (en) | 2013-10-07 | 2017-05-09 | Google Inc. | Smart home device with integrated conditional lighting |
ITRM20130547A1 (en) * | 2013-10-07 | 2015-04-08 | Fabio Buccolini | PROCEDURE FOR THE ASSESSMENT OF THE CLEANING STATE OF AN AIR-CONDITIONING AND / OR AIR-CONDITIONING PLANT |
DE102013017204B4 (en) * | 2013-10-16 | 2023-06-29 | tado GmbH | Retrofit set for heating control |
CN203643766U (en) | 2013-10-25 | 2014-06-11 | 艾默生电气公司 | Controller used in environment control system |
KR102192155B1 (en) * | 2013-11-12 | 2020-12-16 | 삼성전자주식회사 | Method and apparatus for providing application information |
US9673811B2 (en) | 2013-11-22 | 2017-06-06 | Honeywell International Inc. | Low power consumption AC load switches |
USD725524S1 (en) * | 2013-11-22 | 2015-03-31 | Honeywell International Inc. | Thermostat housing |
US9477241B2 (en) | 2013-11-22 | 2016-10-25 | Honeywell International Inc. | HVAC controller with proximity based message latency control |
US9885492B2 (en) | 2013-11-22 | 2018-02-06 | Honeywell International Inc. | Methods systems and tools for determining a wiring configuration for an HVAC controller |
US9857091B2 (en) * | 2013-11-22 | 2018-01-02 | Honeywell International Inc. | Thermostat circuitry to control power usage |
US20150148965A1 (en) | 2013-11-22 | 2015-05-28 | Honeywell International Inc. | Method to control a communication rate between a thermostat and a cloud based server |
CN105872238B (en) * | 2013-12-06 | 2020-02-21 | 北京奇虎科技有限公司 | Input number correction method and correction device |
US10002184B2 (en) | 2013-12-08 | 2018-06-19 | Google Llc | Methods and systems for identification and correction of controlled system data |
KR20150067852A (en) * | 2013-12-10 | 2015-06-19 | 한국전자통신연구원 | Airflow management system for data center and management method of the same |
US9900177B2 (en) | 2013-12-11 | 2018-02-20 | Echostar Technologies International Corporation | Maintaining up-to-date home automation models |
CN113203168A (en) | 2013-12-11 | 2021-08-03 | 霍尼韦尔国际公司 | Automatic control system for building |
US9769522B2 (en) | 2013-12-16 | 2017-09-19 | Echostar Technologies L.L.C. | Methods and systems for location specific operations |
US10367827B2 (en) * | 2013-12-19 | 2019-07-30 | Splunk Inc. | Using network locations obtained from multiple threat lists to evaluate network data or machine data |
CN105848733B (en) | 2013-12-26 | 2018-02-13 | 爱康保健健身有限公司 | Magnetic resistance mechanism in hawser apparatus |
US20160320083A1 (en) * | 2013-12-26 | 2016-11-03 | Schneider Electric Buildings, Llc | System and method for controlling an environment |
EP3092750B1 (en) | 2014-01-06 | 2020-07-15 | Samsung Electronics Co., Ltd. | System, device, and apparatus for coordinating environments using network devices and remote sensory information |
MX363254B (en) | 2014-01-06 | 2019-03-19 | Samsung Electronics Co Ltd Star | System, device, and apparatus for coordinating environments using network devices and remote sensory information. |
US10885238B1 (en) | 2014-01-09 | 2021-01-05 | Opower, Inc. | Predicting future indoor air temperature for building |
IN2014CH00355A (en) * | 2014-01-28 | 2015-08-28 | Rangineni Srikanth | |
US10564614B2 (en) | 2014-01-31 | 2020-02-18 | Vivint, Inc. | Progressive profiling in an automation system |
US11044114B2 (en) * | 2014-01-31 | 2021-06-22 | Vivint, Inc. | Rule-based graphical conversational user interface for security and automation system |
US9947045B1 (en) | 2014-02-07 | 2018-04-17 | Opower, Inc. | Selecting participants in a resource conservation program |
US9852484B1 (en) | 2014-02-07 | 2017-12-26 | Opower, Inc. | Providing demand response participation |
US10031534B1 (en) | 2014-02-07 | 2018-07-24 | Opower, Inc. | Providing set point comparison |
EP2905584B2 (en) * | 2014-02-07 | 2020-08-26 | Blueair AB | Detachable sensor module for an air treatment device |
GB201402158D0 (en) * | 2014-02-07 | 2014-03-26 | Passivsystems Ltd | Apparatus and method for analysing the operation of a temperature management system by a user |
US10037014B2 (en) | 2014-02-07 | 2018-07-31 | Opower, Inc. | Behavioral demand response dispatch |
WO2015138339A1 (en) | 2014-03-10 | 2015-09-17 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
US9835352B2 (en) | 2014-03-19 | 2017-12-05 | Opower, Inc. | Method for saving energy efficient setpoints |
US9581342B2 (en) * | 2014-03-28 | 2017-02-28 | Google Inc. | Mounting stand for multi-sensing environmental control device |
IL248171B (en) | 2014-03-31 | 2022-09-01 | Delta T Corp | Fan with learning mode |
US9727063B1 (en) | 2014-04-01 | 2017-08-08 | Opower, Inc. | Thermostat set point identification |
US9765984B2 (en) | 2014-04-02 | 2017-09-19 | Trane International Inc. | Thermostat temperature compensation modeling |
US9857238B2 (en) * | 2014-04-18 | 2018-01-02 | Google Inc. | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
US10019739B1 (en) | 2014-04-25 | 2018-07-10 | Opower, Inc. | Energy usage alerts for a climate control device |
US10108973B2 (en) | 2014-04-25 | 2018-10-23 | Opower, Inc. | Providing an energy target for high energy users |
US9903606B2 (en) | 2014-04-29 | 2018-02-27 | Vivint, Inc. | Controlling parameters in a building |
CN105042810B (en) * | 2014-04-29 | 2019-05-14 | 松下电器(美国)知识产权公司 | The control method of the terminal installation in the air-conditioner control system of time and expense selection operating mode can be used |
US20150316282A1 (en) * | 2014-05-05 | 2015-11-05 | Board Of Regents, The University Of Texas System | Strategy for efficiently utilizing a heat-pump based hvac system with an auxiliary heating system |
US11099533B2 (en) | 2014-05-07 | 2021-08-24 | Vivint, Inc. | Controlling a building system based on real time events |
US10197979B2 (en) | 2014-05-30 | 2019-02-05 | Vivint, Inc. | Determining occupancy with user provided information |
TWI580906B (en) * | 2014-05-08 | 2017-05-01 | 台達電子工業股份有限公司 | Controlling device, controlling system and controlling method for indoor apparatus |
US10171603B2 (en) | 2014-05-12 | 2019-01-01 | Opower, Inc. | User segmentation to provide motivation to perform a resource saving tip |
US10263841B1 (en) | 2014-05-13 | 2019-04-16 | Senseware, Inc. | System, method and apparatus for configuring a node in a sensor network |
US11722365B2 (en) | 2014-05-13 | 2023-08-08 | Senseware, Inc. | System, method and apparatus for configuring a node in a sensor network |
US10687231B1 (en) | 2014-05-13 | 2020-06-16 | Senseware, Inc. | System, method and apparatus for presentation of sensor information to a building control system |
US10833893B2 (en) | 2014-05-13 | 2020-11-10 | Senseware, Inc. | System, method and apparatus for integrated building operations management |
US10652767B1 (en) | 2014-05-13 | 2020-05-12 | Senseware, Inc. | System, method and apparatus for managing disruption in a sensor network application |
US9813489B1 (en) | 2014-05-13 | 2017-11-07 | Senseware, Inc. | System, method and apparatus for enabling a shared infrastructure |
US9876653B1 (en) | 2014-05-13 | 2018-01-23 | Senseware, Inc. | System, method and apparatus for augmenting a building control system domain |
US10149141B1 (en) | 2014-05-13 | 2018-12-04 | Senseware, Inc. | System, method and apparatus for building operations management |
US10130842B2 (en) | 2014-05-21 | 2018-11-20 | IncludeFitness, Inc. | Fitness systems and methods thereof |
US9669261B2 (en) | 2014-05-21 | 2017-06-06 | IncludeFitness, Inc. | Fitness systems and methods thereof |
USD757757S1 (en) * | 2014-05-23 | 2016-05-31 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
GB2526552B (en) * | 2014-05-27 | 2017-03-08 | Basic Holdings | A system and method for adaptively controlling the charging time of a storage heater |
US9939165B2 (en) * | 2014-05-29 | 2018-04-10 | Honeywell International Inc. | Wireless thermostat with dual stage failsafe circuits |
USD759077S1 (en) * | 2014-06-03 | 2016-06-14 | North Park Innovations Group, Inc. | Display screen or portion thereof with graphical user interface |
CN106470739B (en) | 2014-06-09 | 2019-06-21 | 爱康保健健身有限公司 | It is incorporated to the funicular system of treadmill |
CA2894359C (en) * | 2014-06-16 | 2022-07-05 | Braeburn Systems Llc | Graphical highlight for programming a control |
US9628074B2 (en) | 2014-06-19 | 2017-04-18 | Honeywell International Inc. | Bypass switch for in-line power steal |
WO2015195965A1 (en) | 2014-06-20 | 2015-12-23 | Icon Health & Fitness, Inc. | Post workout massage device |
EP3147747A1 (en) | 2014-06-27 | 2017-03-29 | Apple Inc. | Manipulation of calendar application in device with touch screen |
JP6561562B2 (en) * | 2014-06-30 | 2019-08-21 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Cooking apparatus, information display apparatus, control method, cooking utensil, and computer program |
US10235662B2 (en) | 2014-07-01 | 2019-03-19 | Opower, Inc. | Unusual usage alerts |
CN105337385B (en) * | 2014-07-02 | 2018-06-19 | 艾默生电气公司 | Management battery charges to extend battery life |
WO2016007520A1 (en) * | 2014-07-07 | 2016-01-14 | LIFI Labs, Inc. | Switch and method of operation |
US9426748B2 (en) * | 2014-07-11 | 2016-08-23 | Qualcomm Incorporated | Dynamic sleep mode based upon battery charge |
US9683749B2 (en) | 2014-07-11 | 2017-06-20 | Honeywell International Inc. | Multiple heatsink cooling system for a line voltage thermostat |
US10024564B2 (en) | 2014-07-15 | 2018-07-17 | Opower, Inc. | Thermostat eco-mode |
US9644856B1 (en) * | 2014-07-28 | 2017-05-09 | System Performance Technologies, LLC | System and method for monitoring and controlling an HVAC system |
US9887542B2 (en) * | 2014-08-04 | 2018-02-06 | Honeywell International Inc. | Power broker module |
US10467249B2 (en) | 2014-08-07 | 2019-11-05 | Opower, Inc. | Users campaign for peaking energy usage |
US10410130B1 (en) | 2014-08-07 | 2019-09-10 | Opower, Inc. | Inferring residential home characteristics based on energy data |
US10572889B2 (en) | 2014-08-07 | 2020-02-25 | Opower, Inc. | Advanced notification to enable usage reduction |
US9576245B2 (en) | 2014-08-22 | 2017-02-21 | O Power, Inc. | Identifying electric vehicle owners |
USD765114S1 (en) * | 2014-09-02 | 2016-08-30 | Apple Inc. | Display screen or portion thereof with graphical user interface |
WO2016036414A1 (en) | 2014-09-02 | 2016-03-10 | Apple Inc. | Button functionality |
US10073590B2 (en) | 2014-09-02 | 2018-09-11 | Apple Inc. | Reduced size user interface |
TWI676127B (en) | 2014-09-02 | 2019-11-01 | 美商蘋果公司 | Method, system, electronic device and computer-readable storage medium regarding electronic mail user interface |
CN106797493A (en) | 2014-09-02 | 2017-05-31 | 苹果公司 | Music user interface |
US20160069582A1 (en) * | 2014-09-08 | 2016-03-10 | Trane International Inc. | HVAC System with Motion Sensor |
USD776690S1 (en) * | 2014-09-24 | 2017-01-17 | Uber Technologies, Inc. | Display screen with graphical user interface |
US9989507B2 (en) | 2014-09-25 | 2018-06-05 | Echostar Technologies International Corporation | Detection and prevention of toxic gas |
EP3198577B1 (en) * | 2014-09-25 | 2018-07-11 | Philips Lighting Holding B.V. | A system for managing services |
US10948215B2 (en) | 2014-10-13 | 2021-03-16 | Arzel Zoning Technology, Inc. | System and method for wireless environmental zone control |
US10190794B1 (en) | 2014-10-13 | 2019-01-29 | Arzel Zoning Technology, Inc. | System and apparatus for wireless environmental zone control |
US11506215B1 (en) | 2014-10-14 | 2022-11-22 | Delta T, Llc | Fan with automatic thermal comfort control |
FR3027098B1 (en) * | 2014-10-14 | 2019-08-23 | Muller Et Cie | APPARATUS, IN PARTICULAR HEATING, REDUCED CONSUMPTION AND OPERATION OPTIMIZED IN DELESTAGE SITUATION |
US9748708B2 (en) | 2014-10-14 | 2017-08-29 | Honeywell International Inc. | Poke-in electrical connector |
US9939167B2 (en) * | 2014-10-22 | 2018-04-10 | Honeywell International Inc. | HVAC controller |
US10356573B2 (en) | 2014-10-22 | 2019-07-16 | Braeburn Systems Llc | Thermostat synchronization via remote input device |
US9983011B2 (en) | 2014-10-30 | 2018-05-29 | Echostar Technologies International Corporation | Mapping and facilitating evacuation routes in emergency situations |
CA2910884C (en) | 2014-10-30 | 2023-05-23 | Braeburn Systems Llc | Quick edit system for programming a thermostat |
US9511259B2 (en) | 2014-10-30 | 2016-12-06 | Echostar Uk Holdings Limited | Fitness overlay and incorporation for home automation system |
CA2910895C (en) | 2014-10-30 | 2023-01-10 | Braeburn Systems Llc | System and method for monitoring building environmental data |
US10033184B2 (en) | 2014-11-13 | 2018-07-24 | Opower, Inc. | Demand response device configured to provide comparative consumption information relating to proximate users or consumers |
US9581478B1 (en) | 2014-11-13 | 2017-02-28 | Totally New Technologies LLC | Pool skimmer flow measuring systems |
USD786304S1 (en) * | 2014-11-20 | 2017-05-09 | General Electric Company | Computer display or portion thereof with icon |
USD760283S1 (en) | 2014-11-20 | 2016-06-28 | Uber Technologies, Inc. | Computing device display screen with graphical user interface |
WO2016085130A1 (en) * | 2014-11-26 | 2016-06-02 | 엘지전자 주식회사 | Washer |
JP6656248B2 (en) * | 2014-12-01 | 2020-03-04 | スリーエム イノベイティブ プロパティズ カンパニー | System and method for predicting HVAC filter changes |
TWI546506B (en) * | 2014-12-04 | 2016-08-21 | 台達電子工業股份有限公司 | Controlling system for environmental comfort value and controlling method of the controlling system |
US10605474B2 (en) * | 2015-07-30 | 2020-03-31 | Encycle Corporation | Smart thermostat orchestration |
US9794738B2 (en) | 2014-12-22 | 2017-10-17 | Google Inc. | Systems and methods for enforcing wireless regulatory compliance |
JP2016125669A (en) * | 2014-12-26 | 2016-07-11 | ダイキン工業株式会社 | Air conditioner control device |
CN104534626B (en) * | 2014-12-31 | 2017-02-22 | 珠海格力电器股份有限公司 | automatic control method, device and system of air conditioner |
FR3031598A1 (en) * | 2015-01-13 | 2016-07-15 | Ecometering | IMPROVED THERMAL DEVICE |
EP3245696B1 (en) | 2015-01-13 | 2020-06-17 | Trane International Inc. | Improved wireless hvac components |
US20160209072A1 (en) | 2015-01-19 | 2016-07-21 | Lennox Industries Inc. | Programmable smart thermostat |
US10198483B2 (en) | 2015-02-02 | 2019-02-05 | Opower, Inc. | Classification engine for identifying business hours |
US11093950B2 (en) | 2015-02-02 | 2021-08-17 | Opower, Inc. | Customer activity score |
US10074097B2 (en) | 2015-02-03 | 2018-09-11 | Opower, Inc. | Classification engine for classifying businesses based on power consumption |
US9396633B1 (en) | 2015-06-14 | 2016-07-19 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US9794522B2 (en) | 2015-02-06 | 2017-10-17 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
CA2920281C (en) | 2015-02-10 | 2021-08-03 | Daniel S. Poplawski | Thermostat configuration duplication system |
US10371861B2 (en) | 2015-02-13 | 2019-08-06 | Opower, Inc. | Notification techniques for reducing energy usage |
US10168744B2 (en) | 2015-02-13 | 2019-01-01 | Hunter Douglas Inc. | Remote control device |
US10372093B2 (en) | 2015-02-26 | 2019-08-06 | Ademco Inc. | Comfort mapping using wearables |
US9587847B2 (en) | 2015-02-27 | 2017-03-07 | Emerson Electric Co. | Staging climate control system controller functions based on available power |
US10391361B2 (en) | 2015-02-27 | 2019-08-27 | Icon Health & Fitness, Inc. | Simulating real-world terrain on an exercise device |
US9915930B2 (en) | 2015-03-03 | 2018-03-13 | Google Llc | Smart-home control platform having morphable locus of machine intelligence based on characteristics of participating smart-home devices |
US9870008B2 (en) | 2015-03-04 | 2018-01-16 | Emerson Electric Co. | Systems and methods for limiting DC voltage |
EP3274974A1 (en) | 2015-03-24 | 2018-01-31 | Carrier Corporation | Floor plan based planning of building systems |
US10944837B2 (en) | 2015-03-24 | 2021-03-09 | Carrier Corporation | Floor-plan based learning and registration of distributed devices |
WO2016154320A1 (en) | 2015-03-24 | 2016-09-29 | Carrier Corporation | System and method for determining rf sensor performance relative to a floor plan |
US10459593B2 (en) | 2015-03-24 | 2019-10-29 | Carrier Corporation | Systems and methods for providing a graphical user interface indicating intruder threat levels for a building |
CN107667384A (en) | 2015-03-24 | 2018-02-06 | 开利公司 | Automatic matching and parameter setting based on floor level map combining |
US10621527B2 (en) | 2015-03-24 | 2020-04-14 | Carrier Corporation | Integrated system for sales, installation, and maintenance of building systems |
US10230326B2 (en) | 2015-03-24 | 2019-03-12 | Carrier Corporation | System and method for energy harvesting system planning and performance |
CN107667366B (en) | 2015-03-24 | 2021-12-28 | 开利公司 | System and method for capturing and analyzing multi-dimensional building information |
US9638429B2 (en) * | 2015-04-01 | 2017-05-02 | William Walter O'Hayer | Method and system for controlling the temperature of an indoor space |
JP1549787S (en) * | 2015-04-03 | 2016-05-23 | ||
USD780208S1 (en) * | 2015-04-03 | 2017-02-28 | Fanuc Corporation | Display panel with graphical user interface for controlling machine tools |
USD768167S1 (en) * | 2015-04-08 | 2016-10-04 | Anthony M Jones | Display screen with icon |
EP3280251B1 (en) * | 2015-04-10 | 2021-03-10 | Husqvarna AB | System comprising watering equipment |
USD764320S1 (en) * | 2015-04-13 | 2016-08-23 | Chuango Security Technology Corporation | Temperature sensor |
USD771671S1 (en) | 2015-04-28 | 2016-11-15 | IncludeFitness, Inc. | Display screen with a graphical user interface |
USD771103S1 (en) | 2015-04-28 | 2016-11-08 | IncludeFitness, Inc. | Display screen with a graphical user interface |
USD766956S1 (en) | 2015-04-28 | 2016-09-20 | IncludeFitness, Inc. | Display screen with an animated graphical user interface |
USD760285S1 (en) | 2015-04-28 | 2016-06-28 | Include Fitness, Inc. | Display screen with an animated graphical user interface |
USD761297S1 (en) | 2015-04-28 | 2016-07-12 | Include Fitness, Inc. | Display screen with an animated graphical user interface |
USD772266S1 (en) | 2015-04-28 | 2016-11-22 | IncludeFitness, Inc. | Display screen with an animated graphical user interface |
US10489055B2 (en) | 2015-05-08 | 2019-11-26 | Trane International Inc. | Z-wave controller shift in thermostats |
US9948477B2 (en) | 2015-05-12 | 2018-04-17 | Echostar Technologies International Corporation | Home automation weather detection |
US10817789B2 (en) | 2015-06-09 | 2020-10-27 | Opower, Inc. | Determination of optimal energy storage methods at electric customer service points |
US10222079B2 (en) * | 2015-06-10 | 2019-03-05 | British Gas Trading Limited | Battery-powered control device |
US9543998B2 (en) | 2015-06-14 | 2017-01-10 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
US9939923B2 (en) * | 2015-06-19 | 2018-04-10 | Microsoft Technology Licensing, Llc | Selecting events based on user input and current context |
DE102015110583A1 (en) * | 2015-07-01 | 2017-01-05 | Rwe Effizienz Gmbh | Thermostat for heating, air conditioning and / or ventilation systems |
US10149114B2 (en) | 2015-07-07 | 2018-12-04 | Crowdcomfort, Inc. | Systems and methods for providing geolocation services in a mobile-based crowdsourcing platform |
US10191024B2 (en) | 2015-07-13 | 2019-01-29 | Trane International Inc. | Energy management for sensors |
US11690309B2 (en) | 2015-07-23 | 2023-07-04 | Zito Jr Arthur J | Responsive dispersion from compartment in aqueous solution |
US9958360B2 (en) | 2015-08-05 | 2018-05-01 | Opower, Inc. | Energy audit device |
US10401830B2 (en) | 2015-08-14 | 2019-09-03 | Emerson Electric Co. | Remotely testing whether a climate control system controller is correctly installed |
US11366461B2 (en) | 2015-08-14 | 2022-06-21 | Emerson Electric Co. | Remotely testing whether a climate control system controller is correctly installed |
US9960980B2 (en) | 2015-08-21 | 2018-05-01 | Echostar Technologies International Corporation | Location monitor and device cloning |
JP1552967S (en) * | 2015-08-21 | 2016-07-04 | ||
US10825567B1 (en) | 2015-08-21 | 2020-11-03 | Food2Life, LLC | Apparatus and method for informed personal well-being decision making |
US10215438B2 (en) | 2015-09-03 | 2019-02-26 | Carrier Corporation | System and method of determining a limit fault in an HVAC unit |
JP6091722B1 (en) * | 2015-09-09 | 2017-03-08 | 三菱電機株式会社 | Indoor environment control device and air conditioning system |
KR20170036163A (en) | 2015-09-23 | 2017-04-03 | 경북대학교 산학협력단 | Memory device using pmos gain cell |
CN205090507U (en) * | 2015-09-30 | 2016-03-16 | 飞利浦(中国)投资有限公司 | Air -purifying device |
USD781725S1 (en) * | 2015-10-09 | 2017-03-21 | Ecovent Corp. | Room sensor |
US9702582B2 (en) | 2015-10-12 | 2017-07-11 | Ikorongo Technology, LLC | Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems |
US10509377B2 (en) | 2015-10-22 | 2019-12-17 | Triatomic Environmental, Inc. | System for monitoring and controlling indoor air quality |
US20170120724A1 (en) * | 2015-10-28 | 2017-05-04 | Hyundai America Technical Center, Inc | Cabin temperature setting and display method and system |
US10048836B2 (en) | 2015-10-30 | 2018-08-14 | Bank Of America Corporation | Application connectivity for aggregation and for use in data filtering |
USD815107S1 (en) | 2015-10-30 | 2018-04-10 | Bank Of America Corporation | Display screen with a transitional graphical user interface |
US10051015B2 (en) | 2015-10-30 | 2018-08-14 | Bank Of America Corporation | System for configuration, device connectivity and device control based on user selection |
US10158535B2 (en) * | 2015-10-30 | 2018-12-18 | Bank Of America Corporation | System for active configuration of devices based on user selection |
US10430025B2 (en) | 2015-10-30 | 2019-10-01 | Bank Of America Corporation | Active selection configuration system with suggested actions |
US10031645B2 (en) | 2015-10-30 | 2018-07-24 | Bank Of America Corporation | Application connectivity for aggregation |
US10559044B2 (en) | 2015-11-20 | 2020-02-11 | Opower, Inc. | Identification of peak days |
KR102579694B1 (en) * | 2015-11-20 | 2023-09-19 | 삼성전자주식회사 | Method of function operation and electronic device supporting the same |
US11072426B2 (en) | 2015-11-23 | 2021-07-27 | The Boeing Company | Galley system of an aircraft |
US9996066B2 (en) * | 2015-11-25 | 2018-06-12 | Echostar Technologies International Corporation | System and method for HVAC health monitoring using a television receiver |
US10101717B2 (en) | 2015-12-15 | 2018-10-16 | Echostar Technologies International Corporation | Home automation data storage system and methods |
USD773525S1 (en) * | 2015-12-21 | 2016-12-06 | Facebook, Inc. | Display screen with animated graphical user interface |
US10697651B2 (en) * | 2015-12-23 | 2020-06-30 | Intel Corporation | Energy efficient combustion heater control |
US10091017B2 (en) | 2015-12-30 | 2018-10-02 | Echostar Technologies International Corporation | Personalized home automation control based on individualized profiling |
US10073428B2 (en) | 2015-12-31 | 2018-09-11 | Echostar Technologies International Corporation | Methods and systems for control of home automation activity based on user characteristics |
US10060644B2 (en) | 2015-12-31 | 2018-08-28 | Echostar Technologies International Corporation | Methods and systems for control of home automation activity based on user preferences |
US20170234575A1 (en) * | 2016-02-02 | 2017-08-17 | Seal Tite Llc | In-line duct filter |
USD843324S1 (en) | 2016-02-12 | 2019-03-19 | Ademco Inc. | Wall mountable connector with terminal labels |
US9897339B2 (en) | 2016-02-12 | 2018-02-20 | Honeywell International Inc. | HVAC wall mountable connector with memory |
US9768564B2 (en) | 2016-02-12 | 2017-09-19 | Honeywell International Inc. | HVAC wall mountable connector with mounting features |
US10359790B2 (en) | 2016-02-12 | 2019-07-23 | Ademco Inc. | Multi piece HVAC controller housing with latches and guiding features |
US10054326B2 (en) | 2016-02-12 | 2018-08-21 | Honeywell International Inc. | Wall mountable connector for an HVAC controller |
US9774158B2 (en) | 2016-02-12 | 2017-09-26 | Honeywell International Inc. | Wall mountable connector with built in jumper functionality |
US9735482B1 (en) | 2016-02-12 | 2017-08-15 | Honeywell International Inc. | Wall mountable connector with commonly used field wire terminals spaced from one another |
US9989273B2 (en) | 2016-02-12 | 2018-06-05 | Honeywell International Inc. | Wall covering plate for use with an HVAC controller |
US9686880B1 (en) | 2016-02-12 | 2017-06-20 | Honeywell International Inc. | Thermostat housing with pc board locating apertures |
US9941183B2 (en) | 2016-02-12 | 2018-04-10 | Honeywell International Inc. | Wall mountable connector with wall covering plate |
US9960581B2 (en) | 2016-02-12 | 2018-05-01 | Honeywell International Inc. | Adapter plate with mounting features for a wall mountable connector |
US9735518B1 (en) * | 2016-02-12 | 2017-08-15 | Honeywell International Inc. | Wall mountable connector terminal configuration |
US9780511B2 (en) | 2016-02-12 | 2017-10-03 | Honeywell International Inc. | Jumper switch for an HVAC wall mountable connector |
US10208972B2 (en) | 2016-02-12 | 2019-02-19 | Ademco Inc. | Automatic detection of jumper switch position of a wall mount connector |
US9667009B1 (en) | 2016-02-12 | 2017-05-30 | Honeywell International Inc. | HVAC wall mountable connector with movable door |
USD824400S1 (en) * | 2016-02-19 | 2018-07-31 | Htc Corporation | Display screen or portion thereof with graphical user interface with icon |
SE539464C2 (en) | 2016-02-24 | 2017-09-26 | Camfil Ab | System, method and computer program product for air filter management |
US10317867B2 (en) | 2016-02-26 | 2019-06-11 | Braeburn Systems Llc | Thermostat update and copy methods and systems |
CN105652719A (en) * | 2016-03-01 | 2016-06-08 | 柳州正高科技有限公司 | Intelligent family power-saving control system |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US10625137B2 (en) | 2016-03-18 | 2020-04-21 | Icon Health & Fitness, Inc. | Coordinated displays in an exercise device |
US10272317B2 (en) | 2016-03-18 | 2019-04-30 | Icon Health & Fitness, Inc. | Lighted pace feature in a treadmill |
US20170284703A1 (en) * | 2016-03-29 | 2017-10-05 | Lenovo (Singapore) Pte. Ltd. | Water heater monitoring |
US10274228B2 (en) | 2016-04-28 | 2019-04-30 | Trane International Inc. | Packaged HVAC unit with secondary system capability |
US9696056B1 (en) * | 2016-04-29 | 2017-07-04 | System ProWorks, Inc | HVAC condition based maintenance system and method |
US10687184B2 (en) | 2016-05-13 | 2020-06-16 | Google Llc | Systems, methods, and devices for utilizing radar-based touch interfaces |
US10613213B2 (en) | 2016-05-13 | 2020-04-07 | Google Llc | Systems, methods, and devices for utilizing radar with smart devices |
USD795092S1 (en) * | 2016-05-17 | 2017-08-22 | Hipscience, Llc | Climate sensor |
USD799540S1 (en) | 2016-05-23 | 2017-10-10 | IncludeFitness, Inc. | Display screen with an animated graphical user interface |
US10317919B2 (en) | 2016-06-15 | 2019-06-11 | Braeburn Systems Llc | Tamper resistant thermostat having hidden limit adjustment capabilities |
US10691093B2 (en) * | 2016-06-22 | 2020-06-23 | Honeywell International Inc. | Controller programming migration automation |
US10031592B2 (en) * | 2016-06-28 | 2018-07-24 | Toyota Motor Sales, U.S.A., Inc. | Contextual knobs for in-vehicle system control |
US10531167B2 (en) * | 2016-07-06 | 2020-01-07 | RPH Engineering, LLC | Electronic monitoring, security, and communication device assembly |
US11184851B2 (en) | 2016-07-18 | 2021-11-23 | Netgear, Inc. | Power management techniques for a power sensitive wireless device |
US10999793B2 (en) * | 2016-07-18 | 2021-05-04 | Netgear, Inc. | Power management techniques for a power sensitive wireless device |
USD818849S1 (en) * | 2016-07-25 | 2018-05-29 | Electrolux Appliances Aktiebolag | Air conditioner controller |
US10294600B2 (en) | 2016-08-05 | 2019-05-21 | Echostar Technologies International Corporation | Remote detection of washer/dryer operation/fault condition |
CN109564020A (en) | 2016-08-08 | 2019-04-02 | 3M创新有限公司 | Air filter situation sensing |
US11168915B2 (en) | 2016-08-19 | 2021-11-09 | Fraunhofer Usa, Inc. | System and method for characterization of retrofit opportunities in building using data from interval meters |
US10049515B2 (en) | 2016-08-24 | 2018-08-14 | Echostar Technologies International Corporation | Trusted user identification and management for home automation systems |
US10895883B2 (en) | 2016-08-26 | 2021-01-19 | Ademco Inc. | HVAC controller with a temperature sensor mounted on a flex circuit |
MX2017011987A (en) | 2016-09-19 | 2018-09-26 | Braeburn Systems Llc | Control management system having perpetual calendar with exceptions. |
US10671705B2 (en) | 2016-09-28 | 2020-06-02 | Icon Health & Fitness, Inc. | Customizing recipe recommendations |
CN106642523A (en) * | 2016-09-29 | 2017-05-10 | 芜湖美智空调设备有限公司 | Remote controller |
WO2018075678A1 (en) | 2016-10-18 | 2018-04-26 | Carrier Corporation | System and method for operating an hvac system controller |
US10330352B2 (en) * | 2016-10-26 | 2019-06-25 | Advanced Distributor Products Llc | Self-healing thermostat heat pump reversing valve setting |
US10283082B1 (en) | 2016-10-29 | 2019-05-07 | Dvir Gassner | Differential opacity position indicator |
CN106403247A (en) * | 2016-11-24 | 2017-02-15 | 广东美的制冷设备有限公司 | Air conditioner |
CN110036245A (en) * | 2016-12-06 | 2019-07-19 | 斐乐公司 | Air purifier with intelligence sensor and air-flow |
USD821443S1 (en) * | 2016-12-28 | 2018-06-26 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
USD822057S1 (en) * | 2016-12-29 | 2018-07-03 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
USD822056S1 (en) * | 2016-12-29 | 2018-07-03 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with animated graphical user interface |
CN108604112B (en) * | 2017-01-03 | 2020-07-28 | 华为技术有限公司 | Temperature control method, terminal equipment and device |
GB2559737B (en) * | 2017-02-10 | 2019-07-17 | Centrica Hive Ltd | Environmental control configuration |
US10612805B2 (en) * | 2017-03-09 | 2020-04-07 | Johnson Controls Technology Company | Building automation system with a parallel relationship computation engine |
US10379980B2 (en) * | 2017-03-24 | 2019-08-13 | Intel Corporation | Maintaining IO block operation in electronic systems for board testing |
WO2018182357A1 (en) * | 2017-03-30 | 2018-10-04 | Samsung Electronics Co., Ltd. | Data learning server and method for generating and using learning model thereof |
KR102393418B1 (en) | 2017-03-30 | 2022-05-03 | 삼성전자주식회사 | Data learning server and method for generating and using thereof |
US10353362B2 (en) | 2017-05-03 | 2019-07-16 | Ul Llc | Method and system for predictive air filter maintenance for sustained indoor air quality |
CN107218696A (en) * | 2017-05-15 | 2017-09-29 | 广东美的暖通设备有限公司 | The detection method and computer-readable recording medium of air conditioner and its temperature-sensitive bag |
US10066848B1 (en) * | 2017-06-06 | 2018-09-04 | Emerson Electric Co. | Illuminating substrate-mountable devices |
US10599294B2 (en) | 2017-06-27 | 2020-03-24 | Lennox Industries Inc. | System and method for transferring images to multiple programmable smart thermostats |
EP3645949A1 (en) | 2017-06-29 | 2020-05-06 | American Air Filter Company, Inc. | Sensor array environment for an air handling unit |
US20190006064A1 (en) * | 2017-06-29 | 2019-01-03 | David R. Hall | Power Drop Assembly |
US10551081B1 (en) * | 2017-07-17 | 2020-02-04 | John Miller-Russell | Air conditioner with safety device |
US10731886B2 (en) | 2017-07-20 | 2020-08-04 | Carrier Corporation | HVAC system including energy analytics engine |
US11268717B2 (en) | 2017-08-16 | 2022-03-08 | Carrier Corporation | Thermostat power monitoring, mitigation and alert |
CN107606696A (en) * | 2017-08-25 | 2018-01-19 | 苏州泽科生物科技有限公司 | Packaged type enriched environment platform |
US10024568B1 (en) | 2017-09-14 | 2018-07-17 | Honeywell International Inc. | Lock box for a building controller |
IT201700104053A1 (en) * | 2017-09-18 | 2019-03-18 | Carel Ind Spa | METHOD OF SETTING FUNCTIONAL PARAMETERS OF A REFRIGERATOR EQUIPMENT |
US10337776B2 (en) | 2017-09-19 | 2019-07-02 | The Boeing Company | Refrigeration system having valves and valve control actuators |
EP3895592A1 (en) | 2017-09-28 | 2021-10-20 | TTI (Macao Commercial Offshore) Limited | Dirt collector for a vacuum cleaner |
US10704817B2 (en) * | 2017-10-04 | 2020-07-07 | Emerson Climate Technologies, Inc. | Capacity staging system for multiple compressors |
CA3079938A1 (en) * | 2017-10-24 | 2019-05-02 | 3M Innovative Properties Company | Systems and methods for predicting hvac filter change using temperature measurements |
US11306935B2 (en) * | 2017-10-31 | 2022-04-19 | Robert Jeffrey Kupferberg | Method and system for controlling air flow within a ventilation system |
US10967321B2 (en) * | 2017-11-05 | 2021-04-06 | Shashidhar Prabhakar | Air filter clog detector |
US10767878B2 (en) | 2017-11-21 | 2020-09-08 | Emerson Climate Technologies, Inc. | Humidifier control systems and methods |
CN107977033A (en) * | 2017-11-24 | 2018-05-01 | 合肥博焱智能科技有限公司 | A kind of artificial intelligence office environment regulating system |
US20190162437A1 (en) * | 2017-11-27 | 2019-05-30 | Steven Dushane | Thermostat with limited adjustment restraining guard |
US10989427B2 (en) | 2017-12-20 | 2021-04-27 | Trane International Inc. | HVAC system including smart diagnostic capabilites |
CN108224684A (en) * | 2018-01-17 | 2018-06-29 | 苏州亮磊知识产权运营有限公司 | A kind of intelligent air condition method and its system based on public place |
US11499736B2 (en) | 2018-02-09 | 2022-11-15 | Carrier Corporation | HVAC equipment settings |
US12021464B2 (en) * | 2018-02-19 | 2024-06-25 | Tyco Fire & Security Gmbh | Adaptive logic board for variable speed drive |
DE102018202886B4 (en) * | 2018-02-26 | 2019-12-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Docking station and method and building or means of transport and data carrier for determining at least one environmental parameter |
KR102440118B1 (en) | 2018-03-05 | 2022-09-05 | 삼성전자주식회사 | Air conditioner and method for control thereof |
US10739030B2 (en) | 2018-03-06 | 2020-08-11 | Google Llc | Self-learning temperature monitor and control system and methods for making and using same |
US10895509B2 (en) | 2018-03-06 | 2021-01-19 | Google Llc | Dynamic scanning of remote temperature sensors |
JP7074533B2 (en) * | 2018-03-29 | 2022-05-24 | 高砂熱学工業株式会社 | Information processing equipment, methods and programs |
KR102082505B1 (en) * | 2018-04-06 | 2020-02-27 | 엘지전자 주식회사 | Device of evaluating air-conditioner performance based on climate simulation and method of evaluating thereof |
CN110362127B (en) * | 2018-04-11 | 2021-03-02 | 北京北方华创微电子装备有限公司 | Wafer temperature control method, temperature control system and semiconductor processing equipment |
US10970128B2 (en) | 2018-04-13 | 2021-04-06 | Samsung Electronics Co., Ltd. | Server, air conditioner and method for controlling thereof |
EP3557365B1 (en) * | 2018-04-16 | 2021-06-02 | Google LLC | Dynamic scanning of remote temperature sensors |
EP3781878B1 (en) | 2018-04-20 | 2024-02-14 | Copeland LP | System and method for adjusting mitigation thresholds |
WO2019204791A1 (en) * | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Hvac filter usage analysis system |
US11486593B2 (en) | 2018-04-20 | 2022-11-01 | Emerson Climate Technologies, Inc. | Systems and methods with variable mitigation thresholds |
WO2019204792A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Coordinated control of standalone and building indoor air quality devices and systems |
WO2019204779A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Indoor air quality and occupant monitoring systems and methods |
EP3781879A4 (en) | 2018-04-20 | 2022-01-19 | Emerson Climate Technologies, Inc. | Systems and methods with variable mitigation thresholds |
US11371726B2 (en) | 2018-04-20 | 2022-06-28 | Emerson Climate Technologies, Inc. | Particulate-matter-size-based fan control system |
US11994313B2 (en) | 2018-04-20 | 2024-05-28 | Copeland Lp | Indoor air quality sensor calibration systems and methods |
USD856289S1 (en) | 2018-04-30 | 2019-08-13 | Hunter Douglas Inc. | Remote control housing |
CN108662723B (en) * | 2018-05-17 | 2020-10-20 | 广东美的制冷设备有限公司 | Air conditioner control method and device, air conditioner and computer readable storage medium |
US11908307B2 (en) | 2018-06-07 | 2024-02-20 | William J. Hoofe, IV | Security system |
US10921008B1 (en) | 2018-06-11 | 2021-02-16 | Braeburn Systems Llc | Indoor comfort control system and method with multi-party access |
EP3586973B1 (en) * | 2018-06-18 | 2024-02-14 | Rolls-Royce Corporation | System control based on acoustic and image signals |
US11067305B2 (en) | 2018-06-27 | 2021-07-20 | Lennox Industries Inc. | Method and system for heating auto-setback |
CN108917845A (en) * | 2018-07-25 | 2018-11-30 | 浙江工商大学 | Utilize the automatic tracing heating system and method for infrared measurement of temperature ranging |
US10910963B2 (en) | 2018-07-27 | 2021-02-02 | Ademco Inc. | Power stealing system with an electric load |
CN108980985B (en) * | 2018-07-31 | 2020-10-09 | 珠海格力电器股份有限公司 | Electric heater fault alarm method, electric heater fault alarm device, computer equipment and storage medium |
US11266125B1 (en) | 2018-08-06 | 2022-03-08 | American Institute of Nutrition and Management Inc. | System and method for animal growth regulation for improved profitability and mitigated risk |
CN108917092A (en) * | 2018-08-08 | 2018-11-30 | 艾伽盾科技(浙江)有限公司 | One kind sharing clear oxygen matchmaker air purifier and control method |
CN108980986A (en) * | 2018-09-10 | 2018-12-11 | 天津大学 | Wired home constant temperature heating system |
US11435830B2 (en) | 2018-09-11 | 2022-09-06 | Apple Inc. | Content-based tactile outputs |
CN109612036A (en) * | 2018-09-25 | 2019-04-12 | 北京小米移动软件有限公司 | Environment electric control method and device |
US11119725B2 (en) | 2018-09-27 | 2021-09-14 | Abl Ip Holding Llc | Customizable embedded vocal command sets for a lighting and/or other environmental controller |
US20200109873A1 (en) * | 2018-10-09 | 2020-04-09 | Emerson Electric Co. | System and method for a thermostat attribute recognition model |
US10908001B2 (en) * | 2018-10-10 | 2021-02-02 | Ademco Inc. | Wireless sensor with mounting plate |
US10895397B2 (en) * | 2018-10-10 | 2021-01-19 | Ademco Inc. | Wire detection for an HVAC controller |
CN109595743B (en) * | 2018-10-16 | 2022-03-04 | 珠海格力电器股份有限公司 | Filter screen cleaning reminding method, device and equipment |
US10990261B2 (en) | 2018-10-31 | 2021-04-27 | Trane International Inc. | HVAC graphical user interface with visual obscurity and methods of use thereof |
CN109489120B (en) * | 2018-11-16 | 2021-12-03 | 广东美的制冷设备有限公司 | Air conditioner, control method thereof, mobile terminal, server and storage medium |
US10828986B2 (en) * | 2019-01-07 | 2020-11-10 | Mann+Hummel Gmbh | Cabin air filter element monitoring and analysis system and associated methods |
EP3715738A1 (en) * | 2019-03-29 | 2020-09-30 | Mitsubishi Electric R&D Centre Europe B.V. | Air conditioning system, server system, network, method for controlling an air conditioning system and method for controlling a network |
CN111795482B (en) * | 2019-04-03 | 2021-10-26 | 群光电能科技股份有限公司 | Air conditioning box with element efficiency decline early warning function and early warning method thereof |
CN110109497B (en) * | 2019-04-10 | 2020-10-30 | 焦作华飞电子电器股份有限公司 | Internal circulation voltage stabilization and stability control method for high-altitude and low-temperature environment electric control device |
US10802513B1 (en) | 2019-05-09 | 2020-10-13 | Braeburn Systems Llc | Comfort control system with hierarchical switching mechanisms |
US10605478B1 (en) * | 2019-06-07 | 2020-03-31 | Emerson Electric Co. | Control circuits for supplying current to actuate gas valves in HVAC systems |
CN110500718A (en) * | 2019-08-26 | 2019-11-26 | 珠海格力电器股份有限公司 | Temperature collector control method, device, storage medium and system |
CN110515307B (en) * | 2019-08-27 | 2020-11-20 | 珠海格力电器股份有限公司 | Method for controlling intelligent household equipment and network equipment |
USD950698S1 (en) | 2019-09-09 | 2022-05-03 | Cleanair.Ai Corporation | Filter assembly |
WO2021067329A1 (en) * | 2019-09-30 | 2021-04-08 | Racepoint Energy, LLC | Intelligent lighting control multi-load systems apparatuses and methods |
US11796204B2 (en) * | 2019-10-04 | 2023-10-24 | Ademco Inc. | Determining an irregularity in connections for an HVAC controller based on geographic location |
CN111059690B (en) * | 2019-11-04 | 2021-03-19 | 珠海格力电器股份有限公司 | Internal model decoupling control method and control system of variable air volume air conditioner |
USD939972S1 (en) * | 2019-12-03 | 2022-01-04 | Ademco Inc. | Thermostat |
US11280512B2 (en) | 2019-12-04 | 2022-03-22 | Ademco Inc. | Digital HVAC controller with carousel screens |
US11686493B2 (en) | 2019-12-04 | 2023-06-27 | Ademco Inc. | Digital HVAC controller for navigating information based on two or more inputs |
US11742692B1 (en) | 2019-12-13 | 2023-08-29 | Amazon Technologies, Inc. | Power stealing in relay circuits |
USD928728S1 (en) | 2019-12-20 | 2021-08-24 | Hunter Douglas Inc. | Remote control |
WO2021173152A1 (en) * | 2020-02-28 | 2021-09-02 | Hewlett-Packard Development Company, L.P. | Workload thermolysis curves |
US20210325070A1 (en) * | 2020-04-15 | 2021-10-21 | Honeywell International Inc. | Building supervisory control system having safety features |
CN111486549B (en) * | 2020-04-22 | 2022-02-08 | 武汉网电盈科科技发展有限公司 | Air conditioner outdoor unit filter screen processing method and device and air conditioner |
CN111473472A (en) * | 2020-04-22 | 2020-07-31 | 广州珈鹏科技有限公司 | Air conditioner outdoor unit filter screen processing method and device and air conditioner |
CN111486548B (en) * | 2020-04-22 | 2022-02-01 | 武汉所为不凡能源科技有限公司 | Air conditioner outdoor unit filter screen processing method and device and air conditioner |
US11365898B1 (en) | 2020-06-12 | 2022-06-21 | Trane International, Inc. | Systems and methods for detecting a fault in a climate control system |
US11988591B2 (en) | 2020-07-01 | 2024-05-21 | Particles Plus, Inc. | Modular optical particle counter sensor and apparatus |
KR102516598B1 (en) * | 2020-07-21 | 2023-03-31 | 주식회사 코에어 | Air conditioner filter for automobile |
US10921014B1 (en) * | 2020-07-30 | 2021-02-16 | John Walsh | Smart thermostat power control apparatus |
US11162699B1 (en) | 2020-08-13 | 2021-11-02 | Ademco Inc. | Generating screens for display by HVAC controller using templates |
US11441805B2 (en) * | 2020-08-28 | 2022-09-13 | Google Llc | Thermostat control using touch sensor gesture based input |
US11360252B2 (en) | 2020-08-28 | 2022-06-14 | Google Llc | Partially-reflective cover for a smart home device |
CN112178875B (en) * | 2020-09-28 | 2022-10-04 | Tcl空调器(中山)有限公司 | Air conditioner control method, air conditioner, storage medium and system |
US11231200B1 (en) | 2020-09-29 | 2022-01-25 | Klaus D. Hoog | Tracking and evaluating the performance of a HVAC system |
US11788760B2 (en) | 2020-11-04 | 2023-10-17 | Ademco Inc. | Power stealing system for low power thermostats |
LT6841B (en) | 2020-12-22 | 2021-08-25 | Vilniaus Gedimino technikos universitetas | Individual indoor microclimate control method and its realization system |
CN112594875B (en) * | 2021-01-19 | 2022-07-08 | 广东积微科技有限公司 | Method for controlling number of communication units of multi-online indoor unit |
US20220331729A1 (en) * | 2021-04-19 | 2022-10-20 | B/E Aerospace, Inc. | Clogged air filter detection for galley inserts |
CN113606753B (en) * | 2021-07-19 | 2023-01-10 | 启北公司 | Temperature controller function configuration method and device, computer equipment and readable storage medium |
US12008888B1 (en) | 2021-08-09 | 2024-06-11 | William J. Hoofe, IV | Security system |
US11925260B1 (en) | 2021-10-19 | 2024-03-12 | Braeburn Systems Llc | Thermostat housing assembly and methods |
JPWO2023095687A1 (en) * | 2021-11-29 | 2023-06-01 | ||
US11808467B2 (en) | 2022-01-19 | 2023-11-07 | Google Llc | Customized instantiation of provider-defined energy saving setpoint adjustments |
WO2023147124A2 (en) * | 2022-01-31 | 2023-08-03 | Dwellwell Analytics, Inc. | Apparatus and method for multi-sensor home monitoring and maintenance |
DE102022116538A1 (en) | 2022-07-01 | 2024-01-04 | KAPPA Filter Systems GmbH | Air filter with coupled sample collection/analysis |
GB2621314A (en) * | 2022-07-22 | 2024-02-14 | Heatweb Ltd | Heating system |
DE102022209157A1 (en) | 2022-09-02 | 2024-03-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | Wireless control device for heating systems and/or smart home systems |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5083477A (en) * | 1991-01-31 | 1992-01-28 | Gould Inc. | Control knob locking assembly |
US20030128192A1 (en) * | 2002-01-08 | 2003-07-10 | Koninklijke Philips Electronics N.V. | User interface for electronic devices for controlling the displaying of long sorted lists |
US20040085328A1 (en) * | 2002-10-31 | 2004-05-06 | Fujitsu Limited | Window switching apparatus |
US20070080938A1 (en) * | 2001-10-22 | 2007-04-12 | Apple Computer, Inc. | Method and apparatus for use of rotational user inputs |
US20070247421A1 (en) * | 2006-04-25 | 2007-10-25 | Timothy James Orsley | Capacitive-based rotational positioning input device |
US20080048046A1 (en) * | 2006-08-24 | 2008-02-28 | Ranco Inc. Of Delaware | Networked appliance information display apparatus and network incorporating same |
US20090125824A1 (en) * | 2007-11-12 | 2009-05-14 | Microsoft Corporation | User interface with physics engine for natural gestural control |
US20100023865A1 (en) * | 2005-03-16 | 2010-01-28 | Jim Fulker | Cross-Client Sensor User Interface in an Integrated Security Network |
US20100084249A1 (en) * | 2008-10-07 | 2010-04-08 | Itt Manufacturing Enterprises, Inc. | Snap-on, push button, rotary magnetic encoder knob assembly |
US20100198425A1 (en) * | 2009-02-04 | 2010-08-05 | Paul Donovan | Programmable thermostat |
US20110141142A1 (en) * | 2009-12-16 | 2011-06-16 | Akiva Dov Leffert | Device, Method, and Graphical User Interface for Managing User Interface Content and User Interface Elements |
Family Cites Families (743)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1639299A (en) | 1926-01-22 | 1927-08-16 | Fulton Co | Temperature regulator for internal-combustion engines |
US1956194A (en) * | 1930-12-06 | 1934-04-24 | Fusoid Electric Co Inc | Circuit breaker |
US2101637A (en) | 1935-08-23 | 1937-12-07 | Davis George Howlett | Multiple action thermostat |
US2492774A (en) | 1945-11-14 | 1949-12-27 | Wild Alfred | Portable electric heater |
US2558648A (en) | 1947-11-01 | 1951-06-26 | Ind Metal Protectives Inc | Apparatus for transporting materials |
US3025484A (en) | 1956-08-13 | 1962-03-13 | Lewis L Cunningham | Modulating thermostat |
US3640455A (en) | 1970-02-06 | 1972-02-08 | Ram Domestic Products Co | Air temperature control system |
US3991357A (en) | 1974-04-30 | 1976-11-09 | The Stolle Corporation | Storage battery monitoring and recharging control system with automatic control of prime mover driving charging generator |
US3948441A (en) * | 1974-08-13 | 1976-04-06 | Robertshaw Controls Company | Time variable thermostat |
US4049973A (en) | 1976-04-26 | 1977-09-20 | Emerson Electric Co. | Timer controlled space thermostat with battery operated timer |
DE2719144A1 (en) | 1977-04-29 | 1978-11-02 | Siegenia Frank Kg | SOUND-INSULATING VENTILATION DEVICE FOR ROOMS |
US4177923A (en) | 1977-05-25 | 1979-12-11 | Emerson Electric Co. | Battery operated thermostat timer with battery charging circuits |
US4157506A (en) | 1977-12-01 | 1979-06-05 | Combustion Engineering, Inc. | Flame detector |
US4223831A (en) | 1979-02-21 | 1980-09-23 | Szarka Jay R | Sound activated temperature control system |
US4249696A (en) | 1979-05-11 | 1981-02-10 | Emerson Electric Co. | Charging circuit for battery in thermostat with battery operated timer |
US4335847A (en) | 1980-05-27 | 1982-06-22 | Levine Michael R | Electronic thermostat with repetitive operation cycle |
US4685614A (en) | 1980-05-27 | 1987-08-11 | Honeywell, Inc. | Analog to digital conversion employing the system clock of a microprocessor, the clock frequency varying with analog input |
US4308991A (en) * | 1980-07-07 | 1982-01-05 | Emerson Electric Co. | Programmable electronic thermostat |
US4316577A (en) | 1980-10-06 | 1982-02-23 | Honeywell Inc. | Energy saving thermostat |
US4408711A (en) | 1980-11-14 | 1983-10-11 | Levine Michael R | Thermostat with adaptive operating cycle |
US4460125A (en) | 1981-05-14 | 1984-07-17 | Robertshaw Controls Company | Wall thermostat and the like |
US4742475A (en) | 1984-06-19 | 1988-05-03 | Ibg International, Inc. | Environmental control system |
US4646964A (en) | 1982-03-26 | 1987-03-03 | Parker Electronics, Inc. | Temperature control system |
JPS59106311A (en) | 1982-12-09 | 1984-06-20 | Nippon Denso Co Ltd | Control device for automatic air conditioner |
JPS59106311U (en) | 1982-12-28 | 1984-07-17 | ヤマハ株式会社 | Bliss box opening locking mechanism |
US4528459A (en) | 1983-06-10 | 1985-07-09 | Rockwell International Corporation | Battery backup power switch |
US4506827A (en) | 1983-10-17 | 1985-03-26 | Johnson Service Company | Battery powered thermostat |
US4695246A (en) | 1984-08-30 | 1987-09-22 | Lennox Industries, Inc. | Ignition control system for a gas appliance |
US4621336A (en) | 1984-09-17 | 1986-11-04 | Emerson Electric Co. | Visual display of time schedule in a programmable thermostat |
US4613139A (en) | 1984-12-10 | 1986-09-23 | Robinson William Henry Ii | Video control gloves |
US4657179A (en) | 1984-12-26 | 1987-04-14 | Honeywell Inc. | Distributed environmental/load control system |
US4632177A (en) | 1985-03-29 | 1986-12-30 | Honeywell Inc. | Clock operated thermostat having automatic changeover and optimum start |
KR870000628A (en) | 1985-06-03 | 1987-02-19 | 알프레드 엔. 펠드만 | Analog and Digital Thermostats |
US4615380A (en) | 1985-06-17 | 1986-10-07 | Honeywell Inc. | Adaptive clock thermostat means for controlling over and undershoot |
US4674027A (en) | 1985-06-19 | 1987-06-16 | Honeywell Inc. | Thermostat means adaptively controlling the amount of overshoot or undershoot of space temperature |
US4632303A (en) | 1985-10-25 | 1986-12-30 | Rodittis John N | Electronic thermostat with switched power converter |
JPS62266348A (en) | 1985-12-27 | 1987-11-19 | Mitsubishi Electric Corp | Air conditioner |
US4751961A (en) | 1986-02-18 | 1988-06-21 | Honeywell Inc. | Electronic programmable thermostat |
US4656835A (en) | 1986-09-15 | 1987-04-14 | Honeywell Inc. | Demand limit control by integral reset of thermostats |
US4847781A (en) | 1986-09-23 | 1989-07-11 | Associated Data Consoltants | Energy management system |
US4772876A (en) | 1986-10-10 | 1988-09-20 | Zenith Electronics Corporation | Remote security transmitter address programmer |
US4897798A (en) | 1986-12-08 | 1990-01-30 | American Telephone And Telegraph Company | Adaptive environment control system |
US4798971A (en) | 1987-04-14 | 1989-01-17 | J & S Electronics, Inc. | Apparatus for controlling device start up and off/on running periods |
USD321903S (en) | 1987-04-22 | 1991-11-26 | Chepaitis Elia V | Alphanumeric font |
US4974121A (en) * | 1987-05-29 | 1990-11-27 | Fuji Xerox Co., Ltd. | Wiring module |
US4768706A (en) | 1987-06-04 | 1988-09-06 | Parfitt Ronald H | Indicating and control instruments |
US4948040A (en) | 1987-06-11 | 1990-08-14 | Mitsubishi Denki Kabushiki Kaisha | Air conditioning system |
US4741476A (en) | 1987-07-07 | 1988-05-03 | Honeywell Inc. | Digital electronic thermostat with correction for triac self heating |
US4872828A (en) | 1987-09-10 | 1989-10-10 | Hamilton Standard Controls, Inc. | Integrated furnace control and control self test |
US4842510A (en) | 1987-09-10 | 1989-06-27 | Hamilton Standard Controls, Inc. | Integrated furnace control having ignition and pressure switch diagnostics |
US4955806A (en) | 1987-09-10 | 1990-09-11 | Hamilton Standard Controls, Inc. | Integrated furnace control having ignition switch diagnostics |
GB8726365D0 (en) | 1987-11-11 | 1987-12-16 | Ams Ind Plc | Rotary control |
US5175439A (en) | 1987-12-21 | 1992-12-29 | Robert Bosch Gmbh | Power supply circuit for motor vehicles |
JPH01252850A (en) | 1987-12-24 | 1989-10-09 | Mitsubishi Electric Corp | Display device for airconditioner |
US4898229A (en) * | 1988-09-22 | 1990-02-06 | Emerson Electric Co. | Thermostat with integral means for detecting out-of-phase connection of a two-transformer power source |
US4881686A (en) | 1988-10-13 | 1989-11-21 | Hunter-Melnor, Inc. | Temperature recovery display device for an electronic programmable thermostat |
US5005365A (en) | 1988-12-02 | 1991-04-09 | Inter-City Products Corporation (Usa) | Thermostat speed bar graph for variable speed temperature control system |
US5065813A (en) | 1988-12-09 | 1991-11-19 | Arnold D. Berkeley | Interactive electronic thermostat with installation assistance |
US5161606A (en) | 1988-12-09 | 1992-11-10 | Arnold D. Berkeley | Interactive electronic thermostat with minimum and maximum temperature thermal limit switches |
US4948044A (en) | 1989-08-21 | 1990-08-14 | Harper-Wyman Company | Electronic digital thermostat having an improved power supply |
US4971136A (en) | 1989-11-28 | 1990-11-20 | Electric Power Research Institute | Dual fuel heat pump controller |
IT219664Z2 (en) | 1989-12-29 | 1993-04-21 | Bpt Spa | PROGRAMMABLE THERMOSTAT WITH TEMPERATURE DISPLAY |
US5255179A (en) | 1990-07-23 | 1993-10-19 | Zekan Boze N | Switched mode power supply for single-phase boost commercial AC users in the range of 1 kw to 10 kw |
US5260669A (en) | 1990-09-12 | 1993-11-09 | Lectro Products, Inc. | Circuit for generating first and second in-phase alternating signals |
US5107918A (en) | 1991-03-01 | 1992-04-28 | Lennox Industries Inc. | Electronic thermostat |
US5127464A (en) | 1991-03-14 | 1992-07-07 | Emerson Electric Co. | Thermostat providing electrical isolation therein between connected heating and cooling transformers |
US5115967A (en) | 1991-03-18 | 1992-05-26 | Wedekind Gilbert L | Method and apparatus for adaptively optimizing climate control energy consumption in a building |
AU647894B2 (en) | 1991-03-27 | 1994-03-31 | Honeywell Inc. | System powered power supply using dual transformer HVAC systems |
DE9104170U1 (en) | 1991-04-06 | 1991-07-04 | Grässlin KG, 7742 St Georgen | Electronic thermostat timer |
US5088645A (en) | 1991-06-24 | 1992-02-18 | Ian Bell | Self-programmable temperature control system for a heating and cooling system |
US5240178A (en) | 1991-09-05 | 1993-08-31 | Dewolf Thomas L | Active anticipatory control |
US5211332A (en) | 1991-09-30 | 1993-05-18 | Honeywell Inc. | Thermostat control |
US5390206A (en) * | 1991-10-01 | 1995-02-14 | American Standard Inc. | Wireless communication system for air distribution system |
US5232478A (en) * | 1991-11-14 | 1993-08-03 | Farris Richard W | Electronic air filter |
US5158477A (en) | 1991-11-15 | 1992-10-27 | The United States Of America As Represented By The Secretary Of The Army | Battery connector and method |
USD341848S (en) | 1991-12-09 | 1993-11-30 | Microsoft Corporation | Typeface |
US5224649A (en) | 1992-03-23 | 1993-07-06 | Emerson Electric Co. | Digital thermostat with single rotary encoder switch for establishing set point temperature |
US5761083A (en) | 1992-03-25 | 1998-06-02 | Brown, Jr.; Robert J. | Energy management and home automation system |
US5544036A (en) | 1992-03-25 | 1996-08-06 | Brown, Jr.; Robert J. | Energy management and home automation system |
US5224648A (en) | 1992-03-27 | 1993-07-06 | American Standard Inc. | Two-way wireless HVAC system and thermostat |
US5181389A (en) | 1992-04-26 | 1993-01-26 | Thermo King Corporation | Methods and apparatus for monitoring the operation of a transport refrigeration system |
US5318224A (en) | 1992-05-04 | 1994-06-07 | David Darby | Method and apparatus for heating and cooling control |
US5244146A (en) * | 1992-05-08 | 1993-09-14 | Homebrain, Inc. | Energy-conserving thermostat and method |
US5277363A (en) | 1992-09-22 | 1994-01-11 | Robertshaw Controls Company | Electrical system for controlling the operation of a heat exchanger unit, thermostat therefor and methods of making the same |
US5226591A (en) | 1992-11-19 | 1993-07-13 | Honeywell Inc. | Active low temperature limit for battery powered thermostat |
US5481481A (en) | 1992-11-23 | 1996-01-02 | Architectural Engergy Corporation | Automated diagnostic system having temporally coordinated wireless sensors |
US5347982A (en) | 1992-12-21 | 1994-09-20 | Canadian Heating Products Inc. | Flame monitor safeguard system |
US5303612A (en) | 1992-12-24 | 1994-04-19 | Honeywell Inc. | Increased diameter detachable thermostat knob allowing easier thermostat use |
US5251813A (en) | 1993-03-25 | 1993-10-12 | Emerson Electric Co. | Indication of low battery voltage condition by altering of temperature setpoint |
US5422808A (en) | 1993-04-20 | 1995-06-06 | Anthony T. Catanese, Jr. | Method and apparatus for fail-safe control of at least one electro-mechanical or electro-hydraulic component |
US5638501A (en) | 1993-05-10 | 1997-06-10 | Apple Computer, Inc. | Method and apparatus for displaying an overlay image |
CA2124053C (en) | 1993-05-24 | 1999-03-30 | Henry Petrie Mcnair | Remote temperature control system |
DE69432199T2 (en) | 1993-05-24 | 2004-01-08 | Sun Microsystems, Inc., Mountain View | Graphical user interface with methods for interfacing with remote control devices |
CA2125014C (en) | 1993-06-16 | 1998-11-03 | William H. Gorski | Direct digital control thermostat |
US6213404B1 (en) | 1993-07-08 | 2001-04-10 | Dushane Steve | Remote temperature sensing transmitting and programmable thermostat system |
US6116512A (en) | 1997-02-19 | 2000-09-12 | Dushane; Steven D. | Wireless programmable digital thermostat system |
US5348078A (en) | 1993-07-08 | 1994-09-20 | Steven D. Dushane | Dwelling heating and air conditioning system |
US5452762A (en) | 1993-07-13 | 1995-09-26 | Zillner, Jr.; Anthony H. | Environmental control system using poled diodes to allow additional controlled devices in existing four wire system |
US5416725A (en) | 1993-08-18 | 1995-05-16 | P.C. Sentry, Inc. | Computer-based notification system having redundant sensor alarm determination and associated computer-implemented method for issuing notification of events |
US5381950A (en) | 1993-10-20 | 1995-01-17 | American Standard Inc. | Zone sensor or thermostat with forced air |
US5611484A (en) | 1993-12-17 | 1997-03-18 | Honeywell Inc. | Thermostat with selectable temperature sensor inputs |
US5635896A (en) | 1993-12-27 | 1997-06-03 | Honeywell Inc. | Locally powered control system having a remote sensing unit with a two wire connection |
US5428964A (en) * | 1994-01-10 | 1995-07-04 | Tec-Way Air Quality Products Inc. | Control for air quality machine |
US5476221A (en) | 1994-01-28 | 1995-12-19 | Seymour; Richard L. | Easy-to-install thermostatic control system based on room occupancy |
US5415346A (en) * | 1994-01-28 | 1995-05-16 | American Standard Inc. | Apparatus and method for reducing overshoot in response to the setpoint change of an air conditioning system |
US5462225A (en) | 1994-02-04 | 1995-10-31 | Scientific-Atlanta, Inc. | Apparatus and method for controlling distribution of electrical energy to a space conditioning load |
US5395042A (en) | 1994-02-17 | 1995-03-07 | Smart Systems International | Apparatus and method for automatic climate control |
US5646349A (en) | 1994-02-18 | 1997-07-08 | Plan B Enterprises, Inc. | Floating mass accelerometer |
US5456407A (en) | 1994-03-25 | 1995-10-10 | Electric Power Research Institute, Inc. | Two terminal line voltage thermostat |
US5592989A (en) | 1994-04-28 | 1997-01-14 | Landis & Gyr Powers, Inc. | Electronic thermostat having high and low voltage control capability |
US5506569A (en) | 1994-05-31 | 1996-04-09 | Texas Instruments Incorporated | Self-diagnostic flame rectification sensing circuit and method therefor |
US5482209A (en) | 1994-06-01 | 1996-01-09 | Honeywell Inc. | Method and means for programming a programmable electronic thermostat |
US5485954A (en) | 1994-06-10 | 1996-01-23 | American Standard Inc. | Reduced profile thermostat |
US5413278A (en) | 1994-06-30 | 1995-05-09 | Erikson; Evans W. | Remotely activated opposing pressure air flow control register |
US5460327A (en) | 1994-07-01 | 1995-10-24 | Carrier Corporation | Extended clock thermostat |
US5467921A (en) | 1994-09-23 | 1995-11-21 | Carrier Corporation | Thermostat having short circuit protection |
US5627531A (en) | 1994-09-30 | 1997-05-06 | Ohmeda Inc. | Multi-function menu selection device |
US5644173A (en) | 1994-10-25 | 1997-07-01 | Elliason; Kurt L. | Real time and/shed load based on received tier pricing and direct load control with processors for each load |
US6574581B1 (en) | 1994-10-25 | 2003-06-03 | Honeywell International Inc. | Profile based method for deriving a temperature setpoint using a ‘delta’ based on cross-indexing a received price-point level signal |
GB2294828B (en) | 1994-11-07 | 1998-10-28 | Appliance Components Ltd | Improvements in or relating to heating/cooling systems |
US6356038B2 (en) | 1994-12-14 | 2002-03-12 | Richard A. Bishel | Microcomputer-controlled AC power switch controller and DC power supply method and apparatus |
IT234321Y1 (en) | 1994-12-29 | 2000-03-09 | Perry Electric Srl | PROGRAMMABLE THERMOSTAT WITH GRAPHIC AND NUMERICAL TEMPERATURE DISPLAY |
US5801940A (en) * | 1995-01-19 | 1998-09-01 | Gas Research Institute | Fault-tolerant HVAC system |
US5485953A (en) | 1995-01-26 | 1996-01-23 | Gas Research Institute | Method and apparatus for controlling the circulation of heat transfer fluid for thermal conditioning systems for spaces |
US5971597A (en) * | 1995-03-29 | 1999-10-26 | Hubbell Corporation | Multifunction sensor and network sensor system |
DE29505606U1 (en) | 1995-03-31 | 1996-02-01 | Siemens AG, 80333 München | Control unit for an automatic vehicle air conditioning system |
US5603451A (en) | 1995-03-31 | 1997-02-18 | John W. Helander | Aesthetic thermostat |
DE59506590D1 (en) | 1995-05-23 | 1999-09-16 | Siemens Ag | Semiconductor arrangement with self-aligned contacts and method for their production |
US5555927A (en) | 1995-06-07 | 1996-09-17 | Honeywell Inc. | Thermostat system having an optimized temperature recovery ramp rate |
US5950709A (en) | 1995-07-21 | 1999-09-14 | Honeywell Inc. | Temperature control with stored multiple configuration programs |
US5802467A (en) | 1995-09-28 | 1998-09-01 | Innovative Intelcom Industries | Wireless and wired communications, command, control and sensing system for sound and/or data transmission and reception |
US5570837A (en) | 1995-10-18 | 1996-11-05 | Emerson Electric Co. | Programmable digital thermostat with means for enabling temporary connection of a battery thereto |
US5839654A (en) | 1996-02-05 | 1998-11-24 | Innova Patent Trust | Portable air comfort system thermostat enabling personal localized control of room temperature |
DE19609390C2 (en) | 1996-02-29 | 2002-05-23 | Siemens Ag | Control device with several actuators |
US5808602A (en) | 1996-03-15 | 1998-09-15 | Compaq Computer Corporation | Rotary cursor positioning apparatus |
US5816491A (en) | 1996-03-15 | 1998-10-06 | Arnold D. Berkeley | Method and apparatus for conserving peak load fuel consumption and for measuring and recording fuel consumption |
DE29607153U1 (en) | 1996-04-21 | 1996-07-04 | Grässlin KG, 78112 St Georgen | Electronic display device with a program input and / or switching device for switching and / or control devices, in particular for timers with a temperature control device |
US5736795A (en) | 1996-04-22 | 1998-04-07 | Honeywell Inc. | Solid state AC switch with self-synchronizing means for stealing operating power |
JPH09298780A (en) | 1996-05-07 | 1997-11-18 | Yamatake Honeywell Co Ltd | Wireless receiver |
US5655709A (en) | 1996-05-29 | 1997-08-12 | Texas Instruments Incorporated | Electrical control system for relay operation responsive to thermostat input having improved efficiency |
US5697552A (en) | 1996-05-30 | 1997-12-16 | Mchugh; Thomas K. | Setpoint limiting for thermostat, with tamper resistant temperature comparison |
US5782296A (en) | 1996-06-14 | 1998-07-21 | Hunter Fan Company | Auto-programmable electronic thermostat |
DK0932398T3 (en) | 1996-06-28 | 2006-09-25 | Ortho Mcneil Pharm Inc | Use of topiramate or derivatives thereof for the manufacture of a medicament for the treatment of manic depressive bipolar disorders |
JP3240434B2 (en) | 1996-07-04 | 2001-12-17 | 株式会社山武 | Desktop / wall mounted sensor built-in device |
US5673850A (en) | 1996-07-22 | 1997-10-07 | Lux Products Corporation | Programmable thermostat with rotary dial program setting |
US5918474A (en) | 1996-07-30 | 1999-07-06 | Whirlpool Corporation | Fan motor on/off control system for a refrigeration appliance |
US5902099A (en) * | 1996-10-31 | 1999-05-11 | Texas Instruments Incorporated | Combined fan and ignition control with selected condition sensing apparatus |
US5902183A (en) | 1996-11-15 | 1999-05-11 | D'souza; Melanius | Process and apparatus for energy conservation in buildings using a computer controlled ventilation system |
US6636197B1 (en) | 1996-11-26 | 2003-10-21 | Immersion Corporation | Haptic feedback effects for control, knobs and other interface devices |
US5959621A (en) | 1996-12-06 | 1999-09-28 | Microsoft Corporation | System and method for displaying data items in a ticker display pane on a client computer |
US6211921B1 (en) | 1996-12-20 | 2001-04-03 | Philips Electronics North America Corporation | User interface for television |
US5808294A (en) | 1997-01-14 | 1998-09-15 | Kenco Automatic Feeders | Electronic controller for scheduling device activation by sensing daylight |
US5903139A (en) * | 1997-01-27 | 1999-05-11 | Honeywell Inc. | Power stealing solid state switch for supplying operating power to an electronic control device |
US5986357A (en) | 1997-02-04 | 1999-11-16 | Mytech Corporation | Occupancy sensor and method of operating same |
US5779143A (en) | 1997-02-13 | 1998-07-14 | Erie Manufacturing Company | Electronic boiler control |
US5973662A (en) | 1997-04-07 | 1999-10-26 | Johnson Controls Technology Company | Analog spectrum display for environmental control |
CA2202008C (en) | 1997-04-07 | 2000-02-08 | Hugues Demilleville | Energy management system |
US5909378A (en) | 1997-04-09 | 1999-06-01 | De Milleville; Hugues | Control apparatus and method for maximizing energy saving in operation of HVAC equipment and the like |
US5926776A (en) | 1997-06-04 | 1999-07-20 | Gas Research Institute | Smart thermostat having a transceiver interface |
US5785244A (en) * | 1997-06-16 | 1998-07-28 | Ford Motor Company | Method and system for automatically controlling an automotive HVAC unit |
US6060719A (en) | 1997-06-24 | 2000-05-09 | Gas Research Institute | Fail safe gas furnace optical flame sensor using a transconductance amplifier and low photodiode current |
JP3218429B2 (en) | 1997-06-30 | 2001-10-15 | 株式会社ゼクセルヴァレオクライメートコントロール | 2-stage pallet |
JP3324686B2 (en) | 1997-07-14 | 2002-09-17 | エスエムシー株式会社 | Constant temperature liquid circulation device |
USD396488S (en) | 1997-07-15 | 1998-07-28 | Kunkler Todd M | Bank check |
US6072784A (en) | 1997-07-25 | 2000-06-06 | At&T Corp. | CDMA mobile station wireless transmission power management with adaptive scheduling priorities based on battery power level |
USD428399S (en) | 1997-08-08 | 2000-07-18 | Starfish Software, Inc. | Interface for a display screen for an electronic device |
USD441763S1 (en) | 1997-08-04 | 2001-05-08 | Starfish Software, Inc. | Graphic user interface for an electronic device for a display screen |
JP4416939B2 (en) | 1997-08-19 | 2010-02-17 | サイズミック・ウォーニング・システムズ・インコーポレーテッド | Method and apparatus for detecting impending earthquakes |
US6062482A (en) | 1997-09-19 | 2000-05-16 | Pentech Energy Solutions, Inc. | Method and apparatus for energy recovery in an environmental control system |
US5924486A (en) | 1997-10-29 | 1999-07-20 | Tecom, Inc. | Environmental condition control and energy management system and method |
US5930773A (en) | 1997-12-17 | 1999-07-27 | Avista Advantage, Inc. | Computerized resource accounting methods and systems, computerized utility management methods and systems, multi-user utility management methods and systems, and energy-consumption-based tracking methods and systems |
US6385510B1 (en) | 1997-12-03 | 2002-05-07 | Klaus D. Hoog | HVAC remote monitoring system |
US6206295B1 (en) | 1998-03-04 | 2001-03-27 | Marvin Lacoste | Comfort thermostat |
US5957374A (en) | 1998-03-17 | 1999-09-28 | Hunter Fan Company | Voltage boosting system and method for electronic thermostat relay |
US6066843A (en) | 1998-04-06 | 2000-05-23 | Lightstat, Inc. | Light discriminator for a thermostat |
US6275160B1 (en) | 1998-04-13 | 2001-08-14 | Pittway Corporation | Multi-mode waterflow detector with electronic timer |
US6065068A (en) * | 1998-04-20 | 2000-05-16 | National Instruments Corporation | System for storing and updating configuration information about I/O card and using stored configuration information to configure newly installed I/O card when compatible with old card |
US6098117A (en) * | 1998-04-20 | 2000-08-01 | National Instruments Corporation | System and method for controlling access to memory configured within an I/O module in a distributed I/O system |
US6032867A (en) | 1998-04-21 | 2000-03-07 | Dushane; Steve | Flat plate thermostat and wall mounting method |
US6347747B1 (en) | 1998-05-01 | 2002-02-19 | Intellinet, Inc. | Stand-alone thermostat |
WO1999060456A1 (en) | 1998-05-15 | 1999-11-25 | Varma Trafag Limited | Multipoint digital temperature controller |
US6798341B1 (en) | 1998-05-18 | 2004-09-28 | Leviton Manufacturing Co., Inc. | Network based multiple sensor and control device with temperature sensing and control |
US6122603A (en) | 1998-05-29 | 2000-09-19 | Powerweb, Inc. | Multi-utility energy control system with dashboard |
US6311105B1 (en) | 1998-05-29 | 2001-10-30 | Powerweb, Inc. | Multi-utility energy control system |
US6891838B1 (en) | 1998-06-22 | 2005-05-10 | Statsignal Ipc, Llc | System and method for monitoring and controlling residential devices |
US6164374A (en) | 1998-07-02 | 2000-12-26 | Emerson Electric Co. | Thermostat having a multiple color signal capability with single indicator opening |
US6089310A (en) | 1998-07-15 | 2000-07-18 | Emerson Electric Co. | Thermostat with load activation detection feature |
US6196468B1 (en) | 1998-07-24 | 2001-03-06 | Dennis Guy Young | Air conditioning and heating environmental control sensing system |
USD450059S1 (en) | 1998-07-31 | 2001-11-06 | Sony Corporation | Computer generated image for a display panel or screen |
US6950534B2 (en) | 1998-08-10 | 2005-09-27 | Cybernet Systems Corporation | Gesture-controlled interfaces for self-service machines and other applications |
US6098893A (en) | 1998-10-22 | 2000-08-08 | Honeywell Inc. | Comfort control system incorporating weather forecast data and a method for operating such a system |
US7038667B1 (en) | 1998-10-26 | 2006-05-02 | Immersion Corporation | Mechanisms for control knobs and other interface devices |
US20040095237A1 (en) | 1999-01-09 | 2004-05-20 | Chen Kimball C. | Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same |
US6351693B1 (en) | 1999-01-22 | 2002-02-26 | Honeywell International Inc. | Computerized system for controlling thermostats |
IL128249A0 (en) | 1999-01-27 | 1999-11-30 | Yoram Dehan | Connecting/wiring means for electrical wires |
US6179213B1 (en) | 1999-02-09 | 2001-01-30 | Energy Rest, Inc. | Universal accessory for timing and cycling heat, ventilation and air conditioning energy consumption and distribution systems |
US6295823B1 (en) | 1999-03-16 | 2001-10-02 | Ch2M Hill, Inc. | Apparatus and method for controlling temperature and humidity of a conditioned space |
US6095427A (en) * | 1999-04-22 | 2000-08-01 | Thermo King Corporation | Temperature control system and method for efficiently obtaining and maintaining the temperature in a conditioned space |
US20030103079A1 (en) | 1999-06-14 | 2003-06-05 | Lycos, Inc., A Virginia Corporation | Media resource manager/player |
US6084518A (en) | 1999-06-21 | 2000-07-04 | Johnson Controls Technology Company | Balanced charge flame characterization system and method |
DE19929973A1 (en) | 1999-06-30 | 2001-01-04 | Volkswagen Ag | Control element |
US6286764B1 (en) | 1999-07-14 | 2001-09-11 | Edward C. Garvey | Fluid and gas supply system |
US6222719B1 (en) | 1999-07-15 | 2001-04-24 | Andrew S. Kadah | Ignition boost and rectification flame detection circuit |
US6207899B1 (en) | 1999-07-20 | 2001-03-27 | Laymon Gillespie | Thermostat cover |
US6469919B1 (en) * | 1999-07-22 | 2002-10-22 | Eni Technology, Inc. | Power supplies having protection circuits |
US6205041B1 (en) * | 1999-07-28 | 2001-03-20 | Carrier Corporation | Power supply for electronic thermostat |
US6209794B1 (en) | 1999-08-17 | 2001-04-03 | Visteon Global Technologies, Inc. | Method for designing a vehicle thermal management system |
US6431457B1 (en) | 1999-09-28 | 2002-08-13 | Rapid Engineering, Inc. | Air heater control |
US6318639B1 (en) | 1999-10-15 | 2001-11-20 | Emerson Electric Co. | Thermostat with temporary fan on function |
US6315211B1 (en) | 1999-12-03 | 2001-11-13 | Emerson Electric Co. | Hardwired or battery powered digital thermostat |
US6234398B1 (en) * | 1999-12-07 | 2001-05-22 | Delphi Technologies, Inc. | Motor vehicle automatic HVAC control with open loop transient compensation |
USD435473S (en) | 1999-12-29 | 2000-12-26 | Leviton Manufacturing Co., Inc. | Combined dimmer, switch, IR receiver, thermostat, ambient light sensor and passive infrared motion sensor |
US6298285B1 (en) | 2000-01-04 | 2001-10-02 | Aqua Conservation Systems, Inc. | Irrigation accumulation controller |
US6453687B2 (en) | 2000-01-07 | 2002-09-24 | Robertshaw Controls Company | Refrigeration monitor unit |
US6934862B2 (en) | 2000-01-07 | 2005-08-23 | Robertshaw Controls Company | Appliance retrofit monitoring device with a memory storing an electronic signature |
US6816944B2 (en) | 2000-02-02 | 2004-11-09 | Innopath Software | Apparatus and methods for providing coordinated and personalized application and data management for resource-limited mobile devices |
US6509838B1 (en) | 2000-02-08 | 2003-01-21 | Peter P. Payne | Constant current flame ionization circuit |
US6332327B1 (en) | 2000-03-14 | 2001-12-25 | Hussmann Corporation | Distributed intelligence control for commercial refrigeration |
WO2001078307A2 (en) | 2000-04-10 | 2001-10-18 | Zensys A/S | Rf home automation system comprising nodes with dual functionality |
SI20556A (en) | 2000-04-10 | 2001-10-31 | Aljoša ROVAN | Temperature controller with a user-friendly interface and two-way communication |
US6622115B1 (en) | 2000-04-28 | 2003-09-16 | International Business Machines Corporation | Managing an environment according to environmental preferences retrieved from a personal storage device |
US6604023B1 (en) | 2000-04-28 | 2003-08-05 | International Business Machines Corporation | Managing an environment utilizing a portable data processing system |
GB2362769A (en) | 2000-05-26 | 2001-11-28 | Nokia Mobile Phones Ltd | Battery charging circuit in which power is supplied via a communications port |
US6382264B1 (en) | 2000-06-21 | 2002-05-07 | Reveo, Inc. | Recyclable fuel distribution, storage, delivery and supply system |
US6519509B1 (en) | 2000-06-22 | 2003-02-11 | Stonewater Software, Inc. | System and method for monitoring and controlling energy distribution |
US6631185B1 (en) | 2000-06-22 | 2003-10-07 | Micron Technology Inc. | Method and apparatus for comparing communication service plans based on usage statistics |
US6556222B1 (en) * | 2000-06-30 | 2003-04-29 | International Business Machines Corporation | Bezel based input mechanism and user interface for a smart watch |
US7109970B1 (en) | 2000-07-01 | 2006-09-19 | Miller Stephen S | Apparatus for remotely controlling computers and other electronic appliances/devices using a combination of voice commands and finger movements |
IT1315103B1 (en) | 2000-07-11 | 2003-02-03 | Invensys Climate Controls Spa | ELECTRONIC DEVICE FOR SETTING AND CONDITIONING ROOM TEMPERATURES AND RELATED SETTING METHOD |
US7035805B1 (en) | 2000-07-14 | 2006-04-25 | Miller Stephen S | Switching the modes of operation for voice-recognition applications |
US7161476B2 (en) | 2000-07-26 | 2007-01-09 | Bridgestone Firestone North American Tire, Llc | Electronic tire management system |
US6851967B2 (en) | 2000-08-04 | 2005-02-08 | Omron Corporation | Wire connector |
DE10044534A1 (en) | 2000-09-05 | 2002-03-14 | Leon Rottwinkel | Image rendering system |
JP2002087050A (en) | 2000-09-12 | 2002-03-26 | Alpine Electronics Inc | Set temperature display device for air conditioner |
US6513723B1 (en) | 2000-09-28 | 2003-02-04 | Emerson Electric Co. | Method and apparatus for automatically transmitting temperature information to a thermostat |
US7209870B2 (en) | 2000-10-12 | 2007-04-24 | Hvac Holding Company, L.L.C. | Heating, ventilating, and air-conditioning design apparatus and method |
US20020070635A1 (en) | 2000-10-13 | 2002-06-13 | Morrison Gerald O. | Self-powered wireless switch |
US6909921B1 (en) | 2000-10-19 | 2005-06-21 | Destiny Networks, Inc. | Occupancy sensor and method for home automation system |
US6595430B1 (en) | 2000-10-26 | 2003-07-22 | Honeywell International Inc. | Graphical user interface system for a thermal comfort controller |
US7149727B1 (en) | 2000-11-01 | 2006-12-12 | Avista Advantage, Inc. | Computerized system and method for providing cost savings for consumers |
US6621507B1 (en) | 2000-11-03 | 2003-09-16 | Honeywell International Inc. | Multiple language user interface for thermal comfort controller |
US6566768B2 (en) | 2000-12-14 | 2003-05-20 | Venstar Inc. | Two line switch and power sharing for programmable means |
US6549870B2 (en) * | 2000-12-20 | 2003-04-15 | Carrier Corporation | Weighted setback reporting thermostat |
US6478233B1 (en) | 2000-12-29 | 2002-11-12 | Honeywell International Inc. | Thermal comfort controller having an integral energy savings estimator |
US6641055B1 (en) * | 2001-01-10 | 2003-11-04 | Teresa Conaty Tiernan | Variations on combined thermostat and fuel level monitor |
US6545562B2 (en) | 2001-02-09 | 2003-04-08 | Adc Telecommunications, Inc. | Plug connector for cable television network and method of use |
DE60237433D1 (en) | 2001-02-24 | 2010-10-07 | Ibm | NOVEL MASSIVE PARALLEL SUPERCOMPUTER |
US6437999B1 (en) | 2001-05-12 | 2002-08-20 | Technical Witts, Inc. | Power electronic circuits with ripple current cancellation |
US6370894B1 (en) | 2001-03-08 | 2002-04-16 | Carrier Corporation | Method and apparatus for using single-stage thermostat to control two-stage cooling system |
US7992630B2 (en) | 2001-03-12 | 2011-08-09 | Davis Energy Group, Inc. | System and method for pre-cooling of buildings |
DE10116265A1 (en) * | 2001-03-31 | 2002-10-10 | Daimler Chrysler Ag | Control unit with at least one control element for an air conditioning system and / or automatic system |
US20020198629A1 (en) | 2001-04-27 | 2002-12-26 | Enerwise Global Technologies, Inc. | Computerized utility cost estimation method and system |
US6668240B2 (en) * | 2001-05-03 | 2003-12-23 | Emerson Retail Services Inc. | Food quality and safety model for refrigerated food |
US6769482B2 (en) | 2001-05-10 | 2004-08-03 | Ranco Incorporated Of Delaware | System and method for switching-over between heating and cooling modes |
USD497617S1 (en) | 2001-05-16 | 2004-10-26 | Groxis, Inc. | Graphical information interface for a display |
USD485279S1 (en) | 2002-10-28 | 2004-01-13 | Groxis, Inc. | Knowledge map user interface for a display |
JP2002341955A (en) | 2001-05-17 | 2002-11-29 | Pioneer Electronic Corp | Rotary operation mechanism, music reproducing device using the same |
US6490174B1 (en) * | 2001-06-04 | 2002-12-03 | Honeywell International Inc. | Electronic interface for power stealing circuit |
US6692349B1 (en) * | 2001-06-11 | 2004-02-17 | Fusion Design, Inc. | Computer controlled air vent |
US6969959B2 (en) | 2001-07-06 | 2005-11-29 | Lutron Electronics Co., Inc. | Electronic control systems and methods |
ITMI20010473U1 (en) | 2001-08-09 | 2003-02-09 | Imit Spa | MODULAR DEVICE FOR PROGRAMMABLE REGULATION |
FR2828761B1 (en) | 2001-08-14 | 2003-10-17 | Lcd Solution | PROGRAMMABLE SWITCH WITH PRESSURE AND / OR ROTATION OPERABLE DISPLAY |
US20030034898A1 (en) | 2001-08-20 | 2003-02-20 | Shamoon Charles G. | Thermostat and remote control system and method |
JP2003054290A (en) | 2001-08-20 | 2003-02-26 | Denso Corp | Switch device for vehicle |
US7555364B2 (en) | 2001-08-22 | 2009-06-30 | MMI Controls, L.P. | Adaptive hierarchy usage monitoring HVAC control system |
US6681997B2 (en) | 2001-08-31 | 2004-01-27 | Enhanced Visual Products, Inc. | Visual and reading enhancement apparatus for thermostats and associated methods |
US6993417B2 (en) | 2001-09-10 | 2006-01-31 | Osann Jr Robert | System for energy sensing analysis and feedback |
CA2402762A1 (en) | 2001-09-10 | 2003-03-10 | Fmc Technologies, Inc. | System and method for monitoring and managing equipment |
US6826454B2 (en) | 2001-09-19 | 2004-11-30 | Louis E. Sulfstede | Air conditioning diagnostic analyzer |
US6923640B2 (en) | 2001-09-28 | 2005-08-02 | General Electric Company | Flame burner ignition system |
US6622925B2 (en) | 2001-10-05 | 2003-09-23 | Enernet Corporation | Apparatus and method for wireless control |
US7181465B2 (en) | 2001-10-29 | 2007-02-20 | Gary Robin Maze | System and method for the management of distributed personalized information |
USD464660S1 (en) | 2001-10-31 | 2002-10-22 | Acer Digital Services Corp. | User interface component for a display |
US6560977B1 (en) | 2001-11-09 | 2003-05-13 | Valeo Climate Control Corp. | Vehicle HVAC evaporator temperature probe assembly method |
US6657418B2 (en) | 2001-11-13 | 2003-12-02 | Honeywell International Inc. | Parasitic power supply system for supplying operating power to a control device |
US6645066B2 (en) | 2001-11-19 | 2003-11-11 | Koninklijke Philips Electronics N.V. | Space-conditioning control employing image-based detection of occupancy and use |
US8176432B2 (en) * | 2001-11-20 | 2012-05-08 | UEI Electronics Inc. | Hand held remote control device having an improved user interface |
US20050187867A1 (en) | 2002-01-03 | 2005-08-25 | Sokolic Jeremy N. | System and method for associating identifiers with transactions |
US20030151513A1 (en) | 2002-01-10 | 2003-08-14 | Falk Herrmann | Self-organizing hierarchical wireless network for surveillance and control |
US6641054B2 (en) | 2002-01-23 | 2003-11-04 | Randall L. Morey | Projection display thermostat |
US6643567B2 (en) | 2002-01-24 | 2003-11-04 | Carrier Corporation | Energy consumption estimation using real time pricing information |
US6786421B2 (en) * | 2002-01-30 | 2004-09-07 | Howard Rosen | Programmable thermostat including a feature for providing a running total for the cost of energy consumed during a given period for heating and/or cooling a conditioned space |
US6824069B2 (en) | 2002-01-30 | 2004-11-30 | Howard B. Rosen | Programmable thermostat system employing a touch screen unit for intuitive interactive interface with a user |
US6785630B2 (en) | 2002-02-04 | 2004-08-31 | Carrier Corporation | Temperature control balancing desired comfort with energy cost savings |
FR2835643B1 (en) | 2002-02-07 | 2004-06-18 | Johnson Contr Automotive Elect | INFORMATION DISPLAY DEVICE FOR VEHICLES |
USD471825S1 (en) | 2002-02-13 | 2003-03-18 | Steven R. Peabody | Thermostat |
US6789739B2 (en) | 2002-02-13 | 2004-09-14 | Howard Rosen | Thermostat system with location data |
US6619555B2 (en) | 2002-02-13 | 2003-09-16 | Howard B. Rosen | Thermostat system communicating with a remote correspondent for receiving and displaying diverse information |
US6743010B2 (en) | 2002-02-19 | 2004-06-01 | Gas Electronics, Inc. | Relighter control system |
US6619055B1 (en) * | 2002-03-20 | 2003-09-16 | Honeywell International Inc. | Security system with wireless thermostat and method of operation thereof |
US6644557B1 (en) | 2002-03-25 | 2003-11-11 | Robert A Jacobs | Access controlled thermostat system |
NZ535509A (en) | 2002-03-28 | 2006-03-31 | Robertshaw Controls Co | Energy management system and method |
US7111788B2 (en) | 2002-04-22 | 2006-09-26 | Nokia Corporation | System and method for navigating applications using a graphical user interface |
US7471062B2 (en) | 2002-06-12 | 2008-12-30 | Koninklijke Philips Electronics N.V. | Wireless battery charging |
US6794771B2 (en) | 2002-06-20 | 2004-09-21 | Ranco Incorporated Of Delaware | Fault-tolerant multi-point flame sense circuit |
US20040034484A1 (en) | 2002-06-24 | 2004-02-19 | Solomita Michael V. | Demand-response energy management system |
US6941310B2 (en) | 2002-07-17 | 2005-09-06 | Oracle International Corp. | System and method for caching data for a mobile application |
US6741158B2 (en) * | 2002-07-18 | 2004-05-25 | Honeywell International Inc. | Magnetically sensed thermostat control |
US6968508B2 (en) * | 2002-07-30 | 2005-11-22 | Motorola, Inc. | Rotating user interface |
US7166791B2 (en) | 2002-07-30 | 2007-01-23 | Apple Computer, Inc. | Graphical user interface and methods of use thereof in a multimedia player |
US6804117B2 (en) | 2002-08-14 | 2004-10-12 | Thermal Corp. | Thermal bus for electronics systems |
US6796896B2 (en) | 2002-09-19 | 2004-09-28 | Peter J. Laiti | Environmental control unit, and air handling systems and methods using same |
US6822225B2 (en) | 2002-09-25 | 2004-11-23 | Ut-Battelle Llc | Pulsed discharge ionization source for miniature ion mobility spectrometers |
US6956463B2 (en) | 2002-10-02 | 2005-10-18 | Carrier Corporation | Method and apparatus for providing both power and communication over two wires between multiple low voltage AC devices |
USD491956S1 (en) | 2002-10-17 | 2004-06-22 | Pioneer Digital Technologies, Inc. | Graphical timeline for a display |
US20050090915A1 (en) | 2002-10-22 | 2005-04-28 | Smart Systems Technologies, Inc. | Programmable and expandable building automation and control system |
US20040090329A1 (en) | 2002-10-28 | 2004-05-13 | Hitt Dale K. | RF based positioning and intrusion detection using a wireless sensor network |
US20040209209A1 (en) | 2002-11-04 | 2004-10-21 | Chodacki Thomas A. | System, apparatus and method for controlling ignition including re-ignition of gas and gas fired appliances using same |
US7832465B2 (en) | 2002-11-07 | 2010-11-16 | Shazhou Zou | Affordable and easy to install multi-zone HVAC system |
US7200467B2 (en) | 2002-11-08 | 2007-04-03 | Usa Technologies, Inc. | Method and apparatus for power management control of a cooling system in a consumer accessible appliance |
US7333880B2 (en) | 2002-12-09 | 2008-02-19 | Enernoc, Inc. | Aggregation of distributed energy resources |
US7526452B2 (en) | 2002-12-16 | 2009-04-28 | International Business Machines Corporation | Apparatus, methods and computer programs for metering and accounting for services accessed over a network |
US7418663B2 (en) | 2002-12-19 | 2008-08-26 | Microsoft Corporation | Contact picker interface |
US7026727B2 (en) | 2002-12-20 | 2006-04-11 | Honeywell International Inc. | Power supply with multiple transformer current sharing |
US7079040B2 (en) | 2003-01-07 | 2006-07-18 | Errol Wendell Barton | Thermostatic controller and circuit tester |
US6783079B2 (en) | 2003-02-18 | 2004-08-31 | Emerson Electric Co. | Thermostat with one button programming feature |
US6726112B1 (en) | 2003-03-07 | 2004-04-27 | Joseph Ho | Illuminating thermostat |
US6983889B2 (en) | 2003-03-21 | 2006-01-10 | Home Comfort Zones, Inc. | Forced-air zone climate control system for existing residential houses |
US7392661B2 (en) | 2003-03-21 | 2008-07-01 | Home Comfort Zones, Inc. | Energy usage estimation for climate control system |
US7146253B2 (en) | 2003-03-24 | 2006-12-05 | Smartway Solutions, Inc. | Device and method for interactive programming of a thermostat |
US7627552B2 (en) | 2003-03-27 | 2009-12-01 | Microsoft Corporation | System and method for filtering and organizing items based on common elements |
US7113086B2 (en) | 2003-04-07 | 2006-09-26 | Altec Energy Systems | Systems and methods for monitoring room conditions to improve occupant performance |
US7047092B2 (en) | 2003-04-08 | 2006-05-16 | Coraccess Systems | Home automation contextual user interface |
US20040262410A1 (en) * | 2003-04-11 | 2004-12-30 | Hull Gerry G. | Graphical thermostat and sensor |
JP4789802B2 (en) | 2003-04-25 | 2011-10-12 | アップル インコーポレイテッド | Graphical user interface for browsing, searching and presenting media items |
US6988671B2 (en) | 2003-05-05 | 2006-01-24 | Lux Products Corporation | Programmable thermostat incorporating air quality protection |
US7050026B1 (en) * | 2003-05-15 | 2006-05-23 | Howard Rosen | Reverse images in a dot matrix LCD for an environmental control device |
US7360376B2 (en) | 2003-05-30 | 2008-04-22 | Honeywell International Inc. | Function transform sub-base |
US7302642B2 (en) | 2003-06-03 | 2007-11-27 | Tim Simon, Inc. | Thermostat with touch-screen display |
US6886754B2 (en) | 2003-06-03 | 2005-05-03 | Tim Simon, Inc. | Thermostat operable from various power sources |
US20040248462A1 (en) * | 2003-06-06 | 2004-12-09 | Dyer Jonathan T. | Modular wiring harness and power cord for vending machines |
US7331852B2 (en) | 2003-06-12 | 2008-02-19 | Ezell George D | Method and apparatus for sampling and controlling ventilation airflow into a structure |
EP2383903B1 (en) | 2003-07-17 | 2018-03-14 | e-distribuzione S.p.A. | Method and system for remote updates of meters for metering the consumption of electricity, water or gas |
US7571014B1 (en) | 2004-04-01 | 2009-08-04 | Sonos, Inc. | Method and apparatus for controlling multimedia players in a multi-zone system |
US20070043478A1 (en) | 2003-07-28 | 2007-02-22 | Ehlers Gregory A | System and method of controlling an HVAC system |
US7222800B2 (en) * | 2003-08-18 | 2007-05-29 | Honeywell International Inc. | Controller customization management system |
US7083109B2 (en) | 2003-08-18 | 2006-08-01 | Honeywell International Inc. | Thermostat having modulated and non-modulated provisions |
US7055759B2 (en) | 2003-08-18 | 2006-06-06 | Honeywell International Inc. | PDA configuration of thermostats |
US6851621B1 (en) | 2003-08-18 | 2005-02-08 | Honeywell International Inc. | PDA diagnosis of thermostats |
US7702424B2 (en) | 2003-08-20 | 2010-04-20 | Cannon Technologies, Inc. | Utility load control management communications protocol |
US20050270151A1 (en) | 2003-08-22 | 2005-12-08 | Honeywell International, Inc. | RF interconnected HVAC system and security system |
KR100640705B1 (en) | 2003-08-27 | 2006-11-01 | 엔이씨 모바일링 가부시끼가이샤 | Earthquake prediction method and system |
US6888441B2 (en) | 2003-08-28 | 2005-05-03 | Emerson Electric Co. | Apparatus adapted to be releasably connectable to the sub base of a thermostat |
US7156318B1 (en) | 2003-09-03 | 2007-01-02 | Howard Rosen | Programmable thermostat incorporating a liquid crystal display selectively presenting adaptable system menus including changeable interactive virtual buttons |
US20050053063A1 (en) | 2003-09-04 | 2005-03-10 | Sajeev Madhavan | Automatic provisioning of network address translation data |
US7289887B2 (en) | 2003-09-08 | 2007-10-30 | Smartsynch, Inc. | Systems and methods for remote power management using IEEE 802 based wireless communication links |
US20050055432A1 (en) | 2003-09-08 | 2005-03-10 | Smart Synch, Inc. | Systems and methods for remote power management using 802.11 wireless protocols |
US7510429B1 (en) * | 2003-10-07 | 2009-03-31 | Pass & Seymour, Inc. | Electrical wiring system with slide-in connector |
US7016741B2 (en) | 2003-10-14 | 2006-03-21 | Rosemount Inc. | Process control loop signal converter |
US7000849B2 (en) | 2003-11-14 | 2006-02-21 | Ranco Incorporated Of Delaware | Thermostat with configurable service contact information and reminder timers |
US6951306B2 (en) * | 2003-11-18 | 2005-10-04 | Lux Products Corporation | Thermostat having multiple mounting configurations |
GB2408592B (en) | 2003-11-27 | 2005-11-16 | James Ian Oswald | Household energy management system |
US7114554B2 (en) | 2003-12-01 | 2006-10-03 | Honeywell International Inc. | Controller interface with multiple day programming |
US7181317B2 (en) | 2003-12-02 | 2007-02-20 | Honeywell International Inc. | Controller interface with interview programming |
US10705549B2 (en) | 2003-12-02 | 2020-07-07 | Ademco Inc. | Controller interface with menu schedule override |
US7076608B2 (en) | 2003-12-02 | 2006-07-11 | Oracle International Corp. | Invalidating cached data using secondary keys |
US7225054B2 (en) | 2003-12-02 | 2007-05-29 | Honeywell International Inc. | Controller with programmable service event display mode |
US7274972B2 (en) | 2003-12-02 | 2007-09-25 | Honeywell International Inc. | Programmable controller with saving changes indication |
US8554374B2 (en) | 2003-12-02 | 2013-10-08 | Honeywell International Inc. | Thermostat with electronic image display |
US7274973B2 (en) * | 2003-12-08 | 2007-09-25 | Invisible Service Technicians, Llc | HVAC/R monitoring apparatus and method |
NL1024986C2 (en) | 2003-12-10 | 2005-06-13 | Cara C Air B V | Thermostat is for use in heating or air conditioning installation and comprises holder for manual adjustment by rotary knob of process variable, in particular temperature in a room |
US20050128067A1 (en) | 2003-12-11 | 2005-06-16 | Honeywell International, Inc. | Automatic sensitivity adjustment on motion detectors in security system |
US7142948B2 (en) * | 2004-01-07 | 2006-11-28 | Honeywell International Inc. | Controller interface with dynamic schedule display |
US7775452B2 (en) | 2004-01-07 | 2010-08-17 | Carrier Corporation | Serial communicating HVAC system |
US7222494B2 (en) | 2004-01-07 | 2007-05-29 | Honeywell International Inc. | Adaptive intelligent circulation control methods and systems |
US7135965B2 (en) | 2004-01-08 | 2006-11-14 | Maple Chase Company | Hazardous condition detection system and method and thermostat for use therewith |
US7469550B2 (en) | 2004-01-08 | 2008-12-30 | Robertshaw Controls Company | System and method for controlling appliances and thermostat for use therewith |
US7104462B2 (en) | 2004-01-09 | 2006-09-12 | Goodrich Corporation | Low noise solid-state thermostat with microprocessor controlled fault detection and reporting, and programmable set points |
JP2005203297A (en) | 2004-01-19 | 2005-07-28 | Nissan Motor Co Ltd | Display type multifunctional switch |
FI116863B (en) | 2004-01-19 | 2006-03-15 | Abb Oy | Switching device equipped with zero conductor |
US7216016B2 (en) | 2004-01-20 | 2007-05-08 | Carrier Corporation | Failure mode for HVAC system |
US7360370B2 (en) | 2004-01-20 | 2008-04-22 | Carrier Corporation | Method of verifying proper installation of a zoned HVAC system |
US7212887B2 (en) | 2004-01-20 | 2007-05-01 | Carrier Corporation | Service and diagnostic tool for HVAC systems |
US7308384B2 (en) * | 2004-01-20 | 2007-12-11 | Carrier Corporation | Ordered record of system-wide fault in an HVAC system |
US7600694B2 (en) | 2004-01-27 | 2009-10-13 | Trane International Inc. | Multiple thermostats for air conditioning system with time setting feature |
JP4354290B2 (en) | 2004-02-10 | 2009-10-28 | 株式会社コナミデジタルエンタテインメント | Medal game machine and medal guidance device |
CA2497636C (en) | 2004-02-18 | 2013-04-16 | Snyder National Corporation | Register grille and connector frame with releasable connection |
US7502768B2 (en) | 2004-02-27 | 2009-03-10 | Siemens Building Technologies, Inc. | System and method for predicting building thermal loads |
US20050189429A1 (en) | 2004-02-28 | 2005-09-01 | Breeden Robert L. | Thermostat and method for adaptively providing a changeover between heat and cool |
US7140551B2 (en) | 2004-03-01 | 2006-11-28 | Honeywell International Inc. | HVAC controller |
US20050195757A1 (en) | 2004-03-02 | 2005-09-08 | Kidder Kenneth B. | Wireless association approach and arrangement therefor |
US20050194456A1 (en) | 2004-03-02 | 2005-09-08 | Tessier Patrick C. | Wireless controller with gateway |
US7178410B2 (en) * | 2004-03-22 | 2007-02-20 | Cleanalert, Llc | Clogging detector for air filter |
US7167079B2 (en) | 2004-03-24 | 2007-01-23 | Carrier Corporation | Method of setting the output power of a pager to aid in the installation of a wireless system |
USD503631S1 (en) | 2004-03-26 | 2005-04-05 | Eco Manufacturing, Inc. | Thermostat |
US7258280B2 (en) | 2004-04-13 | 2007-08-21 | Tuckernuck Technologies Llc | Damper control in space heating and cooling |
US20050234600A1 (en) | 2004-04-16 | 2005-10-20 | Energyconnect, Inc. | Enterprise energy automation |
US20050231512A1 (en) | 2004-04-16 | 2005-10-20 | Niles Gregory E | Animation of an object using behaviors |
US7024336B2 (en) | 2004-05-13 | 2006-04-04 | Johnson Controls Technology Company | Method of and apparatus for evaluating the performance of a control system |
US7623028B2 (en) * | 2004-05-27 | 2009-11-24 | Lawrence Kates | System and method for high-sensitivity sensor |
US7108194B1 (en) | 2004-06-01 | 2006-09-19 | Hankins Ii Robert E | Remote controlled thermostat system for the sight-impaired |
US7159789B2 (en) | 2004-06-22 | 2007-01-09 | Honeywell International Inc. | Thermostat with mechanical user interface |
US7159790B2 (en) | 2004-06-22 | 2007-01-09 | Honeywell International Inc. | Thermostat with offset drive |
USD511527S1 (en) | 2004-06-24 | 2005-11-15 | Verizon Wireless | Icon for the display screen of a cellulary communicative electronic device |
US7490295B2 (en) | 2004-06-25 | 2009-02-10 | Apple Inc. | Layer for accessing user interface elements |
US7542876B2 (en) | 2004-06-25 | 2009-06-02 | Johnson Controls Technology Company | Method of and apparatus for evaluating the performance of a control system |
US7099748B2 (en) * | 2004-06-29 | 2006-08-29 | York International Corp. | HVAC start-up control system and method |
US7509753B2 (en) | 2004-06-30 | 2009-03-31 | Harley-Davidson Motor Company Group, Inc. | Apparatus for indicating oil temperature and oil level within an oil reservoir |
US7264175B2 (en) | 2004-07-01 | 2007-09-04 | Honeywell International Inc. | Thermostat with parameter adjustment |
US7809472B1 (en) | 2004-07-06 | 2010-10-05 | Custom Manufacturing & Engineering, Inc. | Control system for multiple heating, ventilation and air conditioning units |
US7746242B2 (en) | 2004-07-21 | 2010-06-29 | Honeywell International Inc. | Low battery indicator |
US7913925B2 (en) | 2004-07-23 | 2011-03-29 | Ranco Incorporated Of Delaware | Color changing thermostatic controller |
US7379791B2 (en) * | 2004-08-03 | 2008-05-27 | Uscl Corporation | Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems |
US20080155915A1 (en) * | 2004-08-05 | 2008-07-03 | Russel Howe | Power and Communication Distribution Using a Structural Channel Stystem |
WO2006022838A1 (en) | 2004-08-11 | 2006-03-02 | Carrier Corporation | Improved power stealing for a thermostat using a triac with fet control |
US7188482B2 (en) * | 2004-08-27 | 2007-03-13 | Carrier Corporation | Fault diagnostics and prognostics based on distance fault classifiers |
WO2006026244A2 (en) | 2004-08-31 | 2006-03-09 | Applied Innovative Technologies, Inc. | Durable switches and methods of using such |
US20060055547A1 (en) * | 2004-09-16 | 2006-03-16 | Dimaggio Edward G | Warning device for clogged air filter |
US20070013534A1 (en) * | 2004-09-16 | 2007-01-18 | Dimaggio Edward G | Detection device for air filter |
US7287709B2 (en) | 2004-09-21 | 2007-10-30 | Carrier Corporation | Configurable multi-level thermostat backlighting |
US8033479B2 (en) | 2004-10-06 | 2011-10-11 | Lawrence Kates | Electronically-controlled register vent for zone heating and cooling |
US7168627B2 (en) | 2004-10-06 | 2007-01-30 | Lawrence Kates | Electronically-controlled register vent for zone heating and cooling |
US7156316B2 (en) | 2004-10-06 | 2007-01-02 | Lawrence Kates | Zone thermostat for zone heating and cooling |
US20060079983A1 (en) | 2004-10-13 | 2006-04-13 | Tokyo Electron Limited | R2R controller to automate the data collection during a DOE |
US7620996B2 (en) | 2004-11-01 | 2009-11-17 | Microsoft Corporation | Dynamic summary module |
US7299996B2 (en) | 2004-11-12 | 2007-11-27 | American Standard International Inc. | Thermostat with energy saving backlit switch actuators and visual display |
US7347774B2 (en) | 2004-11-12 | 2008-03-25 | Peter S. Aronstam | Remote autonomous intelligent air flow control system and network |
US7537171B2 (en) | 2004-11-17 | 2009-05-26 | Emerson Electric Co. | Thermostat control system providing power saving transmissions |
US6990335B1 (en) | 2004-11-18 | 2006-01-24 | Charles G. Shamoon | Ubiquitous connectivity and control system for remote locations |
US7174239B2 (en) | 2004-11-19 | 2007-02-06 | Emerson Electric Co. | Retrieving diagnostic information from an HVAC component |
US7058477B1 (en) | 2004-11-23 | 2006-06-06 | Howard Rosen | Thermostat system with remote data averaging |
CA2589959C (en) | 2004-12-14 | 2010-05-04 | Comverge Inc. | Hvac communication system |
US8689572B2 (en) | 2004-12-22 | 2014-04-08 | Emerson Electric Co. | Climate control system including responsive controllers |
US20060149395A1 (en) | 2004-12-30 | 2006-07-06 | Carrier Corporation | Routine and urgent remote notifications from multiple home comfort systems |
US20060147003A1 (en) | 2004-12-30 | 2006-07-06 | Carrier Corporation | Remote telephone access control of multiple home comfort systems |
US7802618B2 (en) | 2005-01-19 | 2010-09-28 | Tim Simon, Inc. | Thermostat operation method and apparatus |
US20060196953A1 (en) | 2005-01-19 | 2006-09-07 | Tim Simon, Inc. | Multiple thermostat installation |
US7735118B2 (en) | 2005-02-07 | 2010-06-08 | Alcatel-Lucent Usa Inc. | Method and apparatus for preventing bridging of secure networks and insecure networks |
US20060192022A1 (en) * | 2005-02-28 | 2006-08-31 | Barton Eric J | HVAC controller with removable instruction card |
US7849698B2 (en) | 2005-03-02 | 2010-12-14 | York International Corporation | Method and apparatus to sense and establish operation mode for an HVAC control |
US7562536B2 (en) | 2005-03-02 | 2009-07-21 | York International Corporation | Method and apparatus to sense and control compressor operation in an HVAC system |
US7117129B1 (en) | 2005-03-11 | 2006-10-03 | Hewlett-Packard Development Company, L.P. | Commissioning of sensors |
EP1703356B1 (en) | 2005-03-14 | 2011-09-14 | emz-Hanauer GmbH & Co. KGaA | Thermostat comprising a color display |
US20110001812A1 (en) | 2005-03-15 | 2011-01-06 | Chub International Holdings Limited | Context-Aware Alarm System |
US7584897B2 (en) | 2005-03-31 | 2009-09-08 | Honeywell International Inc. | Controller system user interface |
JP4659505B2 (en) | 2005-04-04 | 2011-03-30 | キヤノン株式会社 | Information processing method and apparatus |
WO2006112819A1 (en) | 2005-04-14 | 2006-10-26 | Carrier Corporation | Adaptive algorithm for setting the proportional integral (pi) gains in lag-dominated hvacr systems |
US20090273610A1 (en) | 2005-05-03 | 2009-11-05 | Koninklijke Philips Electronics N. V. | Virtual lesion quantification |
US7605714B2 (en) | 2005-05-13 | 2009-10-20 | Microsoft Corporation | System and method for command and control of wireless devices using a wearable device |
EP1731984A1 (en) | 2005-05-31 | 2006-12-13 | Siemens Schweiz AG | Input and display device for process parameters |
US7274975B2 (en) | 2005-06-06 | 2007-09-25 | Gridpoint, Inc. | Optimized energy management system |
US7434742B2 (en) | 2005-06-20 | 2008-10-14 | Emerson Electric Co. | Thermostat capable of displaying received information |
US7589643B2 (en) | 2005-06-30 | 2009-09-15 | Gm Global Technology Operations, Inc. | Vehicle speed monitoring system |
US7451937B2 (en) | 2005-07-13 | 2008-11-18 | Action Talkin Products, Llc | Thermostat with handicap access mode |
WO2007027631A1 (en) * | 2005-08-30 | 2007-03-08 | Siemens Building Technologies, Inc. | Application of microsystems for real time ieq control |
US7854389B2 (en) | 2005-08-30 | 2010-12-21 | Siemens Industry Inc. | Application of microsystems for comfort control |
US7673809B2 (en) | 2005-08-30 | 2010-03-09 | Honeywell International Inc. | Thermostat relay control |
USD544877S1 (en) | 2005-08-30 | 2007-06-19 | Panic, Inc. | Computer generated graphical user interface for an electronic display device |
US7460933B2 (en) | 2005-08-31 | 2008-12-02 | Ranco Incorporated Of Delaware | Thermostat display system providing adjustable backlight and indicators |
US7624931B2 (en) | 2005-08-31 | 2009-12-01 | Ranco Incorporated Of Delaware | Adjustable display resolution for thermostat |
US7455240B2 (en) | 2005-08-31 | 2008-11-25 | Ranco Incorporated Of Delaware | Thermostat display system providing animated icons |
US20070045441A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Thermostat configuration wizard |
US20070045444A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Thermostat including set point number line |
US20070050732A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Proportional scroll bar for menu driven thermostat |
US20070045431A1 (en) | 2005-08-31 | 2007-03-01 | Ranco Incorporated Of Delaware | Occupancy-based zoning climate control system and method |
US20070057079A1 (en) | 2005-09-13 | 2007-03-15 | Emerson Electric Co. | Thermostat capable of displaying downloaded images |
US7712606B2 (en) * | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US20070083660A1 (en) * | 2005-09-23 | 2007-04-12 | Thornton Barry W | Amorphic Computing |
WO2007038752A2 (en) | 2005-09-28 | 2007-04-05 | Armstrong World Industries, Inc. | Power and signal distribution system for use in interior building spaces |
US8036760B2 (en) | 2005-10-04 | 2011-10-11 | Fisher-Rosemount Systems, Inc. | Method and apparatus for intelligent control and monitoring in a process control system |
KR20070047114A (en) | 2005-11-01 | 2007-05-04 | 주식회사 엘지화학 | Manufacturing method of device with flexible substrate and device with flexible substrate manufactured by the same |
US7640761B2 (en) | 2005-11-02 | 2010-01-05 | Trane International Inc. | System and method for controlling indoor air flow for heating, ventilating and air conditioning equipment |
US20070101737A1 (en) | 2005-11-09 | 2007-05-10 | Masao Akei | Refrigeration system including thermoelectric heat recovery and actuation |
US20070114295A1 (en) | 2005-11-22 | 2007-05-24 | Robertshaw Controls Company | Wireless thermostat |
US7476988B2 (en) | 2005-11-23 | 2009-01-13 | Honeywell International Inc. | Power stealing control devices |
US7642674B2 (en) | 2005-11-23 | 2010-01-05 | Honeywell International Inc. | Switch state assurance system |
CN101322095B (en) * | 2005-12-01 | 2013-04-24 | Tp视觉控股有限公司 | Method and device for operating environment visually larger than display area |
US7768418B2 (en) | 2005-12-06 | 2010-08-03 | Panduit Corp. | Power patch panel with guided MAC capability |
US8234694B2 (en) | 2005-12-09 | 2012-07-31 | Oracle International Corporation | Method and apparatus for re-establishing communication between a client and a server |
US7537172B2 (en) | 2005-12-13 | 2009-05-26 | Comverge, Inc. | HVAC communication system |
US7597976B2 (en) | 2005-12-20 | 2009-10-06 | Gm Global Technology Operations, Inc. | Floating base load hybrid strategy for a hybrid fuel cell vehicle to increase the durability of the fuel cell system |
US7644869B2 (en) | 2005-12-28 | 2010-01-12 | Honeywell International Inc. | Auxiliary stage control of multistage thermostats |
WO2007078135A1 (en) * | 2005-12-30 | 2007-07-12 | Halla Climate Control Corp. | Vehicle air purifier with a negative and positive ion generator and air conditioning system using the same |
US20070173978A1 (en) | 2006-01-04 | 2007-07-26 | Gene Fein | Controlling environmental conditions |
US7451606B2 (en) | 2006-01-06 | 2008-11-18 | Johnson Controls Technology Company | HVAC system analysis tool |
US7614567B2 (en) | 2006-01-10 | 2009-11-10 | Ranco Incorporated of Deleware | Rotatable thermostat |
US7726581B2 (en) | 2006-01-12 | 2010-06-01 | Honeywell International Inc. | HVAC controller |
US7427926B2 (en) | 2006-01-26 | 2008-09-23 | Microsoft Corporation | Establishing communication between computing-based devices through motion detection |
US7407323B2 (en) | 2006-02-03 | 2008-08-05 | Ge Infrastructure Sensing Inc. | Methods and systems for determining temperature of an object |
US7367712B2 (en) | 2006-02-06 | 2008-05-06 | National Instruments Corporation | RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode |
CA2579546A1 (en) | 2006-03-01 | 2007-09-01 | Johnson Controls Technology Company | Hvac control with programmed run-test sequence |
US7891573B2 (en) | 2006-03-03 | 2011-02-22 | Micro Metl Corporation | Methods and apparatuses for controlling air to a building |
JP2007241203A (en) | 2006-03-07 | 2007-09-20 | Fumiko Murakami | Nose-attached spectacles |
US7509402B2 (en) | 2006-03-16 | 2009-03-24 | Exceptional Innovation, Llc | Automation control system having a configuration tool and two-way ethernet communication for web service messaging, discovery, description, and eventing that is controllable with a touch-screen display |
WO2008032225A2 (en) * | 2006-03-21 | 2008-03-20 | Ranco Incorporated Of Delaware | Refrigeration monitor unit |
US20070221741A1 (en) | 2006-03-27 | 2007-09-27 | Ranco Incorporated Of Delaware | Connector terminal system and wiring method for thermostat |
US20070228183A1 (en) * | 2006-03-28 | 2007-10-04 | Kennedy Kimberly A | Thermostat |
DE102006015684B3 (en) | 2006-04-04 | 2007-09-20 | Siemens Ag | Rotating/press actuator for motor vehicle, has operating ring rotatable around axis of rotation and arranged on receiving cylinder, where cylinder has touch-sensitive input and/or display area rotatably supported around axis of rotation |
US20070241203A1 (en) | 2006-04-14 | 2007-10-18 | Ranco Inc. Of Delaware | Management of a thermostat's power consumption |
KR20070113025A (en) | 2006-05-24 | 2007-11-28 | 엘지전자 주식회사 | Apparatus and operating method of touch screen |
US7575179B2 (en) | 2006-04-22 | 2009-08-18 | International Contols And Measurments Corp. | Reconfigurable programmable thermostat |
US20070257120A1 (en) | 2006-05-02 | 2007-11-08 | Ranco Incorporated Of Delaware | Tabbed interface for thermostat |
US8091375B2 (en) | 2006-05-10 | 2012-01-10 | Trane International Inc. | Humidity control for air conditioning system |
JP4659672B2 (en) | 2006-05-15 | 2011-03-30 | アルプス電気株式会社 | Rotating operation type electric parts |
US7448140B2 (en) * | 2006-05-18 | 2008-11-11 | Nash Steven D | Emergency responder's orientation method and device |
USD550691S1 (en) | 2006-06-06 | 2007-09-11 | Microsoft Corporation | Graphical user interface for a display screen |
KR100791628B1 (en) | 2006-06-09 | 2008-01-04 | 고려대학교 산학협력단 | Method for active controlling cache in mobile network system, Recording medium and System thereof |
US7420140B2 (en) * | 2006-06-30 | 2008-09-02 | General Electric Company | Method and apparatus for controlling the energization of a cooking appliance |
US7667163B2 (en) | 2006-07-10 | 2010-02-23 | Ranco Incorporated Of Delaware | Thermostat with adjustable color for aesthetics and readability |
US7580775B2 (en) | 2006-07-11 | 2009-08-25 | Regen Energy Inc. | Method and apparatus for implementing enablement state decision for energy consuming load based on demand and duty cycle of load |
CA2659380A1 (en) | 2006-08-01 | 2008-02-07 | A.O. Smith Corporation | Interface cord and system including an interface cord |
JP2008059796A (en) | 2006-08-29 | 2008-03-13 | Auto Network Gijutsu Kenkyusho:Kk | Operating system and operating apparatus |
US20080054084A1 (en) | 2006-08-29 | 2008-03-06 | American Standard International Inc. | Two-wire power and communication link for a thermostat |
US8243017B2 (en) | 2006-09-11 | 2012-08-14 | Apple Inc. | Menu overlay including context dependent menu icon |
US7948189B2 (en) * | 2006-09-26 | 2011-05-24 | Siemens Industry, Inc. | Application of microsystems for lighting control |
JP4940877B2 (en) | 2006-10-10 | 2012-05-30 | トヨタ自動車株式会社 | Air conditioning control system |
US8089032B2 (en) | 2006-10-27 | 2012-01-03 | Honeywell International Inc. | Wall mount electronic controller |
US7571865B2 (en) | 2006-10-31 | 2009-08-11 | Tonerhead, Inc. | Wireless temperature control system |
US7596431B1 (en) | 2006-10-31 | 2009-09-29 | Hewlett-Packard Development Company, L.P. | Method for assessing electronic devices |
US7841542B1 (en) | 2006-11-07 | 2010-11-30 | Howard Rosen | System for supplying communications and power to a thermostat over a two-wire system |
US8863540B2 (en) * | 2006-11-15 | 2014-10-21 | Crosspoint Solutions, Llc | HVAC system controlled by a battery management system |
US20080120420A1 (en) * | 2006-11-17 | 2008-05-22 | Caleb Sima | Characterization of web application inputs |
US7558648B2 (en) | 2006-11-30 | 2009-07-07 | Honeywell International Inc. | HVAC zone control panel with zone configuration |
US20080128523A1 (en) | 2006-11-30 | 2008-06-05 | Honeywell International Inc. | Hvac zone control panel |
US7904830B2 (en) | 2006-11-30 | 2011-03-08 | Honeywell International Inc. | HVAC zone control panel |
US8001400B2 (en) | 2006-12-01 | 2011-08-16 | Apple Inc. | Power consumption management for functional preservation in a battery-powered electronic device |
US20080215240A1 (en) * | 2006-12-18 | 2008-09-04 | Damian Howard | Integrating User Interfaces |
US7748640B2 (en) | 2006-12-18 | 2010-07-06 | Carrier Corporation | Stackable thermostat |
US7789685B2 (en) | 2006-12-18 | 2010-09-07 | Caterpillar Inc | Electrical shorting system |
WO2008076119A1 (en) | 2006-12-21 | 2008-06-26 | Carrier Corporation | Pulse width modulation control for heat pump fan to eliminate cold blow |
KR100856871B1 (en) | 2006-12-27 | 2008-09-04 | 주식회사 맥스포 | Ubiquitous home network system |
US7645158B2 (en) * | 2006-12-29 | 2010-01-12 | Honeywell International Inc. | Terminal block and test pad for an HVAC controller |
WO2008085151A2 (en) | 2006-12-29 | 2008-07-17 | Carrier Corporation | Universal thermostat expansion port |
US7957839B2 (en) | 2006-12-29 | 2011-06-07 | Honeywell International Inc. | HVAC zone controller |
US20080245480A1 (en) | 2007-01-05 | 2008-10-09 | Acco Brands Usa Llc | Laminator menu system |
USD595309S1 (en) | 2007-01-05 | 2009-06-30 | Sony Corporation | Computer generated image for display panel or screen |
US8689132B2 (en) | 2007-01-07 | 2014-04-01 | Apple Inc. | Portable electronic device, method, and graphical user interface for displaying electronic documents and lists |
US7867646B2 (en) | 2007-01-25 | 2011-01-11 | Emerson Electric, Co. | Thermostat with opening portion for accessing batteries field |
USD566587S1 (en) | 2007-01-26 | 2008-04-15 | Howard Rosen | Oval thermostat with display and dial |
KR20090000248A (en) | 2007-02-07 | 2009-01-07 | 엘지전자 주식회사 | Unification management display apparatus and method for multi-air conditioner |
US7784704B2 (en) | 2007-02-09 | 2010-08-31 | Harter Robert J | Self-programmable thermostat |
US20080192389A1 (en) * | 2007-02-12 | 2008-08-14 | Frank John Muench | Arc suppression device, system and methods for liquid insulated electrical apparatus |
US20080202135A1 (en) | 2007-02-22 | 2008-08-28 | Danny Len Francis | Air conditioner energy saving unit and system using same |
US8220721B2 (en) | 2007-03-01 | 2012-07-17 | Flohr Daniel P | Wireless interface circuits for wired thermostats and electrical service demand management |
US7904209B2 (en) | 2007-03-01 | 2011-03-08 | Syracuse University | Open web services-based indoor climate control system |
US8299917B2 (en) | 2007-03-06 | 2012-10-30 | American Messaging Services, Llc | System, method, and kit for monitoring an individual remotely |
US20080222736A1 (en) * | 2007-03-07 | 2008-09-11 | Trusteer Ltd. | Scrambling HTML to prevent CSRF attacks and transactional crimeware attacks |
US7983795B2 (en) | 2007-03-08 | 2011-07-19 | Kurt Josephson | Networked electrical interface |
JP4863908B2 (en) | 2007-03-16 | 2012-01-25 | 株式会社ソニー・コンピュータエンタテインメント | Data processing apparatus, data processing method, and data processing program |
JP5045174B2 (en) | 2007-03-22 | 2012-10-10 | パナソニック株式会社 | Input device |
US7847681B2 (en) | 2007-03-23 | 2010-12-07 | Johnson Controls Technology Company | Building automation systems and methods |
US7966104B2 (en) | 2007-03-26 | 2011-06-21 | Siemens Corporation | Apparatus and method for the control of the indoor thermal environment having feed forward and feedback control using adaptive reference models |
USD589792S1 (en) | 2007-04-10 | 2009-04-07 | The Procter & Gamble Company | Collection of indicia for a consumer product |
US20080273754A1 (en) | 2007-05-04 | 2008-11-06 | Leviton Manufacturing Co., Inc. | Apparatus and method for defining an area of interest for image sensing |
US20080290183A1 (en) | 2007-05-22 | 2008-11-27 | Honeywell International Inc. | Special purpose controller interface with instruction area |
US8249731B2 (en) | 2007-05-24 | 2012-08-21 | Alexander Bach Tran | Smart air ventilation system |
US8037022B2 (en) | 2007-06-05 | 2011-10-11 | Samsung Electroncis Co., Ltd. | Synchronizing content between content directory service and control point |
USD597100S1 (en) | 2007-06-08 | 2009-07-28 | Apple Inc. | Icon for a portion of a display screen |
WO2008154581A2 (en) | 2007-06-11 | 2008-12-18 | Eair, Llc | Power supply switch for dual powered thermostat, power supply for dual powered thermostat, and dual powered thermostat |
JP5324567B2 (en) | 2007-06-12 | 2013-10-23 | フェイスブック,インク. | Personalized application content for social networks |
US7975292B2 (en) | 2007-06-12 | 2011-07-05 | Francisco Corella | Secure password reset for application |
US7774102B2 (en) | 2007-06-22 | 2010-08-10 | Emerson Electric Co. | System including interactive controllers for controlling operation of climate control system |
US8027518B2 (en) | 2007-06-25 | 2011-09-27 | Microsoft Corporation | Automatic configuration of devices based on biometric data |
US7954726B2 (en) | 2007-06-28 | 2011-06-07 | Honeywell International Inc. | Thermostat with utility messaging |
US7845576B2 (en) | 2007-06-28 | 2010-12-07 | Honeywell International Inc. | Thermostat with fixed segment display having both fixed segment icons and a variable text display capacity |
US8091794B2 (en) * | 2007-06-28 | 2012-01-10 | Honeywell International Inc. | Thermostat with usage history |
US20090012959A1 (en) | 2007-07-06 | 2009-01-08 | Nokia Corporation | Method, Apparatus and Computer Program Product for Providing Presentation of a Media Collection |
US7823076B2 (en) | 2007-07-13 | 2010-10-26 | Adobe Systems Incorporated | Simplified user interface navigation |
US7908116B2 (en) | 2007-08-03 | 2011-03-15 | Ecofactor, Inc. | System and method for using a network of thermostats as tool to verify peak demand reduction |
US7702421B2 (en) | 2007-08-27 | 2010-04-20 | Honeywell International Inc. | Remote HVAC control with building floor plan tool |
US8196185B2 (en) | 2007-08-27 | 2012-06-05 | Honeywell International Inc. | Remote HVAC control with a customizable overview display |
US7715951B2 (en) | 2007-08-28 | 2010-05-11 | Consert, Inc. | System and method for managing consumption of power supplied by an electric utility |
US20090062790A1 (en) * | 2007-08-31 | 2009-03-05 | Voyage Medical, Inc. | Direct visualization bipolar ablation systems |
US20090065595A1 (en) | 2007-09-12 | 2009-03-12 | Lawrence Kates | System and method for zone heating and cooling using controllable supply and return vents |
US8019567B2 (en) | 2007-09-17 | 2011-09-13 | Ecofactor, Inc. | System and method for evaluating changes in the efficiency of an HVAC system |
US7848900B2 (en) | 2008-09-16 | 2010-12-07 | Ecofactor, Inc. | System and method for calculating the thermal mass of a building |
US7844764B2 (en) | 2007-10-01 | 2010-11-30 | Honeywell International Inc. | Unitary control module with adjustable input/output mapping |
USD593120S1 (en) | 2007-10-12 | 2009-05-26 | Microsoft Corporation | Graphical user interface for a portion of a display screen |
WO2009061292A1 (en) | 2007-11-06 | 2009-05-14 | Carrier Corporation | Heat pump with heat recovery |
US7720576B2 (en) | 2007-11-21 | 2010-05-18 | Lennox Industries Inc. | Intelligent auxiliary power supply system with current and temperature monitoring capabilities |
US7900849B2 (en) | 2007-11-30 | 2011-03-08 | Honeywell International Inc. | HVAC remote control unit and methods of operation |
US8276829B2 (en) | 2007-11-30 | 2012-10-02 | Honeywell International Inc. | Building control system with remote control unit and methods of operation |
US8091796B2 (en) | 2007-11-30 | 2012-01-10 | Honeywell International Inc. | HVAC controller that selectively replaces operating information on a display with system status information |
US9151510B2 (en) | 2007-11-30 | 2015-10-06 | Honeywell International Inc. | Display for HVAC systems in remote control units |
US20090140065A1 (en) | 2007-11-30 | 2009-06-04 | Honeywell International Inc. | Hvac controller with save a wire terminal |
USD588152S1 (en) | 2007-12-07 | 2009-03-10 | Olympus Imaging Corp. | Transitional image for a portion of a display screen of a digital camera |
WO2009073034A1 (en) | 2007-12-07 | 2009-06-11 | Carrier Corporation | Control of conditioned environment by remote sensor |
USD591762S1 (en) | 2007-12-07 | 2009-05-05 | Location Based Technologies, Inc. | User interface for display information associated with a location tracking system on a computer display screen |
USD604740S1 (en) | 2007-12-19 | 2009-11-24 | Joseph Matheny | Computer generated image for a display screen |
US8316022B2 (en) | 2007-12-21 | 2012-11-20 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
USD590412S1 (en) | 2007-12-27 | 2009-04-14 | Yahoo! Inc. | Graphical user interface for displaying content selections on a display panel |
US20090171862A1 (en) | 2007-12-28 | 2009-07-02 | Johnson Controls Technology Company | Energy control system |
US20090165644A1 (en) * | 2007-12-31 | 2009-07-02 | Campbell David F | Air Filter Apparatus with Self-Contained Detachable Programmable Clogging Indicator |
USD597101S1 (en) | 2008-01-08 | 2009-07-28 | Apple Inc. | Animated image for a portion of a display screen |
US20090192894A1 (en) | 2008-01-24 | 2009-07-30 | Carbon Flow, Inc. | Methods and apparatus for creating and managing green micro credits |
USD594015S1 (en) | 2008-01-28 | 2009-06-09 | Johnson Controls Technology Company | Graphical user interface for a display screen |
US8255090B2 (en) | 2008-02-01 | 2012-08-28 | Energyhub | System and method for home energy monitor and control |
US8156060B2 (en) | 2008-02-27 | 2012-04-10 | Inteliwise Sp Z.O.O. | Systems and methods for generating and implementing an interactive man-machine web interface based on natural language processing and avatar virtual agent based character |
USD615546S1 (en) | 2008-03-28 | 2010-05-11 | Sprint Communications Company L.P. | Mobile device user interface |
US8274383B2 (en) | 2008-03-31 | 2012-09-25 | The Boeing Company | Methods and systems for sensing activity using energy harvesting devices |
US20090263773A1 (en) | 2008-04-19 | 2009-10-22 | Vadim Kotlyar | Breathing exercise apparatus and method |
US7821218B2 (en) | 2008-04-22 | 2010-10-26 | Emerson Electric Co. | Universal apparatus and method for configurably controlling a heating or cooling system |
US20090267452A1 (en) * | 2008-04-24 | 2009-10-29 | Vmonitor, Inc. | System and method for energy generation in an oil field environment |
US7963453B2 (en) | 2008-05-19 | 2011-06-21 | Honeywell International Inc. | Versatile HVAC sensor |
US20100076835A1 (en) | 2008-05-27 | 2010-03-25 | Lawrence Silverman | Variable incentive and virtual market system |
GB2460872B (en) | 2008-06-13 | 2010-11-24 | Alertme Com Ltd | Power consumption feedback systems |
JP5210059B2 (en) | 2008-06-17 | 2013-06-12 | 株式会社ユーシン | Operating device |
US7822578B2 (en) | 2008-06-17 | 2010-10-26 | General Electric Company | Systems and methods for predicting maintenance of intelligent electronic devices |
US20090327354A1 (en) | 2008-06-26 | 2009-12-31 | Microsoft Corporation | Notification and synchronization of updated data |
RU2487388C2 (en) | 2008-07-03 | 2013-07-10 | Белимо Холдинг Аг | Actuator for hvac systems and method for operation thereof |
US8010237B2 (en) | 2008-07-07 | 2011-08-30 | Ecofactor, Inc. | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
KR101524616B1 (en) | 2008-07-07 | 2015-06-02 | 엘지전자 주식회사 | Controlling a Mobile Terminal with a Gyro-Sensor |
US7992794B2 (en) | 2008-07-10 | 2011-08-09 | Honeywell International Inc. | Backup control for HVAC system |
US8180492B2 (en) | 2008-07-14 | 2012-05-15 | Ecofactor, Inc. | System and method for using a networked electronic device as an occupancy sensor for an energy management system |
US20100012737A1 (en) | 2008-07-21 | 2010-01-21 | Lawrence Kates | Modular register vent for zone heating and cooling |
US7918406B2 (en) | 2008-07-22 | 2011-04-05 | Howard Rosen | Override of nonoccupancy status in a thermostat device based upon analysis of recent patterns of occupancy |
US8110945B2 (en) * | 2008-07-29 | 2012-02-07 | Honeywell International Inc. | Power stealing circuitry for a control device |
US20100025483A1 (en) | 2008-07-31 | 2010-02-04 | Michael Hoeynck | Sensor-Based Occupancy and Behavior Prediction Method for Intelligently Controlling Energy Consumption Within a Building |
USD603277S1 (en) | 2008-08-07 | 2009-11-03 | Danfoss A/S | Thermostat with display |
KR101446521B1 (en) | 2008-08-12 | 2014-11-03 | 삼성전자주식회사 | Method and apparatus for scrolling information on the touch-screen |
US20100261465A1 (en) | 2009-04-14 | 2010-10-14 | Rhoads Geoffrey B | Methods and systems for cell phone interactions |
US9268385B2 (en) | 2008-08-20 | 2016-02-23 | International Business Machines Corporation | Introducing selective energy efficiency in a virtual environment |
NL2001904C (en) | 2008-08-21 | 2010-03-10 | Bosch Gmbh Robert | Thermostat and method for controlling a hvac system, and a method for providing feedback to a user of a hvac system. |
US20100058450A1 (en) | 2008-08-28 | 2010-03-04 | Gene Fein | Pass code provision |
JP4689710B2 (en) | 2008-09-01 | 2011-05-25 | Smk株式会社 | Stationary remote control transmitter |
US8201100B2 (en) * | 2008-09-04 | 2012-06-12 | VIZIO Inc. | Metadata driven control of navigational speed through a user interface |
US8341557B2 (en) | 2008-09-05 | 2012-12-25 | Apple Inc. | Portable touch screen device, method, and graphical user interface for providing workout support |
US7721209B2 (en) | 2008-09-08 | 2010-05-18 | Apple Inc. | Object-aware transitions |
WO2010027234A2 (en) | 2008-09-08 | 2010-03-11 | (주)오토닉스 | Dial-mode temperature controller that facilitates changing of temperature range |
AU2009290585B2 (en) | 2008-09-15 | 2016-01-07 | Haier Us Appliance Solutions, Inc. | Demand side management module |
US8346397B2 (en) | 2008-09-15 | 2013-01-01 | Johnson Controls Technology Company | Airflow adjustment user interfaces |
US8433530B2 (en) | 2008-09-18 | 2013-04-30 | ThinkEco, Inc. | System and method for monitoring and management of utility usage |
US8078326B2 (en) | 2008-09-19 | 2011-12-13 | Johnson Controls Technology Company | HVAC system controller configuration |
US7930070B2 (en) | 2008-09-25 | 2011-04-19 | Kingston Consulting, Inc. | System, method, and module capable of curtailing energy production within congestive grid operating environments |
PL2347494T3 (en) | 2008-10-03 | 2019-08-30 | Philips Ip Ventures B.V. | Power system |
US8527096B2 (en) | 2008-10-24 | 2013-09-03 | Lennox Industries Inc. | Programmable controller and a user interface for same |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US20100114382A1 (en) | 2008-11-05 | 2010-05-06 | Computime, Ltd. | Determination of the Type of Heaving, Ventilating, and Air Conditioning (HVAC) System |
USD625325S1 (en) | 2008-11-19 | 2010-10-12 | Dassault Systemes | Transitional image for a portion of a display screen |
USD596194S1 (en) | 2008-11-19 | 2009-07-14 | Dassault Systemes | Transitional image for a portion of a display screen |
USD613301S1 (en) | 2008-11-24 | 2010-04-06 | Microsoft Corporation | Transitional icon for a portion of a display screen |
USD598463S1 (en) | 2008-11-26 | 2009-08-18 | Microsoft Corporation | User interface for a portion of a display screen |
US8543244B2 (en) | 2008-12-19 | 2013-09-24 | Oliver Joe Keeling | Heating and cooling control methods and systems |
CN201402417Y (en) | 2008-12-25 | 2010-02-10 | 上海柯耐弗电气有限公司 | Temperature controller with grounding malfunction leakage protection function |
US8550370B2 (en) | 2008-12-30 | 2013-10-08 | Zoner Llc | Automatically balancing register for HVAC systems |
US8275412B2 (en) | 2008-12-31 | 2012-09-25 | Motorola Mobility Llc | Portable electronic device having directional proximity sensors based on device orientation |
AU2010204729A1 (en) | 2009-01-14 | 2011-09-01 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
US8393550B2 (en) | 2009-01-30 | 2013-03-12 | Tim Simon, Inc. | Thermostat assembly with removable communication module and method |
US8510811B2 (en) | 2009-02-03 | 2013-08-13 | InBay Technologies, Inc. | Network transaction verification and authentication |
USD614976S1 (en) | 2009-03-06 | 2010-05-04 | Danfoss A/S | Wireless thermostat with dial and display |
US9020647B2 (en) | 2009-03-27 | 2015-04-28 | Siemens Industry, Inc. | System and method for climate control set-point optimization based on individual comfort |
US20100269038A1 (en) * | 2009-04-17 | 2010-10-21 | Sony Ericsson Mobile Communications Ab | Variable Rate Scrolling |
US8442752B2 (en) * | 2009-04-23 | 2013-05-14 | Ford Global Technologies, Llc | Climate control head with fuel economy indicator |
US8886206B2 (en) | 2009-05-01 | 2014-11-11 | Digimarc Corporation | Methods and systems for content processing |
US8097067B2 (en) * | 2009-05-06 | 2012-01-17 | 3M Innovative Properties Company | Runtime sensor for small forced air handling units |
US8498753B2 (en) | 2009-05-08 | 2013-07-30 | Ecofactor, Inc. | System, method and apparatus for just-in-time conditioning using a thermostat |
US8285603B2 (en) | 2009-05-11 | 2012-10-09 | Revolution Environmental Llc | Method and system for providing recommendations as part of a home energy audit |
US8740100B2 (en) | 2009-05-11 | 2014-06-03 | Ecofactor, Inc. | System, method and apparatus for dynamically variable compressor delay in thermostat to reduce energy consumption |
US8596550B2 (en) | 2009-05-12 | 2013-12-03 | Ecofactor, Inc. | System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat |
CA2762163C (en) | 2009-05-18 | 2017-12-12 | Alarm.Com Incorporated | Remote device control and energy monitoring |
US8538587B2 (en) | 2009-05-21 | 2013-09-17 | Lennox Industries Inc. | HVAC system with automated blower capacity dehumidification, a HVAC controller therefor and a method of operation thereof |
US8415829B2 (en) * | 2009-06-02 | 2013-04-09 | Vdc Manufacturing Inc. | Transportable modular multi-appliance device |
US9026261B2 (en) | 2009-06-08 | 2015-05-05 | Tendril Networks, Inc. | Methods and systems for managing energy usage in buildings |
US8281244B2 (en) | 2009-06-11 | 2012-10-02 | Apple Inc. | User interface for media playback |
USD614196S1 (en) | 2009-06-26 | 2010-04-20 | Microsoft Corporation | User interface for a display screen |
USD614194S1 (en) | 2009-06-26 | 2010-04-20 | Microsoft Corporation | User interface for a display screen |
USD603421S1 (en) | 2009-06-26 | 2009-11-03 | Microsoft Corporation | Animated image for a portion of a display screen |
USD616460S1 (en) | 2009-06-26 | 2010-05-25 | Microsoft Corporation | Display screen with animated user interface |
USD619613S1 (en) | 2009-06-26 | 2010-07-13 | Microsoft Corporation | Transitional image for a portion of a display screen |
USD630649S1 (en) | 2009-06-30 | 2011-01-11 | Hitachi High-Technologies Corporation | Graphical user interface for a computer display |
US20110015797A1 (en) | 2009-07-14 | 2011-01-20 | Daniel Gilstrap | Method and apparatus for home automation and energy conservation |
US8509954B2 (en) | 2009-08-21 | 2013-08-13 | Allure Energy, Inc. | Energy management system and method |
US20110015798A1 (en) | 2009-07-20 | 2011-01-20 | Sustainable Spaces, Inc. | Building Energy Usage Auditing, Reporting, and Visualization |
MX342087B (en) | 2009-07-20 | 2016-09-13 | Allure Energy Inc | Energy management system and method. |
TWM369545U (en) | 2009-07-28 | 2009-11-21 | Lin-Song Weng | A circuit for extracting power from a battery and an electronic apparatus comprising the circuit. |
US8406933B2 (en) | 2009-08-18 | 2013-03-26 | Control4 Corporation | Systems and methods for estimating the effects of a request to change power usage |
US20110046805A1 (en) | 2009-08-18 | 2011-02-24 | Honeywell International Inc. | Context-aware smart home energy manager |
US8498749B2 (en) * | 2009-08-21 | 2013-07-30 | Allure Energy, Inc. | Method for zone based energy management system with scalable map interface |
USD625734S1 (en) | 2009-09-01 | 2010-10-19 | Sony Ericsson Mobile Communications Ab | Transitional graphic user interface for a display of a mobile telephone |
US9003387B2 (en) | 2009-09-25 | 2015-04-07 | Fisher-Rosemount Systems, Inc. | Automated deployment of computer-specific software updates |
US8249749B2 (en) * | 2009-10-07 | 2012-08-21 | Ford Global Technologies, Llc | Climate control system and method for optimizing energy consumption of a vehicle |
US20110106327A1 (en) | 2009-11-05 | 2011-05-05 | General Electric Company | Energy optimization method |
US8613067B2 (en) | 2009-11-17 | 2013-12-17 | Secureauth Corporation | Single sign on with multiple authentication factors |
US8830660B2 (en) | 2009-12-21 | 2014-09-09 | Whirlpool Corporation | Mechanical power service communicating device and system |
US8503984B2 (en) | 2009-12-23 | 2013-08-06 | Amos Winbush, III | Mobile communication device user content synchronization with central web-based records and information sharing system |
US8406931B2 (en) | 2009-12-31 | 2013-03-26 | Service Solutions U.S. Llc | A/C service tool controller |
US8352082B2 (en) | 2009-12-31 | 2013-01-08 | Schneider Electric USA, Inc. | Methods and apparatuses for displaying energy savings from an HVAC system |
US8510677B2 (en) | 2010-01-06 | 2013-08-13 | Apple Inc. | Device, method, and graphical user interface for navigating through a range of values |
US8185245B2 (en) * | 2010-01-22 | 2012-05-22 | Honeywell International Inc. | HVAC control with utility time of day pricing support |
US20110185895A1 (en) | 2010-02-03 | 2011-08-04 | Paul Freen | Filter apparatus and method of monitoring filter apparatus |
USD626133S1 (en) | 2010-02-04 | 2010-10-26 | Microsoft Corporation | User interface for a display screen |
US20110196539A1 (en) | 2010-02-10 | 2011-08-11 | Honeywell International Inc. | Multi-site controller batch update system |
US20110166712A1 (en) | 2010-03-18 | 2011-07-07 | Marcus Kramer | Deadband control of pneumatic control devices |
US8193775B2 (en) | 2010-03-31 | 2012-06-05 | Kookmin University Industry Academy Cooperation Foundation | Hysteresis switch and electricity charging module using the same |
USD633908S1 (en) | 2010-04-19 | 2011-03-08 | Apple Inc. | Electronic device |
CN102985890B (en) | 2010-04-08 | 2016-04-27 | 能源管理公司 | Energy saves measurement, adjustment and monetization system and method |
IES20100214A2 (en) | 2010-04-14 | 2011-11-09 | Smartwatch Ltd | Programmable controllers and schedule timers |
US20110253796A1 (en) | 2010-04-14 | 2011-10-20 | Posa John G | Zone-based hvac system |
US9329903B2 (en) | 2010-05-12 | 2016-05-03 | Emerson Electric Co. | System and method for internet based service notification |
US8556188B2 (en) | 2010-05-26 | 2013-10-15 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
USD641373S1 (en) | 2010-06-11 | 2011-07-12 | Microsoft Corporation | Display screen with user interface |
US8706310B2 (en) | 2010-06-15 | 2014-04-22 | Redwood Systems, Inc. | Goal-based control of lighting |
USD640269S1 (en) | 2010-06-24 | 2011-06-21 | Microsoft Corporation | Display screen with user interface |
USD640278S1 (en) | 2010-06-25 | 2011-06-21 | Microsoft Corporation | Display screen with user interface |
USD648735S1 (en) | 2010-06-25 | 2011-11-15 | Microsoft Corporation | Display screen with animated user interface |
USD640273S1 (en) | 2010-06-25 | 2011-06-21 | Microsoft Corporation | Display screen with animated user interface |
USD640285S1 (en) | 2010-06-25 | 2011-06-21 | Microsoft Corporation | Display screen with user interface |
USD643045S1 (en) | 2010-06-25 | 2011-08-09 | Microsoft Corporation | Display screen with user interface |
US20120017611A1 (en) | 2010-07-20 | 2012-01-26 | Coffel James A | Load management aware fan control |
US20120031984A1 (en) | 2010-08-03 | 2012-02-09 | Massachusetts Institute Of Technology | Personalized Building Comfort Control |
US8423637B2 (en) | 2010-08-06 | 2013-04-16 | Silver Spring Networks, Inc. | System, method and program for detecting anomalous events in a utility network |
US8090477B1 (en) | 2010-08-20 | 2012-01-03 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US8352083B2 (en) | 2010-08-26 | 2013-01-08 | Comverge, Inc. | System and method for establishing local control of a space conditioning load during a direct load control event |
US8510255B2 (en) | 2010-09-14 | 2013-08-13 | Nest Labs, Inc. | Occupancy pattern detection, estimation and prediction |
US9098279B2 (en) | 2010-09-14 | 2015-08-04 | Google Inc. | Methods and systems for data interchange between a network-connected thermostat and cloud-based management server |
US8727611B2 (en) | 2010-11-19 | 2014-05-20 | Nest Labs, Inc. | System and method for integrating sensors in thermostats |
US8606374B2 (en) | 2010-09-14 | 2013-12-10 | Nest Labs, Inc. | Thermodynamic modeling for enclosures |
USD660732S1 (en) | 2011-02-23 | 2012-05-29 | Nest Labs, Inc. | HVAC control device |
US8918219B2 (en) | 2010-11-19 | 2014-12-23 | Google Inc. | User friendly interface for control unit |
US9104211B2 (en) | 2010-11-19 | 2015-08-11 | Google Inc. | Temperature controller with model-based time to target calculation and display |
USD665397S1 (en) | 2010-10-04 | 2012-08-14 | Microsoft Corporation | Display screen with graphical user interface |
US20120085831A1 (en) | 2010-10-07 | 2012-04-12 | Energy Eye, Inc. | Systems and methods for controlling the temperature of a room based on occupancy |
USD651529S1 (en) | 2010-10-13 | 2012-01-03 | Mongell George J | Thermostat display |
US9453655B2 (en) | 2011-10-07 | 2016-09-27 | Google Inc. | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
US8788103B2 (en) | 2011-02-24 | 2014-07-22 | Nest Labs, Inc. | Power management in energy buffered building control unit |
US9448567B2 (en) * | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US9092039B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US9298196B2 (en) | 2010-11-19 | 2016-03-29 | Google Inc. | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
US10241527B2 (en) | 2010-11-19 | 2019-03-26 | Google Llc | Thermostat graphical user interface |
US8850348B2 (en) | 2010-12-31 | 2014-09-30 | Google Inc. | Dynamic device-associated feedback indicative of responsible device usage |
US8195313B1 (en) | 2010-11-19 | 2012-06-05 | Nest Labs, Inc. | Thermostat user interface |
USD671136S1 (en) | 2011-02-03 | 2012-11-20 | Microsoft Corporation | Display screen with transitional graphical user interface |
US8890019B2 (en) * | 2011-02-05 | 2014-11-18 | Roger Webster Faulkner | Commutating circuit breaker |
US8511577B2 (en) * | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8944338B2 (en) | 2011-02-24 | 2015-02-03 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
USD663744S1 (en) | 2011-05-27 | 2012-07-17 | Microsoft Corporation | Display screen with animated graphical user interface |
USD658674S1 (en) | 2011-05-27 | 2012-05-01 | Microsoft Corporation | Display screen with animated user interface |
USD656950S1 (en) | 2011-05-27 | 2012-04-03 | Microsoft Corporation | Display screen with animated graphical user interface |
USD664978S1 (en) | 2011-05-27 | 2012-08-07 | Microsoft Corporation | Display screen with graphical user interface |
USD663743S1 (en) | 2011-05-27 | 2012-07-17 | Microsoft Corporation | Display screen with animated graphical user interface |
USD656952S1 (en) | 2011-05-27 | 2012-04-03 | Microsoft Corporation | Display screen with animated graphical user interface |
USD664559S1 (en) | 2011-09-12 | 2012-07-31 | Microsoft Corporation | Display screen with user interface |
US9171251B2 (en) | 2011-09-16 | 2015-10-27 | Toyota Jidosha Kabushiki Kaisha | Context-aware analysis and adaptation |
CN106444471B (en) * | 2011-10-21 | 2019-04-16 | 谷歌有限责任公司 | Intelligent controller and method for learning control-time table automatically |
CN103890667B (en) | 2011-10-21 | 2017-02-15 | 谷歌公司 | User-friendly, network connected learning thermostat and related systems and methods |
USD673171S1 (en) | 2011-11-21 | 2012-12-25 | Microsoft Corporation | Display screen with graphical user interface |
USD673172S1 (en) | 2011-11-21 | 2012-12-25 | Microsoft Corporation | Display screen with animated graphical user interface |
US8949050B2 (en) | 2011-12-16 | 2015-02-03 | Basen Corporation | Smartgrid energy-usage-data storage and presentation systems, devices, protocol, and processes including a visualization, and load fingerprinting process |
US10191501B2 (en) | 2012-03-01 | 2019-01-29 | Emerson Electric Co. | Systems and methods for power stealing |
US8708242B2 (en) | 2012-09-21 | 2014-04-29 | Nest Labs, Inc. | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
-
2011
- 2011-01-04 US US12/984,602 patent/US9104211B2/en active Active
- 2011-01-10 US US12/987,257 patent/US9092040B2/en active Active
- 2011-02-23 US US13/033,573 patent/US9223323B2/en active Active
- 2011-02-24 US US13/034,678 patent/US8752771B2/en active Active
- 2011-02-24 US US13/034,666 patent/US9494332B2/en active Active
- 2011-02-24 US US13/034,674 patent/US9605858B2/en active Active
- 2011-03-01 US US13/038,191 patent/US8757507B2/en active Active
- 2011-03-01 US US13/038,206 patent/US8478447B2/en active Active
- 2011-10-06 US US13/267,871 patent/US9261287B2/en active Active
- 2011-10-06 US US13/267,877 patent/US9026254B2/en active Active
- 2011-10-21 US US13/317,557 patent/US20120229521A1/en not_active Abandoned
- 2011-11-18 TW TW100142423A patent/TWI502852B/en active
- 2011-11-18 TW TW104120386A patent/TWI530055B/en active
- 2011-11-18 CA CA2818373A patent/CA2818373C/en active Active
- 2011-11-18 WO PCT/US2011/061365 patent/WO2012068447A2/en active Application Filing
- 2011-11-18 CA CA2818370A patent/CA2818370C/en active Active
- 2011-11-18 WO PCT/US2011/061344 patent/WO2012068437A2/en active Application Filing
- 2011-11-18 WO PCT/US2011/061339 patent/WO2012068436A1/en active Application Filing
- 2011-11-18 CA CA3055035A patent/CA3055035C/en active Active
- 2011-11-18 TW TW100142429A patent/TWI465875B/en active
- 2011-11-18 TW TW104144792A patent/TWI584552B/en active
- 2011-11-18 CA CA3156396A patent/CA3156396A1/en active Pending
- 2011-11-18 TW TW100142428A patent/TWI546504B/en active
- 2011-11-18 WO PCT/US2011/061391 patent/WO2012068459A2/en active Application Filing
- 2011-11-18 TW TW105107406A patent/TWI591298B/en active
- 2011-11-18 CA CA2818356A patent/CA2818356C/en active Active
- 2011-11-18 WO PCT/US2011/061379 patent/WO2012068453A1/en active Application Filing
- 2011-11-18 CA CA2818372A patent/CA2818372A1/en active Pending
-
2013
- 2013-05-10 US US13/891,335 patent/US8924027B2/en active Active
-
2014
- 2014-04-30 US US14/266,474 patent/US9696734B2/en active Active
- 2014-05-30 US US14/292,642 patent/US9684317B2/en active Active
- 2014-11-19 US US14/548,131 patent/US9715239B2/en active Active
-
2015
- 2015-05-04 US US14/703,661 patent/US9702579B2/en active Active
- 2015-05-28 US US14/724,616 patent/US20150260424A1/en not_active Abandoned
- 2015-06-12 US US14/738,149 patent/US20150354846A1/en not_active Abandoned
- 2015-07-01 US US14/789,786 patent/US10082306B2/en active Active
- 2015-11-05 US US14/933,947 patent/US9612032B2/en active Active
-
2016
- 2016-01-26 US US15/006,969 patent/US10082307B2/en active Active
- 2016-09-14 US US15/265,305 patent/US10309672B2/en active Active
-
2017
- 2017-05-15 US US15/595,708 patent/US10151501B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5083477A (en) * | 1991-01-31 | 1992-01-28 | Gould Inc. | Control knob locking assembly |
US20070080938A1 (en) * | 2001-10-22 | 2007-04-12 | Apple Computer, Inc. | Method and apparatus for use of rotational user inputs |
US20030128192A1 (en) * | 2002-01-08 | 2003-07-10 | Koninklijke Philips Electronics N.V. | User interface for electronic devices for controlling the displaying of long sorted lists |
US20040085328A1 (en) * | 2002-10-31 | 2004-05-06 | Fujitsu Limited | Window switching apparatus |
US20100023865A1 (en) * | 2005-03-16 | 2010-01-28 | Jim Fulker | Cross-Client Sensor User Interface in an Integrated Security Network |
US20070247421A1 (en) * | 2006-04-25 | 2007-10-25 | Timothy James Orsley | Capacitive-based rotational positioning input device |
US20080048046A1 (en) * | 2006-08-24 | 2008-02-28 | Ranco Inc. Of Delaware | Networked appliance information display apparatus and network incorporating same |
US20090125824A1 (en) * | 2007-11-12 | 2009-05-14 | Microsoft Corporation | User interface with physics engine for natural gestural control |
US20100084249A1 (en) * | 2008-10-07 | 2010-04-08 | Itt Manufacturing Enterprises, Inc. | Snap-on, push button, rotary magnetic encoder knob assembly |
US20100198425A1 (en) * | 2009-02-04 | 2010-08-05 | Paul Donovan | Programmable thermostat |
US20110141142A1 (en) * | 2009-12-16 | 2011-06-16 | Akiva Dov Leffert | Device, Method, and Graphical User Interface for Managing User Interface Content and User Interface Elements |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9890971B2 (en) | 2015-05-04 | 2018-02-13 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US9964328B2 (en) | 2015-05-04 | 2018-05-08 | Johnson Controls Technology Company | User control device with cantilevered display |
US11216020B2 (en) | 2015-05-04 | 2022-01-04 | Johnson Controls Tyco IP Holdings LLP | Mountable touch thermostat using transparent screen technology |
US10808958B2 (en) | 2015-05-04 | 2020-10-20 | Johnson Controls Technology Company | User control device with cantilevered display |
US10677484B2 (en) | 2015-05-04 | 2020-06-09 | Johnson Controls Technology Company | User control device and multi-function home control system |
US10627126B2 (en) | 2015-05-04 | 2020-04-21 | Johnson Controls Technology Company | User control device with hinged mounting plate |
US10760809B2 (en) | 2015-09-11 | 2020-09-01 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
US10769735B2 (en) | 2015-09-11 | 2020-09-08 | Johnson Controls Technology Company | Thermostat with user interface features |
US11087417B2 (en) | 2015-09-11 | 2021-08-10 | Johnson Controls Tyco IP Holdings LLP | Thermostat with bi-directional communications interface for monitoring HVAC equipment |
US10510127B2 (en) | 2015-09-11 | 2019-12-17 | Johnson Controls Technology Company | Thermostat having network connected branding features |
US11080800B2 (en) | 2015-09-11 | 2021-08-03 | Johnson Controls Tyco IP Holdings LLP | Thermostat having network connected branding features |
US10559045B2 (en) | 2015-09-11 | 2020-02-11 | Johnson Controls Technology Company | Thermostat with occupancy detection based on load of HVAC equipment |
US10410300B2 (en) | 2015-09-11 | 2019-09-10 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
US10969131B2 (en) | 2015-10-28 | 2021-04-06 | Johnson Controls Technology Company | Sensor with halo light system |
US10345781B2 (en) | 2015-10-28 | 2019-07-09 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
US10310477B2 (en) | 2015-10-28 | 2019-06-04 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
US11277893B2 (en) | 2015-10-28 | 2022-03-15 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
US10732600B2 (en) | 2015-10-28 | 2020-08-04 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
US10546472B2 (en) | 2015-10-28 | 2020-01-28 | Johnson Controls Technology Company | Thermostat with direction handoff features |
US10655881B2 (en) | 2015-10-28 | 2020-05-19 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
US10180673B2 (en) | 2015-10-28 | 2019-01-15 | Johnson Controls Technology Company | Multi-function thermostat with emergency direction features |
US10162327B2 (en) | 2015-10-28 | 2018-12-25 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
US10318266B2 (en) | 2015-11-25 | 2019-06-11 | Johnson Controls Technology Company | Modular multi-function thermostat |
US11217082B2 (en) | 2015-12-31 | 2022-01-04 | Delta Faucet Company | Water sensor |
US10672252B2 (en) | 2015-12-31 | 2020-06-02 | Delta Faucet Company | Water sensor |
US10941951B2 (en) | 2016-07-27 | 2021-03-09 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
US10458669B2 (en) | 2017-03-29 | 2019-10-29 | Johnson Controls Technology Company | Thermostat with interactive installation features |
US11441799B2 (en) | 2017-03-29 | 2022-09-13 | Johnson Controls Tyco IP Holdings LLP | Thermostat with interactive installation features |
US11162698B2 (en) | 2017-04-14 | 2021-11-02 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
US10712038B2 (en) | 2017-04-14 | 2020-07-14 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
US11131474B2 (en) | 2018-03-09 | 2021-09-28 | Johnson Controls Tyco IP Holdings LLP | Thermostat with user interface features |
US11107390B2 (en) | 2018-12-21 | 2021-08-31 | Johnson Controls Technology Company | Display device with halo |
US12033564B2 (en) | 2018-12-21 | 2024-07-09 | Johnson Controls Technology Company | Display device with halo |
CN112413834A (en) * | 2019-08-20 | 2021-02-26 | 广东美的制冷设备有限公司 | Air conditioning system, air conditioning instruction detection method, control device and readable storage medium |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150354846A1 (en) | Methods and apparatus for control unit with a variable assist rotational interface and display | |
US9552002B2 (en) | Graphical user interface for setpoint creation and modification | |
US9952573B2 (en) | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements | |
AU2019204080B2 (en) | Touchscreen device user interface for remote control of a thermostat | |
US10627791B2 (en) | Thermostat user interface | |
US10295974B2 (en) | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat | |
US10054964B2 (en) | Building control unit method and controls | |
US20190278680A1 (en) | Attributing causation for energy usage and setpoint changes with a network-connected thermostat | |
US10241527B2 (en) | Thermostat graphical user interface | |
CA2852944C (en) | Energy efficiency promoting schedule learning algorithms for intelligent thermostat | |
EP2564282B1 (en) | User friendly interface for control unit | |
US20140200719A1 (en) | Systems and methods for updating climate control algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GOOGLE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEST LABS, INC.;REEL/FRAME:037990/0076 Effective date: 20140207 Owner name: NEST LABS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALES, STEVEN A., IV;PLITKINS, MICHAEL;SLOO, DAVID;SIGNING DATES FROM 20120321 TO 20120402;REEL/FRAME:037990/0016 |
|
AS | Assignment |
Owner name: GOOGLE LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:GOOGLE INC.;REEL/FRAME:044129/0001 Effective date: 20170929 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |