US20150302460A1 - Method for Passive Mining of Usage Information In A Location-Based Services System - Google Patents
Method for Passive Mining of Usage Information In A Location-Based Services System Download PDFInfo
- Publication number
- US20150302460A1 US20150302460A1 US14/732,567 US201514732567A US2015302460A1 US 20150302460 A1 US20150302460 A1 US 20150302460A1 US 201514732567 A US201514732567 A US 201514732567A US 2015302460 A1 US2015302460 A1 US 2015302460A1
- Authority
- US
- United States
- Prior art keywords
- customer
- location
- computer
- remote terminal
- implemented method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000005065 mining Methods 0.000 title abstract description 12
- 230000004044 response Effects 0.000 abstract description 83
- 238000004891 communication Methods 0.000 description 49
- 238000004458 analytical method Methods 0.000 description 29
- 230000001755 vocal effect Effects 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 14
- 238000003058 natural language processing Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 9
- 238000007726 management method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 235000013410 fast food Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0242—Determining effectiveness of advertisements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0207—Discounts or incentives, e.g. coupons or rebates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0255—Targeted advertisements based on user history
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0255—Targeted advertisements based on user history
- G06Q30/0256—User search
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0261—Targeted advertisements based on user location
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0264—Targeted advertisements based upon schedule
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0267—Wireless devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0623—Item investigation
- G06Q30/0625—Directed, with specific intent or strategy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0633—Lists, e.g. purchase orders, compilation or processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0639—Item locations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/12—Hotels or restaurants
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/1822—Parsing for meaning understanding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/04—Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/52—Network services specially adapted for the location of the user terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/53—Network services using third party service providers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/42204—Arrangements at the exchange for service or number selection by voice
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/42348—Location-based services which utilize the location information of a target
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/487—Arrangements for providing information services, e.g. recorded voice services or time announcements
- H04M3/493—Interactive information services, e.g. directory enquiries ; Arrangements therefor, e.g. interactive voice response [IVR] systems or voice portals
- H04M3/4936—Speech interaction details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
- H04W4/23—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel for mobile advertising
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/28—Constructional details of speech recognition systems
- G10L15/30—Distributed recognition, e.g. in client-server systems, for mobile phones or network applications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
- G10L2015/226—Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics
- G10L2015/228—Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics of application context
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2201/00—Electronic components, circuits, software, systems or apparatus used in telephone systems
- H04M2201/40—Electronic components, circuits, software, systems or apparatus used in telephone systems using speech recognition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2207/00—Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place
- H04M2207/18—Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2242/00—Special services or facilities
- H04M2242/15—Information service where the information is dependent on the location of the subscriber
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2242/00—Special services or facilities
- H04M2242/30—Determination of the location of a subscriber
Definitions
- the present invention relates generally to providing information to communication devices and, more particularly, to a system and method for passive mining of usage information in a location-based services system.
- Wireless communication devices have recently evolved from a technology used by an elite segment of the population to a technology that is used by the masses. In the year 2000, it has been estimated that well over 100 million people in the United States alone subscribed to at least one type of wireless communication service. Worldwide, the number of wireless communication device users has reached a staggering number and is growing all of the time. In the near future, it is envisioned that almost everyone will own or use some sort of wireless communication device that is capable of performing a variety of functions.
- the Internet has become a widely used medium for providing business information in a variety of forms that are targeted to various types of individuals and businesses.
- one of the problems associated with searching for business information on specific products and services using the Internet are being able to locate relevant business information for products and services that are available in a geographic area that is located near the user.
- directory assistance services Users of several different types of remote terminals often desire to use directory assistance services that are provided by various telephone companies. Many of these directory assistance calls originate in a respective metropolitan telephone service area and request listing information for listings contained in the same metropolitan service area. Most local directory assistance services in use today are handled by an operator that assists the requestor by manually inputting the requested information into an application that searches a database containing residential and business listings. As such, a need exists for providing an enhanced directory assistance system that is capable of automatically providing geographically targeted responses to requestors.
- a preferred embodiment of the present invention discloses a method for providing advertising effectiveness searching capabilities in a location-based services system.
- usage information for advertising campaigns placed on the location-based services system is stored in a usage data database.
- a search request form containing at least one input field is generated on a remote terminal.
- a search request is then entered into the search request form with the remote terminal.
- the search request is then transmitted to an advertising effectiveness application that is preferentially located on an advertiser portal that is connected to the location-based services system.
- the usage information is then searched to generate a response to the search request and the response is then transmitted to the remote terminal.
- the usage information may be selected from a group of information including a time of access, a location of access, an identity of individuals who received a respective advertising campaign, a total number of people who received a respective advertising campaign, a total number of people who responded to a respective advertising campaign, a time and date a respective advertising campaign was run, a product listing for a respective advertising campaign and a service listing for a respective advertising campaign.
- the search request form is preferentially generated on a web browser located on the remote terminal.
- a usage analysis user interface application generates the search request form and then transmits it to the remote terminal via the advertiser portal.
- the search results that are obtained from the usage data database may be formatted into viewable segments with a data scoring application.
- the usage analysis user interface application is preferentially used to transmit the response to the remote terminal.
- the remote terminal can be a wireless communication device in some preferred embodiments.
- Another preferred embodiment of the present invention discloses a method for providing predictive modeling in a location-based services system.
- Predictive modeling allows users to forecast or predict the types of users and numbers of users that are likely to respond to or receive advertising campaigns based on historical records that are contained in a usage data database.
- an advertising campaign is created with a remote terminal.
- the advertising campaign is then transmitted to a predictive modeling application that is preferentially located on an advertiser portal.
- a profile data file and a usage data database are then searched to generate a predictive model for the advertising campaign and the predictive model is then transmitted to the remote terminal.
- the advertising campaign that has been created includes at least one business rule.
- the business rule is extracted with a business rule application that is located on the advertiser portal and is used to assist in searching the profile data files and the usage data database.
- a usage analysis user interface application is used to generate the sample advertising campaign.
- the predictive model is formatted in a viewable format using a data scoring application.
- the predictive model is preferentially transmitted to the remote terminal using a usage analysis user interface application.
- the remote terminal may be a wireless communication device in other embodiments of the present invention.
- Another preferred embodiment of the present invention discloses a method for searching usage information in a location-based services system.
- usage information for the location-based services system is stored in a usage data database.
- An advertiser portal is provided to a remote terminal.
- a search request form is generated on the remote terminal that allows the user to generate a search.
- the user can then input a search request into the search request form using the remote terminal that is transmitted to the advertiser portal.
- the usage data database is then searched to generate a response to the search request that is transmitted to the remote terminal.
- the search request form is generated with a usage analysis user interface application located on the advertiser portal.
- the search results are preferentially formatted into a viewable format with a data scoring application.
- the response is transmitted to the remote terminal with a usage analysis user interface application on the advertiser portal.
- the remote terminal may be a wireless communication device.
- FIG. 1 illustrates a preferred embodiment of the location-based services system.
- FIG. 2 is a flow chart illustrating the process steps performed by the location-based application server when processing structured requests.
- FIG. 3 illustrates a preferred method for searching usage information in a location-based services system.
- FIG. 4 illustrates a preferred advertising effectiveness application for a location-based services system.
- FIG. 5 illustrates a preferred predictive modeling application for a location-based services system.
- the present invention discloses a method and system for delivering location-based services through a variety of communication networks.
- the preferred location-based services system 10 uses the geographic location of a remote terminal 12 to provide geographically targeted services to the remote terminal 12 .
- Remote terminals 12 that subscribe to the location-based services system 10 are capable of selecting and receiving information from a broad range of business and service providers that are located in a geographic region that is close to the remote terminal 12 and, thus, the user.
- one preferred embodiment of the location-based services system 10 includes a remote terminal 12 that is connected to a wireless communication system 14 using one of several available and commonly used communication protocols.
- the remote terminal 12 is connected to a base station 16 of the wireless communication system 14 , which transmits and receives radio signals to the remote terminal 12 during operation.
- a base station 16 of the wireless communication system 14 which transmits and receives radio signals to the remote terminal 12 during operation.
- the preferred wireless communication system 14 would cover a wide geographic region, such as, by way of example only, the entire United States.
- the remote terminal 12 is capable of sending a digital input signal to the base station 16 .
- digital input signal should be broadly construed to include voice signals, keypad input data, and pointer device selections or data from any other commonly used means for inputting data into a respective remote terminal 12 .
- Those skilled in the art would recognize that several peripheral devices are available for various types of remote terminals 12 that could be used to input data into the remote terminals 12 and may be taken advantage of by the present invention.
- the wireless communication system 14 is a digital communication system that uses one of several different methods of providing wireless digital communication between the remote terminals 12 and the base stations 16 .
- the wireless communication system 14 can use frequency division duplexing (FDD) or time division duplexing (TDD) to allocate for the two directions of transmission between the remote terminal 12 and the base station 16 .
- FDD frequency division duplexing
- TDD time division duplexing
- FDMA frequency division multiple access
- TDMA time division multiple access
- CDMA code division multiple access
- the base station 16 of the wireless communication system 14 is connected to a public switched telephone network (PSTN) 18 by a public switch 20 .
- PSTN public switched telephone network
- the PSTN 18 is a worldwide voice telephone network that is used to allow various communication devices to communicate with each other.
- the preferred PSTN 18 is a digital system, the present invention may be adapted for use on analog systems as well to accommodate geographic regions that might be underdeveloped or not serviced by a digital system.
- the public switch 20 transfers the signals that are received from the base station 16 to a private branch exchange (PBX) 22 .
- PBX private branch exchange
- the public switch 20 is connected to the private branch exchange (PBX) 22 , which, as generally known in the art, is a telephone switching system that is used to interconnect various telephone extensions to each other.
- PBX 22 uses all-digital methods for switching and is capable of supporting digital remote terminals and telephones and analog remote terminals and telephones.
- the PBX 22 is connected to a server of the location-based services system 10 , which is a form of a digital remote terminal.
- the PBX 22 is connected to at least one voice recognition server 24 .
- the voice recognition server 24 contains at least one voice recognition application that is operable to recognize the respective words that are contained in the voice signals that are received from the PBX 22 .
- a resulting output is generated by the voice recognition application that is used by a natural language processing application.
- the voice recognition server 24 is connected to at least one natural language processing server 26 that includes at least one natural language processing application that processes the identified words contained in the voice signals to ascertain the meaning of the words that are contained in the voice signals. As such, during operation, the voice recognition server 24 identifies or recognizes the particular words that are contained in the voice signals and the natural language processing server 26 interprets the meaning of the recognized words of the voice signals that are originally generated from the remote terminal 12 .
- the natural language processing application may be located on the voice recognition server 24 in other embodiments of the present invention, but, in an effort to increase the level of performance, would preferentially be located on a separate server or a separate set of servers.
- the natural language processing server 26 is connected to at least one location-based application server 28 .
- the location-based application server 28 is programmed to provide responsive information to the remote terminals 12 that has been requested by a respective user of the remote terminal 12 .
- the location-based application server 28 is used to retrieve and pass on location-based information to the remote terminals 12 in various data formats.
- the type of information provided to the remote terminals 12 varies depending on the specific nature of the information that has been requested from the user and the geographic location of the remote terminal 12 .
- the natural language processing server 26 is programmed to create a structured request that is sent to the location-based application server 28 .
- the location-based application server 28 In response to the structured request, the location-based application server 28 generates a structured response that is sent to the remote terminal 12 .
- the exact nature of the information sent in the structured response depends on the specific request that is made by a particular user of the remote terminal 12 .
- At least one digital signal processor server could be used to convert the analog signal into a digital signal that the voice recognition server 24 can process and interpret using the voice recognition applications.
- the digital signal processor server is preferentially connected between the voice recognition server 24 and the PBX 22 .
- the voice recognition server 24 might also be designed to perform the functions of the digital signal processor server in other embodiments of the present invention.
- Each remote terminal 12 also sends a unique remote terminal identifier to the base station 16 while communicating with the base station 16 of the wireless communication system 14 .
- the remote terminal identifier is preferentially attached to each voice signal as it passes through the location-based services system 10 so that the system can keep track of which respective remote terminal 12 is supposed to receive the information that has been requested.
- Those skilled in the art would recognize that various identification methods might be used to keep track of specific remote terminals 12 using the location-based services system 10 .
- the location-based application server 28 is also connected to a location gateway server 30 , which is, in turn, connected to the base station 16 of the wireless communication system 14 .
- the location gateway server 30 is used by the location-based application server 28 to retrieve a geographic indicator that is associated with each respective remote terminal 12 .
- the location-based application server 28 is capable of determining the respective geographic location of the remote terminal 12 so that geographically targeted responses and information can be provided to the remote terminal 12 .
- the location gateway server 30 is preferentially connected to the base station 16 of the wireless communication system 14 using a network connection 32 , which may be a private network connection or an Internet connection in alternative embodiments of the present invention.
- the geographic indicator may be generated by the remote terminal 12 or the base station 16 and is preferentially transmitted to the location-based application server 28 when a user of the remote terminal 12 is accessing the location-based services system 10 .
- the geographic indicator is preferentially transmitted to the location-based application server 28 with the remote terminal identifier so that the location-based application server 28 can associate each respective remote terminal 12 with a particular geographic location.
- the geographic indicator may be preset by a user of the remote terminal 12 , automatically generated by a GPS located in the remote terminal 12 or generated by a specialized geographic determination application running on the base station 16 .
- the present invention may advantageously take advantage of an enhanced 911 system of the wireless communication system 14 to generate the geographic indicator.
- the geographic indicator may originate from a combination of these sources and/or systems (i.e. it could come from a GPS-assisted network that uses GPS and devices on the network).
- the geographic indicator may automatically be sent to the location-based application server 28 as soon as a respective remote terminal 12 connects to the wireless communication system 14 ; however, in alternative embodiments of the present invention, the geographic indicator is only sent when a respective remote terminal is sending a structured request to the location-based application server 28 . As the geographic location of the remote terminal 12 changes, the geographic indicator is updated and the updated information can continuously be sent to the location-based application server 28 .
- At least one voice synthesis server 33 is connected to the location-based application server 28 and the PBX 22 .
- the voice synthesis server 33 is used to generate voice responses that are based on the structured responses that are generated in response to the structure requests that are received by the location-based application server 28 .
- Voice synthesis applications on the voice synthesis server 33 are used to transform the structured responses into voice response.
- the PBX 22 is used to transmit the voice responses to the PSTN 18 , which, in turn, transmits the voice response to the base station 16 , which ultimately transmits the voice response on to the remote terminal 12 .
- the voice synthesis server 33 may be connected directly to respective base stations 16 of the wireless communication system 14 .
- the remote terminal 12 is connected to the location-based application server 28 through a wireless application protocol (WAP) gateway 34 of the wireless communication system 14 .
- the WAP gateway 34 is connected to a WAP server 38 of the location-based services system 10 through a network connection 36 .
- the network connection 36 may be a private network connection or an Internet connection.
- the WAP server 38 is connected to the location-based application server 28 and, during operation, is used to generate structured requests, which are based on requests that are input to the remote terminal 12 and sent to the location-based application server 28 .
- the remote terminal 12 is capable of communicating with the WAP server 38 and the location-based application server 28 using a WAP standard.
- the WAP standard is a protocol that is designed for wireless communication devices to provide secure access to e-mail and text-based web pages.
- WAP provides a complete environment for wireless applications that includes a wireless counterpart of TCP/IP and a framework for telephony integration.
- the remote terminals 12 may also be capable of browsing for location-based services through the use of text and graphical based menus that can be provided to the remote terminals 12 from the location-based application server 28 .
- WAP Wireless Markup Language
- WML Wireless Markup Language
- WMLScript a compact JavaScript-like language that is capable of running in limited memory on the remote terminal 12 .
- the location-based services system 10 can also be designed to advantageously take advantage of this capability to provide location-based services to users of remote terminals 12 depending the particular geographic location of the remote terminal 12 .
- the WAP standard supports various handheld input methods such as keypad inputs or pointer device inputs that may be generated on various different types of remote terminals 12 .
- this gives users of the remote terminals 12 the capability of inputting data from keypads for the purposes of entering search requests to the location-based services system 10 .
- the remote terminals 12 are capable of receiving, interpreting and displaying web pages that include hypertext links to other web pages that may be selected using various selection methods.
- wireless application protocol should be broadly construed to include any communication protocol similar to what is commonly referred to as the “WAP standard,” which, as set forth above, is used to transmit text and graphics-based information to remote terminals 12 .
- WAP standard is used in this particular preferred embodiment of the present invention, those skilled in the art should recognize that other text and graphics-based communication protocols could be used in alternative embodiments of the present invention.
- i-Mode wireless communication systems use a packet-based communication protocol to communicate between the remote terminals 12 and the base station 16 , which essentially means that the remote terminals 12 are connected to the wireless communication system at all times and communicate with the base stations 16 using packets.
- i-Mode is also capable of providing web-browsing and customized applications to remote terminals 12 .
- i-Mode is a proprietary system that uses a subset of HTML, known as cHTML, in contrast to the WAP standard, which uses WML.
- cHTML subset of HTML
- WAP standard which uses WML.
- an i-Mode server is used to connect the base station 16 of the wireless communication system 14 to the location-based application server 28 .
- the remaining details of this particular embodiment are similar to other embodiments of the present invention and, as such, a more detailed discussion is not necessary.
- a second remote terminal 40 is connected to a subscriber portal web server 44 through a network connection 42 .
- the network connection 42 may be a private network connection or an Internet connection.
- the subscriber portal web server 44 is also connected to the location-based application server 28 .
- the second remote terminal 40 is programmed to receive structured requests that are sent to the location-based application server 28 and, likewise, the location-based application server 28 is programmed to generate structured responses that are sent to the second remote terminal 40 .
- the second remote terminal 40 and the location-based application server 28 preferentially communicate with each other using standard web-based protocols that are commonly used in various Internet-based applications.
- a user accesses the subscriber portal web server 44 through the second remote terminal 40 , which is preferentially a computer workstation.
- the second remote terminal 40 is assigned a predetermined geographic indicator. The geographic indicator is used by the location-based application server 28 to target services and business content to the second remote terminal 40 that are based on the geographic location of the second remote terminal 40 .
- the user of the second remote terminal 40 may be given the option of setting the geographic indicator to a desired geographic location, which may or may not be the exact geographic location of the second remote terminal 40 . For example, if the user is traveling to another city that evening and wants to access location-based services in that particular city, an option can be provided allowing the second remote terminal 40 to designate that particular city.
- the second remote terminal 40 is preferentially a computer workstation that includes multimedia capabilities and includes a microphone and a sound card. As known to those skilled in the art, this allows the second remote terminal 40 to generate sound through a speaker system and receive voice signals through the microphone. Although not specifically illustrated in FIG. 1 , this could allow the subscriber portal web server 44 to be connected to the voice recognition server 24 so that voice signals sent from the second remote terminal 40 could be processed similar to the method used to process voice signals received from wireless remote terminal 12 .
- a business remote terminal 46 is connected to a network connection 48 that is connected to an advertiser portal web server 50 .
- the network connection 48 may be a private network connection or an Internet connection.
- the advertiser portal web server 50 allows various businesses (i.e., content providers) to add, modify and/or delete campaigns that are designed to promote and sell various products and services through the location-based services system 10 . For example, if a particular business entity desires to run a promotion on a particular product or service, the advertiser portal web server 50 allows the business entity to modify their respective listings to include the respective items or services on special.
- the preferred location-based services system 10 is also capable of leveraging data that is preferentially grouped in four logical data groupings 52 .
- These logical data groupings include profile data files 54 , business data files 56 , additional data files 58 and usage data files 60 .
- the data files 54 - 60 contain detailed information on various items and services that are used by the location-based services system 10 , which is set forth in detail below.
- the data files 54 - 60 can be located on the location-based application server 28 , but are preferentially maintained on separate servers.
- the profile data files 54 contain a group of logical entities that contain relevant information concerning each consumer of the location-based services system 10 .
- logical entities include, but are not specifically limited to the following items: consumer name; consumer phone number; consumer identification; consumer password; consumer home address; consumer home phone number; consumer email address; consumer pager number; consumer service subscriptions (detailing the consumers chosen level of participation in one or more services); consumer privacy preferences (detailing information denoting the willingness to share a consumers private data with others based on data type, requestor, service, etc.); consumer service preferences (detailing any specific saved information that is relevant to any of the services which a consumer may use, such as: named locations (such as the address for a consumers work location, or the address(es) of a consumers friend(s); named interests or preferences regarding hobbies, news topic interest, sports, music, preferred brands or chains, banking information and other demographic information. (such as NBA basketball, jazz music, Italian food, favorite clothing brands or chains, banking information, etc.)); and preferred asynchronous communication method (such as
- the business data files 56 are composed of a group of logical entities containing all relevant information regarding the businesses listed within the location-based services system 10 , including but not limited to: business name; business phone number; business text description; business audio description; business video description; business and/or product images; business identification; business password; business category or categories; advertising participation level; advertising campaign information such as: parameters that define target market; campaign identification code; advertising content and special deals/discounts; saved data mining/reporting parameters; brands sold; brands serviced; product types sold; product types serviced; product models sold; product models serviced; product model prices; and service prices and inventory list (by brand, product type and product model).
- the additional data files 58 contains a group of logical entities that generally includes any additional content that is capable of being leveraged by the location-based services system 10 , possibly including, but not limited to: business ratings (via external evaluation services); weather conditions; driving directions; maps; traffic
- the residential telephone number and address listings may be provided by local telephone companies through a residential listing server that is connected to the location-based application server 28 .
- the usage data files 60 contains a group of logical entities that generally includes all recorded information regarding consumer transactions from remote terminals 12 , 40 , possibly including, but not limited to: consumer identification (or a unique hash of consumer identification); date; time; service used; request type; search criteria; matched data purchases made, and actions taken. Those skilled in the art would recognize that several other types of usage data might be stored in the usage data files 60 .
- the location-based application server 28 is programmed to handle a variety of structured requests and is capable of generating a variety of structured responses in the same format (i.e.—voice, wireless application protocol or web application protocol) that the structured request was received by the location-based application server 28 .
- Some of the structured request parameters that are capable of being used for the business services provided by the location-based services system 10 include (but are not necessarily limited to) one or more of the following: product type; service type; business name; business category; product name (or model name); product brand; price level; business or service ratings (i.e. external evaluation from a rating service such as AAA); whether special deals are provided; location (auto-location (locating nearest ATM for instance), predefined locations, or consumer-specified locations); hours of operation; availability of service (for example: availability of a open table at a specified time at a restaurant); and company specified within favorites for a category (i.e., name of favorite coffee house franchise).
- product type service type
- business name business category
- product name or model name
- product brand product brand
- price level business or service ratings (i.e. external evaluation from a rating service such as AAA); whether special deals are provided
- location auto-location (locating nearest ATM for instance), predefined locations, or consumer-specified locations)
- hours of operation availability of service (for example:
- Push services are defined as services, which proactively deliver content to the consumer through the remote terminal 12 , 40 , rather than services delivered only following a request by the consumer.
- the preferences of the consumers that use the remote terminals 12 are stored within the profile data files 54 . As such, by way of example only, a consumer that likes golf may be “pushed” an offering as they travel close to a nearby golf equipment store relating to a special offer on an item such as a golf club or particular brand of golf ball.
- the location-based services system 10 also gives businesses the ability to manage their respective content and mine usage data by using the advertiser portal web server 50 .
- the advertiser portal web server 50 preferentially includes the following web-based applications: a campaign management application, a business profile management application, a mining/reporting and predictive modeling application. Each of these applications and their respective functional aspects is discussed in greater detail below.
- the campaign management application includes several applications that allow a business to create advertising campaigns and an edit/delete advertising campaigns.
- the create campaign capability enables an advertiser to create a location-based advertising campaign. As part of this capability, the business would define the market segment at which the advertising is targeted. Then, the advertiser would define the advertising content that would be delivered to the target market, as well as the mechanism of delivery (i.e. pushed to each consumers remote terminal 12 , 40 , or presented only to a consumer when they make a relevant enhanced directory assistance request/search).
- the edit/delete campaign capability allows the business to modify or delete an existing campaign that has already been created and is running on the location-based application server 28 .
- the business profile management application includes a create business listing capability and an edit business listing capability.
- the create business listing capability enables a business to define their respective set of business data (see above for a list of content within the business data).
- the edit business listing capability allows the business to modify or delete their business listing.
- the mining/reporting capability allows business to interface with data that is stored in the usage data files 60 .
- An advertising effectiveness interface utilizes the usage data files 60 and business data files 56 to generate analysis surrounding the effectiveness of location-based advertising campaigns.
- the analysis will address questions such as “How many people received my campaign in the downtown area of Atlanta”.
- the information provided to the businesses provides them insight to quantify the results of campaigns created in the location-based services system 10 through the campaign management tool.
- the predictive modeling capability provides forecasting for potential customers likely to respond to offers, listings and deals. Examples of the type of feedback the consumer will receive include (but not limited to) the following: identifying customers likely to respond to their campaign by customer segment; identifying customers likely to request a campaign or listing by customer segment; and identifying demands by peak time or day.
- the location-based services system 10 provides a consumer using a remote terminal 12 , 40 with access to products and services in a designated geographic area through multiple access methods such as voice, wireless application protocols (such as WAP and cHTML) and web protocols (such as Java and HTML).
- the present invention encompasses the full lifecycle of the location-based services system 10 including delivery and maintenance, which includes content management, consumer management, content delivery, advertising management, advertising reporting, advertising delivery, usage tracking, usage mining and reporting, billing and settlements.
- the preferred location-based services system 10 is capable of providing location-based services to consumers through remote terminals 12 , 40 and is managed by various content providers through the use of respective business remote terminals 46 .
- the services that are provided through the location-based services system 10 preferentially includes an enhanced directory assistance service and an enhanced business service that is delivered through a voice recognition capability, wireless application protocol capability and/or web application capability.
- the user of the remote terminal 12 preferentially enters a predetermined key sequence (e.g. - by pressing 411 ) on the keypad of the remote terminal 12 or by pressing a specially designed key on the remote terminal 12 . If the remote terminal is not connected to the base station 16 already, when the enhanced directory assistance services or business services are selected, the remote terminal 12 establishes a connection with the base station 16 of the wireless communication system 14 , which acts as a gateway to the location-based services system 10 .
- a predetermined key sequence e.g. - by pressing 411
- the remote terminal 12 establishes a connection with the base station 16 of the wireless communication system 14 , which acts as a gateway to the location-based services system 10 .
- the user of the remote terminal 12 is given the option of using voice commands, but as previously set forth may also use keypad inputs on the remote terminal 12 to select the desired services as well.
- keypad inputs on the remote terminal 12 may be used until the appropriate time occurs for the user to input a voice signal containing a request for information.
- the location-based application server 28 or remote terminal 12 can be programmed to generate a search parameter request that is audibly generated on the remote terminal 12 .
- the search parameter request is sent in the form of a voice signal that prompts the user to state the first and last name of the person they are looking for.
- the search parameter request could also include an option that might prompt to user to also state the geographic area where the person is located.
- the location-based services system 10 includes voice recognition applications, those skilled in the art should recognize that the entire process of entering the search parameter request may be done by voice signals generated on the remote terminals 12 .
- the user In response to the search parameter request that is generated on the remote terminal 12 , the user preferentially provides a vocal response to the remote terminal that is transmitted to the base station 16 .
- the vocal response preferentially includes a first name response and a last name response (and possibly a detailed geographic information response for non-local listings) of the particular person the user is looking to retrieve information on.
- the vocal response to the search parameter request which preferentially also includes a unique remote terminal identifier that is associated with each respective remote terminal 12 , is then sent from the remote terminal 12 to the base station 16 .
- the base station 16 transmits the voice response to the PSTN 18 , which then routes the vocal response, together with the remote terminal identifier, to the PBX 22 .
- the PBX 22 transmits the vocal response and the remote terminal identifier as inputs to voice recognition applications and natural language processing applications that are located on servers 24 , 26 , which in turn, respectively transform the vocal response and the remote terminal identifier into a structured residential listing request that is sent to the location-based application server 28 .
- the voice recognition applications analyze the vocal responses for the purposes of making a determination of the identity of particular words contained in the vocal responses. Any detailed geographic information provided by the user is also added to the structured residential listing request that is sent to the location-based application server 28 .
- the structured residential listing request is used as an input to a residential finder application 62 located on the location-based application server 28 .
- the residential finder application 62 interprets the structured residential listing request and uses at least one data access routine 64 to locate and retrieve the specific information requested by the structure residential listing request from a respective database file 54 - 58 .
- a database server may be connected to the location-based application server 28 that are used to store various forms of information and content that is provided to users by the location-based services system 10 in varying types of formats, which will be set forth in greater detail below.
- the residential finder application 62 matches up the structured residential listing request with the geographic indicator of the remote terminal 12 . If no geographic information is contained in the structured response, the residential finder application 62 conducts a search of the profile data files 54 and the additional data files 58 with data access routines 64 targeted within a predetermined area based on the geographic location of remote terminal 12 . If geographic information is included in the vocal response, the residential finder application 62 conducts a search within the geographic area specified by the user.
- the residential listing database files are stored under the additional data files 58 by way of example only and should not be construed as a limitation of the present invention.
- the residential finder application 62 preferentially also searches the profile data files 54 so that if the identity of the person contained in the structured residential request is identified as a subscriber of the location-based services system 10 , a remote terminal 12 telephone number and/or an email address may also be added to the response that is provided to the user requesting the desired information. If the located person does turn out to be a subscriber of the location-based services system 10 , other embodiments of the present invention allow the subscriber to create a personalized response that is stored in a database file and is provided in response to residential listing requests that identify them.
- the residential finder application 62 obtains a geographic indicator and a remote terminal identifier associated with the remote terminal 12 . This allows the system to default to the geographic location of the remote terminal 12 to conduct the search, as set forth above. For instance, if the remote terminal 12 is located in Atlanta, Georgia, the residential finder application 62 will know this from the geographic indicator and will only search listings in the Atlanta area.
- the residential finder application 62 is operable to generate a structured residential response that is sent to voice synthesis server 33 .
- the voice synthesis server 33 is programmed to transform the structured residential response into a voice response signal with voice synthesis applications located on the voice synthesis server 33 .
- the voice response that are generated by the voice synthesis server 33 can include the name, address, residential telephone number, mobile number and/or email address of the particular person for which the user has requested a residential listing.
- the residential listing finder application 62 is preferentially programmed to generate a structured residential response that provides the multiple listing results in a predetermined organized listing arrangement.
- the predetermined organized listing arrangement is preferentially set up so that the user of the remote terminal 12 is capable of interacting with the listings provided in the voice response through the use of a keypad input or by voice signals that are spoken into the remote terminal 12 by the user.
- the information is organized and presented to the user of the remote terminal 12 based on the address of the particular people identified by the residential finder application 62 , however, those skilled in the art would recognize that other alternatives of presenting and organizing the results exist (i.e.—ranking the results in geographic order) are capable of being used in varying embodiments of the present invention.
- the location-based application server 28 is preferentially programmed to generate a structured residential response that contains a message that indicates that the requested information is unlisted or unavailable.
- the location-based application server 28 sends the structured residential response to the voice synthesis server 33 , which generates a voice signal that is sent to the remote terminal 12 informing the user that requested the residential listing that the requested residential listing it unlisted or unavailable.
- another preferred embodiment of the location-based services system 10 is capable of providing business services to the remote terminal 12 , which are provided to the remote terminal 12 based on the geographic location of the remote terminal 12 .
- the user of the remote terminal 12 selects the business services option instead of the enhanced directory assistance services option, a variety of information services are capable of being delivered to the user through the location-based services system 10 .
- the business services are provided to the remote terminal 12 through similar access methods that the residential listing services are provided to the remote terminal 12 .
- various other forms of business information is capable of being transmitted to the remote terminal 12 by the location-based services system 10 .
- some of the preferred structured business request parameters that are capable of being processed by the business services of the location-based services system 10 include (but are not necessarily limited to) one or more of the following parameters: product/service types; business names; business category; product name (or model name); product brands; price level; business or service ratings (e.g.—external evaluation from a rating service such as AAA); whether special deals or offers are being provided; auto-location of predefined services (e.g.—locating the nearest ATM for instance); hours of operation; availability of service (e.g.—availability of a open table at a specified time at a restaurant); and/or business information specified within a user defined favorites category (e.g.—name of favorite coffee house franchise, favorite clothing brands, favorite restaurants).
- product/service types e.g.—external evaluation from a rating service such as AAA)
- auto-location of predefined services e.g.—locating the nearest ATM for instance
- hours of operation e.g.—availability of a open table at a specified time at
- a user of the remote terminal 12 gains access to the business services provided by the location-based services system 10 , they are prompted by a voice signal requesting the user to state their respective business request.
- the user states a vocal response that is received by the remote terminal 12 that contains a predetermined request for a predetermined type of business content.
- the exact nature and content of the vocal response will vary, depending on the specific type of business/service information that is being requested by the user of the remote terminal 12 .
- the preferred embodiment of the present invention includes natural language processing applications the are used to interpret the meaning and context of the words contained in the vocal response, thereby allowing the user of the remote terminal 12 to make a request using requests that are spoken using statements commonly used in everyday conversations.
- the remote terminal 12 wants to obtain business information related to determining the location of a favorite local fast-food restaurant.
- the user's vocal response that is received by the remote terminal 12 might contain a voice signal that includes a request for business information that could be phrased something along the lines of the following statement: “What is the address of a Burger King restaurant that is close to my present location?”
- this preferred embodiment of the present invention is capable of interpreting this request using natural language processing applications to generate a structured response.
- the vocal response that is provided by the user of the remote terminal 12 is transmitted from the remote terminal 12 to the base station 16 of the wireless communication system 14 , which in turn is operable to transmit the vocal response to the PSTN 18 that transmits the vocal response to the PBX 22 .
- the vocal response is then sent from the PBX 22 to the voice recognition server 24 where it is processed with voice recognition applications to determine the identity or recognize the respective words that are contained in the vocal response from the user containing a business information request.
- the base station 16 is directly connected to the voice recognition server 24 , thereby allowing the base station 16 to directly transmit vocal response to the voice recognition server 24 .
- the natural language processing applications determine the meaning and context of the words contained in the vocal response that is received by the remote terminal 12 .
- the natural language application is programmed to generate a structured business request that is sent to the location-based application server 28 .
- the location-based application server 28 includes at least one business/services finder application 62 that is operable to process the structured business request by retrieving the requested information.
- the remote terminal 12 also sends a remote terminal identifier with the vocal response that is preferentially integrated in some manner with the structured business request that is ultimately generated and sent to the location-based application server 28 .
- a geographic indicator and a remote terminal identifier associated with the respective remote terminal 12 making the structured business request is also obtained or has already been obtained by the location-based application server 28 .
- the geographic indicator and the structured business request are used by the business/services finder application 62 to generate a structured business response that is responsive to the structured business request.
- the preferred business/services finder application 62 uses the geographic indicator of the remote terminal 12 to determine which particular Burger King location is closest to remote terminal 12 .
- a mapping routine within the business/services finder application 62 compares the geographic location of the remote terminal 12 with the respective geographic locations of Burger King restaurants retrieved by the structured business request and makes the determination of which location is closest to the remote terminal 12 , which can be based on the distance of the remote terminal 12 from each respective location. As illustrated in FIG. 2 , this is accomplished by a data access routine 64 that accesses the appropriate information from the business data files 56 , which preferentially contains a database of business listings, addresses, products and/or services provided.
- the location-based application server 28 is programmed to generate a structured business response that is sent to the voice synthesis server 33 .
- the voice synthesis server 33 converts the structured business response into a voice signal that is then sent to remote terminal 12 .
- the structured business response would contain the address of the Burger King that is closest to remote terminal 12 , which has been determined by the location-based application server 28 based on the geographic location of remote terminal 12 .
- a user of the business services might request information on a retail store that sells a specific product or provides a specific service. For instance, a user might state: “Who sells or provides product/service (stating the particular product/service desired)?”
- the business/services finder application 62 uses the geographic indicator of remote terminal 12 to narrow the structured business request to retrieve business information contained within a predefined geographic area in which the remote terminal 12 is located. If more than one business sells the item or provides the requested service, the business/services finder application 62 is programmed to generate a structured business response that is sent to voice synthesis server 33 containing a listing of the respective businesses meeting the desired criteria.
- the user is able to access the location-based services system 10 by using a wireless application protocol to generate and transmit structured requests to the location-based application server 28 .
- a user of remote terminal 12 uses a keypad or some other equivalent input means to access the location-based services system 10 from a selection menu that is generated on a display of remote terminal 12 .
- the remote terminal 12 is preferentially programmed to display a selection menu that contains a link to the business services and residential listing services provided by the location-based services system 10 .
- Those skilled in the art would recognize that various predefined links and menu selections for various types of services may also be displayed that may or may not be specified by the user of remote terminal 12 .
- the remote terminal 12 is preferentially programmed to search for a listing that is contained in the immediate geographic location of the remote terminal 12 .
- the search will be preset to be conducted using the Atlanta residential listings database.
- an additional input area is provided on the display of the remote terminal 12 whereby the user may designate the particular geographic location to search (i.e.—a city and state input location). As apparent, this allows the user to vary the location searched based on user preferences thereby providing further benefits to the user.
- An additional item the remote terminal 12 is programmed to generate on the display is an icon or a selection area that is designated to cause the remote terminal 12 to transmit the search request, which contain the parameters that have been input by the user, to the base station 16 of the wireless communication system 14 .
- the search request is sent to the base station 16 using a wireless application protocol, which for the purpose of the present invention should be broadly construed to include a broad range of standards used by various wireless communication systems 14 .
- the remote terminal 12 also transmits a remote terminal identifier with the search request, which as previously set forth, is assigned to remote terminals 12 for identification purposes.
- the search request is directed to the WAP gateway 34 , which in turn, is preferentially programmed to transmit all search requests that are received by users accessing the location-based services system 10 to the WAP server 38 .
- the WAP server 38 is programmed to interpret the search request and generate a structured residential request that is sent to the location-based application server 28 .
- the remote terminal identifier is also transmitted to the location-based application server 28 with the structured residential request.
- the location-based application server 28 is programmed with a residential finder application 62 that uses one of several data access routines 64 to obtain the requested information from a respective database file 54 - 58 .
- a structured response is then sent to the WAP server 38 , which in turn transmits the structured response to the WAP gateway 34 and ultimately on to the remote terminal 12 .
- the remote terminal 12 prompts the user for a search request, which the user enters on the remote terminal 12 .
- the search request is then sent to the location-based application server 28 , in a similar fashion as described with the directory assistance services, where it is processed by a business/services finder application 62 .
- the business/services finder application 62 uses data access routines 64 to retrieve the desired information and generates a structured response that is based on the geographic location of the remote terminal 12 .
- the location-based application server 28 will be informed of this fact by receiving a geographic indicator from the second remote terminal 12 and will be operable to generate structured responses to structured requests that contain information that is targeted for that particular geographic location. For instance, if a user of the remote terminal 12 enters a search request for information on “Chinese restaurants running specials”, a structured response is generated by the business/services finder application 62 that provides information about Chinese restaurants on the upper north side of Atlanta, and not Chinese restaurants located in irrelevant geographic locations, such as the far south side of Atlanta.
- a user of the second remote terminal 40 is connected to a subscriber web portal server 44 .
- the second remote terminal 40 and the subscriber web portal server 44 are designed to communicate with each other using standard web-based protocols (e.g.—HTML).
- the subscriber web portal server 44 is connected to the location-based application server 28 , thereby providing the second remote terminal 40 with access to the business services and enhanced directory assistance services that are offered in the preferred embodiments of the present invention.
- the second remote terminal 40 is capable of providing voice or keypad input data to the subscriber web portal server 44 .
- voice signals the respective vocal responses are sent to the voice recognition servers 24 for processing and, in the case of keypad input data, the subscriber portal web server 44 is operable to generate structured requests in response to user requests received from the second remote terminal 40 in similar manners as set forth above.
- the preferred location-based services system 10 is capable of allowing its subscribers to take advantage of the services provided by the present invention in a non-wireless environment as well, by supporting the use of standard computing devices that are typically used at home or work.
- a user of the second remote terminal 40 is located in Atlanta, Georgia, and wants to find local deals on Polo merchandise as well as stores that carry this particular brand that are located near their respective geographic location.
- the user would be prompted for a search request from a web page generated on the second remote terminal 40 where they would enter their desired search parameters, which in the present example might be in the form of the words “POLO MERCHANDISE”.
- the search request After the search request is entered and the user is ready to send the request, there is also preferentially an icon or some other type of selection indicator that is generated on a web page being displayed on the second remote terminal 40 that allows the user to submit the request.
- the search request, a second remote terminal identifier and a geographic indicator are sent to the subscriber web portal server 44 .
- the subscriber web portal server 44 then transforms the search request into a structured search request that is sent to the location-based application server 28 , which processes the structured request similar to other embodiments of the present invention.
- the user In the case of a voice signal input being used, the user would be prompted to state their respective request much like in the example set forth above with relation to wireless remote terminal 12 . As such, in the case of our present example, the user might state “POLO MERCHANDISE” after being prompted for a business services request.
- This vocal response is sent to the voice recognition server 24 , which as previously set forth, processes the vocal response similar to other embodiments herein described.
- a user of the second remote terminal 40 would be provided with a structured response from the location-based application server 28 that contained information relating to businesses that sell Polo merchandise in a geographic location that is relatively close to the second remote terminal 40 .
- the user may also be given option of selecting a predetermined geographic radius for which they wish responses to be generated during operation.
- a respective user may only desire to obtain information on businesses located within 15 miles of the remote terminals 12 , 40 and as such, may set a setting provided on the remote terminal 12 , 40 that only allows responses to business services requests to be generated within a 15 mile radius of the remote terminal 12 , 40 .
- a wireless carrier 70 may also be connected to the data files 54 - 60 through a wireless carrier server 72 .
- the wireless carrier server 72 is preferentially operable to monitor the data that is contained in the data files 54 - 60 . As such, during operation of the location-based services system 10 the wireless carrier server 72 can update a subscriber data file 74 as users of the remote terminals 12 , 40 access the location-based services system 10 . This allows the wireless carrier 70 to keep track of the usage of the location-based services system 10 and may allow various charges to be applied to the user if applicable.
- advertiser subscribers using remote terminal 46 are provided with a usage mining system 100 .
- the usage mining system 100 provides the ability to research usage trends and transactions of the location-based service system 10 via a web application.
- the advertiser preferentially accesses this capability via the advertiser portal 50 using a web browser at business remote terminal 46 , which preferentially would serve as a gateway to the application platform.
- the advertiser portal 50 provides a user of business remote terminal 46 with the ability to access and retrieve data that is stored in the usage data files 60 .
- a preferred embodiment of the present invention includes a usage analysis user interface 102 that preferentially provides a web-based user interface to the usage mining system 100 .
- the advertiser is able to select a first analysis option that generates detailed usage analysis from the location-based services system 10 .
- the usage mining system 100 will preferentially generate analysis based on two categories of analysis options.
- the preferred analysis options include (but are not limited to) an advertising effectiveness analysis application 104 and a predictive modeling application 106 .
- the user will select fields within each application 104 , 106 to create a search query. Based on the inputs, the application 104 , 106 will determine the necessary components to access in order to generate the correct analysis.
- a general search query may also be provided that allows the user to search the entire usage database 60 based on searching predetermined parameters.
- the advertising effectiveness application 104 utilizes the business data files 56 and the usage data database 60 in the location-based services system 10 to generate analysis surrounding the effectiveness of location-based advertising campaigns.
- the analysis will be capable of addressing questions such as “How many people received my campaign in the downtown area of Atlanta?”
- the information provided to advertisers provides them with insight to quantify the results of advertising campaigns created with the location-based services system 10 .
- the user must first determine and enter the input variables that will be used for searching, which is preferentially done via a web-based interface using the business remote terminal 46 .
- a search query is entered, it is used to retrieve and view the data stored in the business data files 56 and the usage data database 60 .
- the advertising effectiveness application 104 retrieves data from the business data files 56 and the usage data database 60 to match request parameters that are input by the user.
- the advertising effectiveness application 104 will then forward the search results to the usage analysis user interface 102 , which displays the resulting search response via the web browser on the business remote terminal 46 .
- a user of business remote terminal 46 receives a query entry form from the usage analysis user interface 102 .
- a search request is sent from business remote terminal 46 to the advertiser portal 50 .
- the search request is sent to a data access component 64 .
- the data access component 64 searches the business data file 56 and the usage data database 60 to retrieve search results that match the criteria set forth in the search request.
- the search results may then be directed toward a data scoring application 108 , which is capable of reformatting the search results into various different types of formats.
- the content files 52 are located on the location-based application server 28 .
- the usage analysis user interface 102 may have to access the location-based application server 28 to retrieve the desired information.
- the data access component 64 is preferentially located on the location-based application server 28 .
- the usage mining system 100 preferentially generates search requests that are transmitted to the data access component which in turn, actually performs the searching on the location-based application server 28 .
- the content files 52 could be mirrored on the advertiser portal 50 and all processes could be performed at that location as well.
- the advertising effectiveness application 104 uses the usage analysis user interface 102 to generate a viewable output on business remote terminal 46 .
- the results are provided using a web browser on the business remote terminal 46 ; however, other ways of providing the results may also be used.
- the search results may be displayed using numbers, graphs, charts, images or any other method for providing analysis results.
- a list of inputs (at a minimum) that may be used within the advertising effectiveness application 104 include, but are not necessarily limited to: a respective advertising campaign, demographic information, a date or time period, location information, by category, type of listing category, competitive listing categories and a key word inputs.
- Examples of the type of feedback the user will receive include (but are not necessarily limited to) the following: measure of number of customers reached; frequency of advertisement or listing; competitive analysis comparing advertising listing frequency to category; cost per impression; number of customers reached by top three demographic segments; and 1) demographics (gender, age, ethnicity, marital status, children, income, special interests, hobby, education, homeowner, car owner); 2) target market (city and state); and 3) location (address and location at time of historical interaction).
- the predictive modeling application 106 provides the capability of forecasting or making projections of the type and number of users using remote terminals 12 , 40 that will likely respond to offers, listings, campaigns and deals. Examples of the type of feedback the user will receive include (but are not necessarily limited to) the following: identifying customers likely to respond to their campaign by customer segment; identifying customers likely to respond to campaigns or offers for certain products or services, identifying customers likely to request a campaign or listing by customer segment; and identifying demands by peak time or day.
- the user enters as an input into the predictive modeling application 106 the proposed future advertising campaign/deal as well as the business rules associated with it. Entering and submitting this information builds a search query with the necessary search parameters to explore the profile database 54 and the usage data database 60 .
- the data access component 64 searches the respective databases to find data elements that match the search query.
- the search results obtained are preferentially sent to the data scoring application 108 to determine the statistical probability of a proposed campaign's success. These results are then returned to the predictive analysis application 106 to be displayed through the usage analysis user interface 102 on the business remote terminal 46 .
- the usage analysis user interface 102 if an advertiser uses the predictive modeling application 106 , preferentially the usage analysis user interface 102 generates a search parameter entry form that is sent from the advertiser portal 50 to the business remote terminal 46 .
- This allows advertisers to enter search parameters that include potential products or services that are going to be offered along with the business rules that go along with the potential offering.
- the business rules may include discount information, special deals (e.g., buy two, get one free), special rates or any other type of incentive or restriction.
- the predictive modeling application 106 uses a business rules application 110 to extract the appropriate parameters from the search request to formulate a proper search to be submitted to the profile database 54 and the usage data database 60 .
- the business rules application 110 uses data access component 64 to run a search through the profile database 54 and the usage data database 60 .
- the data access component 64 then forwards the search results to the data scoring application 108 , which formats the results into one of several possible viewable formats.
- the search results are sent to the predictive modeling application 106 .
- the predictive modeling application 106 uses the usage analysis user interface 102 to transmit the response from the advertiser portal 50 to the business remote terminal 46 .
- the results are presented to the advertiser via a web browser on the business remote terminal 46 .
- the predictive mining input options that are available to advertisers include (but are not necessarily limited to) the following: advertising campaigns; target dates (start date and end date); type of listing category; demographics (gender, age, ethnicity, marital status, children, income, special interests, hobby, education, homeowner, car owner); 2) target market (city and state); and 3) location (address and location at time of historical interaction).
- Other input options can be provided as needed to allow a more flexible search to be conducted by the advertiser.
- a wireless communication device may be used to mine data from the location-based services system 10 .
- the wireless communication device connects to the advertiser portal 50 and uses a wireless application protocol to submit searches in a similar fashion as set forth above.
- the business remote terminal 46 does not have to be limited to a personal computer and should also be viewed as including wireless communication devices as well.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Human Computer Interaction (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Operations Research (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Educational Administration (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
- Mobile Radio Communication Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 11/007,761, filed Dec. 8, 2004, which is a continuation of U.S. patent application Ser. No. 10/133,537, filed Apr. 26, 2002, now U.S. Pat. No. 6,848,542 B2, issued Feb. 1, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 09/946,111, filed Sep. 4, 2001, now U.S. Pat. No. 6,944,447 B2, issued Sep. 13, 2005, which claims the benefit of priority of U.S. Provisional Application Ser. No. 60/286,916, filed Apr. 27, 2001, all of which are incorporated by reference.
- The present invention relates generally to providing information to communication devices and, more particularly, to a system and method for passive mining of usage information in a location-based services system.
- Wireless communication devices have recently evolved from a technology used by an elite segment of the population to a technology that is used by the masses. In the year 2000, it has been estimated that well over 100 million people in the United States alone subscribed to at least one type of wireless communication service. Worldwide, the number of wireless communication device users has reached a staggering number and is growing all of the time. In the near future, it is envisioned that almost everyone will own or use some sort of wireless communication device that is capable of performing a variety of functions.
- In addition to traditional wireless communication devices, many different types of portable electronic devices are in use today. In particular, notebook computers, palm-top computers, and personal digital assistants (PDA) are commonplace. The use of wireless communication devices is widespread and it is expected that in the near future combined mobile telephone/PDA devices will be widely used by the masses. Currently, most of these devices are only used by a small segment of the population due, in large part, to the fact that there are a limited number of applications and services available for such devices.
- The Internet has become a widely used medium for providing business information in a variety of forms that are targeted to various types of individuals and businesses. Generally speaking, one of the problems associated with searching for business information on specific products and services using the Internet are being able to locate relevant business information for products and services that are available in a geographic area that is located near the user. As such, a need exists for a way to provide a broad range of business information and content to wireless communication devices and workstations that are based on the respective geographic location of the communication device at the time the information is requested.
- Users of several different types of remote terminals often desire to use directory assistance services that are provided by various telephone companies. Many of these directory assistance calls originate in a respective metropolitan telephone service area and request listing information for listings contained in the same metropolitan service area. Most local directory assistance services in use today are handled by an operator that assists the requestor by manually inputting the requested information into an application that searches a database containing residential and business listings. As such, a need exists for providing an enhanced directory assistance system that is capable of automatically providing geographically targeted responses to requestors.
- Another need exists for methods and systems that allow business users of these types of systems to search through historical usage records. These records can be used by business users for various types of research and record keeping.
- A preferred embodiment of the present invention discloses a method for providing advertising effectiveness searching capabilities in a location-based services system. In the preferred embodiment, usage information for advertising campaigns placed on the location-based services system is stored in a usage data database. A search request form containing at least one input field is generated on a remote terminal. A search request is then entered into the search request form with the remote terminal. The search request is then transmitted to an advertising effectiveness application that is preferentially located on an advertiser portal that is connected to the location-based services system. The usage information is then searched to generate a response to the search request and the response is then transmitted to the remote terminal.
- In the preferred embodiment, the usage information may be selected from a group of information including a time of access, a location of access, an identity of individuals who received a respective advertising campaign, a total number of people who received a respective advertising campaign, a total number of people who responded to a respective advertising campaign, a time and date a respective advertising campaign was run, a product listing for a respective advertising campaign and a service listing for a respective advertising campaign.
- The search request form is preferentially generated on a web browser located on the remote terminal. A usage analysis user interface application generates the search request form and then transmits it to the remote terminal via the advertiser portal. The search results that are obtained from the usage data database may be formatted into viewable segments with a data scoring application. The usage analysis user interface application is preferentially used to transmit the response to the remote terminal. The remote terminal can be a wireless communication device in some preferred embodiments.
- Another preferred embodiment of the present invention discloses a method for providing predictive modeling in a location-based services system. Predictive modeling allows users to forecast or predict the types of users and numbers of users that are likely to respond to or receive advertising campaigns based on historical records that are contained in a usage data database. In this embodiment, an advertising campaign is created with a remote terminal. The advertising campaign is then transmitted to a predictive modeling application that is preferentially located on an advertiser portal. A profile data file and a usage data database are then searched to generate a predictive model for the advertising campaign and the predictive model is then transmitted to the remote terminal.
- In this preferred embodiment, the advertising campaign that has been created includes at least one business rule. The business rule is extracted with a business rule application that is located on the advertiser portal and is used to assist in searching the profile data files and the usage data database. A usage analysis user interface application is used to generate the sample advertising campaign. In the preferred embodiment, the predictive model is formatted in a viewable format using a data scoring application. The predictive model is preferentially transmitted to the remote terminal using a usage analysis user interface application. The remote terminal may be a wireless communication device in other embodiments of the present invention.
- Another preferred embodiment of the present invention discloses a method for searching usage information in a location-based services system. In this embodiment, usage information for the location-based services system is stored in a usage data database. An advertiser portal is provided to a remote terminal. A search request form is generated on the remote terminal that allows the user to generate a search. The user can then input a search request into the search request form using the remote terminal that is transmitted to the advertiser portal. The usage data database is then searched to generate a response to the search request that is transmitted to the remote terminal.
- In this preferred embodiment, the search request form is generated with a usage analysis user interface application located on the advertiser portal. The search results are preferentially formatted into a viewable format with a data scoring application. The response is transmitted to the remote terminal with a usage analysis user interface application on the advertiser portal. The remote terminal may be a wireless communication device.
- Further objects and advantages of the present invention will be apparent from the following description, reference being made to the accompanying drawings wherein preferred embodiments of the invention are clearly illustrated.
-
FIG. 1 illustrates a preferred embodiment of the location-based services system. -
FIG. 2 is a flow chart illustrating the process steps performed by the location-based application server when processing structured requests. -
FIG. 3 illustrates a preferred method for searching usage information in a location-based services system. -
FIG. 4 illustrates a preferred advertising effectiveness application for a location-based services system. -
FIG. 5 illustrates a preferred predictive modeling application for a location-based services system. - The present invention discloses a method and system for delivering location-based services through a variety of communication networks. Referring to
FIG. 1 , the preferred location-basedservices system 10 uses the geographic location of aremote terminal 12 to provide geographically targeted services to theremote terminal 12.Remote terminals 12 that subscribe to the location-basedservices system 10 are capable of selecting and receiving information from a broad range of business and service providers that are located in a geographic region that is close to theremote terminal 12 and, thus, the user. - As illustrated in
FIG. 1 , one preferred embodiment of the location-basedservices system 10 includes aremote terminal 12 that is connected to awireless communication system 14 using one of several available and commonly used communication protocols. As illustrated, theremote terminal 12 is connected to abase station 16 of thewireless communication system 14, which transmits and receives radio signals to theremote terminal 12 during operation. Those skilled in the art would recognize that although only onebase station 16 is illustrated inFIG. 1 ,several base stations 16 are actually used to make-up the preferredwireless communication system 14. Ideally, the preferredwireless communication system 14 would cover a wide geographic region, such as, by way of example only, the entire United States. - In the preferred embodiment of the present invention, the
remote terminal 12 is capable of sending a digital input signal to thebase station 16. The term digital input signal should be broadly construed to include voice signals, keypad input data, and pointer device selections or data from any other commonly used means for inputting data into a respectiveremote terminal 12. Those skilled in the art would recognize that several peripheral devices are available for various types ofremote terminals 12 that could be used to input data into theremote terminals 12 and may be taken advantage of by the present invention. - Preferentially, the
wireless communication system 14 is a digital communication system that uses one of several different methods of providing wireless digital communication between theremote terminals 12 and thebase stations 16. Thewireless communication system 14 can use frequency division duplexing (FDD) or time division duplexing (TDD) to allocate for the two directions of transmission between theremote terminal 12 and thebase station 16. - In order to provide multiple access methods to the
remote terminals 12, which refers to the method of creating multiple channels for each transmission direction, one of several different types of multiple access methods may be used in the present invention. Three preferred types of multiple access methods that might be used include: frequency division multiple access (FDMA); time division multiple access (TDMA); and/or code division multiple access (CDMA). Those skilled in the art would recognize that the present invention could readily be adapted to take advantage of other multiple access methods as well. - As further illustrated in
FIG. 1 , in the preferred embodiment of the present invention thebase station 16 of thewireless communication system 14 is connected to a public switched telephone network (PSTN) 18 by apublic switch 20. As known to those skilled in the art, thePSTN 18 is a worldwide voice telephone network that is used to allow various communication devices to communicate with each other. Although thepreferred PSTN 18 is a digital system, the present invention may be adapted for use on analog systems as well to accommodate geographic regions that might be underdeveloped or not serviced by a digital system. - The
public switch 20 transfers the signals that are received from thebase station 16 to a private branch exchange (PBX) 22. Thepublic switch 20 is connected to the private branch exchange (PBX) 22, which, as generally known in the art, is a telephone switching system that is used to interconnect various telephone extensions to each other. In the preferred embodiment of the present invention, thePBX 22 uses all-digital methods for switching and is capable of supporting digital remote terminals and telephones and analog remote terminals and telephones. As set forth in greater detail below, in the preferred embodiment, thePBX 22 is connected to a server of the location-basedservices system 10, which is a form of a digital remote terminal. - Referring to
FIG. 1 , in this embodiment of the present invention, thePBX 22 is connected to at least onevoice recognition server 24. Thevoice recognition server 24 contains at least one voice recognition application that is operable to recognize the respective words that are contained in the voice signals that are received from thePBX 22. As set forth in greater detail below, a resulting output is generated by the voice recognition application that is used by a natural language processing application. - The
voice recognition server 24 is connected to at least one naturallanguage processing server 26 that includes at least one natural language processing application that processes the identified words contained in the voice signals to ascertain the meaning of the words that are contained in the voice signals. As such, during operation, thevoice recognition server 24 identifies or recognizes the particular words that are contained in the voice signals and the naturallanguage processing server 26 interprets the meaning of the recognized words of the voice signals that are originally generated from theremote terminal 12. The natural language processing application may be located on thevoice recognition server 24 in other embodiments of the present invention, but, in an effort to increase the level of performance, would preferentially be located on a separate server or a separate set of servers. - The natural
language processing server 26 is connected to at least one location-basedapplication server 28. As set forth in detail below, the location-basedapplication server 28 is programmed to provide responsive information to theremote terminals 12 that has been requested by a respective user of theremote terminal 12. Generally speaking, the location-basedapplication server 28 is used to retrieve and pass on location-based information to theremote terminals 12 in various data formats. The type of information provided to theremote terminals 12 varies depending on the specific nature of the information that has been requested from the user and the geographic location of theremote terminal 12. - During operation, after the meaning of the words in the voice signals are interpreted, the natural
language processing server 26 is programmed to create a structured request that is sent to the location-basedapplication server 28. In response to the structured request, the location-basedapplication server 28 generates a structured response that is sent to theremote terminal 12. As set forth in greater detail below, the exact nature of the information sent in the structured response depends on the specific request that is made by a particular user of theremote terminal 12. - If an analog voice signal is used, although not illustrated in
FIG. 1 , at least one digital signal processor server could be used to convert the analog signal into a digital signal that thevoice recognition server 24 can process and interpret using the voice recognition applications. In this respective embodiment, the digital signal processor server is preferentially connected between thevoice recognition server 24 and thePBX 22. Those skilled in the art would recognize that thevoice recognition server 24 might also be designed to perform the functions of the digital signal processor server in other embodiments of the present invention. - Each
remote terminal 12 also sends a unique remote terminal identifier to thebase station 16 while communicating with thebase station 16 of thewireless communication system 14. The remote terminal identifier is preferentially attached to each voice signal as it passes through the location-basedservices system 10 so that the system can keep track of which respectiveremote terminal 12 is supposed to receive the information that has been requested. Those skilled in the art would recognize that various identification methods might be used to keep track of specificremote terminals 12 using the location-basedservices system 10. - As further illustrated in
FIG. 1 , the location-basedapplication server 28 is also connected to alocation gateway server 30, which is, in turn, connected to thebase station 16 of thewireless communication system 14. Thelocation gateway server 30 is used by the location-basedapplication server 28 to retrieve a geographic indicator that is associated with each respectiveremote terminal 12. As such, while a respectiveremote terminal 12 is connected to thewireless communication system 14, the location-basedapplication server 28 is capable of determining the respective geographic location of theremote terminal 12 so that geographically targeted responses and information can be provided to theremote terminal 12. - As illustrated in
FIG. 1 , thelocation gateway server 30 is preferentially connected to thebase station 16 of thewireless communication system 14 using anetwork connection 32, which may be a private network connection or an Internet connection in alternative embodiments of the present invention. The geographic indicator may be generated by theremote terminal 12 or thebase station 16 and is preferentially transmitted to the location-basedapplication server 28 when a user of theremote terminal 12 is accessing the location-basedservices system 10. The geographic indicator is preferentially transmitted to the location-basedapplication server 28 with the remote terminal identifier so that the location-basedapplication server 28 can associate each respective remote terminal 12 with a particular geographic location. - In the preferred embodiment of the present invention, the geographic indicator may be preset by a user of the
remote terminal 12, automatically generated by a GPS located in theremote terminal 12 or generated by a specialized geographic determination application running on thebase station 16. In addition, the present invention may advantageously take advantage of an enhanced 911 system of thewireless communication system 14 to generate the geographic indicator. In another embodiment of this invention, the geographic indicator may originate from a combination of these sources and/or systems (i.e. it could come from a GPS-assisted network that uses GPS and devices on the network). The geographic indicator may automatically be sent to the location-basedapplication server 28 as soon as a respectiveremote terminal 12 connects to thewireless communication system 14; however, in alternative embodiments of the present invention, the geographic indicator is only sent when a respective remote terminal is sending a structured request to the location-basedapplication server 28. As the geographic location of the remote terminal 12 changes, the geographic indicator is updated and the updated information can continuously be sent to the location-basedapplication server 28. - As further illustrated in
FIG. 1 , at least onevoice synthesis server 33 is connected to the location-basedapplication server 28 and thePBX 22. For voice-related applications of the location-basedservices system 10, thevoice synthesis server 33 is used to generate voice responses that are based on the structured responses that are generated in response to the structure requests that are received by the location-basedapplication server 28. Voice synthesis applications on thevoice synthesis server 33 are used to transform the structured responses into voice response. In the preferred embodiment, thePBX 22 is used to transmit the voice responses to thePSTN 18, which, in turn, transmits the voice response to thebase station 16, which ultimately transmits the voice response on to theremote terminal 12. In alternative embodiments of the present invention, thevoice synthesis server 33 may be connected directly torespective base stations 16 of thewireless communication system 14. - Referring once again to
FIG. 1 , in yet another preferred embodiment of the present invention, theremote terminal 12 is connected to the location-basedapplication server 28 through a wireless application protocol (WAP)gateway 34 of thewireless communication system 14. TheWAP gateway 34 is connected to aWAP server 38 of the location-basedservices system 10 through anetwork connection 36. Thenetwork connection 36 may be a private network connection or an Internet connection. TheWAP server 38 is connected to the location-basedapplication server 28 and, during operation, is used to generate structured requests, which are based on requests that are input to theremote terminal 12 and sent to the location-basedapplication server 28. - The
remote terminal 12 is capable of communicating with theWAP server 38 and the location-basedapplication server 28 using a WAP standard. As known to those skilled in the art, the WAP standard is a protocol that is designed for wireless communication devices to provide secure access to e-mail and text-based web pages. WAP provides a complete environment for wireless applications that includes a wireless counterpart of TCP/IP and a framework for telephony integration. In the preferred embodiment of the location-basedservices system 10, theremote terminals 12 may also be capable of browsing for location-based services through the use of text and graphical based menus that can be provided to theremote terminals 12 from the location-basedapplication server 28. - One preferred embodiment of the present invention uses the WAP standard to support the use of a Wireless Markup Language (WML), which is a streamlined version of HTML for small screen displays, to conduct communication and transfer information between the
remote terminal 12 and the location-basedapplication server 28. WAP is also capable of using WMLScript, which is a compact JavaScript-like language that is capable of running in limited memory on theremote terminal 12. The location-basedservices system 10 can also be designed to advantageously take advantage of this capability to provide location-based services to users ofremote terminals 12 depending the particular geographic location of theremote terminal 12. - In this preferred embodiment of the present invention, the WAP standard supports various handheld input methods such as keypad inputs or pointer device inputs that may be generated on various different types of
remote terminals 12. As it relates to the present invention, this gives users of theremote terminals 12 the capability of inputting data from keypads for the purposes of entering search requests to the location-basedservices system 10. In addition, theremote terminals 12 are capable of receiving, interpreting and displaying web pages that include hypertext links to other web pages that may be selected using various selection methods. - For the purpose of the present invention, the term wireless application protocol should be broadly construed to include any communication protocol similar to what is commonly referred to as the “WAP standard,” which, as set forth above, is used to transmit text and graphics-based information to
remote terminals 12. Although the WAP standard is used in this particular preferred embodiment of the present invention, those skilled in the art should recognize that other text and graphics-based communication protocols could be used in alternative embodiments of the present invention. - For example, although not specifically illustrated, another preferred embodiment of the present invention could be designed for an i-Mode wireless communication system. i-Mode wireless communication systems use a packet-based communication protocol to communicate between the
remote terminals 12 and thebase station 16, which essentially means that theremote terminals 12 are connected to the wireless communication system at all times and communicate with thebase stations 16 using packets. i-Mode is also capable of providing web-browsing and customized applications toremote terminals 12. - i-Mode is a proprietary system that uses a subset of HTML, known as cHTML, in contrast to the WAP standard, which uses WML. In this particular embodiment, an i-Mode server is used to connect the
base station 16 of thewireless communication system 14 to the location-basedapplication server 28. The remaining details of this particular embodiment are similar to other embodiments of the present invention and, as such, a more detailed discussion is not necessary. - Referring to
FIG. 1 , in yet another preferred embodiment of the location-basedservices system 10, a secondremote terminal 40 is connected to a subscriberportal web server 44 through anetwork connection 42. Thenetwork connection 42 may be a private network connection or an Internet connection. As illustrated, the subscriberportal web server 44 is also connected to the location-basedapplication server 28. During operation, the secondremote terminal 40 is programmed to receive structured requests that are sent to the location-basedapplication server 28 and, likewise, the location-basedapplication server 28 is programmed to generate structured responses that are sent to the secondremote terminal 40. - The second
remote terminal 40 and the location-basedapplication server 28 preferentially communicate with each other using standard web-based protocols that are commonly used in various Internet-based applications. In this embodiment of the present invention, a user accesses the subscriberportal web server 44 through the secondremote terminal 40, which is preferentially a computer workstation. As a subscriber to the location-basedservices system 10, the secondremote terminal 40 is assigned a predetermined geographic indicator. The geographic indicator is used by the location-basedapplication server 28 to target services and business content to the secondremote terminal 40 that are based on the geographic location of the secondremote terminal 40. - The user of the second
remote terminal 40 may be given the option of setting the geographic indicator to a desired geographic location, which may or may not be the exact geographic location of the secondremote terminal 40. For example, if the user is traveling to another city that evening and wants to access location-based services in that particular city, an option can be provided allowing the secondremote terminal 40 to designate that particular city. - In this preferred embodiment of the present invention, the second
remote terminal 40 is preferentially a computer workstation that includes multimedia capabilities and includes a microphone and a sound card. As known to those skilled in the art, this allows the secondremote terminal 40 to generate sound through a speaker system and receive voice signals through the microphone. Although not specifically illustrated inFIG. 1 , this could allow the subscriberportal web server 44 to be connected to thevoice recognition server 24 so that voice signals sent from the secondremote terminal 40 could be processed similar to the method used to process voice signals received from wirelessremote terminal 12. - Referring to
FIG. 1 , a businessremote terminal 46 is connected to anetwork connection 48 that is connected to an advertiserportal web server 50. Thenetwork connection 48 may be a private network connection or an Internet connection. The advertiserportal web server 50 allows various businesses (i.e., content providers) to add, modify and/or delete campaigns that are designed to promote and sell various products and services through the location-basedservices system 10. For example, if a particular business entity desires to run a promotion on a particular product or service, the advertiserportal web server 50 allows the business entity to modify their respective listings to include the respective items or services on special. - As further illustrated in
FIG. 1 , the preferred location-basedservices system 10 is also capable of leveraging data that is preferentially grouped in fourlogical data groupings 52. These logical data groupings include profile data files 54, business data files 56, additional data files 58 and usage data files 60. The data files 54-60 contain detailed information on various items and services that are used by the location-basedservices system 10, which is set forth in detail below. The data files 54-60 can be located on the location-basedapplication server 28, but are preferentially maintained on separate servers. - The profile data files 54 contain a group of logical entities that contain relevant information concerning each consumer of the location-based
services system 10. These logical entities include, but are not specifically limited to the following items: consumer name; consumer phone number; consumer identification; consumer password; consumer home address; consumer home phone number; consumer email address; consumer pager number; consumer service subscriptions (detailing the consumers chosen level of participation in one or more services); consumer privacy preferences (detailing information denoting the willingness to share a consumers private data with others based on data type, requestor, service, etc.); consumer service preferences (detailing any specific saved information that is relevant to any of the services which a consumer may use, such as: named locations (such as the address for a consumers work location, or the address(es) of a consumers friend(s); named interests or preferences regarding hobbies, news topic interest, sports, music, preferred brands or chains, banking information and other demographic information. (such as NBA basketball, Jazz music, Italian food, favorite clothing brands or chains, banking information, etc.)); and preferred asynchronous communication method (such as email or pager) listed by service and/or service/content provider. - The business data files 56 are composed of a group of logical entities containing all relevant information regarding the businesses listed within the location-based
services system 10, including but not limited to: business name; business phone number; business text description; business audio description; business video description; business and/or product images; business identification; business password; business category or categories; advertising participation level; advertising campaign information such as: parameters that define target market; campaign identification code; advertising content and special deals/discounts; saved data mining/reporting parameters; brands sold; brands serviced; product types sold; product types serviced; product models sold; product models serviced; product model prices; and service prices and inventory list (by brand, product type and product model). - The additional data files 58 contains a group of logical entities that generally includes any additional content that is capable of being leveraged by the location-based
services system 10, possibly including, but not limited to: business ratings (via external evaluation services); weather conditions; driving directions; maps; traffic Although not specifically illustrated, the residential telephone number and address listings may be provided by local telephone companies through a residential listing server that is connected to the location-basedapplication server 28. - The usage data files 60 contains a group of logical entities that generally includes all recorded information regarding consumer transactions from
remote terminals - As generally set forth above, users of the location-based
services system 10 are given the ability to search, via aremote terminal application server 28 is programmed to handle a variety of structured requests and is capable of generating a variety of structured responses in the same format (i.e.—voice, wireless application protocol or web application protocol) that the structured request was received by the location-basedapplication server 28. - Some of the structured request parameters that are capable of being used for the business services provided by the location-based
services system 10 include (but are not necessarily limited to) one or more of the following: product type; service type; business name; business category; product name (or model name); product brand; price level; business or service ratings (i.e. external evaluation from a rating service such as AAA); whether special deals are provided; location (auto-location (locating nearest ATM for instance), predefined locations, or consumer-specified locations); hours of operation; availability of service (for example: availability of a open table at a specified time at a restaurant); and company specified within favorites for a category (i.e., name of favorite coffee house franchise). Those skilled in the art would recognize that a variety of structured request parameters might be used in the present invention. - Optionally, consumers have the ability to “opt-in” to “push” content and advertising services. Push services are defined as services, which proactively deliver content to the consumer through the
remote terminal remote terminals 12 are stored within the profile data files 54. As such, by way of example only, a consumer that likes golf may be “pushed” an offering as they travel close to a nearby golf equipment store relating to a special offer on an item such as a golf club or particular brand of golf ball. - As set forth briefly above, the location-based
services system 10 also gives businesses the ability to manage their respective content and mine usage data by using the advertiserportal web server 50. The advertiserportal web server 50 preferentially includes the following web-based applications: a campaign management application, a business profile management application, a mining/reporting and predictive modeling application. Each of these applications and their respective functional aspects is discussed in greater detail below. - The campaign management application includes several applications that allow a business to create advertising campaigns and an edit/delete advertising campaigns. The create campaign capability enables an advertiser to create a location-based advertising campaign. As part of this capability, the business would define the market segment at which the advertising is targeted. Then, the advertiser would define the advertising content that would be delivered to the target market, as well as the mechanism of delivery (i.e. pushed to each consumers
remote terminal application server 28. - The business profile management application includes a create business listing capability and an edit business listing capability. The create business listing capability enables a business to define their respective set of business data (see above for a list of content within the business data). The edit business listing capability allows the business to modify or delete their business listing. Those skilled in the art would recognize that several other options might be made available through the business profile management application.
- The mining/reporting capability allows business to interface with data that is stored in the usage data files 60. An advertising effectiveness interface utilizes the usage data files 60 and business data files 56 to generate analysis surrounding the effectiveness of location-based advertising campaigns. The analysis will address questions such as “How many people received my campaign in the downtown area of Atlanta”. The information provided to the businesses provides them insight to quantify the results of campaigns created in the location-based
services system 10 through the campaign management tool. - The predictive modeling capability provides forecasting for potential customers likely to respond to offers, listings and deals. Examples of the type of feedback the consumer will receive include (but not limited to) the following: identifying customers likely to respond to their campaign by customer segment; identifying customers likely to request a campaign or listing by customer segment; and identifying demands by peak time or day.
- As briefly set forth above, the location-based
services system 10 provides a consumer using aremote terminal services system 10 including delivery and maintenance, which includes content management, consumer management, content delivery, advertising management, advertising reporting, advertising delivery, usage tracking, usage mining and reporting, billing and settlements. - The preferred location-based
services system 10 is capable of providing location-based services to consumers throughremote terminals remote terminals 46. The services that are provided through the location-basedservices system 10 preferentially includes an enhanced directory assistance service and an enhanced business service that is delivered through a voice recognition capability, wireless application protocol capability and/or web application capability. - In order to access the enhanced directory assistance services or the business services, the user of the
remote terminal 12 preferentially enters a predetermined key sequence (e.g. - by pressing 411) on the keypad of theremote terminal 12 or by pressing a specially designed key on theremote terminal 12. If the remote terminal is not connected to thebase station 16 already, when the enhanced directory assistance services or business services are selected, theremote terminal 12 establishes a connection with thebase station 16 of thewireless communication system 14, which acts as a gateway to the location-basedservices system 10. - In another embodiment, in order to select one of the respective services, the user of the
remote terminal 12 is given the option of using voice commands, but as previously set forth may also use keypad inputs on theremote terminal 12 to select the desired services as well. Those skilled in the art should recognize that the enhanced directory assistance services and the business services do not necessarily have to be provided through the same access method and that a keypad-based menu system may be used until the appropriate time occurs for the user to input a voice signal containing a request for information. - By way of example only, if the enhanced directory assistance services are selected by a user of the
remote terminal 12, either thebase station 16, the location-basedapplication server 28 orremote terminal 12 can be programmed to generate a search parameter request that is audibly generated on theremote terminal 12. In the embodiment being discussed, the search parameter request is sent in the form of a voice signal that prompts the user to state the first and last name of the person they are looking for. In addition, the search parameter request could also include an option that might prompt to user to also state the geographic area where the person is located. As should be apparent from the discussion above, since the location-basedservices system 10 includes voice recognition applications, those skilled in the art should recognize that the entire process of entering the search parameter request may be done by voice signals generated on theremote terminals 12. - In response to the search parameter request that is generated on the
remote terminal 12, the user preferentially provides a vocal response to the remote terminal that is transmitted to thebase station 16. The vocal response preferentially includes a first name response and a last name response (and possibly a detailed geographic information response for non-local listings) of the particular person the user is looking to retrieve information on. The vocal response to the search parameter request, which preferentially also includes a unique remote terminal identifier that is associated with each respectiveremote terminal 12, is then sent from theremote terminal 12 to thebase station 16. Thebase station 16 transmits the voice response to thePSTN 18, which then routes the vocal response, together with the remote terminal identifier, to thePBX 22. - The
PBX 22 transmits the vocal response and the remote terminal identifier as inputs to voice recognition applications and natural language processing applications that are located onservers application server 28. As set forth in detail above, the voice recognition applications analyze the vocal responses for the purposes of making a determination of the identity of particular words contained in the vocal responses. Any detailed geographic information provided by the user is also added to the structured residential listing request that is sent to the location-basedapplication server 28. - As illustrated in
FIG. 2 , the structured residential listing request is used as an input to aresidential finder application 62 located on the location-basedapplication server 28. During operation, theresidential finder application 62 interprets the structured residential listing request and uses at least onedata access routine 64 to locate and retrieve the specific information requested by the structure residential listing request from a respective database file 54-58. Those skilled in the art should recognize that several database servers may be connected to the location-basedapplication server 28 that are used to store various forms of information and content that is provided to users by the location-basedservices system 10 in varying types of formats, which will be set forth in greater detail below. - In the preferred embodiment of the present invention, the
residential finder application 62 matches up the structured residential listing request with the geographic indicator of theremote terminal 12. If no geographic information is contained in the structured response, theresidential finder application 62 conducts a search of the profile data files 54 and the additional data files 58 withdata access routines 64 targeted within a predetermined area based on the geographic location ofremote terminal 12. If geographic information is included in the vocal response, theresidential finder application 62 conducts a search within the geographic area specified by the user. As set forth above, in the preferred embodiment of the present invention the residential listing database files are stored under the additional data files 58 by way of example only and should not be construed as a limitation of the present invention. - The
residential finder application 62 preferentially also searches the profile data files 54 so that if the identity of the person contained in the structured residential request is identified as a subscriber of the location-basedservices system 10, aremote terminal 12 telephone number and/or an email address may also be added to the response that is provided to the user requesting the desired information. If the located person does turn out to be a subscriber of the location-basedservices system 10, other embodiments of the present invention allow the subscriber to create a personalized response that is stored in a database file and is provided in response to residential listing requests that identify them. - In addition to receiving the structured residential listing requests, the
residential finder application 62 obtains a geographic indicator and a remote terminal identifier associated with theremote terminal 12. This allows the system to default to the geographic location of theremote terminal 12 to conduct the search, as set forth above. For instance, if theremote terminal 12 is located in Atlanta, Georgia, theresidential finder application 62 will know this from the geographic indicator and will only search listings in the Atlanta area. - Once the appropriate data is located by the
residential finder application 62 that is responsive to the structured residential listing request, which in the present example would preferentially include at least one telephone number and/or the address of the person(s) named in the voice signal, theresidential finder application 62 is operable to generate a structured residential response that is sent to voicesynthesis server 33. As set forth in detail above, thevoice synthesis server 33 is programmed to transform the structured residential response into a voice response signal with voice synthesis applications located on thevoice synthesis server 33. - As set forth briefly above, the voice response that are generated by the
voice synthesis server 33 can include the name, address, residential telephone number, mobile number and/or email address of the particular person for which the user has requested a residential listing. For those instances where the structured residential responses include more than one residential listing, the residentiallisting finder application 62 is preferentially programmed to generate a structured residential response that provides the multiple listing results in a predetermined organized listing arrangement. - The predetermined organized listing arrangement is preferentially set up so that the user of the
remote terminal 12 is capable of interacting with the listings provided in the voice response through the use of a keypad input or by voice signals that are spoken into theremote terminal 12 by the user. Preferentially, the information is organized and presented to the user of theremote terminal 12 based on the address of the particular people identified by theresidential finder application 62, however, those skilled in the art would recognize that other alternatives of presenting and organizing the results exist (i.e.—ranking the results in geographic order) are capable of being used in varying embodiments of the present invention. - If the person for whom information has been requested is designated as being unlisted or unavailable, the location-based
application server 28 is preferentially programmed to generate a structured residential response that contains a message that indicates that the requested information is unlisted or unavailable. As such, in this particular embodiment of the present invention the location-basedapplication server 28 sends the structured residential response to thevoice synthesis server 33, which generates a voice signal that is sent to theremote terminal 12 informing the user that requested the residential listing that the requested residential listing it unlisted or unavailable. - As briefly set forth above, another preferred embodiment of the location-based
services system 10 is capable of providing business services to theremote terminal 12, which are provided to theremote terminal 12 based on the geographic location of theremote terminal 12. If the user of theremote terminal 12 selects the business services option instead of the enhanced directory assistance services option, a variety of information services are capable of being delivered to the user through the location-basedservices system 10. During operation, the business services are provided to theremote terminal 12 through similar access methods that the residential listing services are provided to theremote terminal 12. In addition to being able to obtain the address and telephone number of local businesses, various other forms of business information is capable of being transmitted to theremote terminal 12 by the location-basedservices system 10. - As generally set forth above and in greater detail below, some of the preferred structured business request parameters that are capable of being processed by the business services of the location-based
services system 10 include (but are not necessarily limited to) one or more of the following parameters: product/service types; business names; business category; product name (or model name); product brands; price level; business or service ratings (e.g.—external evaluation from a rating service such as AAA); whether special deals or offers are being provided; auto-location of predefined services (e.g.—locating the nearest ATM for instance); hours of operation; availability of service (e.g.—availability of a open table at a specified time at a restaurant); and/or business information specified within a user defined favorites category (e.g.—name of favorite coffee house franchise, favorite clothing brands, favorite restaurants). - In this preferred embodiment of the present invention, once a user of the
remote terminal 12 gains access to the business services provided by the location-basedservices system 10, they are prompted by a voice signal requesting the user to state their respective business request. In response to the prompt for a business request, the user states a vocal response that is received by theremote terminal 12 that contains a predetermined request for a predetermined type of business content. The exact nature and content of the vocal response will vary, depending on the specific type of business/service information that is being requested by the user of theremote terminal 12. As set forth above and below, the preferred embodiment of the present invention includes natural language processing applications the are used to interpret the meaning and context of the words contained in the vocal response, thereby allowing the user of theremote terminal 12 to make a request using requests that are spoken using statements commonly used in everyday conversations. - By way of example only, lets say that a respective user of the
remote terminal 12 wants to obtain business information related to determining the location of a favorite local fast-food restaurant. As such, the user's vocal response that is received by theremote terminal 12 might contain a voice signal that includes a request for business information that could be phrased something along the lines of the following statement: “What is the address of a Burger King restaurant that is close to my present location?” As previously set forth, this preferred embodiment of the present invention is capable of interpreting this request using natural language processing applications to generate a structured response. - As with the residential services, in this embodiment of the present invention the vocal response that is provided by the user of the
remote terminal 12 is transmitted from theremote terminal 12 to thebase station 16 of thewireless communication system 14, which in turn is operable to transmit the vocal response to thePSTN 18 that transmits the vocal response to thePBX 22. The vocal response is then sent from thePBX 22 to thevoice recognition server 24 where it is processed with voice recognition applications to determine the identity or recognize the respective words that are contained in the vocal response from the user containing a business information request. Although not illustrated, in an alternative embodiment of the present invention thebase station 16 is directly connected to thevoice recognition server 24, thereby allowing thebase station 16 to directly transmit vocal response to thevoice recognition server 24. - After the words contained in the vocal response have been recognized using voice recognition applications, a respective output is generated by the voice recognition applications, which is used as an input to natural language processing applications. As set forth in detail above, the natural language processing applications determine the meaning and context of the words contained in the vocal response that is received by the
remote terminal 12. Referring once again toFIG. 2 , once the meaning and context of the recognized words contained in the vocal response have been determined, the natural language application is programmed to generate a structured business request that is sent to the location-basedapplication server 28. The location-basedapplication server 28 includes at least one business/services finder application 62 that is operable to process the structured business request by retrieving the requested information. - As set forth in detail above, the
remote terminal 12 also sends a remote terminal identifier with the vocal response that is preferentially integrated in some manner with the structured business request that is ultimately generated and sent to the location-basedapplication server 28. In addition, in this preferred embodiment of the present invention as well as others, a geographic indicator and a remote terminal identifier associated with the respectiveremote terminal 12 making the structured business request is also obtained or has already been obtained by the location-basedapplication server 28. As illustrated inFIG. 2 , the geographic indicator and the structured business request are used by the business/services finder application 62 to generate a structured business response that is responsive to the structured business request. - In our current example, the preferred business/
services finder application 62 uses the geographic indicator of theremote terminal 12 to determine which particular Burger King location is closest toremote terminal 12. A mapping routine within the business/services finder application 62 compares the geographic location of theremote terminal 12 with the respective geographic locations of Burger King restaurants retrieved by the structured business request and makes the determination of which location is closest to theremote terminal 12, which can be based on the distance of the remote terminal 12 from each respective location. As illustrated inFIG. 2 , this is accomplished by adata access routine 64 that accesses the appropriate information from the business data files 56, which preferentially contains a database of business listings, addresses, products and/or services provided. - After the appropriate information is located, the location-based
application server 28 is programmed to generate a structured business response that is sent to thevoice synthesis server 33. Thevoice synthesis server 33 converts the structured business response into a voice signal that is then sent toremote terminal 12. In this example, the structured business response would contain the address of the Burger King that is closest toremote terminal 12, which has been determined by the location-basedapplication server 28 based on the geographic location ofremote terminal 12. - In yet another example of this embodiment of the present invention, a user of the business services might request information on a retail store that sells a specific product or provides a specific service. For instance, a user might state: “Who sells or provides product/service (stating the particular product/service desired)?” After the voice recognition application and the natural language processing application interpret and transform the request into a structured business request, the business/
services finder application 62 uses the geographic indicator ofremote terminal 12 to narrow the structured business request to retrieve business information contained within a predefined geographic area in which theremote terminal 12 is located. If more than one business sells the item or provides the requested service, the business/services finder application 62 is programmed to generate a structured business response that is sent to voicesynthesis server 33 containing a listing of the respective businesses meeting the desired criteria. - In yet another preferred embodiment of the present invention, the user is able to access the location-based
services system 10 by using a wireless application protocol to generate and transmit structured requests to the location-basedapplication server 28. A user ofremote terminal 12 uses a keypad or some other equivalent input means to access the location-basedservices system 10 from a selection menu that is generated on a display ofremote terminal 12. In this preferred embodiment of the present invention, once a user chooses to obtain access to the location-basedservices system 10, theremote terminal 12 is preferentially programmed to display a selection menu that contains a link to the business services and residential listing services provided by the location-basedservices system 10. Those skilled in the art would recognize that various predefined links and menu selections for various types of services may also be displayed that may or may not be specified by the user ofremote terminal 12. - If the residential listing service is selected on the
remote terminal 12, the user is prompted byremote terminal 12 to enter the first and last name of the person for which they desire to obtain information. By default, theremote terminal 12 is preferentially programmed to search for a listing that is contained in the immediate geographic location of theremote terminal 12. For example, ifremote terminal 12 is located in the Atlanta metropolitan area, the search will be preset to be conducted using the Atlanta residential listings database. In alternative embodiments of the present invention, an additional input area is provided on the display of theremote terminal 12 whereby the user may designate the particular geographic location to search (i.e.—a city and state input location). As apparent, this allows the user to vary the location searched based on user preferences thereby providing further benefits to the user. - An additional item the
remote terminal 12 is programmed to generate on the display is an icon or a selection area that is designated to cause theremote terminal 12 to transmit the search request, which contain the parameters that have been input by the user, to thebase station 16 of thewireless communication system 14. As previously set forth, preferentially the search request is sent to thebase station 16 using a wireless application protocol, which for the purpose of the present invention should be broadly construed to include a broad range of standards used by variouswireless communication systems 14. Theremote terminal 12 also transmits a remote terminal identifier with the search request, which as previously set forth, is assigned toremote terminals 12 for identification purposes. Once received by thebase station 16, the search request is directed to theWAP gateway 34, which in turn, is preferentially programmed to transmit all search requests that are received by users accessing the location-basedservices system 10 to theWAP server 38. - The
WAP server 38 is programmed to interpret the search request and generate a structured residential request that is sent to the location-basedapplication server 28. For identification purposes, the remote terminal identifier is also transmitted to the location-basedapplication server 28 with the structured residential request. As with other embodiments of the present invention, the location-basedapplication server 28 is programmed with aresidential finder application 62 that uses one of severaldata access routines 64 to obtain the requested information from a respective database file 54-58. A structured response is then sent to theWAP server 38, which in turn transmits the structured response to theWAP gateway 34 and ultimately on to theremote terminal 12. - If the business services option is selected, the
remote terminal 12 prompts the user for a search request, which the user enters on theremote terminal 12. The search request is then sent to the location-basedapplication server 28, in a similar fashion as described with the directory assistance services, where it is processed by a business/services finder application 62. The business/services finder application 62 usesdata access routines 64 to retrieve the desired information and generates a structured response that is based on the geographic location of theremote terminal 12. - For example, if the
remote terminal 12 is located on the upper north side of Atlanta, Georgia, the location-basedapplication server 28 will be informed of this fact by receiving a geographic indicator from the secondremote terminal 12 and will be operable to generate structured responses to structured requests that contain information that is targeted for that particular geographic location. For instance, if a user of theremote terminal 12 enters a search request for information on “Chinese restaurants running specials”, a structured response is generated by the business/services finder application 62 that provides information about Chinese restaurants on the upper north side of Atlanta, and not Chinese restaurants located in irrelevant geographic locations, such as the far south side of Atlanta. - As previously set forth, in yet another preferred embodiment of the location-based services system 10 a user of the second
remote terminal 40 is connected to a subscriberweb portal server 44. The secondremote terminal 40 and the subscriberweb portal server 44 are designed to communicate with each other using standard web-based protocols (e.g.—HTML). The subscriberweb portal server 44 is connected to the location-basedapplication server 28, thereby providing the secondremote terminal 40 with access to the business services and enhanced directory assistance services that are offered in the preferred embodiments of the present invention. - The second
remote terminal 40 is capable of providing voice or keypad input data to the subscriberweb portal server 44. As previously set forth, for voice signals the respective vocal responses are sent to thevoice recognition servers 24 for processing and, in the case of keypad input data, the subscriberportal web server 44 is operable to generate structured requests in response to user requests received from the secondremote terminal 40 in similar manners as set forth above. The preferred location-basedservices system 10 is capable of allowing its subscribers to take advantage of the services provided by the present invention in a non-wireless environment as well, by supporting the use of standard computing devices that are typically used at home or work. - As such, by way of example only, lets say a user of the second
remote terminal 40 is located in Atlanta, Georgia, and wants to find local deals on Polo merchandise as well as stores that carry this particular brand that are located near their respective geographic location. In the case of a keypad input search, the user would be prompted for a search request from a web page generated on the secondremote terminal 40 where they would enter their desired search parameters, which in the present example might be in the form of the words “POLO MERCHANDISE”. - After the search request is entered and the user is ready to send the request, there is also preferentially an icon or some other type of selection indicator that is generated on a web page being displayed on the second
remote terminal 40 that allows the user to submit the request. Once this is selected, the search request, a second remote terminal identifier and a geographic indicator are sent to the subscriberweb portal server 44. The subscriberweb portal server 44 then transforms the search request into a structured search request that is sent to the location-basedapplication server 28, which processes the structured request similar to other embodiments of the present invention. - In the case of a voice signal input being used, the user would be prompted to state their respective request much like in the example set forth above with relation to wireless
remote terminal 12. As such, in the case of our present example, the user might state “POLO MERCHANDISE” after being prompted for a business services request. This vocal response is sent to thevoice recognition server 24, which as previously set forth, processes the vocal response similar to other embodiments herein described. - As such, in our present example, a user of the second
remote terminal 40 would be provided with a structured response from the location-basedapplication server 28 that contained information relating to businesses that sell Polo merchandise in a geographic location that is relatively close to the secondremote terminal 40. In fact, in every embodiment of the present invention, the user may also be given option of selecting a predetermined geographic radius for which they wish responses to be generated during operation. By way of example only, a respective user may only desire to obtain information on businesses located within 15 miles of theremote terminals remote terminal remote terminal - Referring once again to
FIG. 1 , awireless carrier 70 may also be connected to the data files 54-60 through awireless carrier server 72. Thewireless carrier server 72 is preferentially operable to monitor the data that is contained in the data files 54-60. As such, during operation of the location-basedservices system 10 thewireless carrier server 72 can update a subscriber data file 74 as users of theremote terminals services system 10. This allows thewireless carrier 70 to keep track of the usage of the location-basedservices system 10 and may allow various charges to be applied to the user if applicable. - Referring to
FIG. 1 , in yet another preferred embodiment of the present invention advertiser subscribers usingremote terminal 46 are provided with ausage mining system 100. Theusage mining system 100 provides the ability to research usage trends and transactions of the location-basedservice system 10 via a web application. InFIG. 1 , the advertiser preferentially accesses this capability via theadvertiser portal 50 using a web browser at businessremote terminal 46, which preferentially would serve as a gateway to the application platform. Theadvertiser portal 50 provides a user of business remote terminal 46 with the ability to access and retrieve data that is stored in the usage data files 60. - Referring to
FIG. 3 , a preferred embodiment of the present invention includes a usageanalysis user interface 102 that preferentially provides a web-based user interface to theusage mining system 100. Using the usageanalysis user interface 102, the advertiser is able to select a first analysis option that generates detailed usage analysis from the location-basedservices system 10. Theusage mining system 100 will preferentially generate analysis based on two categories of analysis options. The preferred analysis options include (but are not limited to) an advertisingeffectiveness analysis application 104 and apredictive modeling application 106. During operation, the user will select fields within eachapplication application entire usage database 60 based on searching predetermined parameters. - The preferred steps performed by the
advertising effectiveness application 104 are illustrated inFIG. 4 . Theadvertising effectiveness application 104 utilizes the business data files 56 and theusage data database 60 in the location-basedservices system 10 to generate analysis surrounding the effectiveness of location-based advertising campaigns. The analysis will be capable of addressing questions such as “How many people received my campaign in the downtown area of Atlanta?” The information provided to advertisers provides them with insight to quantify the results of advertising campaigns created with the location-basedservices system 10. - The user must first determine and enter the input variables that will be used for searching, which is preferentially done via a web-based interface using the business
remote terminal 46. Once a search query is entered, it is used to retrieve and view the data stored in the business data files 56 and theusage data database 60. Theadvertising effectiveness application 104 retrieves data from the business data files 56 and theusage data database 60 to match request parameters that are input by the user. Theadvertising effectiveness application 104 will then forward the search results to the usageanalysis user interface 102, which displays the resulting search response via the web browser on the businessremote terminal 46. - Referring to
FIG. 4 , during operation a user of businessremote terminal 46 receives a query entry form from the usageanalysis user interface 102. Once a user enters search parameters into the query fields on the query entry form, a search request is sent from businessremote terminal 46 to theadvertiser portal 50. If the user is using theadvertising effectiveness application 104, the search request is sent to adata access component 64. Thedata access component 64 searches the business data file 56 and theusage data database 60 to retrieve search results that match the criteria set forth in the search request. The search results may then be directed toward adata scoring application 108, which is capable of reformatting the search results into various different types of formats. - As illustrated in
FIG. 1 , in the preferred embodiment of the present invention the content files 52 are located on the location-basedapplication server 28. As such, although not specifically illustrated inFIGS. 3-5 , the usageanalysis user interface 102 may have to access the location-basedapplication server 28 to retrieve the desired information. In addition, thedata access component 64 is preferentially located on the location-basedapplication server 28. As such, theusage mining system 100 preferentially generates search requests that are transmitted to the data access component which in turn, actually performs the searching on the location-basedapplication server 28. However, in other preferred embodiments of the present invention the content files 52 could be mirrored on theadvertiser portal 50 and all processes could be performed at that location as well. - Once the search results are placed in the proper format, the
advertising effectiveness application 104 uses the usageanalysis user interface 102 to generate a viewable output on businessremote terminal 46. Preferentially, the results are provided using a web browser on the businessremote terminal 46; however, other ways of providing the results may also be used. The search results may be displayed using numbers, graphs, charts, images or any other method for providing analysis results. - A list of inputs (at a minimum) that may be used within the
advertising effectiveness application 104 include, but are not necessarily limited to: a respective advertising campaign, demographic information, a date or time period, location information, by category, type of listing category, competitive listing categories and a key word inputs. Examples of the type of feedback the user will receive include (but are not necessarily limited to) the following: measure of number of customers reached; frequency of advertisement or listing; competitive analysis comparing advertising listing frequency to category; cost per impression; number of customers reached by top three demographic segments; and 1) demographics (gender, age, ethnicity, marital status, children, income, special interests, hobby, education, homeowner, car owner); 2) target market (city and state); and 3) location (address and location at time of historical interaction). - The preferred steps performed by the
predictive modeling application 106 are illustrated inFIG. 5 . Thepredictive modeling application 106 provides the capability of forecasting or making projections of the type and number of users usingremote terminals - During operation, the user enters as an input into the
predictive modeling application 106 the proposed future advertising campaign/deal as well as the business rules associated with it. Entering and submitting this information builds a search query with the necessary search parameters to explore theprofile database 54 and theusage data database 60. Thedata access component 64 searches the respective databases to find data elements that match the search query. The search results obtained are preferentially sent to thedata scoring application 108 to determine the statistical probability of a proposed campaign's success. These results are then returned to thepredictive analysis application 106 to be displayed through the usageanalysis user interface 102 on the businessremote terminal 46. - Referring to
FIG. 5 , if an advertiser uses thepredictive modeling application 106, preferentially the usageanalysis user interface 102 generates a search parameter entry form that is sent from theadvertiser portal 50 to the businessremote terminal 46. This allows advertisers to enter search parameters that include potential products or services that are going to be offered along with the business rules that go along with the potential offering. The business rules may include discount information, special deals (e.g., buy two, get one free), special rates or any other type of incentive or restriction. Once the search parameters are entered, the advertiser submits them to theadvertiser portal 50, which then forwards the search parameters to thepredictive modeling application 106. - The
predictive modeling application 106 then uses a business rulesapplication 110 to extract the appropriate parameters from the search request to formulate a proper search to be submitted to theprofile database 54 and theusage data database 60. Once formatted into a proper search format, thebusiness rules application 110 usesdata access component 64 to run a search through theprofile database 54 and theusage data database 60. Thedata access component 64 then forwards the search results to thedata scoring application 108, which formats the results into one of several possible viewable formats. - After the
data scoring application 108 formats the search results into a usable format, the search results are sent to thepredictive modeling application 106. Thepredictive modeling application 106 then uses the usageanalysis user interface 102 to transmit the response from theadvertiser portal 50 to the businessremote terminal 46. Preferentially, the results are presented to the advertiser via a web browser on the businessremote terminal 46. - The predictive mining input options that are available to advertisers include (but are not necessarily limited to) the following: advertising campaigns; target dates (start date and end date); type of listing category; demographics (gender, age, ethnicity, marital status, children, income, special interests, hobby, education, homeowner, car owner); 2) target market (city and state); and 3) location (address and location at time of historical interaction). Other input options can be provided as needed to allow a more flexible search to be conducted by the advertiser.
- Although not illustrated, in the preferred embodiment of the present invention a wireless communication device may be used to mine data from the location-based
services system 10. In this embodiment, the wireless communication device connects to theadvertiser portal 50 and uses a wireless application protocol to submit searches in a similar fashion as set forth above. As such, those skilled in the art should recognize that the businessremote terminal 46 does not have to be limited to a personal computer and should also be viewed as including wireless communication devices as well. - While the invention has been described in its currently best-known modes of operation and embodiments, other modes, embodiments and advantages of the present invention will be apparent to those skilled in the art and are contemplated herein.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/732,567 US20150302460A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28691601P | 2001-04-27 | 2001-04-27 | |
US09/946,111 US6944447B2 (en) | 2001-04-27 | 2001-09-04 | Location-based services |
US10/133,537 US6848542B2 (en) | 2001-04-27 | 2002-04-26 | Method for passive mining of usage information in a location-based services system |
US11/007,761 US8738437B2 (en) | 2001-04-27 | 2004-12-08 | Passive mining of usage information in a location-based services system |
US14/282,964 US20140256361A1 (en) | 2001-04-27 | 2014-05-20 | Method for passive mining of usage information in a location-based services system |
US14/732,089 US20150269618A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,567 US20150302460A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,441 US20150269657A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/732,441 Continuation US20150269657A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150302460A1 true US20150302460A1 (en) | 2015-10-22 |
Family
ID=46150115
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/133,537 Expired - Lifetime US6848542B2 (en) | 2001-04-27 | 2002-04-26 | Method for passive mining of usage information in a location-based services system |
US11/007,761 Expired - Fee Related US8738437B2 (en) | 2001-04-27 | 2004-12-08 | Passive mining of usage information in a location-based services system |
US14/282,964 Abandoned US20140256361A1 (en) | 2001-04-27 | 2014-05-20 | Method for passive mining of usage information in a location-based services system |
US14/732,540 Abandoned US20150269688A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,549 Abandoned US20150269619A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,441 Abandoned US20150269657A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,089 Abandoned US20150269618A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,567 Abandoned US20150302460A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/133,537 Expired - Lifetime US6848542B2 (en) | 2001-04-27 | 2002-04-26 | Method for passive mining of usage information in a location-based services system |
US11/007,761 Expired - Fee Related US8738437B2 (en) | 2001-04-27 | 2004-12-08 | Passive mining of usage information in a location-based services system |
US14/282,964 Abandoned US20140256361A1 (en) | 2001-04-27 | 2014-05-20 | Method for passive mining of usage information in a location-based services system |
US14/732,540 Abandoned US20150269688A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,549 Abandoned US20150269619A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,441 Abandoned US20150269657A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
US14/732,089 Abandoned US20150269618A1 (en) | 2001-04-27 | 2015-06-05 | Method for Passive Mining of Usage Information In A Location-Based Services System |
Country Status (1)
Country | Link |
---|---|
US (8) | US6848542B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140304086A1 (en) * | 2013-02-25 | 2014-10-09 | Turn Inc. | Methods and systems for modeling campaign goal adjustment |
Families Citing this family (238)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7366682B1 (en) * | 1999-05-07 | 2008-04-29 | E.Piphany, Inc. | System, method, and code for providing promotions in a network environment |
US7987420B1 (en) | 1999-09-10 | 2011-07-26 | Ianywhere Solutions, Inc. | System, method, and computer program product for a scalable, configurable, client/server, cross-platform browser for mobile devices |
US8595308B1 (en) | 1999-09-10 | 2013-11-26 | Ianywhere Solutions, Inc. | System, method, and computer program product for server side processing in a mobile device environment |
US7392308B2 (en) * | 1999-09-10 | 2008-06-24 | Ianywhere Solutions, Inc. | System, method, and computer program product for placement of channels on a mobile device |
US20010047394A1 (en) * | 1999-09-10 | 2001-11-29 | Kloba David D. | System, method, and computer program product for executing scripts on mobile devices |
US20020052781A1 (en) * | 1999-09-10 | 2002-05-02 | Avantgo, Inc. | Interactive advertisement mechanism on a mobile device |
US7624172B1 (en) | 2000-03-17 | 2009-11-24 | Aol Llc | State change alerts mechanism |
US9246975B2 (en) | 2000-03-17 | 2016-01-26 | Facebook, Inc. | State change alerts mechanism |
US7287000B2 (en) * | 2000-11-15 | 2007-10-23 | Jda Software Group, Inc. | Configurable pricing optimization system |
US20030055983A1 (en) * | 2001-03-19 | 2003-03-20 | Jeff Callegari | Methods for providing a virtual journal |
US6944447B2 (en) | 2001-04-27 | 2005-09-13 | Accenture Llp | Location-based services |
US7437295B2 (en) * | 2001-04-27 | 2008-10-14 | Accenture Llp | Natural language processing for a location-based services system |
US7698228B2 (en) * | 2001-04-27 | 2010-04-13 | Accenture Llp | Tracking purchases in a location-based services system |
US7970648B2 (en) * | 2001-04-27 | 2011-06-28 | Accenture Global Services Limited | Advertising campaign and business listing management for a location-based services system |
US6848542B2 (en) * | 2001-04-27 | 2005-02-01 | Accenture Llp | Method for passive mining of usage information in a location-based services system |
CA2394503A1 (en) * | 2001-07-23 | 2003-01-23 | Research In Motion Limited | System and method for pushing information to a mobile device |
US7441016B2 (en) * | 2001-10-03 | 2008-10-21 | Accenture Global Services Gmbh | Service authorizer |
US7640006B2 (en) * | 2001-10-03 | 2009-12-29 | Accenture Global Services Gmbh | Directory assistance with multi-modal messaging |
US7472091B2 (en) * | 2001-10-03 | 2008-12-30 | Accenture Global Services Gmbh | Virtual customer database |
US9710852B1 (en) | 2002-05-30 | 2017-07-18 | Consumerinfo.Com, Inc. | Credit report timeline user interface |
US9400589B1 (en) | 2002-05-30 | 2016-07-26 | Consumerinfo.Com, Inc. | Circular rotational interface for display of consumer credit information |
US7385956B2 (en) * | 2002-08-22 | 2008-06-10 | At&T Mobility Ii Llc | LAN based wireless communications system |
US8701014B1 (en) | 2002-11-18 | 2014-04-15 | Facebook, Inc. | Account linking |
US8122137B2 (en) | 2002-11-18 | 2012-02-21 | Aol Inc. | Dynamic location of a subordinate user |
US7590696B1 (en) | 2002-11-18 | 2009-09-15 | Aol Llc | Enhanced buddy list using mobile device identifiers |
US7428580B2 (en) | 2003-11-26 | 2008-09-23 | Aol Llc | Electronic message forwarding |
US7899862B2 (en) | 2002-11-18 | 2011-03-01 | Aol Inc. | Dynamic identification of other users to an online user |
US8005919B2 (en) | 2002-11-18 | 2011-08-23 | Aol Inc. | Host-based intelligent results related to a character stream |
WO2004046867A2 (en) | 2002-11-18 | 2004-06-03 | America Online, Inc. | People lists |
JP2004171105A (en) * | 2002-11-18 | 2004-06-17 | Nippon Telegr & Teleph Corp <Ntt> | Advertisement effect analysis method and advertising system |
US8965964B1 (en) | 2002-11-18 | 2015-02-24 | Facebook, Inc. | Managing forwarded electronic messages |
US7640306B2 (en) | 2002-11-18 | 2009-12-29 | Aol Llc | Reconfiguring an electronic message to effect an enhanced notification |
US7613776B1 (en) | 2003-03-26 | 2009-11-03 | Aol Llc | Identifying and using identities deemed to be known to a user |
US6973171B2 (en) * | 2003-04-25 | 2005-12-06 | Metro One Telecommunications, Inc. | Technique for analyzing information assistance call patterns |
US20050015491A1 (en) * | 2003-05-16 | 2005-01-20 | Markel Corporation | Systems, methods, and articles of manufacture for dynamically providing web services |
US20040260677A1 (en) * | 2003-06-17 | 2004-12-23 | Radhika Malpani | Search query categorization for business listings search |
US7653693B2 (en) | 2003-09-05 | 2010-01-26 | Aol Llc | Method and system for capturing instant messages |
US7974865B2 (en) | 2003-07-31 | 2011-07-05 | Oracle International Corporation | Systems and methods of managing assignments |
DE10353796A1 (en) * | 2003-11-13 | 2005-06-23 | Deutsche Telekom Ag | Digital service e.g. short messaging service, executing method for e.g. terrestrial trunked radio, involves searching database system to find whether to evoke/stop service if mobile device moves to/from cell that is marked as trigger area |
US7774378B2 (en) | 2004-06-04 | 2010-08-10 | Icentera Corporation | System and method for providing intelligence centers |
CA2578379A1 (en) * | 2004-08-26 | 2006-03-02 | Omni-Branch Wireless Solutions, Inc. | Opt-in directory of verified individual profiles |
US7395075B2 (en) * | 2004-09-09 | 2008-07-01 | Nextel Communications Inc. | System and method for collecting continuous location updates while minimizing overall network utilization |
US11283885B2 (en) | 2004-10-19 | 2022-03-22 | Verizon Patent And Licensing Inc. | System and method for location based matching and promotion |
US7469276B2 (en) * | 2004-12-27 | 2008-12-23 | International Business Machines Corporation | Service offering for the delivery of information with continuing improvement |
US8620988B2 (en) * | 2005-03-23 | 2013-12-31 | Research In Motion Limited | System and method for processing syndication information for a mobile device |
US7353034B2 (en) | 2005-04-04 | 2008-04-01 | X One, Inc. | Location sharing and tracking using mobile phones or other wireless devices |
US8027877B2 (en) | 2005-04-20 | 2011-09-27 | At&T Intellectual Property I, L.P. | System and method of providing advertisements to mobile devices |
US7930211B2 (en) * | 2005-04-20 | 2011-04-19 | At&T Intellectual Property I, L.P. | System and method of providing advertisements to portable communication devices |
US8015064B2 (en) | 2005-04-20 | 2011-09-06 | At&T Intellectual Property I, Lp | System and method of providing advertisements to cellular devices |
US20080305781A1 (en) * | 2005-04-25 | 2008-12-11 | Wilson Eric S | Cognitive scheduler |
US20090164310A1 (en) * | 2005-04-25 | 2009-06-25 | Grossman Stephanie L | Method for providing mobile commerce and revenue optimization |
CA2605283A1 (en) * | 2005-04-25 | 2006-11-02 | Digital Sidebar, Inc. | System and method for consumer engagement and revenue optimization |
US20100049608A1 (en) * | 2005-04-25 | 2010-02-25 | Grossman Stephanie L | Third party content management system and method |
US20080275764A1 (en) * | 2005-04-25 | 2008-11-06 | Wilson Eric S | Content management system and method |
US7962504B1 (en) | 2005-05-26 | 2011-06-14 | Aol Inc. | Sourcing terms into a search engine |
US20070016940A1 (en) * | 2005-07-08 | 2007-01-18 | Jdi Ventures, Inc. D/B/A Peak Performance Solutions | Identification and password management device |
US8548974B2 (en) * | 2005-07-25 | 2013-10-01 | The Boeing Company | Apparatus and methods for providing geographically oriented internet search results to mobile users |
US7801054B2 (en) * | 2005-09-30 | 2010-09-21 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for implementing network visualization services |
US20070209054A1 (en) | 2005-09-30 | 2007-09-06 | Bellsouth Intellectual Property Corporation | Methods, systems, and computer program products for providing communications services |
US8804695B2 (en) * | 2005-09-30 | 2014-08-12 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for providing alerts and notifications |
US7890552B2 (en) * | 2005-09-30 | 2011-02-15 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for implementing media content analysis, distribution, and re-allocation services |
US8223938B2 (en) * | 2005-09-30 | 2012-07-17 | At&T Intellectual Property I, L.P. | Methods, systems, and computer program products for providing caller identification services |
US20070208619A1 (en) * | 2005-09-30 | 2007-09-06 | Bellsouth Intellectual Property Corporation | Methods, systems, and computer program products for providing targeted advertising to communications devices |
US20070209065A1 (en) * | 2005-09-30 | 2007-09-06 | Bellsouth Intellectual Property Corporation | Methods, systems, and computer program products for providing network convergence of applications and devices |
US20070088690A1 (en) * | 2005-10-13 | 2007-04-19 | Xythos Software, Inc. | System and method for performing file searches and ranking results |
EP1955214A4 (en) * | 2005-11-07 | 2010-01-06 | Google Inc | Local search and mapping for mobile devices |
DE602005015984D1 (en) * | 2005-11-25 | 2009-09-24 | Swisscom Ag | Method for personalizing a service |
US9105039B2 (en) | 2006-01-30 | 2015-08-11 | Groupon, Inc. | System and method for providing mobile alerts to members of a social network |
US7788188B2 (en) * | 2006-01-30 | 2010-08-31 | Hoozware, Inc. | System for providing a service to venues where people aggregate |
US8103519B2 (en) | 2006-01-30 | 2012-01-24 | Hoozware, Inc. | System for marketing campaign specification and secure digital coupon redemption |
WO2007090133A2 (en) * | 2006-01-30 | 2007-08-09 | Kramer Jame F | System for providing a service to venues where people aggregate |
US20110093340A1 (en) | 2006-01-30 | 2011-04-21 | Hoozware, Inc. | System for providing a service to venues where people perform transactions |
US7853693B2 (en) * | 2006-01-31 | 2010-12-14 | International Business Machines Corporation | Location based networked device utilization |
US8219535B1 (en) | 2006-02-15 | 2012-07-10 | Allstate Insurance Company | Retail deployment model |
CA2541763A1 (en) * | 2006-02-15 | 2007-08-15 | Sharon Rossmark | Retail deployment model |
US8041648B2 (en) | 2006-02-15 | 2011-10-18 | Allstate Insurance Company | Retail location services |
US9497314B2 (en) * | 2006-04-10 | 2016-11-15 | Microsoft Technology Licensing, Llc | Mining data for services |
US8099107B2 (en) * | 2006-04-21 | 2012-01-17 | Cisco Technology, Inc. | Method and apparatus for WLAN location services |
US7942319B2 (en) * | 2006-05-02 | 2011-05-17 | 1020, Inc. | Location information management |
US7574408B2 (en) * | 2006-05-05 | 2009-08-11 | Microsoft Corporation | Publisher unions |
US20070260514A1 (en) * | 2006-05-05 | 2007-11-08 | Microsoft Corporation | Distributed architecture for online advertising |
US11341202B2 (en) * | 2006-10-04 | 2022-05-24 | Craxel, Inc. | Efficient method of location-based content management and delivery |
US20080147461A1 (en) * | 2006-12-14 | 2008-06-19 | Morris Lee | Methods and apparatus to monitor consumer activity |
US10783526B2 (en) | 2006-12-19 | 2020-09-22 | Celeritasworks, Llc | Campaign awareness management systems and methods |
US10339539B2 (en) * | 2006-12-19 | 2019-07-02 | Celeritasworks, Llc | Campaign awareness management systems and methods |
US20080154612A1 (en) * | 2006-12-26 | 2008-06-26 | Voice Signal Technologies, Inc. | Local storage and use of search results for voice-enabled mobile communications devices |
US20080153465A1 (en) * | 2006-12-26 | 2008-06-26 | Voice Signal Technologies, Inc. | Voice search-enabled mobile device |
US20080154608A1 (en) * | 2006-12-26 | 2008-06-26 | Voice Signal Technologies, Inc. | On a mobile device tracking use of search results delivered to the mobile device |
US20080154870A1 (en) * | 2006-12-26 | 2008-06-26 | Voice Signal Technologies, Inc. | Collection and use of side information in voice-mediated mobile search |
US20080215422A1 (en) * | 2007-03-01 | 2008-09-04 | Seesaw Networks, Inc. | Coordinating a location based advertising campaign |
US20080215421A1 (en) * | 2007-03-01 | 2008-09-04 | Seesaw Networks, Inc. | Distributing a location based advertising campaign |
US20080215290A1 (en) * | 2007-03-01 | 2008-09-04 | Seesaw Networks, Inc. | Determining a location based advertising campaign |
US8285656B1 (en) | 2007-03-30 | 2012-10-09 | Consumerinfo.Com, Inc. | Systems and methods for data verification |
CN101802856A (en) * | 2007-03-30 | 2010-08-11 | 秋千网络公司 | Measuring a location based advertising campaign |
US8229458B2 (en) | 2007-04-08 | 2012-07-24 | Enhanced Geographic Llc | Systems and methods to determine the name of a location visited by a user of a wireless device |
US20080271120A1 (en) * | 2007-04-23 | 2008-10-30 | 1020, Inc. | Network Pre-Authentication |
US20080275759A1 (en) * | 2007-04-23 | 2008-11-06 | 1020, Inc. | Content Allocation |
WO2008131448A1 (en) * | 2007-04-23 | 2008-10-30 | 1020, Inc. | Content allocation |
US8229781B2 (en) * | 2007-04-27 | 2012-07-24 | The Nielson Company (Us), Llc | Systems and apparatus to determine shopper traffic in retail environments |
CN101060565A (en) * | 2007-05-30 | 2007-10-24 | 华为技术有限公司 | General community information query method, device and system |
US20090055251A1 (en) * | 2007-08-20 | 2009-02-26 | Weblistic, Inc., A California Corporation | Directed online advertising system and method |
US20090073885A1 (en) * | 2007-09-17 | 2009-03-19 | Rehan Jalil | Method, system and apparatus for tracking user behavior in a wireless communication network |
EP2199446B1 (en) * | 2007-10-11 | 2013-04-24 | Denki Kagaku Kogyo Kabushiki Kaisha | Aluminous-fiber mass, process for producing the same, and use |
US9497583B2 (en) * | 2007-12-12 | 2016-11-15 | Iii Holdings 2, Llc | System and method for generating a recommendation on a mobile device |
US8127986B1 (en) | 2007-12-14 | 2012-03-06 | Consumerinfo.Com, Inc. | Card registry systems and methods |
US9990674B1 (en) | 2007-12-14 | 2018-06-05 | Consumerinfo.Com, Inc. | Card registry systems and methods |
US8644844B2 (en) | 2007-12-20 | 2014-02-04 | Corning Mobileaccess Ltd. | Extending outdoor location based services and applications into enclosed areas |
US11159909B2 (en) * | 2008-02-05 | 2021-10-26 | Victor Thomas Anderson | Wireless location establishing device |
US20090228361A1 (en) * | 2008-03-10 | 2009-09-10 | Wilson Eric S | Cognitive scheduler for mobile platforms |
CA2622824A1 (en) * | 2008-03-27 | 2009-09-27 | Mark Hemphill | System and method for ranking participating venues in a network according to advertisers needs for targeted advertising |
US8312033B1 (en) | 2008-06-26 | 2012-11-13 | Experian Marketing Solutions, Inc. | Systems and methods for providing an integrated identifier |
US20100015926A1 (en) * | 2008-07-18 | 2010-01-21 | Luff Robert A | System and methods to monitor and analyze events on wireless devices to predict wireless network resource usage |
US20100023387A1 (en) * | 2008-07-25 | 2010-01-28 | Yang Pan | Hierarchical User Interfaces for Advertisement Messages in a Mobile Device |
US9256904B1 (en) | 2008-08-14 | 2016-02-09 | Experian Information Solutions, Inc. | Multi-bureau credit file freeze and unfreeze |
JP5062097B2 (en) * | 2008-08-21 | 2012-10-31 | 富士通株式会社 | Information processing apparatus, information processing apparatus control method, and information processing apparatus control program |
US8155672B2 (en) | 2008-09-16 | 2012-04-10 | Avaya Inc. | Scalable geo-location event processing |
US20100088156A1 (en) * | 2008-10-06 | 2010-04-08 | Sidebar, Inc. | System and method for surveying mobile device users |
US20100088157A1 (en) * | 2008-10-06 | 2010-04-08 | Sidebar, Inc. | System and method for the throttled delivery of advertisements and content based on a sliding scale of usage |
US20100114659A1 (en) * | 2008-11-03 | 2010-05-06 | Bank Of America | Mining public media for consumer response information |
US8060424B2 (en) | 2008-11-05 | 2011-11-15 | Consumerinfo.Com, Inc. | On-line method and system for monitoring and reporting unused available credit |
EP2359328A4 (en) * | 2008-11-21 | 2012-04-25 | Faulkner Lab Pty Ltd | A system for providing information concerning the effectiveness of advertising |
US8855665B2 (en) * | 2008-12-17 | 2014-10-07 | Avaya Inc. | Location privacy enforcement in a location-based services platform |
US20100185489A1 (en) * | 2009-01-21 | 2010-07-22 | Satyavolu Ramakrishna V | Method for determining a personalized true cost of service offerings |
US8566197B2 (en) | 2009-01-21 | 2013-10-22 | Truaxis, Inc. | System and method for providing socially enabled rewards through a user financial instrument |
US10594870B2 (en) | 2009-01-21 | 2020-03-17 | Truaxis, Llc | System and method for matching a savings opportunity using census data |
US10504126B2 (en) | 2009-01-21 | 2019-12-10 | Truaxis, Llc | System and method of obtaining merchant sales information for marketing or sales teams |
US8600857B2 (en) | 2009-01-21 | 2013-12-03 | Truaxis, Inc. | System and method for providing a savings opportunity in association with a financial account |
US9390136B2 (en) | 2009-02-12 | 2016-07-12 | 1020, Inc. | System and method of identifying relevance of electronic content to location or place |
US9235842B2 (en) | 2009-03-02 | 2016-01-12 | Groupon, Inc. | Method for providing information to contacts without being given contact data |
US8239277B2 (en) * | 2009-03-31 | 2012-08-07 | The Nielsen Company (Us), Llc | Method, medium, and system to monitor shoppers in a retail or commercial establishment |
WO2010132492A2 (en) | 2009-05-11 | 2010-11-18 | Experian Marketing Solutions, Inc. | Systems and methods for providing anonymized user profile data |
US20100318588A1 (en) * | 2009-06-12 | 2010-12-16 | Avaya Inc. | Spatial-Temporal Event Correlation for Location-Based Services |
US9378507B2 (en) * | 2009-06-17 | 2016-06-28 | 1020, Inc. | System and method of disseminating electronic content utilizing geographic and time granularities |
US9137494B2 (en) * | 2009-07-22 | 2015-09-15 | At&T Intellectual Property I, L.P. | Systems and methods to order a content item deliverable via a television service |
US9590733B2 (en) | 2009-07-24 | 2017-03-07 | Corning Optical Communications LLC | Location tracking using fiber optic array cables and related systems and methods |
US20110125551A1 (en) * | 2009-11-24 | 2011-05-26 | Mark Peiser | Method and System for In-Store Media Measurement |
US9652802B1 (en) | 2010-03-24 | 2017-05-16 | Consumerinfo.Com, Inc. | Indirect monitoring and reporting of a user's credit data |
CN102845001B (en) | 2010-03-31 | 2016-07-06 | 康宁光缆系统有限责任公司 | Based on positioning service in the distributed communication assembly of optical fiber and system and associated method |
US8570914B2 (en) | 2010-08-09 | 2013-10-29 | Corning Cable Systems Llc | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
US20120072263A1 (en) * | 2010-08-17 | 2012-03-22 | Matthew Dusig | Selecting and processing offers to complete tasks, research programs, and consumer rewards programs based on location |
US8930262B1 (en) | 2010-11-02 | 2015-01-06 | Experian Technology Ltd. | Systems and methods of assisted strategy design |
US9147042B1 (en) | 2010-11-22 | 2015-09-29 | Experian Information Solutions, Inc. | Systems and methods for data verification |
US9959552B2 (en) | 2011-02-02 | 2018-05-01 | 1020, Inc. | System and method for discounted sales transactions |
US8831563B2 (en) | 2011-02-04 | 2014-09-09 | CSC Holdings, LLC | Providing a service with location-based authorization |
US10007925B2 (en) * | 2011-03-02 | 2018-06-26 | Genband Us Llp | Local advertisement insertion through web request redirection |
US9558519B1 (en) | 2011-04-29 | 2017-01-31 | Consumerinfo.Com, Inc. | Exposing reporting cycle information |
CN103548290B (en) | 2011-04-29 | 2016-08-31 | 康宁光缆系统有限责任公司 | Judge the communication propagation delays in distributing antenna system and associated component, System and method for |
US20120290977A1 (en) * | 2011-05-12 | 2012-11-15 | John Devecka | System and method for an interactive mobile-optimized icon-based profile display and associated social network functionality |
US9665854B1 (en) | 2011-06-16 | 2017-05-30 | Consumerinfo.Com, Inc. | Authentication alerts |
US9483606B1 (en) | 2011-07-08 | 2016-11-01 | Consumerinfo.Com, Inc. | Lifescore |
US9106691B1 (en) | 2011-09-16 | 2015-08-11 | Consumerinfo.Com, Inc. | Systems and methods of identity protection and management |
US20130085838A1 (en) * | 2011-10-04 | 2013-04-04 | Microsoft Corporation | Incentive optimization for social media marketing campaigns |
WO2013050958A1 (en) * | 2011-10-07 | 2013-04-11 | Predictive Analytics Solutions Pvt.Ltd. | A method and a system to generate a user interface for analytical models |
US8738516B1 (en) | 2011-10-13 | 2014-05-27 | Consumerinfo.Com, Inc. | Debt services candidate locator |
US20130173380A1 (en) * | 2012-01-04 | 2013-07-04 | Homaira Akbari | System and Method for Mobile Advertising Configuration |
US9954718B1 (en) | 2012-01-11 | 2018-04-24 | Amazon Technologies, Inc. | Remote execution of applications over a dispersed network |
US8924515B1 (en) | 2012-02-29 | 2014-12-30 | Amazon Technologies, Inc. | Distribution of applications over a dispersed network |
US9781553B2 (en) | 2012-04-24 | 2017-10-03 | Corning Optical Communications LLC | Location based services in a distributed communication system, and related components and methods |
US9853959B1 (en) | 2012-05-07 | 2017-12-26 | Consumerinfo.Com, Inc. | Storage and maintenance of personal data |
JP5910316B2 (en) * | 2012-05-28 | 2016-04-27 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
WO2013181247A1 (en) | 2012-05-29 | 2013-12-05 | Corning Cable Systems Llc | Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods |
US8666792B1 (en) | 2012-10-18 | 2014-03-04 | BoomTown, LLC | System and method for prioritizing real estate opportunities in a lead handling system based on weighted lead quality scores |
EP2915151A1 (en) * | 2012-11-05 | 2015-09-09 | Telefonaktiebolaget LM Ericsson (PUBL) | Handling location data in a mobile communications network |
US9654541B1 (en) | 2012-11-12 | 2017-05-16 | Consumerinfo.Com, Inc. | Aggregating user web browsing data |
US9916621B1 (en) | 2012-11-30 | 2018-03-13 | Consumerinfo.Com, Inc. | Presentation of credit score factors |
US10255598B1 (en) | 2012-12-06 | 2019-04-09 | Consumerinfo.Com, Inc. | Credit card account data extraction |
US9158864B2 (en) | 2012-12-21 | 2015-10-13 | Corning Optical Communications Wireless Ltd | Systems, methods, and devices for documenting a location of installed equipment |
JP5998945B2 (en) * | 2013-01-10 | 2016-09-28 | 富士通株式会社 | Stay location analysis method, stay location analysis apparatus, and stay location analysis program |
US9697263B1 (en) | 2013-03-04 | 2017-07-04 | Experian Information Solutions, Inc. | Consumer data request fulfillment system |
US9870589B1 (en) | 2013-03-14 | 2018-01-16 | Consumerinfo.Com, Inc. | Credit utilization tracking and reporting |
US10102570B1 (en) | 2013-03-14 | 2018-10-16 | Consumerinfo.Com, Inc. | Account vulnerability alerts |
US9406085B1 (en) | 2013-03-14 | 2016-08-02 | Consumerinfo.Com, Inc. | System and methods for credit dispute processing, resolution, and reporting |
US10664936B2 (en) | 2013-03-15 | 2020-05-26 | Csidentity Corporation | Authentication systems and methods for on-demand products |
US9633322B1 (en) | 2013-03-15 | 2017-04-25 | Consumerinfo.Com, Inc. | Adjustment of knowledge-based authentication |
US10685398B1 (en) | 2013-04-23 | 2020-06-16 | Consumerinfo.Com, Inc. | Presenting credit score information |
US9721147B1 (en) | 2013-05-23 | 2017-08-01 | Consumerinfo.Com, Inc. | Digital identity |
US9443268B1 (en) | 2013-08-16 | 2016-09-13 | Consumerinfo.Com, Inc. | Bill payment and reporting |
US20150100420A1 (en) * | 2013-10-04 | 2015-04-09 | Mastercard International Incorporated | Method and system for making a target offer to an audience using audience feedback |
US20150100383A1 (en) * | 2013-10-08 | 2015-04-09 | Mastercard International Incorporated | Method and system to measure customer traffic at a merchant location |
US9077321B2 (en) | 2013-10-23 | 2015-07-07 | Corning Optical Communications Wireless Ltd. | Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods |
US10102536B1 (en) | 2013-11-15 | 2018-10-16 | Experian Information Solutions, Inc. | Micro-geographic aggregation system |
US10325314B1 (en) | 2013-11-15 | 2019-06-18 | Consumerinfo.Com, Inc. | Payment reporting systems |
US9477737B1 (en) | 2013-11-20 | 2016-10-25 | Consumerinfo.Com, Inc. | Systems and user interfaces for dynamic access of multiple remote databases and synchronization of data based on user rules |
US9529851B1 (en) | 2013-12-02 | 2016-12-27 | Experian Information Solutions, Inc. | Server architecture for electronic data quality processing |
US9628950B1 (en) | 2014-01-12 | 2017-04-18 | Investment Asset Holdings Llc | Location-based messaging |
US10262362B1 (en) | 2014-02-14 | 2019-04-16 | Experian Information Solutions, Inc. | Automatic generation of code for attributes |
USD759690S1 (en) | 2014-03-25 | 2016-06-21 | Consumerinfo.Com, Inc. | Display screen or portion thereof with graphical user interface |
USD759689S1 (en) | 2014-03-25 | 2016-06-21 | Consumerinfo.Com, Inc. | Display screen or portion thereof with graphical user interface |
USD760256S1 (en) | 2014-03-25 | 2016-06-28 | Consumerinfo.Com, Inc. | Display screen or portion thereof with graphical user interface |
US9892457B1 (en) | 2014-04-16 | 2018-02-13 | Consumerinfo.Com, Inc. | Providing credit data in search results |
US10373240B1 (en) | 2014-04-25 | 2019-08-06 | Csidentity Corporation | Systems, methods and computer-program products for eligibility verification |
US9396354B1 (en) | 2014-05-28 | 2016-07-19 | Snapchat, Inc. | Apparatus and method for automated privacy protection in distributed images |
US9537811B2 (en) | 2014-10-02 | 2017-01-03 | Snap Inc. | Ephemeral gallery of ephemeral messages |
US10045177B2 (en) * | 2014-06-13 | 2018-08-07 | Samsung Electronics Co., Ltd. | Method and device for selective communication service in communication system |
US9113301B1 (en) | 2014-06-13 | 2015-08-18 | Snapchat, Inc. | Geo-location based event gallery |
US9584607B2 (en) * | 2014-06-27 | 2017-02-28 | Apple Inc. | Providing content based on location |
US9936068B2 (en) * | 2014-08-04 | 2018-04-03 | International Business Machines Corporation | Computer-based streaming voice data contact information extraction |
US10824654B2 (en) | 2014-09-18 | 2020-11-03 | Snap Inc. | Geolocation-based pictographs |
US11216869B2 (en) | 2014-09-23 | 2022-01-04 | Snap Inc. | User interface to augment an image using geolocation |
US10586240B2 (en) | 2014-10-22 | 2020-03-10 | Mastercard International Incorporated | Methods and systems for estimating visitor traffic at a real property location |
US9015285B1 (en) | 2014-11-12 | 2015-04-21 | Snapchat, Inc. | User interface for accessing media at a geographic location |
US10311916B2 (en) | 2014-12-19 | 2019-06-04 | Snap Inc. | Gallery of videos set to an audio time line |
US9385983B1 (en) | 2014-12-19 | 2016-07-05 | Snapchat, Inc. | Gallery of messages from individuals with a shared interest |
US10296956B2 (en) | 2015-01-14 | 2019-05-21 | Sap Se | Method, system, and computer-readable medium for product and vendor selection |
KR102217723B1 (en) | 2015-03-18 | 2021-02-19 | 스냅 인코포레이티드 | Geo-fence authorization provisioning |
US10135949B1 (en) | 2015-05-05 | 2018-11-20 | Snap Inc. | Systems and methods for story and sub-story navigation |
CN106445957B (en) * | 2015-08-10 | 2019-11-12 | 华为技术有限公司 | The method for visualizing and device of data |
US10757154B1 (en) | 2015-11-24 | 2020-08-25 | Experian Information Solutions, Inc. | Real-time event-based notification system |
US10354425B2 (en) | 2015-12-18 | 2019-07-16 | Snap Inc. | Method and system for providing context relevant media augmentation |
CN108780451A (en) * | 2015-12-31 | 2018-11-09 | 安客诚 | Use the geographically targetedly message transmission of point-of-sales (POS) data |
CN105657034A (en) * | 2016-02-03 | 2016-06-08 | 苏州工业园区豪劲网络科技有限公司 | Lightweight building wireless advertisement putting system |
WO2017151602A1 (en) | 2016-02-29 | 2017-09-08 | Craxel, Inc. | Efficient encrypted data management system and method |
US9648580B1 (en) | 2016-03-23 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns |
CN106909603A (en) * | 2016-08-31 | 2017-06-30 | 阿里巴巴集团控股有限公司 | Search information processing method and device |
CN106651524A (en) * | 2016-12-27 | 2017-05-10 | 杭州火小二科技有限公司 | Method for intelligently generating recommended menu |
US10366408B2 (en) * | 2016-12-28 | 2019-07-30 | Mogimo, Inc. | Method for analyzing influencer marketing effectiveness |
BR112019015920A8 (en) | 2017-01-31 | 2020-04-28 | Experian Inf Solutions Inc | massive heterogeneous data ingestion and user resolution |
US10915911B2 (en) | 2017-02-03 | 2021-02-09 | Snap Inc. | System to determine a price-schedule to distribute media content |
US10581782B2 (en) | 2017-03-27 | 2020-03-03 | Snap Inc. | Generating a stitched data stream |
US10582277B2 (en) | 2017-03-27 | 2020-03-03 | Snap Inc. | Generating a stitched data stream |
US10735183B1 (en) | 2017-06-30 | 2020-08-04 | Experian Information Solutions, Inc. | Symmetric encryption for private smart contracts among multiple parties in a private peer-to-peer network |
CN107315836A (en) * | 2017-07-17 | 2017-11-03 | 合肥左成传媒科技有限公司 | A kind of personal information inquiry system |
US20190355077A1 (en) * | 2017-07-20 | 2019-11-21 | Mian Ahmed | Method and system for requesting service providers in real time |
US10997963B1 (en) * | 2018-05-17 | 2021-05-04 | Amazon Technologies, Inc. | Voice based interaction based on context-based directives |
US10911234B2 (en) | 2018-06-22 | 2021-02-02 | Experian Information Solutions, Inc. | System and method for a token gateway environment |
US10880313B2 (en) | 2018-09-05 | 2020-12-29 | Consumerinfo.Com, Inc. | Database platform for realtime updating of user data from third party sources |
US10963434B1 (en) | 2018-09-07 | 2021-03-30 | Experian Information Solutions, Inc. | Data architecture for supporting multiple search models |
US11315179B1 (en) | 2018-11-16 | 2022-04-26 | Consumerinfo.Com, Inc. | Methods and apparatuses for customized card recommendations |
US11694130B2 (en) | 2018-11-21 | 2023-07-04 | Honda Motor Co., Ltd. | System and method for assigning an agent to execute and fulfill a task request |
US11687850B2 (en) * | 2018-11-21 | 2023-06-27 | Honda Motor Co., Ltd | System and method for processing a task request to be executed and fulfilled |
US11620403B2 (en) | 2019-01-11 | 2023-04-04 | Experian Information Solutions, Inc. | Systems and methods for secure data aggregation and computation |
US11238656B1 (en) | 2019-02-22 | 2022-02-01 | Consumerinfo.Com, Inc. | System and method for an augmented reality experience via an artificial intelligence bot |
US11941065B1 (en) | 2019-09-13 | 2024-03-26 | Experian Information Solutions, Inc. | Single identifier platform for storing entity data |
US11880377B1 (en) | 2021-03-26 | 2024-01-23 | Experian Information Solutions, Inc. | Systems and methods for entity resolution |
WO2023283520A1 (en) | 2021-07-09 | 2023-01-12 | Craxel, Inc. | Transforming relational statements into hierachical data space operations |
WO2023140966A1 (en) | 2022-01-18 | 2023-07-27 | Craxel, Inc. | Organizing information using hierarchical data spaces |
WO2023140967A1 (en) | 2022-01-18 | 2023-07-27 | Craxel, Inc. | Composite operations using multiple hierarchical data spaces |
CN117456118B (en) * | 2023-10-20 | 2024-05-10 | 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) | Ore finding method based on k-meas method and three-dimensional modeling |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0183504A2 (en) * | 1984-11-26 | 1986-06-04 | Tektronix, Inc. | A regulated high voltage supply |
EP1083504A2 (en) * | 1999-09-09 | 2001-03-14 | Netzero, Inc. | Dynamic ad targeting by an internet server |
US20010034660A1 (en) * | 2000-02-09 | 2001-10-25 | Heinz Heumann | Goods and services referring by location |
US20010049636A1 (en) * | 2000-04-17 | 2001-12-06 | Amir Hudda | System and method for wireless purchases of goods and services |
US6349797B1 (en) * | 1999-12-21 | 2002-02-26 | Captivate Network, Inc. | Information distribution system for use in an elevator |
US20020055880A1 (en) * | 2000-03-24 | 2002-05-09 | Eric Unold | System for facilitating digital advertising |
US20020107728A1 (en) * | 2001-02-06 | 2002-08-08 | Catalina Marketing International, Inc. | Targeted communications based on promotional response |
US20020111154A1 (en) * | 2001-02-14 | 2002-08-15 | Eldering Charles A. | Location based delivery |
US20030023440A1 (en) * | 2001-03-09 | 2003-01-30 | Chu Wesley A. | System, Method and computer program product for presenting large lists over a voice user interface utilizing dynamic segmentation and drill down selection |
US20030046120A1 (en) * | 2001-03-23 | 2003-03-06 | Restaurant Services, Inc. | System, method and computer program product for evaluating the success of a promotion in a supply chain management framework |
US6898571B1 (en) * | 2000-10-10 | 2005-05-24 | Jordan Duvac | Advertising enhancement using the internet |
US6907566B1 (en) * | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US6944447B2 (en) * | 2001-04-27 | 2005-09-13 | Accenture Llp | Location-based services |
Family Cites Families (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58175074A (en) * | 1982-04-07 | 1983-10-14 | Toshiba Corp | Analyzing system of sentence structure |
US4791281A (en) | 1986-10-16 | 1988-12-13 | C.P.C. Investment Trust | Encoding and decoding system |
WO1994014270A1 (en) * | 1992-12-17 | 1994-06-23 | Bell Atlantic Network Services, Inc. | Mechanized directory assistance |
CA2091658A1 (en) | 1993-03-15 | 1994-09-16 | Matthew Lennig | Method and apparatus for automation of directory assistance using speech recognition |
US5343493A (en) * | 1993-03-16 | 1994-08-30 | Hughes Aircraft Company | Personal assistance system and method for use with a cellular communication system |
DE69428823T2 (en) * | 1993-04-19 | 2002-08-22 | Sanyo Electric Co., Ltd. | High impedance circuit |
US5491629A (en) * | 1994-03-04 | 1996-02-13 | Strategic Weather Services | System and method for determining the impact of weather and other factors on managerial planning applications |
US5625668A (en) | 1994-04-12 | 1997-04-29 | Trimble Navigation Limited | Position reporting cellular telephone |
US5652570A (en) * | 1994-05-19 | 1997-07-29 | Lepkofker; Robert | Individual location system |
US5948040A (en) * | 1994-06-24 | 1999-09-07 | Delorme Publishing Co. | Travel reservation information and planning system |
US5559707A (en) * | 1994-06-24 | 1996-09-24 | Delorme Publishing Company | Computer aided routing system |
US5774860A (en) * | 1994-06-27 | 1998-06-30 | U S West Technologies, Inc. | Adaptive knowledge base of complex information through interactive voice dialogue |
US5764731A (en) | 1994-10-13 | 1998-06-09 | Yablon; Jay R. | Enhanced system for transferring, storing and using signaling information in a switched telephone network |
US5717923A (en) * | 1994-11-03 | 1998-02-10 | Intel Corporation | Method and apparatus for dynamically customizing electronic information to individual end users |
DE4440598C1 (en) * | 1994-11-14 | 1996-05-23 | Siemens Ag | World Wide Web hypertext information highway navigator controlled by spoken word |
US5752232A (en) * | 1994-11-14 | 1998-05-12 | Lucent Technologies Inc. | Voice activated device and method for providing access to remotely retrieved data |
US6460036B1 (en) * | 1994-11-29 | 2002-10-01 | Pinpoint Incorporated | System and method for providing customized electronic newspapers and target advertisements |
US5682525A (en) * | 1995-01-11 | 1997-10-28 | Civix Corporation | System and methods for remotely accessing a selected group of items of interest from a database |
US6965864B1 (en) * | 1995-04-10 | 2005-11-15 | Texas Instruments Incorporated | Voice activated hypermedia systems using grammatical metadata |
DE69622565T2 (en) | 1995-05-26 | 2003-04-03 | Speechworks International, Inc. | METHOD AND DEVICE FOR DYNAMICALLY ADJUSTING A LARGE VOCABULARY LANGUAGE IDENTIFICATION SYSTEM AND USING RESTRICTIONS FROM A DATABASE IN A VOICE LABELING LANGUAGE IDENTIFICATION SYSTEM |
US5835061A (en) | 1995-06-06 | 1998-11-10 | Wayport, Inc. | Method and apparatus for geographic-based communications service |
JP3968133B2 (en) * | 1995-06-22 | 2007-08-29 | セイコーエプソン株式会社 | Speech recognition dialogue processing method and speech recognition dialogue apparatus |
US5963940A (en) | 1995-08-16 | 1999-10-05 | Syracuse University | Natural language information retrieval system and method |
US6049711A (en) * | 1995-08-23 | 2000-04-11 | Teletrac, Inc. | Method and apparatus for providing location-based information services |
US5663734A (en) * | 1995-10-09 | 1997-09-02 | Precision Tracking, Inc. | GPS receiver and method for processing GPS signals |
US6591245B1 (en) * | 1996-02-02 | 2003-07-08 | John R. Klug | Media content notification via communications network |
US5809471A (en) * | 1996-03-07 | 1998-09-15 | Ibm Corporation | Retrieval of additional information not found in interactive TV or telephony signal by application using dynamically extracted vocabulary |
US5804803A (en) * | 1996-04-02 | 1998-09-08 | International Business Machines Corporation | Mechanism for retrieving information using data encoded on an object |
US5794235A (en) * | 1996-04-12 | 1998-08-11 | International Business Machines Corporation | System and method for dynamic retrieval of relevant information by monitoring active data streams |
US5956693A (en) | 1996-07-19 | 1999-09-21 | Geerlings; Huib | Computer system for merchant communication to customers |
CA2212121C (en) | 1996-08-02 | 2010-03-30 | Symbol Technologies, Inc. | Improvements in data retrieval |
US6202023B1 (en) * | 1996-08-22 | 2001-03-13 | Go2 Systems, Inc. | Internet based geographic location referencing system and method |
US6185427B1 (en) * | 1996-09-06 | 2001-02-06 | Snaptrack, Inc. | Distributed satellite position system processing and application network |
US6016426A (en) * | 1996-10-10 | 2000-01-18 | Mvs, Incorporated | Method and system for cellular communication with centralized control and signal processing |
US5905246A (en) * | 1996-10-31 | 1999-05-18 | Fajkowski; Peter W. | Method and apparatus for coupon management and redemption |
US5898680A (en) * | 1996-11-05 | 1999-04-27 | Worldspace, Inc. | System for providing location-specific data to a user |
US5930699A (en) * | 1996-11-12 | 1999-07-27 | Ericsson Inc. | Address retrieval system |
JPH10143191A (en) * | 1996-11-13 | 1998-05-29 | Hitachi Ltd | Speech recognition system |
US5915001A (en) * | 1996-11-14 | 1999-06-22 | Vois Corporation | System and method for providing and using universally accessible voice and speech data files |
US6456852B2 (en) | 1997-01-08 | 2002-09-24 | Trafficmaster Usa, Inc. | Internet distributed real-time wireless location database |
US6181927B1 (en) * | 1997-02-18 | 2001-01-30 | Nortel Networks Corporation | Sponsored call and cell service |
US5924070A (en) * | 1997-06-06 | 1999-07-13 | International Business Machines Corporation | Corporate voice dialing with shared directories |
US6091956A (en) | 1997-06-12 | 2000-07-18 | Hollenberg; Dennis D. | Situation information system |
US5860063A (en) * | 1997-07-11 | 1999-01-12 | At&T Corp | Automated meaningful phrase clustering |
US6219696B1 (en) * | 1997-08-01 | 2001-04-17 | Siemens Corporate Research, Inc. | System for providing targeted internet information to mobile agents |
US6301480B1 (en) | 1997-09-05 | 2001-10-09 | @Track Communications, Inc. | System and method for communicating using a voice network and a data network |
US6076099A (en) | 1997-09-09 | 2000-06-13 | Chen; Thomas C. H. | Method for configurable intelligent-agent-based wireless communication system |
US6094635A (en) | 1997-09-17 | 2000-07-25 | Unisys Corporation | System and method for speech enabled application |
DE69712485T2 (en) * | 1997-10-23 | 2002-12-12 | Sony International (Europe) Gmbh | Voice interface for a home network |
US6009411A (en) * | 1997-11-14 | 1999-12-28 | Concept Shopping, Inc. | Method and system for distributing and reconciling electronic promotions |
US6134532A (en) | 1997-11-14 | 2000-10-17 | Aptex Software, Inc. | System and method for optimal adaptive matching of users to most relevant entity and information in real-time |
US6125342A (en) * | 1997-11-18 | 2000-09-26 | L & H Applications Usa, Inc. | Pronoun semantic analysis system and method |
US6505046B1 (en) * | 1997-11-19 | 2003-01-07 | Nortel Networks Limited | Method and apparatus for distributing location-based messages in a wireless communication network |
US5991739A (en) * | 1997-11-24 | 1999-11-23 | Food.Com | Internet online order method and apparatus |
US6157705A (en) * | 1997-12-05 | 2000-12-05 | E*Trade Group, Inc. | Voice control of a server |
US6336098B1 (en) * | 1997-12-11 | 2002-01-01 | International Business Machines Corp. | Method for electronic distribution and redemption of coupons on the world wide web |
US6014090A (en) * | 1997-12-22 | 2000-01-11 | At&T Corp. | Method and apparatus for delivering local information to travelers |
US6052439A (en) * | 1997-12-31 | 2000-04-18 | At&T Corp | Network server platform telephone directory white-yellow page services |
US6301560B1 (en) | 1998-01-05 | 2001-10-09 | Microsoft Corporation | Discrete speech recognition system with ballooning active grammar |
US6647257B2 (en) | 1998-01-21 | 2003-11-11 | Leap Wireless International, Inc. | System and method for providing targeted messages based on wireless mobile location |
US6195641B1 (en) * | 1998-03-27 | 2001-02-27 | International Business Machines Corp. | Network universal spoken language vocabulary |
US6233559B1 (en) * | 1998-04-01 | 2001-05-15 | Motorola, Inc. | Speech control of multiple applications using applets |
US6246672B1 (en) * | 1998-04-28 | 2001-06-12 | International Business Machines Corp. | Singlecast interactive radio system |
US6418216B1 (en) * | 1998-06-09 | 2002-07-09 | International Business Machines Corporation | Caller-controller barge-in telephone service |
US6434526B1 (en) * | 1998-06-29 | 2002-08-13 | International Business Machines Corporation | Network application software services containing a speech recognition capability |
US6167255A (en) | 1998-07-29 | 2000-12-26 | @Track Communications, Inc. | System and method for providing menu data using a communication network |
US6535743B1 (en) * | 1998-07-29 | 2003-03-18 | Minorplanet Systems Usa, Inc. | System and method for providing directions using a communication network |
US6614885B2 (en) | 1998-08-14 | 2003-09-02 | Intervoice Limited Partnership | System and method for operating a highly distributed interactive voice response system |
JP2000067047A (en) | 1998-08-24 | 2000-03-03 | Toshiba Corp | Interactive controller and method therefor |
US6250557B1 (en) * | 1998-08-25 | 2001-06-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and arrangements for a smart card wallet and uses thereof |
US6434524B1 (en) * | 1998-09-09 | 2002-08-13 | One Voice Technologies, Inc. | Object interactive user interface using speech recognition and natural language processing |
US6385583B1 (en) | 1998-10-02 | 2002-05-07 | Motorola, Inc. | Markup language for interactive services and methods thereof |
US6185535B1 (en) * | 1998-10-16 | 2001-02-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Voice control of a user interface to service applications |
WO2000029982A1 (en) * | 1998-11-12 | 2000-05-25 | Bip Bottnia Internet Provider Ab | Method for identifying a user of a network |
JP3084557B2 (en) * | 1998-12-16 | 2000-09-04 | コナミ株式会社 | Fluid image simple display method, image display device, recording medium |
JP2000184085A (en) * | 1998-12-18 | 2000-06-30 | Fujitsu Ltd | Portable equipment, attachment for portable terminal and system using portable equipment |
US6236977B1 (en) | 1999-01-04 | 2001-05-22 | Realty One, Inc. | Computer implemented marketing system |
US6332127B1 (en) | 1999-01-28 | 2001-12-18 | International Business Machines Corporation | Systems, methods and computer program products for providing time and location specific advertising via the internet |
US6564143B1 (en) * | 1999-01-29 | 2003-05-13 | International Business Machines Corporation | Method and apparatus for personalizing static and temporal location based services |
US6360167B1 (en) * | 1999-01-29 | 2002-03-19 | Magellan Dis, Inc. | Vehicle navigation system with location-based multi-media annotation |
US6430531B1 (en) | 1999-02-04 | 2002-08-06 | Soliloquy, Inc. | Bilateral speech system |
US6243684B1 (en) * | 1999-02-19 | 2001-06-05 | Usada, Inc. | Directory assistance system and method utilizing a speech recognition system and a live operator |
US6317718B1 (en) | 1999-02-26 | 2001-11-13 | Accenture Properties (2) B.V. | System, method and article of manufacture for location-based filtering for shopping agent in the physical world |
US6199099B1 (en) | 1999-03-05 | 2001-03-06 | Ac Properties B.V. | System, method and article of manufacture for a mobile communication network utilizing a distributed communication network |
US7051351B2 (en) * | 1999-03-08 | 2006-05-23 | Microsoft Corporation | System and method of inserting advertisements into an information retrieval system display |
JP4176228B2 (en) | 1999-03-15 | 2008-11-05 | 株式会社東芝 | Natural language dialogue apparatus and natural language dialogue method |
US6968513B1 (en) | 1999-03-18 | 2005-11-22 | Shopntown.Com, Inc. | On-line localized business referral system and revenue generation system |
US6466796B1 (en) | 1999-04-01 | 2002-10-15 | Lucent Technologies Inc. | System for providing location based service to a wireless telephone set in a telephone system |
US6308151B1 (en) | 1999-05-14 | 2001-10-23 | International Business Machines Corp. | Method and system using a speech recognition system to dictate a body of text in response to an available body of text |
US6560456B1 (en) | 1999-05-24 | 2003-05-06 | Openwave Systems, Inc. | System and method for providing subscriber-initiated information over the short message service (SMS) or a microbrowser |
US6502076B1 (en) * | 1999-06-01 | 2002-12-31 | Ncr Corporation | System and methods for determining and displaying product promotions |
JP3493333B2 (en) | 1999-06-09 | 2004-02-03 | エイディシーテクノロジー株式会社 | Telephone relay device with advertisement |
JP3485253B2 (en) * | 1999-06-18 | 2004-01-13 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Information processing method, information terminal support server, storage medium for storing information processing program |
JP2001005483A (en) | 1999-06-21 | 2001-01-12 | Oki Electric Ind Co Ltd | Word voice recognizing method and word voice recognition device |
JP3896728B2 (en) | 1999-06-23 | 2007-03-22 | トヨタ自動車株式会社 | Portable terminal device and in-vehicle information processing device |
US6370514B1 (en) * | 1999-08-02 | 2002-04-09 | Marc A. Messner | Method for marketing and redeeming vouchers for use in online purchases |
US7028072B1 (en) * | 1999-07-16 | 2006-04-11 | Unicast Communications Corporation | Method and apparatus for dynamically constructing customized advertisements |
JP2001043479A (en) | 1999-07-30 | 2001-02-16 | Kyocera Corp | Road guide system and its guide method |
US6965868B1 (en) * | 1999-08-03 | 2005-11-15 | Michael David Bednarek | System and method for promoting commerce, including sales agent assisted commerce, in a networked economy |
US6901366B1 (en) * | 1999-08-26 | 2005-05-31 | Matsushita Electric Industrial Co., Ltd. | System and method for assessing TV-related information over the internet |
JP2001101000A (en) | 1999-09-29 | 2001-04-13 | Toshiba Corp | Device and method for natural language conversation |
AU7837500A (en) | 1999-10-01 | 2001-05-10 | Signalsoft Corp. | Location based auctioning services for wireless networks |
US20020046084A1 (en) * | 1999-10-08 | 2002-04-18 | Scott A. Steele | Remotely configurable multimedia entertainment and information system with location based advertising |
US7231380B1 (en) * | 1999-10-09 | 2007-06-12 | Innovaport Llc | Apparatus and method for providing products location information to customers in a store |
US7376586B1 (en) * | 1999-10-22 | 2008-05-20 | Microsoft Corporation | Method and apparatus for electronic commerce using a telephone interface |
US6353398B1 (en) * | 1999-10-22 | 2002-03-05 | Himanshu S. Amin | System for dynamically pushing information to a user utilizing global positioning system |
US7050977B1 (en) * | 1999-11-12 | 2006-05-23 | Phoenix Solutions, Inc. | Speech-enabled server for internet website and method |
US6400956B1 (en) * | 1999-11-15 | 2002-06-04 | Lucent Technologies Inc. | Method and apparatus for a wireless telecommunication system that provides location-based action services |
US6513052B1 (en) * | 1999-12-15 | 2003-01-28 | Imation Corp. | Targeted advertising over global computer networks |
US20020166127A1 (en) * | 1999-12-15 | 2002-11-07 | Hitachi America, Ltd. | System and method for providing advertisements in a wireless terminal |
US6424945B1 (en) * | 1999-12-15 | 2002-07-23 | Nokia Corporation | Voice packet data network browsing for mobile terminals system and method using a dual-mode wireless connection |
US6970830B1 (en) | 1999-12-29 | 2005-11-29 | General Electric Capital Corporation | Methods and systems for analyzing marketing campaigns |
US6526335B1 (en) * | 2000-01-24 | 2003-02-25 | G. Victor Treyz | Automobile personal computer systems |
US6587835B1 (en) * | 2000-02-09 | 2003-07-01 | G. Victor Treyz | Shopping assistance with handheld computing device |
JP3545666B2 (en) * | 2000-02-14 | 2004-07-21 | 株式会社東芝 | Service providing system for mobile terminals |
US7006983B1 (en) * | 2000-02-16 | 2006-02-28 | Walker Digital, Llc | Method and system for processing a rebate |
US20070124216A1 (en) * | 2000-03-07 | 2007-05-31 | Michael Lucas | Systems and methods for locating and purchasing proximal inventory items |
US7421278B2 (en) * | 2000-03-13 | 2008-09-02 | Intellions, Inc. | Method and apparatus for time-aware and location-aware marketing |
US6510417B1 (en) * | 2000-03-21 | 2003-01-21 | America Online, Inc. | System and method for voice access to internet-based information |
US20020035474A1 (en) * | 2000-07-18 | 2002-03-21 | Ahmet Alpdemir | Voice-interactive marketplace providing time and money saving benefits and real-time promotion publishing and feedback |
GB2360671B (en) | 2000-03-25 | 2003-09-03 | Hewlett Packard Co | Providing location data about a mobile entity |
US6609005B1 (en) * | 2000-03-28 | 2003-08-19 | Leap Wireless International, Inc. | System and method for displaying the location of a wireless communications device wiring a universal resource locator |
AU2001253161A1 (en) * | 2000-04-04 | 2001-10-15 | Stick Networks, Inc. | Method and apparatus for scheduling presentation of digital content on a personal communication device |
GB0008908D0 (en) * | 2000-04-11 | 2000-05-31 | Hewlett Packard Co | Shopping assistance service |
IES20010363A2 (en) * | 2000-04-13 | 2001-10-17 | Twelve Horses Technology Ltd | A messaging system |
GB0009658D0 (en) * | 2000-04-20 | 2000-06-07 | Hewlett Packard Co | Shopping asistance method and service system |
US6850766B2 (en) * | 2000-04-26 | 2005-02-01 | Wirenix, Inc. | Voice activated wireless locator service |
WO2001082031A2 (en) * | 2000-04-26 | 2001-11-01 | Portable Internet Inc. | Portable internet services |
JP2001306959A (en) * | 2000-04-27 | 2001-11-02 | Victor Co Of Japan Ltd | Electronic commercial transaction supporting system |
US20020035568A1 (en) | 2000-04-28 | 2002-03-21 | Benthin Mark Louis | Method and apparatus supporting dynamically adaptive user interactions in a multimodal communication system |
US8700459B2 (en) * | 2000-04-28 | 2014-04-15 | Yisroel Lefkowitz | Method and apparatus for selling international travel tickets in combination with duty free goods |
US6731940B1 (en) * | 2000-04-28 | 2004-05-04 | Trafficmaster Usa, Inc. | Methods of using wireless geolocation to customize content and delivery of information to wireless communication devices |
US20020046104A1 (en) * | 2000-05-09 | 2002-04-18 | Geomicro, Inc. | Method and apparatus for generating targeted impressions to internet clients |
GB0012354D0 (en) * | 2000-05-22 | 2000-07-12 | Nokia Networks Oy | A method and system for providing location dependent information |
US20020004745A1 (en) | 2000-05-26 | 2002-01-10 | Bascobert Michael R. | Method for automated direct marketing |
US7917390B2 (en) | 2000-06-09 | 2011-03-29 | Sony Corporation | System and method for providing customized advertisements over a network |
US6882313B1 (en) * | 2000-06-21 | 2005-04-19 | At Road, Inc. | Dual platform location-relevant service |
WO2002001391A2 (en) * | 2000-06-23 | 2002-01-03 | Ecomsystems, Inc. | System and method for computer-created advertisements |
AU2001276992A1 (en) * | 2000-07-20 | 2002-02-05 | Aeptec Microsystems, Inc. | Method, system, and protocol for location-aware mobile devices |
US6847825B1 (en) * | 2000-09-14 | 2005-01-25 | Lojack Corporation | Method and system for portable cellular phone voice communication and positional location data communication |
US6954764B2 (en) * | 2000-09-25 | 2005-10-11 | Oracle International Corp. | Region modeling of mobile services |
WO2002027439A2 (en) * | 2000-09-28 | 2002-04-04 | Ipdev Co. | Method for simplified one-touch ordering of goods and services from a wired or wireless phone or terminal |
AU2001295080A1 (en) * | 2000-09-29 | 2002-04-08 | Professorq, Inc. | Natural-language voice-activated personal assistant |
JP4283984B2 (en) | 2000-10-12 | 2009-06-24 | パイオニア株式会社 | Speech recognition apparatus and method |
WO2002031742A2 (en) * | 2000-10-12 | 2002-04-18 | Maggio Frank S | Method and system for communicating advertising and entertainment content and gathering consumer information |
US20020103698A1 (en) * | 2000-10-31 | 2002-08-01 | Christian Cantrell | System and method for enabling user control of online advertising campaigns |
US7376640B1 (en) * | 2000-11-14 | 2008-05-20 | At&T Delaware Intellectual Property, Inc. | Method and system for searching an information retrieval system according to user-specified location information |
US20020090934A1 (en) | 2000-11-22 | 2002-07-11 | Mitchelmore Eliott R.D. | Content and application delivery and management platform system and method |
US20020107027A1 (en) * | 2000-12-06 | 2002-08-08 | O'neil Joseph Thomas | Targeted advertising for commuters with mobile IP terminals |
US7130630B1 (en) | 2000-12-19 | 2006-10-31 | Bellsouth Intellectual Property Corporation | Location query service for wireless networks |
US6937986B2 (en) * | 2000-12-28 | 2005-08-30 | Comverse, Inc. | Automatic dynamic speech recognition vocabulary based on external sources of information |
US6760426B2 (en) * | 2001-01-05 | 2004-07-06 | Sprint Communications Company, L.P. | Method and system for handling operator calls in a communication network |
US7343317B2 (en) * | 2001-01-18 | 2008-03-11 | Nokia Corporation | Real-time wireless e-coupon (promotion) definition based on available segment |
JP3829631B2 (en) * | 2001-02-09 | 2006-10-04 | セイコーエプソン株式会社 | Information providing system, registration terminal, portable terminal, storage medium storing information providing program, storage medium storing positional relationship determination program, storage medium storing information selection program, and information providing method |
US20020161625A1 (en) | 2001-02-23 | 2002-10-31 | Valassis Communications, Inc. | Online media planning system |
US20020133477A1 (en) * | 2001-03-05 | 2002-09-19 | Glenn Abel | Method for profile-based notice and broadcast of multimedia content |
US6907119B2 (en) * | 2001-03-08 | 2005-06-14 | Qwest Communications International, Inc. | Automated business directory assistance |
WO2002076077A1 (en) * | 2001-03-16 | 2002-09-26 | Leap Wireless International, Inc. | Method and system for distributing content over a wireless communications system |
US20030028412A1 (en) * | 2001-03-23 | 2003-02-06 | Restaurant Service, Inc. | System, method and computer program product for a food and beverage supply chain management framework |
US20020143550A1 (en) | 2001-03-27 | 2002-10-03 | Takashi Nakatsuyama | Voice recognition shopping system |
US20020143639A1 (en) | 2001-03-27 | 2002-10-03 | Beckett Justin F. | Method of doing business using music gaming for on-line music sales, entertainment, and/or advertising |
US20020143638A1 (en) | 2001-03-28 | 2002-10-03 | August Katherine G. | System and method for conducting wireless customer/vendor transactions |
US6996531B2 (en) * | 2001-03-30 | 2006-02-07 | Comverse Ltd. | Automated database assistance using a telephone for a speech based or text based multimedia communication mode |
US6993326B2 (en) * | 2001-04-02 | 2006-01-31 | Bellsouth Intellectual Property Corporation | System and method for providing short message targeted advertisements over a wireless communications network |
US20030041050A1 (en) | 2001-04-16 | 2003-02-27 | Greg Smith | System and method for web-based marketing and campaign management |
US7698228B2 (en) | 2001-04-27 | 2010-04-13 | Accenture Llp | Tracking purchases in a location-based services system |
US6848542B2 (en) * | 2001-04-27 | 2005-02-01 | Accenture Llp | Method for passive mining of usage information in a location-based services system |
US7970648B2 (en) * | 2001-04-27 | 2011-06-28 | Accenture Global Services Limited | Advertising campaign and business listing management for a location-based services system |
US7437295B2 (en) | 2001-04-27 | 2008-10-14 | Accenture Llp | Natural language processing for a location-based services system |
US7089264B1 (en) * | 2001-06-22 | 2006-08-08 | Navteq North America, Llc | Geographic database organization that facilitates location-based advertising |
US6757544B2 (en) | 2001-08-15 | 2004-06-29 | Motorola, Inc. | System and method for determining a location relevant to a communication device and/or its associated user |
US7254384B2 (en) * | 2001-10-03 | 2007-08-07 | Accenture Global Services Gmbh | Multi-modal messaging |
US7441016B2 (en) * | 2001-10-03 | 2008-10-21 | Accenture Global Services Gmbh | Service authorizer |
US7640006B2 (en) * | 2001-10-03 | 2009-12-29 | Accenture Global Services Gmbh | Directory assistance with multi-modal messaging |
US7472091B2 (en) * | 2001-10-03 | 2008-12-30 | Accenture Global Services Gmbh | Virtual customer database |
US7233655B2 (en) * | 2001-10-03 | 2007-06-19 | Accenture Global Services Gmbh | Multi-modal callback |
US7013148B1 (en) * | 2001-12-21 | 2006-03-14 | Verizon Corporate Services Group Inc. | Method for providing a current location of a wireless communication device |
US20030154126A1 (en) * | 2002-02-11 | 2003-08-14 | Gehlot Narayan L. | System and method for identifying and offering advertising over the internet according to a generated recipient profile |
US7016849B2 (en) | 2002-03-25 | 2006-03-21 | Sri International | Method and apparatus for providing speech-driven routing between spoken language applications |
US6792096B2 (en) | 2002-04-11 | 2004-09-14 | Sbc Technology Resources, Inc. | Directory assistance dialog with configuration switches to switch from automated speech recognition to operator-assisted dialog |
-
2002
- 2002-04-26 US US10/133,537 patent/US6848542B2/en not_active Expired - Lifetime
-
2004
- 2004-12-08 US US11/007,761 patent/US8738437B2/en not_active Expired - Fee Related
-
2014
- 2014-05-20 US US14/282,964 patent/US20140256361A1/en not_active Abandoned
-
2015
- 2015-06-05 US US14/732,540 patent/US20150269688A1/en not_active Abandoned
- 2015-06-05 US US14/732,549 patent/US20150269619A1/en not_active Abandoned
- 2015-06-05 US US14/732,441 patent/US20150269657A1/en not_active Abandoned
- 2015-06-05 US US14/732,089 patent/US20150269618A1/en not_active Abandoned
- 2015-06-05 US US14/732,567 patent/US20150302460A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0183504A2 (en) * | 1984-11-26 | 1986-06-04 | Tektronix, Inc. | A regulated high voltage supply |
US6907566B1 (en) * | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
EP1083504A2 (en) * | 1999-09-09 | 2001-03-14 | Netzero, Inc. | Dynamic ad targeting by an internet server |
US6349797B1 (en) * | 1999-12-21 | 2002-02-26 | Captivate Network, Inc. | Information distribution system for use in an elevator |
US20010034660A1 (en) * | 2000-02-09 | 2001-10-25 | Heinz Heumann | Goods and services referring by location |
US20020055880A1 (en) * | 2000-03-24 | 2002-05-09 | Eric Unold | System for facilitating digital advertising |
US20010049636A1 (en) * | 2000-04-17 | 2001-12-06 | Amir Hudda | System and method for wireless purchases of goods and services |
US6898571B1 (en) * | 2000-10-10 | 2005-05-24 | Jordan Duvac | Advertising enhancement using the internet |
US20020107728A1 (en) * | 2001-02-06 | 2002-08-08 | Catalina Marketing International, Inc. | Targeted communications based on promotional response |
US20020111154A1 (en) * | 2001-02-14 | 2002-08-15 | Eldering Charles A. | Location based delivery |
US20030023440A1 (en) * | 2001-03-09 | 2003-01-30 | Chu Wesley A. | System, Method and computer program product for presenting large lists over a voice user interface utilizing dynamic segmentation and drill down selection |
US20030046120A1 (en) * | 2001-03-23 | 2003-03-06 | Restaurant Services, Inc. | System, method and computer program product for evaluating the success of a promotion in a supply chain management framework |
US6944447B2 (en) * | 2001-04-27 | 2005-09-13 | Accenture Llp | Location-based services |
Non-Patent Citations (1)
Title |
---|
Open GIS Consortium, Topic 17 Location-Based Mobile Services, 15 May 2000, by Cliff Kottman * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140304086A1 (en) * | 2013-02-25 | 2014-10-09 | Turn Inc. | Methods and systems for modeling campaign goal adjustment |
US10783563B2 (en) | 2013-02-25 | 2020-09-22 | Amobee, Inc. | Methods and systems for modeling campaign goal adjustment |
Also Published As
Publication number | Publication date |
---|---|
US6848542B2 (en) | 2005-02-01 |
US20150269688A1 (en) | 2015-09-24 |
US20150269618A1 (en) | 2015-09-24 |
US20050102180A1 (en) | 2005-05-12 |
US8738437B2 (en) | 2014-05-27 |
US20150269657A1 (en) | 2015-09-24 |
US20040230467A9 (en) | 2004-11-18 |
US20020161627A1 (en) | 2002-10-31 |
US20150269619A1 (en) | 2015-09-24 |
US20140256361A1 (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6848542B2 (en) | Method for passive mining of usage information in a location-based services system | |
US7698228B2 (en) | Tracking purchases in a location-based services system | |
US7970648B2 (en) | Advertising campaign and business listing management for a location-based services system | |
US6944447B2 (en) | Location-based services | |
EP1391127B1 (en) | Location-based services | |
CA2783808C (en) | Location-based services | |
AU2002256369A1 (en) | Location-based services | |
AU2006203598C1 (en) | Advertising and business listing management for a location-based services system | |
AU2008201023B2 (en) | Location-based services | |
AU2011223977B2 (en) | Location-based services |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACCENTURE GLOBAL SERVICES GMBH, SWITZERLAND Free format text: CONFIRMATORY ASSIGNMENT;ASSIGNOR:ACCENTURE LLP;REEL/FRAME:037176/0663 Effective date: 20100831 Owner name: ACCENTURE LLP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAILEY, MICHAEL L.;PORTMAN, ERIC A.;BURGISS, MIKE;AND OTHERS;SIGNING DATES FROM 20020422 TO 20020426;REEL/FRAME:037176/0544 Owner name: ACCENTURE GLOBAL SERVICES LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACCENTURE GLOBAL SERVICES GMBH;REEL/FRAME:037177/0144 Effective date: 20100901 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |