Nothing Special   »   [go: up one dir, main page]

US20150148220A1 - Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems - Google Patents

Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems Download PDF

Info

Publication number
US20150148220A1
US20150148220A1 US14/607,486 US201514607486A US2015148220A1 US 20150148220 A1 US20150148220 A1 US 20150148220A1 US 201514607486 A US201514607486 A US 201514607486A US 2015148220 A1 US2015148220 A1 US 2015148220A1
Authority
US
United States
Prior art keywords
zpgm
corrosion
catalyst
hexavalent chromium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/607,486
Inventor
Zahra Nazarpoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Diesel Technologies Inc
Original Assignee
Clean Diesel Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Diesel Technologies Inc filed Critical Clean Diesel Technologies Inc
Priority to US14/607,486 priority Critical patent/US20150148220A1/en
Publication of US20150148220A1 publication Critical patent/US20150148220A1/en
Assigned to CLEAN DIESEL TECHNOLOGIES, INC. (CDTI) reassignment CLEAN DIESEL TECHNOLOGIES, INC. (CDTI) NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: NAZARPOOR, Zahra
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/204Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/50Stabilized
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/514Process applicable either to preparing or to regenerating or to rehabilitating catalyst or sorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52Suppressed side reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/521Metal contaminant passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function

Definitions

  • the present disclosure relates generally to ZPGM catalyst systems, and, more particularly, to elimination of corrosion causing compounds on ZPGM catalyst systems.
  • Ceramic substrates may dominate the car market, primarily because they are mass-produced and therefore less costly. However, metallic substrates may offer the industry of catalyst systems significant advantages.
  • the substrate of a catalytic system may fulfill an important role in supporting the catalytic material and may be capable of withstanding some extremely arduous conditions. Operating temperatures may be in excess of 1000° C. and the substrate may also be exposed to fast moving, corrosive exhaust gases, rapid changes in temperature and pressure, and external factors such as shocks and vibration.
  • a major problem with manufacturing of catalyst systems may be the presence of corrosion in the catalyst systems.
  • Formulations of catalysts systems may include at least a substrate, a washcoat and an overcoat.
  • washcoat and overcoat, within catalyst systems may include elements that may also contribute in the formation of corrosion.
  • the present disclosure may provide a process that may be enabled to prevent formation of hexavalent chromium compounds which may cause corrosion in zero platinum group metal (ZPGM) catalyst systems.
  • ZPGM zero platinum group metal
  • compositions of ZPGM catalyst systems may include any suitable combination of a metallic substrate, a washcoat, and an overcoat.
  • Washcoat, and/or an overcoat may include ZPGM metal catalyst such as copper (Cu), cerium (Ce), silver (Ag), and other metal combinations.
  • Catalyst samples with metallic substrate of varied geometry and cells per square inch (CPSI) may be prepared using any suitable synthesis method as known in current art.
  • disclosed ZPGM catalysts systems may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat.
  • Disclosed ZPGM catalyst system may be manufactured by employing known in the art co-milling procedures for WC preparation and known in the art co-precipitation procedures for OC preparation. Suitable deposition methods may be employed in order to deposit WC on metallic substrate as well as OC on WC material. Subsequently, known in the art drying and firing treatments may be applied. Aging treatments may also be applied on disclosed ZPGM catalyst systems, at the beginning of aging treatment as the temperature of ZPGM catalyst system reaches about 600° C., formation hexavalent chromium (Cr 6+ ) in the form of chromic acid vapor from metallic substrate may take place. Chromic acid vapor is a toxic compound, and thus undesirable.
  • Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system.
  • Thermal decomposition process may include aging ZPGM catalyst system at about 1100° C., in the presence of air and under dry conditions. The duration may take place from 3 hours to 6 hours.
  • An embodiment of the disclosed process may include a reducing agent, such as hydrogen (H 2 ), carbon monoxide (CO), or ammonia (NH 3 ), among others, that may be present in exhaust conditions, at temperatures of about 400° C. or higher, which may allow the conversion of hexavalent chromium compounds, in the form of silver chromate into trivalent chromium compounds in the form of chromate oxide.
  • a metallic catalyst such as silver, may also be produced.
  • Employing the disclosed manufacturing process may allow the production of ZPGM catalyst systems without corrosion causing hexavalent chromium compound, therefore ZPGM catalyst systems exhibiting high activity and enhanced performance may be produced.
  • the disclosed manufacturing process may allow production of ZPGM catalyst system without corrosion which may cause hexavalent chromium compound.
  • the disclosed manufacturing process may also provide ZPGM catalyst systems which may exhibit high activity and enhanced performance.
  • Non-limiting embodiments of the present disclosure are described by way of example with reference to the accompanying figures which are schematic and are not intended to be drawn to scale. Unless indicated as representing the background art, the figures represent aspects of the disclosure.
  • FIG. 1 is a flowchart of manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 2 is a flowchart of second manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 3 depicts summary of reactions that may take place during manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 4 depicts summary of reactions that may take place during second manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • Catalyst system may refer to a system of at least two layers including at least one substrate, a washcoat, and/or an overcoat.
  • Substrate may refer to any material of any shape or configuration that yields a sufficient surface area for depositing a washcoat and/or overcoat.
  • Washcoat may refer to at least one coating including at least one oxide solid that may be deposited on a substrate.
  • “Overcoat (OC)” may refer to at least one coating that may be deposited on at least one washcoat layer.
  • Catalyst may refer to one or more materials that may be of use in the conversion of one or more other materials.
  • Zero platinum group (ZPGM) catalyst may refer to a catalyst completely or substantially free of platinum group metals.
  • Platinum group metals may refer to, platinum, palladium, ruthenium, iridium, osmium, and rhodium.
  • Carrier material oxide (CMO) may refer to materials used for providing a surface for at least one catalyst.
  • Oxygen storage material may refer to a material able to take up oxygen from oxygen rich streams and able to release oxygen to oxygen deficient streams.
  • Treating may refer to drying, firing, heating, evaporating, calcining, or mixtures thereof.
  • Edge may refer to the connection of substrate lip and substrate matrix within catalyst systems.
  • Co-precipitation may refer to the carrying down by a precipitate of substances normally soluble under the conditions employed.
  • Manufacturing may refer to the operation of breaking a solid material into a desired grain or particle size.
  • Calcination may refer to a thermal treatment process applied to solid materials, in presence of air, to bring about a thermal decomposition, phase transition, or removal of a volatile fraction at temperatures below the melting point of the solid materials.
  • Conversion may refer to the chemical alteration of at least one material into one or more other materials.
  • ZPGM zero platinum group metal
  • Disclosed ZPGM catalyst systems may include a metallic substrate, a WC, and an OC.
  • Metallic substrates may be in the form of beads or pellets or of any suitable form.
  • the beads or pellets may be formed from any suitable material such as alumina, silica alumina, silica, titania, mixtures thereof, or any suitable material.
  • the metal may be a heat-resistant base metal alloy, particularly an alloy in which iron is a substantial or major component.
  • the surface of the metal substrate may be oxidized at temperatures higher than 1000° C. to improve the corrosion resistance of the alloy by forming an oxide layer on the surface of the alloy.
  • Metallic substrate may be a monolithic carrier having a plurality of fine, parallel flow passages extending through the monolith.
  • the passages may be of any suitable cross-sectional shape and/or size.
  • the passages may be trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, or circular, although other shapes may be suitable.
  • the monolith may contain from about 9 to about 1,200 or more gas inlet openings or passages per square inch of cross section, although fewer passages may be used.
  • Metallic substrate may be used with different dimension and cell density (CPSI ).
  • washcoat composition may include at least one ZPGM transition metal catalyst and a carrier material oxide.
  • ZPGM transition metal catalyst may include scandium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, niobium, molybdenum, silver, cadmium, tantalum, tungsten, and gallium. Most suitable ZPGM transition metal may be silver. The total amount of silver may be of about 1% w/w to about 20% w/w of the total catalyst weight; most suitable amount may be of about 5% w/w to 8% w/w.
  • Carrier material oxide, within washcoat may include alumina (Al 2 O 3 ) or lanthanum doped alumina.
  • Overcoat composition may include at least one ZPGM transition metal such as copper oxide, ceria, at least one carrier material oxides, and at least one oxygen storage material (OSM), which may be a mixture of cerium (Ce), zirconium (Zr), neodymium (Nd), and praseodymium (Pr).
  • the copper (Cu) and Ce in overcoat may be present in about 5% w/w to about 50% w/w or from about 10% w/w to about 16% w/w of Cu; and about 12% w/w to about 20% w/w of Ce.
  • Carrier material oxides, within overcoat may include aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovksite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium oxide, tin oxide, silicon dioxide, zeolite, and mixtures thereof.
  • Suitable carrier material oxide for the disclosed overcoat may include one or more selected from the group consisting of aluminum oxide (Al 2 O 3 ) or doped aluminum oxide.
  • the doped aluminum oxide in overcoat may include one or more selected from the group consisting of lanthanum, yttrium, lanthanides and mixtures thereof.
  • the amount of doped lanthanum in alumina may vary from 0% w/w (i.e., pure aluminum oxide) to 10% w/w of lanthanum oxide.
  • Other embodiments may include pure alumina (Al 2 O 3 ) as Carrier material oxides.
  • Carrier material oxides and OSM included in overcoat may be present in a ratio of about 60% w/w to about 40% w/w.
  • a ZPGM catalyst system including a metallic substrate, a WC and an OC may be prepared.
  • FIG. 1 is a flowchart of manufacturing process 100 for ZPGM catalyst systems in the present disclosure which may include an aging process at about 1100° C. for producing a ZPGM catalyst system.
  • WC may be prepared. Preparation of WC may be achieved at room temperature. WC may be prepared by milling powder forms including WC materials in any suitable mill, such as vertical or horizontal mills. WC materials may undergo a mixing step 102 with water or any suitable organic solvent. Suitable organic solvents may include ethanol, and diethyl ether, carbon tetrachloride, and trichloroethylene, among others. Powder WC materials may include ZPGM transition metal catalyst precursors, such as silver nitrate; and Carrier material oxide (CMOs), such as alumina based binder, as previously described.
  • ZPGM transition metal catalyst precursors such as silver nitrate
  • CMOs Carrier material oxide
  • mixed WC materials may undergo a milling step 104 in order to be milled into smaller particle sizes during a period of time from about 10 minutes to about 10 hours, depending on the batch size, kind of material, and particle size desired.
  • WC particle size of the WC slurry may be of about 4 ⁇ m to about 10 ⁇ m in order to get uniform distribution of WC particles.
  • the pH of WC slurry may be adjusted to a desired value by adjusting the rheology of the aqueous WC slurry adding acid or base solutions or various salts or organic compounds, such as, acetic acid, among others.
  • WC slurry may have a pH of about 4 to about 5.
  • WC slurry may undergo a slurry aging 106 step at room temperature for a period of time of about 24 hours under room conditions and continued stirring.
  • WC in the form of aqueous slurry, may be deposited on a suitable metallic substrate employing vacuum dosing and coating systems and may be subsequently treated.
  • a plurality of deposition methods may be employed, such as placing, adhering, curing, coating, spraying, dipping, painting, or any known process for coating a film on at least one metallic substrate.
  • the metallic substrate is a monolithic carrier with parallel flow passages, WC may be formed on the walls of the passages.
  • Various capacities of WC loadings in the present disclosure may be coated on the metallic substrate. The WC loading may vary from 60 g/L to 200 g/L.
  • WC may undergo a first drying and firing step 110 .
  • air knife drying systems may be employed. Firing (heat treatment) may be performed using commercially-available firing (calcination) systems. Calcination may take from about 2 hours to about 6 hours, preferably about 4 hours, and at a temperature of about 300° C. to about 600° C., preferably about 550° C.
  • OC deposition 112 may take place, where OC may be deposited on WC.
  • the OC may be prepared by co-precipitation synthesis method. Preparation may begin by mixing the appropriate amount of Cu and Ce salts, such as nitrate, acetate or chloride solutions, where the suitable Cu loadings may include loadings in a range as previously described. Subsequently, the Cu—Ce solution may be mixed with the slurry of CMO support. Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na 2 CO 3 solution, and ammonium hydroxide (NH 4 OH) solution.
  • Cu and Ce salts such as nitrate, acetate or chloride solutions
  • the suitable Cu loadings may include loadings in a range as previously described.
  • the Cu—Ce solution may be mixed with the slurry of CMO support.
  • Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na 2 CO 3 solution, and ammonium hydroxide (NH 4 OH) solution.
  • the pH of OC slurry may be adjusted within range of 5.0 to 6.0 by adjusting the rheology of the aqueous OC slurry adding acid or base solutions or various salts or organic compounds, such as, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol, and other suitable compounds.
  • the OC slurry may be aged for a period of time of about 12 to 24 hours under continues stirring at room temperature. Precipitation may be formed over slurry including at least one suitable CMO, or any number of additional suitable CMOs, and may include one or more suitable OSMs as previously described.
  • OC slurry may be deposited on WC by employing suitable deposition techniques such as vacuum dosing, among others.
  • the OC loading may vary from 60 g/L to 200 g/L.
  • OC may then undergo a second drying and firing step 114 employing suitable heat treatment techniques employing firing (calcination) systems or any other suitable treatment techniques.
  • OC, WC, and metallic substrate may be treated for about 2 hours to about 6 hours, preferably about 4 hours, at a temperature of about 300° C. to about 600° C., preferably about 550° C., in the presence of air.
  • an aging at 1100° C. 116 step in the presence of air, for about 4 hours, may be applied and ZPGM catalyst system without corrosion 118 may be obtained. No red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed; therefore no hexavalent chromium compounds is included in the ZPGM catalyst system without corrosion 118 .
  • a ZPGM catalyst system without corrosion 118 may also be manufactured employing a reducing agent that may convert hexavalent chromium compounds to trivalent chromium compounds, therefore preventing corrosion formation on disclosed ZPGM catalyst systems.
  • FIG. 2 is a flowchart of second manufacturing process 200 for ZPGM catalyst systems in the present disclosure where a reducing agent may be included for producing ZPGM catalyst system without corrosion 118 .
  • WC may be prepared. Preparation of WC may be achieved at room temperature. WC may be prepared by milling powder forms including WC materials in any suitable mill, such as vertical or horizontal mills. WC materials may undergo a mixing step 102 with water or any suitable organic solvent. Suitable organic solvents may include ethanol, and diethyl ether, carbon tetrachloride, and trichloroethylene, among others. Powder WC materials may include ZPGM transition metal catalyst precursors, such as silver nitrate; and Carrier material oxide (CMOs), such as alumina based binder, as previously described.
  • ZPGM transition metal catalyst precursors such as silver nitrate
  • CMOs Carrier material oxide
  • mixed WC materials may undergo a milling step 104 in order to be milled into smaller particle sizes during a period of time from about 10 minutes to about 10 hours, depending on the batch size, kind of material, and particle size desired.
  • WC particle size of the WC slurry may be of about 4 ⁇ m to about 10 ⁇ m in order to get uniform distribution of WC particles.
  • the pH of WC slurry may be adjusted to a desired value by adjusting the rheology of the aqueous WC slurry adding acid or base solutions or various salts or organic compounds, such as, acetic acid, among others.
  • WC slurry may have a pH of about 4 to about 5.
  • WC slurry may undergo a slurry aging 106 step at room temperature for a period of time of about 24 hours under room conditions and continued stirring.
  • WC in the form of aqueous slurry, may be deposited on a suitable metallic substrate employing vacuum dosing and coating systems and may be subsequently treated.
  • a plurality of deposition methods may be employed, such as placing, adhering, curing, coating, spraying, dipping, painting, or any known process for coating a film on at least one metallic substrate.
  • the metallic substrate is a monolithic carrier with parallel flow passages, WC may be formed on the walls of the passages.
  • Various capacities of WC loadings in the present disclosure may be coated on the metallic substrate. The WC loading may vary from 60 g/L to 200 g/L.
  • WC may undergo a first drying and firing step 110 .
  • air knife drying systems may be employed. Firing (heat treatment) may be performed using commercially-available firing (calcination) systems. Calcination may take from about 2 hours to about 6 hours, preferably about 4 hours, and at a temperature of about 300° C. to about 600° C., preferably about 550° C.
  • OC deposition 112 may take place, where OC may be deposited on WC.
  • the OC may be prepared by co-precipitation synthesis method. Preparation may begin by mixing the appropriate amount of Cu and Ce salts, such as nitrate, acetate or chloride solutions, where the suitable Cu loadings may include loadings in a range as previously described. Subsequently, the Cu-Ce solution may be mixed with the slurry of CMO support. Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na 2 CO 3 solution, and ammonium hydroxide (NH 4 OH) solution.
  • Cu and Ce salts such as nitrate, acetate or chloride solutions
  • the suitable Cu loadings may include loadings in a range as previously described.
  • the Cu-Ce solution may be mixed with the slurry of CMO support.
  • Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na 2 CO 3 solution, and ammonium hydroxide (NH 4 OH) solution.
  • the pH of OC slurry may be adjusted within range of 5.0 to 6.0 by adjusting the rheology of the aqueous OC slurry adding acid or base solutions or various salts or organic compounds, such as, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol, and other suitable compounds.
  • the OC slurry may be aged for a period of time of about 12 to 24 hours under continues stirring at room temperature. Precipitation may be formed over slurry including at least one suitable CMO, or any number of additional suitable CMOs, and may include one or more suitable OSMs as previously described.
  • OC slurry may be deposited on WC by employing suitable deposition techniques such as vacuum dosing, among others.
  • the OC loading may vary from 60 g/L to 200 g/L.
  • OC may then undergo a second drying and firing step 114 employing suitable heat treatment techniques employing firing (calcination) systems or any other suitable treatment techniques.
  • OC, WC, and metallic substrate may be treated for about 2 hours to about 6 hours, preferably about 4 hours, at a temperature of about 300° C. to about 600° C., preferably about 550° C., in the presence of air.
  • an aging at 900° C. 202 process in the presence of air, may be applied and ZPGM catalyst system with corrosion 204 may be obtained.
  • a red color on the surface of substrate edge within ZPGM catalyst system with corrosion 204 may be observed; therefore, hexavalent chromium compounds may be included in ZPGM catalyst system without corrosion 118 .
  • a reducing agent that may be present in exhaust conditions may be included in the manufacturing process, therefore hexavalent chromium compounds may react with reducing agent forming trivalent chromium compounds and metallic catalyst, such as silver.
  • Reducing agent may include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ), among others.
  • disclosed ZPGM catalyst system with corrosion 204 aged at 900° C. that includes hexavalent chromium compounds may no longer include hexavalent chromium compounds after treating under reducing condition.
  • FIG. 3 depicts summary of reactions 300 that may take place during manufacturing process 100 for ZPGM catalyst systems.
  • first drying and firing step 110 at about 500° C., decomposition of silver nitrate 302 to metallic silver may take place, obtaining ZPGM catalyst in WC.
  • first drying and firing step 110 no red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed, showing no hexavalent chromium compound is formed.
  • formation hexavalent chromium (Cr 6+ ) in the form of chromic acid vapor 304 may take place.
  • Chromic acid vapor 304 is a toxic compound. Chromic acid vapor 304 may be formed because chromium may be released from substrate alloy (Fe—Cr). Then, as aging at 1100° C. 116 step reaches about 650° C. to 700° C., reaction between chromic acid and metallic silver may take place and Cr 6+ , in the form of silver chromate 306 , may be formed. Silver chromate 306 is pinkish-red, thus a pinkish red corrosion may be observed on the surface of substrate edge. During aging at 1100° C.
  • FIG. 4 depicts summary of reactions 400 that may take place during second manufacturing process 200 for ZPGM catalyst systems.
  • first drying and firing step 110 at about 500° C., decomposition of silver nitrate 302 to metallic silver may take place, obtaining ZPGM catalyst in WC.
  • first drying and firing step 110 no red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed, showing no hexavalent chromium is formed.
  • formation hexavalent chromium (Cr 6+ ) in the form of chromic acid vapor 304 may take place.
  • Chromic acid vapor 304 is a toxic compound. Chromic acid vapor 304 may be formed because chromium may be release from substrate alloy (Fe—Cr). As aging at 900° C. 202 process reaches about 650° C. to 700° C., reaction between chromic acid and metallic silver may take place and Cr 6+ , in the form of silver chromate 306 , may be formed. Silver chromate 306 is pinkish-red, thus a pinkish red corrosion may be observed on the surface of substrate edge. During aging at 900° C. 202 process, when temperature reaches about 900° C. a red color on the surface of substrate edge within ZPGM catalyst system with corrosion 204 may be observed, showing the presence of Cr 6+ .
  • second manufacturing process 200 may allow the manufacturing of ZPGM catalyst system without corrosion 118 , in which hexavalent chromium compounds corrosion causing may be converted into trivalent chromium compounds, which is not toxic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

Process for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems is disclosed. In one embodiment, disclosed ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system. An embodiment of the disclosed process may include a reducing agent, which may be present in exhaust conditions, which may convert hexavalent chromium compounds into trivalent chromium compounds as well as produce metallic catalyst, such as silver. Employing the disclosed manufacturing process may allow the production of ZPGM catalyst systems that may exhibit high activity and enhanced performance.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/940,990, filed July 11, 2013, of which is incorporated herein by reference as if set forth in its entirety.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates generally to ZPGM catalyst systems, and, more particularly, to elimination of corrosion causing compounds on ZPGM catalyst systems.
  • 2. Background Information
  • Ceramic substrates may dominate the car market, primarily because they are mass-produced and therefore less costly. However, metallic substrates may offer the industry of catalyst systems significant advantages.
  • The substrate of a catalytic system may fulfill an important role in supporting the catalytic material and may be capable of withstanding some extremely arduous conditions. Operating temperatures may be in excess of 1000° C. and the substrate may also be exposed to fast moving, corrosive exhaust gases, rapid changes in temperature and pressure, and external factors such as shocks and vibration.
  • A major problem with manufacturing of catalyst systems may be the presence of corrosion in the catalyst systems. Formulations of catalysts systems may include at least a substrate, a washcoat and an overcoat. There may be many alloys employed as substrates for catalyst systems, which may include corrosive metals such as iron, and chromium, among others. Additionally, washcoat and overcoat, within catalyst systems, may include elements that may also contribute in the formation of corrosion.
  • For the aforementioned reasons, there is a need for a process for manufacturing catalysts systems that may allow the prevention of formation or the conversion of materials, such as hexavalent chromate compounds, within substrates, washcoats or overcoats of catalyst systems that may contribute in the formation of corrosion, therefore allowing a better performance of the catalyst systems.
  • SUMMARY
  • The present disclosure may provide a process that may be enabled to prevent formation of hexavalent chromium compounds which may cause corrosion in zero platinum group metal (ZPGM) catalyst systems.
  • According to embodiments in present disclosure, compositions of ZPGM catalyst systems may include any suitable combination of a metallic substrate, a washcoat, and an overcoat. Washcoat, and/or an overcoat may include ZPGM metal catalyst such as copper (Cu), cerium (Ce), silver (Ag), and other metal combinations. Catalyst samples with metallic substrate of varied geometry and cells per square inch (CPSI) may be prepared using any suitable synthesis method as known in current art.
  • In one embodiment, disclosed ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat.
  • Disclosed ZPGM catalyst system may be manufactured by employing known in the art co-milling procedures for WC preparation and known in the art co-precipitation procedures for OC preparation. Suitable deposition methods may be employed in order to deposit WC on metallic substrate as well as OC on WC material. Subsequently, known in the art drying and firing treatments may be applied. Aging treatments may also be applied on disclosed ZPGM catalyst systems, at the beginning of aging treatment as the temperature of ZPGM catalyst system reaches about 600° C., formation hexavalent chromium (Cr6+) in the form of chromic acid vapor from metallic substrate may take place. Chromic acid vapor is a toxic compound, and thus undesirable. Then, as aging treatment reaches about 650° C. to 700° C., reaction between chromic acid and metallic zero-PGM metal, such as Ag, may take place and Cr6+, in the form of silver chromate, may be formed. Silver chromate is pinkish-red, thus a pinkish red corrosion may be observed on the surface of substrate edge.
  • Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system. Thermal decomposition process may include aging ZPGM catalyst system at about 1100° C., in the presence of air and under dry conditions. The duration may take place from 3 hours to 6 hours.
  • An embodiment of the disclosed process may include a reducing agent, such as hydrogen (H2), carbon monoxide (CO), or ammonia (NH3), among others, that may be present in exhaust conditions, at temperatures of about 400° C. or higher, which may allow the conversion of hexavalent chromium compounds, in the form of silver chromate into trivalent chromium compounds in the form of chromate oxide. When such conversion takes place, a metallic catalyst, such as silver, may also be produced.
  • Employing the disclosed manufacturing process may allow the production of ZPGM catalyst systems without corrosion causing hexavalent chromium compound, therefore ZPGM catalyst systems exhibiting high activity and enhanced performance may be produced.
  • The disclosed manufacturing process may allow production of ZPGM catalyst system without corrosion which may cause hexavalent chromium compound. The disclosed manufacturing process may also provide ZPGM catalyst systems which may exhibit high activity and enhanced performance.
  • Numerous other aspects, features, and advantages of the present disclosure may be made apparent from the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Non-limiting embodiments of the present disclosure are described by way of example with reference to the accompanying figures which are schematic and are not intended to be drawn to scale. Unless indicated as representing the background art, the figures represent aspects of the disclosure.
  • FIG. 1 is a flowchart of manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 2 is a flowchart of second manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 3 depicts summary of reactions that may take place during manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • FIG. 4 depicts summary of reactions that may take place during second manufacturing process for ZPGM catalyst systems, according to an embodiment.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, which are not to scale or to proportion, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings and claims, are not meant to be limiting. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the present disclosure.
  • Definitions
  • As used here, the following terms may have the following definitions:
  • “Catalyst system” may refer to a system of at least two layers including at least one substrate, a washcoat, and/or an overcoat.
  • “Substrate” may refer to any material of any shape or configuration that yields a sufficient surface area for depositing a washcoat and/or overcoat.
  • “Washcoat (WC)” may refer to at least one coating including at least one oxide solid that may be deposited on a substrate.
  • “Overcoat (OC)” may refer to at least one coating that may be deposited on at least one washcoat layer.
  • “Catalyst” may refer to one or more materials that may be of use in the conversion of one or more other materials.
  • “Zero platinum group (ZPGM) catalyst” may refer to a catalyst completely or substantially free of platinum group metals.
  • “Platinum group metals” may refer to, platinum, palladium, ruthenium, iridium, osmium, and rhodium.
  • “Carrier material oxide (CMO)” may refer to materials used for providing a surface for at least one catalyst.
  • “Oxygen storage material (OSM)” may refer to a material able to take up oxygen from oxygen rich streams and able to release oxygen to oxygen deficient streams.
  • “Treating,” “treated,” or “treatment” may refer to drying, firing, heating, evaporating, calcining, or mixtures thereof.
  • “Edge” may refer to the connection of substrate lip and substrate matrix within catalyst systems.
  • “Co-precipitation” may refer to the carrying down by a precipitate of substances normally soluble under the conditions employed.
  • “Milling” may refer to the operation of breaking a solid material into a desired grain or particle size.
  • “Calcination” may refer to a thermal treatment process applied to solid materials, in presence of air, to bring about a thermal decomposition, phase transition, or removal of a volatile fraction at temperatures below the melting point of the solid materials.
  • “Conversion” may refer to the chemical alteration of at least one material into one or more other materials.
  • DESCRIPTION OF THE DRAWINGS
  • Various example embodiments of the present disclosure are described more fully with reference to the accompanying drawings in which some example embodiments of the present disclosure are shown. Illustrative embodiments of the present disclosure are disclosed here. However, specific structural and functional details disclosed here are merely representative for purposes of describing example embodiments of the present disclosure. This disclosure however, may be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth in the present disclosure.
  • Process for manufacturing zero platinum group metal (ZPGM) catalyst systems that may allow the prevention of formation or the conversion of materials, such as hexavalent chromate compounds, within metallic substrate, washcoat (WC) or overcoat (OC) of catalyst systems that may contribute in the formation of corrosion, is disclosed.
  • ZPGM Catalyst System Configuration and Composition
  • Disclosed ZPGM catalyst systems may include a metallic substrate, a WC, and an OC.
  • Metallic Substrates
  • Metallic substrates may be in the form of beads or pellets or of any suitable form. The beads or pellets may be formed from any suitable material such as alumina, silica alumina, silica, titania, mixtures thereof, or any suitable material. If substrate is a metal honeycomb, the metal may be a heat-resistant base metal alloy, particularly an alloy in which iron is a substantial or major component. The surface of the metal substrate may be oxidized at temperatures higher than 1000° C. to improve the corrosion resistance of the alloy by forming an oxide layer on the surface of the alloy.
  • Metallic substrate may be a monolithic carrier having a plurality of fine, parallel flow passages extending through the monolith. The passages may be of any suitable cross-sectional shape and/or size. The passages may be trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, or circular, although other shapes may be suitable. The monolith may contain from about 9 to about 1,200 or more gas inlet openings or passages per square inch of cross section, although fewer passages may be used. Metallic substrate may be used with different dimension and cell density (CPSI ).
  • WC Material Composition
  • According to an embodiment of the present disclosure, washcoat composition may include at least one ZPGM transition metal catalyst and a carrier material oxide. ZPGM transition metal catalyst may include scandium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, niobium, molybdenum, silver, cadmium, tantalum, tungsten, and gallium. Most suitable ZPGM transition metal may be silver. The total amount of silver may be of about 1% w/w to about 20% w/w of the total catalyst weight; most suitable amount may be of about 5% w/w to 8% w/w. Carrier material oxide, within washcoat, may include alumina (Al2O3) or lanthanum doped alumina.
  • OC Material Composition
  • Overcoat composition may include at least one ZPGM transition metal such as copper oxide, ceria, at least one carrier material oxides, and at least one oxygen storage material (OSM), which may be a mixture of cerium (Ce), zirconium (Zr), neodymium (Nd), and praseodymium (Pr). The copper (Cu) and Ce in overcoat may be present in about 5% w/w to about 50% w/w or from about 10% w/w to about 16% w/w of Cu; and about 12% w/w to about 20% w/w of Ce. Carrier material oxides, within overcoat, may include aluminum oxide, doped aluminum oxide, spinel, delafossite, lyonsite, garnet, perovksite, pyrochlore, doped ceria, fluorite, zirconium oxide, doped zirconia, titanium oxide, tin oxide, silicon dioxide, zeolite, and mixtures thereof. Suitable carrier material oxide for the disclosed overcoat may include one or more selected from the group consisting of aluminum oxide (Al2O3) or doped aluminum oxide. The doped aluminum oxide in overcoat may include one or more selected from the group consisting of lanthanum, yttrium, lanthanides and mixtures thereof. The amount of doped lanthanum in alumina may vary from 0% w/w (i.e., pure aluminum oxide) to 10% w/w of lanthanum oxide. Other embodiments may include pure alumina (Al2O3) as Carrier material oxides. Carrier material oxides and OSM included in overcoat may be present in a ratio of about 60% w/w to about 40% w/w.
  • Manufacturing Process for ZPGM Catalyst Systems
  • A ZPGM catalyst system including a metallic substrate, a WC and an OC may be prepared.
  • FIG. 1 is a flowchart of manufacturing process 100 for ZPGM catalyst systems in the present disclosure which may include an aging process at about 1100° C. for producing a ZPGM catalyst system.
  • In order to start production of disclosed ZPGM catalyst system, WC may be prepared. Preparation of WC may be achieved at room temperature. WC may be prepared by milling powder forms including WC materials in any suitable mill, such as vertical or horizontal mills. WC materials may undergo a mixing step 102 with water or any suitable organic solvent. Suitable organic solvents may include ethanol, and diethyl ether, carbon tetrachloride, and trichloroethylene, among others. Powder WC materials may include ZPGM transition metal catalyst precursors, such as silver nitrate; and Carrier material oxide (CMOs), such as alumina based binder, as previously described.
  • Subsequently, mixed WC materials may undergo a milling step 104 in order to be milled into smaller particle sizes during a period of time from about 10 minutes to about 10 hours, depending on the batch size, kind of material, and particle size desired. According to embodiments in the present disclosure WC particle size of the WC slurry may be of about 4 μm to about 10 μm in order to get uniform distribution of WC particles. The pH of WC slurry may be adjusted to a desired value by adjusting the rheology of the aqueous WC slurry adding acid or base solutions or various salts or organic compounds, such as, acetic acid, among others. WC slurry may have a pH of about 4 to about 5. After milling step 104, WC slurry may undergo a slurry aging 106 step at room temperature for a period of time of about 24 hours under room conditions and continued stirring.
  • Then in WC deposition step 108, WC, in the form of aqueous slurry, may be deposited on a suitable metallic substrate employing vacuum dosing and coating systems and may be subsequently treated. A plurality of deposition methods may be employed, such as placing, adhering, curing, coating, spraying, dipping, painting, or any known process for coating a film on at least one metallic substrate. If the metallic substrate is a monolithic carrier with parallel flow passages, WC may be formed on the walls of the passages. Various capacities of WC loadings in the present disclosure may be coated on the metallic substrate. The WC loading may vary from 60 g/L to 200 g/L.
  • After WC has been deposited on the metallic substrate, according to embodiments in the present disclosure WC may undergo a first drying and firing step 110. For drying the WC, air knife drying systems may be employed. Firing (heat treatment) may be performed using commercially-available firing (calcination) systems. Calcination may take from about 2 hours to about 6 hours, preferably about 4 hours, and at a temperature of about 300° C. to about 600° C., preferably about 550° C. After WC is treated and cooled at room temperature, OC deposition 112 may take place, where OC may be deposited on WC.
  • The OC may be prepared by co-precipitation synthesis method. Preparation may begin by mixing the appropriate amount of Cu and Ce salts, such as nitrate, acetate or chloride solutions, where the suitable Cu loadings may include loadings in a range as previously described. Subsequently, the Cu—Ce solution may be mixed with the slurry of CMO support. Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na2CO3 solution, and ammonium hydroxide (NH4OH) solution. The pH of OC slurry may be adjusted within range of 5.0 to 6.0 by adjusting the rheology of the aqueous OC slurry adding acid or base solutions or various salts or organic compounds, such as, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol, and other suitable compounds. The OC slurry may be aged for a period of time of about 12 to 24 hours under continues stirring at room temperature. Precipitation may be formed over slurry including at least one suitable CMO, or any number of additional suitable CMOs, and may include one or more suitable OSMs as previously described.
  • After precipitation, in OC deposition 112 step, OC slurry may be deposited on WC by employing suitable deposition techniques such as vacuum dosing, among others. The OC loading may vary from 60 g/L to 200 g/L. OC may then undergo a second drying and firing step 114 employing suitable heat treatment techniques employing firing (calcination) systems or any other suitable treatment techniques. OC, WC, and metallic substrate may be treated for about 2 hours to about 6 hours, preferably about 4 hours, at a temperature of about 300° C. to about 600° C., preferably about 550° C., in the presence of air.
  • Following second drying and firing step 114, an aging at 1100° C. 116 step, in the presence of air, for about 4 hours, may be applied and ZPGM catalyst system without corrosion 118 may be obtained. No red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed; therefore no hexavalent chromium compounds is included in the ZPGM catalyst system without corrosion 118.
  • In another embodiment, a ZPGM catalyst system without corrosion 118, may also be manufactured employing a reducing agent that may convert hexavalent chromium compounds to trivalent chromium compounds, therefore preventing corrosion formation on disclosed ZPGM catalyst systems.
  • FIG. 2 is a flowchart of second manufacturing process 200 for ZPGM catalyst systems in the present disclosure where a reducing agent may be included for producing ZPGM catalyst system without corrosion 118.
  • In order to start production of disclosed ZPGM catalyst system, WC may be prepared. Preparation of WC may be achieved at room temperature. WC may be prepared by milling powder forms including WC materials in any suitable mill, such as vertical or horizontal mills. WC materials may undergo a mixing step 102 with water or any suitable organic solvent. Suitable organic solvents may include ethanol, and diethyl ether, carbon tetrachloride, and trichloroethylene, among others. Powder WC materials may include ZPGM transition metal catalyst precursors, such as silver nitrate; and Carrier material oxide (CMOs), such as alumina based binder, as previously described.
  • Subsequently, mixed WC materials may undergo a milling step 104 in order to be milled into smaller particle sizes during a period of time from about 10 minutes to about 10 hours, depending on the batch size, kind of material, and particle size desired. According to embodiments in the present disclosure WC particle size of the WC slurry may be of about 4 μm to about 10 μm in order to get uniform distribution of WC particles. The pH of WC slurry may be adjusted to a desired value by adjusting the rheology of the aqueous WC slurry adding acid or base solutions or various salts or organic compounds, such as, acetic acid, among others. WC slurry may have a pH of about 4 to about 5. After milling step 104, WC slurry may undergo a slurry aging 106 step at room temperature for a period of time of about 24 hours under room conditions and continued stirring.
  • Then in WC deposition step 108, WC, in the form of aqueous slurry, may be deposited on a suitable metallic substrate employing vacuum dosing and coating systems and may be subsequently treated. A plurality of deposition methods may be employed, such as placing, adhering, curing, coating, spraying, dipping, painting, or any known process for coating a film on at least one metallic substrate. If the metallic substrate is a monolithic carrier with parallel flow passages, WC may be formed on the walls of the passages. Various capacities of WC loadings in the present disclosure may be coated on the metallic substrate. The WC loading may vary from 60 g/L to 200 g/L.
  • After WC has been deposited on the metallic substrate, according to embodiments in the present disclosure WC may undergo a first drying and firing step 110. For drying the WC, air knife drying systems may be employed. Firing (heat treatment) may be performed using commercially-available firing (calcination) systems. Calcination may take from about 2 hours to about 6 hours, preferably about 4 hours, and at a temperature of about 300° C. to about 600° C., preferably about 550° C. After WC is treated and cooled at room temperature, OC deposition 112 may take place, where OC may be deposited on WC.
  • The OC may be prepared by co-precipitation synthesis method. Preparation may begin by mixing the appropriate amount of Cu and Ce salts, such as nitrate, acetate or chloride solutions, where the suitable Cu loadings may include loadings in a range as previously described. Subsequently, the Cu-Ce solution may be mixed with the slurry of CMO support. Co-precipitation of the OC may include the addition of appropriate amount of one or more of NaOH solution, Na2CO3 solution, and ammonium hydroxide (NH4OH) solution. The pH of OC slurry may be adjusted within range of 5.0 to 6.0 by adjusting the rheology of the aqueous OC slurry adding acid or base solutions or various salts or organic compounds, such as, ammonium hydroxide, aluminum hydroxide, acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, ammonium citrate, glycerol, commercial polymers such as polyethylene glycol, polyvinyl alcohol, and other suitable compounds. The OC slurry may be aged for a period of time of about 12 to 24 hours under continues stirring at room temperature. Precipitation may be formed over slurry including at least one suitable CMO, or any number of additional suitable CMOs, and may include one or more suitable OSMs as previously described.
  • After precipitation, in OC deposition 112 step, OC slurry may be deposited on WC by employing suitable deposition techniques such as vacuum dosing, among others. The OC loading may vary from 60 g/L to 200 g/L. OC may then undergo a second drying and firing step 114 employing suitable heat treatment techniques employing firing (calcination) systems or any other suitable treatment techniques. OC, WC, and metallic substrate may be treated for about 2 hours to about 6 hours, preferably about 4 hours, at a temperature of about 300° C. to about 600° C., preferably about 550° C., in the presence of air.
  • Following second drying and firing step 114, an aging at 900° C. 202 process, in the presence of air, may be applied and ZPGM catalyst system with corrosion 204 may be obtained. A red color on the surface of substrate edge within ZPGM catalyst system with corrosion 204 may be observed; therefore, hexavalent chromium compounds may be included in ZPGM catalyst system without corrosion 118.
  • In order to prevent or eliminate corrosion material that includes hexavalent chromium compounds, a reducing agent that may be present in exhaust conditions, may be included in the manufacturing process, therefore hexavalent chromium compounds may react with reducing agent forming trivalent chromium compounds and metallic catalyst, such as silver. Reducing agent may include hydrogen (H2), carbon monoxide (CO), and ammonia (NH3), among others. After ZPGM catalyst system with corrosion 204 exposes to reduction at 400° C. 206 with a reducing agent, ZPGM catalyst system with corrosion 204 may turn to a blue-green color showing that, hexavalent chromium compound may not be included in ZPGM catalyst system without corrosion 118 formed.
  • Therefore, disclosed ZPGM catalyst system with corrosion 204, aged at 900° C. that includes hexavalent chromium compounds may no longer include hexavalent chromium compounds after treating under reducing condition.
  • Process Reaction Summary
  • FIG. 3 depicts summary of reactions 300 that may take place during manufacturing process 100 for ZPGM catalyst systems. During first drying and firing step 110, at about 500° C., decomposition of silver nitrate 302 to metallic silver may take place, obtaining ZPGM catalyst in WC. After first drying and firing step 110, no red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed, showing no hexavalent chromium compound is formed. At the beginning of aging at 1100° C. 116 step, as ZPGM catalyst system without corrosion 118 reaches about 600° C., formation hexavalent chromium (Cr6+) in the form of chromic acid vapor 304 may take place. Chromic acid vapor 304 is a toxic compound. Chromic acid vapor 304 may be formed because chromium may be released from substrate alloy (Fe—Cr). Then, as aging at 1100° C. 116 step reaches about 650° C. to 700° C., reaction between chromic acid and metallic silver may take place and Cr6+, in the form of silver chromate 306, may be formed. Silver chromate 306 is pinkish-red, thus a pinkish red corrosion may be observed on the surface of substrate edge. During aging at 1100° C. 116 step, when temperature reaches about 1000° C., thermal decomposition of silver chromate 308, may take place, therefore Cr6+ may be converted into trivalent chromium (Cr3+), in the form of chromium oxide and metallic silver may also be obtained. After aging at 1100° C. 116 step, no red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed, because there is no presence of Cr6+. Therefore, manufacturing process 100 may allow the manufacturing of ZPGM catalyst system without corrosion 118, in which hexavalent chromium compounds corrosion causing may be converted into trivalent chromium compounds, which is not toxic.
  • FIG. 4 depicts summary of reactions 400 that may take place during second manufacturing process 200 for ZPGM catalyst systems. During first drying and firing step 110, at about 500° C., decomposition of silver nitrate 302 to metallic silver may take place, obtaining ZPGM catalyst in WC. After first drying and firing step 110, no red color on the surface of substrate edge within ZPGM catalyst system without corrosion 118 may be observed, showing no hexavalent chromium is formed. At the beginning of aging at 900° C. 202 process, as ZPGM catalyst system without corrosion 118 reaches about 600° C., formation hexavalent chromium (Cr6+) in the form of chromic acid vapor 304 may take place. Chromic acid vapor 304 is a toxic compound. Chromic acid vapor 304 may be formed because chromium may be release from substrate alloy (Fe—Cr). As aging at 900° C. 202 process reaches about 650° C. to 700° C., reaction between chromic acid and metallic silver may take place and Cr6+, in the form of silver chromate 306, may be formed. Silver chromate 306 is pinkish-red, thus a pinkish red corrosion may be observed on the surface of substrate edge. During aging at 900° C. 202 process, when temperature reaches about 900° C. a red color on the surface of substrate edge within ZPGM catalyst system with corrosion 204 may be observed, showing the presence of Cr6+. Then, when ZPGM catalyst system with corrosion 204 exposes to reduction at 400° C. 206 with a reducing agent such as H2 (at temperatures of about 400° C. or higher), reduction of silver chromate 402 may take place. In reduction of silver chromate 402, silver chromate 306 may react with a reducing agent, such as H2, among others, and form metallic silver with chromium oxide (trivalent chromium). This may show that no hexavalent chromium compound is included in ZPGM catalyst system without corrosion 118, therefore corrosion causing hexavalent chromium compounds may be decomposed by the reducing agent employed. Therefore, second manufacturing process 200 may allow the manufacturing of ZPGM catalyst system without corrosion 118, in which hexavalent chromium compounds corrosion causing may be converted into trivalent chromium compounds, which is not toxic.
  • While various aspects and embodiments have been disclosed, other aspects and embodiments may be contemplated. The various aspects and embodiments disclosed here are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (15)

What is claimed is:
1. A method for reducing corrosion of a catalytic system, comprising:
providing a catalyst system, comprising:
a substrate; and
a washcoat suitable for deposition on the substrate, comprising at least one first oxide solid selected from the group consisting of a first carrier material oxide, at least one first catalyst, and a mixture thereof;
wherein the washcoat is aged; and
providing an exhaust stream having one selected from the group consisting of hydrogen, carbon monoxide, ammonia and combinations thereof.
2. The method according to claim 1, wherein aging is by heating to about 1100° C.
3. The method according to claim 2, wherein the heating may continue for about 3 hours to about 6 hours.
4. The method according to claim 2, wherein the heating occurs in the presence of one selected from the group consisting of hydrogen, carbon monoxide, ammonia, and combinations thereof.
5. The method according to claim 1, wherein at least one hexavalent chromium compound is reduced.
6. The method according to claim 1, wherein aging is by heating to about 900° C.
7. The method according to claim 6, wherein the heating may continue for about 3 hours to about 6 hours.
8. The method according to claim 6, wherein the heating occurs in the presence of one selected from the group consisting of hydrogen, carbon monoxide, ammonia, and combinations thereof.
9. The method according to claim 1, wherein the washcoat is at least partially prepared by co-milling.
10. The method according to claim 1, wherein the washcoat is heated to about 550° C. for about 4 hours.
11. The method according to claim 1, wherein the substrate about 100 cells per square inch.
12. The method according to claim 1, wherein the substrate comprises metal.
13. The method according to claim 1, wherein at least one first catalyst is substantially free of platinum group metals.
14. The method according to claim 1, wherein at least one first catalyst comprises at least one selected from the group consisting of copper, cerium, silver, and combinations thereof.
15. The method according to claim 1, wherein the substrate comprises one selected from the group consisting of iron, chromium, and combinations thereof.
US14/607,486 2013-07-12 2015-01-28 Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems Abandoned US20150148220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/607,486 US20150148220A1 (en) 2013-07-12 2015-01-28 Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/940,990 US8969228B2 (en) 2013-07-12 2013-07-12 Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US14/607,486 US20150148220A1 (en) 2013-07-12 2015-01-28 Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/940,990 Continuation US8969228B2 (en) 2013-07-12 2013-07-12 Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems

Publications (1)

Publication Number Publication Date
US20150148220A1 true US20150148220A1 (en) 2015-05-28

Family

ID=52277249

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/940,990 Expired - Fee Related US8969228B2 (en) 2013-07-12 2013-07-12 Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US14/607,486 Abandoned US20150148220A1 (en) 2013-07-12 2015-01-28 Process for Elimination of Hexavalent Chromium Compounds on Metallic Substrates within Zero-PGM Catalyst Systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/940,990 Expired - Fee Related US8969228B2 (en) 2013-07-12 2013-07-12 Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems

Country Status (2)

Country Link
US (2) US8969228B2 (en)
WO (1) WO2015006767A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9475004B2 (en) 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Rhodium-iron catalysts
US9486784B2 (en) 2013-10-16 2016-11-08 Clean Diesel Technologies, Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969228B2 (en) * 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US10738256B1 (en) 2017-12-22 2020-08-11 TerSol, LLC Fuel additive systems, compositions, and methods
EP4223803A3 (en) 2018-09-17 2023-11-08 Chevron Phillips Chemical Company LP Modified supported chromium catalysts and ethylene-based polymers produced therefrom
US11396485B2 (en) 2019-09-16 2022-07-26 Chevron Phillips Chemical Company Lp Chromium-based catalysts and processes for converting alkanes into higher and lower aliphatic hydrocarbons
CN114401936A (en) 2019-09-16 2022-04-26 切弗朗菲利浦化学公司 Chromium-catalyzed production of alcohols from hydrocarbons
CN116490268A (en) 2020-09-14 2023-07-25 切弗朗菲利浦化学公司 Alcohol and carbonyl compounds production from hydrocarbons by transition metal catalysis
US11814343B2 (en) 2021-06-08 2023-11-14 Chevron Phillips Chemical Company Lp Chromium-catalyzed production of alcohols from hydrocarbons in the presence of oxygen
CN116603516A (en) * 2022-02-09 2023-08-18 国家能源投资集团有限责任公司 Catalyst system and method for aromatizing light hydrocarbon, hydrogenation method of carbon dioxide and method for prolonging service life of catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
US8969228B2 (en) * 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1038773A (en) * 1963-04-02 1966-08-10 Ass Chem Co Improvements relating to the production of chromic oxide
US4297150A (en) * 1979-07-07 1981-10-27 The British Petroleum Company Limited Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity
US4331631A (en) * 1979-11-28 1982-05-25 General Motors Corporation Enhanced oxide whisker growth on peeled Al-containing stainless steel foil
US4686155A (en) * 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
DE8717392U1 (en) * 1987-03-16 1989-05-18 Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar Catalyst carrier body
JP3091246B2 (en) * 1990-04-03 2000-09-25 日本碍子株式会社 Heat-resistant metallic monolith and method for producing the same
DE10306647A1 (en) * 2003-02-18 2004-09-02 Forschungszentrum Jülich GmbH Manufacturing process for a protective layer for chromium oxide-forming substrates exposed to high temperatures
US7875250B2 (en) * 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same
US7129194B2 (en) * 2004-09-23 2006-10-31 Corning Incorporated Catalyst system with improved corrosion resistance
EP1866088A2 (en) * 2005-02-28 2007-12-19 Catalytic Solutions, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
DE102005019000A1 (en) * 2005-04-22 2006-10-26 Degussa Ag Catalytically coated support, process for its preparation and thus equipped reactor and its use
DE102007042618A1 (en) * 2007-09-07 2009-03-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Process for producing an oxide layer on a metallic foil, foil with oxide layer and honeycomb body produced therefrom
US8716165B2 (en) * 2008-04-30 2014-05-06 Corning Incorporated Catalysts on substrates and methods for providing the same
US7951281B2 (en) * 2008-06-04 2011-05-31 Corning Incorporated Methods for diminishing or preventing the deposition of a metal oxide on an electrode surface
US20100081563A1 (en) * 2008-09-26 2010-04-01 Andrew Edgar-Beltran Adhesion and coating integrity of washcoats and overcoats

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
US8969228B2 (en) * 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9486784B2 (en) 2013-10-16 2016-11-08 Clean Diesel Technologies, Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9555400B2 (en) 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9475004B2 (en) 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Rhodium-iron catalysts
US9475005B2 (en) 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Three-way catalyst systems including Fe-activated Rh and Ba-Pd material compositions
US9579604B2 (en) 2014-06-06 2017-02-28 Clean Diesel Technologies, Inc. Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters

Also Published As

Publication number Publication date
US8969228B2 (en) 2015-03-03
WO2015006767A1 (en) 2015-01-15
US20150017082A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US8969228B2 (en) Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US9259716B2 (en) Oxidation catalyst systems compositions and methods thereof
US8858903B2 (en) Methods for oxidation and two-way and three-way ZPGM catalyst systems and apparatus comprising same
JP6732766B2 (en) Rhodium-containing catalyst for automobile exhaust gas treatment
US20150018204A1 (en) Minimizing Washcoat Adhesion Loss of Zero-PGM Catalyst Coated on Metallic Substrate
JP4513372B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst
US20150018202A1 (en) Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate
WO2016039747A1 (en) Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US20140357479A1 (en) Variations for Synthesizing Zero Platinum Group Metal Catalyst Systems
US6051529A (en) Ceric oxide washcoat
US20150005157A1 (en) Optimization of Zero-PGM Catalyst Systems on Metallic Substrates
WO2014145775A1 (en) Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
WO2006095557A1 (en) Catalyst composition
EP0946289A1 (en) Ceric oxide washcoat
US20090264283A1 (en) Stabilized Iridium and Ruthenium Catalysts
EP2729248B1 (en) Nox purification catalyst and method of producing the same
JP7336053B2 (en) Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst
JP4700648B2 (en) Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas
CN109937088B (en) Catalyst for exhaust gas purification and method for exhaust gas purification
US20090263300A1 (en) Stabilized Iridium and Ruthenium Catalysts
EP3153225B1 (en) Exhaust gas-purifying catalyst
JP2008155071A (en) Exhaust gas purifying catalyst
JP6611623B2 (en) Exhaust gas purification catalyst
EP4260938A1 (en) Method for preparing nox storage-reduction catalyst article comprising ruthenium composite, and exhaust treatment system comprising same
EP4414067A1 (en) Transition metal incorporated alumina for improved three way catalysts

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLEAN DIESEL TECHNOLOGIES, INC. (CDTI), CALIFORNIA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:NAZARPOOR, ZAHRA;REEL/FRAME:039082/0986

Effective date: 20160427

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION