US20150106959A1 - Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase - Google Patents
Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase Download PDFInfo
- Publication number
- US20150106959A1 US20150106959A1 US14/281,464 US201414281464A US2015106959A1 US 20150106959 A1 US20150106959 A1 US 20150106959A1 US 201414281464 A US201414281464 A US 201414281464A US 2015106959 A1 US2015106959 A1 US 2015106959A1
- Authority
- US
- United States
- Prior art keywords
- cells
- alpha
- gene
- cell
- porcine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 54
- 108060003306 Galactosyltransferase Proteins 0.000 title claims abstract description 13
- 102000030902 Galactosyltransferase Human genes 0.000 title claims abstract description 10
- 241001465754 Metazoa Species 0.000 title abstract description 66
- 210000000056 organ Anatomy 0.000 abstract description 49
- 238000002689 xenotransplantation Methods 0.000 abstract description 27
- 210000004027 cell Anatomy 0.000 description 328
- 108090000623 proteins and genes Proteins 0.000 description 201
- 108700028369 Alleles Proteins 0.000 description 99
- 230000035772 mutation Effects 0.000 description 83
- 238000000034 method Methods 0.000 description 75
- 241000282887 Suidae Species 0.000 description 66
- 239000013598 vector Substances 0.000 description 52
- 230000008685 targeting Effects 0.000 description 50
- 210000000287 oocyte Anatomy 0.000 description 43
- 101710182532 Toxin a Proteins 0.000 description 42
- 108020004414 DNA Proteins 0.000 description 41
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 41
- 241000282898 Sus scrofa Species 0.000 description 39
- 210000001519 tissue Anatomy 0.000 description 36
- 210000002950 fibroblast Anatomy 0.000 description 30
- 230000002068 genetic effect Effects 0.000 description 29
- 238000004519 manufacturing process Methods 0.000 description 28
- 238000012546 transfer Methods 0.000 description 27
- QIGJYVCQYDKYDW-SDOYDPJRSA-N alpha-D-galactosyl-(1->3)-D-galactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-SDOYDPJRSA-N 0.000 description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 26
- 238000004458 analytical method Methods 0.000 description 20
- 210000001671 embryonic stem cell Anatomy 0.000 description 20
- 238000002744 homologous recombination Methods 0.000 description 20
- 230000006801 homologous recombination Effects 0.000 description 20
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 19
- 230000027455 binding Effects 0.000 description 19
- 210000003754 fetus Anatomy 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 18
- 241000699670 Mus sp. Species 0.000 description 18
- 238000002054 transplantation Methods 0.000 description 18
- 108090001090 Lectins Proteins 0.000 description 17
- 102000004856 Lectins Human genes 0.000 description 17
- 239000002523 lectin Substances 0.000 description 17
- 210000002919 epithelial cell Anatomy 0.000 description 16
- 230000001605 fetal effect Effects 0.000 description 16
- 239000005090 green fluorescent protein Substances 0.000 description 16
- 210000001161 mammalian embryo Anatomy 0.000 description 15
- 239000003550 marker Substances 0.000 description 15
- 230000000295 complement effect Effects 0.000 description 14
- 208000035475 disorder Diseases 0.000 description 14
- 230000035935 pregnancy Effects 0.000 description 14
- 238000012217 deletion Methods 0.000 description 13
- 230000037430 deletion Effects 0.000 description 13
- 230000010354 integration Effects 0.000 description 13
- 201000010099 disease Diseases 0.000 description 12
- 102000034287 fluorescent proteins Human genes 0.000 description 12
- 108091006047 fluorescent proteins Proteins 0.000 description 12
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 210000002459 blastocyst Anatomy 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 238000009395 breeding Methods 0.000 description 10
- 230000001488 breeding effect Effects 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 241000193163 Clostridioides difficile Species 0.000 description 9
- NNISLDGFPWIBDF-MPRBLYSKSA-N alpha-D-Gal-(1->3)-beta-D-Gal-(1->4)-D-GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)O1 NNISLDGFPWIBDF-MPRBLYSKSA-N 0.000 description 9
- 230000004075 alteration Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000003471 mutagenic agent Substances 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- 238000010187 selection method Methods 0.000 description 9
- 241000282412 Homo Species 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 101000718529 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Alpha-galactosidase Proteins 0.000 description 8
- 230000007812 deficiency Effects 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 210000004940 nucleus Anatomy 0.000 description 8
- 210000000496 pancreas Anatomy 0.000 description 8
- 210000000130 stem cell Anatomy 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 241000283690 Bos taurus Species 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000012894 fetal calf serum Substances 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 7
- 230000035800 maturation Effects 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 6
- 206010010356 Congenital anomaly Diseases 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000002105 Southern blotting Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 210000002889 endothelial cell Anatomy 0.000 description 6
- 230000007159 enucleation Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000010363 gene targeting Methods 0.000 description 6
- 210000002216 heart Anatomy 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 210000002510 keratinocyte Anatomy 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000031864 metaphase Effects 0.000 description 6
- 238000002703 mutagenesis Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 210000001082 somatic cell Anatomy 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 241000282693 Cercopithecidae Species 0.000 description 5
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 5
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 101150099983 GT gene Proteins 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000004413 cardiac myocyte Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 210000001612 chondrocyte Anatomy 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 210000002257 embryonic structure Anatomy 0.000 description 5
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 5
- 238000012239 gene modification Methods 0.000 description 5
- 230000005017 genetic modification Effects 0.000 description 5
- 235000013617 genetically modified food Nutrition 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 210000001616 monocyte Anatomy 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 210000000663 muscle cell Anatomy 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- 231100000699 Bacterial toxin Toxicity 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 4
- 241001045988 Neogene Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000010222 PCR analysis Methods 0.000 description 4
- 239000000688 bacterial toxin Substances 0.000 description 4
- 210000000601 blood cell Anatomy 0.000 description 4
- 150000001720 carbohydrates Chemical group 0.000 description 4
- 230000006037 cell lysis Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 210000001771 cumulus cell Anatomy 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000007850 degeneration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 231100000573 exposure to toxins Toxicity 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 210000004153 islets of langerhan Anatomy 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 101150091879 neo gene Proteins 0.000 description 4
- 210000000440 neutrophil Anatomy 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 210000001685 thyroid gland Anatomy 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 210000003932 urinary bladder Anatomy 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 3
- 241001550206 Colla Species 0.000 description 3
- 206010010099 Combined immunodeficiency Diseases 0.000 description 3
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 3
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- FUSGACRLAFQQRL-UHFFFAOYSA-N N-Ethyl-N-nitrosourea Chemical compound CCN(N=O)C(N)=O FUSGACRLAFQQRL-UHFFFAOYSA-N 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 3
- 102000004357 Transferases Human genes 0.000 description 3
- 108090000992 Transferases Proteins 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000001772 blood platelet Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000024203 complement activation Effects 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 210000001339 epidermal cell Anatomy 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 210000002503 granulosa cell Anatomy 0.000 description 3
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000011813 knockout mouse model Methods 0.000 description 3
- 231100000518 lethal Toxicity 0.000 description 3
- 230000001665 lethal effect Effects 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 210000002752 melanocyte Anatomy 0.000 description 3
- 210000005087 mononuclear cell Anatomy 0.000 description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 3
- 231100000707 mutagenic chemical Toxicity 0.000 description 3
- 210000003061 neural cell Anatomy 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 230000001817 pituitary effect Effects 0.000 description 3
- 210000004508 polar body Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229940050570 regu-mate Drugs 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 230000002381 testicular Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000003708 urethra Anatomy 0.000 description 3
- 210000004291 uterus Anatomy 0.000 description 3
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 108010000700 Acetolactate synthase Proteins 0.000 description 2
- 241000242764 Aequorea victoria Species 0.000 description 2
- 201000010000 Agranulocytosis Diseases 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 208000032467 Aplastic anaemia Diseases 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 2
- 208000015879 Cerebellar disease Diseases 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 101000870529 Enterobacteria phage T4 DNA alpha-glucosyltransferase Proteins 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 241000219774 Griffonia Species 0.000 description 2
- 241001272567 Hominoidea Species 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 2
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 2
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 2
- 208000035752 Live birth Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 208000016285 Movement disease Diseases 0.000 description 2
- BVIAOQMSVZHOJM-UHFFFAOYSA-N N(6),N(6)-dimethyladenine Chemical compound CN(C)C1=NC=NC2=C1N=CN2 BVIAOQMSVZHOJM-UHFFFAOYSA-N 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000003954 Spinal Muscular Atrophies of Childhood Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 101150003725 TK gene Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 230000001919 adrenal effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 125000003169 alpha-Gal epitope group Chemical group [C@H]1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)O[C@@H]1[C@H]([C@@H](O[C@@H]([C@@H]1O)CO)O[C@H]1[C@@H]([C@H](C(O[C@@H]1CO)*)NC(C)=O)O)O 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 210000002403 aortic endothelial cell Anatomy 0.000 description 2
- 210000003433 aortic smooth muscle cell Anatomy 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 208000018300 basal ganglia disease Diseases 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000003443 bladder cell Anatomy 0.000 description 2
- 210000002449 bone cell Anatomy 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000018486 cell cycle phase Effects 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002962 chemical mutagen Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 210000000254 ciliated cell Anatomy 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 208000015806 constitutional megaloblastic anemia with severe neurologic disease Diseases 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 108010082025 cyan fluorescent protein Proteins 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- -1 e.g. Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000002308 embryonic cell Anatomy 0.000 description 2
- 210000005168 endometrial cell Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000009088 enzymatic function Effects 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 230000012173 estrus Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 210000004186 follicle cell Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 210000002175 goblet cell Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 210000002768 hair cell Anatomy 0.000 description 2
- 210000002064 heart cell Anatomy 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 210000002660 insulin-secreting cell Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 239000002555 ionophore Substances 0.000 description 2
- 230000000236 ionophoric effect Effects 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 210000001865 kupffer cell Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000002332 leydig cell Anatomy 0.000 description 2
- 210000005265 lung cell Anatomy 0.000 description 2
- 210000002751 lymph Anatomy 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 210000004216 mammary stem cell Anatomy 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 2
- 210000003550 mucous cell Anatomy 0.000 description 2
- 206010028537 myelofibrosis Diseases 0.000 description 2
- 210000004457 myocytus nodalis Anatomy 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 108010058731 nopaline synthase Proteins 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 210000002997 osteoclast Anatomy 0.000 description 2
- 210000004409 osteocyte Anatomy 0.000 description 2
- 230000002188 osteogenic effect Effects 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 210000003101 oviduct Anatomy 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- 235000020004 porter Nutrition 0.000 description 2
- 208000003476 primary myelofibrosis Diseases 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 210000005267 prostate cell Anatomy 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 108010054624 red fluorescent protein Proteins 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 210000000717 sertoli cell Anatomy 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 238000010374 somatic cell nuclear transfer Methods 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 210000004085 squamous epithelial cell Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 210000004500 stellate cell Anatomy 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 210000002105 tongue Anatomy 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 238000010396 two-hybrid screening Methods 0.000 description 2
- 150000003668 tyrosines Chemical class 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 210000001113 umbilicus Anatomy 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- ODDPRQJTYDIWJU-UHFFFAOYSA-N 3'-beta-D-galactopyranosyl-lactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(OC(O)C(O)C2O)CO)OC(CO)C1O ODDPRQJTYDIWJU-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- 208000029483 Acquired immunodeficiency Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000321096 Adenoides Species 0.000 description 1
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 101710098620 Alpha-1,2-fucosyltransferase Proteins 0.000 description 1
- VWAUPFMBXBWEQY-ANULTFPQSA-N Altrenogest Chemical compound C1CC(=O)C=C2CC[C@@H]([C@H]3[C@@](C)([C@](CC3)(O)CC=C)C=C3)C3=C21 VWAUPFMBXBWEQY-ANULTFPQSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010002965 Aplasia pure red cell Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102100024775 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase Human genes 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010006500 Brucellosis Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 206010007748 Cataract cortical Diseases 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 208000027205 Congenital disease Diseases 0.000 description 1
- 208000029767 Congenital, Hereditary, and Neonatal Diseases and Abnormalities Diseases 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 101710112752 Cytotoxin Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000011724 DNA Repair Enzymes Human genes 0.000 description 1
- 108010076804 DNA Restriction Enzymes Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Divinylene sulfide Natural products C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- 102000015554 Dopamine receptor Human genes 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001331845 Equus asinus x caballus Species 0.000 description 1
- 101710178665 Error-prone DNA polymerase Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000026019 Fanconi renotubular syndrome Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 208000024412 Friedreich ataxia Diseases 0.000 description 1
- 108010019236 Fucosyltransferases Proteins 0.000 description 1
- 102000006471 Fucosyltransferases Human genes 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 101150042360 GGTA1 gene Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000058061 Glucose Transporter Type 4 Human genes 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 208000001825 Hereditary elliptocytosis Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000856513 Homo sapiens Inactive N-acetyllactosaminide alpha-1,3-galactosyltransferase Proteins 0.000 description 1
- 101150003028 Hprt1 gene Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 208000000269 Hyperkinesis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102100025509 Inactive N-acetyllactosaminide alpha-1,3-galactosyltransferase Human genes 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 206010052210 Infantile genetic agranulocytosis Diseases 0.000 description 1
- 241000283160 Inia Species 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 208000006264 Korsakoff syndrome Diseases 0.000 description 1
- 208000012565 Kostmann syndrome Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 208000008955 Mucolipidoses Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000034702 Multiple pregnancies Diseases 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 208000003926 Myelitis Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 101000911993 Ovis aries CD59 glycoprotein Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 102100036899 Parathyroid hormone-related protein Human genes 0.000 description 1
- 101710123753 Parathyroid hormone-related protein Proteins 0.000 description 1
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 1
- 208000016012 Phenotypic abnormality Diseases 0.000 description 1
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 241000255969 Pieris brassicae Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000031951 Primary immunodeficiency Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 101710150114 Protein rep Proteins 0.000 description 1
- 208000032225 Proximal spinal muscular atrophy type 1 Diseases 0.000 description 1
- 208000033526 Proximal spinal muscular atrophy type 3 Diseases 0.000 description 1
- 108700017801 Purine Nucleoside Phosphorylase Deficiency Proteins 0.000 description 1
- 108700014121 Pyruvate Kinase Deficiency of Red Cells Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 101710152114 Replication protein Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 108091006300 SLC2A4 Proteins 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 206010054979 Secondary immunodeficiency Diseases 0.000 description 1
- 102000003838 Sialyltransferases Human genes 0.000 description 1
- 108090000141 Sialyltransferases Proteins 0.000 description 1
- 208000000859 Sickle cell trait Diseases 0.000 description 1
- 208000010112 Spinocerebellar Degenerations Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 206010043390 Thalassaemia alpha Diseases 0.000 description 1
- 206010044688 Trisomy 21 Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 108700009899 Type 1 Spherocytosis Proteins 0.000 description 1
- HSCJRCZFDFQWRP-ABVWGUQPSA-N UDP-alpha-D-galactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-ABVWGUQPSA-N 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 201000008485 Wernicke-Korsakoff syndrome Diseases 0.000 description 1
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000018254 acute transverse myelitis Diseases 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 201000009628 adenosine deaminase deficiency Diseases 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 201000006288 alpha thalassemia Diseases 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 229960000971 altrenogest Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 210000002226 anterior horn cell Anatomy 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 108010087667 beta-1,4-mannosyl-glycoprotein beta-1,4-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 210000004952 blastocoel Anatomy 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000016532 chronic granulomatous disease Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000030944 contact inhibition Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 208000029511 cortical cataract Diseases 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 208000017004 dementia pugilistica Diseases 0.000 description 1
- 230000003210 demyelinating effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000004002 dopaminergic cell Anatomy 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- 101150106093 gpt gene Proteins 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 230000003483 hypokinetic effect Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 101150034439 iniC gene Proteins 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000009027 insemination Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 201000004815 juvenile spinal muscular atrophy Diseases 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 210000004558 lewy body Anatomy 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000005135 methemoglobinemia Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 201000000585 muscular atrophy Diseases 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 210000000282 nail Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000002988 nephrogenic effect Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 238000010449 nuclear transplantation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 208000021090 palsy Diseases 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000007908 penetration of oocytes Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 210000001187 pylorus Anatomy 0.000 description 1
- 229940076788 pyruvate Drugs 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 201000007153 reticular dysgenesis Diseases 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 208000027390 severe congenital neutropenia 3 Diseases 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 208000009174 transverse myelitis Diseases 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2465—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on alpha-galactose-glycoside bonds, e.g. alpha-galactosidase (3.2.1.22)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/108—Swine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
- A01K2267/025—Animal producing cells or organs for transplantation
Definitions
- the present invention are porcine animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack any expression of functional alpha 1,3 galactosyltransferase (alpha1,3GT).
- alpha1,3GT functional alpha 1,3 galactosyltransferase
- HAR hypereracute rejection
- glycoproteins that contain galactose alpha 1,3-galactose are found in large amounts on cells of other mammals, such as pigs.
- This differential distribution of the “alpha-1,3 GT epitope” and anti-Gal antibodies i.e., antibodies binding to glycoproteins and glycolipids bearing galactose alpha-1,3 galactose) in mammals is the result of an evolutionary process which selected for species with inactivated (i.e. mutated) alpha-1,3-galactosyltransferase in ancestral Old World primates and humans.
- humans are “natural knockouts” of alpha1,3GT.
- a direct outcome of this event is the rejection of xenografts, such as the rejection of pig organs transplanted into humans initially via HAR.
- mice have historically been the preferred model to study the effects of genetic modifications on mammalian physiology, for a number of reasons, not the least of which is that mouse embryonic stem cells have been available while porcine embryonic stem cells have not been available.
- Mice are ideal animals for basic research applications because they are relatively easy to handle, they reproduce rapidly, and they can be genetically manipulated at the molecular level.
- scientists use the mouse models to study the molecular pathologies of a variety of genetically based diseases, from colon cancer to mental retardation. Thousands of genetically modified mice have been created to date.
- a “Mouse Knockout and Mutation Database” has been created by BioMedNet to provide a comprehensive database of phenotypic and genotypic information on mouse knockouts and classical mutations (http://research.bmn.com/mkmd; Brandon et al Current Biology 5[7]:758-765 (1995); Brandon et al Current Biology 5[8]:873-881 (1995), this database provides information on over 3,000 unique genes, which have been targeted in the mouse genome to date.
- mice Based on this extensive experience with mice, it has been learned that transgenic technology has some significant limitations. Because of developmental defects, many genetically modified mice, especially null mice created by gene knock out technology die as embryos before the researcher has a chance to use the model for experimentation. Even if the mice survive, they can develop significantly altered phenotypes, which can render them severely disabled, deformed or debilitated (Pray, Leslie, The Engineer 16 [13]: 34 (2002); Smith, The Engineer 14[15]:32, (2000); Brandon et al Current Biology 5[6]:625-634 (1995); Brandon et al Current Biology 5[7]:758-765 (1995); Brandon et al Current Biology 5 [8]:873-881 (1995); http://research.bmn.com/mkmd.
- mice have been genetically modified to eliminate functional alpha-1,3-GT expression. Double-knockout alpha-1,3-GT mice have been produced. They are developmentally viable and have normal organs (Thall et al. J Biol Chem 270:21437-40 (1995); Tearle et al. Transplantation 61:13-19 (1996), see also U.S. Pat. No. 5,849,991). However, two phenotypic abnormalities in these mice were apparent. First, all mice develop dense cortical cataracts. Second, the elimination of both alleles of the alpha-1,3-GT gene significantly affected the development of the mice. The mating of mice heterozygous for the alpha-1,3-GT gene produced genotype ratios that deviated significantly from the predicted Mendelian 1:2:1 ratio (Tearle et al. Transplantation 61:13-19 (1996)).
- Pigs have a level of cell surface glycoproteins containing galactose alpha 1,3-galactose that is 100-1000 fold higher than found in mice. (Sharma et al. Transplantation 75:430-436 (2003); Galili et al. Transplantation 69:187-190 (2000)). Thus, alpha1,3-GT activity is more critical and more abundant in the pig than the mouse.
- This invention is the production of the first live pigs lacking any functional expression of alpha 1,3 galactosyltransferase.
- the subject of this invention was heralded in a full paper in Science magazine in 2003 (Phelps et al. (Science 299:411-414 (2003)) and widely reported in the press as a breakthrough in xenotransplantation.
- the present invention provides the complete inactivation of both alleles of the alpha 1,3 galactosyltransferase gene in pigs, thus overcoming this longstanding hurdle and making xenotransplantation a reality. Eliminating the expression of this gene, resulting in a lack of galactose alpha 1,3-galactose epitopes on the cell surface, represents the first and major step in eliminating hyperacute rejection in pig-to-human xenotransplantation therapy.
- the invention also provides organs, tissues, and cells derived from such porcine animals, which are useful for xenotransplantation.
- the alleles of the alpha-1,3-GT gene are rendered inactive, such that the resultant alpha-1,3-GT enzyme can no longer generate galactose alpha-1,3-galactose on the cell surface.
- the alpha-1,3-GT gene can be transcribed into RNA, but not translated into protein.
- the alpha-1,3-GT gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein.
- the alpha-1,3-GT gene can be inactivated in such a way that no transcription of the gene occurs.
- the alpha-1,3-GT gene can be transcribed and then translated into a nonfunctional protein.
- pigs that lack any expression of functional alpha-1,3-GT are useful for providing a clearer evaluation of approaches currently in development aimed at overcoming potential delayed and chronic rejection mechanisms in porcine xenotransplantation.
- porcine animals are provided in which at least one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event.
- porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event.
- the gene can be targeted via homologous recombination.
- the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene.
- disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring.
- the predicted frequency of occurrence of such a pig would be in the range of 10 ⁇ 10 to 10 ⁇ 12 , and has never been identified.
- another aspect of the invention is a homozygous alpha-1,3-GT knock out that has no antibiotic resistant or other selectable marker genes.
- this point mutation can occur via a genetic targeting event.
- this point mutation can be naturally occurring.
- mutations can be induced in the alpha-1,3-GT gene via a mutagenic agent.
- the point mutation can be a T-to-G mutation at the second base of exon 9 of the alpha-1,3-GT gene ( FIG. 2 ).
- at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive.
- pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT.
- pigs are provided that contain the T-to-G mutation at the second base of exon 9 in both alleles of the alpha-1,3-GT gene ( FIG. 2 ).
- Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a point mutation.
- a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9.
- a porcine animal in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 (see, for example, FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 ( FIG. 2 ).
- Targeting for example, can also be directed to exon 9, and or exons 4-8.
- one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- one allele is inactivated via a targeting construct directed to Exon 9 (see, for example, FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- a method to clone such pigs includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a porcine cell that lacks expression of functional alpha1,3GT, and implanting the nuclear transfer-derived embryo into a surrogate mother.
- the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene.
- the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele.
- the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene.
- the point mutation can be a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT wherein a male pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene, or vise versa.
- a selection method for determining whether porcine cells express galactose alpha-1,3-galactose on the cell surface.
- the selection procedure can be based on a bacterial toxin to select for cells that lack expression of galactose alpha1,3-galactose.
- the bacterial toxin, toxin A produced by Clostridium difficile can be used to select for such cells. Exposure to C. difficile toxin can cause rounding of cells that exhibit this epitope on their surface, releasing the cells from the plate matrix. Both targeted gene knockouts and mutations that disable enzyme function or expression can be detected using this selection method.
- Cells lacking cell surface expression of the galactose alpha 1,3-galactose, identified using Toxin A mediated selection described, or produced using standard methods of gene inactivation including gene targeting, can then be used to produce pigs that lack expression of functional alpha1,3GT.
- FIG. 1 is a graph depicting the relative lytic effects of complement on cells from fetuses 680B1-4.
- FIG. 2 depicts a short segment of the coding region of the alpha-1,3-GT gene (see GenBank Acc. No. L36152) in which the point mutation selected by Toxin A occurs. Upper sequence occurs in wild type; lower sequence shows the change due to the point mutation in the second allele.
- FIG. 3 is a representation of a 3-dimensional model of the UDP binding site of bovine alpha1,3GT.
- the aromatic ring of the tyrosine residue (foreground, white) can be seen in close proximity to the uracil base of UDP (grayscale).
- FIG. 4 is a photograph of homozygous, alpha-1,3-GT deficient cloned pigs produced by the methods of the invention, born on Jul. 25, 2002.
- FIG. 5 is a graph depicting Anti-alpha-1,3-gal IgM levels before and after injections of piglet islet-like cell clusters (ICC) in alpha-1,3-GT KO mice.
- ICC piglet islet-like cell clusters
- Each mouse received three serial ICC injections via i.p. (200-500 ICC per injection) over 4 days.
- All three recipients of wild-type (WT) piglet ICCs showed a significant elevation of anti-alpha 1,3Gal IgM titer and subsequent return to baseline 4 weeks after ICC implants.
- FIG. 6 is a diagram of the porcine alpha-1,3-GT locus, corresponding to alpha-1,3-GT genomic sequences that can be used as 5′ and 3′ arms in alpha1,3-GT knockout vectors, and the structure of the targeted locus after homologous recombination.
- the names of names and positions of the primers used for 3′PCR and long-range PCR are indicated by short arrows.
- the short bar indicates the probe used for alpha-1,3-GT Southern blot analysis.
- the predicted size of Southern bands with BstEII digestion for both the endogenous alpha-1,3-GT locus and the alpha-1,3-GT targeted locus is also indicated.
- the present invention provides the complete inactivation of both alleles of the alpha 1,3 galactosyltransferase gene in pigs, thus overcoming this longstanding hurdle and making xenotransplantation a reality. Eliminating the expression of this gene, resulting in a lack of galactose alpha 1,3-galactose on the cell surface, represents the first and major step in eliminating hyperacute rejection in pig-to-human xenotransplantation therapy.
- the invention also provides organs, tissues, and cells derived from such porcine, which are useful for xenotransplantation.
- the invention provides porcine organs, tissues and/or purified or substantially pure cells or cell lines obtained from pigs that lack any expression of functional alpha1,3GT.
- the invention provides organs or tissues that are useful for xenotransplantation.
- the invention provides cells or cell lines that are useful for xenotransplantation.
- animal as in “genetically modified (or altered) animal” is meant to include any non-human animal, particularly any non-human mammal, including but not limited to pigs, sheep, goats, cattle (bovine), deer, mules, horses, monkeys, dogs, cats, rats, mice, birds, chickens, reptiles, fish, and insects.
- genetically altered pigs and methods of production thereof are provided.
- an “organ” is an organized structure, which can be made up of one or more tissues.
- An “organ” performs one or more specific biological functions. Organs include, without limitation, heart, liver, kidney, pancreas, lung, thyroid, and skin.
- tissue is an organized structure comprising cells and the intracellular substances surrounding them.
- the “tissue”, alone or in conjunction with other cells or tissues can perform one or more biological functions.
- porcine As used herein, the terms “porcine”, “porcine animal”, “pig” and “swine” are generic terms referring to the same type of animal without regard to gender, size, or breed.
- porcine animals are provided in which one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event. In another aspect of the present invention, porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event.
- the gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- the alleles of the alpha-1,3-GT gene are rendered inactive, such that the resultant alpha-1,3-GT enzyme can no longer generate galactose alpha1,3-galactose on the cell surface.
- the alpha-1,3-GT gene can be transcribed into RNA, but not translated into protein.
- the alpha-1,3-GT gene can be transcribed in a trancated form. Such a truncated RNA can either not be translated or can be translated into a nonfunctional protein.
- the alpha-1,3-GT gene can be inactivated in such a way that no transcription of the gene occurs.
- the alpha-1,3-GT gene can be transcribed and then translated into a nonfunctional protein.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring. It was surprisingly discovered that while attempting to knockout the second allele of the alpha-1,3-GT gene through a genetic targeting event, a point mutation was identified, which prevented the second allele from producing functional alpha1,3GT.
- the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- one allele of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- both alleles of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- this point mutation can occur via a genetic targeting event.
- this point mutation can be naturally occurring.
- mutations can be induced in the alpha-1,3-GT gene via a mutagenic agent.
- the point mutation can be a T-to-G mutation at the second base of exon 9 of the alpha-1,3-GT gene ( FIG. 2 ).
- Pigs carrying a naturally occurring point mutation in the alpha-1,3-GT gene allow for the production of alpha1,3GT-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use.
- at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive.
- pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT.
- pigs are provided that contain the T-to-G mutation at the second base of exon 9 in both alleles of the alpha-1,3-GT gene ( FIG. 2 ).
- Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a mutation.
- a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9.
- a porcine animal in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 (see, for example, FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9.
- Porcine cells that can be genetically modified can be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal.
- organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal.
- porcine cells can be selected from the group consisting of, but not limited to, epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocyte
- embryonic stem cells can be used.
- An embryonic stem cell line can be employed or embryonic stem cells can be obtained freshly from a host, such as a porcine animal.
- the cells can be grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF).
- LIF leukemia inhibiting factor
- the porcine cells can be fibroblasts; in one specific embodiment, the porcine cells can be fetal fibroblasts.
- Fibroblast cells are a preferred somatic cell type because they can be obtained from developing fetuses and adult animals in large quantities. These cells can be easily propagated in vitro with a rapid doubling time and can be clonally propagated for use in gene targeting procedures.
- homologous recombination permits site-specific modifications in endogenous genes and thus novel alterations can be engineered into the genome.
- homologous recombination the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence.
- non-homologous (“random” or “illicit”) integration the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, at one of a large number of potential locations.
- studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).
- the present invention uses homologous recombination to inactivate the alpha-1,3-GT gene in cells, such as the porcine cells described above.
- the DNA can comprise at least a portion of the gene(s) at the particular locus with introduction of an alteration into at least one, optionally both copies, of the native gene(s), so as to prevent expression of functional alpha1,3GT.
- the alteration can be an insertion, deletion, replacement or combination thereof.
- the cells having a single unmutated copy of the target gene are amplified and can be subjected to a second targeting step, where the alteration can be the same or different from the first alteration, usually different, and where a deletion, or replacement is involved, can be overlapping at least a portion of the alteration originally introduced.
- a targeting vector with the same arms of homology, but containing a different mammalian selectable markers can be used.
- the resulting transformants are screened for the absence of a functional target antigen and the DNA of the cell can be further screened to ensure the absence of a wild-type target gene.
- homozygosity as to a phenotype can be achieved by breeding hosts heterozygous for the mutation.
- Modification of a targeted locus of a cell can be produced by introducing DNA into the cells, where the DNA has homology to the target locus and includes a marker gene, allowing for selection of cells comprising the integrated construct.
- the homologous DNA in the target vector will recombine with the chromosomal DNA at the target locus.
- the marker gene can be flanked on both sides by homologous DNA sequences, a 3′ recombination arm and a 5′ recombination arm.
- constructs can be prepared for homologous recombination at a target locus.
- the construct can include at least 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous with the target locus.
- the sequence can include any contiguous sequence of the porcine alpha-1,3-GT gene (see, for example, GenBank Acc. No. L36152, WO0130992 to The University of Pittsburgh of the Commonwealth System of Higher Education; WO 01/123541 to Alexion, Inc.).
- target DNA sequences such as, for example, the size of the target locus, availability of sequences, relative efficiency of double cross-over events at the target locus and the similarity of the target sequence with other sequences.
- the targeting DNA can include a sequence in which DNA substantially isogenic flanks the desired sequence modifications with a corresponding target sequence in the genome to be modified.
- the substantially isogenic sequence can be at least about 95%, 97-98%, 99.0-99.5%, 99.6-99.9%, or 100% identical to the corresponding target sequence (except for the desired sequence modifications).
- the targeting DNA and the target DNA preferably can share stretches of DNA at least about 75, 150 or 500 base pairs that are 100% identical. Accordingly, targeting DNA can be derived from cells closely related to the cell line being targeted; or the targeting DNA can be derived from cells of the same cell line or animal as the cells being targeted.
- the DNA constructs can be designed to modify the endogenous, target alpha1,3GT.
- the homologous sequence for targeting the construct can have one or more deletions, insertions, substitutions or combinations thereof.
- the alteration can be the insertion of a selectable marker gene fused in reading frame with the upstream sequence of the target gene.
- Suitable selectable marker genes include, but are not limited to: genes conferring the ability to grow on certain media substrates, such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See, for example, Song, K-Y., et al. Proc. Nat'l Acad. Sci.
- selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP).
- genes conferring resistance to compounds such as antibiotics
- genes conferring the ability to grow on selected substrates genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP).
- eGFP enhanced green fluorescent protein
- antibiotic resistance genes such as the neomycin resistance gene (neo) (Southern, P., and P. Berg, J. Mol. Appl. Genet.
- hygromycin resistance gene (Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990)).
- selectable marker genes include: acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof.
- AHAS acetohydroxyacid synthase
- AP alkaline phosphatase
- LacZ beta galactosidase
- GUS beta glucoronidase
- CAT chloramphenicol acetyltransferase
- GFP green fluorescent protein
- RFP red fluorescent protein
- YFP yellow fluorescent protein
- CFP cyan fluorescent protein
- Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline.
- Combinations of selectable markers can also be used.
- a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is homologous to the alpha-1,3-GT gene.
- the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics.
- those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into the alpha-1,3-GT gene but the tk gene has been lost because it was located outside the region of the double crossover.
- Deletions can be at least about 50 bp, more usually at least about 100 bp, and generally not more than about 20 kbp, where the deletion can normally include at least a portion of the coding region including a portion of or one or more exons, a portion of or one or more introns, and can or can not include a portion of the flanking non-coding regions, particularly the 5′-non-coding region (transcriptional regulatory region).
- the homologous region can extend beyond the coding region into the 5′-non-coding region or alternatively into the 3′-non-coding region.
- Insertions can generally not exceed 10 kbp, usually not exceed 5 kbp, generally being at least 50 bp, more usually at least 200 bp.
- the region(s) of homology can include mutations, where mutations can further inactivate the target gene, in providing for a frame shift, or changing a key amino acid, or the mutation can correct a dysfunctional allele, etc.
- the mutation can be a subtle change, not exceeding about 5% of the homologous flanking sequences.
- the marker gene can be inserted into an intron or an exon.
- the construct can be prepared in accordance with methods known in the art, various fragments can be brought together, introduced into appropriate vectors, cloned, analyzed and then manipulated further until the desired construct has been achieved. Various modifications can be made to the sequence, to allow for restriction analysis, excision, identification of probes, etc. Silent mutations can be introduced, as desired. At various stages, restriction analysis, sequencing, amplification with the polymerase chain reaction, primer repair, in vitro mutagenesis, etc. can be employed.
- the construct can be prepared using a bacterial vector, including a prokaryotic replication system, e.g. an origin recognizable by E. coli , at each stage the construct can be cloned and analyzed.
- a marker the same as or different from the marker to be used for insertion, can be employed, which can be removed prior to introduction into the target cell.
- the vector containing the construct Once the vector containing the construct has been completed, it can be further manipulated, such as by deletion of the bacterial sequences, linearization, introducing a short deletion in the homologous sequence. After final manipulation, the construct can be introduced into the cell.
- the present invention further includes recombinant constructs containing sequences of the alpha-1,3-GT gene.
- the constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation.
- the construct can also include regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example.
- Bacterial Bacterial: pBs, pQE-9 (Qiagen), phagescript, PsiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia).
- Eukaryotic pWLneo, pSv2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPv, pMSG, pSVL (Pharmiacia), viral origin vectors (M13 vectors, bacterial phage 1 vectors, adenovirus vectors, and retrovirus vectors), high, low and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8).
- vectors include prokaryotic expression vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Corp.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99 A, pKK223-3, the pGEX vectors, pEZZ18, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Invitrogen, Corp.) and variants and derivatives thereof.
- prokaryotic expression vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C,
- vectors include eukaryotic expression vectors such as pFastBac, pFastBacHT, pFastBacDUAL, pSFV, and pTet-Splice (Invitrogen), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3′SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A, B, and C, pVL1392, pBlueBacIII, pCDM8,
- Additional vectors that can be used include: pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YAC's (yeast artificial chromosomes), BAC's (bacterial artificial chromosomes), P1 ( Escherichia coli phage), pQE70, pQE60, pQE9 (quagan), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (Invitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Invitrogen), pTrx
- Two-hybrid and reverse two-hybrid vectors can also be used, for example, pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGADI-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof. Any other plasmids and vectors may be used as long as they are replicable and viable in the host.
- Techniques which can be used to allow the DNA construct entry into the host cell include calcium phosphate/DNA co precipitation, microinjection of DNA into the nucleus, electroporation, bacterial protoplast fusion with intact cells, transfection, or any other technique known by one skilled in the art.
- the DNA can be single or double stranded, linear or circular, relaxed or supercoiled DNA.
- Keown et al. Methods in Enzymology Vol. 185, pp. 527-537 (1990).
- heterozygous knockout cells can be produced by transfection of primary porcine fetal fibroblasts with a knockout vector containing alpha-1,3-GT sequence isolated from isogenic DNA.
- the 5′ arm can be 4.9 kb and be comprised of a large fragment of intron 8 and the 5′ end of exon 9.
- the 3′ arm can be and be comprised of exon 9 sequence.
- the vector can incorporate a promoter trap strategy, using, for example, IRES (internal ribosome entry site) to initiate translation of the Neor gene (see, for example, FIG. 6 ).
- the cells can then be grown in appropriately-selected medium to identify cells providing the appropriate integration.
- the presence of the selectable marker gene inserted into the alpha-1,3-GT gene establishes the integration of the target construct into the host genome.
- Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, etc to analyze the DNA in order to establish whether homologous or non-homologous recombination occurred. This can be determined by employing probes for the insert and then sequencing the 5′ and 3′ regions flanking the insert for the presence of the alpha-1,3-GT gene extending beyond the flanking regions of the construct or identifying the presence of a deletion, when such deletion is introduced.
- Primers can also be used which are complementary to a sequence within the construct and complementary to a sequence outside the construct and at the target locus. In this way, one can only obtain DNA duplexes having both of the primers present in the complementary chains if homologous recombination has occurred. By demonstrating the presence of the primer sequences or the expected size sequence, the occurrence of homologous recombination is supported.
- the polymerase chain reaction used for screening homologous recombination events is known in the art, see, for example, Kim and Smithies, Nucleic Acids Res. 16:8887-8903, 1988; and Joyner et al., Nature 338:153-156, 1989.
- the specific combination of a mutant polyoma enhancer and a thymidine kinase promoter to drive the neomycin gene has been shown to be active in both embryonic stem cells and EC cells by Thomas and Capecchi, supra, 1987; Nicholas and Berg (1983) in Teratocarcinoma Stem Cell, eds. Siver, Martin and Strikland (Cold Spring Harbor Lab., Cold Spring Harbor, N.Y. (pp. 469-497); and Linney and Donerly, Cell 35:693-699, 1983.
- the cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele.
- Homozygosity in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it can be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.
- the methods of the invention involve the intentional introduction of a mutation via a mutagenic agent.
- mutagenic agents known in the art and suitable for use in the present invention include, but are not limited to, chemical mutagens (e.g., DNA-intercalating or DNA-binding chemicals such as N-ethyl-N-nitrosourea (ENU), ethylmethanesulphonate (EMS), mustard gas, ICR191 and the like; see, e.g., E. C. Friedberg, G. C. Walker, W. Siede, DNA Repair and Mutagenesis, ASM Press, Washington D.C.
- chemical mutagens e.g., DNA-intercalating or DNA-binding chemicals such as N-ethyl-N-nitrosourea (ENU), ethylmethanesulphonate (EMS), mustard gas, ICR191 and the like; see, e.g., E. C. Friedberg, G. C. Walker, W. Siede, DNA
- cells in culture can be exposed to one of these agents, and any mutation resulting in the depletion of galactose alpha1,3-galactose on the cell surface can be selected, for example, via exposure to toxin A.
- physical mutagens e.g., UV radiation, radiation, x-rays
- biochemical mutagens e.g., restriction enzymes, DNA repair mutagens, DNA repair inhibitors, and error-prone DNA polymerases and replication proteins
- transposon insertion e.g., cell in culture can be exposed to one of these agents, and any mutation resulting in the depletion of galactose alpha1,3-galactose on the cell surface can be selected, for example, via exposure to toxin A.
- Preferred doses of chemical mutagens for inducing mutations in cells are known in the art, or can be readily determined by the ordinarily skilled artisan using assays of mutagenesis known in the art.
- Chemical mutagenesis of cells in vitro can be achieved by treating the cells with various doses of the mutagenic agent and/or controlling the time of exposure to the agent. By titrating the mutagenic agent exposure and/or dose, it is possible to carry out the optimal degree of mutagenesis for the intended purpose, thereby mutating a desired number of genes in each target cell.
- useful doses of ENU can be 0.1-0.4 mg/ml for approximately 1-2 hours.
- useful doses of EMS can be 0.1-1 mg/ml for approximately 10-30 hours.
- lower and higher doses and exposure times can also be used to achieve the desired mutation frequency.
- a selection method for determining whether porcine cells lack expression of functional alpha-1,3-GT.
- the selection procedure can be based on a bacterial toxin to select for cells that lack expression of functional alpha1,3GT.
- the bacterial toxin, toxin A produced by Clostridium difficile can be used to select for cells lacking the cell surface epitope galactose alpha1,3-galactose. Exposure to C. difficile toxin can cause rounding of cells that exhibit this epitope on their surface, releasing the cells from the plate matrix. Both targeted gene knockouts and mutations that disable enzyme function or expression can be detected using this selection method.
- Cells lacking cell surface expression of the galactose alpha 1,3-galactose epitope, identified using Toxin A mediated selection described, or produced using standard methods of gene inactivation including gene targeting, can then be used to produce pigs, in which both alleles of the alpha 1,3 GT gene are inactive.
- the selection method can detect the depletion of the alpha 1,3GT epitope directly, whether due to targeted knockout of the alpha 1,3GT gene by homologous recombination, or a mutation in the gene that results in a nonfunctioning or nonexpressed enzyme. Selection via antibiotic resistance has been used most commonly for screening (see above).
- This method can detect the presence of the resistance gene on the targeting vector, but does not directly indicate whether integration was a targeted recombination event or a random integration.
- Certain technology, such as Poly A and promoter trap technology increase the probability of targeted events, but again, do not give direct evidence that the desired phenotype, a cell deficient in gal alpha 1,3 gal epitopes on the cell surface, has been achieved.
- negative forms of selection can be used to select for targeted integration; in these cases, the gene for a factor lethal to the cells is inserted in such a way that only targeted events allow the cell to avoid death. Cells selected by these methods can then be assayed for gene disruption, vector integration and, finally, alpha 1,3gal epitope depletion. In these cases, since the selection is based on detection of targeting vector integration and not at the altered phenotype, only targeted knockouts, not point mutations, gene rearrangements or truncations or other such modifications can be detected.
- Toxin A a cytotoxin produced by the bacterium Clostridium difficile , specifically binds the terminal carbohydrate glactose alpha-1,3-galactose sequence gal alpha 1-3gal beta 1-4GlcNAc. Binding to this receptor mediates a cytotoxic effect on the cell, causing it to change morphology and, in some cases, to release from the plate matrix. Under controlled conditions, cells not carrying this marker are unaffected by the toxin. Thus, in one embodiment, to determine whether or not the alpha 1,3 gal epitope has been successfully eliminated via targeted knockout or gene mutation of the gal alpha-1,3-GT locus, cells that do not carry the epitope can be selected.
- Exposure to toxin A can be toxic for cells carrying the epitope, and promote selection for those cells in which the gene has been successfully inactivated.
- cells useful as nuclear donors for production of genetically altered animals e.g., pigs
- pigs that are knocked out or mutated in the gal alpha 1,3 locus are selected by exposure of cells to C. difficile toxin A.
- Toxin A one of two cytotoxins produced by Clostridium difficile , has a high binding affinity for the galactose alpha-1,3-galactose sequence gal alpha 1,3-gal beta 1,4GlcNAc found on the surface of a variety of cell types (Clark et al., Arch. Biochem. Biophys. 257 (1): 217-229, 1987). This carbohydrate seems to serve as a functional receptor for Toxin A, as cells displaying this epitope on their surface are more sensitive to the cytotoxic effect of toxin A than are cells lacking this receptor.
- Sensitive cells exposed to toxin A in culture exhibit cell rounding, probably due to actin depolymerization and resultant changes in cytoskeletal integrity (Kushnaryov et al., J. Biol. Chem. 263: 17755-17762 (1988) and Just et al., J. Clin. Invest. 95: 1026-1031,1995). These cells can be selectively removed from the culture, as they lift from the matrix and float in suspension, leaving unaffected cells firmly attached to the plate surface.
- toxin A Exposure of cells to toxin A.
- attached cells are exposed to toxin A as a component of cell culture media. After a fixed time of exposure, the media containing the toxin A and released toxin A-sensitive cells are removed, the plate washed, and the media, without toxin A, replenished. The exposure to toxin A is repeated over a period of days to remove attached toxin-sensitive cells from the plates, and allow insensitive cells to proliferate and expand.
- Purified toxin A can be used in the methods of the present invention (available commercially, see for example, Techlab Inc., Cat. #T3001, Blacksburg, Va.). Crude unpurified toxin A can also be used (available commercially, see for example, Techlab Inc. Cat. #T5000 or T3000, Blacksburg, Va.), which can require initial titering to determine effective dosage for selection.
- the selection procedure can be conducted using serum containing complement factors and natural antibodies to the gal alpha1,3gal epitope (see, for example, Koike et al., Xenotransplantation 4:147-153, 1997). Exposure to serum from a human or non-human primate that contains anti-Gal antibodies can cause cell lysis due to specific antibody binding and complement activation in cells that exhibit gal alpha 1,3 gal epitope. Therefore, cells deficient in alpha-1,3-GT will remain alive and thus can be selected.
- Porcine cells believed to lacking expression of functional alpha-1,3-GT can be further characterized. Such characterization can be accomplished by the following techniques, including, but not limited to: PCR analysis, Southern blot analysis, Northern blot analysis, specific lectin binding assays, and/or sequencing analysis.
- PCR analysis as described in the art (see, for example, Dai et al. Nature Biotechnology 20:431-455) can be used to determine the integration of targeting vectors.
- amplimers can originate in the antibiotic resistance gene and extend into a region outside the vector sequence.
- Southern analysis (see, for example, Dai et al. Nature Biotechnology 20:431-455) can also be used to characterize gross modifications in the locus, such as the integration of a targeting vector into the alpha 1,3GT locus.
- Northern analysis can be used to characterize the transcript produced from each of the alleles.
- GSL IB4 lectin from Griffonia (Bandeiraea) simplicifolia (Vector Labs)
- a lectin that specifically binds the carbohydrate moiety gal alpha 1,3 gal and FACS (fluorescent antibody cell sorting) analysis of binding can determine whether or not the alpha 1,3 gal epitope is present on the cells.
- FACS fluorescent antibody cell sorting
- sequencing analysis of the cDNA produced from the RNA transcript can also be used to determine the precise location of any mutations in the alpha 1,3GT allele.
- the present invention provides a method for producing viable pigs in which both alleles of the alpha-1,3-GT gene have been rendered inactive.
- the pigs are produced by cloning using a donor nucleus from a porcine cell in which both alleles of the alpha-1,3-GT gene have been inactivated.
- both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event.
- both alleles of the alpha-1,3-GT gene are inactivated due to the presence of a point mutation.
- one allele is inactivated by a genetic targeting event and the other allele is inactivated via a point mutation.
- one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- one allele is inactivated via a targeting construct directed to Exon 9 ( FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- a method to clone such pigs includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a porcine cell in which both alleles of the alpha-1,3-GT gene have been inactivated, and implanting the nuclear transfer-derived embryo into a surrogate mother.
- a method for producing viable pigs that lack any expression of functional alpha-1,3-GT by inactivating both alleles of the alpha-1,3-GT gene in embryonic stem cells, which can then be used to produce offspring.
- the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term.
- a pseudopregnant female capable of carrying the animal to term.
- embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals.
- embryonic stem cells either an embryonic stem cell line or freshly obtained stem cells can be used.
- the totipotent cells are embryonic stem (ES) cells.
- ES embryonic stem
- the isolation of ES cells from blastocysts, the establishing of ES cell lines and their subsequent cultivation are carried out by conventional methods as described, for example, by Doetchmann et al., J. Embryol. Exp. Morph. 87:27-45 (1985); Li et al., Cell 69:915-926 (1992); Robertson, E. J. “Tetracarcinomas and Embryonic Stem Cells: A Practical Approach,” ed. E. J. Robertson, IRL Press, Oxford, England (1987); Wurst and Joyner, “Gene Targeting: A Practical Approach,” ed. A. L.
- the totipotent cells are embryonic germ (EG) cells.
- Embryonic Germ cells are undifferentiated cells functionally equivalent to ES cells, that is they can be cultured and transfected in vitro, then contribute to somatic and germ cell lineages of a chimera (Stewart et al., Dev. Biol. 161:626-628 (1994)).
- EG cells are derived by culture of primordial germ cells, the progenitors of the gametes, with a combination of growth factors: leukemia inhibitory factor, steel factor and basic fibroblast growth factor (Matsui et al., Cell 70:841-847 (1992); Resnick et al., Nature 359:550-551 (1992)).
- the cultivation of EG cells can be carried out using methods described in the article by Donovan et al., “Transgenic Animals, Generation and Use,” Ed. L. M. Houdebine, Harwood Academic Publishers (1997), and in the original literature cited therein.
- Tetraploid blastocysts for use in the invention may be obtained by natural zygote production and development, or by known methods by electrofusion of two-cell embryos and subsequently cultured as described, for example, by James et al., Genet. Res. Camb. 60:185-194 (1992); Nagy and Rossant, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); or by Kubiak and Tarkowski, Exp. Cell Res. 157:561-566 (1985).
- the introduction of the ES cells or EG cells into the blastocysts can be carried out by any method known in the art.
- a suitable method for the purposes of the present invention is the microinjection method as described by Wang et al., EMBO J. 10:2437-2450 (1991).
- transgenic animals can be produced.
- the genetically modified embryonic stem cells can be injected into a blastocyst and then brought to term in a female host mammal in accordance with conventional techniques.
- Heterozygous progeny can then be screened for the presence of the alteration at the site of the target locus, using techniques such as PCR or Southern blotting. After mating with a wild-type host of the same species, the resulting chimeric progeny can then be cross-mated to achieve homozygous hosts.
- the cells After transforming embryonic stem cells with the targeting vector to alter the alpha-1,3-GT gene, the cells can be plated onto a feeder layer in an appropriate medium, e.g., fetal bovine serum enhanced DMEM. Cells containing the construct can be detected by employing a selective medium, and after sufficient time for colonies to grow, colonies can be picked and analyzed for the occurrence of homologous recombination. Polymerase chain reaction can be used, with primers within and without the construct sequence but at the target locus. Those colonies which show homologous recombination can then be used for embryo manipulating and blastocyst injection. Blastocysts can be obtained from superovulated females.
- an appropriate medium e.g., fetal bovine serum enhanced DMEM.
- the embryonic stem cells can then be trypsinized and the modified cells added to a droplet containing the blastocysts. At least one of the modified embryonic stem cells can be injected into the blastocoel of the blastocyst. After injection, at least one of the blastocysts can be returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. The blastocysts are selected for different parentage from the transformed ES cells. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected, and then genotyping can be conducted to probe for the presence of the modified alpha-1,3-GT gene.
- the present invention provides a method for cloning a pig lacking a functional alpha-1,3-GT gene via somatic cell nuclear transfer.
- the pig can be produced by a nuclear transfer process comprising the following steps: obtaining desired differentiated pig cells to be used as a source of donor nuclei; obtaining oocytes from a pig; enucleating said oocytes; transferring the desired differentiated cell or cell nucleus into the enucleated oocyte, e.g., by fusion or injection, to form NT units; activating the resultant NT unit; and transferring said cultured NT unit to a host pig such that the NT unit develops into a fetus.
- Nuclear transfer techniques or nuclear transplantation techniques are known in the art(Dai et al. Nature Biotechnology 20:251-255; Polejaeva et al Nature 407:86-90 (2000); Campbell et al, Theriogenology, 43:181 (1995); Collas et al, Mol. Report Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, and WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420).
- a donor cell nucleus which has been modified to alter the alpha-1,3-GT gene, is transferred to a recipient porcine oocyte.
- the use of this method is not restricted to a particular donor cell type.
- the donor cell can be as described herein, see also, for example, Wilmut et al Nature 385 810 (1997); Campbell et al Nature 380 64-66 (1996); Dai et al., Nature Biotechnology 20:251-255, 2002 or Cibelli et al Science 280 1256-1258 (1998). All cells of normal karyotype, including embryonic, fetal and adult somatic cells which can be used successfully in nuclear transfer can be employed. Fetal fibroblasts are a particularly useful class of donor cells.
- Donor cells can also be, but do not have to be, in culture and can be quiescent.
- Nuclear donor cells which are quiescent are cells which can be induced to enter quiescence or exist in a quiescent state in vivo.
- Prior art methods have also used embryonic cell types in cloning procedures (Campbell et al (Nature, 380:64-68, 1996) and Stice et al (Biol. Reprod., 20 54:100-110, 1996).
- Somatic nuclear donor cells may be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal.
- nuclear donor cells are selected from the group consisting of epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells or endothelial cells.
- the nuclear donor cell is an embryonic stem cell.
- fibroblast cells can be used as donor cells.
- the nuclear donor cells of the invention are germ cells of an animal. Any germ cell of an animal species in the embryonic, fetal, or adult stage may be used as a nuclear donor cell. In a suitable embodiment, the nuclear donor cell is an embryonic germ cell.
- Nuclear donor cells may be arrested in any phase of the cell cycle (G0, G1, G2, S, M) so as to ensure coordination with the acceptor cell. Any method known in the art may be used to manipulate the cell cycle phase. Methods to control the cell cycle phase include, but are not limited to, G0 quiescence induced by contact inhibition of cultured cells, G0 quiescence induced by removal of serum or other essential nutrient, G0 quiescence induced by senescence, G0 quiescence induced by addition of a specific growth factor; G0 or G1 quiescence induced by physical or chemical means such as heat shock, hyperbaric pressure or other treatment with a chemical, hormone, growth factor or other substance; S-phase control via treatment with a chemical agent which interferes with any point of the replication procedure; M-phase control via selection using fluorescence activated cell sorting, mitotic shake off, treatment with microtubule disrupting agents or any chemical which disrupts progression in mitosis (see also Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique
- oocytes Methods for isolation of oocytes are well known in the art. Essentially, this can comprise isolating oocytes from the ovaries or reproductive tract of a pig. A readily available source of pig oocytes is slaughterhouse materials. For the combination of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells can be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo.
- This process generally requires collecting immature (prophase I) oocytes from mammalian ovaries, e.g., bovine ovaries obtained at a slaughterhouse, and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. This period of time is known as the “maturation period”.
- the oocyte is obtained from a gilt.
- a “gilt” is a female pig that has never had offspring.
- the oocyte is obtained from a sow.
- a “sow” is a female pig that has previously produced offspring.
- a metaphase II stage oocyte can be the recipient oocyte, at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it does a fertilizing sperm.
- Metaphase II stage oocytes which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes can be collected surgically from either non-superovulated or superovulated porcine 35 to 48, or 39-41, hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.
- hCG human chorionic gonadotropin
- the oocytes can be enucleated. Prior to enucleation the oocytes can be removed and placed in appropriate medium, such as HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. The stripped oocytes can then be screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
- Enucleation can be performed by known methods, such as described in U.S. Pat. No. 4,994,384.
- metaphase II oocytes can be placed in either HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or can be placed in a suitable medium, for example an embryo culture medium such as CR1aa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16-18 hours later.
- Enucleation can be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm.
- the oocytes can then be screened to identify those of which have been successfully enucleated.
- One way to screen the oocytes is to stain the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then view the oocytes under ultraviolet irradiation for less than 10 seconds.
- the oocytes that have been successfully enucleated can then be placed in a suitable culture medium, for example, CR1aa plus 10% serum.
- a single mammalian cell of the same species as the enucleated oocyte can then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit.
- the mammalian cell and the enucleated oocyte can be used to produce NT units according to methods known in the art.
- the cells can be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Thus, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels can open between the two cells.
- thermodynamic instability Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. See, for example, U.S. Pat. No. 4,997,384 by Prather et al.
- electrofusion media can be used including, for example, sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inot. Symp. Monogr., 9, 19, 1969).
- the nucleus can be injected directly into the oocyte rather than using electroporation fusion. See, for example, Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994).
- the resultant fused NT units are then placed in a suitable medium until activation, for example, CR1 aa medium.
- activation can be effected shortly thereafter, for example less than 24 hours later, or about 4-9 hours later, or optimally 1-2 hours after fusion. In a preferred embodiments, activation occurs at least one hour post fusion and at 40-41 hours post maturation.
- the NT unit can be activated by known methods. Such methods include, for example, culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This can be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed. Alternatively, activation can be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock can be used to activate NT embryos after fusion. See, for example, U.S. Pat. No.
- activation can be effected by simultaneously or sequentially by increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins in the oocyte. This can generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore.
- divalent cations include the use of electric shock, treatment with ethanol and treatment with caged chelators.
- Phosphorylation can be reduced by known methods, for example, by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine.
- kinase inhibitors e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine.
- phosphorylation of cellular proteins can be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.
- the activated NT units can then be cultured in a suitable in vitro culture medium until the generation of cell colonies.
- Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which can be used for embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media, and, in one specific example, the activated NT units can be cultured in NCSU-23 medium for about 1-4 h at approximately 38.6° C. in a humidified atmosphere of 5% CO2.
- the cultured NT unit or units can be washed and then placed in a suitable media contained in well plates which preferably contain a suitable confluent feeder layer.
- Suitable feeder layers include, by way of example, fibroblasts and epithelial cells.
- the NT units are cultured on the feeder layer until the NT units reach a size suitable for transferring to a recipient female, or for obtaining cells which can be used to produce cell colonies.
- these NT units can be cultured until at least about 2 to 400 cells, about 4 to 128 cells, or at least about 50 cells.
- Activated NT units can then be transferred (embryo transfers) to the oviduct of an female pigs.
- the female pigs can be an estrus-synchronized recipient gilt.
- Crossbred gilts large white/Duroc/Landrace) (280-400 lbs) can be used.
- the gilts can be synchronized as recipient animals by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into the feed. Regu-Mate can be fed for 14 consecutive days.
- Regu-Mate can be fed for 14 consecutive days.
- One thousand units of Human Chorionic Gonadotropin hCG, Intervet America, Millsboro, Del.
- hCG Human Chorionic Gonadotropin
- Embryo transfers of the can then be performed about 22-26 h after the hCG injection.
- the pregnancy can be brought to term and result in the birth of live offspring.
- the pregnancy can be terminated early and embryonic cells can be harvested.
- the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT is provided by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene.
- the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele.
- the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene.
- the point mutation can be a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT wherein a male pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene.
- sexually mature animals produced from nuclear transfer from donor cells that carrying a double knockout in the alpha-1,3-GT gene can be bred and their offspring tested for the homozygous knockout. These homozygous knockout animals can then be bred to produce more animals.
- oocytes from a sexually mature double knockout animal can be in vitro fertilized using wild type sperm from two genetically diverse pig lines and the embryos implanted into suitable surrogates. Offspring from these matings can be tested for the presence of the knockout, for example, they can be tested by cDNA sequencing, PCR, toxin A sensitivity and/or lectin binding. Then, at sexual maturity, animals from each of these litters can be mated.
- pregnancies can be terminated early so that fetal fibroblasts can be isolated and further characterized phenotypically and/or genotypically. Fibroblasts that lack expression of the alpha-1,3-GT gene can then be used for nuclear transfer according to the methods described herein (see also Dai et al.) to produce multiple pregnancies and offspring carrying the desired double knockout.
- porcine animals are provided in which one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event. In another aspect of the present invention, porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event.
- the gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring. It was surprisingly discovered that while attempting to knockout the second allele of the alpha-1,3-GT gene through a genetic targeting event, a point mutation was identified, which rendered the second allele inactive.
- the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- one allele of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- both alleles of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation.
- this point mutation can occur via a genetic targeting event.
- this point mutation can be naturally occurring.
- the point mutation can be a T-to-G mutation at the second base of exon 9 of the alpha-1,3-GT gene ( FIG. 2 ).
- Pigs carrying a naturally occurring point mutation in the alpha-1,3-GT gene allow for the production of alpha1,3GT-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use.
- at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive.
- pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT.
- pigs are provided that contain the T-to-G mutation at the second base of exon 9 in both alleles of the alpha-1,3-GT gene ( FIG. 2 ).
- Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a naturally occurring point mutation.
- a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9.
- a porcine animal in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 ( FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9.
- the present invention provides, for the first time, viable porcine in which both alleles of the alpha 1,3 galactosyltransferase gene have been inactivated.
- the invention also provides organs, tissues, and cells derived from such porcine, which are useful for xenotransplantation.
- the invention provides porcine organs, tissues and/or purified or substantially pure cells or cell lines obtained from pigs that lack any expression of functional alpha1,3GT.
- the invention provides organs that are useful for xenotransplantation.
- Any porcine organ can be used, including, but not limited to: brain, heart, lungs, glands, brain, eye, stomach, spleen, pancreas, kidneys, liver, intestines, uterus, bladder, skin, hair, nails, ears, nose, mouth, lips, gums, teeth, tongue, salivary glands, tonsils, pharynx, esophagus, large intestine, small intestine, rectum, anus, pylorus, thyroid gland, thymus gland, suprarenal capsule, bones, cartilage, tendons, ligaments, skeletal muscles, smooth muscles, blood vessels, blood, spinal cord, trachea, ureters, urethra, hypothalamus, pituitary, adrenal glands, ovaries, oviducts, uterus, vagina, mammary glands, testes, seminal vesicles, penis, lymph, lymph nodes
- the invention provides tissues that are useful for xenotransplantation.
- Any porcine tissue can be used, including, but not limited to: epithelium, connective tissue, blood, bone, cartilage, muscle, nerve, adenoid, adipose, areolar, bone, brown adipose, cancellous, muscle, cartaginous, cavernous, chondroid, chromaffin, dartoic, elastic, epithelial, fatty, fibrohyaline, fibrous, Gamgee, gelatinous, granulation, gut-associated lymphoid, Haller's vascular, hard hemopoietic, indifferent, interstitial, investing, islet, lymphatic, lymphoid, mesenchymal, mesonephric, mucous connective, multilocular adipose, myeloid, nasion soft, nephrogenic, nodal, osseous, osteogenic, osteoid, periapical, reticular, reticular
- the invention provides cells and cell lines from porcine animals that lack expression of functional alpha1,3GT.
- these cells or cell lines can be used for xenotransplantation.
- Cells from any porcine tissue or organ can be used, including, but not limited to: epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, pancreatic insulin secreting cells, pancreatic alpha-2 cells, pancreatic beta cells, pancreatic alpha-1 cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells., hepatocytes, keratinocytes, umbilical vein endothelial
- pancreatic cells including, but not limited to, Islets of Langerhans cells, insulin secreting cells, alpha-2 cells, beta cells, alpha-1 cells from pigs that lack expression of functional alpha-1,3-GT are provided.
- Nonviable derivatives include tissues stripped of viable cells by enzymatic or chemical treatment these tissue derivatives can be further processed via crosslinking or other chemical treatments prior to use in transplantation.
- the derivatives include extracelluar matrix derived from a variety of tissues, including skin, urinary, bladder or organ submucosal tissues.
- tendons, joints and bones stripped of viable tissue to include heart valves and other nonviable tissues as medical devices are provided.
- the cells can be administered into a host in order in a wide variety of ways.
- Preferred modes of administration are parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrasternal, intra-articular, intra-synovial, intrathecal, intra-arterial, intracardiac, intramuscular, intranasal, subcutaneous, intraorbital, intracapsular, topical, transdermal patch, via rectal, vaginal or urethral administration including via suppository, percutaneous, nasal spray, surgical implant, internal surgical paint, infusion pump, or via catheter.
- the agent and carrier are administered in a slow release formulation such as a direct tissue injection or bolus, implant, microparticle, microsphere, nanoparticle or nanosphere.
- disorders that can be treated by infusion of the disclosed cells include, but are not limited to, diseases resulting from a failure of a dysfunction of normal blood cell production and maturation (i.e., aplastic anemia and hypoproliferative stem cell disorders); neoplastic, malignant diseases in the hematopoietic organs (e.g., leukemia and lymphomas); broad spectrum malignant solid tumors of non-hematopoietic origin; autoimmune conditions; and genetic disorders.
- Such disorders include, but are not limited to diseases resulting from a failure or dysfunction of normal blood cell production and maturation hyperproliferative stem cell disorders, including aplastic anemia, pancytopenia, agranulocytosis, thrombocytopenia, red cell aplasia, Blackfan-Diamond syndrome, due to drugs, radiation, or infection, idiopathic; hematopoietic malignancies including acute lymphoblastic (lymphocytic) leukemia, chronic lymphocytic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, acute malignant myelosclerosis, multiple myeloma, polycythemia vera, agnogenic myelometaplasia, Waldenstrom's macroglobulinemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma; immunosuppression in patients with malignant, solid tumors including malignant melanoma, carcinoma of the stomach, ovarian carcinoma, breast
- Neurodegenerative diseases include neurodegenerative diseases, hepatodegenerative diseases, nephrodegenerative disease, spinal cord injury, head trauma or surgery, viral infections that result in tissue, organ, or gland degeneration, and the like.
- Such neurodegenerative diseases include but are not limited to, AIDS dementia complex; demyeliriating diseases, such as multiple sclerosis and acute transferase myelitis; extrapyramidal and cerebellar disorders, such as lesions of the ecorticospinal system; disorders of the basal ganglia or cerebellar disorders; hyperkinetic movement disorders, such as Huntington's Chorea and senile chorea; drug-induced movement disorders, such as those induced by drugs that block CNS dopamine receptors; hypokinetic movement disorders, such as Parkinson's disease; progressive supra-nucleo palsy; structural lesions of the cerebellum; spinocerebellar degenerations, such as spinal ataxia, Friedreich's ataxia, cerebellar cortical degenerations, multiple systems de
- Fetal fibroblast cells (PCFF4-1 to PCFF4-10) were isolated from 10 fetuses of the same pregnancy at day 33 of gestation. After removing the head and viscera, fetuses were washed with Hanks' balanced salt solution (HBSS; Gibco-BRL, Rockville, Md.), placed in 20 ml of HBSS, and diced with small surgical scissors. The tissue was pelleted and resuspended in 50-ml tubes with 40 ml of DMEM and 100 U/ml collagenase (Gibco-BRL) per fetus. Tubes were incubated for 40 min in a shaking water bath at 37° C.
- HBSS Hanks' balanced salt solution
- the digested tissue was allowed to settle for 3-4 min and the cell-rich supernatant was transferred to a new 50-ml tube and pelleted.
- the cells were then resuspended in 40 ml of DMEM containing 10% fetal calf serum (FCS), 1 ⁇ nonessential amino acids, 1 mM sodium pyruvate and 2 ng/ml bFGF, and seeded into 10 cm. dishes. All cells were cryopreserved upon reaching confluence.
- SLA-1 to SLA-10 cells were isolated from 10 fetuses at day 28 of pregnancy. Fetuses were mashed through a 60-mesh metal screen using curved surgical forceps slowly so as not to generate excessive heat.
- the cell suspension was then pelleted and resuspended in 30 ml of DMEM containing 10% FCS, 1 ⁇ nonessential amino acids, 2 ng/ml bFGF, and 10 ⁇ g/ml gentamycin.
- Cells were seeded in 10-cm dishes, cultured one to three days, and cryopreserved.
- 10 ⁇ g of linearized vector DNA was introduced into 2 million cells by electroporation. Forty-eight hours after transfection, the transfected cells were seeded into 48-well plates at a density of 2,000 cells per well and were selected with 250 ⁇ g/ml of G418.
- Two alpha-1,3-GT knockout vectors pPL654 and pPL657, were constructed from isogenic DNA of two primary porcine fetal fibroblasts, SLA1-10 and PCFF4-2 cells.
- a 6.8-kb alpha-1,3-GT genomic fragment which includes most of intron 8 and exon 9, was generated by PCR from purified DNA of SLA1-10 cells and PCFF4-2 cells, respectively.
- the unique EcORV site at the 5′ end of exon 9 was converted into a SalI site and a 1.8-kb IRES-neo-poly A fragment was inserted into the SalI site.
- IRES internal ribosome entry site
- both vectors have a 4.9-kb 5′ recombination arm and a 1.9-kb 3′ recombination arm ( FIG. 6 ).
- ELB embryo lysis buffer
- Approximately 1,000 cells were resuspended in 5 ⁇ l embryo lysis buffer (ELB) (40 mM Tris, pH 8.9, 0.9% Triton X-100, 0.9% NP40, 0.4 mg/ml Proteinase K), incubated at 65° C. for 15 min to lyse the cells and heated to 95° C. for 10 min to inactivate the Proteinase K.
- ELB embryo lysis buffer
- fragments were amplified using the Expand High Fidelity PCR system (Roche Molecular Biochemicals) in 25 ⁇ l reaction volume with the following parameters: 35 cycles of 1 min at 94° C., 1 min at 60° C., and 2 min at 72° C.
- LR-PCR fragments were amplified by using TAKARA LA system (Panvera/Takara) in 50 ⁇ l reaction volume with the following parameters: 30 cycles of 10 s at 94° C., 30 s at 65° C., 10 min+20 s increase/cycle at 68° C., followed by one final cycle of 7 min at 68° C.
- 3′PCR and LR-PCR conditions for purified DNA was same as cells except that 1 ⁇ l of purified DNA (30 ⁇ g/ml) was mixed with 4 ⁇ l ELB.
- Neo442S is at the 3′ end of the neo gene and ⁇ GTE9A2 is at the 3′ end of exon 9 in sequences located outside of the 3′ recombination arm ( FIG. 6 ). Therefore, only through successful targeting at the ⁇ 1,3GT locus would the expected 2.4 kb PCR product be obtained. From a total of seven transfections in four different cell lines, 1105 G418 resistant colonies were picked, of which 100 (9%) were positive for ⁇ 1,3 GT gene disruption in the initial 3′ PCR screen (range 2.5-12%).
- Colonies 657A-A8, 657A-I6, and 657A-I11 showed the expected 2.4 kb band, while control PCFF4-6 cells, and another G418 resistant colony, 657A-P6, were negative. A portion of each 3′ PCR positive colony was frozen down immediately, in several small aliquots, for future use in NT experiments, while the rest of cells were expanded for long-range PCR (LR-PCR) and Southern analysis.
- PCR analysis to detect recombination junctions, or mRNA analysis can generate false positive results
- a long-range PCR which would encompass the entire targeted region, was performed.
- the LR-PCR covers the 7.4 kb ⁇ 1,3GT genomic sequence from exon 8 to the end of exon 9, with both primers (aGTE8S and aGTE9A2) located outside of the recombination region ( FIG. 2 ).
- the control PCFF4-6 cells, and the 3′ PCR-negative colony, 657A-P6, showed only the endogenous 7.4 kb band from the wild-type ⁇ 1,3GT locus.
- the ⁇ 1,3 GT knockout cells should show two bands: one 7 kb band of the size expected for the endogenous ⁇ 1,3 GT allele, and a 9 kb band characteristic of insertion of the IRES-neo sequences at the ⁇ 1,3 GT locus ( FIG. 2 ). All 17 LR-PCR positive colonies were confirmed by Southern analysis for the knockout.
- Heterozygous alpha-1,3-GT knockout fetal fibroblasts (657A-I11 1-6) cells, were isolated from a day-32 pregnancy as described above (See also Dai et al. Nature Biotechnology 20:451 (2002)).
- An ATG (start codon)-targeting alpha-1,3-GT knockout vector was constructed (pPL680), which also contained a neo gene, to knock out the second allele of the alpha-1,3-GT gene.
- pPL680 start codon-targeting alpha-1,3-GT knockout vector was constructed (pPL680), which also contained a neo gene, to knock out the second allele of the alpha-1,3-GT gene.
- These cells were transfected by electroporation with pPL680 and selected for the alpha1,3Gal-negative phenotype with purified C. difficile toxin A (described below).
- Porcine cells (PCFF4-6) were exposed for 1 hour or overnight to ten-fold serial dilutions of toxin A (0.00001 ⁇ g/ml to 10 ⁇ g/ml). Cells were cultured in 24 well plates and were incubated with the toxin for 1 hour or overnight at 37° C. The results of this exposure are detailed in Table 2. Clearly, a 1 hour exposure to toxin A at >1 ⁇ g/ml resulted in a cytotoxic effect on >90% of the cells. A concentration of toxin A at or slightly above 1 ⁇ g/ml therefore was chosen for selection of genetically altered cells.
- Disaggregated cells from a porcine embryo (I-11: 1-6) which contained a previously identified targeted knockout in one allele of the gal alpha-1,3-GT gene (Dai et al.) were transfected with 10 ug linearized vector DNA (promoter trap) by electroporation. After 48 hours, the cells were seeded into 48 well plates at a density of 2000 cells per well and selected with 250 ug/ml G418. Five days post-transfection, media was withdrawn from the wells, and replaced with 2 ug/ml toxin A in culture media (DMEM high glucose with 2.8 ng/ml bFGF and 20% FCS). Cells were exposed to the selective effect of toxin A for 2 hours at 37 C.
- DMEM high glucose with 2.8 ng/ml bFGF and 20% FCS
- the toxin A-containing media along with any affected cells that have released from the plate surface, was withdrawn, the remaining cells washed with fresh media, and the media without toxin A replaced. Ten days later, cells were again exposed to toxin A at 1.3 ug/ml in media for 2 hours at 37 C. The media, toxin A, and any cells in solution were removed, the remaining cells washed, and the media replaced.
- 680B1 Sixteen days post-transfection, a single colony that exhibited toxin A insensitivity, designated 680B1, was harvested and a portion sent for DNA analysis and lectin staining DNA analysis indicated that the toxin A insensitivity was not due to integration of the second target vector; however, the cells did not stain with GSL IB-4 lectin, indicating that a functional knockout of the locus had occurred.
- the 680B 1 double knockout cells were used for nuclear transfer into 5 recipients and three pregnancies resulted. Two of these pregnancies spontaneously aborted in the first month; the four fetuses from the remaining pregnancy were harvested on day 39 of the pregnancy and the cells disaggregated and seeded into tissue culture.
- fetal cells (680B1-1, 680B1-2, 680B1-3, 680B1-4) were exposed to toxin A at 1 ug/ml for 1 hour at 37 C, followed by medium removal, cell washing, and medium replacement without toxin A. Fetuses 1, 2, and 4 were not affected by toxin A, whereas most of the cells from fetus 3 rounded up, indicating that this embryo was sensitive to the cytotoxic effects of the toxin A.
- Fetuses 1, 2, and 4 did not bind GS IB4 lectin, as indicated by FACS analysis (see Table 3), while fetus 3 did bind lectin. This suggests that fetuses 1, 2, and 4 do not carry the epitope alpha 1,3 gal for which this particular lectin is specific.
- a complement fixation assay was run on cells from all four fetuses.
- the complement lysis assay was developed as a bioassay for lack of alpha gal expression.
- Human serum contains high levels of pre-formed antibody against alpha gal as well as the full portfolio of complement regulatory proteins (the C3 pathway).
- the presence of alpha gal on the surface of a cell upon binding of anti-alpha gal antibody, activates the complement cascade, and results in complement-mediated cell lysis.
- Alpha-gal negative cells would be resistant to complement mediated lysis.
- B1 and control pig cells were exposed to human serum plus complement, and assays performed to evaluate sensitivity or resistance to alpha-gal-initiated, complement-mediated cell lysis.
- the assay was performed with B1-1, B1-2, and B1-4 cells, as well as heterozygous GT KO cells (B1-3, gal positive), and with wild-type alpha-gal (+) PCFF4-6 pig cells as a control.
- Cells were exposed to one of three treatments; two negative controls, bovine serum albumin (BSA), and heat-inactivated human serum (HIA-HS) do not contain any functional complement protein and thus would not be expected to cause any significant cell lysis; the third treatment, non-heat-inactivated human serum (NHS) contains functional human complement as well as anti-gal specific antibodies, and thus would be expected to lyse cells which have galactose alpha 1,3 galactose on their cell surface.
- BSA bovine serum albumin
- HOA-HS heat-inactivated human serum
- NHS non-heat-inactivated human serum
- This mutation occurred at bp424 of the coding region, specifically, the second base pair of exon 9, of the alpha-1,3-GT (GGTA1) gene (GenBank Accession No. L36152) as a conversion of a thymine to a guanine residue, which results in an amino acid substitution of tyrosine at aa 142 to an aspartic acid.
- tyrosine a hydrophilic amino acid
- UDP binding site of alpha 1,3GT see FIG. 3 .
- Analysis of the crystal structure of bovine alpha-1,3-GT protein showed that this tyrosine is the center of the catalytic domain of the enzyme, and is involved in UDP-Gal binding (Gastinel et. al., EMBO Journal 20(4): 638-649, 2001). Therefore, a change from tyrosine (a hydrophobic amino acid) to aspartic acid (a hydrophilic amino acid) would be expected to cause disruption of the ⁇ GT function (as observed).
- the cDNAs from the second allele of all 4 cells were cloned into an expression vector and this GT expression vector transfected into human fibroblast cells (HeLa cells) as well as into primary Rhesus monkey cells.
- HeLa cells human fibroblast cells
- the HeLa cells would not have an alpha 1,3 galactose on their cell surface (as assayed by lectin binding experiments).
- Donor cells were genetically manipulated to produce cells homozygous for alpha 1,3 GT deficiency as described generally above.
- Nuclear transfer was performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251-255, 2002; and Polejaeva et al., Nature 407:86-90, 2000), using toxin A-selected porcine fibroblasts as nuclear donors that were produced as described in detail hereinabove
- Tail fibroblast cells and umbilicus tissue sections were obtained from all 5 double knockout piglets and stained using the GS-IB4 lectin as described previously. No staining was observed, indicating a complete lack of galactose alpha 1,3 galactose epitope on the surface of tissues from these animals (data not shown).
- Aorta endothelial cells and muscle and tail fibroblasts isolated from the dead piglet (761-1) were negative with GS-IB4 lectin staining
- FACS analysis of muscle fibroblasts from piglet 761-1 also showed a negative result for GS-IB4 binding.
- Tissue sections of liver, kidney, spleen, skin, intestine, muscle, brain, heart, pancreas, lung, aorta, tongue, umbilicus, and tail obtained from piglet 761-1 were all negative with GS-IB4 staining, indicating a complete lack of detectable cell surface alpha 1,3Gal epitopes (Phelps et al., Science 299: 411-414, 2003 including FIG. S3).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Environmental Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Transplantation (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Materials For Medical Uses (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fodder In General (AREA)
- Feed For Specific Animals (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention is a porcine animal, tissue, organ, cells and cell lines, which lack any expression of functional alpha 1,3 galactosyltransferase (alpha1,3GT). These animals, tissues, organs and cells can be used in xenotransplantation and for other medical purposes.
Description
- This application is a continuation of and claims priority to U.S. application Ser. No. 12/835,026, titled, “Porcine Animals Lacking Any Expression of
Functional Alpha Functional Alpha - The present invention are porcine animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack any expression of
functional alpha - Patients with end stage organ failure require organ transplantation for survival. The major limiting factor in clinical transplantation is the shortage of suitable human donors. Over the past ten years the size of the waiting list of patients for organs has increased dramatically, from approximately 30,000 in 1991 to approximately 80,000 in 2001 (Source: New York Organ Donor Network; Association of Organ Procurement Organizations' Death Record Review Study from 1997 to 1999, provided by 30 organ procurement organizations). Despite this increasing need over the past ten years, the number of organ donations has remained flat (approximately 20,000 per year).
- According to the United Network for Organ Sharing (UNOS) as of Jul. 17, 2003, there were 82,249 patients waiting for organ transplants in the United States. The need for specific organs was as follows:
-
Kidney 55,133 Liver 17,304 Pancreas 1,413 Kidney and Pancreas 2,378 Intestine 173 Heart 3,717 Heart-Lung 184 Lung 3,912 - Across the U.S., an average of 17 men, women and children of all races and ethnic backgrounds die every day for lack of donated organs, thus, each year, more than 6,200 Americans die waiting for an organ transplant. A need for a more reliable and unlimited source of organs has led to investigation of the potential for transplantation of organs from other animals, referred to as xenotransplantation.
- Pigs are considered the most likely source of xenograft organs. The supply of pigs is plentiful, breeding programs are well established, and their size and physiology are compatible with humans. Xenotransplantation, however, presents its own set of problems. The most significant is immune rejection. The first immunological hurdle is “hyperacute rejection” (HAR). HAR can be defined by the ubiquitous presence of high titers of pre-formed natural antibodies binding to the foreign tissue. The binding of these natural antibodies to target epitopes on the donor organ endothelium is believed to be the initiating event in HAR. This binding, within minutes of perfusion of the donor organ with the recipient blood, is followed by complement activation, platelet and fibrin deposition, and ultimately by interstitial edema and hemorrhage in the donor organ, all of which cause failure of the organ in the recipient (Strahan et al. (1996) Frontiers in
Bioscience 1, e34-41). - Except for Old World monkeys, apes and humans, most mammals carry glycoproteins on their cell surfaces that contain
galactose alpha 1,3-galactose (Galili et al., J. Biol. Chem. 263: 17755-17762, 1988). Humans, apes and Old World monkeys have a naturally occurring anti-alpha gal antibody that is produced in high quantity (Cooper et al., Lancet 342:682-683, 1993). It binds specifically to glycoproteins and glycolipids bearing galactose alpha-1,3 galactose. - In contrast, glycoproteins that contain
galactose alpha 1,3-galactose are found in large amounts on cells of other mammals, such as pigs. This differential distribution of the “alpha-1,3 GT epitope” and anti-Gal antibodies (i.e., antibodies binding to glycoproteins and glycolipids bearing galactose alpha-1,3 galactose) in mammals is the result of an evolutionary process which selected for species with inactivated (i.e. mutated) alpha-1,3-galactosyltransferase in ancestral Old World primates and humans. Thus, humans are “natural knockouts” of alpha1,3GT. A direct outcome of this event is the rejection of xenografts, such as the rejection of pig organs transplanted into humans initially via HAR. - A variety of strategies have been implemented to eliminate or modulate the anti-Gal humoral response caused by porcine xenotransplantation, including enzymatic removal of the epitope with alpha-galactosidases (Stone et al., Transplantation 63: 640-645, 1997), specific anti-gal antibody removal (Ye et al., Transplantation 58: 330-337,1994), capping of the epitope with other carbohydrate moieties, which failed to eliminate alpha-1,3-GT expression (Tanemura et al., J. Biol. Chem. 27321: 16421-16425, 1998 and Koike et al., Xenotransplantation 4: 147-153, 1997) and the introduction of complement inhibitory proteins (Dalmasso et al., Clin. Exp. Immunol. 86: 31-35, 1991, Dalmasso et al. Transplantation 52:530-533 (1991)). C. Costa et al. (FASEB J 13, 1762 (1999)) reported that competitive inhibition of alpha-1,3-GT in H-transferase transgenic pigs results in only partial reduction in epitope numbers. Similarly, S. Miyagawa et al. (J. Biol. Chem. 276, 39310 (2001)) reported that attempts to block expression of gal epitopes in N-acetylglucosaminyltransferase III transgenic pigs also resulted in only partial reduction of gal epitopes numbers and failed to significantly extend graft survival in primate recipients.
- Single allele knockouts of the alpha-1,3-GT locus in porcine cells and live animals have been reported. Denning et al. (Nature Biotechnology 19: 559-562, 2001) reported the targeted gene deletion of one allele of the alpha-1,3-GT gene in sheep. Harrison et al. (Transgenics Research 11: 143-150, 2002) reported the production of heterozygous alpha-1,3-GT knock out somatic porcine fetal fibroblasts cells. In 2002, Lai et al. (Science 295: 1089-1092, 2002) and Dai et al. (Nature Biotechnology 20: 251-255, 2002) reported the production of pigs, in which one allele of the alpha-1,3-GT gene was successfully rendered inactive. Ramsoondar et al. (Biol of Reproduc 69, 437-445 (2003) reported the generation of heterozygous alpha-1,3-GT knockout pigs that also express human alpha-1,2-fucosyltransferase (HT), which expressed both the HT and alpha-1,3-GT epitopes.
- PCT publication No. WO 94/21799 and U.S. Pat. No. 5,821,117 to the Austin Research Institute; PCT publication No. WO 95/20661 to Bresatec; and PCT publication No. WO 95/28412, U.S. Pat. No. 6,153,428, U.S. Pat. No. 6,413,769 and US publication No. 2003/0014770 to BioTransplant, Inc. and The General Hospital Corporation provide a discussion of the production of alpha1,3-GT negative porcine cells based on knowledge of the cDNA of the alpha-1,3-GT gene (and without knowledge of the genomic organization or sequence). However, there was no evidence that such cells were actually produced prior to the filing date of these applications and the Examples were all prophetic.
- The first public disclosure of the successful production of a heterozygous alpha-1,3-GT negative porcine cell occurred in July 1999 at the Lake Tahoe Transgenic Animal Conference (David Ayares, et al., PPL Therapeutics, Inc.). Prior to the present invention, no one had published or publicly disclosed the production of a
homozygous alpha 1,3GT negative porcine cell. Further, since porcine embryonic stem cells have not been available to date, there was and still is no way to use an alpha-1,3-GT homogygous embryonic stem cell to attempt to prepare a live homogygous alpha-1,3-GT knock out pig. - On Feb. 27, 2003, Sharma et al. (Transplantation 75:430-436 (2003) published a report demonstrating a successful production of fetal pig fibroblast cells homozygous for the knockout of the alpha-1,3-GT gene.
- PCT publication No. WO 00/51424 to PPL Therapeutics describes the genetic modification of somatic cells for nuclear transfer. This patent application discloses the genetic disruption of the alpha-1,3-GT gene in porcine somatic cells, and the subsequent use of the nucleus of these cells lacking at least one copy of the alpha-1,3-GT gene for nuclear transfer.
- U.S. Pat. No. 6,331,658 to Cooper & Koren claims but does not confirm any actual production of genetically engineered mammals that express a sialyltransferase or a fucosyltransferase protein. The patent asserts that the genetically engineered mammals would exhibit a reduction of galactosylated protein epitopes on the cell surface of the mammal.
- PCT publication No. WO 03/055302 to The Curators of the University of Missouri confirms the production of
heterozygous alpha 1,3GT knockout miniature swine for use in xenotransplantation. This application is generally directed to a knockout swine that includes a disrupted alpha-1,3-GT gene, wherein expression of functional alpha-1,3-GT in the knockout swine is decreased as compared to the wildtype. This application does not provide any guidance as to what extent the alpha-1,3-GT must be decreased such that the swine is useful for xenotransplantation. Further, this application does not provide any proof that the heterozygous pigs that were produced exhibited a decreased expression of functional alpha1,3GT. Further, while the application refers tohomozygous alpha 1,3GT knockout swine, there is no evidence in the application that any were actually produced or producible, much less whether the resultant offspring would be viable or phenotypically useful for xenotransplantation. - Total depletion of the glycoproteins that contain
galactose alpha 1,3-galactose is clearly the best approach for the production of porcine animals for xenotransplantation. It is theoretically possible that double knockouts, or the disruption of both copies of thealpha 1,3GT gene, could be produced by two methods: 1) breeding of two single allele knockout animals to produce progeny, in which case, one would predict based on Mendelian genetics that one in four should be double knockouts or 2) genetic modification of the second allele in a cell with a pre-existing single knockout. In fact, this has been quite difficult as illustrated by the fact that while the first patent application on knock-out porcine cells was filed in 1993, the firsthomozygous alpha 1,3GT knock out pig was not produced until July 2002 (which was based on the work of the present inventor and described herein). - Transgenic mice (not pigs) have historically been the preferred model to study the effects of genetic modifications on mammalian physiology, for a number of reasons, not the least of which is that mouse embryonic stem cells have been available while porcine embryonic stem cells have not been available. Mice are ideal animals for basic research applications because they are relatively easy to handle, they reproduce rapidly, and they can be genetically manipulated at the molecular level. Scientists use the mouse models to study the molecular pathologies of a variety of genetically based diseases, from colon cancer to mental retardation. Thousands of genetically modified mice have been created to date. A “Mouse Knockout and Mutation Database” has been created by BioMedNet to provide a comprehensive database of phenotypic and genotypic information on mouse knockouts and classical mutations (http://research.bmn.com/mkmd; Brandon et al Current Biology 5[7]:758-765 (1995); Brandon et al Current Biology 5[8]:873-881 (1995), this database provides information on over 3,000 unique genes, which have been targeted in the mouse genome to date.
- Based on this extensive experience with mice, it has been learned that transgenic technology has some significant limitations. Because of developmental defects, many genetically modified mice, especially null mice created by gene knock out technology die as embryos before the researcher has a chance to use the model for experimentation. Even if the mice survive, they can develop significantly altered phenotypes, which can render them severely disabled, deformed or debilitated (Pray, Leslie, The Scientist 16 [13]: 34 (2002); Smith, The Scientist 14[15]:32, (2000); Brandon et al Current Biology 5[6]:625-634 (1995); Brandon et al Current Biology 5[7]:758-765 (1995); Brandon et al Current Biology 5 [8]:873-881 (1995); http://research.bmn.com/mkmd. Further, it has been learned that it is not possible to predict whether or not a given gene plays a critical role in the development of the organism, and, thus, whether elimination of the gene will result in a lethal or altered phenotype, until the knockout has been successfully created and viable offspring are produced.
- Mice have been genetically modified to eliminate functional alpha-1,3-GT expression. Double-knockout alpha-1,3-GT mice have been produced. They are developmentally viable and have normal organs (Thall et al. J Biol Chem 270:21437-40 (1995); Tearle et al. Transplantation 61:13-19 (1996), see also U.S. Pat. No. 5,849,991). However, two phenotypic abnormalities in these mice were apparent. First, all mice develop dense cortical cataracts. Second, the elimination of both alleles of the alpha-1,3-GT gene significantly affected the development of the mice. The mating of mice heterozygous for the alpha-1,3-GT gene produced genotype ratios that deviated significantly from the predicted Mendelian 1:2:1 ratio (Tearle et al. Transplantation 61:13-19 (1996)).
- Pigs have a level of cell surface glycoproteins containing
galactose alpha 1,3-galactose that is 100-1000 fold higher than found in mice. (Sharma et al. Transplantation 75:430-436 (2003); Galili et al. Transplantation 69:187-190 (2000)). Thus, alpha1,3-GT activity is more critical and more abundant in the pig than the mouse. - Despite predictions and prophetic statements, prior to this invention, no one knew whether the disruption of both alleles of the alpha-1,3-GT gene would be lethal or would effect porcine development or result in an altered phenotype (Ayares et al. Graft 4(1)80-85 (2001); Sharma et al. Transplantation 75:430-436 (2003); Porter & Dallman Transplantation 64:1227-1235 (1997); Galili, U. Biochimie 83:557-563 (2001)). Indeed, many experts in the field expressed serious doubts as to whether homozygous alpha-1,3-GT knockout pigs would be viable at all, much less develop normally. Such concerns were expressed up until the double knockout pig of the present invention was produced. Examples of statements by those working in the field at the time included the following.
- “The abundantly expressed alpha-gal epitope may have some biological roles in pig development, such as in cell-cell interaction. If this assumption is correct, pigs may not develop in the absence of this epitope (Galili, U. Biochimie 83:557-563 (2001).”
- “The inability to generate knockout pigs for alpha-gal may suggest that alpha-gal epitopes are indispensable in this species (Galili et al. Transplantation 69:187-190 (2000)).”
- “Although double-knockout alpha-gal mice develop and remain fairly normal, the possibility exists that deletion of this enzyme could have more severe consequences in other animals (Porter & Dallman Transplantation 64:1227-1235 (1997)).”
- “It is possible that the GT(−/−) pig may not be viable because the GT gene is essential for embryonic development. An answer to this question and to the relevance of GT(−/−) pigs to xenotransplantation research must await, if possible, the production of the appropriate pigs (Sharma et al. Transplantation 75:430-436 (2003)).”
- “Since Gal epitope expression in pig organs is up to 500-fold higher than in mouse organs, there is the possibility that alphaGT activity is more crucial to the pig and could effect development of these pigs (Ayares et al. Graft 4(1)80-85 (2001)).”
- Thus, until a viable double alpha-1,3-GT knockout pig is produced, according to those of skill in the art at the time, it was not possible to determine (i) whether the offspring would be viable or (ii) whether the offspring would display a phenotype that allows the use of the organs for transplantation into humans.
- It is therefore an object of the present invention to provide viable pigs which lack any expression of functional alpha1,3GT.
- It is another object of the present invention to provide procine cells, tissues and organs, which lack any expression of functional alpha1,3GT, for use in xenotransplantation or other biomedical applications.
- It is a further object of the present invention to provide a method to select and screen for porcine cells, which lack
galactose alpha 1,3-galactose epitopes on the cell surface. - This invention is the production of the first live pigs lacking any functional expression of
alpha - It has for the first time been proven that a viable porcine animal that lacks any expression of
functional alpha alpha galactose alpha 1,3-galactose epitopes on the cell surface, represents the first and major step in eliminating hyperacute rejection in pig-to-human xenotransplantation therapy. The invention also provides organs, tissues, and cells derived from such porcine animals, which are useful for xenotransplantation. - In embodiments of the present invention, the alleles of the alpha-1,3-GT gene are rendered inactive, such that the resultant alpha-1,3-GT enzyme can no longer generate galactose alpha-1,3-galactose on the cell surface. In one embodiment, the alpha-1,3-GT gene can be transcribed into RNA, but not translated into protein. In another embodiment, the alpha-1,3-GT gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the alpha-1,3-GT gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the alpha-1,3-GT gene can be transcribed and then translated into a nonfunctional protein.
- In another embodiment, pigs that lack any expression of functional alpha-1,3-GT are useful for providing a clearer evaluation of approaches currently in development aimed at overcoming potential delayed and chronic rejection mechanisms in porcine xenotransplantation.
- In one aspect of the present invention, porcine animals are provided in which at least one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event. In another aspect of the present invention, porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring. The predicted frequency of occurrence of such a pig would be in the range of 10−10 to 10−12, and has never been identified.
- As one aspect of the invention, it was surprisingly discovered that while attempting to knockout the second allele of the alpha-1,3-GT gene through a genetic targeting event, a point mutation was identified, which rendered the second allele inactive. Pigs carrying point mutations in the alpha-1,3-GT gene are free of antibiotic-resistance genes and thus have the potential to make a safer product for human use. Thus, another aspect of the invention is a homozygous alpha-1,3-GT knock out that has no antibiotic resistant or other selectable marker genes. In one embodiment, this point mutation can occur via a genetic targeting event. In another embodiment, this point mutation can be naturally occurring. In a further embodiment, mutations can be induced in the alpha-1,3-GT gene via a mutagenic agent.
- In one specific embodiment the point mutation can be a T-to-G mutation at the second base of
exon 9 of the alpha-1,3-GT gene (FIG. 2 ). In other embodiments, at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive. In other embodiments, pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT. In a specific embodiment, pigs are provided that contain the T-to-G mutation at the second base ofexon 9 in both alleles of the alpha-1,3-GT gene (FIG. 2 ). - Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a point mutation. In one embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of
exon 9. In a specific embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 (see, for example,FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of exon 9 (FIG. 2 ). Targeting, for example, can also be directed toexon 9, and or exons 4-8. - In a further embodiment, one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of
exon 9 of the alpha-1,3-GT gene. In a specific embodiment, one allele is inactivated via a targeting construct directed to Exon 9 (see, for example,FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene. In another embodiment, a method to clone such pigs includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a porcine cell that lacks expression of functional alpha1,3GT, and implanting the nuclear transfer-derived embryo into a surrogate mother. - In another embodiment, the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene. In one embodiment, the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele. In another embodiment, the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene. In another embodiment, the point mutation can be a T-to-G point mutation at the second base of
exon 9 of the alpha-1,3-GT gene. In one specific embodiment, a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT is provided wherein a male pig that contains a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene, or vise versa. - In another aspect of the present invention, a selection method is provided for determining whether porcine cells express galactose alpha-1,3-galactose on the cell surface. In one embodiment, the selection procedure can be based on a bacterial toxin to select for cells that lack expression of galactose alpha1,3-galactose. In another embodiment, the bacterial toxin, toxin A produced by Clostridium difficile, can be used to select for such cells. Exposure to C. difficile toxin can cause rounding of cells that exhibit this epitope on their surface, releasing the cells from the plate matrix. Both targeted gene knockouts and mutations that disable enzyme function or expression can be detected using this selection method. Cells lacking cell surface expression of the
galactose alpha 1,3-galactose, identified using Toxin A mediated selection described, or produced using standard methods of gene inactivation including gene targeting, can then be used to produce pigs that lack expression of functional alpha1,3GT. - Other embodiments of the present invention will be apparent to one of ordinary skill in light of the following description of the invention, the claims and what is known in the art.
-
FIG. 1 is a graph depicting the relative lytic effects of complement on cells from fetuses 680B1-4. -
FIG. 2 depicts a short segment of the coding region of the alpha-1,3-GT gene (see GenBank Acc. No. L36152) in which the point mutation selected by Toxin A occurs. Upper sequence occurs in wild type; lower sequence shows the change due to the point mutation in the second allele. -
FIG. 3 is a representation of a 3-dimensional model of the UDP binding site of bovine alpha1,3GT. The aromatic ring of the tyrosine residue (foreground, white) can be seen in close proximity to the uracil base of UDP (grayscale). -
FIG. 4 is a photograph of homozygous, alpha-1,3-GT deficient cloned pigs produced by the methods of the invention, born on Jul. 25, 2002. -
FIG. 5 is a graph depicting Anti-alpha-1,3-gal IgM levels before and after injections of piglet islet-like cell clusters (ICC) in alpha-1,3-GT KO mice. Each mouse received three serial ICC injections via i.p. (200-500 ICC per injection) over 4 days. All three recipients of wild-type (WT) piglet ICCs showed a significant elevation ofanti-alpha 1,3Gal IgM titer and subsequent return tobaseline 4 weeks after ICC implants. Sera from all three mice injected with alpha-1,3-GT DKO piglet ICCs maintained low baseline values of anti-alpha1,3-gal IgM titer during the observation time of 35 days (Phelps et al., Science 299: 411-414, 2003, FIG. S4). -
FIG. 6 is a diagram of the porcine alpha-1,3-GT locus, corresponding to alpha-1,3-GT genomic sequences that can be used as 5′ and 3′ arms in alpha1,3-GT knockout vectors, and the structure of the targeted locus after homologous recombination. The names of names and positions of the primers used for 3′PCR and long-range PCR are indicated by short arrows. The short bar indicates the probe used for alpha-1,3-GT Southern blot analysis. The predicted size of Southern bands with BstEII digestion for both the endogenous alpha-1,3-GT locus and the alpha-1,3-GT targeted locus is also indicated. - We have now proven that a viable porcine animal that lacks any expression of
functional alpha alpha galactose alpha 1,3-galactose on the cell surface, represents the first and major step in eliminating hyperacute rejection in pig-to-human xenotransplantation therapy. The invention also provides organs, tissues, and cells derived from such porcine, which are useful for xenotransplantation. - In one aspect, the invention provides porcine organs, tissues and/or purified or substantially pure cells or cell lines obtained from pigs that lack any expression of functional alpha1,3GT. In another embodiment, the invention provides organs or tissues that are useful for xenotransplantation. In a further embodiment, the invention provides cells or cell lines that are useful for xenotransplantation.
- As used herein, the term “animal” (as in “genetically modified (or altered) animal”) is meant to include any non-human animal, particularly any non-human mammal, including but not limited to pigs, sheep, goats, cattle (bovine), deer, mules, horses, monkeys, dogs, cats, rats, mice, birds, chickens, reptiles, fish, and insects. In one embodiment of the invention, genetically altered pigs and methods of production thereof are provided.
- As used herein, an “organ” is an organized structure, which can be made up of one or more tissues. An “organ” performs one or more specific biological functions. Organs include, without limitation, heart, liver, kidney, pancreas, lung, thyroid, and skin.
- As used herein, a “tissue” is an organized structure comprising cells and the intracellular substances surrounding them. The “tissue”, alone or in conjunction with other cells or tissues can perform one or more biological functions.
- As used herein, the terms “porcine”, “porcine animal”, “pig” and “swine” are generic terms referring to the same type of animal without regard to gender, size, or breed.
- In one aspect of the present invention, porcine animals are provided in which one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event. In another aspect of the present invention, porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event. In one embodiment, the gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- In embodiments of the present invention, the alleles of the alpha-1,3-GT gene are rendered inactive, such that the resultant alpha-1,3-GT enzyme can no longer generate galactose alpha1,3-galactose on the cell surface. In one embodiment, the alpha-1,3-GT gene can be transcribed into RNA, but not translated into protein. In another embodiment, the alpha-1,3-GT gene can be transcribed in a trancated form. Such a truncated RNA can either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the alpha-1,3-GT gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the alpha-1,3-GT gene can be transcribed and then translated into a nonfunctional protein.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring. It was surprisingly discovered that while attempting to knockout the second allele of the alpha-1,3-GT gene through a genetic targeting event, a point mutation was identified, which prevented the second allele from producing functional alpha1,3GT.
- Thus, in another aspect of the present invention, the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In one embodiment, one allele of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In another embodiment, both alleles of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In one embodiment, this point mutation can occur via a genetic targeting event. In another embodiment, this point mutation can be naturally occurring. In a further embodiment, mutations can be induced in the alpha-1,3-GT gene via a mutagenic agent.
- In one specific embodiment the point mutation can be a T-to-G mutation at the second base of
exon 9 of the alpha-1,3-GT gene (FIG. 2 ). Pigs carrying a naturally occurring point mutation in the alpha-1,3-GT gene allow for the production of alpha1,3GT-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use. In other embodiments, at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive. In other embodiments, pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT. In a specific embodiment, pigs are provided that contain the T-to-G mutation at the second base ofexon 9 in both alleles of the alpha-1,3-GT gene (FIG. 2 ). - Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a mutation. In one embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of
exon 9. In a specific embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 (see, for example,FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base ofexon 9. - Types of Porcine Cells
- Porcine cells that can be genetically modified can be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In one embodiment of the invention, porcine cells can be selected from the group consisting of, but not limited to, epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, squamous epithelial cells, osteocytes, osteoblasts, and osteoclasts.
- In one alternative embodiment, embryonic stem cells can be used. An embryonic stem cell line can be employed or embryonic stem cells can be obtained freshly from a host, such as a porcine animal. The cells can be grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). In a preferred embodiment, the porcine cells can be fibroblasts; in one specific embodiment, the porcine cells can be fetal fibroblasts. Fibroblast cells are a preferred somatic cell type because they can be obtained from developing fetuses and adult animals in large quantities. These cells can be easily propagated in vitro with a rapid doubling time and can be clonally propagated for use in gene targeting procedures.
- Targeting Constructs
- Homologous Recombination
- Homologous recombination permits site-specific modifications in endogenous genes and thus novel alterations can be engineered into the genome. In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous (“random” or “illicit”) integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).
- A number of papers describe the use of homologous recombination in mammalian cells. Illustrative of these papers are Kucherlapati et al., Proc. Natl. Acad. Sci. USA 81:3153-3157, 1984; Kucherlapati et al., Mol. Cell. Bio. 5:714-720, 1985; Smithies et al, Nature 317:230-234, 1985; Wake et al., Mol. Cell. Bio. 8:2080-2089, 1985; Ayares et al., Genetics 111:375-388, 1985; Ayares et al., Mol. Cell. Bio. 7:1656-1662, 1986; Song et al., Proc. Natl. Acad. Sci. USA 84:6820-6824, 1987; Thomas et al. Cell 44:419-428, 1986; Thomas and Capecchi, Cell 51: 503-512, 1987; Nandi et al., Proc. Natl. Acad. Sci. USA 85:3845-3849, 1988; and Mansour et al., Nature 336:348-352, 1988. Evans and Kaufman, Nature 294:146-154, 1981; Doetschman et al., Nature 330:576-578, 1987; Thoma and Capecchi, Cell 51:503-512, 4987; Thompson et al., Cell 56:316-321, 1989.
- The present invention uses homologous recombination to inactivate the alpha-1,3-GT gene in cells, such as the porcine cells described above. The DNA can comprise at least a portion of the gene(s) at the particular locus with introduction of an alteration into at least one, optionally both copies, of the native gene(s), so as to prevent expression of functional alpha1,3GT. The alteration can be an insertion, deletion, replacement or combination thereof. When the alteration is introduce into only one copy of the gene being inactivated, the cells having a single unmutated copy of the target gene are amplified and can be subjected to a second targeting step, where the alteration can be the same or different from the first alteration, usually different, and where a deletion, or replacement is involved, can be overlapping at least a portion of the alteration originally introduced. In this second targeting step, a targeting vector with the same arms of homology, but containing a different mammalian selectable markers can be used. The resulting transformants are screened for the absence of a functional target antigen and the DNA of the cell can be further screened to ensure the absence of a wild-type target gene. Alternatively, homozygosity as to a phenotype can be achieved by breeding hosts heterozygous for the mutation.
- Targeting Vectors
- Modification of a targeted locus of a cell can be produced by introducing DNA into the cells, where the DNA has homology to the target locus and includes a marker gene, allowing for selection of cells comprising the integrated construct. The homologous DNA in the target vector will recombine with the chromosomal DNA at the target locus. The marker gene can be flanked on both sides by homologous DNA sequences, a 3′ recombination arm and a 5′ recombination arm. Methods for the construction of targeting vectors have been described in the art, see, for example, Dai et al., Nature Biotechnology 20: 251-255, 2002; WO 00/51424,
FIG. 6 . - Various constructs can be prepared for homologous recombination at a target locus. The construct can include at least 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous with the target locus. The sequence can include any contiguous sequence of the porcine alpha-1,3-GT gene (see, for example, GenBank Acc. No. L36152, WO0130992 to The University of Pittsburgh of the Commonwealth System of Higher Education; WO 01/123541 to Alexion, Inc.).
- Various considerations can be involved in determining the extent of homology of target DNA sequences, such as, for example, the size of the target locus, availability of sequences, relative efficiency of double cross-over events at the target locus and the similarity of the target sequence with other sequences.
- The targeting DNA can include a sequence in which DNA substantially isogenic flanks the desired sequence modifications with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence can be at least about 95%, 97-98%, 99.0-99.5%, 99.6-99.9%, or 100% identical to the corresponding target sequence (except for the desired sequence modifications). The targeting DNA and the target DNA preferably can share stretches of DNA at least about 75, 150 or 500 base pairs that are 100% identical. Accordingly, targeting DNA can be derived from cells closely related to the cell line being targeted; or the targeting DNA can be derived from cells of the same cell line or animal as the cells being targeted.
- The DNA constructs can be designed to modify the endogenous, target alpha1,3GT. The homologous sequence for targeting the construct can have one or more deletions, insertions, substitutions or combinations thereof. The alteration can be the insertion of a selectable marker gene fused in reading frame with the upstream sequence of the target gene.
- Suitable selectable marker genes include, but are not limited to: genes conferring the ability to grow on certain media substrates, such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See, for example, Song, K-Y., et al. Proc. Nat'l Acad. Sci. U.S.A. 84:6820-6824 (1987); Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Chapter 16. Other examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP). A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo) (Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982)); and the hygromycin resistance gene (hyg) (Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990)). Other selectable marker genes include: acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline.
- Methods for the incorporation of antibiotic resistance genes and negative selection factors will be familiar to those of ordinary skill in the art (see, e.g., WO 99/15650; U.S. Pat. No. 6,080,576; U.S. Pat. No. 6,136,566; Niwa et al., J. Biochem. 113:343-349 (1993); and Yoshida et al., Transgenic Research 4:277-287 (1995)).
-
TABLE 1 Selectable marker genes that emit detectable signals Pat. No. Title 6,319,669 Modified green fluorescent proteins 6,316,181 Establishment of cell lines with persistent expression of a green fluorescent protein (GFP) using a pIRES/EGFP DNA vector construct 6,303,373 Method of measuring plasma membrane targeting of GLUT4 6,291,177 Assay for agents which alter G-protein coupled receptor activity 6,284,519 Cell systems having specific interaction of peptide binding pairs 6,284,496 DNA vector for determining the presence of out-of-reading- frame mutations 6,280,934 Assay for agents which alter G-protein coupled receptor activity 6,274,354 Methods using cre-lox for production of recombinant adeno- associated viruses 6,270,958 Detection of negative-strand RNA viruses 6,268,201 IniB, iniA and iniC genes of mycobacteria and methods of use 6,265,548 Mutant Aequorea victoria fluorescent proteins having increased cellular fluorescence 6,261,760 Regulation of the cell cycle by sterols 6,255,558 Gene expression 6,255,071 Mammalian viral vectors and their uses 6,251,677 Hybrid adenovirus-AAV virus and methods of use thereof 6,251,602 Cell systems having specific interaction of peptide binding pairs 6,251,582 Alternative G-coupled receptors associated with retroviral entry into cells, methods of identifying the same and diagnostic and therapeutic uses thereof 6,251,384 Metastasis models using green fluorescent protein (GFP) as a marker 6,248,558 Sequence and method for genetic engineering of proteins with cell membrane translocating activity 6,248,550 Assays for protein kinases using fluorescent protein substrates 6,248,543 Compositions and methods for screening antimicrobials 6,232,107 Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items 6,228,639 Vectors and methods for the mutagenesis of mammalian genes 6,225,082 Myelin basic protein MRNA transport and translation enhancer sequences 6,221,612 Photon reducing agents for use in fluorescence assays 6,218,185 Piggybac transposon-based genetic transformation system for insects 6,214,567 Immortalized human keratinocyte cell line 6,214,563 Photon reducing agents for reducing undesired light emission in assays 6,210,922 Serum free production of recombinant proteins and adenoviral vectors 6,210,910 Optical fiber biosensor array comprising cell populations confined to microcavities 6,203,986 Visualization of RNA in living cells 6,197,928 Fluorescent protein sensors for detection of analytes 6,180,343 Green fluorescent protein fusions with random peptides 6,172,188 Fluorescent proteins 6,153,409 Process for continuous optimized protein production in insect larvae 6,150,176 Fluorescent protein sensors for measuring the pH of a biological sample 6,146,826 Green fluorescent protein 6,140,132 Fluorescent protein sensors for measuring the pH of a biological sample 6,136,539 Compositions and methods for the inhibition of MUC-5 mucin gene expression 6,136,538 Silent inducible virus replicons and uses thereof 6,133,429 Chromophores useful for the preparation of novel tandem conjugates 6,130,313 Rapidly degrading GFP-fusion proteins 6,124,128 Long wavelength engineered fluorescent proteins 6,110,711 Method of defining cell types by probing comprehensive expression libraries with amplified RNA 6,096,865 Mutants of the green fluorescent protein having improved fluorescent properties at 37 degrees 6,096,717 Method for producing tagged genes transcripts and proteins 6,093,808 IκB eGFP constructs, cell lines and methods of use 6,090,919 FACS-optimized mutants of the green fluorescent protein (GFP) 6,083,690 Methods and compositions for identifying osteogenic agents 6,077,707 Long wavelength engineered fluorescent proteins 6,066,476 Modified green fluorescent proteins 6,060,247 Post-mitotic neurons containing adenovirus vectors that modulate apoptosis and growth 6,054,321 Long wavelength engineered fluorescent proteins 6,037,133 IκB eGFP constructs, cell lines and methods of use 6,027,881 Mutant Aequorea victoria fluorescent proteins having increased cellular fluorescence 6,025,192 Modified retroviral vectors 6,020,192 Humanized green fluorescent protein genes and methods 6,013,447 Random intracellular method for obtaining optimally active nucleic acid molecules 6,001,557 Adenovirus and methods of use thereof 5,994,077 Fluorescence-based isolation of differentially induced genes 5,994,071 Assessment of prostate cancer 5,993,778 Functional expression of, and assay for, functional cellular receptors in vivo 5,989,808 Identification of compounds affecting specific interaction of peptide binding pairs 5,985,577 Protein conjugates containing multimers of green fluorescent protein 5,968,773 System and method for regulation of gene expression 5,968,738 Two-reporter FACS analysis of mammalian cells using green fluorescent proteins 5,958,713 Method of detecting biologically active substances by using green fluorescent protein 5,952,236 Enzyme-based fluorescence biosensor for chemical analysis 5,948,889 Compositions and methods for screening antimicrobials 5,948,681 Non-viral vehicles for use in gene transfer 5,942,387 Combinatorial process for preparing substituted thiophene libraries 5,932,435 Screening antisense and ribozyme nucleic acids in schizosaccharomyces pombe 5,922,576 Simplified system for generating recombinant adenoviruses 5,919,445 Use of green fluorescent protein to trace the infection of baculovirus in insects and to increase viral UV stability 5,914,233 Screening assay for the identification of agents which alter expression of PTH-rP - Combinations of selectable markers can also be used. For example, to target alpha1,3GT, a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is homologous to the alpha-1,3-GT gene. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into the alpha-1,3-GT gene but the tk gene has been lost because it was located outside the region of the double crossover.
- Deletions can be at least about 50 bp, more usually at least about 100 bp, and generally not more than about 20 kbp, where the deletion can normally include at least a portion of the coding region including a portion of or one or more exons, a portion of or one or more introns, and can or can not include a portion of the flanking non-coding regions, particularly the 5′-non-coding region (transcriptional regulatory region). Thus, the homologous region can extend beyond the coding region into the 5′-non-coding region or alternatively into the 3′-non-coding region. Insertions can generally not exceed 10 kbp, usually not exceed 5 kbp, generally being at least 50 bp, more usually at least 200 bp.
- The region(s) of homology can include mutations, where mutations can further inactivate the target gene, in providing for a frame shift, or changing a key amino acid, or the mutation can correct a dysfunctional allele, etc. The mutation can be a subtle change, not exceeding about 5% of the homologous flanking sequences. Where mutation of a gene is desired, the marker gene can be inserted into an intron or an exon.
- The construct can be prepared in accordance with methods known in the art, various fragments can be brought together, introduced into appropriate vectors, cloned, analyzed and then manipulated further until the desired construct has been achieved. Various modifications can be made to the sequence, to allow for restriction analysis, excision, identification of probes, etc. Silent mutations can be introduced, as desired. At various stages, restriction analysis, sequencing, amplification with the polymerase chain reaction, primer repair, in vitro mutagenesis, etc. can be employed.
- The construct can be prepared using a bacterial vector, including a prokaryotic replication system, e.g. an origin recognizable by E. coli, at each stage the construct can be cloned and analyzed. A marker, the same as or different from the marker to be used for insertion, can be employed, which can be removed prior to introduction into the target cell. Once the vector containing the construct has been completed, it can be further manipulated, such as by deletion of the bacterial sequences, linearization, introducing a short deletion in the homologous sequence. After final manipulation, the construct can be introduced into the cell.
- The present invention further includes recombinant constructs containing sequences of the alpha-1,3-GT gene. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. The construct can also include regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pBs, pQE-9 (Qiagen), phagescript, PsiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSv2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPv, pMSG, pSVL (Pharmiacia), viral origin vectors (M13 vectors,
bacterial phage 1 vectors, adenovirus vectors, and retrovirus vectors), high, low and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8). Other vectors include prokaryotic expression vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Corp.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99 A, pKK223-3, the pGEX vectors, pEZZ18, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Invitrogen, Corp.) and variants and derivatives thereof. Other vectors include eukaryotic expression vectors such as pFastBac, pFastBacHT, pFastBacDUAL, pSFV, and pTet-Splice (Invitrogen), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3′SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A, B, and C, pVL1392, pBlueBacIII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Corp.) and variants or derivatives thereof. Additional vectors that can be used include: pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YAC's (yeast artificial chromosomes), BAC's (bacterial artificial chromosomes), P1 (Escherichia coli phage), pQE70, pQE60, pQE9 (quagan), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (Invitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Invitrogen), pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(−)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZa, pGAPZ, pGAPZα, pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1, pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; λExCell, λgt11, pTrc99A, pKK223-3, pGEX-10T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3x, pGEX-5x-1, pGEX-5x-2, pGEX-5x-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4-abc(+), pOCUS-2, pTAg, pET-32LIC, pET-30LIC, pBAC-2 cp LIC, pBACgus-2 cp LIC, pT7Blue-2LIC, pT7Blue-2, λSCREEN-1, λBlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25 b(+), pET-26b(+), pET-27b(+), pET-28 abc(+), pET-29abc(+), pET-30 abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3 cp, pBACgus-2 cp, pBACsurf-1, plg, Signal plg, pYX, Selecta Vecta-Neo, Selecta Vecta-Hyg, and Selecta Vecta-Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1, pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP, pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic, pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, pβgal-Basic, pβgal-Control, pβgal-Promoter, βgal-Enhancer, pCMVβ, pTet-Off, pTet-On, pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX, pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo, pYEX4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6, pTriplEx, λgt10, λgt11, pWE15, and λTriplEx from Clontech; Lambda ZAP II, pBK-CMV, pBK-RSV, pBluescript II KS+/−, pBluescript II SK+/−, pAD-GAL4, pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3, Lambda EMBL4, SuperCos, pCR-Script Amp, pCR-Script Cam, pCR-Script Direct, pBS +/−, pBC KS+/−, pBC SK+/−, Phagescript, pCAL-n-EK, pCAL-n, pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLacI, pOPRSVI/MCS, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo Poly A, pOG44, pOG45, pFRTβGAL, pNEOβGAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene and variants or derivatives thereof. Two-hybrid and reverse two-hybrid vectors can also be used, for example, pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGADI-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof. Any other plasmids and vectors may be used as long as they are replicable and viable in the host. - Techniques which can be used to allow the DNA construct entry into the host cell include calcium phosphate/DNA co precipitation, microinjection of DNA into the nucleus, electroporation, bacterial protoplast fusion with intact cells, transfection, or any other technique known by one skilled in the art. The DNA can be single or double stranded, linear or circular, relaxed or supercoiled DNA. For various techniques for transfecting mammalian cells, see, for example, Keown et al., Methods in Enzymology Vol. 185, pp. 527-537 (1990).
- In one specific embodiment, heterozygous knockout cells can be produced by transfection of primary porcine fetal fibroblasts with a knockout vector containing alpha-1,3-GT sequence isolated from isogenic DNA. As described in Dai et al. (Nature Biotechnology, 20:451-455), the 5′ arm can be 4.9 kb and be comprised of a large fragment of
intron 8 and the 5′ end ofexon 9. The 3′ arm can be and be comprised ofexon 9 sequence. The vector can incorporate a promoter trap strategy, using, for example, IRES (internal ribosome entry site) to initiate translation of the Neor gene (see, for example,FIG. 6 ). - Selection of Homologously Recombined Cells
- The cells can then be grown in appropriately-selected medium to identify cells providing the appropriate integration. The presence of the selectable marker gene inserted into the alpha-1,3-GT gene establishes the integration of the target construct into the host genome. Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, etc to analyze the DNA in order to establish whether homologous or non-homologous recombination occurred. This can be determined by employing probes for the insert and then sequencing the 5′ and 3′ regions flanking the insert for the presence of the alpha-1,3-GT gene extending beyond the flanking regions of the construct or identifying the presence of a deletion, when such deletion is introduced. Primers can also be used which are complementary to a sequence within the construct and complementary to a sequence outside the construct and at the target locus. In this way, one can only obtain DNA duplexes having both of the primers present in the complementary chains if homologous recombination has occurred. By demonstrating the presence of the primer sequences or the expected size sequence, the occurrence of homologous recombination is supported.
- The polymerase chain reaction used for screening homologous recombination events is known in the art, see, for example, Kim and Smithies, Nucleic Acids Res. 16:8887-8903, 1988; and Joyner et al., Nature 338:153-156, 1989. The specific combination of a mutant polyoma enhancer and a thymidine kinase promoter to drive the neomycin gene has been shown to be active in both embryonic stem cells and EC cells by Thomas and Capecchi, supra, 1987; Nicholas and Berg (1983) in Teratocarcinoma Stem Cell, eds. Siver, Martin and Strikland (Cold Spring Harbor Lab., Cold Spring Harbor, N.Y. (pp. 469-497); and Linney and Donerly, Cell 35:693-699, 1983.
- The cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it can be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.
- Induced Mutation in the
Alpha - In certain other embodiments, the methods of the invention involve the intentional introduction of a mutation via a mutagenic agent. Examples of mutagenic agents known in the art and suitable for use in the present invention include, but are not limited to, chemical mutagens (e.g., DNA-intercalating or DNA-binding chemicals such as N-ethyl-N-nitrosourea (ENU), ethylmethanesulphonate (EMS), mustard gas, ICR191 and the like; see, e.g., E. C. Friedberg, G. C. Walker, W. Siede, DNA Repair and Mutagenesis, ASM Press, Washington D.C. (1995), physical mutagens (e.g., UV radiation, radiation, x-rays), biochemical mutagens (e.g., restriction enzymes, DNA repair mutagens, DNA repair inhibitors, and error-prone DNA polymerases and replication proteins), as well as transposon insertion. According to the methods of the present invention, cells in culture can be exposed to one of these agents, and any mutation resulting in the depletion of galactose alpha1,3-galactose on the cell surface can be selected, for example, via exposure to toxin A.
- Preferred doses of chemical mutagens for inducing mutations in cells are known in the art, or can be readily determined by the ordinarily skilled artisan using assays of mutagenesis known in the art. Chemical mutagenesis of cells in vitro can be achieved by treating the cells with various doses of the mutagenic agent and/or controlling the time of exposure to the agent. By titrating the mutagenic agent exposure and/or dose, it is possible to carry out the optimal degree of mutagenesis for the intended purpose, thereby mutating a desired number of genes in each target cell. For example, useful doses of ENU can be 0.1-0.4 mg/ml for approximately 1-2 hours. In another example, useful doses of EMS can be 0.1-1 mg/ml for approximately 10-30 hours. In addition, lower and higher doses and exposure times can also be used to achieve the desired mutation frequency.
- II. Identification of Cells that do not Express Functional Alpha-1,3-GT
- In another aspect of the present invention, a selection method is provided for determining whether porcine cells lack expression of functional alpha-1,3-GT.
- In one embodiment, the selection procedure can be based on a bacterial toxin to select for cells that lack expression of functional alpha1,3GT. In another embodiment, the bacterial toxin, toxin A produced by Clostridium difficile, can be used to select for cells lacking the cell surface epitope galactose alpha1,3-galactose. Exposure to C. difficile toxin can cause rounding of cells that exhibit this epitope on their surface, releasing the cells from the plate matrix. Both targeted gene knockouts and mutations that disable enzyme function or expression can be detected using this selection method. Cells lacking cell surface expression of the
galactose alpha 1,3-galactose epitope, identified using Toxin A mediated selection described, or produced using standard methods of gene inactivation including gene targeting, can then be used to produce pigs, in which both alleles of thealpha - In one embodiment, the selection method can detect the depletion of the
alpha 1,3GT epitope directly, whether due to targeted knockout of thealpha 1,3GT gene by homologous recombination, or a mutation in the gene that results in a nonfunctioning or nonexpressed enzyme. Selection via antibiotic resistance has been used most commonly for screening (see above). This method can detect the presence of the resistance gene on the targeting vector, but does not directly indicate whether integration was a targeted recombination event or a random integration. Certain technology, such as Poly A and promoter trap technology, increase the probability of targeted events, but again, do not give direct evidence that the desired phenotype, a cell deficient ingal alpha alpha 1,3gal epitope depletion. In these cases, since the selection is based on detection of targeting vector integration and not at the altered phenotype, only targeted knockouts, not point mutations, gene rearrangements or truncations or other such modifications can be detected. - Toxin A, a cytotoxin produced by the bacterium Clostridium difficile, specifically binds the terminal carbohydrate glactose alpha-1,3-galactose sequence gal alpha 1-3gal beta 1-4GlcNAc. Binding to this receptor mediates a cytotoxic effect on the cell, causing it to change morphology and, in some cases, to release from the plate matrix. Under controlled conditions, cells not carrying this marker are unaffected by the toxin. Thus, in one embodiment, to determine whether or not the
alpha gal alpha - Toxin A, one of two cytotoxins produced by Clostridium difficile, has a high binding affinity for the galactose alpha-1,3-galactose
sequence gal alpha 1,3-gal beta 1,4GlcNAc found on the surface of a variety of cell types (Clark et al., Arch. Biochem. Biophys. 257 (1): 217-229, 1987). This carbohydrate seems to serve as a functional receptor for Toxin A, as cells displaying this epitope on their surface are more sensitive to the cytotoxic effect of toxin A than are cells lacking this receptor. Sensitive cells exposed to toxin A in culture exhibit cell rounding, probably due to actin depolymerization and resultant changes in cytoskeletal integrity (Kushnaryov et al., J. Biol. Chem. 263: 17755-17762 (1988) and Just et al., J. Clin. Invest. 95: 1026-1031,1995). These cells can be selectively removed from the culture, as they lift from the matrix and float in suspension, leaving unaffected cells firmly attached to the plate surface. - Exposure of cells to toxin A. In one embodiment, attached cells are exposed to toxin A as a component of cell culture media. After a fixed time of exposure, the media containing the toxin A and released toxin A-sensitive cells are removed, the plate washed, and the media, without toxin A, replenished. The exposure to toxin A is repeated over a period of days to remove attached toxin-sensitive cells from the plates, and allow insensitive cells to proliferate and expand. Purified toxin A can be used in the methods of the present invention (available commercially, see for example, Techlab Inc., Cat. #T3001, Blacksburg, Va.). Crude unpurified toxin A can also be used (available commercially, see for example, Techlab Inc. Cat. #T5000 or T3000, Blacksburg, Va.), which can require initial titering to determine effective dosage for selection.
- Serum-Based Selection Method
- In another embodiment, the selection procedure can be conducted using serum containing complement factors and natural antibodies to the gal alpha1,3gal epitope (see, for example, Koike et al., Xenotransplantation 4:147-153, 1997). Exposure to serum from a human or non-human primate that contains anti-Gal antibodies can cause cell lysis due to specific antibody binding and complement activation in cells that exhibit
gal alpha - Further Characterization of Porcine Cells Lacking Expression of Functional alpha1,3GT
- Porcine cells believed to lacking expression of functional alpha-1,3-GT can be further characterized. Such characterization can be accomplished by the following techniques, including, but not limited to: PCR analysis, Southern blot analysis, Northern blot analysis, specific lectin binding assays, and/or sequencing analysis.
- PCR analysis as described in the art (see, for example, Dai et al. Nature Biotechnology 20:431-455) can be used to determine the integration of targeting vectors. In one embodiment, amplimers can originate in the antibiotic resistance gene and extend into a region outside the vector sequence. Southern analysis (see, for example, Dai et al. Nature Biotechnology 20:431-455) can also be used to characterize gross modifications in the locus, such as the integration of a targeting vector into the
alpha 1,3GT locus. Whereas, Northern analysis can be used to characterize the transcript produced from each of the alleles. - Specific lectin binding, using GSL IB4 lectin from Griffonia (Bandeiraea) simplicifolia (Vector Labs), a lectin that specifically binds the carbohydrate
moiety gal alpha alpha - Further, sequencing analysis of the cDNA produced from the RNA transcript can also be used to determine the precise location of any mutations in the
alpha 1,3GT allele. - In yet another aspect, the present invention provides a method for producing viable pigs in which both alleles of the alpha-1,3-GT gene have been rendered inactive. In one embodiment, the pigs are produced by cloning using a donor nucleus from a porcine cell in which both alleles of the alpha-1,3-GT gene have been inactivated. In one embodiment, both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event. In another embodiment, both alleles of the alpha-1,3-GT gene are inactivated due to the presence of a point mutation. In another embodiment, one allele is inactivated by a genetic targeting event and the other allele is inactivated via a point mutation. In a further embodiment, one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of
exon 9 of the alpha-1,3-GT gene. In a specific embodiment, one allele is inactivated via a targeting construct directed to Exon 9 (FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene. In another embodiment, a method to clone such pigs includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a porcine cell in which both alleles of the alpha-1,3-GT gene have been inactivated, and implanting the nuclear transfer-derived embryo into a surrogate mother. - Alternatively, a method is provided for producing viable pigs that lack any expression of functional alpha-1,3-GT by inactivating both alleles of the alpha-1,3-GT gene in embryonic stem cells, which can then be used to produce offspring.
- Genetically altered animals that can be created by modifying zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term. For example, if whole animals lacking the alpha-1,3-GT gene are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells can be used.
- In a suitable embodiment of the invention, the totipotent cells are embryonic stem (ES) cells. The isolation of ES cells from blastocysts, the establishing of ES cell lines and their subsequent cultivation are carried out by conventional methods as described, for example, by Doetchmann et al., J. Embryol. Exp. Morph. 87:27-45 (1985); Li et al., Cell 69:915-926 (1992); Robertson, E. J. “Tetracarcinomas and Embryonic Stem Cells: A Practical Approach,” ed. E. J. Robertson, IRL Press, Oxford, England (1987); Wurst and Joyner, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); Hogen et al., “Manipulating the Mouse Embryo: A Laboratory Manual,” eds. Hogan, Beddington, Costantini and Lacy, Cold Spring Harbor Laboratory Press, New York (1994); and Wang et al., Nature 336:741-744 (1992). In another suitable embodiment of the invention, the totipotent cells are embryonic germ (EG) cells. Embryonic Germ cells are undifferentiated cells functionally equivalent to ES cells, that is they can be cultured and transfected in vitro, then contribute to somatic and germ cell lineages of a chimera (Stewart et al., Dev. Biol. 161:626-628 (1994)). EG cells are derived by culture of primordial germ cells, the progenitors of the gametes, with a combination of growth factors: leukemia inhibitory factor, steel factor and basic fibroblast growth factor (Matsui et al., Cell 70:841-847 (1992); Resnick et al., Nature 359:550-551 (1992)). The cultivation of EG cells can be carried out using methods described in the article by Donovan et al., “Transgenic Animals, Generation and Use,” Ed. L. M. Houdebine, Harwood Academic Publishers (1997), and in the original literature cited therein.
- Tetraploid blastocysts for use in the invention may be obtained by natural zygote production and development, or by known methods by electrofusion of two-cell embryos and subsequently cultured as described, for example, by James et al., Genet. Res. Camb. 60:185-194 (1992); Nagy and Rossant, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); or by Kubiak and Tarkowski, Exp. Cell Res. 157:561-566 (1985).
- The introduction of the ES cells or EG cells into the blastocysts can be carried out by any method known in the art. A suitable method for the purposes of the present invention is the microinjection method as described by Wang et al., EMBO J. 10:2437-2450 (1991).
- Alternatively, by modified embryonic stem cells transgenic animals can be produced. The genetically modified embryonic stem cells can be injected into a blastocyst and then brought to term in a female host mammal in accordance with conventional techniques. Heterozygous progeny can then be screened for the presence of the alteration at the site of the target locus, using techniques such as PCR or Southern blotting. After mating with a wild-type host of the same species, the resulting chimeric progeny can then be cross-mated to achieve homozygous hosts.
- After transforming embryonic stem cells with the targeting vector to alter the alpha-1,3-GT gene, the cells can be plated onto a feeder layer in an appropriate medium, e.g., fetal bovine serum enhanced DMEM. Cells containing the construct can be detected by employing a selective medium, and after sufficient time for colonies to grow, colonies can be picked and analyzed for the occurrence of homologous recombination. Polymerase chain reaction can be used, with primers within and without the construct sequence but at the target locus. Those colonies which show homologous recombination can then be used for embryo manipulating and blastocyst injection. Blastocysts can be obtained from superovulated females. The embryonic stem cells can then be trypsinized and the modified cells added to a droplet containing the blastocysts. At least one of the modified embryonic stem cells can be injected into the blastocoel of the blastocyst. After injection, at least one of the blastocysts can be returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. The blastocysts are selected for different parentage from the transformed ES cells. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected, and then genotyping can be conducted to probe for the presence of the modified alpha-1,3-GT gene.
- Somatic Cell Nuclear Transfer to Produce Cloned, Transgenic Offspring
- The present invention provides a method for cloning a pig lacking a functional alpha-1,3-GT gene via somatic cell nuclear transfer. In general, the pig can be produced by a nuclear transfer process comprising the following steps: obtaining desired differentiated pig cells to be used as a source of donor nuclei; obtaining oocytes from a pig; enucleating said oocytes; transferring the desired differentiated cell or cell nucleus into the enucleated oocyte, e.g., by fusion or injection, to form NT units; activating the resultant NT unit; and transferring said cultured NT unit to a host pig such that the NT unit develops into a fetus.
- Nuclear transfer techniques or nuclear transplantation techniques are known in the art(Dai et al. Nature Biotechnology 20:251-255; Polejaeva et al Nature 407:86-90 (2000); Campbell et al, Theriogenology, 43:181 (1995); Collas et al, Mol. Report Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, and WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420).
- A donor cell nucleus, which has been modified to alter the alpha-1,3-GT gene, is transferred to a recipient porcine oocyte. The use of this method is not restricted to a particular donor cell type. The donor cell can be as described herein, see also, for example, Wilmut et al Nature 385 810 (1997); Campbell et al Nature 380 64-66 (1996); Dai et al., Nature Biotechnology 20:251-255, 2002 or Cibelli et al Science 280 1256-1258 (1998). All cells of normal karyotype, including embryonic, fetal and adult somatic cells which can be used successfully in nuclear transfer can be employed. Fetal fibroblasts are a particularly useful class of donor cells. Generally suitable methods of nuclear transfer are described in Campbell et al Theriogenology 43 181 (1995), Dai et al. Nature Biotechnology 20:251-255, Polejaeva et al Nature 407:86-90 (2000), Collas et al Mol. Reprod. Dev. 38 264-267 (1994), Keefer et al Biol. Reprod. 50 935-939 (1994), Sims et al Proc. Nat'l. Acad. Sci. USA 90 6143-6147 (1993), WO-A-9426884, WO-A-9424274, WO-A-9807841, WO-A-9003432, U.S. Pat. No. 4,994,384 and U.S. Pat. No. 5,057,420. Differentiated or at least partially differentiated donor cells can also be used. Donor cells can also be, but do not have to be, in culture and can be quiescent. Nuclear donor cells which are quiescent are cells which can be induced to enter quiescence or exist in a quiescent state in vivo. Prior art methods have also used embryonic cell types in cloning procedures (Campbell et al (Nature, 380:64-68, 1996) and Stice et al (Biol. Reprod., 20 54:100-110, 1996).
- Somatic nuclear donor cells may be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In a suitable embodiment of the invention, nuclear donor cells are selected from the group consisting of epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells or endothelial cells. In another embodiment, the nuclear donor cell is an embryonic stem cell. In a preferred embodiment, fibroblast cells can be used as donor cells.
- In another embodiment of the invention, the nuclear donor cells of the invention are germ cells of an animal. Any germ cell of an animal species in the embryonic, fetal, or adult stage may be used as a nuclear donor cell. In a suitable embodiment, the nuclear donor cell is an embryonic germ cell.
- Nuclear donor cells may be arrested in any phase of the cell cycle (G0, G1, G2, S, M) so as to ensure coordination with the acceptor cell. Any method known in the art may be used to manipulate the cell cycle phase. Methods to control the cell cycle phase include, but are not limited to, G0 quiescence induced by contact inhibition of cultured cells, G0 quiescence induced by removal of serum or other essential nutrient, G0 quiescence induced by senescence, G0 quiescence induced by addition of a specific growth factor; G0 or G1 quiescence induced by physical or chemical means such as heat shock, hyperbaric pressure or other treatment with a chemical, hormone, growth factor or other substance; S-phase control via treatment with a chemical agent which interferes with any point of the replication procedure; M-phase control via selection using fluorescence activated cell sorting, mitotic shake off, treatment with microtubule disrupting agents or any chemical which disrupts progression in mitosis (see also Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique,” Alan R. Liss, Inc, New York (1983).
- Methods for isolation of oocytes are well known in the art. Essentially, this can comprise isolating oocytes from the ovaries or reproductive tract of a pig. A readily available source of pig oocytes is slaughterhouse materials. For the combination of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells can be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. This process generally requires collecting immature (prophase I) oocytes from mammalian ovaries, e.g., bovine ovaries obtained at a slaughterhouse, and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. This period of time is known as the “maturation period”. In certain embodiments, the oocyte is obtained from a gilt. A “gilt” is a female pig that has never had offspring. In other embodiments, the oocyte is obtained from a sow. A “sow” is a female pig that has previously produced offspring.
- A metaphase II stage oocyte can be the recipient oocyte, at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it does a fertilizing sperm. Metaphase II stage oocytes, which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes can be collected surgically from either non-superovulated or superovulated porcine 35 to 48, or 39-41, hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.
- After a fixed time maturation period, which ranges from about 10 to 40 hours, and preferably about 16-18 hours, the oocytes can be enucleated. Prior to enucleation the oocytes can be removed and placed in appropriate medium, such as HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. The stripped oocytes can then be screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
- Enucleation can be performed by known methods, such as described in U.S. Pat. No. 4,994,384. For example, metaphase II oocytes can be placed in either HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or can be placed in a suitable medium, for example an embryo culture medium such as CR1aa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16-18 hours later.
- Enucleation can be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm. The oocytes can then be screened to identify those of which have been successfully enucleated. One way to screen the oocytes is to stain the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then view the oocytes under ultraviolet irradiation for less than 10 seconds. The oocytes that have been successfully enucleated can then be placed in a suitable culture medium, for example, CR1aa plus 10% serum.
- A single mammalian cell of the same species as the enucleated oocyte can then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit. The mammalian cell and the enucleated oocyte can be used to produce NT units according to methods known in the art. For example, the cells can be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Thus, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels can open between the two cells. Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. See, for example, U.S. Pat. No. 4,997,384 by Prather et al. A variety of electrofusion media can be used including, for example, sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inot. Symp. Monogr., 9, 19, 1969). Also, the nucleus can be injected directly into the oocyte rather than using electroporation fusion. See, for example, Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994). After fusion, the resultant fused NT units are then placed in a suitable medium until activation, for example, CR1 aa medium. Typically activation can be effected shortly thereafter, for example less than 24 hours later, or about 4-9 hours later, or optimally 1-2 hours after fusion. In a preferred embodiments, activation occurs at least one hour post fusion and at 40-41 hours post maturation.
- The NT unit can be activated by known methods. Such methods include, for example, culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This can be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed. Alternatively, activation can be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock can be used to activate NT embryos after fusion. See, for example, U.S. Pat. No. 5,496,720, to Susko-Parrish et al. Additionally, activation can be effected by simultaneously or sequentially by increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins in the oocyte. This can generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore. Other methods of increasing divalent cation levels include the use of electric shock, treatment with ethanol and treatment with caged chelators. Phosphorylation can be reduced by known methods, for example, by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine. Alternatively, phosphorylation of cellular proteins can be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.
- The activated NT units, or “fused embyos”, can then be cultured in a suitable in vitro culture medium until the generation of cell colonies. Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which can be used for embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media, and, in one specific example, the activated NT units can be cultured in NCSU-23 medium for about 1-4 h at approximately 38.6° C. in a humidified atmosphere of 5% CO2.
- Afterward, the cultured NT unit or units can be washed and then placed in a suitable media contained in well plates which preferably contain a suitable confluent feeder layer. Suitable feeder layers include, by way of example, fibroblasts and epithelial cells. The NT units are cultured on the feeder layer until the NT units reach a size suitable for transferring to a recipient female, or for obtaining cells which can be used to produce cell colonies. Preferably, these NT units can be cultured until at least about 2 to 400 cells, about 4 to 128 cells, or at least about 50 cells.
- Activated NT units can then be transferred (embryo transfers) to the oviduct of an female pigs. In one embodiment, the female pigs can be an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/Landrace) (280-400 lbs) can be used. The gilts can be synchronized as recipient animals by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into the feed. Regu-Mate can be fed for 14 consecutive days. One thousand units of Human Chorionic Gonadotropin (hCG, Intervet America, Millsboro, Del.) can then be administered i.m. about 105 h after the last Regu-Mate treatment. Embryo transfers of the can then be performed about 22-26 h after the hCG injection. In one embodiment, the pregnancy can be brought to term and result in the birth of live offspring. In another embodiment, the pregnancy can be terminated early and embryonic cells can be harvested.
- Breeding for Desired Homozygous Knockout Animals
- In another aspect, the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT is provided by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene. In one embodiment, the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele. In another embodiment, the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene. In another embodiment, the point mutation can be a T-to-G point mutation at the second base of
exon 9 of the alpha-1,3-GT gene. In one specific embodiment, a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT is provided wherein a male pig that contains a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base ofexon 9 of the alpha-1,3-GT gene. - In one embodiment, sexually mature animals produced from nuclear transfer from donor cells that carrying a double knockout in the alpha-1,3-GT gene, can be bred and their offspring tested for the homozygous knockout. These homozygous knockout animals can then be bred to produce more animals.
- In another embodiment, oocytes from a sexually mature double knockout animal can be in vitro fertilized using wild type sperm from two genetically diverse pig lines and the embryos implanted into suitable surrogates. Offspring from these matings can be tested for the presence of the knockout, for example, they can be tested by cDNA sequencing, PCR, toxin A sensitivity and/or lectin binding. Then, at sexual maturity, animals from each of these litters can be mated.
- In certain methods according to this aspect of the invention, pregnancies can be terminated early so that fetal fibroblasts can be isolated and further characterized phenotypically and/or genotypically. Fibroblasts that lack expression of the alpha-1,3-GT gene can then be used for nuclear transfer according to the methods described herein (see also Dai et al.) to produce multiple pregnancies and offspring carrying the desired double knockout.
- In one aspect of the present invention, porcine animals are provided in which one allele of the alpha-1,3-GT gene is inactivated via a genetic targeting event. In another aspect of the present invention, porcine animals are provided in which both alleles of the alpha-1,3-GT gene are inactivated via a genetic targeting event. In one embodiment, the gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knockout”) or insertion (“knockin”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.
- Pigs that possess two inactive alleles of the alpha-1,3-GT gene are not naturally occurring. It was surprisingly discovered that while attempting to knockout the second allele of the alpha-1,3-GT gene through a genetic targeting event, a point mutation was identified, which rendered the second allele inactive.
- Thus, in another aspect of the present invention, the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In one embodiment, one allele of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In another embodiment, both alleles of the alpha-1,3-GT gene can be rendered inactive through at least one point mutation. In one embodiment, this point mutation can occur via a genetic targeting event. In another embodiment, this point mutation can be naturally occurring. In one specific embodiment the point mutation can be a T-to-G mutation at the second base of
exon 9 of the alpha-1,3-GT gene (FIG. 2 ). Pigs carrying a naturally occurring point mutation in the alpha-1,3-GT gene allow for the production of alpha1,3GT-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use. In other embodiments, at least two, at least three, at least four, at least five, at least ten or at least twenty point mutations can exist to render the alpha-1,3-GT gene inactive. In other embodiments, pigs are provided in which both alleles of the alpha-1,3-GT gene contain point mutations that prevent any expression of functional alpha1,3GT. In a specific embodiment, pigs are provided that contain the T-to-G mutation at the second base ofexon 9 in both alleles of the alpha-1,3-GT gene (FIG. 2 ). - Another aspect of the present invention provides a porcine animal, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated via a naturally occurring point mutation. In one embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated by a genetic targeting event and the other allele is inactivated due to presence of a T-to-G point mutation at the second base of
exon 9. In a specific embodiment, a porcine animal is provided, in which both alleles of the alpha-1,3-GT gene are inactivated, whereby one allele is inactivated via a targeting construct directed to Exon 9 (FIG. 6 ) and the other allele is inactivated due to presence of a T-to-G point mutation at the second base ofexon 9. - The present invention provides, for the first time, viable porcine in which both alleles of the
alpha - In one embodiment, the invention provides porcine organs, tissues and/or purified or substantially pure cells or cell lines obtained from pigs that lack any expression of functional alpha1,3GT.
- In one embodiment, the invention provides organs that are useful for xenotransplantation. Any porcine organ can be used, including, but not limited to: brain, heart, lungs, glands, brain, eye, stomach, spleen, pancreas, kidneys, liver, intestines, uterus, bladder, skin, hair, nails, ears, nose, mouth, lips, gums, teeth, tongue, salivary glands, tonsils, pharynx, esophagus, large intestine, small intestine, rectum, anus, pylorus, thyroid gland, thymus gland, suprarenal capsule, bones, cartilage, tendons, ligaments, skeletal muscles, smooth muscles, blood vessels, blood, spinal cord, trachea, ureters, urethra, hypothalamus, pituitary, adrenal glands, ovaries, oviducts, uterus, vagina, mammary glands, testes, seminal vesicles, penis, lymph, lymph nodes and lymph vessels.
- In another embodiment, the invention provides tissues that are useful for xenotransplantation. Any porcine tissue can be used, including, but not limited to: epithelium, connective tissue, blood, bone, cartilage, muscle, nerve, adenoid, adipose, areolar, bone, brown adipose, cancellous, muscle, cartaginous, cavernous, chondroid, chromaffin, dartoic, elastic, epithelial, fatty, fibrohyaline, fibrous, Gamgee, gelatinous, granulation, gut-associated lymphoid, Haller's vascular, hard hemopoietic, indifferent, interstitial, investing, islet, lymphatic, lymphoid, mesenchymal, mesonephric, mucous connective, multilocular adipose, myeloid, nasion soft, nephrogenic, nodal, osseous, osteogenic, osteoid, periapical, reticular, retiform, rubber, skeletal muscle, smooth muscle, and subcutaneous tissue.
- In a further embodiment, the invention provides cells and cell lines from porcine animals that lack expression of functional alpha1,3GT. In one embodiment, these cells or cell lines can be used for xenotransplantation. Cells from any porcine tissue or organ can be used, including, but not limited to: epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, pancreatic insulin secreting cells, pancreatic alpha-2 cells, pancreatic beta cells, pancreatic alpha-1 cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells., hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, dopamiergic cells, squamous epithelial cells, osteocytes, osteoblasts, osteoclasts, dopaminergic cells, embryonic stem cells, fibroblasts and fetal fibroblasts. In a specific embodiment, pancreatic cells, including, but not limited to, Islets of Langerhans cells, insulin secreting cells, alpha-2 cells, beta cells, alpha-1 cells from pigs that lack expression of functional alpha-1,3-GT are provided.
- Nonviable derivatives include tissues stripped of viable cells by enzymatic or chemical treatment these tissue derivatives can be further processed via crosslinking or other chemical treatments prior to use in transplantation. In a preferred embodiment, the derivatives include extracelluar matrix derived from a variety of tissues, including skin, urinary, bladder or organ submucosal tissues. Also, tendons, joints and bones stripped of viable tissue to include heart valves and other nonviable tissues as medical devices are provided.
- Therapeutic Uses
- The cells can be administered into a host in order in a wide variety of ways. Preferred modes of administration are parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrasternal, intra-articular, intra-synovial, intrathecal, intra-arterial, intracardiac, intramuscular, intranasal, subcutaneous, intraorbital, intracapsular, topical, transdermal patch, via rectal, vaginal or urethral administration including via suppository, percutaneous, nasal spray, surgical implant, internal surgical paint, infusion pump, or via catheter. In one embodiment, the agent and carrier are administered in a slow release formulation such as a direct tissue injection or bolus, implant, microparticle, microsphere, nanoparticle or nanosphere.
- Disorders that can be treated by infusion of the disclosed cells include, but are not limited to, diseases resulting from a failure of a dysfunction of normal blood cell production and maturation (i.e., aplastic anemia and hypoproliferative stem cell disorders); neoplastic, malignant diseases in the hematopoietic organs (e.g., leukemia and lymphomas); broad spectrum malignant solid tumors of non-hematopoietic origin; autoimmune conditions; and genetic disorders. Such disorders include, but are not limited to diseases resulting from a failure or dysfunction of normal blood cell production and maturation hyperproliferative stem cell disorders, including aplastic anemia, pancytopenia, agranulocytosis, thrombocytopenia, red cell aplasia, Blackfan-Diamond syndrome, due to drugs, radiation, or infection, idiopathic; hematopoietic malignancies including acute lymphoblastic (lymphocytic) leukemia, chronic lymphocytic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, acute malignant myelosclerosis, multiple myeloma, polycythemia vera, agnogenic myelometaplasia, Waldenstrom's macroglobulinemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma; immunosuppression in patients with malignant, solid tumors including malignant melanoma, carcinoma of the stomach, ovarian carcinoma, breast carcinoma, small cell lung carcinoma, retinoblastoma, testicular carcinoma, glioblastoma, rhabdomyosarcoma, neuroblastoma, Ewing's sarcoma, lymphoma; autoimmune diseases including rheumatoid arthritis, diabetes type I, chronic hepatitis, multiple sclerosis, systemic lupus erythematosus; genetic (congenital) disorders including anemias, familial aplastic, Fanconi's syndrome, dihydrofolate reductase deficiencies, formamino transferase deficiency, Lesch-Nyhan syndrome, congenital dyserythropoietic syndrome I-IV, Chwachmann-Diamond syndrome, dihydrofolate reductase deficiencies, formamino transferase deficiency, Lesch-Nyhan syndrome, congenital spherocytosis, congenital elliptocytosis, congenital stomatocytosis, congenital Rh null disease, paroxysmal nocturnal hemoglobinuria, G6PD (glucose-6-phhosphate dehydrogenase) variants 1, 2, 3, pyruvate kinase deficiency, congenital erythropoietin sensitivity, deficiency, sickle cell disease and trait, thalassemia alpha, beta, gamma, met-hemoglobinemia, congenital disorders of immunity, severe combined immunodeficiency disease (SCID), bare lymphocyte syndrome, ionophore-responsive combined immunodeficiency, combined immunodeficiency with a capping abnormality, nucleoside phosphorylase deficiency, granulocyte actin deficiency, infantile agranulocytosis, Gaucher's disease, adenosine deaminase deficiency, Kostmann's syndrome, reticular dysgenesis, congenital Leukocyte dysfunction syndromes; and others such as osteoporosis, myelosclerosis, acquired hemolytic anemias, acquired immunodeficiencies, infectious disorders causing primary or secondary immunodeficiencies, bacterial infections (e.g., Brucellosis, Listerosis, tuberculosis, leprosy), parasitic infections (e.g., malaria, Leishmaniasis), fungal infections, disorders involving disproportionsin lymphoid cell sets and impaired immune functions due to aging, phagocyte disorders, Kostmann's agranulocytosis, chronic granulomatous disease, Chediak-Higachi syndrome, neutrophil actin deficiency, neutrophil membrane GP-180 deficiency, metabolic storage diseases, mucopolysaccharidoses, mucolipidoses, miscellaneous disorders involving immune mechanisms, Wiskott-Aldrich Syndrome, alpha 1-antirypsin deficiency, etc.
- Diseases or pathologies include neurodegenerative diseases, hepatodegenerative diseases, nephrodegenerative disease, spinal cord injury, head trauma or surgery, viral infections that result in tissue, organ, or gland degeneration, and the like. Such neurodegenerative diseases include but are not limited to, AIDS dementia complex; demyeliriating diseases, such as multiple sclerosis and acute transferase myelitis; extrapyramidal and cerebellar disorders, such as lesions of the ecorticospinal system; disorders of the basal ganglia or cerebellar disorders; hyperkinetic movement disorders, such as Huntington's Chorea and senile chorea; drug-induced movement disorders, such as those induced by drugs that block CNS dopamine receptors; hypokinetic movement disorders, such as Parkinson's disease; progressive supra-nucleo palsy; structural lesions of the cerebellum; spinocerebellar degenerations, such as spinal ataxia, Friedreich's ataxia, cerebellar cortical degenerations, multiple systems degenerations (Mencel, Dejerine Thomas, Shi-Drager, and Machado-Joseph), systermioc disorders, such as Rufsum's disease, abetalipoprotemia, ataxia, telangiectasia; and mitochondrial multi-system disorder; demyelinating core disorders, such as multiple sclerosis, acute transverse myelitis; and disorders of the motor unit, such as neurogenic muscular atrophies (anterior horn cell degeneration, such as amyotrophic lateral sclerosis, infantile spinal muscular atrophy and juvenile spinal muscular atrophy); Alzheimer's disease; Down's Syndrome in middle age; Diffuse Lewy body disease; Senile Demetia of Lewy body type; Parkinson's Disease, Wernicke-Korsakoff syndrome; chronic alcoholism; Creutzfeldt-Jakob disease; Subacute sclerosing panencephalitis hallerrorden-Spatz disease; and Dementia pugilistica. See, e.g., Berkow et. al., (eds.) (1987), The Merck Manual, (15th), ed.), Merck and Co., Rahway, N.J.
- The present invention is described in further detail in the following examples. The examples provided below are intended to be illustrative only, and are not intended to limit the scope of the invention.
- Isolation and Transfection of Primary Porcine Fetal Fibroblasts.
- Fetal fibroblast cells (PCFF4-1 to PCFF4-10) were isolated from 10 fetuses of the same pregnancy at day 33 of gestation. After removing the head and viscera, fetuses were washed with Hanks' balanced salt solution (HBSS; Gibco-BRL, Rockville, Md.), placed in 20 ml of HBSS, and diced with small surgical scissors. The tissue was pelleted and resuspended in 50-ml tubes with 40 ml of DMEM and 100 U/ml collagenase (Gibco-BRL) per fetus. Tubes were incubated for 40 min in a shaking water bath at 37° C. The digested tissue was allowed to settle for 3-4 min and the cell-rich supernatant was transferred to a new 50-ml tube and pelleted. The cells were then resuspended in 40 ml of DMEM containing 10% fetal calf serum (FCS), 1× nonessential amino acids, 1 mM sodium pyruvate and 2 ng/ml bFGF, and seeded into 10 cm. dishes. All cells were cryopreserved upon reaching confluence. SLA-1 to SLA-10 cells were isolated from 10 fetuses at day 28 of pregnancy. Fetuses were mashed through a 60-mesh metal screen using curved surgical forceps slowly so as not to generate excessive heat. The cell suspension was then pelleted and resuspended in 30 ml of DMEM containing 10% FCS, 1× nonessential amino acids, 2 ng/ml bFGF, and 10 μg/ml gentamycin. Cells were seeded in 10-cm dishes, cultured one to three days, and cryopreserved. For transfections, 10 μg of linearized vector DNA was introduced into 2 million cells by electroporation. Forty-eight hours after transfection, the transfected cells were seeded into 48-well plates at a density of 2,000 cells per well and were selected with 250 μg/ml of G418.
- Knockout Vector Construction
- Two alpha-1,3-GT knockout vectors, pPL654 and pPL657, were constructed from isogenic DNA of two primary porcine fetal fibroblasts, SLA1-10 and PCFF4-2 cells. A 6.8-kb alpha-1,3-GT genomic fragment, which includes most of
intron 8 andexon 9, was generated by PCR from purified DNA of SLA1-10 cells and PCFF4-2 cells, respectively. The unique EcORV site at the 5′ end ofexon 9 was converted into a SalI site and a 1.8-kb IRES-neo-poly A fragment was inserted into the SalI site. IRES (internal ribosome entry site) functions as a translation initial site for neo protein. Thus, both vectors have a 4.9-kb 5′ recombination arm and a 1.9-kb 3′ recombination arm (FIG. 6 ). - 3′PCR and Long-Range PCR
- Approximately 1,000 cells were resuspended in 5 μl embryo lysis buffer (ELB) (40 mM Tris, pH 8.9, 0.9% Triton X-100, 0.9% NP40, 0.4 mg/ml Proteinase K), incubated at 65° C. for 15 min to lyse the cells and heated to 95° C. for 10 min to inactivate the Proteinase K. For 3′ PCR analysis, fragments were amplified using the Expand High Fidelity PCR system (Roche Molecular Biochemicals) in 25 μl reaction volume with the following parameters: 35 cycles of 1 min at 94° C., 1 min at 60° C., and 2 min at 72° C. For LR-PCR, fragments were amplified by using TAKARA LA system (Panvera/Takara) in 50 μl reaction volume with the following parameters: 30 cycles of 10 s at 94° C., 30 s at 65° C., 10 min+20 s increase/cycle at 68° C., followed by one final cycle of 7 min at 68° C. 3′PCR and LR-PCR conditions for purified DNA was same as cells except that 1 μl of purified DNA (30 μg/ml) was mixed with 4 μl ELB.
- Southern Blot Analysis of Cell Samples
- Approximately 106 cells were lysed overnight at 60° C. in lysis buffer (10 mM Tris, pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% (w/v) Sarcosyl, 1 mg/ml proteinase K) and the DNA precipitated with ethanol. The DNA was then digested with BstEII and separated on a 1% agarose gel. After electrophoresis, the DNA was transferred to a nylon membrane and probed with the 3′-end digoxigenin-labeled probe. Bands were detected using a chemiluminescent substrate system (Roche Molecular Biochemicals).
- Results Antibiotic (G418) resistant colonies were screened by 3′ PCR with neo442S and αGTE9A2 as forward and reverse primers. Neo442S is at the 3′ end of the neo gene and αGTE9A2 is at the 3′ end of
exon 9 in sequences located outside of the 3′ recombination arm (FIG. 6 ). Therefore, only through successful targeting at the α1,3GT locus would the expected 2.4 kb PCR product be obtained. From a total of seven transfections in four different cell lines, 1105 G418 resistant colonies were picked, of which 100 (9%) were positive for α1,3 GT gene disruption in the initial 3′ PCR screen (range 2.5-12%). Colonies 657A-A8, 657A-I6, and 657A-I11 showed the expected 2.4 kb band, while control PCFF4-6 cells, and another G418 resistant colony, 657A-P6, were negative. A portion of each 3′ PCR positive colony was frozen down immediately, in several small aliquots, for future use in NT experiments, while the rest of cells were expanded for long-range PCR (LR-PCR) and Southern analysis. - Since PCR analysis to detect recombination junctions, or mRNA analysis (RT-PCR) can generate false positive results, a long-range PCR, which would encompass the entire targeted region, was performed. The LR-PCR covers the 7.4 kb α1,3GT genomic sequence from
exon 8 to the end ofexon 9, with both primers (aGTE8S and aGTE9A2) located outside of the recombination region (FIG. 2 ). The control PCFF4-6 cells, and the 3′ PCR-negative colony, 657A-P6, showed only the endogenous 7.4 kb band from the wild-type α1,3GT locus. In contrast, three of the 3′ PCR positive colonies, 657A-A8, 657A-I6 and 657A-I11, showed both the 7.4 kb endogenous band, and a new 9.2 kb band, of the size expected for targeted insertion of the 1.8 kb IRES-neo cassette into the α1,3GT locus. - Approximately half (17/30) of the LR-PCR positive colonies were successfully expanded to yield sufficient cell numbers (1×106 cells) for Southern analysis. It was anticipated that the colonies would be heterozygous for knockout at the α1,3 GT locus, and thus they should have one normal, unmodified gene copy, and one disrupted copy of the α1,3 GT gene. With BstEII digestion, the α1,3 GT knockout cells should show two bands: one 7 kb band of the size expected for the endogenous α1,3 GT allele, and a 9 kb band characteristic of insertion of the IRES-neo sequences at the α1,3 GT locus (
FIG. 2 ). All 17 LR-PCR positive colonies were confirmed by Southern analysis for the knockout. The same membranes were re-probed with sequences specific for neo and the 9 kb band was detected with the neo probe, thus confirming targeted insertion of the IRES-neo cassette at the disrupted α1,3GT locus. - Heterozygous alpha-1,3-GT knockout fetal fibroblasts, (657A-I11 1-6) cells, were isolated from a day-32 pregnancy as described above (See also Dai et al. Nature Biotechnology 20:451 (2002)). An ATG (start codon)-targeting alpha-1,3-GT knockout vector was constructed (pPL680), which also contained a neo gene, to knock out the second allele of the alpha-1,3-GT gene. These cells were transfected by electroporation with pPL680 and selected for the alpha1,3Gal-negative phenotype with purified C. difficile toxin A (described below).
- Toxin A Cyototoxicity Curve
- Porcine cells (PCFF4-6) were exposed for 1 hour or overnight to ten-fold serial dilutions of toxin A (0.00001 μg/ml to 10 μg/ml). Cells were cultured in 24 well plates and were incubated with the toxin for 1 hour or overnight at 37° C. The results of this exposure are detailed in Table 2. Clearly, a 1 hour exposure to toxin A at >1 μg/ml resulted in a cytotoxic effect on >90% of the cells. A concentration of toxin A at or slightly above 1 μg/ml therefore was chosen for selection of genetically altered cells.
-
TABLE 2 Toxin A toxicity at 1 hour and overnight exposure [Toxin A], μg/ ml 1 hour incubation Overnight incubation 0 100% confluency 100% confluency .00001 100% confluency 100% confluency .0001 100% confluency 100% confluency .001 100% confluency 100% confluency .01 100 % confluency 50% confluency, 50% rounded .1 90% confluency Same as 10 ug/ ml 1 >90% rounded Same as 10 ug/ ml 10 All cells rounded up All cells rounded up, some lifted - Disaggregated cells from a porcine embryo (I-11: 1-6) which contained a previously identified targeted knockout in one allele of the gal alpha-1,3-GT gene (Dai et al.) were transfected with 10 ug linearized vector DNA (promoter trap) by electroporation. After 48 hours, the cells were seeded into 48 well plates at a density of 2000 cells per well and selected with 250 ug/ml G418. Five days post-transfection, media was withdrawn from the wells, and replaced with 2 ug/ml toxin A in culture media (DMEM high glucose with 2.8 ng/ml bFGF and 20% FCS). Cells were exposed to the selective effect of toxin A for 2 hours at 37 C. The toxin A-containing media, along with any affected cells that have released from the plate surface, was withdrawn, the remaining cells washed with fresh media, and the media without toxin A replaced. Ten days later, cells were again exposed to toxin A at 1.3 ug/ml in media for 2 hours at 37 C. The media, toxin A, and any cells in solution were removed, the remaining cells washed, and the media replaced.
- Sixteen days post-transfection, a single colony that exhibited toxin A insensitivity, designated 680B1, was harvested and a portion sent for DNA analysis and lectin staining DNA analysis indicated that the toxin A insensitivity was not due to integration of the second target vector; however, the cells did not stain with GSL IB-4 lectin, indicating that a functional knockout of the locus had occurred. The
680B 1 double knockout cells were used for nuclear transfer into 5 recipients and three pregnancies resulted. Two of these pregnancies spontaneously aborted in the first month; the four fetuses from the remaining pregnancy were harvested on day 39 of the pregnancy and the cells disaggregated and seeded into tissue culture. These fetal cells (680B1-1, 680B1-2, 680B1-3, 680B1-4) were exposed to toxin A at 1 ug/ml for 1 hour at 37 C, followed by medium removal, cell washing, and medium replacement withouttoxin A. Fetuses fetus 3 rounded up, indicating that this embryo was sensitive to the cytotoxic effects of the toxin A. -
Fetuses fetus 3 did bind lectin. This suggests thatfetuses epitope alpha -
TABLE 3 FACS Results of 680B1-1 to 680B1-4 Cells with GS-IB4 Lectin GS IB4 lectin positive cells (%) 50 μg/ml IB4 100 μg/ml IB4 Cell Unstaining lectin lectin HeLa Cells 1% 2% 2.8% (Negative CTL) PCFF4-6 cells 0.2% 76% 91% (Positive CTL) PFF4 cells 1.5% 82% 94% (Positive CTL) 680B1-1 cells 0.6% 0.8% 0.9% 680B1-2 cells 1.2% 1.2% 1.1% 680B1-3 cells 8% 35% 62% 680B1-4 cells 0.6% 0.8% 0.9% - A complement fixation assay was run on cells from all four fetuses. The complement lysis assay was developed as a bioassay for lack of alpha gal expression. Human serum contains high levels of pre-formed antibody against alpha gal as well as the full portfolio of complement regulatory proteins (the C3 pathway). The presence of alpha gal on the surface of a cell, upon binding of anti-alpha gal antibody, activates the complement cascade, and results in complement-mediated cell lysis. Alpha-gal negative cells would be resistant to complement mediated lysis. In three separate tests, B1 and control pig cells were exposed to human serum plus complement, and assays performed to evaluate sensitivity or resistance to alpha-gal-initiated, complement-mediated cell lysis. The assay was performed with B1-1, B1-2, and B1-4 cells, as well as heterozygous GT KO cells (B1-3, gal positive), and with wild-type alpha-gal (+) PCFF4-6 pig cells as a control. Cells were exposed to one of three treatments; two negative controls, bovine serum albumin (BSA), and heat-inactivated human serum (HIA-HS) do not contain any functional complement protein and thus would not be expected to cause any significant cell lysis; the third treatment, non-heat-inactivated human serum (NHS) contains functional human complement as well as anti-gal specific antibodies, and thus would be expected to lyse cells which have
galactose alpha - The results shown in
FIG. 1 clearly demonstrate that B 1-1, B-2 and B 1-4 cells are resistant to human complement-mediated lysis while B 1-3 cells, which is a 1,3 Gal positive, is still as sensitive to human plasma as are wild-type PCFF4-6 cells. - Sequencing results of cDNA from all fetuses indicated that
fetuses second alpha FIG. 2 ). This mutation occurred at bp424 of the coding region, specifically, the second base pair ofexon 9, of the alpha-1,3-GT (GGTA1) gene (GenBank Accession No. L36152) as a conversion of a thymine to a guanine residue, which results in an amino acid substitution of tyrosine at aa 142 to an aspartic acid. - This is a significant conversion, as the tyrosine, a hydrophilic amino acid, is a critical component of the UDP binding site of
alpha 1,3GT (seeFIG. 3 ). Analysis of the crystal structure of bovine alpha-1,3-GT protein showed that this tyrosine is the center of the catalytic domain of the enzyme, and is involved in UDP-Gal binding (Gastinel et. al., EMBO Journal 20(4): 638-649, 2001). Therefore, a change from tyrosine (a hydrophobic amino acid) to aspartic acid (a hydrophilic amino acid) would be expected to cause disruption of the αGT function (as observed). - To confirm that the mutated cDNA will not make functional αGT protein, the cDNAs from the second allele of all 4 cells were cloned into an expression vector and this GT expression vector transfected into human fibroblast cells (HeLa cells) as well as into primary Rhesus monkey cells. As humans and Old World monkeys lack a
functional alpha alpha functional alpha functional alpha - Preparation of cells for nuclear transfer. Donor cells were genetically manipulated to produce cells homozygous for
alpha - Embryo transfers and resulting live births. In the initial attempt to produce live alpha-1,3-GT dKO pigs by nuclear transfer, a total of 16 embryo transfers were performed with genetically manipulated donor cells. Nine initial pregnancies were established but only two went beyond Day 75 of gestation. Five piglets were born on the Jul. 25, 2002. One piglet died immediately after birth and another four were born alive and appeared normal (
FIG. 4 ). - Tail fibroblast cells and umbilicus tissue sections were obtained from all 5 double knockout piglets and stained using the GS-IB4 lectin as described previously. No staining was observed, indicating a complete lack of
galactose alpha cell surface alpha 1,3Gal epitopes (Phelps et al., Science 299: 411-414, 2003 including FIG. S3). - We performed an in vivo immunogenicity test with
alpha 1,3GT-knockout mice. We injected islet-like cell clusters (ICCs) isolated from the pancreas of piglet 761-1 intraperitoneally intoalpha 1,3GT knockout mice. We used ICCs from a neonatal wild-type piglet as a control. As shown inFIG. 5 , no increase in the titer of immunoglobulin M (IgM) toalpha 1,3Gal was observed inalpha 1,3GT knockout mice after injection with ICCs from thealpha 1,3GT DKO piglet, in contrast to significant IgM titer increases observed in those mice injected with wild-type piglet ICCs (Phelps et al., Science 299: 411-414, 2003 including FIG. S4). This result clearly demonstrates that the DKO piglet cells do not make anyalpha 1,3Gal epitopes. - Sequencing of DNA obtained from all five piglets confirmed the presence of the mutation at by 424 of the GGTA1 gene, as observed in the 680B1-2 cells used to clone these animals (
FIG. 2 ). - Since this first successful production of a litter of alpha-GT dKO pigs, two subsequent litters of dKO piglets have been produced by nuclear transfer, in one case (litter 662) using the dKO fetal fibroblasts as nuclear donor cells. Litter 660 was produced by nuclear transfer using tail fibroblast cells from a member of the litter 761 as nuclear donor. These births are summarized in Table 4.
-
TABLE 4 Summary of alpha-GT double knockout births produced by nuclear transfer Litter ID Nuclear Donor No. Births Live Births 761 680B:1-2 5 4 662 680B:1-2 1 0 660 761-5 4 2 - A total of 29 Southern blot confirmed cloned GT-SKO females and 25 Southern blot confirmed GT-SKO male cloned pigs have been generated to date. These male and female heterozygous (single gene alpha1,3GT knockout pigs) have been bred by natural breeding and by artificial insemination(AI), in order to generate a herd of DKO pigs for use in preclinical studies and human clinical trials. We have produced 16 alpha1,3-GT DKO piglets from 13 litters.
- This invention has been described with reference to illustrative embodiments. Other embodiments of the general invention described herein and modifications there of will be apparent to those of skill in the art and are all considered within the scope of the invention.
Claims (1)
1. A pig that lacks any expression of functional alpha-1,3 galactosyltransferase.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/281,464 US20150106959A1 (en) | 2002-08-21 | 2014-05-19 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
US15/905,249 US11172658B2 (en) | 2002-08-21 | 2018-02-26 | Porcine animals lacking expression of functional alpha 1, 3 galactosyltransferase |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40477502P | 2002-08-21 | 2002-08-21 | |
US10/646,970 US7795493B2 (en) | 2002-08-21 | 2003-08-21 | Porcine animals lacking any expression of functional alpha 1, 3 galactosyltransferase |
US12/835,026 US20120255047A1 (en) | 2002-08-21 | 2010-07-13 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
US14/281,464 US20150106959A1 (en) | 2002-08-21 | 2014-05-19 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/835,026 Continuation US20120255047A1 (en) | 2002-08-21 | 2010-07-13 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/905,249 Continuation US11172658B2 (en) | 2002-08-21 | 2018-02-26 | Porcine animals lacking expression of functional alpha 1, 3 galactosyltransferase |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150106959A1 true US20150106959A1 (en) | 2015-04-16 |
Family
ID=32043169
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/646,970 Active 2026-05-13 US7795493B2 (en) | 2002-08-21 | 2003-08-21 | Porcine animals lacking any expression of functional alpha 1, 3 galactosyltransferase |
US12/835,026 Abandoned US20120255047A1 (en) | 2002-08-21 | 2010-07-13 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
US14/281,464 Abandoned US20150106959A1 (en) | 2002-08-21 | 2014-05-19 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
US15/905,249 Expired - Lifetime US11172658B2 (en) | 2002-08-21 | 2018-02-26 | Porcine animals lacking expression of functional alpha 1, 3 galactosyltransferase |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/646,970 Active 2026-05-13 US7795493B2 (en) | 2002-08-21 | 2003-08-21 | Porcine animals lacking any expression of functional alpha 1, 3 galactosyltransferase |
US12/835,026 Abandoned US20120255047A1 (en) | 2002-08-21 | 2010-07-13 | Porcine Animals Lacking Any Expression of Functional Alpha 1,3 Galactosyltransferase |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/905,249 Expired - Lifetime US11172658B2 (en) | 2002-08-21 | 2018-02-26 | Porcine animals lacking expression of functional alpha 1, 3 galactosyltransferase |
Country Status (12)
Country | Link |
---|---|
US (4) | US7795493B2 (en) |
EP (3) | EP2163614B1 (en) |
JP (2) | JP2005536228A (en) |
AT (1) | ATE451448T1 (en) |
AU (2) | AU2003295322B2 (en) |
CA (2) | CA2899360A1 (en) |
DE (1) | DE60330468D1 (en) |
DK (2) | DK1534819T3 (en) |
ES (2) | ES2338111T3 (en) |
NZ (2) | NZ562736A (en) |
PT (2) | PT2163614T (en) |
WO (1) | WO2004028243A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799614B2 (en) | 2018-10-05 | 2020-10-13 | Xenotherapeutics, Inc. | Xenotransplantation products and methods |
US10883084B2 (en) | 2018-10-05 | 2021-01-05 | Xenotherapeutics, Inc. | Personalized cells, tissues, and organs for transplantation from a humanized, bespoke, designated-pathogen free, (non-human) donor and methods and products relating to same |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1534819T3 (en) * | 2002-08-21 | 2010-04-19 | Revivicor Inc | Pig-like animals lacking any expression of functional alpha-1,3-galactosyltransferase |
WO2004108904A2 (en) | 2003-06-06 | 2004-12-16 | University Of Pittsburgh | Porcine cmp-n-acetylneuraminic acid hydroxylase gene |
CA2533259C (en) * | 2003-07-21 | 2014-01-28 | Lifecell Corporation | Acellular tissue matrices made from galactose .alpha.-1,3-galactose-deficient tissue |
WO2005081714A2 (en) | 2003-11-21 | 2005-09-09 | Revivicor, Inc. | Use of interfering rna in the production of transgenic animals |
ES2680569T3 (en) * | 2004-03-17 | 2018-09-10 | Revivicor Inc. | Tissue products derived from animals that lack any expression of functional alpha-1,3-galactosyltransferase |
JP2007530242A (en) * | 2004-03-29 | 2007-11-01 | メイヨ フオンデーシヨン フオー メデイカル エジユケーシヨン アンド リサーチ | Genetically engineered heart valve xenografts |
CN101389214A (en) | 2004-10-22 | 2009-03-18 | 雷维维科公司 | Ungulates with genetically modified immune systems |
US20080026457A1 (en) | 2004-10-22 | 2008-01-31 | Kevin Wells | Ungulates with genetically modified immune systems |
CA2617930A1 (en) * | 2005-08-09 | 2007-03-29 | Revivicor, Inc. | Transgenic ungulates expressing ctla4-ig and uses thereof |
DK2348827T3 (en) | 2008-10-27 | 2015-07-20 | Revivicor Inc | IMMUNICIPLY COMPROMATED PETS |
US8986377B2 (en) | 2009-07-21 | 2015-03-24 | Lifecell Corporation | Graft materials for surgical breast procedures |
NZ810903A (en) * | 2009-08-14 | 2024-08-30 | Revivicor Inc | Multi-transgenic pigs for diabetes treatment |
FR2951549B1 (en) * | 2009-10-15 | 2013-08-23 | Olivier Schussler | PROCESS FOR OBTAINING IMPLANTABLE MEDICAL BIOPROTHESES |
US9420770B2 (en) | 2009-12-01 | 2016-08-23 | Indiana University Research & Technology Corporation | Methods of modulating thrombocytopenia and modified transgenic pigs |
US20110135706A1 (en) * | 2009-12-03 | 2011-06-09 | Lifecell Corporation | Nerve treatment devices and methods |
US20110197290A1 (en) * | 2010-02-11 | 2011-08-11 | Fahrenkrug Scott C | Methods and materials for producing transgenic artiodactyls |
CA2827348C (en) | 2011-02-14 | 2021-02-23 | Revivicor, Inc. | Genetically modified pigs for xenotransplantation of vascularized xenografts and derivatives thereof |
US10920242B2 (en) | 2011-02-25 | 2021-02-16 | Recombinetics, Inc. | Non-meiotic allele introgression |
JP2014520533A (en) * | 2011-06-30 | 2014-08-25 | シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー | Cells deficient in CMP-N-acetylneuraminic acid hydroxylase and / or glycoprotein alpha-1,3-galactosyltransferase |
EP3081189B1 (en) | 2012-01-13 | 2018-07-04 | Lifecell Corporation | Breast prostheses and methods of manufacturing breast prostheses |
US9883939B2 (en) | 2012-05-08 | 2018-02-06 | The General Hospital Corporation | Reducing immunogenicity of xenogeneic transplant tissues |
EP3281607B1 (en) | 2012-06-21 | 2019-03-06 | LifeCell Corporation | Implantable prosthesis having acellular tissue attachments |
US20140115728A1 (en) | 2012-10-24 | 2014-04-24 | A. Joseph Tector | Double knockout (gt/cmah-ko) pigs, organs and tissues |
WO2015066668A1 (en) | 2013-11-04 | 2015-05-07 | Lifecell Corporation | Methods of removing alpha-galactose |
US20170311579A1 (en) | 2014-10-22 | 2017-11-02 | Indiana University Research & Technology Corporation | Triple transgenic pigs suitable for xenograft |
JP6830437B2 (en) * | 2014-12-10 | 2021-02-17 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Genetically modified cells, tissues and organs to treat the disease |
CA2985537A1 (en) | 2015-05-15 | 2016-11-24 | Lifecell Corporation | Tissue matrices for plastic surgery |
WO2017034952A1 (en) | 2015-08-21 | 2017-03-02 | Lifecell Corporation | Breast treatment device |
EP3506854B1 (en) | 2016-08-31 | 2020-08-19 | LifeCell Corporation | Breast treatment device |
AU2017332358B2 (en) | 2016-09-21 | 2019-11-14 | Mtd Products Inc. | Control assembly for a walk-behind mower |
EP3612023A4 (en) | 2017-04-20 | 2021-05-12 | Egenesis, Inc. | Methods for generating genetically modified animals |
US11026980B1 (en) | 2018-02-26 | 2021-06-08 | Triad Life Sciences, Inc. | Flowable birth tissue composition and related methods |
US11602548B1 (en) | 2018-02-26 | 2023-03-14 | Convatec, Inc | Fibrous birth tissue composition and method of use |
BR112021018788A2 (en) | 2019-03-25 | 2021-11-23 | Xenotherapeutics Corp | Customized cells, tissues and organs for transplantation from a humanized, individualized, designated pathogen-free (non-human) donor and methods and products related thereto |
US11298220B2 (en) | 2019-05-03 | 2022-04-12 | Lifecell Corporation | Breast treatment device |
WO2021113366A1 (en) * | 2019-12-02 | 2021-06-10 | The General Hospital Corporation | Nerve xenografts and related methods |
JP2023538663A (en) | 2020-08-24 | 2023-09-08 | ゼノセラピューティクス インコーポレイテッド | Immunologically compatible cells, tissues, organs, and methods for transplantation for silencing, humanization, and individualization with minimal collateral genome disruption |
AU2021365838B2 (en) | 2020-10-21 | 2024-09-19 | Tissue Testing Technologies Llc | Minimizing immunogenicity of decellularized tissues |
WO2022109316A1 (en) | 2020-11-20 | 2022-05-27 | Revivicor, Inc. | Multi-transgenic pigs with growth hormone receptor knockout for xenotransplantation |
WO2022256401A1 (en) * | 2021-06-01 | 2022-12-08 | Xenotherapeutics, Inc. | Xenogeneic nerve transplants and methods |
EP4404740A1 (en) | 2021-09-20 | 2024-07-31 | Revivicor Inc. | Multitransgenic pigs comprising ten genetic modifications for xenotransplantation |
US20240294869A1 (en) | 2023-03-03 | 2024-09-05 | Nugift Medical Llc | Pig xenotransplants into humans without chronic immunosuppression |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153428A (en) * | 1994-04-13 | 2000-11-28 | Biotransplant, Inc. | α(1,3) galactosyltransferase negative porcine cells |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797368A (en) * | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4863852A (en) * | 1985-07-03 | 1989-09-05 | Virginia Tech Intellectual Properties, Inc. | Method of detecting, isolating and purifying clostridium difficile toxin A and its receptors |
US4994384A (en) | 1986-12-31 | 1991-02-19 | W. R. Grace & Co.-Conn. | Multiplying bovine embryos |
US5057420A (en) | 1987-06-05 | 1991-10-15 | Granada Biosciences, Inc. | Bovine nuclear transplantation |
US5354768A (en) * | 1988-07-26 | 1994-10-11 | Sankyo Company, Limited | Use of imidazopyrazole derivatives as analgesics and anti-inflammatory agents |
NZ230723A (en) | 1988-09-21 | 1992-07-28 | Cambridge Animal Biotech | Pluripotential embryonic stem cells isolated from an embryonic disc, methods of producing transgenic cells and a chimeric foetus |
US4944384A (en) | 1989-01-30 | 1990-07-31 | Hay & Forage Industries | Trash discharge apparatus for crop transferring conveyor mechanism |
US5175383A (en) * | 1989-02-17 | 1992-12-29 | President And Fellows Of Harvard College | Animal model for benign prostatic disease |
US4997384A (en) | 1989-04-17 | 1991-03-05 | Otis Engineering Corporation | Wet connector |
US5324663A (en) | 1990-02-14 | 1994-06-28 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
AU7906691A (en) * | 1990-05-23 | 1991-12-10 | United States of America, as represented by the Secretary, U.S. Department of Commerce, The | Adeno-associated virus (aav)-based eucaryotic vectors |
US5173414A (en) * | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
US5589582A (en) | 1992-10-27 | 1996-12-31 | Biotransplant, Inc. | Polynucleotides en coding porcine cytokines |
EP0706319A4 (en) | 1993-01-20 | 1998-04-22 | Biotransplant Inc | Retroviral vectors capable of expressing multimeric proteins from multiple translational initiation sites |
US5496720A (en) | 1993-02-10 | 1996-03-05 | Susko-Parrish; Joan L. | Parthenogenic oocyte activation |
JPH06253856A (en) | 1993-02-26 | 1994-09-13 | Amano Pharmaceut Co Ltd | Mutarotase gene |
WO1994021799A1 (en) | 1993-03-16 | 1994-09-29 | Austin Research Institute | USE OF PORCINE GAL α(1,3) GALACTOSYL TRANSFERASE IN XENOGRAFT THERAPIES |
US6331658B1 (en) * | 1993-04-20 | 2001-12-18 | Integris Baptist Medical Center, Inc. | Genetically engineered mammals for use as organ donors |
GB9308271D0 (en) | 1993-04-21 | 1993-06-02 | Univ Edinburgh | Method of isolating and/or enriching and/or selectively propagating pluripotential animal cells and animals for use in said method |
US5523226A (en) * | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
WO1995020661A1 (en) | 1994-01-27 | 1995-08-03 | Bresatec Ltd. | Materials and methods for management of hyperacute rejection in human xenotransplantation |
US5849991A (en) * | 1994-01-27 | 1998-12-15 | Bresatch Limited | Mice homozygous for an inactivated α 1,3-galactosyl transferase gene |
AUPM516994A0 (en) | 1994-04-20 | 1994-05-12 | Gene Shears Pty. Limited | An in vivo gene expression system |
US5714353A (en) * | 1994-05-24 | 1998-02-03 | Research Corporation Technologies, Inc. | Safe vectors for gene therapy |
US5989808A (en) | 1994-06-14 | 1999-11-23 | American Cyanamid Company | Identification of compounds affecting specific interaction of peptide binding pairs |
WO1995034202A1 (en) | 1994-06-15 | 1995-12-21 | Alexion Pharmaceuticals, Inc. | Methods for reducing hyperacute rejection of xenografts |
US5850004A (en) * | 1994-08-02 | 1998-12-15 | Cornell Research Foundation, Inc. | Transgenic mouse deficient in inducible nitric oxide synthase |
JPH10507906A (en) | 1994-08-19 | 1998-08-04 | ザ ジェネラル ホスピタル コーポレイション | Genetically engineered pig cells |
CA2203809C (en) | 1994-10-28 | 2008-06-03 | James M. Wilson | Recombinant adenovirus and methods of use thereof |
US5625048A (en) | 1994-11-10 | 1997-04-29 | The Regents Of The University Of California | Modified green fluorescent proteins |
US5922601A (en) * | 1995-01-19 | 1999-07-13 | Biotransplant, Inc. | High efficiency gene trap selection of regulated genetic loci |
US5958713A (en) | 1995-01-31 | 1999-09-28 | Novo Nordisk A/S | Method of detecting biologically active substances by using green fluorescent protein |
WO1996028967A1 (en) | 1995-03-17 | 1996-09-26 | Chihiro Koike | Transgenic non-primatal mammals wherein serotypes of higher primates have been expressed by foreign gene transfer and method of creating the same |
US6610288B1 (en) | 1995-05-26 | 2003-08-26 | Diacrin, Inc. | Porcine hepatocytes for use in treatment of disorders characterized by insufficient liver function |
US5962644A (en) | 1995-06-07 | 1999-10-05 | Biotransplant, Inc. | Porcine CD34 |
DE69604298T2 (en) | 1995-09-22 | 2000-05-18 | Bioimage A/S, Soeborg | VARIANTS OF THE GREEN FLUORESCENCE PROTEIN, GFP |
US5952236A (en) | 1995-10-26 | 1999-09-14 | Thompson; Richard B. | Enzyme-based fluorescence biosensor for chemical analysis |
US5856106A (en) | 1995-11-01 | 1999-01-05 | Biotransplant, Inc. | Determination of antibody production against administered therapeutic glycoproteins, especially monoclonal antibodies |
IL124293A0 (en) | 1995-11-03 | 1998-12-06 | Mount Sinai Medical Center | Method and compositions for the reduction of xenotransplantation rejection |
US5968738A (en) | 1995-12-06 | 1999-10-19 | The Board Of Trustees Of The Leland Stanford Junior University | Two-reporter FACS analysis of mammalian cells using green fluorescent proteins |
US6020192A (en) | 1996-01-18 | 2000-02-01 | University Of Florida | Humanized green fluorescent protein genes and methods |
US6255558B1 (en) | 1996-02-14 | 2001-07-03 | Btg International Limited | Gene expression |
US6027881A (en) | 1996-05-08 | 2000-02-22 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Mutant Aequorea victoria fluorescent proteins having increased cellular fluorescence |
US5948889A (en) | 1996-05-21 | 1999-09-07 | Case Western Reserve University | Compositions and methods for screening antimicrobials |
US7001998B2 (en) * | 1996-08-02 | 2006-02-21 | The Austin Research Institute | Nucleic acids encoding a chimeric glycosyltransferase |
US5948681A (en) | 1996-08-14 | 1999-09-07 | Children's Hospital Of Philadelphia | Non-viral vehicles for use in gene transfer |
EP0959899B9 (en) | 1996-08-16 | 2009-10-21 | Biotransplant, Inc | LO-CD2a ANTIBODY AND USES THEREOF FOR INHIBITING T CELL ACTIVATION AND PROLIFERATION |
US6124128A (en) | 1996-08-16 | 2000-09-26 | The Regents Of The University Of California | Long wavelength engineered fluorescent proteins |
AU740709B2 (en) | 1996-08-19 | 2001-11-15 | University Of Massachusetts | Embryonic or stem-like cell lines produced by cross species nuclear transplanta tion |
US5914233A (en) | 1996-08-23 | 1999-06-22 | Osteo Screen | Screening assay for the identification of agents which alter expression of PTH-rP |
AUPO182396A0 (en) * | 1996-08-23 | 1996-09-12 | Austin Research Institute, The | Improved nucleic acids for reducing carbohydrate epitopes |
WO1998008839A1 (en) | 1996-08-26 | 1998-03-05 | Eli Lilly And Company | Combinatorial process for preparing substituted thiophene libraries |
CA2264499A1 (en) | 1996-09-06 | 1998-03-12 | The Trustees Of The University Of Pennsylvania | Methods using cre-lox for production of recombinant adeno-associated viruses |
US6025192A (en) | 1996-09-20 | 2000-02-15 | Cold Spring Harbor Laboratory | Modified retroviral vectors |
US6255071B1 (en) | 1996-09-20 | 2001-07-03 | Cold Spring Harbor Laboratory | Mammalian viral vectors and their uses |
US6136566A (en) | 1996-10-04 | 2000-10-24 | Lexicon Graphics Incorporated | Indexed library of cells containing genomic modifications and methods of making and utilizing the same |
TW371617B (en) | 1996-10-09 | 1999-10-11 | Of Animal And Plant Health Inspection And Quarantine Council Of Agriculture Executive Yuan Bureau | Method to transplant GFP into autographa californica multiple nuclear polyhedrosis virus for inflicting pest in an attempt to detect and flow up it existence and to improve life span against UV |
US6455037B1 (en) * | 1996-11-01 | 2002-09-24 | Mount Sinai School Of Medicine Of The City University Of New York | Cells expressing an αgala nucleic acid and methods of xenotransplantation |
CA2272578A1 (en) | 1996-11-18 | 1998-05-28 | Mcgill University | Post-mitotic neurons containing adenovirus vectors that modulate apoptosis and growth |
US6235969B1 (en) * | 1997-01-10 | 2001-05-22 | University Of Massachusetts | Cloning pigs using donor nuclei from non-quiescent differentiated cells |
US5994077A (en) | 1997-01-31 | 1999-11-30 | The Board Of Trustees Of The Leland Stanford Junior University | Flourescence-based isolation of differentially induced genes |
WO2000006194A2 (en) | 1997-02-05 | 2000-02-10 | Biotransplant, Inc. | Depletion of cells responsible for antibody-mediated graft rejection |
AU6319198A (en) | 1997-02-05 | 1998-08-25 | Biotransplant Incorporated | Induction of b cell tolerance |
US6197928B1 (en) | 1997-03-14 | 2001-03-06 | The Regents Of The University Of California | Fluorescent protein sensors for detection of analytes |
US5994071A (en) | 1997-04-04 | 1999-11-30 | Albany Medical College | Assessment of prostate cancer |
US6251384B1 (en) | 1997-04-28 | 2001-06-26 | Anticancer, Inc. | Metastasis models using green fluorescent protein (GFP) as a marker |
US5993778A (en) | 1997-05-07 | 1999-11-30 | Firestein; Stuart J. | Functional expression of, and assay for, functional cellular receptors in vivo |
US6251582B1 (en) | 1997-07-17 | 2001-06-26 | New York University | Alternative G-coupled receptors associated with retroviral entry into cells, methods of identifying the same, and diagnostic and therapeutic uses thereof |
US6670151B1 (en) | 1997-08-13 | 2003-12-30 | Biotransplant, Inc. | Porcine stem cell factor varients and recombinant cells expressing such polypeptides |
AU8827998A (en) | 1997-08-14 | 1999-03-08 | Biotransplant Incorporated | Porcine totipotent cells and method for long-term culture |
US6251677B1 (en) | 1997-08-25 | 2001-06-26 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
US6153409A (en) | 1997-09-11 | 2000-11-28 | University Of Maryland Biotechnology Institute | Process for continuous optimized protein production in insect larvae |
EP1017803B1 (en) | 1997-09-26 | 2010-06-16 | ABT Holding Company | Expression of endogenous genes by non-homologous recombination of a vector construct with cellular dna |
US6482937B1 (en) | 1997-10-09 | 2002-11-19 | Biotransplant, Inc. | Porcine Oct-4 promoter |
AU1581899A (en) | 1997-10-28 | 1999-05-17 | Biotransplant Incorporated | Nuclear transfer for production of transgenic animal embryo |
US5968773A (en) | 1997-11-14 | 1999-10-19 | Heddle; John A. | System and method for regulation of gene expression |
US6013447A (en) | 1997-11-21 | 2000-01-11 | Innovir Laboratories, Inc. | Random intracellular method for obtaining optimally active nucleic acid molecules |
US5922576A (en) | 1998-02-27 | 1999-07-13 | The John Hopkins University | Simplified system for generating recombinant adenoviruses |
US6210910B1 (en) | 1998-03-02 | 2001-04-03 | Trustees Of Tufts College | Optical fiber biosensor array comprising cell populations confined to microcavities |
WO1999046592A1 (en) | 1998-03-09 | 1999-09-16 | The Regents Of The University Of California | Regulation of the cell cycle by sterols |
CN1294631A (en) | 1998-03-20 | 2001-05-09 | 贝尼泰克澳大利亚有限公司 | Control of gene expression |
US6080576A (en) | 1998-03-27 | 2000-06-27 | Lexicon Genetics Incorporated | Vectors for gene trapping and gene activation |
US6037133A (en) | 1998-04-17 | 2000-03-14 | Clontech Laboratories, Inc. | IκBEGFP constructs, cell lines and methods of use |
US6316181B1 (en) | 1998-04-24 | 2001-11-13 | Virginia Commonwealth University | Establishment of cell lines with persistent expression of a green fluorescent protein (GFP) using a pIRES/EGFP DNA vector construct |
US6150176A (en) | 1998-06-09 | 2000-11-21 | The Regents Of The University Of California | Fluorescent protein sensors for measuring the pH of a biological sample |
WO2000011147A1 (en) | 1998-08-20 | 2000-03-02 | The General Hospital Corporation | Inbred mhc-homozygous miniature swine and uses thereof |
US6180343B1 (en) | 1998-10-08 | 2001-01-30 | Rigel Pharmaceuticals, Inc. | Green fluorescent protein fusions with random peptides |
US5985577A (en) | 1998-10-14 | 1999-11-16 | The Trustees Of Columbia University In The City Of New York | Protein conjugates containing multimers of green fluorescent protein |
US6203986B1 (en) | 1998-10-22 | 2001-03-20 | Robert H. Singer | Visualization of RNA in living cells |
US6268201B1 (en) | 1998-10-23 | 2001-07-31 | Albert Einstein College Of Medicine Of Yeshiva University | IniB, iniA and iniC genes of mycobacteria and methods of use |
US6270958B1 (en) | 1998-10-29 | 2001-08-07 | Washington University | Detection of negative-strand RNA viruses |
US6700037B2 (en) | 1998-11-24 | 2004-03-02 | Infigen, Inc. | Method of cloning porcine animals |
US6258998B1 (en) * | 1998-11-24 | 2001-07-10 | Infigen, Inc. | Method of cloning porcine animals |
US6210922B1 (en) | 1998-11-30 | 2001-04-03 | National Research Council Of Canada | Serum free production of recombinant proteins and adenoviral vectors |
JP2002537785A (en) | 1999-03-04 | 2002-11-12 | ピーピーエル セラピューティクス (スコットランド) リミテッド | Genetic modification of somatic cells and their use |
MXPA02003232A (en) | 1999-09-30 | 2003-09-22 | Alexion Pharma Inc | Compositions and methods for altering gene expression. |
WO2001030992A2 (en) | 1999-10-22 | 2001-05-03 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | α1-3 GALACTOSYLTRANSFERASE GENE AND PROMOTER |
WO2002074948A2 (en) * | 2001-03-21 | 2002-09-26 | Geron Corporation | Animal tissue with carbohydrate antigens compatible for human transplantation |
US7126039B2 (en) * | 2001-03-21 | 2006-10-24 | Geron Corporation | Animal tissue with carbohydrate antigens compatible for human transplantation |
AU2002242854A1 (en) | 2001-03-21 | 2002-10-03 | Geron Corporation | Use of telomerase reverse transcriptase to create homozygous knockout animals |
RU2243630C2 (en) | 2001-08-06 | 2004-12-27 | Жаров Владимир Павлович | Optical device for spatial handling of particles |
US7547816B2 (en) * | 2001-12-21 | 2009-06-16 | The Curators Of The University Of Missouri | α(1,3)-galactosyltransferase knockout swine, tissues and organs |
WO2004016742A2 (en) | 2002-08-14 | 2004-02-26 | Immerge Biotherapeutics, Inc. | α(1,3)-GALACTOSYLTRANSFERASE NULL CELLS, METHODS OF SELECTING AND α(1,3)-GALACTOSYLTRANSFERASE NULL SWINE PRODUCED THEREFROM |
DK1534819T3 (en) * | 2002-08-21 | 2010-04-19 | Revivicor Inc | Pig-like animals lacking any expression of functional alpha-1,3-galactosyltransferase |
-
2003
- 2003-08-21 DK DK03786504.5T patent/DK1534819T3/en active
- 2003-08-21 EP EP09015192.9A patent/EP2163614B1/en not_active Expired - Lifetime
- 2003-08-21 CA CA2899360A patent/CA2899360A1/en not_active Abandoned
- 2003-08-21 ES ES03786504T patent/ES2338111T3/en not_active Expired - Lifetime
- 2003-08-21 ES ES09015192.9T patent/ES2609292T3/en not_active Expired - Lifetime
- 2003-08-21 PT PT90151929T patent/PT2163614T/en unknown
- 2003-08-21 NZ NZ562736A patent/NZ562736A/en not_active IP Right Cessation
- 2003-08-21 NZ NZ538464A patent/NZ538464A/en not_active IP Right Cessation
- 2003-08-21 AT AT03786504T patent/ATE451448T1/en active
- 2003-08-21 EP EP16193354.4A patent/EP3170890A1/en not_active Withdrawn
- 2003-08-21 DK DK09015192.9T patent/DK2163614T3/en active
- 2003-08-21 JP JP2004539849A patent/JP2005536228A/en not_active Withdrawn
- 2003-08-21 EP EP03786504A patent/EP1534819B1/en not_active Expired - Lifetime
- 2003-08-21 DE DE60330468T patent/DE60330468D1/en not_active Expired - Lifetime
- 2003-08-21 CA CA2496761A patent/CA2496761C/en not_active Expired - Lifetime
- 2003-08-21 PT PT03786504T patent/PT1534819E/en unknown
- 2003-08-21 AU AU2003295322A patent/AU2003295322B2/en not_active Ceased
- 2003-08-21 WO PCT/US2003/026622 patent/WO2004028243A2/en active Application Filing
- 2003-08-21 US US10/646,970 patent/US7795493B2/en active Active
-
2009
- 2009-05-28 AU AU2009202105A patent/AU2009202105B2/en not_active Ceased
-
2010
- 2010-07-13 US US12/835,026 patent/US20120255047A1/en not_active Abandoned
- 2010-09-13 JP JP2010204963A patent/JP5329502B2/en not_active Expired - Fee Related
-
2014
- 2014-05-19 US US14/281,464 patent/US20150106959A1/en not_active Abandoned
-
2018
- 2018-02-26 US US15/905,249 patent/US11172658B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153428A (en) * | 1994-04-13 | 2000-11-28 | Biotransplant, Inc. | α(1,3) galactosyltransferase negative porcine cells |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799614B2 (en) | 2018-10-05 | 2020-10-13 | Xenotherapeutics, Inc. | Xenotransplantation products and methods |
US10883084B2 (en) | 2018-10-05 | 2021-01-05 | Xenotherapeutics, Inc. | Personalized cells, tissues, and organs for transplantation from a humanized, bespoke, designated-pathogen free, (non-human) donor and methods and products relating to same |
US10905799B2 (en) | 2018-10-05 | 2021-02-02 | Xenotherapeutics Corporation | Xenotransplantation products and methods |
US11028371B2 (en) | 2018-10-05 | 2021-06-08 | Xenotherapeutics, Inc. | Personalized cells, tissues, and organs for transplantation from a humanized, bespoke, designated-pathogen free, (non-human) donor and methods and products relating to same |
US11129922B2 (en) | 2018-10-05 | 2021-09-28 | Xenotherapeutics, Inc. | Xenotransplantation products and methods |
US11155788B2 (en) | 2018-10-05 | 2021-10-26 | Xenotherapeutics, Inc. | Personalized cells, tissues, and organs for transplantation from a humanized, bespoke, designated-pathogen free, (non-human) donor and methods and products relating to same |
US11473062B2 (en) | 2018-10-05 | 2022-10-18 | Xenotherapeutics, Inc. | Personalized cells, tissues, and organs for transplantation from a humanized, bespoke, designated-pathogen free, (non-human) donor and methods and products relating to same |
US11833270B2 (en) | 2018-10-05 | 2023-12-05 | Xenotherapeutics, Inc. | Xenotransplantation products and methods |
Also Published As
Publication number | Publication date |
---|---|
EP1534819A4 (en) | 2005-09-21 |
NZ538464A (en) | 2008-01-31 |
EP2163614A1 (en) | 2010-03-17 |
US11172658B2 (en) | 2021-11-16 |
EP2163614B1 (en) | 2016-10-12 |
ES2609292T3 (en) | 2017-04-19 |
WO2004028243A3 (en) | 2004-08-05 |
JP2005536228A (en) | 2005-12-02 |
EP1534819A2 (en) | 2005-06-01 |
AU2003295322B2 (en) | 2009-06-18 |
NZ562736A (en) | 2009-07-31 |
CA2496761A1 (en) | 2004-04-08 |
US7795493B2 (en) | 2010-09-14 |
WO2004028243A2 (en) | 2004-04-08 |
ES2338111T3 (en) | 2010-05-04 |
DE60330468D1 (en) | 2010-01-21 |
AU2009202105A1 (en) | 2009-06-18 |
US20180332832A1 (en) | 2018-11-22 |
DK2163614T3 (en) | 2017-01-09 |
CA2496761C (en) | 2015-06-02 |
ATE451448T1 (en) | 2009-12-15 |
CA2899360A1 (en) | 2004-04-08 |
US20120255047A1 (en) | 2012-10-04 |
JP2011015697A (en) | 2011-01-27 |
US20040268424A1 (en) | 2004-12-30 |
EP1534819B1 (en) | 2009-12-09 |
PT2163614T (en) | 2017-01-17 |
PT1534819E (en) | 2010-03-11 |
AU2009202105B2 (en) | 2011-07-14 |
AU2003295322A1 (en) | 2004-04-19 |
EP3170890A1 (en) | 2017-05-24 |
DK1534819T3 (en) | 2010-04-19 |
JP5329502B2 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11172658B2 (en) | Porcine animals lacking expression of functional alpha 1, 3 galactosyltransferase | |
US20090049562A1 (en) | Porcine cmp-n-acetylneuraminic acid hydroxylase gene | |
US7560538B2 (en) | Porcine isogloboside 3 synthase protein, cDNA, genomic organization, and regulatory region | |
US7732180B2 (en) | Porcine Forssman synthetase protein, cDNA, genomic organization, and regulatory region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REVIVICOR, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHELPS, CAROL J.;REEL/FRAME:038511/0163 Effective date: 20031106 Owner name: REVIVICOR, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AYARES, DAVID L.;REEL/FRAME:038513/0863 Effective date: 20110525 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |