US20140377275A1 - HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATIONS - Google Patents
HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATIONS Download PDFInfo
- Publication number
- US20140377275A1 US20140377275A1 US14/473,775 US201414473775A US2014377275A1 US 20140377275 A1 US20140377275 A1 US 20140377275A1 US 201414473775 A US201414473775 A US 201414473775A US 2014377275 A1 US2014377275 A1 US 2014377275A1
- Authority
- US
- United States
- Prior art keywords
- formulation
- antibody
- seq
- antigen
- binding portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 669
- 238000009472 formulation Methods 0.000 claims abstract description 659
- 239000000427 antigen Substances 0.000 claims abstract description 193
- 108091007433 antigens Proteins 0.000 claims abstract description 193
- 102000036639 antigens Human genes 0.000 claims abstract description 193
- 208000002193 Pain Diseases 0.000 claims abstract description 168
- 238000002347 injection Methods 0.000 claims abstract description 99
- 239000007924 injection Substances 0.000 claims abstract description 99
- 239000000872 buffer Substances 0.000 claims abstract description 53
- 150000003839 salts Chemical class 0.000 claims abstract description 45
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 146
- 229960002964 adalimumab Drugs 0.000 claims description 142
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 94
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 82
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 82
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 74
- 208000035475 disorder Diseases 0.000 claims description 68
- 239000004094 surface-active agent Substances 0.000 claims description 55
- 229920005862 polyol Polymers 0.000 claims description 50
- 150000003077 polyols Chemical class 0.000 claims description 50
- 230000000694 effects Effects 0.000 claims description 39
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 35
- 229930195725 Mannitol Natural products 0.000 claims description 35
- 239000000594 mannitol Substances 0.000 claims description 35
- 235000010355 mannitol Nutrition 0.000 claims description 35
- 230000000007 visual effect Effects 0.000 claims description 34
- 238000006467 substitution reaction Methods 0.000 claims description 31
- 239000013011 aqueous formulation Substances 0.000 claims description 30
- 229920000136 polysorbate Polymers 0.000 claims description 25
- 229940071643 prefilled syringe Drugs 0.000 claims description 23
- 230000001627 detrimental effect Effects 0.000 claims description 22
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 21
- 235000004279 alanine Nutrition 0.000 claims description 20
- 229950008882 polysorbate Drugs 0.000 claims description 18
- 230000001976 improved effect Effects 0.000 claims description 17
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 10
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 10
- 229940090047 auto-injector Drugs 0.000 claims description 10
- 239000000600 sorbitol Substances 0.000 claims description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 abstract description 89
- 102000004169 proteins and genes Human genes 0.000 abstract description 45
- 230000001225 therapeutic effect Effects 0.000 abstract description 23
- 230000001965 increasing effect Effects 0.000 abstract description 21
- 238000007920 subcutaneous administration Methods 0.000 abstract description 20
- 229960000106 biosimilars Drugs 0.000 abstract description 14
- 238000011282 treatment Methods 0.000 description 87
- 201000004681 Psoriasis Diseases 0.000 description 68
- 206010012601 diabetes mellitus Diseases 0.000 description 53
- 210000003491 skin Anatomy 0.000 description 51
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 50
- 239000002245 particle Substances 0.000 description 47
- 102000057041 human TNF Human genes 0.000 description 44
- 229940048921 humira Drugs 0.000 description 44
- 235000018102 proteins Nutrition 0.000 description 42
- 206010047115 Vasculitis Diseases 0.000 description 41
- 210000004027 cell Anatomy 0.000 description 41
- 239000000243 solution Substances 0.000 description 40
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 39
- 239000012634 fragment Substances 0.000 description 38
- 230000007310 pathophysiology Effects 0.000 description 35
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 33
- 210000000282 nail Anatomy 0.000 description 33
- 239000003814 drug Substances 0.000 description 32
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 31
- 229920000053 polysorbate 80 Polymers 0.000 description 31
- 210000004602 germ cell Anatomy 0.000 description 30
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 30
- 229940068968 polysorbate 80 Drugs 0.000 description 30
- 238000003860 storage Methods 0.000 description 30
- 108020004414 DNA Proteins 0.000 description 26
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 26
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 25
- 201000010099 disease Diseases 0.000 description 25
- 229940079593 drug Drugs 0.000 description 25
- 208000024891 symptom Diseases 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- 239000000047 product Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 208000007465 Giant cell arteritis Diseases 0.000 description 21
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 20
- 206010003246 arthritis Diseases 0.000 description 19
- 239000013604 expression vector Substances 0.000 description 19
- 206010043207 temporal arteritis Diseases 0.000 description 19
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 18
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 18
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 18
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 208000025865 Ulcer Diseases 0.000 description 18
- 239000000178 monomer Substances 0.000 description 18
- 208000026721 nail disease Diseases 0.000 description 18
- 239000000546 pharmaceutical excipient Substances 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 230000001684 chronic effect Effects 0.000 description 17
- 239000000523 sample Substances 0.000 description 17
- 206010015150 Erythema Diseases 0.000 description 16
- 208000003456 Juvenile Arthritis Diseases 0.000 description 16
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 16
- 239000004472 Lysine Substances 0.000 description 16
- -1 e.g. Polymers 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 16
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 230000000813 microbial effect Effects 0.000 description 16
- 238000006386 neutralization reaction Methods 0.000 description 16
- 210000004369 blood Anatomy 0.000 description 15
- 239000008280 blood Substances 0.000 description 15
- 201000006292 polyarteritis nodosa Diseases 0.000 description 15
- 238000003259 recombinant expression Methods 0.000 description 15
- 206010039073 rheumatoid arthritis Diseases 0.000 description 15
- 206010061218 Inflammation Diseases 0.000 description 14
- 208000003251 Pruritus Diseases 0.000 description 14
- 206010047112 Vasculitides Diseases 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 210000001367 artery Anatomy 0.000 description 14
- 210000004204 blood vessel Anatomy 0.000 description 14
- 238000002296 dynamic light scattering Methods 0.000 description 14
- 230000004054 inflammatory process Effects 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 230000003902 lesion Effects 0.000 description 14
- 208000033808 peripheral neuropathy Diseases 0.000 description 14
- 238000010254 subcutaneous injection Methods 0.000 description 14
- 239000007929 subcutaneous injection Substances 0.000 description 14
- 239000012906 subvisible particle Substances 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- 239000008215 water for injection Substances 0.000 description 14
- 208000011231 Crohn disease Diseases 0.000 description 13
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 13
- 208000011200 Kawasaki disease Diseases 0.000 description 13
- 208000006045 Spondylarthropathies Diseases 0.000 description 13
- 208000001106 Takayasu Arteritis Diseases 0.000 description 13
- 230000004071 biological effect Effects 0.000 description 13
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 13
- 230000010494 opalescence Effects 0.000 description 13
- 239000011780 sodium chloride Substances 0.000 description 13
- 201000005671 spondyloarthropathy Diseases 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 13
- 206010030113 Oedema Diseases 0.000 description 12
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- 208000015181 infectious disease Diseases 0.000 description 12
- 210000005036 nerve Anatomy 0.000 description 12
- 210000000056 organ Anatomy 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 12
- 208000017520 skin disease Diseases 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 230000036269 ulceration Effects 0.000 description 12
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 11
- 208000009137 Behcet syndrome Diseases 0.000 description 11
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 230000006378 damage Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 230000007774 longterm Effects 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 230000001185 psoriatic effect Effects 0.000 description 11
- 208000002574 reactive arthritis Diseases 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 201000000306 sarcoidosis Diseases 0.000 description 11
- 239000001509 sodium citrate Substances 0.000 description 11
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 11
- 239000012905 visible particle Substances 0.000 description 11
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 10
- 206010009900 Colitis ulcerative Diseases 0.000 description 10
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 10
- 208000032843 Hemorrhage Diseases 0.000 description 10
- 208000008589 Obesity Diseases 0.000 description 10
- 241000219061 Rheum Species 0.000 description 10
- 201000006704 Ulcerative Colitis Diseases 0.000 description 10
- 231100000321 erythema Toxicity 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 208000030159 metabolic disease Diseases 0.000 description 10
- 235000020824 obesity Nutrition 0.000 description 10
- 238000001542 size-exclusion chromatography Methods 0.000 description 10
- 208000011580 syndromic disease Diseases 0.000 description 10
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 9
- 206010012689 Diabetic retinopathy Diseases 0.000 description 9
- 206010015226 Erythema nodosum Diseases 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 231100000135 cytotoxicity Toxicity 0.000 description 9
- 230000003013 cytotoxicity Effects 0.000 description 9
- 230000002757 inflammatory effect Effects 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 235000000346 sugar Nutrition 0.000 description 9
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 8
- 206010037549 Purpura Diseases 0.000 description 8
- 206010039710 Scleroderma Diseases 0.000 description 8
- 239000008364 bulk solution Substances 0.000 description 8
- 229960002303 citric acid monohydrate Drugs 0.000 description 8
- 238000004255 ion exchange chromatography Methods 0.000 description 8
- 201000001119 neuropathy Diseases 0.000 description 8
- 206010034754 petechiae Diseases 0.000 description 8
- 239000008363 phosphate buffer Substances 0.000 description 8
- 238000003752 polymerase chain reaction Methods 0.000 description 8
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 8
- 230000003442 weekly effect Effects 0.000 description 8
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 7
- 206010003267 Arthritis reactive Diseases 0.000 description 7
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 7
- 206010037660 Pyrexia Diseases 0.000 description 7
- 208000017442 Retinal disease Diseases 0.000 description 7
- 206010038923 Retinopathy Diseases 0.000 description 7
- 206010040047 Sepsis Diseases 0.000 description 7
- 230000002411 adverse Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 7
- 208000002557 hidradenitis Diseases 0.000 description 7
- 201000007162 hidradenitis suppurativa Diseases 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 7
- 201000011486 lichen planus Diseases 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 230000009885 systemic effect Effects 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- OOSZCNKVJAVHJI-UHFFFAOYSA-N 1-[(4-fluorophenyl)methyl]piperazine Chemical compound C1=CC(F)=CC=C1CN1CCNCC1 OOSZCNKVJAVHJI-UHFFFAOYSA-N 0.000 description 6
- 206010000748 Acute febrile neutrophilic dermatosis Diseases 0.000 description 6
- 208000006820 Arthralgia Diseases 0.000 description 6
- 206010012438 Dermatitis atopic Diseases 0.000 description 6
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 6
- 201000011152 Pemphigus Diseases 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 208000010265 Sweet syndrome Diseases 0.000 description 6
- 102100040247 Tumor necrosis factor Human genes 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 201000008937 atopic dermatitis Diseases 0.000 description 6
- 208000010668 atopic eczema Diseases 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 210000001736 capillary Anatomy 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000007979 citrate buffer Substances 0.000 description 6
- 239000003599 detergent Substances 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 206010018797 guttate psoriasis Diseases 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 230000007823 neuropathy Effects 0.000 description 6
- 201000001976 pemphigus vulgaris Diseases 0.000 description 6
- 208000017983 photosensitivity disease Diseases 0.000 description 6
- 229940068965 polysorbates Drugs 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 229940074545 sodium dihydrogen phosphate dihydrate Drugs 0.000 description 6
- 238000002054 transplantation Methods 0.000 description 6
- 210000003462 vein Anatomy 0.000 description 6
- 208000023275 Autoimmune disease Diseases 0.000 description 5
- 206010072578 Chronic actinic dermatitis Diseases 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 5
- 208000035473 Communicable disease Diseases 0.000 description 5
- 201000004624 Dermatitis Diseases 0.000 description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 208000000112 Myalgia Diseases 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 206010037575 Pustular psoriasis Diseases 0.000 description 5
- 108700012920 TNF Proteins 0.000 description 5
- 206010047642 Vitiligo Diseases 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 206010003230 arteritis Diseases 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 5
- KDQPSPMLNJTZAL-UHFFFAOYSA-L disodium hydrogenphosphate dihydrate Chemical compound O.O.[Na+].[Na+].OP([O-])([O-])=O KDQPSPMLNJTZAL-UHFFFAOYSA-L 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 210000001508 eye Anatomy 0.000 description 5
- 210000004904 fingernail bed Anatomy 0.000 description 5
- 210000002216 heart Anatomy 0.000 description 5
- 208000027866 inflammatory disease Diseases 0.000 description 5
- 208000028867 ischemia Diseases 0.000 description 5
- 230000007803 itching Effects 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 229960000485 methotrexate Drugs 0.000 description 5
- 210000004400 mucous membrane Anatomy 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000012460 protein solution Substances 0.000 description 5
- 231100000397 ulcer Toxicity 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 206010006895 Cachexia Diseases 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical compound CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 206010022086 Injection site pain Diseases 0.000 description 4
- 206010022489 Insulin Resistance Diseases 0.000 description 4
- 206010036105 Polyneuropathy Diseases 0.000 description 4
- 208000033464 Reiter syndrome Diseases 0.000 description 4
- 206010040070 Septic Shock Diseases 0.000 description 4
- 208000007536 Thrombosis Diseases 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000003435 antirheumatic agent Substances 0.000 description 4
- 210000002565 arteriole Anatomy 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 4
- 210000004351 coronary vessel Anatomy 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 4
- 210000001513 elbow Anatomy 0.000 description 4
- 230000007717 exclusion Effects 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- 229960001743 golimumab Drugs 0.000 description 4
- 208000024908 graft versus host disease Diseases 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 210000004247 hand Anatomy 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 210000003127 knee Anatomy 0.000 description 4
- 239000012669 liquid formulation Substances 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 206010025482 malaise Diseases 0.000 description 4
- 230000036210 malignancy Effects 0.000 description 4
- 229960001855 mannitol Drugs 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 150000007523 nucleic acids Chemical group 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229920001983 poloxamer Polymers 0.000 description 4
- 229920001993 poloxamer 188 Polymers 0.000 description 4
- 229940044519 poloxamer 188 Drugs 0.000 description 4
- 230000007824 polyneuropathy Effects 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 210000001525 retina Anatomy 0.000 description 4
- 210000004761 scalp Anatomy 0.000 description 4
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 4
- 206010040882 skin lesion Diseases 0.000 description 4
- 231100000444 skin lesion Toxicity 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 210000000264 venule Anatomy 0.000 description 4
- 206010001513 AIDS related complex Diseases 0.000 description 3
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 208000017667 Chronic Disease Diseases 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 206010014950 Eosinophilia Diseases 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 3
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 3
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 206010054999 Koilonychia Diseases 0.000 description 3
- 208000019693 Lung disease Diseases 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 206010036030 Polyarthritis Diseases 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 3
- 206010038848 Retinal detachment Diseases 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 210000000709 aorta Anatomy 0.000 description 3
- 208000006673 asthma Diseases 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 239000008366 buffered solution Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 229960004106 citric acid Drugs 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 231100000263 cytotoxicity test Toxicity 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 235000019800 disodium phosphate Nutrition 0.000 description 3
- 210000002615 epidermis Anatomy 0.000 description 3
- 201000005884 exanthem Diseases 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 210000004905 finger nail Anatomy 0.000 description 3
- 239000013022 formulation composition Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 208000010758 granulomatous inflammation Diseases 0.000 description 3
- 210000004013 groin Anatomy 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 201000001421 hyperglycemia Diseases 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 229960000598 infliximab Drugs 0.000 description 3
- 208000028774 intestinal disease Diseases 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000002483 medication Methods 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 201000005518 mononeuropathy Diseases 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 210000001147 pulmonary artery Anatomy 0.000 description 3
- 206010037844 rash Diseases 0.000 description 3
- 230000004264 retinal detachment Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 229960002668 sodium chloride Drugs 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 210000001179 synovial fluid Anatomy 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 206010069754 Acquired gene mutation Diseases 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 2
- 208000008286 Aortic Arch Syndromes Diseases 0.000 description 2
- 101000734334 Arabidopsis thaliana Protein disulfide isomerase-like 1-1 Proteins 0.000 description 2
- 206010003232 Arteritis coronary Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010061666 Autonomic neuropathy Diseases 0.000 description 2
- 101000609815 Caenorhabditis elegans Protein disulfide-isomerase 1 Proteins 0.000 description 2
- 101000609840 Caenorhabditis elegans Protein disulfide-isomerase 2 Proteins 0.000 description 2
- 208000020446 Cardiac disease Diseases 0.000 description 2
- 206010010741 Conjunctivitis Diseases 0.000 description 2
- 206010011674 Cutaneous sarcoidosis Diseases 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 206010015278 Erythrodermic psoriasis Diseases 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 206010022095 Injection Site reaction Diseases 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- 206010022562 Intermittent claudication Diseases 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 208000032514 Leukocytoclastic vasculitis Diseases 0.000 description 2
- 208000035180 MODY Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 2
- 206010028692 Nail discolouration Diseases 0.000 description 2
- 208000012266 Needlestick injury Diseases 0.000 description 2
- 206010029113 Neovascularisation Diseases 0.000 description 2
- 208000028389 Nerve injury Diseases 0.000 description 2
- 206010029240 Neuritis Diseases 0.000 description 2
- 206010034277 Pemphigoid Diseases 0.000 description 2
- 201000007100 Pharyngitis Diseases 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 201000002154 Pterygium Diseases 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 206010038934 Retinopathy proliferative Diseases 0.000 description 2
- 206010040030 Sensory loss Diseases 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 206010042674 Swelling Diseases 0.000 description 2
- 206010043540 Thromboangiitis obliterans Diseases 0.000 description 2
- 241000607734 Yersinia <bacteria> Species 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 208000038016 acute inflammation Diseases 0.000 description 2
- 230000006022 acute inflammation Effects 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 239000012615 aggregate Substances 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- 208000004631 alopecia areata Diseases 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 210000002376 aorta thoracic Anatomy 0.000 description 2
- 210000000040 apocrine gland Anatomy 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 238000005311 autocorrelation function Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 208000025698 brain inflammatory disease Diseases 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 208000000594 bullous pemphigoid Diseases 0.000 description 2
- 210000001217 buttock Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229960001714 calcium phosphate Drugs 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 210000001715 carotid artery Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000026915 cervical aortic arch Diseases 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 208000019069 chronic childhood arthritis Diseases 0.000 description 2
- 208000024980 claudication Diseases 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000007933 dermal patch Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 229940124645 emergency medicine Drugs 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 229940050410 gluconate Drugs 0.000 description 2
- 230000003676 hair loss Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003871 intestinal function Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000011545 laboratory measurement Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- 201000006950 maturity-onset diabetes of the young Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 230000008058 pain sensation Effects 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- CPJSUEIXXCENMM-UHFFFAOYSA-N phenacetin Chemical compound CCOC1=CC=C(NC(C)=O)C=C1 CPJSUEIXXCENMM-UHFFFAOYSA-N 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 210000002254 renal artery Anatomy 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 201000003646 skin sarcoidosis Diseases 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 229960001790 sodium citrate Drugs 0.000 description 2
- 229940074404 sodium succinate Drugs 0.000 description 2
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 2
- VBJGJHBYWREJQD-UHFFFAOYSA-M sodium;dihydrogen phosphate;dihydrate Chemical compound O.O.[Na+].OP(O)([O-])=O VBJGJHBYWREJQD-UHFFFAOYSA-M 0.000 description 2
- 230000037439 somatic mutation Effects 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000012409 standard PCR amplification Methods 0.000 description 2
- 210000003270 subclavian artery Anatomy 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 210000001994 temporal artery Anatomy 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 239000002452 tumor necrosis factor alpha inhibitor Substances 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 230000009278 visceral effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- HVAUUPRFYPCOCA-AREMUKBSSA-N 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C HVAUUPRFYPCOCA-AREMUKBSSA-N 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 1
- 208000029164 Abnormality of the nail Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000001839 Antisynthetase syndrome Diseases 0.000 description 1
- 206010060965 Arterial stenosis Diseases 0.000 description 1
- 206010003178 Arterial thrombosis Diseases 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 206010051728 Bone erosion Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000003732 Cat-scratch disease Diseases 0.000 description 1
- 206010063094 Cerebral malaria Diseases 0.000 description 1
- 206010049047 Chapped lips Diseases 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 241000223205 Coccidioides immitis Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 201000000057 Coronary Stenosis Diseases 0.000 description 1
- 206010011089 Coronary artery stenosis Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 206010011686 Cutaneous vasculitis Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- QWIZNVHXZXRPDR-UHFFFAOYSA-N D-melezitose Natural products O1C(CO)C(O)C(O)C(O)C1OC1C(O)C(CO)OC1(CO)OC1OC(CO)C(O)C(O)C1O QWIZNVHXZXRPDR-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- 201000003066 Diffuse Scleroderma Diseases 0.000 description 1
- 206010013082 Discomfort Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 206010014824 Endotoxic shock Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 206010015084 Episcleritis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010019452 Hemianopia Diseases 0.000 description 1
- 208000007460 Hemianopsia Diseases 0.000 description 1
- 201000004331 Henoch-Schoenlein purpura Diseases 0.000 description 1
- 206010019617 Henoch-Schonlein purpura Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 206010019728 Hepatitis alcoholic Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 208000031814 IgA Vasculitis Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010060708 Induration Diseases 0.000 description 1
- 206010022067 Injection site haemorrhage Diseases 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102100036721 Insulin receptor Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 206010022680 Intestinal ischaemia Diseases 0.000 description 1
- 208000004404 Intractable Pain Diseases 0.000 description 1
- 206010022971 Iron Deficiencies Diseases 0.000 description 1
- 206010023203 Joint destruction Diseases 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- RGHNJXZEOKUKBD-KLVWXMOXSA-N L-gluconic acid Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)C(O)=O RGHNJXZEOKUKBD-KLVWXMOXSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000000421 Lepidium meyenii Nutrition 0.000 description 1
- 240000000759 Lepidium meyenii Species 0.000 description 1
- 206010024238 Leptospirosis Diseases 0.000 description 1
- 208000034624 Leukocytoclastic Cutaneous Vasculitis Diseases 0.000 description 1
- 206010024648 Livedo reticularis Diseases 0.000 description 1
- 208000032912 Local swelling Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 206010054805 Macroangiopathy Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000001940 Massive Hepatic Necrosis Diseases 0.000 description 1
- 206010027202 Meningitis bacterial Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 206010027918 Mononeuropathy multiplex Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- 239000010022 Myron Substances 0.000 description 1
- 241001439614 Myron Species 0.000 description 1
- 206010028698 Nail dystrophy Diseases 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 208000001738 Nervous System Trauma Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 208000006187 Onycholysis Diseases 0.000 description 1
- 206010068319 Oropharyngeal pain Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033101 Otorrhoea Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019145 PO4.2H2O Inorganic materials 0.000 description 1
- 206010033474 Pain of skin Diseases 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 208000016222 Pancreatic disease Diseases 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 201000010183 Papilledema Diseases 0.000 description 1
- 206010033733 Papule Diseases 0.000 description 1
- 208000007542 Paresis Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010003541 Platelet Activating Factor Proteins 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 1
- 206010037151 Psittacosis Diseases 0.000 description 1
- 208000029464 Pulmonary infiltrates Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 206010037888 Rash pustular Diseases 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000004531 Renal Artery Obstruction Diseases 0.000 description 1
- 206010038378 Renal artery stenosis Diseases 0.000 description 1
- 206010063897 Renal ischaemia Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000030934 Restrictive pulmonary disease Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 206010039085 Rhinitis allergic Diseases 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039705 Scleritis Diseases 0.000 description 1
- 206010053879 Sepsis syndrome Diseases 0.000 description 1
- 208000019802 Sexually transmitted disease Diseases 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- 206010040867 Skin hypertrophy Diseases 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 206010051495 Strawberry tongue Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000033809 Suppuration Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 208000004732 Systemic Vasculitis Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 206010043345 Testicular pain Diseases 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 208000034784 Tularaemia Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047124 Vasculitis necrotising Diseases 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229940041296 adalimumab 100 mg/ml Drugs 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 208000002353 alcoholic hepatitis Diseases 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000012443 analytical study Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003460 anti-nuclear Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 210000004883 areola Anatomy 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000004982 autoimmune uveitis Diseases 0.000 description 1
- 201000009904 bacterial meningitis Diseases 0.000 description 1
- 229940125717 barbiturate Drugs 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 208000019664 bone resorption disease Diseases 0.000 description 1
- 230000008993 bowel inflammation Effects 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 210000001168 carotid artery common Anatomy 0.000 description 1
- 210000000269 carotid artery external Anatomy 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 208000010353 central nervous system vasculitis Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 201000003486 coccidioidomycosis Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 208000018631 connective tissue disease Diseases 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 208000006331 coronary aneurysm Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 210000001047 desmosome Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 230000027950 fever generation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 208000020694 gallbladder disease Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000033822 gland development Effects 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 210000000224 granular leucocyte Anatomy 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 208000024798 heartburn Diseases 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 206010019465 hemiparesis Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 201000006362 hypersensitivity vasculitis Diseases 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 210000003090 iliac artery Anatomy 0.000 description 1
- 210000003111 iliac vein Anatomy 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 208000015446 immunoglobulin a vasculitis Diseases 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 208000011379 keloid formation Diseases 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 235000012902 lepidium meyenii Nutrition 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000019017 loss of appetite Diseases 0.000 description 1
- 235000021266 loss of appetite Nutrition 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 208000030208 low-grade fever Diseases 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000002793 maxillary artery Anatomy 0.000 description 1
- QWIZNVHXZXRPDR-WSCXOGSTSA-N melezitose Chemical compound O([C@@]1(O[C@@H]([C@H]([C@@H]1O[C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O)CO)CO)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O QWIZNVHXZXRPDR-WSCXOGSTSA-N 0.000 description 1
- 210000003975 mesenteric artery Anatomy 0.000 description 1
- 210000001758 mesenteric vein Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000002003 mononeuritis multiplex Diseases 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000036562 nail growth Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000002956 necrotizing effect Effects 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 238000004848 nephelometry Methods 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000028412 nervous system injury Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 229940127234 oral contraceptive Drugs 0.000 description 1
- 239000003539 oral contraceptive agent Substances 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 201000000901 ornithosis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 208000008494 pericarditis Diseases 0.000 description 1
- 210000002640 perineum Anatomy 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 208000027232 peripheral nervous system disease Diseases 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003893 phenacetin Drugs 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 210000004043 pneumocyte Anatomy 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 208000037920 primary disease Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 201000003651 pulmonary sarcoidosis Diseases 0.000 description 1
- 210000003492 pulmonary vein Anatomy 0.000 description 1
- 208000029561 pustule Diseases 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 239000012927 reference suspension Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 210000002796 renal vein Anatomy 0.000 description 1
- 230000025488 response to cold Effects 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 208000012810 sudden onset of fever Diseases 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 206010042772 syncope Diseases 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 208000000143 urethritis Diseases 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- 210000001075 venae cavae Anatomy 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 230000005727 virus proliferation Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000012904 visual particle Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/94—Stability, e.g. half-life, pH, temperature or enzyme-resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- therapeutic proteins such as antibodies
- stability e.g., suitability for administration, concentration.
- therapeutic proteins During manufacturing, storage, and delivery, therapeutic proteins have been known to undergo physical and chemical degradations. These instabilities can reduce the potency of the protein and increase the risk of adverse events in patients, and, therefore, significantly impact regulatory approval (see, e.g., Wang et al. J. Pharm. Sci. 96:1, 2007).
- a stable protein formulation is essential to the success of a therapeutic protein.
- High protein concentration formulations are desirable as they can impact the mode (e.g., intravenous vs. subcutaneous) and frequency of administration of the drug to a subject.
- the present invention is based, at least in part, on the discovery of new high-concentration formulations for therapeutic antibodies (including human anti-TNF- ⁇ antibodies, or antigen-binding fragments thereof, e.g., adalimumab).
- the formulations of the invention provide a number of surprising characteristics given the high concentration of the therapeutic antibody.
- the present invention provides pharmaceutical formulations comprising human anti-TNF ⁇ antibodies which surprisingly have improved bioavailability or decreased pain upon subcutaneous injection.
- the present invention is based, at least partly, on the unexpected and surprising discovery that a formulation having a high antibody concentration, a surfactant, and a polyol, provides dramatically reduced pain to the patient during drug delivery, particularly subcutaneous administration of the antibody through, for example, self-injection.
- the formulations of the invention are established, at least in part, on the surprising finding that a therapeutic protein (e.g., an anti-TNF-alpha antibody, or antigen-binding portion thereof), can remain soluble at a high protein concentration (e.g., at least about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 96, 100, 105, 110 mg/ml, or more) and maintain a viscosity suitable for injection (e.g., subcutaneous administration).
- a therapeutic protein e.g., an anti-TNF-alpha antibody, or antigen-binding portion thereof
- a high protein concentration e.g., at least about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 96, 100, 105, 110 mg/ml, or more
- a viscosity suitable for injection e.g., subcutaneous administration.
- the formulation of the present invention is further surprising, in that the formulation does not contain a buffer
- the formulation of the invention reduces pain associated with injection in a patient by at least about 50% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer.
- the invention provides a liquid aqueous formulation comprising an anti-TNF ⁇ antibody, or antigen-binding portion thereof; a surfactant; and, a polyol; wherein the formulation does not contain a buffer or a salt, and reduces pain associated with injection in a patient by at least about 50% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer.
- a liquid aqueous formulation comprising an anti-TNF ⁇ antibody, or antigen-binding portion thereof; a surfactant; and, a polyol; wherein the formulation does not contain a buffer or a salt, and reduces pain associated with injection in a patient by at least about 50% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer
- the invention provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/mL of a polyol, wherein injection of the formulation into a human subject results in a Pain Visual Analog Scale (VAS) score of less than 1.0.
- the invention provides a liquid aqueous formulation consisting essentially of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/mL of a polyol, wherein injection of the formulation into a human subject results in a Pain Visual Analog Scale (VAS) score of less than 1.0.
- the VAS scale is from 0 (no pain) to 10 (excruciating pain)
- the invention provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/ml of a polyol, wherein the formulation does not contain a buffer and a salt, and wherein injection of the formulation reduces pain associated with the injection in a human subject by at least about 50% when compared to injection of an otherwise identical formulation that comprises a salt and/or a buffer.
- the otherwise identical comprises a citrate and phosphate buffer and sodium chloride.
- the invention further provides a liquid aqueous formulation comprising an anti-TNF ⁇ antibody or antigen-binding portion thereof, at a concentration of at least about 50 mg/mL; a surfactant; and, a polyol, wherein the formulation has a conductivity of less than about 2 mS/cm. In one embodiment, the formulation has a conductivity of less than 1 mS/cm. In another embodiment, the formulation has a conductivity of less than 0.9 mS/cm.
- the invention also provides, in another embodiment, a liquid aqueous formulation comprising an anti-TNF ⁇ antibody or antigen-binding portion thereof, at a concentration of at least about 50 mg/mL; a surfactant; and, a polyol, wherein the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter of less than 4 nm in the formulation. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than 3 nm in the formulation.
- the present invention also provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation has a characteristic selected from the group consisting of a conductivity of less than about 2 mS/cm; a hydrodynamic diameter (D h ) which is at least about 50% less than the D h of the protein in a buffered solution at a given concentration; and a hydrodynamic diameter (D h ) of less than about 4 nm.
- the formulation has a conductivity of less than about 1 mS/cm.
- the formulation has a conductivity of less than about 0.9 mS/cm. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 3 nm in the formulation. In another embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 2 nm in the formulation.
- the invention also provides a liquid aqueous formulation consisting essentially of an anti-TNF ⁇ antibody or antigen-binding portion thereof; a surfactant; and, a polyol; wherein the concentration of the anti-TNF ⁇ antibody or antigen-binding portion thereof is at least about 50 mg/mL, 75 mg/mL, 100 mg/mL, or greater than 100 mg/mL.
- the present invention provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation is stable up to about 30 degrees C. for at least about 6 days, about 10, days, or about 14 days, or is stable at about 28 degrees C. for up to about 24 months.
- the invention provides a method of administering an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, to a subject such that injection pain is reduced upon administration, said method comprising subcutaneously administering to the subject a formulation comprising the antibody, or antigen-binding portion thereof, such that injection pain is reduced upon administration, wherein the formulation comprises more than 50 mg/ml of the antibody, or antigen-binding portion thereof; a surfactant; and less than 50 mg/ml of a polyol.
- the injection pain is determined to be less than 1.0 according to a Pain Visual Analog Scale (VAS).
- pain associated with injection is assessed using a pain visual analog scale (VAS).
- VAS pain visual analog scale
- the VAS scale is from 0 (no pain) to 10 (excruciating pain)
- the pain associated with injection is assessed after injection (e.g., immediately, no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 minutes, or no more than 15 minutes after injection).
- the formulation reduces pain associated with injection in the patient by at least about 60%, 70%, 80% or more, when compared to injecting the otherwise identical formulation comprising the at least one salt and/or at least one buffer.
- the invention further provides a liquid aqueous formulation comprising an anti-TNF ⁇ antibody or antigen-binding portion thereof, at a concentration of at least about 50, 75, 100 mg/mL, or greater than 100 mg/mL; a surfactant; and, a polyol; wherein the formulation does not contain a buffer and a salt.
- the invention provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation is stable for up to about 30 degrees C. for at least about 6 days.
- the formulation is stable at room temperature for at least about 7 days.
- the formulation is stable at room temperature for at least about 8 days.
- the formulation is stable at room temperature for at least about 9 days.
- the formulation is stable at room temperature for at least about 10 days.
- the formulation is stable at room temperature for at least about 11 days.
- the formulation is stable at room temperature for at least about 12 days.
- the formulation is stable at room temperature for at least about 13 days.
- the formulation is stable at room temperature for at least about 14 days.
- the formulation is stable at room temperature for at least about 15 days.
- the polyol used in the formulation of the invention is mannitol or sorbitol.
- the formulation of the invention contains about 20-60 mg/mL mannitol, or, alternatively, about 30-50 mg/mL. In one embodiment, the formulation contains about 38-46 mg/ml of mannitol.
- the present invention is also based, at least in part, on the unexpected and surprising discovery that a formulation having a high antibody concentration and a surfactant provides notably higher bioavailability than similar formulations containing additional excipients, such as a buffer, a polyol and/or a salt.
- the invention provides a liquid aqueous formulation comprising a surfactant and 30-90 mg of an isolated human anti-TNF ⁇ antibody or antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation relative to a formulation comprising a citrate phosphate buffer, sodium chloride, and mannitol.
- the invention provides a liquid aqueous formulation consisting essentially of a surfactant and 30-90 mg of an isolated human anti-TNF ⁇ antibody or antigen-binding portion, wherein the concentration of the antibody, or antigen-binding portion thereof, is 90-110 mg/ml.
- the invention provides a liquid aqueous formulation comprising a surfactant and 30-90 mg of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, in a human subject upon subcutaneous injection of the formulation, such that the antibody or antigen-binding portion thereof, has an AUC 0-360 greater than about 1300 ⁇ g*hr/ml.
- the invention provides a method for improving the bioavailability of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, in a human subject, said method comprising administering a formulation comprising an effective amount of the antibody, or antigen-binding portion thereof, and a surfactant to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved, wherein the formulation does not contain a buffer, a polyol, or a salt.
- the invention provides a method of improving the bioavailability of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, in a subject, said method comprising administering a formulation comprising an effective amount of the antibody, or antigen-binding portion thereof, and a surfactant to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, in the subject is improved, at least about 15% over a second formulation, wherein the formulation does not contain a buffer, a polyol, or a salt, and wherein the second formulation comprises a buffer, a polyol, and a salt.
- the bioavailability of the antibody, or antigen-binding portion thereof is improved at least about 30% over the second formulation. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is improved at least about 40% over the second formulation.
- the invention further provides a method of improving the bioavailability of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, in a human subject, said method comprising administering a formulation comprising a surfactant and an effective amount of the antibody, or antigen-binding portion thereof, to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved, wherein the formulation has a characteristic selected from the group consisting of a conductivity of less than about 2 mS/cm; the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter (D h ) which is at least about 50% less than the D h of the antibody, or antigen-binding portion thereof, in a buffered solution at the given concentration; and the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter (D h ) of less than about 4 nm.
- a formulation comprising a surfactant and an effective amount of the antibody, or antigen-binding portion thereof
- the formulation has a conductivity of less than about 1 mS/cm. In another embodiment, the formulation has a conductivity of less than about 0.9 mS/cm. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 3 nm in the formulation.
- the bioavailability is determined according to either an AUC level or a Cmax. In one embodiment, the bioavailability is determined according to either an AUC 0-360 or an AUC 0-1344 . In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is an AUC 0-360 greater than about 1300 ⁇ g*hr/ml when subcutaneously injected into the human subject.
- the anti-TNF ⁇ antibody is an isolated human antibody (e.g., a human IgG1 kappa antibody), a humanized antibody, a chimeric antibody, or a murine antibody.
- the chimeric antibody may be infliximab or a biosimilar thereof, and the human antibody may be golimumab or adalimumab, or a biosimilar thereof.
- the human anti-TNF ⁇ antibody, or an antigen-binding portion thereof is an IgG1 or an IgG4.
- human anti-TNF ⁇ antibody dissociates from human TNF ⁇ with a K d of 1 ⁇ 10 ⁇ 8 M or less and has a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, both determined by surface plasmon resonance.
- the human anti-TNF ⁇ antibody dissociates from human TNF ⁇ with a K d of 1 ⁇ 10 ⁇ 8 M or less and a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, both determined by surface plasmon resonance, and neutralizes human TNF ⁇ cytotoxicity in a standard in vitro L929 assay with an IC 50 of 1 ⁇ 10 ⁇ 7 M or less.
- the human anti-TNF ⁇ antibody or an antigen-binding portion thereof, has the following characteristics: dissociates from human TNF ⁇ with a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, as determined by surface plasmon resonance; has a light chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at position 1, 4, 5, 7 or 8 or by one to five conservative amino acid substitutions at positions 1, 3, 4, 6, 7, 8 and/or 9; and, (c) has a heavy chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at position 2, 3, 4, 5, 6, 8, 9, 10 or 11 or by one to five conservative amino acid substitutions at positions 2, 3, 4, 5, 6, 8, 9, 10, 11 and/or 12.
- the human anti-TNF ⁇ antibody or an antigen-binding portion thereof, has a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at position 1, 4, 5, 7 or 8, and with a heavy chain variable region (HCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at position 2, 3, 4, 5, 6, 8, 9, 10 or 11.
- LCVR light chain variable region
- HCVR heavy chain variable region
- the human anti-TNF ⁇ antibody has a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at position 1, 4, 5, 7 or 8, a CDR2 domain comprising the amino acid sequence of SEQ ID NO: 5, and a CDR1 domain comprising the amino acid sequence of SEQ ID NO: 7; and has a heavy chain variable region (HCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at position 2, 3, 4, 5, 6, 8, 9, 10 or 11, a CDR2 domain comprising the amino acid sequence of SEQ ID NO: 6, and a CDR1 domain comprising the amino acid sequence of SEQ ID NO: 8.
- LCVR light chain variable region
- the human anti-TNF ⁇ antibody or an antigen-binding portion thereof, has a light chain variable region (LCVR) comprising the amino acid sequence of SEQ ID NO: 1 and a heavy chain variable region (HCVR) comprising the amino acid sequence of SEQ ID NO: 2.
- LCVR light chain variable region
- HCVR heavy chain variable region
- the human anti-TNF ⁇ antibody or an antigen-binding portion thereof, comprises the CDRs corresponding to adalimumab.
- the human anti-TNF ⁇ antibody, or an antigen-binding portion thereof is adalimumab or golimumab, or a biosimilar thereof.
- the concentration of the human anti-TNF ⁇ antibody, or antigen-binding portion thereof, in the formulation is at least about 50 mg/mL, about 75 mg/mL, about 100 mg/mL, or greater than 100 mg/mL. In one embodiment, the concentration of the human anti-TNF ⁇ antibody, or antigen-binding portion thereof, in the formulation of the invention is 90-110 mg/ml. In one embodiment, the concentration of the human anti-TNF ⁇ antibody, or antigen-binding portion thereof, in the formulation of the invention is 95-105 mg/ml. In one embodiment, the formulation comprises more than 75 mg/ml of the antibody, or antigen-binding portion thereof. In one embodiment, the invention provides a stable, liquid aqueous formulation comprising a high concentration, e.g., 75-125 mg/mL, of a human anti-hTNF ⁇ antibody.
- the surfactant used in the formulation of the invention is a polysorbate.
- the concentration of polysorbate is about 0.1-1.5 mg/ml, about 0.2-1.4 mg/ml, about 0.3-1.3 mg/ml, about 0.4-1.2 mg/ml, about 0.5-1.1 mg/ml, about 0.6-1.0 mg/ml, about 0.6-1.1 mg/ml, about 0.7-1.1 mg/ml, about 0.8-1.1 mg/ml, or about 0.9-1.1 mg/ml.
- the polysorbate is at a concentration of about 0.1-10 mg/mL, about 0.5-5 mg/mL, about 0.1-2 mg/mL, or about 1 mg/mL.
- the surfactant is polysorbate 80.
- the patient is human, or a non-human mammal.
- the formulation is Formulation 3 or Formulation 4 described in the Examples.
- the otherwise identical formulation is the commercially available adalimumab formulation containing adalimumab, sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol, polysorbate 80, and water for Injection.
- the otherwise identical formulation contains a buffer and a salt.
- the salt is a neutral salt, or a salt from a base (e.g., NaOH) used for pH adjustment.
- the buffer comprises a phosphate buffer and/or a citrate buffer.
- the phosphate buffer may contain about 1.35-1.75 mg/mL or about 1.50-1.56 mg/mL of Na 2 HPO 4 .2H 2 O, and about 0.75-0.95 mg/mL or about 0.83-0.89 mg/mL of NaH 2 PO 4 .2H 2 O).
- the citrate buffer may contain about 1.15-1.45 mg/mL or about 1.30-1.31 mg/mL of citric acid.H 2 O, and about 0.2-0.4 mg/mL or about 0.30-0.31 mg/mL of sodium citrate dehydrate.
- the at least one salt may be a neutral salt, such as a neutral sodium salt (e.g., NaCl).
- the formulation of the invention is a pharmaceutical formulation.
- the formulation of the invention is suitable for subcutaneous injection. In one embodiment, the formulation of the invention is suitable for subcutaneous self-administration by a subject.
- the volume of the aqueous formulation is no more than 1.5 mL, 1.0 mL, 0.8 mL, 0.5 mL, or 0.4 mL.
- the formulation comprises a dose of about 30-90 mg of the antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 40 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 50 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 60 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 70 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 80 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 90 mg of the anti-TNF ⁇ antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises 60-85 mg. In another embodiment, the formulation comprises 70-90 mg. In yet a further embodiment, the formulation contains 30-110 mg. In one embodiment, the formulation contains 70-110 mg.
- Another aspect of the invention provides a pre-filled syringe or autoinjector device, comprising any of the subject formulations described herein.
- the aqueous formulation stored in the pre-filled syringe or autoinjector device contains about 40 mg of adalimumab, or biosimilar thereof.
- the aqueous formulation stored in the pre-filled syringe or autoinjector device contains about 80 mg of adalimumab, or biosimilar thereof.
- Another aspect of the invention provides a method of treating a disorder associated with detrimental TNF ⁇ activity in a patient, comprising administering to the patient any one of the formulations described herein.
- the formulation or method of the invention is used to treat a subject having rheumatoid arthritis. In one embodiment, the formulation or method of the invention is used to treat a subject having Crohn's disease. In one embodiment, the formulation or method of the invention is used to treat a subject having psoriatic arthritis. In one embodiment, the formulation or method of the invention is used to treat a subject having psoriasis. In one embodiment, the formulation or method of the invention is used to treat a subject having juvenile idiopathic arthritis (JIA). In one embodiment, the formulation or method of the invention is used to treat a subject having ankylosing spondylitis. In one embodiment, the formulation or method of the invention is used to treat a subject having ulcerative colitis.
- JIA juvenile idiopathic arthritis
- the formulation or method of the invention is used to treat a subject having hidradenitis suppurativa. In one embodiment, the formulation or method of the invention is used to treat a subject having diabetic retinopathy. In one embodiment, the formulation or method of the invention is used to treat a subject having giant cell arteritis. In one embodiment, the formulation or method of the invention is used to treat a subject having Behcet's disease. In one embodiment, the formulation or method of the invention is used to treat a subject having sarcoidosis, e.g. cutaneous sarcoidosis. In one embodiment, the formulation or method of the invention is used to treat a subject having axial spondyloarthropathy. In one embodiment, the formulation or method of the invention is used to treat a subject having uveitis.
- the formulation or method of the invention is used to treat a subject having hidradenitis suppurativa. In one embodiment, the formulation or method of the invention is used to treat a subject having diabetic
- the formulation is administered to the subject according to a periodicity selected from the group consisting of weekly, biweekly, every three weeks, and monthly.
- the formulation of the invention contains 30-90 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered on a biweekly dosing regimen.
- the formulation of the invention contains 30-90 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered according to a monthly dosing regimen.
- the formulation of the invention contains 60-85 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered on a biweekly dosing regimen.
- the formulation of the invention contains 60-85 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered according to a monthly dosing regimen.
- the administration of the formulation of the invention to a subject is via self-administration.
- FIG. 1 is a panel of graphs that show administration of high concentration formulations 1 (F1) and 2 (F2) resulted in a significant decrease in pain assessment at all time points after injection (immediately, 15 minutes, and 30 minutes), compared to the other treatment groups (F4 and the current commercial formulation).
- FIG. 2 shows, on a linear scale, the means and standard deviations of adalimumab serum concentrations over a time period of 56 days following a single 40 mg SC dose of adalimumab.
- FIGS. 3A and 3B are graphs that show the stability of the various adalimumab formulations assessed by the number of sum aggregates in the formulations ( 3 A) or the sum aggregates ( 3 B) over a range of polysorbate or a range of polyol.
- pain associated with injection refers to the pain associated with the injection of drug into the patient's or subject's tissue.
- the pain is separate from the pain caused by the injection device (if any), such as the injection needle stick.
- the pain associated with injection may originate from the drug formulation being injected into patient's tissue.
- the pain associated with injection may be evaluated using a number of art-recognized means, such as the Pain Visual Analog Scale (VAS).
- VAS Pain Visual Analog Scale
- the pain measurement is, in one embodiment, quantifiable, such that a percentage pain scale reduction/increase can be directly compared using statistical methods. For example, when the Pain Visual Analog Scale is used, a numeric pain value (e.g., average ⁇ SD) can be assigned to each treatment group, such that a percentage increase or reduction can be calculated.
- VAS Visual Analogue Scale
- a characteristic or attitude that is believed to range across a continuum of values
- the amount of pain that a patient feels ranges across a continuum from none (a score of, for example, 0) to an extreme amount of pain (a score of, for example, 10). From the patient's perspective this spectrum appears continuous—their pain does not take discrete jumps, as a categorization of none, mild, moderate and severe would suggest.
- a VAS is usually a horizontal line, 100 mm in length, anchored by word descriptors at each end, such as “no pain” at one end, and “extreme pain” (or some variation thereof) on the other end.
- the patient marks on the line at a point (for example, a score of 0-10) that they feel represents their perception of their current state.
- the VAS score may determined by measuring in millimeters from the left hand end of the line to the point that the patient marks.
- VAS Voice Assistance Systems
- vertical lines and lines with extra descriptors See Wewers & Lowe (“A critical review of visual analogue scales in the measurement of clinical phenomena.” Research in Nursing and Health 13: 227-236, 1990, incorporated by reference herein) provide an informative discussion of the benefits and shortcomings of different styles of VAS.
- liquid formulation refers to a formulation in a liquid state and is not intended to refer to resuspended lyophilized formulations.
- a liquid formulation of the invention is stable upon storage, and does not rely upon lyophilization (or other state change methods, e.g., spray drying) for stability.
- liquid aqueous formulation refers to a liquid formulation using water as a solvent.
- a liquid aqueous formulation is a formulation that maintains stability (e.g., chemical and/or physical stability/and/or biological activity) without the need for lyophilization, spray-drying, and/or freezing.
- composition e.g., an aqueous formulation, that it is useful for treating a disease or disorder.
- subject or “patient” is intended to include mammalian organisms.
- subjects/patients include humans and non-human mammals, e.g., non-human primates, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals.
- the subject is a human.
- excipient refers to an agent which may be added to a formulation to provide a desired characteristic, e.g., consistency, improving stability, and/or to adjust osmolality.
- excipients include, but are not limited to, sugars, polyols, amino acids, surfactants, and polymers.
- a commonly used excipient is a polyol.
- a “polyol” is a substance with multiple hydroxyl groups, and includes sugars (reducing and nonreducing sugars), sugar alcohols and sugar acids.
- Non-limiting examples of polyols are fructose, mannose, maltose, lactose, arabinose, xylose, ribose, rhamnose, galactose, glucose, sucrose, trehalose, sorbose, melezitose, raffinose, mannitol, xylitol, erythritol, threitol, sorbitol, glycerol, L-gluconate and metallic salts thereof.
- the polyol used in the formulation or methods of the invention is mannitol.
- the polyol used in the formulation or methods of the invention is sorbitol.
- a “therapeutically active antibody” or “therapeutic antibody” refers to an antibody which may be used for therapeutic purposes, i.e., for the treatment of a disorder in a subject. It should be noted that while therapeutic proteins may be used for treatment purposes, the invention is not limited to such use, as said proteins may also be used for in vitro studies.
- buffer is an agent(s) in a solution that allows the solution to resist changes in pH by the action of its acid-base conjugate components.
- buffers include acetate (e.g. sodium acetate), succinate (such as sodium succinate), gluconate, histidine, methionine, citrate, phosphate, citrate/phosphate, imidazole, combinations thereof, and other organic acid buffers.
- a buffer is not a protein.
- a buffer may provide a solution with a pH in the range from about 4 to about 8; from about 4.5 to about 7; or from about 5.0 to about 6.5.
- a representative buffer in the otherwise identical formulation comprises a citrate buffer and/or a phosphate buffer.
- surfactant generally includes an agent that protects the protein, e.g., antibody, from air/solution interface-induced stresses, solution/surface induced-stresses, to reduce aggregation of the antibody, or to minimize the formation of particulates in the formulation.
- exemplary surfactants include, but are not limited to, nonionic surfactants such as polysorbates (e.g. polysorbates 20 and 80) or poloxamers (e.g. poloxamer 188).
- surfactant or “detergent” includes nonionic surfactants such as, but not limited to, polysorbates.
- a surfactant includes poloxamers, e.g., Poloxamer 188, Poloxamer 407; polyoxyethylene alkyl ethers, e.g., Brij 35®, Cremophor A25, Sympatens ALM/230; and polysorbates/Tweens, e.g., Polysorbate 20 (Tween 20), Polysorbate 80 (Tween 80), Mirj, and Poloxamers, e.g., Poloxamer 188.
- poloxamers e.g., Poloxamer 188, Poloxamer 407
- polyoxyethylene alkyl ethers e.g., Brij 35®, Cremophor A25, Sympatens ALM/230
- polysorbates/Tweens e.g., Polysorbate 20 (Tween 20), Polysorbate 80 (Tween 80), Mirj
- Poloxamers e.g., Poloxamer 188.
- a “stable” formulation is one in which the antibody therein essentially retains its physical stability and/or chemical stability and/or biological activity during the manufacturing process and/or upon storage.
- Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991); and Jones, A. (1993) Adv. Drug Delivery Rev. 10: 29-90 (both incorporated by reference).
- the stability of a protein is determined according to the percentage of monomer protein in the solution, with a low percentage of degraded (e.g., fragmented) and/or aggregated protein.
- the formulation may be stable at room temperature, at about 25-30° C., or at 40° C. for at least 1 month and/or stable at about 2-8° C. for at least 1 month, 1 year, or, alternatively, for at least 2 years.
- the formulation may be stable up to about 30 degrees C. for at least about 6 days, about 10, days, or about 14 days, or is stable at about 28 degrees C. for up to about 24 months.
- the formulation may be stable following freezing (to, e.g., ⁇ 70° C.) and thawing of the formulation, hereinafter referred to as a “freeze/thaw cycle.”
- An antibody “retains its physical stability” in a pharmaceutical formulation if it shows substantially no signs of, e.g., aggregation, precipitation and/or denaturation upon visual examination of color and/or clarity, or as measured by UV light scattering or by size exclusion chromatography.
- Aggregation is a process whereby individual molecules or complexes associate covalently or non-covalently to form aggregates. Aggregation can proceed to the extent that a visible precipitate is formed.
- Stability such as physical stability of a formulation
- a sample's apparent attenuation of light absorbance, or optical density
- Such a measurement of light attenuation relates to the turbidity of a formulation.
- the turbidity of a formulation is partially an intrinsic property of the protein dissolved in solution and is commonly determined by nephelometry, and measured in Nephelometric Turbidity Units (NTU).
- NTU Nephelometric Turbidity Units
- the degree of turbidity e.g., as a function of the concentration of one or more of the components in the solution, e.g., protein and/or salt concentration, is also referred to as the “opalescence” or “opalescent appearance” of a formulation.
- the degree of turbidity can be calculated by reference to a standard curve generated using suspensions of known turbidity. Reference standards for determining the degree of turbidity for pharmaceutical compositions can be based on the European Pharmacopeia criteria (European Pharmacopoeia, Fourth Ed., Directorate for the Quality of Medicine of the Council of Europe (EDQM), France).
- a clear solution is defined as one with a turbidity less than or equal to a reference suspension which has a turbidity of approximately 3 according to European Pharmacopeia standards.
- Nephelometric turbidity measurements can detect Rayleigh scatter, which typically changes linearly with concentration, in the absence of association or nonideality effects. Other methods for assessing physical stability are well-known in the art.
- Chemical stability can be assessed by, e.g., detecting and quantifying chemically altered forms of the antibody.
- Chemical alteration may involve size modification (e.g. clipping) which can be evaluated using size exclusion chromatography, SDS-PAGE and/or matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS), for example.
- size modification e.g. clipping
- MALDI/TOF MS matrix-assisted laser desorption ionization/time-of-flight mass spectrometry
- Other types of chemical alteration include charge alteration (e.g. occurring as a result of deamidation or oxidation) which can be evaluated by ion-exchange chromatography, for example.
- An antibody “retains its biological activity” in a pharmaceutical formulation if the antibody in a pharmaceutical formulation is biologically active for its intended purpose. For example, biological activity is retained if the biological activity of the antibody in the pharmaceutical formulation is within about 30%, about 20%, or about 10% (within the errors of the assay) of the biological activity exhibited at the time the pharmaceutical formulation was prepared (e.g., as determined in an antigen binding assay).
- a “therapeutically effective amount” or “effective amount” of an antibody refers to an amount effective in the prevention or treatment or alleviation of a symptom of a disorder for the treatment of which the antibody is effective.
- human TNF-alpha (abbreviated herein as hTNF-alpha, TNF ⁇ , or simply hTNF), as used herein, is intended to refer to a human cytokine that exists as a 17 kDa secreted form and a 26 kDa membrane associated form, the biologically active form of which is composed of a trimer of noncovalently bound 17 kDa molecules.
- hTNF-alpha The structure of hTNF-alpha is described further in, for example, Pennica, D., et al. (1984) Nature 312:724-729; Davis, J. M., et al. (1987) Biochem 26:1322-1326; and Jones, E. Y., et al.
- human TNF-alpha is intended to include recombinant human TNF-alpha (rhTNF-alpha), which can be prepared by standard recombinant expression methods or purchased commercially (R & D Systems, Catalog No. 210-TA, Minneapolis, Minn.).
- antibody is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Other naturally occurring antibodies of altered structure, such as, for example, camelid antibodies, are also included in this definition.
- Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
- Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the formulation contains an antibody with CDR1, CDR2, and CDR3 sequences like those described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein.
- the formulation contains an antibody as claimed in U.S. Pat. Nos. 6,090,382 and 6,258,562.
- CDR refers to the complementarity determining region within a antibody variable sequence.
- CDR1, CDR2 and CDR3 are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the heavy and light chain variable regions.
- the exact boundaries of these CDRs have been defined differently according to different systems.
- the system described by Kabat (Id.) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Chothia et al.
- the antibody used in the methods and compositions of the invention includes the six CDRs from the antibody adalimumab.
- antibody portion refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., hTNF-alpha). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody.
- binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′) 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
- a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CH1 domains
- a F(ab′) 2 fragment a bivalent fragment comprising two Fab fragments linked by
- the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883).
- single chain Fv single chain Fv
- Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody.
- Other forms of single chain antibodies, such as diabodies are also encompassed.
- Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).
- the formulation contains an antigen-binding portions described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein.
- recombinant antibody refers to antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992) Nucl. Acids Res. 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of particular immunoglobulin gene sequences (such as human immunoglobulin gene sequences) to other DNA sequences.
- recombinant antibodies include recombinant human, chimeric, CDR-grafted and humanized antibodies.
- human antibody is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
- the human antibodies used in the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3.
- the term “human antibody,” as used herein is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- chimeric antibody refers to antibodies which comprise heavy and light chain variable region sequences from one species and constant region sequences from another species, such as antibodies having murine heavy and light chain variable regions linked to human constant regions.
- CDR-grafted antibody refers to antibodies which comprise heavy and light chain variable region sequences from one species but in which the sequences of one or more of the CDR regions of VH and/or VL are replaced with CDR sequences of another species, such as antibodies having murine heavy and light chain variable regions in which one or more of the murine CDRs (e.g., CDR3) has been replaced with human CDR sequences.
- an “isolated antibody,” as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds hTNF-alpha is substantially free of antibodies that specifically bind antigens other than hTNF-alpha).
- An isolated antibody that specifically binds hTNF-alpha may, however, have cross-reactivity to other antigens, such as TNF-alpha molecules from other species.
- an isolated antibody may be substantially free of other cellular material and/or chemicals.
- a “neutralizing antibody,” as used herein is intended to refer to an antibody whose binding to hTNF-alpha results in inhibition of the biological activity of hTNF-alpha.
- This inhibition of the biological activity of hTNF-alpha can be assessed by measuring one or more indicators of hTNF-alpha biological activity, such as hTNF-alpha-induced cytotoxicity (either in vitro or in vivo), hTNF-alpha-induced cellular activation and hTNF-alpha binding to hTNF-alpha receptors.
- hTNF-alpha biological activity can be assessed by one or more of several standard in vitro or in vivo assays known in the art, and described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein.
- the ability of an antibody to neutralize hTNF-alpha activity is assessed by inhibition of hTNF-alpha-induced cytotoxicity of L929 cells.
- the ability of an antibody to inhibit hTNF-alpha-induced expression of ELAM-1 on HUVEC, as a measure of hTNF-alpha-induced cellular activation can be assessed.
- surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).
- BIAcore Phharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.
- k on is intended to refer to the on rate constant for association of a binding protein (e.g., an antibody) to the antigen to form the, e.g., antibody/antigen complex as is known in the art.
- a binding protein e.g., an antibody
- k off is intended to refer to the off rate constant for dissociation of an antibody from the antibody/antigen complex.
- K d is intended to refer to the dissociation constant of a particular antibody-antigen interaction and refers to the value obtained in a titration measurement at equilibrium, or by dividing the dissociation rate constant (k off ) by the association rate constant (k on ).
- biosimilar of an approved reference product/biological drug, such as a protein therapeutic, antibody, etc. refers to a biologic product that is similar to the reference product based upon data derived from (a) analytical studies that demonstrate that the biological product is highly similar to the reference product notwithstanding minor differences in clinically inactive components; (b) animal studies (including the assessment of toxicity); and/or (c) a clinical study or studies (including the assessment of immunogenicity and pharmacokinetics or pharmacodynamics) that are sufficient to demonstrate safety, purity, and potency in one or more appropriate conditions of use for which the reference product is licensed and intended to be used and for which licensure is sought for the biological product.
- the biosimilar biological product and reference product utilize the same mechanism or mechanisms of action for the condition or conditions of use prescribed, recommended, or suggested in the proposed labeling, but only to the extent the mechanism or mechanisms of action are known for the reference product.
- the condition or conditions of use prescribed, recommended, or suggested in the labeling proposed for the biological product have been previously approved for the reference product.
- the route of administration, the dosage form, and/or the strength of the biological product are the same as those of the reference product.
- the facility in which the biological product is manufactured, processed, packed, or held meets standards designed to assure that the biological product continues to be safe, pure, and potent.
- the reference product may be approved in at least one of the U.S., Europe, or Japan.
- treating refers to the administration of a substance (e.g., an anti-TNFa antibody) to achieve a therapeutic objective (e.g., the treatment of a TNFa-associated disorder).
- a substance e.g., an anti-TNFa antibody
- a therapeutic objective e.g., the treatment of a TNFa-associated disorder
- weekly dosing regimen refers to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNF ⁇ antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNF ⁇ -associated disorder).
- a substance e.g., an anti-TNF ⁇ antibody
- a therapeutic objective e.g., the treatment of a TNF ⁇ -associated disorder.
- the antibody, or antigen-binding portion thereof is administered every 6-8 days, or, alternatively, every 7 days.
- biweekly dosing regimen refers to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNF ⁇ antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNF ⁇ -associated disorder).
- a substance e.g., an anti-TNF ⁇ antibody
- the biweekly dosing regimen is not intended to include a weekly dosing regimen.
- the antibody, or antigen-binding portion thereof is administered every 9-19 days, more preferably, every 11-17 days, even more preferably, every 13-15 days, and most preferably, every 14 days.
- monthly dosing regimen refers to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNF ⁇ antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNF ⁇ -associated disorder).
- a monthly dosing regimen means that the antibody, or antigen-binding portion thereof, is administered every 28-31 days.
- a monthly dosing regimen means that the antibody, or antigen-binding portion thereof, is administered once a month, e.g. on the same day each month, such as, for example, the first day of each month.
- AUC, Cmax, and Tmax are pharmacokinetic parameters that may be used to characterize the pharmacokinetic responses of a particular drug product in an animal or human subject.
- AUC refers to the “area under the curve” that represents changes in blood, serum, or plasma concentrations of a substance, e.g., a human anti-TNF ⁇ antibody, over time.
- Cmax refers to the maximum or peak blood, serum, or plasma concentration of substance observed in a subject after its administration.
- Tmax refers to the time at which the Cmax occurred, as measured from the time point of administration.”
- hydrodynamic diameter or “D h ” of a particle refers to the diameter of a sphere that has the density of water and the same velocity as the particle.
- hydrodynamic diameter of an antibody refers to a size determination for an antibody, or an antigen-binding portion thereof, e.g., a human anti-TNF ⁇ antibody, or antigen-binding fragment thereof, in solution using dynamic light scattering (DLS).
- DLS-measuring instrument measures the time-dependent fluctuation in the intensity of light scattered from the antibody, or antigen-binding fragment thereof, in solution at a fixed scattering angle.
- D h is determined from the intensity autocorrelation function of the time-dependent fluctuation in intensity.
- Scattering intensity data are processed using DLS instrument software to determine the value for the hydrodynamic diameter and the size distribution of the scattering molecules, e.g. the human anti-TNF ⁇ antibody, or antigen-binding fragment thereof, specimen.
- conductivity refers to the ability of an aqueous solution to conduct an electric current between two electrodes.
- electrical conductivity or specific conductivity is a measure of a material's ability to conduct an electric current. In solution, the current flows by ion transport. Therefore, with an increasing amount of ions present in the aqueous solution, the solution will have a higher conductivity.
- the unit of measurement for conductivity is mmhos (mS/cm), and can be measured using a conductivity meter sold, e.g., by Orion Research, Inc. (Beverly, Mass.).
- the conductivity of a solution may be altered by changing the concentration of ions therein. For example, the concentration of buffer and/or salt, in the solution may be altered in order to achieve the desired conductivity.
- Conductivity of a solution is measured according to methods known in the art. Conductivity meters and cells may be used to determine the conductivity of the aqueous formulation, and should be calibrated to a standard solution before use. Examples of conductivity meters available in the art include MYRON L Digital (Cole Parmer®), Conductometer (Metrohm AG), and Series 3105/3115 Integrated Conductivity Analyzers (Kemotron).
- Conductivity measurements may be taken with any commercially available conductivity meter suitable for conductivity analysis in protein solutions, e.g. conductivity meter Model SevenMulti, with expansion capacity for broad pH range (Mettler Toledo, Schwerzenbach, Switzerland).
- the instrument is operated according to the manufacturers instructions (e.g., if the conductivity sensor is changed in the Mettler Toledo instrument, calibration must be performed again, as each sensor has a different cell constant; refer to Operating Instructions of Model SevenMulti conductivity meter). If the instructions are followed, conductivity measurements can be taken by directly immersing the measuring probe into the sample solution.
- the present invention features stable, liquid aqueous pharmaceutical formulations comprising an anti-TNF ⁇ antibody, or an antigen binding portion thereof, having improved properties as compared to art-recognized formulations.
- high concentration formulations containing human anti-TNF ⁇ antibodies are known in the art (see, for example, US20060153846 and US20100278822)
- the instant invention provides high concentration formulations having unexpected characteristics, i.e., significantly decreased pain or increased bioavailability.
- the formulations of the invention are based, at least in part, on the combination of only one or two excipients, i.e., a surfactant and a polyol or, alternatively, a surfactant alone.
- the formulations of the invention contain a high concentration of an antibody, e.g. 90-110 mg/ml, and are stable.
- a formulation containing an antibody concentration of more than 50 mg/ml of an isolated human anti-TNF ⁇ antibody, less than 50 mg/ml of a polyol, (such as mannitol), and a surfactant, (such as a polysorbate), was shown to have dramatically reduced pain upon injection relative to other high concentration formulations, including the commercial adalimumab formulation described in US20060153846, and the formulation described in US20100278822, each of which is incorporated by reference herein.
- the formulations of the invention are associated with a reduction of pain, despite having a high antibody concentration (e.g., 100 mg/mL) and having no buffer or salt.
- the low-pain formulations described herein are based, at least in part, on the surprising finding that by removing or excluding salt (e.g., NaCl) and/or a buffer (e.g., a phosphate/citrate buffer) the concentration of a human anti-TNF alpha antibody in a formulation can be increased, e.g., to about 100 mg/mL, while decreasing pain upon delivery to a patient.
- salt e.g., NaCl
- a buffer e.g., a phosphate/citrate buffer
- the formulation of the invention is surprising, in that the formulation does not contain a buffer or a salt, and reduces pain associated with injection in a patient by at least about 50% when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer.
- the formulation reduces pain associated with the injection in a human subject by at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% (e.g., about 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80%) when compared to the injection of an otherwise identical formulation that further comprises a salt and/or a buffer.
- a salt and/or a buffer e.g., about 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45,
- the otherwise identical formulation used for pain comparison assay comprises at least one buffer, such as a citrate buffer and a phosphate buffer, and/or a salt, e.g., NaCl.
- the buffer (excluded from the formulation of the invention and present in the reference formulation for pain comparisons) may include citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate.
- the buffer may include about 1.15-1.45 mg/ml of citric acid (e.g., about 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, or 1.45), about 0.2-0.4 mg/mL of sodium citrate dehydrate (e.g., about 0.2, 0.25, 0.3, 0.35, or 0.4), about 1.35-1.75 mg/mL of disodium phosphate dehydrate (e.g., about 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, or 1.75), about 0.75-0.95 mg/mL of sodium dihydrogen phosphate dehydrate (e.g., about 0.75, 0.80, 0.85, 0.9, or 0.95).
- citric acid e.g., about 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, or 1.45
- sodium citrate dehydrate e.g., about 0.2, 0.25, 0.3, 0.35, or 0.4
- values and ranges intermediate to the aforementioned concentrations are also intended to be part of this invention.
- ranges of values using a combination of any of the above-recited values as upper and/or lower limits are intended to be included, e.g., 0.1 to 0.5 mg/mL or 1.20-1.40 mg/mL.
- the pH of the formulation is adjusted with sodium hydroxide.
- the formulation of the invention includes high concentrations of human anti-TNFa antibodies, or antigen binding portions thereof, e.g., 90-110 mg/ml, a polyol at a concentration less than 50 mg/ml, and a surfactant, such that the formulation is suitable for administration without significant pain as determined by a visual analog scale (VAS) score.
- the formulation and methods of the invention include high concentrations of anti-TNF ⁇ antibodies, or antigen binding portions thereof, and no buffer or salt, such that they are suitable for, administration, e.g., subcutaneous administration, without significant felt pain as determined by a visual analog scale (VAS) score.
- the formulation of the invention may result in a VAS score of less than 1 on a scale of 0 (no pain) to 10 (worst imaginable pain) following subcutaneous injection.
- a formulation having 100 mg/ml of adalimumab, polysorbate 80, and mannitol (less than 50 mg/ml) resulted in a VAS score of less than 1, e.g., 0.56, whereas other high antibody concentration formulations resulted in VAS scores ranging from 1.79 to 4.12.
- the invention provides a liquid aqueous formulation comprising an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/ml of a polyol, wherein subcutaneous injection of the formulation results in a Pain Visual Analog Scale score of less than 1.0 following injection.
- the formulation does not contain a buffer and a salt, and results in a reduction of pain of at least about 50% upon subcutaneous injection when compared to an injection of an otherwise identical formulation that further comprises a salt and/or a buffer(s).
- liquid formulations of the invention have advantageous tolerability properties in that the formulations produce less pain relative to formulations containing a buffer and a salt.
- the formulation reduces pain associated with injection (or any other form of administration) in a subject.
- pain associated with injection is reduced by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% (e.g., at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
- Pain may be evaluated using any type of pain assessment known in the art, including, for example, visual analog scales, qualitative assessments of pain, or needle pain assessments.
- subject-perceived injection site pain may be assessed using the Pain Visual Analog Scale (VAS).
- VAS Pain Visual Analog Scale
- a VAS is a measurement instrument that measures pain as it ranges across a continuum of values, e.g., from none to an extreme amount of pain.
- a VAS is a horizontal line, about 100 mm in length, anchored by numerical and/or word descriptors, e.g., 0 or 10, or “no pain” or “excruciating pain,” optionally with additional word or numeric descriptors between the extremes, e.g., mild, moderate, and severe; or 1 through 9) (see, e.g., Lee J S, et al. (2000) Acad Emerg Med 7:550, or Singer and Thods (1998) Academic Emergency Medicine 5:1007). Pain may be assessed at a single time or at various times following administration of a formulation of the invention such as, for example, immediately after injection, at about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, or 45 minutes after injection.
- injection of the formulation into a subject results in a Pain Visual Analog Scale score of less than 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, or 5.0 on a scale of 0 (no pain) to 10 (excruciating pain).
- Draize Scale herein, the Draize Scale (hemorrhage, petechiae, erythema, edema, pruritus).
- Formulations of the invention containing a polyol preferably contain less than about 50 mg of the polyol. In one embodiment, the formulations contain less than about 45 mg/mL of the polyol. In another embodiment, the formulations of the invention contain about 38-46 mg/mL of the polyol (e.g., mannitol), e.g., about 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 mg/mL of the polyol.
- the polyol e.g., mannitol
- the formulations of the invention contain about 12-72 mg/ml of polyol, e.g., mannitol.
- suitable polyols for use in the formulations and methods of the invention are mannitol or sorbitol.
- the formulation of the invention contains adalimumab (or a biosimilar thereof), polysorbate 80, mannitol, and water for injection. In one embodiment, the formulation contains 80 mg of adalimumab, water for injection, 42 mg/ml of mannitol, and 1 mg/ml of polysorbate 80. In one embodiment, the formulation may contain 20-110 mg, alternatively 20-90 mg of adalimumab or, alternatively, 30-80 mg of the antibody.
- the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 100 mg, 101 mg,
- the present invention is also based, at least in part on the surprising discovery that a liquid aqueous pharmaceutical formulation having a high concentration of a human anti-TNF ⁇ antibody, or antigen binding portion thereof, and a surfactant (i.e., in the absence of additional excipients), has greater bioavailability than other high concentration formulations having additional excipients.
- a formulation containing more than 50 mg/ml of an isolated human anti-TNF ⁇ antibody, and a polysorbate was shown to have increased bioavailability relative to other high concentration formulations, including the commercial adalimumab formulation described in US20060153846.
- bioavailability of an anti-TNFa antibody can be increased by combining the antibody with a surfactant, e.g., polysorbate 80.
- a surfactant e.g., polysorbate 80.
- the increase in bioavailability is based on the combination of the antibody and surfactant and the omission or removal of other excipients, including a buffer, polyol, and salt.
- the increase in bioavailability results in an AUC 0-360 of the anti-TNF ⁇ antibody, or an antigen-binding portion thereof, of greater than about 1300 ⁇ g*hr/ml or an AUC 0-1344 of the anti-TNF ⁇ antibody, or an antigen-binding portion thereof, of greater than about 2600 ⁇ g*hr/ml, when subcutaneously injected into a human subject.
- the present invention provides methods for improving the bioavailability of an isolated anti-TNF ⁇ antibody, or an antigen-binding portion thereof, in a pharmaceutical formulation.
- the methods include combining a therapeutically effective amount of the anti-TNFa antibody, or antigen-binding portion thereof, with a surfactant and excluding or removing other excipients, e.g., a buffer(s), salt, and polyol, or combinations thereof, such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved.
- the formulation is injected subcutaneously into a human subject.
- the methods may improve the bioavailability by providing an AUC 0-360 of the anti-TNF ⁇ antibody, or an antigen-binding portion thereof, of greater than about 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, or about 1500 ⁇ g*hr/ml when subcutaneously injected into a human subject.
- the invention further provides a method of improving the bioavailability of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion thereof, in a subject, said method comprising administering a formulation comprising a surfactant and an effective amount of the antibody, or antigen-binding portion thereof, to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, in the subject is improved at least about 15% over a second formulation.
- the formulation of the invention does not contain a buffer, a polyol, or a salt
- the second formulation comprises a buffer, a polyol, and a salt.
- the bioavailability of the antibody, or antigen-binding portion thereof is improved at least about 30% over the second formulation.
- the bioavailability of the antibody, or antigen-binding portion thereof is improved at least about 40% over the second formulation.
- the bioavailability may be determined according to either an AUC level, e.g., AUC 0-360 or an AUC 0-1344 , or a Cmax.
- the present invention provides a liquid aqueous formulation which includes a surfactant and about 30-90 mg of an isolated human anti-TNF ⁇ antibody or antigen-binding portion, wherein the formulation has an antibody concentration of about 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation relative to a formulation comprising citrate phosphate buffer, sodium chloride, and mannitol.
- the present invention provides liquid aqueous formulations which include a surfactant and 30-90 mg of an isolated human anti-TNF ⁇ antibody, or an antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation, such that the antibody or antigen-binding portion thereof, has an AUC 0-360 greater than about 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, or about 1500 ⁇ g*hr/ml.
- the formulation of the invention contains adalimumab (or a biosimilar thereof), polysorbate 80, and water for injection.
- the formulation contains 80 mg of adalimumab, water for injection, and 1 mg/ml polysorbate 80.
- the formulation may contain 20-110 mg, alternatively 20-90 mg of adalimumab or, alternatively, 30-80 mg of the antibody.
- the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 100 mg, 101 mg,
- the high antibody formulations and methods of the invention not only overcome a number of known challenges for pharmaceutical formulations, including high concentrations in a stable formulation, but also possesses the added benefit of producing improved bioavailability or providing significantly low levels of pain when injected into patients.
- formulations of the invention Another obstacle overcome by the formulations of the invention is the ability to remain stable at room temperature (at about 25 degree C. or up to about 30 degrees C.). Such stability provides advantages for the user of the antibody, providing for more flexible storage options, as the constant need for refrigeration is unnecessary.
- Both the decreased pain formulation and the increased bioavailability formulation are stable for at least 6 days at about 25 degrees C. or up to about 30 degrees C.
- the formulations of the invention are stable at up to 30 degrees C. for at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days, at least 11 days, at least 12 days, at least 13 days, and at least 14 days.
- the invention further provides formulations having extended (i.e., at least 6 days, 10 days or 14 days) shelf life at room temperature (or about 25 degrees C. or up to about 30 degrees C.).
- the formulation of the invention is stable at 20 to 32 degrees C. for at least 6 days.
- Temperatures intermediate to the above recited concentrations are also intended to be part of this invention, i.e., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 degrees Celsius (C). Ranges including the aforementioned temperatures are also included in the invention, e.g., 22-26 degrees C., 25-30 degrees C., etc.
- the formulations of the invention contain a high antibody concentration, including, for example, an antibody concentration of about 50 mg/mL, 55 mg/mL, 60 mg/mL. 65 mg/mL, 70 mg/mL, 75 mg/ml, 80 mg/mL, 85 mg/mL, 90 mg/mL, 95 mg/mL 100 mg/mL, 105 mg/mL, 110 mg/mL, 115 mg/mL (or higher) of a human anti-TNF-alpha antibody or antigen-binding fragment thereof. Accordingly, as described in the examples below, in one aspect of the invention the liquid pharmaceutical formulations of the invention contain a human anti-TNF alpha antibody concentration of 50-100 mg/mL or greater.
- the formulations of the invention may comprise an antibody concentration between about 1 mg/mL-150 mg/mL or about 40 mg/mL-125 mg/mL.
- the antibody concentration of the formulation is 50-150 mg/ml, 55-150 mg/ml, 60-150 mg/ml, 65-150 mg/ml, 70-150 mg/ml, 75-150 mg/ml, 80-150 mg/ml, 85-150 mg/ml, 90-150 mg/ml, 90-110 mg/ml, 95-105 mg/ml, 95-150 mg/ml, 100-150 mg/ml, 105-150 mg/ml, 110-150 mg/ml, 115-150 mg/ml, 120-150 mg/ml, 125-150 mg/ml, 50-130 mg/ml, 75-125 mg/ml, etc.
- Concentrations and ranges intermediate to the above recited concentrations are also intended to be part of this invention (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
- the formulations of the invention may contain an effective amount of the antibody.
- an effective amount is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg of the human anti-TNF ⁇ antibody, or antigen-binding portion thereof.
- the formulations and methods of the invention comprise about 20-100, about 20-90, about 30-90, about 30-100, about 60-100, about 70-90, about 40-90, about 60-85 mg, or about 40-100 mg of a human anti-TNF ⁇ antibody, or antigen-binding portion thereof.
- the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, or 90 mg of the antibody. Ranges including the aforementioned numbers are also included in the invention, e.g., 70-90 or 75-85 mg or 60-85 mg.
- the formulations and methods of the invention do not contain any buffer(s) (e.g., citrate and phosphate) and salts. It should be noted, however, that although the preferred formulations of the invention do not contain buffers or salts (e.g., NaCl), a small amount of buffer and/or salt may be present in the formulations. Thus, in one embodiment, the formulations of the invention do not contain detectable levels of a buffer(s) and/or a salt.
- buffers e.g., citrate and phosphate
- salts e.g., NaCl
- the buffer(s) omitted from the formulations of the invention may include citric acid (e.g., about 1.3-1.31 mg/mL or 1.305 mg/mL).
- the buffer system includes sodium citrate dehydrate (e.g., about 0.27-0.33 mg/mL or about 0.305 mg/mL).
- the buffer system includes disodium phosphate dehydrate (e.g., about 1.5-1.56 mg/mL or about 1.53 mg/mL).
- the buffer system includes sodium dihydrogen phosphate dihydrate (e.g., about 0.83-0.89 mg/mL or about 0.86 mg/mL).
- the conductivity of the formulation may be used to determine if a formulation has a buffer and/or salt.
- Both Formulation F3 and F4 (described in the working examples below) have been determined to have a conductivity of less than about 2 mS/cm, e.g., about 0.7 ⁇ S/cm.
- the reduced pain and increased bioavailability formulations of the invention have a conductivity of less than about 2 mS/cm.
- the formulations of the invention have a conductivity of less than about 1 mS/cm.
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), and has a conductivity of less than 2 mS/cm.
- a surfactant e.g., polysorbate 80
- a polyol e.g., sorbitol or mannitol
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), less than about 50 mg/ml of a polyol (e.g., sorbitol or mannitol), and has a conductivity of less than 2 mS/cm.
- a surfactant e.g., polysorbate 80
- a polyol e.g., sorbitol or mannitol
- conductivity less than 2 mS/cm.
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), and has a conductivity of less than 2 mS/cm.
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), and has a conductivity of less than 2 mS/cm.
- the invention provides a stable formulation having a high concentration antibody, or antigen-binding portion thereof, wherein the antibody, or antigen has a hydrodynamic diameter (z-average) of less than about 4 nm or wherein the antibody, or antigen has a hydrodynamic diameter (z-average) which is at least about 50% less than the hydrodynamic diameter of a buffered solution at the same antibody concentration.
- the antibody, or antigen has a hydrodynamic diameter (z-average) of less than about 3 nm.
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), and has a hydrodynamic diameter of less than 4 nm.
- a surfactant e.g., polysorbate 80
- a polyol e.g., sorbitol or mannitol
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), less than about 50 mg/ml of a polyol (e.g., sorbitol or mannitol), and has a hydrodynamic diameter of less than 4 nm.
- a surfactant e.g., polysorbate 80
- a polyol e.g., sorbitol or mannitol
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), and has a hydrodynamic diameter of less than 4 nm.
- the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), and has a hydrodynamic diameter of less than 4 nm.
- a detergent or surfactant is included in the antibody formulation of the invention.
- exemplary detergents include nonionic detergents such as polysorbates (e.g. polysorbates 20, 80, etc.) or poloxamers (e.g. poloxamer 188).
- the amount of detergent added is such that it reduces aggregation of the formulated antibody and/or minimizes the formation of particulates in the formulation and/or reduces adsorption.
- the formulation includes a surfactant which is a polysorbate.
- the formulation contains the detergent polysorbate 80.
- the formulation contains between about 0.1 and about 2.0 mg/mL of surfactant (e.g., polysorbate), e.g., about 1 mg/mL.
- surfactant e.g., polysorbate
- Other ranges of polysorbate that may be included in the formulations of the invention include 0.1 to 1.5 mg/ml, alternatively 0.2-1.4 mg/ml, 0.3-1.3 mg/ml, 0.4-1.2 mg/ml, 0.5-1.1 mg/ml, 0.6-1.0 mg/ml, 0.6-1.1 mg/ml, 0.7-1.1 mg/ml, 0.8-1.1 mg/ml, or 0.9-1.1 mg/ml.
- the formulation of the invention consists essentially of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), does not contain a buffer(s) (e.g., citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate), and does not contain a salt (e.g., NaCl).
- a buffer(s) e.g., citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate
- salt e.g., NaCl
- the otherwise identical formulation to which the formulation of the invention is compared for pain or bioavailability purposes is a formulation containing adalimumab, sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol, polysorbate 80, and Water for Injection.
- the formulation herein may also be combined with one or more other therapeutic agents as necessary for the particular indication being treated.
- those with complementary activities that do not adversely affect the antibody of the formulation are suitably present in combination in amounts that are effective for the purpose intended. Additional therapeutic agents which can be combined with the formulation of the invention are further described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each of which is incorporated herein by reference.
- the formulations and methods of the invention include an antibody, or antigen binding portion thereof, particularly an anti-TNF ⁇ antibody, or antigen binding portion or fragment thereof.
- antibodies that may be used in the invention include chimeric antibodies, non-human antibodies, isolated human antibodies, humanized antibodies, and domain antibodies (dAbs). All antibodies described herein may be used in the methods of the invention as well.
- the formulations of the invention comprises an antibody, or antigen-binding portion thereof, which binds human TNF ⁇ , including, for example, adalimumab (also referred to as Humira, adalimumab, or D2E7; Abbott Laboratories).
- the formulation comprises an antibody that binds the same epitope as adalimumab, such as, but not limited to, an adalimumab biosimilar antibody.
- the antibody is a human IgG1 antibody having six CDRs corresponding to those of the light and heavy chain of adalimumab.
- the invention features an isolated human antibody, or antigen-binding portion thereof, that binds to human TNF-alpha with high affinity and a low off rate, and also has a high neutralizing capacity.
- the human antibodies used in the invention are recombinant, neutralizing human anti-hTNF-alpha antibodies.
- the invention pertains to adalimumab antibodies and antibody portions, adalimumab-related antibodies and antibody portions, and other human antibodies and antibody portions with equivalent properties to adalimumab, such as high affinity binding to hTNFa. with low dissociation kinetics and high neutralizing capacity.
- the antibody, or antigen-binding fragment thereof is defined according to dissociation and binding characteristics similar to adalimumab.
- the formulation may include a human antibody that dissociates from human TNF ⁇ with a K d of 1 ⁇ 10 ⁇ 8 M or less, and a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, both determined by surface plasmon resonance.
- the antibody, or antigen-binding fragment thereof is a human antibody that dissociates from human TNF ⁇ with a K d of 1 ⁇ 10 ⁇ 8 M or less, and a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, both determined by surface plasmon resonance, and neutralizes human TNF ⁇ cytotoxicity in a standard in vitro L929 assay with an IC 50 of 1 ⁇ 10 ⁇ 7 M or less.
- Examples and methods for making human, neutralizing antibodies which have a high affinity for human TNF ⁇ , including sequences of the antibodies, are described in U.S. Pat. No. 6,090,382 (referred to as D2E7), incorporated by reference herein.
- the amino sequences of D2E7 as described in U.S. Pat. No. 6,090,382 are incorporated in their entirety herein.
- the antibody used in the formulation of the invention is D2E7, also referred to as HUMIRATM or adalimumab (the amino acid sequence of the D2E7 VL region is shown in SEQ ID NO: 1; the amino acid sequence of the D2E7 VH region is shown in SEQ ID NO: 2).
- D2E7 adalimumab/HUMIRA®
- the properties of D2E7 have been described in Salfeld et al., U.S. Pat. Nos. 6,090,382, 6,258,562, and 6,509,015, which are each incorporated by reference herein.
- the human TNF-alpha dissociates from human TNF-alpha with a K d of 1 ⁇ 10 ⁇ 8 M or less and a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, both determined by surface plasmon resonance, and neutralizes human TNF-alpha cytotoxicity in a standard in vitro L929 assay with an IC 50 of 1 ⁇ 10 ⁇ 7 M or less.
- the isolated human antibody, or antigen-binding portion thereof dissociates from human TNF-alpha with a k off of 5 ⁇ 10 ⁇ 4 s ⁇ 1 or less; or, in one embodiment, with a k off of 1 ⁇ 10 ⁇ 4 s ⁇ 1 or less. In one embodiment, the isolated human antibody, or antigen-binding portion thereof, neutralizes human TNF-alpha cytotoxicity in a standard in vitro L929 assay with an IC 50 of 1 ⁇ 10 ⁇ 8 M or less; or, in one embodiment, with an IC 50 of 1 ⁇ 10 ⁇ 9 M or less; or, in one embodiment, with an IC 50 of 1 ⁇ 10 ⁇ 10 M or less. In one embodiment, the antibody is an isolated human recombinant antibody, or an antigen-binding portion thereof.
- the antibody used in the formulation of the invention has slow dissociation kinetics for association with hTNF-alpha and has light and heavy chain CDR3 domains that structurally are identical to or related to those of adalimumab.
- Position 9 of the adalimumab VL CDR3 can be occupied by Ala or Thr without substantially affecting the Koff.
- a consensus motif for the adalimumab VL CDR3 comprises the amino acid sequence: Q-R-Y-N-R-A-P-Y-(T/A) (SEQ ID NO: 3). Additionally, position 12 of the adalimumab VH CDR3 can be occupied by Tyr or Asn, without substantially affecting the k off . Accordingly, a consensus motif for the adalimumab VH CDR3 comprises the amino acid sequence: V-S-Y-L-S-T-A-S-S-L-D-(Y/N) (SEQ ID NO: 4). Moreover, as demonstrated in Example 2 of U.S. Pat. No.
- the CDR3 domain of the adalimumab heavy and light chains is amenable to substitution with a single alanine residue (at position 1, 4, 5, 7 or 8 within the VL CDR3 or at position 2, 3, 4, 5, 6, 8, 9, 10 or 11 within the VH CDR3) without substantially affecting the k off .
- substitution of other amino acids within the CDR3 domains may be possible while still retaining the low off rate constant of the antibody, in particular substitutions with conservative amino acids.
- no more than one to five conservative amino acid substitutions are made within the adalimumab VL and/or VH CDR3 domains. In one embodiment, no more than one to three conservative amino acid substitutions are made within the adalimumab VL and/or VH CDR3 domains. Additionally, conservative amino acid substitutions should not be made at amino acid positions critical for binding to hTNF alpha.
- Positions 2 and 5 of the adalimumab VL CDR3 and positions 1 and 7 of the adalimumab VH CDR3 appear to be critical for interaction with hTNF alpha, and thus, conservative amino acid substitutions preferably are not made at these positions (although an alanine substitution at position 5 of the adalimumab VL CDR3 is acceptable, as described above) (see U.S. Pat. No. 6,090,382).
- the antibody or antigen-binding portion thereof, used in the formulation of the invention contains the following characteristics:
- a) dissociates from human TNF ⁇ with a k off rate constant of 1 ⁇ 10 ⁇ 3 s ⁇ 1 or less, as determined by surface plasmon resonance;
- b) has a light chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at position 1, 4, 5, 7 or 8 or by one to five conservative amino acid substitutions at positions 1, 3, 4, 6, 7, 8 and/or 9;
- c) has a heavy chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at position 2, 3, 4, 5, 6, 8, 9, 10 or 11 or by one to five conservative amino acid substitutions at positions 2, 3, 4, 5, 6, 8, 9, 10, 11 and/or 12.
- the antibody or antigen-binding portion thereof dissociates from human TNF-alpha with a k off of 5 ⁇ 10 ⁇ 4 s ⁇ 1 or less. In certain embodiments, the antibody or antigen-binding portion thereof, dissociates from human TNF-alpha with a k off of 1 ⁇ 10 ⁇ 4 s ⁇ 1 or less.
- the antibody or antigen-binding portion thereof contains a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at position 1, 4, 5, 7 or 8, and with a heavy chain variable region (HCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at position 2, 3, 4, 5, 6, 8, 9, 10 or 11.
- LCVR light chain variable region
- HCVR heavy chain variable region
- the LCVR further has a CDR2 domain comprising the amino acid sequence of SEQ ID NO: 5 (i.e., the D2E7 VL CDR2) and the HCVR further has a CDR2 domain comprising the amino acid sequence of SEQ ID NO: 6 (i.e., the D2E7 VH CDR2).
- the LCVR further has CDR1 domain comprising the amino acid sequence of SEQ ID NO: 7 (i.e., the D2E7 VL CDR1) and the HCVR has a CDR1 domain comprising the amino acid sequence of SEQ ID NO: 8 (i.e., the D2E7 VH CDR1).
- the framework regions for VL may be from the V ⁇ I human germline family, or from the A20 human germline Vk gene, or from the adalimumab VL framework sequences shown in FIGS. 1A and 1B of U.S. Pat. No. 6,090,382.
- the framework regions for VH may be from the VH3 human germline family, or from the DP-31 human germline VH gene, or from the D2E7 VH framework sequences shown in FIGS. 2A and 2B of U.S. Pat. No. 6,090,382.
- Nucleic acid sequences corresponding to the adalimumab light and heavy variable regions are described in SEQ ID NOs: 36 and 37, respectively.
- the antibody or antigen-binding portion thereof contains a light chain variable region (LCVR) comprising the amino acid sequence of SEQ ID NO: 1 (i.e., the adalimumab VL) and a heavy chain variable region (HCVR) comprising the amino acid sequence of SEQ ID NO: 2 (i.e., the adalimumab VH).
- the antibody comprises a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region.
- the heavy chain constant region is an IgG1 heavy chain constant region or an IgG4 heavy chain constant region.
- the antibody can comprise a light chain constant region, either a kappa light chain constant region or a lambda light chain constant region.
- the antibody comprises a kappa light chain constant region.
- the antibody portion can be, for example, a Fab fragment or a single chain Fv fragment.
- the invention includes uses of an isolated human antibody, or an antigen-binding portion thereof, containing adalimumab-related VL and VH CDR3 domains.
- antibodies or antigen-binding portions thereof may have a light chain variable region (LCVR) having a CDR3 domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25 and SEQ ID NO: 26 or with a heavy chain variable region (HCVR) having a CDR3 domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ IDVR
- the TNF ⁇ antibody used in the invention includes the chimeric antibody infliximab (Remicade®, Johnson and Johnson; described in U.S. Pat. No. 5,656,272, incorporated by reference herein), CDP571 (a humanized monoclonal anti-TNF-alpha IgG4 antibody), CDP 870 (a humanized monoclonal anti-TNF-alpha antibody fragment), an anti-TNF dAb (Peptech), or CNTO 148 (golimumab; Medarex and Centocor, see WO 02/12502). Additional TNF antibodies which may be used in the invention are described in U.S. Pat. Nos. 6,593,458; 6,498,237; 6,451,983; and 6,448,380, each of which is incorporated by reference herein.
- An antibody, or antibody portion, used in the methods and compositions of the invention can be prepared by recombinant expression of immunoglobulin light and heavy chain genes in a host cell.
- a host cell is transfected with one or more recombinant expression vectors carrying DNA fragments encoding the immunoglobulin light and heavy chains of the antibody such that the light and heavy chains are expressed in the host cell and, preferably, secreted into the medium in which the host cells are cultured, from which medium the antibodies can be recovered.
- Standard recombinant DNA methodologies are used to obtain antibody heavy and light chain genes, incorporate these genes into recombinant expression vectors and introduce the vectors into host cells, such as those described in Sambrook, Fritsch and Maniatis (eds), Molecular Cloning; A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), Ausubel, F. M. et al. (eds.) Current Protocols in Molecular Biology, Greene Publishing Associates, (1989) and in U.S. Pat. No. 4,816,397 by Boss et al.
- DNA fragments encoding the light and heavy chain variable regions are first obtained. These DNAs can be obtained by amplification and modification of germline light and heavy chain variable sequences using the polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- Germline DNA sequences for human heavy and light chain variable region genes are known in the art (see e.g., the “Vbase” human germline sequence database; see also Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No.
- a member of the VH3 family of human germline VH genes is amplified by standard PCR.
- the DP-31 VH germline sequence is amplified.
- a member of the V ⁇ I family of human germline VL genes is amplified by standard PCR.
- the A20 VL germline sequence is amplified.
- these sequences can be mutated to encode the anti-TNFa antibody amino acid sequences disclosed herein.
- the amino acid sequences encoded by the germline VH and VL DNA sequences are first compared to the anti-TNFa antibody VH and VL amino acid sequences to identify amino acid residues in the anti-TNFa antibody sequence that differ from germline. Then, the appropriate nucleotides of the germline DNA sequences are mutated such that the mutated germline sequence encodes the anti-TNFa antibody amino acid sequence, using the genetic code to determine which nucleotide changes should be made.
- Mutagenesis of the germline sequences is carried out by standard methods, such as PCR-mediated mutagenesis (in which the mutated nucleotides are incorporated into the PCR primers such that the PCR product contains the mutations) or site-directed mutagenesis.
- the “germline” sequences obtained by PCR amplification encode amino acid differences in the framework regions from the true germline configuration (i.e., differences in the amplified sequence as compared to the true germline sequence, for example as a result of somatic mutation), it may be desirable to change these amino acid differences back to the true germline sequences (i.e., “backmutation” of framework residues to the germline configuration).
- DNA fragments encoding the anti-TNFa antibody VH and VL segments are obtained (e.g., by amplification and mutagenesis of germline VH and VL genes, as described above), these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to a scFv gene.
- a VL- or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker.
- the term “operatively linked,” as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
- the isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3).
- heavy chain constant regions CH1, CH2 and CH3
- the sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
- the heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 or IgG4 constant region.
- the VH-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
- the isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL.
- the sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
- the light chain constant region can be a kappa or lambda constant region. In one embodiment, the light chain constant region is a kappa constant region.
- the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly 4 -Ser) 3 , such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., Nature (1990) 348:552-554).
- a flexible linker e.g., encoding the amino acid sequence (Gly 4 -Ser) 3
- DNAs encoding partial or full-length light and heavy chains, obtained as described above, are inserted into expression vectors such that the genes are operatively linked to transcriptional and translational control sequences.
- operatively linked is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene.
- the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
- the antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector.
- the antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
- the expression vector Prior to insertion of the anti-TNFa antibody light or heavy chain sequences, the expression vector may already carry antibody constant region sequences.
- one approach to converting the anti-TNFa antibody VH and VL sequences to full-length antibody genes is to insert them into expression vectors already encoding heavy chain constant and light chain constant regions, respectively, such that the VH segment is operatively linked to the CH segment(s) within the vector and the VL segment is operatively linked to the CL segment within the vector.
- the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from a host cell.
- the antibody chain gene can be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the antibody chain gene.
- the signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
- the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell.
- the term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes.
- Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
- Preferred regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)) and polyoma.
- CMV cytomegalovirus
- SV40 Simian Virus 40
- AdMLP adenovirus major late promoter
- the recombinant expression vectors used in the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
- the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017, all by Axel et al.).
- the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
- Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr ⁇ host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- DHFR dihydrofolate reductase
- the expression vector(s) encoding the heavy and light chains is transfected into a host cell by standard techniques.
- the various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like.
- electroporation e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like.
- expression of antibodies is preferably in eukaryotic cells.
- mammalian host cells is the most preferred because such eukaryotic cells, and in particular mammalian cells, are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active antibody.
- Prokaryotic expression of antibody genes has been reported to be ineffective for production of high yields of active antibody (Boss, M. A. and Wood, C. R. (1985) Immunology Today 6:12-13).
- Preferred mammalian host cells for expressing the recombinant antibodies of the invention include Chinese Hamster Ovary (CHO cells) (including dhfr ⁇ CHO cells, described in Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) Mol. Biol. 159:601-621), NS0 myeloma cells, COS cells and SP2 cells.
- Chinese Hamster Ovary CHO cells
- dhfr ⁇ CHO cells described in Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) Mol. Biol. 159:601-621
- the antibodies When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more, in one embodiment, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.
- Host cells can also be used to produce portions of intact antibodies, such as Fab fragments or scFv molecules. It is understood that variations on the above procedure are within the scope of the present invention. For example, it may be desirable to transfect a host cell with DNA encoding either the light chain or the heavy chain (but not both) of an antibody of this invention. Recombinant DNA technology may also be used to remove some or all of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to hTNF alpha. The molecules expressed from such truncated DNA molecules are also encompassed by the antibodies of the invention.
- bifunctional antibodies may be produced in which one heavy and one light chain are an antibody of the invention and the other heavy and light chain are specific for an antigen other than hTNF alpha by crosslinking an antibody of the invention to a second antibody by standard chemical crosslinking methods.
- a recombinant expression vector encoding both the antibody heavy chain and the antibody light chain is introduced into dhfr-CHO cells by calcium phosphate-mediated transfection.
- the antibody heavy and light chain genes are each operatively linked to CMV enhancer/AdMLP promoter regulatory elements to drive high levels of transcription of the genes.
- the recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification.
- the selected transformant host cells are culture to allow for expression of the antibody heavy and light chains and intact antibody is recovered from the culture medium.
- Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the antibody from the culture medium.
- the nucleotide sequence encoding the D2E7 light chain variable region is shown in SEQ ID NO: 36.
- the CDR1 domain of the LCVR encompasses nucleotides 70-102, the CDR2 domain encompasses nucleotides 148-168 and the CDR3 domain encompasses nucleotides 265-291.
- nucleotide sequence encoding the D2E7 heavy chain variable region is shown in SEQ ID NO: 37.
- the CDR1 domain of the HCVR encompasses nucleotides 91-105
- the CDR2 domain encompasses nucleotides 148-198
- the CDR3 domain encompasses nucleotides 295-330.
- nucleotide sequences encoding D2E7-related antibodies, or portions thereof e.g., a CDR domain, such as a CDR3 domain
- the liquid pharmaceutical formulation comprises a human TNF alpha antibody, or antigen-binding portion thereof, that is a bioequivalent or biosimilar to the antibody adalimumab.
- a biosimilar antibody is an antibody which shows no clinically meaningful difference when compared to a reference antibody, e.g., adalimumab.
- a biosimilar antibody has equivalent safety, purity, and potency as a reference antibody, e.g., adalimumab.
- an advantage of the formulations of the invention is that they may be used to deliver a high concentration of an anti-TNF alpha antibody, or antigen-binding portion, (e.g., adalimumab) to a subject subcutaneously such that either pain upon injection is decreased or the bioavailability of the antibody is improved.
- the formulation of the invention is delivered to a subject subcutaneously.
- the subject administers the formulation to himself/herself (self-administration).
- an effective amount of the formulation is administered.
- An example of an effective amount of the formulation is an amount sufficient to inhibit detrimental TNF-alpha activity or treat a disorder in which TNF alpha activity is detrimental.
- a disorder in which TNF-alpha activity is detrimental is intended to include diseases and other disorders in which the presence of TNF-alpha. in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-alpha. activity is detrimental is a disorder in which inhibition of TNF-alpha activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-alpha. in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-alpha. in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-alpha. antibody.
- an increase in the concentration of TNF-alpha. in a biological fluid of a subject suffering from the disorder e.g., an increase in the concentration of T
- the effective amount of antibody may be determined according to a strictly weight based dosing scheme (e.g., mg/kg) or may be a total body dose (also referred to as a fixed dose) which is independent of weight.
- an effective amount of the antibody is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg of the human anti-TNF ⁇ antibody, or antigen-binding portion thereof.
- an effective amount of the antibody is about 20-100, about 20-90, about 30-90, about 30-100, about 60-100, about 70-90, about 40-90, about 60-85 mg, or about 40-100 mg.
- the formulation contains an effective amount of the antibody of 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 40 mg,
- an effective amount of the formulation is 0.4 mL or 0.8 mL of the formulation containing a total body dose of about 80 mg of antibody (i.e., 0.8 mL of a 100 mg/mL antibody formulation of the invention). In another example, an effective amount of the formulation is 0.4 mL of the formulation of the invention containing a total body dose of about 40 mg of antibody (i.e., 0.4 mL of a 100 mg/mL antibody formulation of the invention). In yet another example, an effective amount of the formulation is twice 0.8 mL of the formulation containing a total body dose of about 160 mg of antibody (i.e., two units containing 0.8 mL each of a 100 mg/mL antibody formulation of the invention).
- an effective amount of the formulation is 0.2 mL of the formulation of the invention containing a total body dose of about 20 mg of antibody (i.e., 0.2 mL of a 100 mg/mL antibody formulation of the invention).
- an effective amount may be determined according to a weight-based fixed dosing regimen (see, e.g., WO 2008/154543, incorporated by reference herein).
- the TNF-alpha is human TNF-alpha and the subject is a human subject.
- the subject can be a mammal expressing a TNF-alpha with which an antibody of the invention cross-reacts.
- the subject can be a mammal into which has been introduced hTNF-alpha (e.g., by administration of hTNF-alpha or by expression of an hTNF-alpha transgene).
- a formulation of the invention may be administered to a human subject for therapeutic purposes (discussed further below).
- the liquid pharmaceutical formulation is easily administratable, which includes, for example, a formulation which is self-administered by the patient.
- the formulation of the invention is administered through subcutaneous injection, such as single use subcutaneous injection.
- a formulation of the invention can be administered to a non-human mammal expressing a TNF-alpha with which the antibody cross-reacts (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of antibodies of the invention (e.g., testing of dosages and time courses of administration).
- the formulations of the invention may be administered according to a certain dosing schedule.
- the formulations may be administered according to a weekly, biweekly, or monthly dosing regimen.
- the formulation may be administered once every three weeks.
- the formulations and methods comprise administration to the subject of a human anti-TNF ⁇ antibody according to a periodicity selected from the group consisting of weekly, biweekly, every three weeks, and monthly.
- the liquid aqueous formulation of the invention may be administered to a subject via, for example, a prefilled syringe, an autoinjector pen, or a needle-free administration device.
- a prefilled syringe an autoinjector pen, or a needle-free administration device.
- the invention also features an autoinjector pen, a prefilled syringe, or a needle-free administration device comprising the liquid aqueous formulation of the invention.
- the invention features a delivery device comprising a dose of the formulation comprising 100 mg/mL a human TNF alpha antibody, or antigen-binding portion thereof, e.g., an autoinjector pen or prefilled syringe comprises a dose of about 19 mg, 20, mg, 21 mg, 22 mg, 23 mg, 24 mg, 25 mg, 26 mg, 27 mg, 28 mg, 29 mg, 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg, 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg,
- the formulations of the invention may be self administered using, e.g., a preloaded syringe or an automatic injection device.
- Automatic injection devices offer an alternative to manually-operated syringes for delivering therapeutic agents into patients' bodies and allowing patients to self-administer injections. Automatic injection devices are described, for example, in the following publications, each of which is hereby incorporated herein by reference WO 2008/005315, WO 2010/127146, WO 2006/000785, WO 2011/075524, WO 2005/113039, WO 2011/075524.
- the present invention provides pre-filled syringes or autoinjector devices containing the formulations of the invention, as well as use of pre-filled syringes or autoinjector devices comprising the formulations described herein in the methods of the invention.
- the formulation of the invention is used to treat disorders in which TNF alpha activity is detrimental.
- a disorder in which TNF-alpha activity is detrimental is intended to include diseases and other disorders in which the presence of TNF-alpha in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-alpha activity is detrimental is a disorder in which inhibition of TNF-alpha activity is expected to alleviate the symptoms and/or progression of the disorder.
- Such disorders may be evidenced, for example, by an increase in the concentration of TNF-alpha in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-alpha in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-alpha antibody as described above.
- a biological fluid of a subject suffering from the disorder e.g., an increase in the concentration of TNF-alpha in serum, plasma, synovial fluid, etc. of the subject
- an anti-TNF-alpha antibody as described above.
- TNF-alpha activity is detrimental.
- TNF-alpha activity is detrimental are also described in U.S. Pat. Nos. 6,015,557; 6,177,077; 6,379,666; 6,419,934; 6,419,944; 6,423,321; 6,428,787; and 6,537,549; and PCT Publication Nos. WO 00/50079 and WO 01/49321, the entire contents of all of which are incorporated herein by reference.
- the formulations of the invention may also be used to treat disorders in which TNF alpha activity is detrimental as described in U.S. Pat. Nos. 6,090,382, 6,258,562 and U.S. Patent Application Publication No. US20040126372, the entire contents of all of which are incorporated herein by reference.
- the formulations and methods of the invention may be used to treat subjects having sepsis.
- Tumor necrosis factor has an established role in the pathophysiology of sepsis, with biological effects that include hypotension, myocardial suppression, vascular leakage syndrome, organ necrosis, stimulation of the release of toxic secondary mediators and activation of the clotting cascade (see e.g., Tracey, K. J. and Cerami, A. (1994) Annu. Rev. Med. 45:491-503; Russell, D and Thompson, R. C. (1993) Curr. Opin. Biotech. 4:714-721).
- the formulation of the invention can be used to treat sepsis in any of its clinical settings, including septic shock, endotoxic shock, gram negative sepsis and toxic shock syndrome.
- the formulation of the invention can be coadministered with one or more additional therapeutic agents that may further alleviate sepsis, such as an interleukin-1 inhibitor (such as those described in PCT Publication Nos. WO 92/16221 and WO 92/17583), the cytokine interleukin-6 (see e.g., PCT Publication No. WO 93/11793) or an antagonist of platelet activating factor (see e.g., European Patent Application Publication No. EP 374 510).
- an interleukin-1 inhibitor such as those described in PCT Publication Nos. WO 92/16221 and WO 92/17583
- the cytokine interleukin-6 see e.g., PCT Publication No. WO 93/11793
- an antagonist of platelet activating factor see e.g., European Patent Application Publication No. EP 374 510.
- the formulation of the invention is administered to a human subject within a subgroup of sepsis patients having a serum or plasma concentration of IL-6 above 500 pg/ml; or, in one embodiment, 1000 pg/ml, at the time of treatment (see PCT Publication No. WO 95/20978).
- the formulations and methods of the invention may be used to treat subjects having an autoimmune disease.
- Tumor necrosis factor has been implicated in playing a role in the pathophysiology of a variety of autoimmune diseases.
- TNF-alpha has been implicated in activating tissue inflammation and causing joint destruction in rheumatoid arthritis (see e.g., Tracey and Cerami, supra; Arend, W. P. and Dayer, J-M. (1995) Arth. Rheum. 38:151-160; Fava, R. A., et al. (1993) Clin. Exp. Immunol. 94:261-266).
- TNF-alpha also has been implicated in promoting the death of islet cells and in mediating insulin resistance in diabetes (see e.g., Tracey and Cerami, supra; PCT Publication No. WO 94/08609). TNF-alpha also has been implicated in mediating cytotoxicity to oligodendrocytes and induction of inflammatory plaques in multiple sclerosis (see e.g., Tracey and Cerami, supra). Also included in autoimmune diseases that may be treated using the formulations and methods of the invention is juvenile idiopathic arthritis (JIA) (also referred to as juvenile rheumatoid arthritis) (see Grom et al. (1996) Arthritis Rheum. 39:1703; Mangge et al. (1995) Arthritis Rheum. 8:211).
- JIA juvenile idiopathic arthritis
- the formulation of the invention can be used to treat autoimmune diseases, in particular those associated with inflammation, including rheumatoid arthritis, rheumatoid spondylitis (also referred to as ankylosing spondylitis), osteoarthritis and gouty arthritis, allergy, multiple sclerosis, autoimmune diabetes, autoimmune uveitis, juvenile idiopathic arthritis (also referred to as juvenile rheumatoid arthritis), and nephrotic syndrome.
- autoimmune diseases in particular those associated with inflammation, including rheumatoid arthritis, rheumatoid spondylitis (also referred to as ankylosing spondylitis), osteoarthritis and gouty arthritis, allergy, multiple sclerosis, autoimmune diabetes, autoimmune uveitis, juvenile idiopathic arthritis (also referred to as juvenile rheumatoid arthritis), and nephrotic syndrome.
- TNF-alpha has been implicated in mediating biological effects observed in a variety of infectious diseases.
- TNF-alpha has been implicated in mediating brain inflammation and capillary thrombosis and infarction in malaria (see e.g., Tracey and Cerami, supra).
- TNF-alpha also has been implicated in mediating brain inflammation, inducing breakdown of the blood-brain barrier, triggering septic shock syndrome and activating venous infarction in meningitis (see e.g., Tracey and Cerami, supra).
- TNF-alpha also has been implicated in inducing cachexia, stimulating viral proliferation and mediating central nervous system injury in acquired immune deficiency syndrome (AIDS) (see e.g., Tracey and Cerami, supra).
- infectious diseases including bacterial meningitis (see e.g., European Patent Application Publication No. EP 585 705), cerebral malaria, AIDS and AIDS-related complex (ARC) (see e.g., European Patent Application Publication No. EP 230 574), as well as cytomegalovirus infection secondary to transplantation (see e.g., Fietze, E., et al. (1994) Transplantation 58:675-680).
- the formulation of the invention also can be used to alleviate symptoms associated with infectious diseases, including fever and myalgias due to infection (such as influenza) and cachexia secondary to infection (e.g., secondary to AIDS or ARC).
- the formulations and methods of the invention may be used to treat subjects having a transplantation.
- Tumor necrosis factor has been implicated as a key mediator of allograft rejection and graft versus host disease (GVHD) and in mediating an adverse reaction that has been observed when the rat antibody OKT3, directed against the T cell receptor CD3 complex, is used to inhibit rejection of renal transplants (see e.g., Tracey and Cerami, supra; Eason, J. D., et al. (1995) Transplantation 59:300-305; Suthanthiran, M. and Strom, T. B. (1994) New Engl. J. Med. 331:365-375).
- the formulations of the invention can be used to inhibit transplant rejection, including rejections of allografts and xenografts and to inhibit GVHD.
- the antibody or antibody portion may be used alone, it can be used in combination with one or more other agents that inhibit the immune response against the allograft or inhibit GVHD.
- the formulations of the invention are used in combination with OKT3 to inhibit OKT3-induced reactions.
- the formulation of the invention is used in combination with one or more antibodies directed at other targets involved in regulating immune responses, such as the cell surface molecules CD25 (interleukin-2 receptor-.alpha.), CD11a (LFA-1), CD54 (ICAM-1), CD4, CD45, CD28/CTLA4, CD80 (B7-1) and/or CD86 (B7-2).
- the formulation of the invention is used in combination with one or more general immunosuppressive agents, such as cyclosporin A or FK506.
- the formulations and methods of the invention may be used to treat subjects having cancer or a malignant tumor.
- Tumor necrosis factor has been implicated in inducing cachexia, stimulating tumor growth, enhancing metastatic potential and mediating cytotoxicity in malignancies (see e.g., Tracey and Cerami, supra).
- the formulations of the invention can be used in the treatment of malignancies, to inhibit tumor growth or metastasis and/or to alleviate cachexia secondary to malignancy.
- the formulation of the invention may be administered systemically or locally to the tumor site.
- the formulations and methods of the invention may be used to treat subjects having a pulmonary disease.
- Tumor necrosis factor has been implicated in the pathophysiology of adult respiratory distress syndrome, including stimulating leukocyte-endothelial activation, directing cytotoxicity to pneumocytes and inducing vascular leakage syndrome (see e.g., Tracey and Cerami, supra).
- the formulations of the invention can be used to treat various pulmonary disorders, including adult respiratory distress syndrome (see e.g., PCT Publication No. WO 91/04054), shock lung, chronic pulmonary inflammatory disease, pulmonary sarcoidosis, pulmonary fibrosis and silicosis.
- the formulation of the invention may be administered systemically or locally to the lung surface, for example as an aerosol.
- the formulations and methods of the invention may be used to treat subjects having an intestinal disorder.
- Tumor necrosis factor has been implicated in the pathophysiology of inflammatory bowel disorders (see e.g., Tracy, K. J., et al. (1986) Science 234:470-474; Sun, X-M., et al. (1988) J. Clin. Invest. 81:1328-1331; MacDonald, T. T., et al. (1990) Clin. Exp. Immunol. 81:301-305) Chimeric murine anti-hTNF-alpha antibodies have undergone clinical testing for treatment of Crohn's disease (van Dullemen, H. M., et al.
- the formulation of the invention also can be used to treat intestinal disorders, such as idiopathic inflammatory bowel disease, which includes two syndromes, Crohn's disease and ulcerative colitis. In one embodiment, the formulation of the invention is used to treat Crohn's disease. In one embodiment, the formulation of the invention is used to treat ulcerative colitis.
- the formulations and methods of the invention also can be used to treat various cardiac disorders, including ischemia of the heart (see e.g., European Patent Application Publication No. EP 453 898) and heart insufficiency (weakness of the heart muscle)(see e.g., PCT Publication No. WO 94/20139).
- ischemia of the heart see e.g., European Patent Application Publication No. EP 453 898
- heart insufficiency weakness of the heart muscle
- the formulations and methods of the invention may also be used to treat subjects who have a spondyloarthropathy, including, for example, an axial spondyloarthropathy.
- TNF ⁇ has been implicated in the pathophysiology of a wide variety of disorders, including inflammatory diseases such as spondyloarthopathies (see e.g., Moeller, A., et al. (1990) Cytokine 2:162-169; U.S. Pat. No. 5,231,024 to Moeller et al.; European Patent Publication No. 260 610 B1 by Moeller, A).
- the spondyloarthropathy is an axial spondyloarthropathy.
- Other examples of spondyloarthropathies which can be treated with the TNF ⁇ antibody of the invention are described below:
- the formulations and methods of the invention may also be used to treat subjects who have psoriatic arthritis.
- Tumor necrosis factor has been implicated in the pathophysiology of psoriatic arthritis (Partsch et al. (1998) Ann Rheum Dis. 57:691; Ritchlin et al. (1998) J Rheumatol. 25:1544).
- psoriatic arthritis (PsA) or psoriasis associated with the skin refers to chronic inflammatory arthritis which is associated with psoriasis.
- Psoriasis is a common chronic skin condition that causes red patches on the body.
- PsA exhibits itself in a variety of ways, ranging from mild to severe arthritis, wherein the arthritis usually affects the fingers and the spine. When the spine is affected, the symptoms are similar to those of ankylosing spondylitis, as described above.
- Arthritis mutilans refers to a disorder which is characterized by excessive bone erosion resulting in a gross, erosive deformity which mutilates the joint.
- formulations and methods of the invention can be used to treat arthritis mutilans.
- Reiter's syndrome Tumor necrosis factor has been implicated in the pathophysiology of reactive arthritis, which is also referred to as Reiter's syndrome (Braun et al. (1999) Arthritis Rheum. 42(10):2039).
- Reactive arthritis refers to arthritis which complicates an infection elsewhere in the body, often following enteric or urogenital infections. ReA is often characterized by certain clinical symptoms, including inflammation of the joints (arthritis), urethritis, conjunctivitis, and lesions of the skin and mucous membranes.
- ReA can occurs following infection with a sexually transmitted disease or dysenteric infection, including chlamydia, campylobacter, salmonella , or yersinia.
- the formulations and methods of the invention may also be used to treat subjects who have an undifferentiated spondyloarthropathy (see Zeidler et al. (1992) Rheum Dis Clin North Am. 18:187).
- Other terms used to describe undifferentiated spondyloarthropathies include seronegative oligoarthritis and undifferentiated oligoarthritis.
- Undifferentiated spondyloarthropathies refers to a disorder wherein the subject demonstrates only some of the symptoms associated with a spondyloarthropathy. This condition is usually observed in young adults who do not have IBD, psoriasis, or the classic symptoms of AS or Reiter's syndrome. In some instances, undifferentiated spondyloarthropathies may be an early indication of AS.
- the formulations and methods of the invention are used to treat a skin and/or a nail disorder.
- skin and nail disorder in which TNF ⁇ activity is detrimental is intended to include skin and/or nail disorders and other disorders in which the presence of TNF alpha in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder, e.g., psoriasis.
- An example of a skin disorder which may be treated using the formulation of the invention is psoriasis.
- the formulation of the invention is used to treat plaque psoriasis.
- Tumor necrosis factor has been implicated in the pathophysiology of psoriasis (Takematsu et al. (1989) Arch Dermatol Res. 281:398; Victor and Gottling (2002) J Drugs Dermatol. 1(3):264).
- the formulations and methods of the invention may be used to treat subjects having psoriasis, including subjects having plaque psoriasis.
- Tumor necrosis factor has been implicated in the pathophysiology of psoriasis (Takematsu et al. (1989) Arch Dermatol Res. 281:398; Victor and Gottlieb (2002) J Drugs Dermatol. 1(3):264).
- Psoriasis is described as a skin inflammation (irritation and redness) characterized by frequent episodes of redness, itching, and thick, dry, silvery scales on the skin.
- lesions are formed which involve primary and secondary alterations in epidermal proliferation, inflammatory responses of the skin, and an expression of regulatory molecules such as lymphokines and inflammatory factors.
- Psoriatic skin is morphologically characterized by an increased turnover of epidermal cells, thickened epidermis, abnormal keratinization, inflammatory cell infiltrates into the epidermis and polymorphonuclear leukocyte and lymphocyte infiltration into the epidermis layer resulting in an increase in the basal cell cycle.
- Psoriasis often involves the nails, which frequently exhibit pitting, separation of the nail, thickening, and discoloration.
- Psoriasis is often associated with other inflammatory disorders, for example arthritis, including rheumatoid arthritis, inflammatory bowel disease (IBD), and Crohn's disease.
- psoriasis is most commonly seen on the trunk, elbows, knees, scalp, skin folds, or fingernails, but it may affect any or all parts of the skin. Normally, it takes about a month for new skin cells to move up from the lower layers to the surface. In psoriasis, this process takes only a few days, resulting in a build-up of dead skin cells and formation of thick scales.
- Symptoms of psoriasis include: skin patches, that are dry or red, covered with silvery scales, raised patches of skin, accompanied by red borders, that may crack and become painful, and that are usually located on the elbows, knees, trunk, scalp, and hands; skin lesions, including pustules, cracking of the skin, and skin redness; joint pain or aching which may be associated with of arthritis, e.g., psoriatic arthritis.
- Treatment for psoriasis often includes a topical corticosteroids, vitamin D analogs, and topical or oral retinoids, or combinations thereof.
- the TNFalpha inhibitor of the invention is administered in combination with or the presence of one of these common treatments.
- the diagnosis of psoriasis is usually based on the appearance of the skin. Additionally a skin biopsy, or scraping and culture of skin patches may be needed to rule out other skin disorders. An x-ray may be used to check for psoriatic arthritis if joint pain is present and persistent.
- a TNFalpha inhibitor is used to treat psoriasis, including chronic plaque psoriasis, guttate psoriasis, inverse psoriasis, pustular psoriasis, pemphigus vulgaris, erythrodermic psoriasis, psoriasis associated with inflammatory bowel disease (IBD), and psoriasis associated with rheumatoid arthritis (RA).
- IBD inflammatory bowel disease
- RA rheumatoid arthritis
- the formulations and methods of the invention may be used to treat subjects having chronic plaque psoriasis.
- Tumor necrosis factor has been implicated in the pathophysiology of chronic plaque psoriasis (Asadullah et al. (1999) Br J Dermatol. 141:94).
- Chronic plaque psoriasis also referred to as psoriasis vulgaris
- Chronic plaque psoriasis is characterized by raised reddened patches of skin, ranging from coin-sized to much larger.
- the plaques may be single or multiple, they may vary in size from a few millimeters to several centimeters.
- the plaques are usually red with a scaly surface, and reflect light when gently scratched, creating a “silvery” effect. Lesions (which are often symmetrical) from chronic plaque psoriasis occur all over body, but with predilection for extensor surfaces, including the knees, elbows, lumbosacral regions, scalp, and nails. Occasionally chronic plaque psoriasis can occur on the penis, vulva and flexures, but scaling is usually absent. Diagnosis of patients with chronic plaque psoriasis is usually based on the clinical features described above. In particular, the distribution, color and typical silvery scaling of the lesion in chronic plaque psoriasis are characteristic of chronic plaque psoriasis.
- Guttate psoriasis refers to a form of psoriasis with characteristic water drop shaped scaly plaques. Flares of guttate psoriasis generally follow an infection, most notably a streptococcal throat infection. Diagnosis of guttate psoriasis is usually based on the appearance of the skin, and the fact that there is often a history of recent sore throat.
- Inverse psoriasis is a form of psoriasis in which the patient has smooth, usually moist areas of skin that are red and inflamed, which is unlike the scaling associated with plaque psoriasis.
- Inverse psoriasis is also referred to as intertiginous psoriasis or flexural psoriasis.
- Inverse psoriasis occurs mostly in the armpits, groin, under the breasts and in other skin folds around the genitals and buttocks, and, as a result of the locations of presentation, rubbing and sweating can irritate the affected areas.
- the formulations and methods of the invention may be used to treat subjects having pustular psoriasis.
- Pustular psoriasis is a form of psoriasis that causes pus-filled blisters that vary in size and location, but often occur on the hands and feet. The blisters may be localized, or spread over large areas of the body. Pustular psoriasis can be both tender and painful, can cause fevers.
- psoriatic disorders which can be treated with the formulations and methods of the invention include erythrodermic psoriasis, vulgaris, psoriasis associated with IBD, and psoriasis associated with arthritis, including rheumatoid arthritis.
- the formulations and methods of the invention may be used to treat subjects having pemphigus vulgaris.
- Pemphigus vulgaris is a serious autoimmune systemic dermatologic disease that often affects the oral mucous membrane and skin.
- the pathogenesis of pemphigus vulgaris is thought to be an autoimmune process that is directed at skin and oral mucous membrane desmosomes. Consequentially, cells do not adhere to each other.
- the disorder manifests as large fluid-filled, rupture-prone bullae, and has a distinctive histologic appearance.
- Anti-inflammatory agents are the only effective therapy for this disease which has a high mortality rate. Complications that arise in patients suffering from pemphigus vulgaris are intractable pain, interference with nutrition and fluid loss, and infections.
- Atopic dermatitis (also referred to as eczema) is a chronic skin disorder categorized by scaly and itching plaques. People with eczema often have a family history of allergic conditions like asthma, hay fever, or eczema.
- Atopic dermatitis is a hypersensitivity reaction (similar to an allergy) which occurs in the skin, causing chronic inflammation. The inflammation causes the skin to become itchy and scaly. Chronic irritation and scratching can cause the skin to thicken and become leathery-textured. Exposure to environmental irritants can worsen symptoms, as can dryness of the skin, exposure to water, temperature changes, and stress.
- Subjects with atopic dermatitis can be identified by certain symptoms, which often include intense itching, blisters with oozing and crusting, skin redness or inflammation around the blisters, rash, dry, leathery skin areas, raw areas of the skin from scratching, and ear discharges/bleeding.
- the formulations and methods of the invention may be used to treat subjects having sarcoidosis.
- Sarcoidosis is a disease in which granulomatous inflammation occurs in the lymph nodes, lungs, liver, eyes, skin, and/or other tissues.
- Sarcoidosis includes cutaneous sarcoidosis (sarcoidosis of the skin) and nodular sarcoidosis (sarcoidosis of the lymph nodes).
- Patients with sarcoidosis can be identified by the symptoms, which often include general discomfort, uneasiness, or an ill feeling; fever; skin lesions.
- Erythema nodosum refers to an inflammatory disorder that is characterized by tender, red nodules under the skin, typically on the anterior lower legs. Lesions associated with erythema nodosum often begin as flat, but firm, hot red painful lumps (approximately an inch across). Within a few days the lesions may become purplish, and then over several weeks fade to a brownish flat patch.
- erythema nodosum may be associated with infections including, streptococcus , coccidioidomycosis, tuberculosis, hepatitis B, syphilis, cat scratch disease, tularemia, yersinia , leptospirosis psittacosis, histoplasmosis, mononucleosis (EBV).
- infections including, streptococcus , coccidioidomycosis, tuberculosis, hepatitis B, syphilis, cat scratch disease, tularemia, yersinia , leptospirosis psittacosis, histoplasmosis, mononucleosis (EBV).
- erythema nodosum may be associated with sensitivity to certain medications including, oralcontraceptives, penicillin, sulfonamides, sulfones, barbiturates, hydantoin, phenacetin, salicylates, iodides, and progestin.
- Erythema nodosum is often associated with other disorders including, leukemia, sarcoidosis, rheumatic fever, and ulcerative colitis.
- erythema nodosum Symptoms of erythema nodosum usually present themselves on the shins, but lesions may also occur on other areas of the body, including the buttocks, calves, ankles, thighs and upper extremities. Other symptoms in subjects with erythema nodosum can include fever and malaise.
- Hidradenitis suppurativa refers to a skin disorder in which swollen, painful, inflamed lesions or lumps develop in the groin and sometimes under the arms and under the breasts. Hidradenitis suppurativa occurs when apocrine gland outlets become blocked by perspiration or are unable to drain normally because of incomplete gland development. Secretions trapped in the glands force perspiration and bacteria into surrounding tissue, causing subcutaneous induration, inflammation, and infection. Hidradenitis suppurativa is confined to areas of the body that contain apocrine glands. These areas are the axillae, areola of the nipple, groin, perineum, circumanal, and periumbilical regions.
- the formulations and methods of the invention may be used to treat subjects having lichen planus.
- Tumor necrosis factor has been implicated in the pathophysiology of lichen planus (Sklavounou et al. (2000) J Oral Pathol Med. 29:370).
- Lichen planus refers to a disorder of the skin and the mucous membranes resulting in inflammation, itching, and distinctive skin lesions. Lichen planus may be associated with hepatitis C or certain medications.
- the formulations and methods of the invention may be used to treat subjects having Sweet's syndrome.
- Inflammatory cytokines including tumor necrosis factor, have been implicated in the pathophysiology of Sweet's syndrome (Reuss-Borst et al. (1993) Br J Haematol. 84:356).
- Sweet's syndrome which was described by R. D. Sweet in 1964, is characterized by the sudden onset of fever, leukocytosis, and cutaneous eruption. The eruption consists of tender, erythematous, well-demarcated papules and plaques which show dense neutrophilic infiltrates microscopically. The lesions may appear anywhere, but favor the upper body including the face.
- the individual lesions are often described as pseudovesicular or pseudopustular, but may be proficient pustular, bullous, or ulcerative. Oral and eye involvement (conjunctivitis or episcleritis) have also been frequently reported in patients with Sweet's syndrome. Leukemia has also been associated with Sweet's syndrome.
- Vitiligo refers to a skin condition in which there is loss of pigment from areas of skin resulting in irregular white patches with normal skin texture. Lesions characteristic of vitiligo appear as flat depigmented areas. The edges of the lesions are sharply defined but irregular. Frequently affected areas in subjects with vitiligo include the face, elbows and knees, hands and feet, and genitalia.
- the formulations and methods of the invention may be used to treat subjects having scleroderma.
- Tumor necrosis factor has been implicated in the pathophysiology of scleroderma (Tutuncu Z et al. (2002) Clin Exp Rheumatol. 20(6 Suppl 28):5146-51; Mackiewicz Z et al. (2003) Clin Exp Rheumatol. 21(1):41-8; Murota H et al. (2003) Arthritis Rheum. 48(4):1117-25).
- Scleroderma refers to a diffuse connective tissue disease characterized by changes in the skin, blood vessels, skeletal muscles, and internal organs. Scleroderma is also referred to as CREST syndrome or Progressive systemic sclerosis, and usually affects people between the ages 30-50. Women are affected more often than men.
- the cause of scleroderma is unknown.
- the disease may produce local or systemic symptoms. The course and severity of the disease varies widely in those affected. Excess collagen deposits in the skin and other organs produce the symptoms. Damage to small blood vessels within the skin and affected organs also occurs. In the skin, ulceration, calcification, and changes in pigmentation may occur.
- Systemic features may include fibrosis and degeneration of the heart, lungs, kidneys and gastrointestinal tract.
- Patients suffering from scleroderma exhibit certain clinical features, including, blanching, blueness, or redness of fingers and toes in response to heat and cold (Raynaud's phenomenon), pain, stiffness, and swelling of fingers and joints, skin thickening and shiny hands and forearm, esophageal reflux or heartburn, difficulty swallowing, and shortness of breath.
- Other clinical symptoms used to diagnose scleroderma include, an elevated erythrocyte sedimentation rate (ESR), an elevated rheumatoid factor (RF), a positive antinuclear antibody test, urinalysis that shows protein and microscopic blood, a chest X-ray that may show fibrosis, and pulmonary function studies that show restrictive lung disease.
- Nail disorders include any abnormality of the nail
- Specific nail disorders include, but are not limited to, pitting, koilonychia, Beau's lines, spoon nails, onycholysis, yellow nails, pterygium (seen in lichen planus), and leukonychia.
- Pitting is characterized by the presence of small depressions on the nail surface. Ridges or linear elevations can develop along the nail occurring in a “lengthwise” or “crosswise” direction. Beau's lines are linear depressions that occur “crosswise” (transverse) in the fingernail.
- Leukonychia describes white streaks or spots on the nails.
- Koilonychia is an abnormal shape of the fingernail where the nail has raised ridges and is thin and concave Koilonychia is often associated with iron deficiency.
- Nail disorders which can be treated with the TNFalpha antibody of the invention also include psoriatic nails.
- Psoriatic nails include changes in nails which are attributable to psoriasis. In some instances psoriasis may occur only in the nails and nowhere else on the body. Psoriatic changes in nails range from mild to severe, generally reflecting the extent of psoriatic involvement of the nail plate, nail matrix, i.e., tissue from which the nail grows, nail bed, i.e., tissue under the nail, and skin at the base of the nail Damage to the nail bed by the pustular type of psoriasis can result in loss of the nail. Nail changes in psoriasis fall into general categories that may occur singly or all together.
- the nail plate In one category of psoriatic nails, the nail plate is deeply pitted, probably due to defects in nail growth caused by psoriasis. IN another category, the nail has a yellow to yellow-pink discoloration, probably due to psoriatic involvement of the nail bed.
- a third subtype of psoriatic nails are characterized by white areas which appear under the nail plate. The white areas are actually air bubbles marking spots where the nail plate is becoming detached from the nail bed. There may also be reddened skin around the nail.
- a fourth category is evidenced by the nail plate crumbling in yellowish patches, i.e., onychodystrophy, probably due to psoriatic involvement in the nail matrix.
- a fifth category is characterized by the loss of the nail in its entirety due to psoriatic involvement of the nail matrix and nail bed.
- the formulations and methods of the invention may also be used to treat nail disorders often associated with lichen planus. Nails in subjects with lichen planus often show thinning and surface roughness of the nail plate with longitudinal ridges or pterygium.
- the formulations and methods of the invention may be used to treat nail disorders, such as those described herein. Often nail disorders are associated with skin disorders.
- the invention includes a method of treatment for nail disorders with a TNFalpha antibody.
- the nail disorder is associated with another disorder, including a skin disorder such as psoriasis.
- the disorder associated with a nail disorder is arthritis, including psoriatic arthritis.
- the formulations and methods of the invention may be used to treat other skin and nail disorders, such as chronic actinic dermatitis, bullous pemphigoid, and alopecia areata.
- Chronic actinic dermatitis CAD
- PD/AR photosensitivity dermatitis/actinic reticuloid syndrome
- CAD is a condition in which the skin becomes inflamed, particularly in areas that have been exposed to sunlight or artificial light.
- CAD patients have allergies to certain substances that come into contact with their skin, particularly various flowers, woods, perfumes, sunscreens and rubber compounds.
- Bullous pemphigoid refers to A skin disorder characterized by the formation of large blisters on the trunk and extremities.
- Alopecia areata refers to hair loss characterized by round patches of complete baldness in the scalp or beard.
- TNF ⁇ has been implicated in the pathophysiology of a wide variety of disorders, including metabolic disorders, such as diabetes and obesity (Spiegelman and Hotamisligil (1993) Cell 73:625; Chu et al. (2000) Int J Obes Relat Metab Disord. 24:1085; Ishii et al. (2000) Metabolism. 49:1616).
- Metabolic disorders affect how the body processes substances needed to carry out physiological functions.
- a number of metabolic disorders of the invention share certain characteristics, i.e. they are associated the insulin resistance, lack of ability to regulate blood sugar, weight gain, and increase in body mass index.
- Examples of metabolic disorders include diabetes and obesity.
- Examples of diabetes include type 1 diabetes mellitus, type 2 diabetes mellitus, diabetic neuropathy, peripheral neuropathy, diabetic retinopathy, diabetic ulcerations, retinopathy ulcerations, diabetic macrovasculopathy, and obesity. Examples of metabolic disorders which can be treated with the formulations and methods of the invention are described in more detail below:
- TNF ⁇ is implicated in the pathophysiology for insulin resistance. It has been found that serum TNF levels in patients with gastrointestinal cancer correlates with insulin resistance (see e.g., McCall, J. et al. Br. J. Surg. 1992; 79: 1361-3).
- Diabetes includes the two most common types of the disorder, namely type I diabetes and type II diabetes, which both result from the body's inability to regulate insulin.
- Insulin is a hormone released by the pancreas in response to increased levels of blood sugar (glucose) in the blood.
- Type 1 diabetes refers to a chronic disease that occurs when the pancreas produces too little insulin to regulate blood sugar levels appropriately.
- Type 1 diabetes is also referred to as insulin-dependent diabetes mellitus, IDMM, juvenile onset diabetes, and diabetes—type I.
- Type 1 diabetes represents is the result of a progressive autoimmune destruction of the pancreatic ⁇ -cells with subsequent insulin deficiency.
- Type 2 diabetes refers to a chronic disease that occurs when the pancreas does not make enough insulin to keep blood glucose levels normal, often because the body does not respond well to the insulin.
- Type 2 diabetes is also referred to as noninsulin-dependent diabetes mellitus, NDDM, and diabetes—type II
- Diabetes is can be diagnosed by the administration of a glucose tolerance test. Clinically, diabetes is often divided into several basic categories. Primary examples of these categories include, autoimmune diabetes mellitus, non-insulin-dependent diabetes mellitus (type 1 NDDM), insulin-dependant diabetes mellitus (type 2 IDDM), non-autoimmune diabetes mellitus, non-insulin-dependant diabetes mellitus (type 2 NIDDM), and maturity-onset diabetes of the young (MODY).
- a further category often referred to as secondary, refers to diabetes brought about by some identifiable condition which causes or allows a diabetic syndrome to develop.
- Examples of secondary categories include, diabetes caused by pancreatic disease, hormonal abnormalities, drug- or chemical-induced diabetes, diabetes caused by insulin receptor abnormalities, diabetes associated with genetic syndromes, and diabetes of other causes. (see e.g., Harrison's (1996) 14 th ed., New York, McGraw-Hill).
- the antibody, or antigen-binding fragment thereof, of the invention can be used to treat diabetes.
- the TNF ⁇ antibody, or antigen-binding fragment thereof, of the invention is used to treat diabetes associated with the above identified categories.
- Diabetes is often treated with diet, insulin dosages, and various medications described herein. Accordingly, the formulations of the invention may also be administered in combination with agents commonly used to treat metabolic disorders and pain commonly associated with diabetes.
- the formulations and methods of the invention may be used to treat diabetic neuropathy or peripheral neuropathy.
- Tumor necrosis factor has been implicated in the pathophysiology of diabetic neuropathy and peripheral neuropathy. (See Benj afield et al. (2001) Diabetes Care. 24:753; Qiang, X. et al. (1998) Diabetologia. 41:1321-6; Pfeiffer et al. (1997) Horm Metab Res. 29:111).
- neuropathy also referred to as nerve damage-diabetic, as used herein, refers to a common complication of diabetes in which nerves are damaged as a result of hyperglycemia (high blood sugar levels).
- hyperglycemia high blood sugar levels.
- a variety of diabetic neuropathies are recognized, such as distal sensorimotror polyneuropathy, focal motor neuropathy, and autonomic neuropathy.
- peripheral neuropathy also known as peripheral neuritis and diabetic neuropathy, as used herein, refers to the failure of the nerves to carry information to and from the brain and spinal cord. Peripheral neuropathy produces symptoms such as pain, loss of sensation, and the inability to control muscles. In some cases, the failure of nerves to control blood vessels, intestinal function, and other organs results in abnormal blood pressure, digestion, and loss of other basic involuntary processes. Peripheral neuropathy may involve damage to a single nerve or nerve group (mononeuropathy) or may affect multiple nerves (polyneuropathy).
- peripheral neuropathies that affect small myelinated and unmyelinated fibers of the sympathetic and parasympathetic nerves are known as “peripheral neuropathies.”
- peripheral neuropathy also known as peripheral neuritis and diabetic neuropathy, refers to the failure of the nerves to carry information to and from the brain and spinal cord. This produces symptoms such as pain, loss of sensation, and the inability to control muscles.
- failure of nerves controlling blood vessels, intestinal function, and other organs results in abnormal blood pressure, digestion, and loss of other basic involuntary processes.
- Peripheral neuropathy may involve damage to a single nerve or nerve group (mononeuropathy) or may affect multiple nerves (polyneuropathy).
- diabetes neuropathy refers to a common complication of diabetes in which nerves are damaged as a result of hyperglycemia (high blood sugar levels). Diabetic neuropathy is also referred to as neuropathy and nerve damage-diabetic. A variety of diabetic neuropathies are recognized, such as distal sensorimotror polyneuropathy, focal motor neuropathy, and autonomic neuropathy.
- the formulations and methods of the invention may be used to treat diabetic retinopathy.
- Tumor necrosis factor has been implicated in the pathophysiology of diabetic retinopthy (Scholz et al. (2003) Trends Microbiol. 11:171).
- the term “diabetic retinopathy” as used herein refers to progressive damage to the eye's retina caused by long-term diabetes. Diabetic retinopathy, includes proliferative retinopathy. Proliferative neuropathy in turn includes neovascularization, pertinal hemmorrhave and retinal detachment.
- diabetic retinopathy In advanced retinopathy, small vessels proliferate on the surface of the retina. These blood vessels are fragile, tend to bleed and can cause peretinal hemorrhages. The hemorrhage can obscure vision, and as the hemorrhage is resorbed fibrous tissue forms predisposing to retinal detachments and loss of vision.
- diabetic retinopathy includes proliferative retinopathy which includes neovascularization, pertinal hemmorrhave and retinal detachment. Diabetic retinopathy also includes “background retinopathy” which involves changes occurring with the layers of the retina.
- the formulations and methods of the invention may be used to treat diabetic ulcerations or retinopathy ulcerations.
- Tumor necrosis factor has been implicated in the pathophysiology of diabetic ulcerations, (see Lee et al. (2003) Hum Immunol. 64:614; Navarro et al. (2003) Am J Kidney Dis. 42:53; Daimon et al (2003) Diabetes Care. 26:2015; Zhang et al. (1999) J Tongji Med Univ. 19:203; Barbieri et al. (2003) Am J Hypertens. 16:537; Venn et al. (1993) Arthritis Rheum. 36:819; Westacott et al. (1994) J Rheumatol. 21:1710).
- diabetic ulcerations refers to an ulcer which results as a complication of diabetes.
- An ulcer is a crater-like lesion on the skin or mucous membrane caused by an inflammatory, infectious, malignant condition, or metabolic disorder.
- diabetic ulcers can be found on limbs and extremeties, more typically the feet.
- These ulcers, caused by diabetic conditions, such as neurapthy and a vacualr insufficiency, can lead to ischemia and poor wound healing. More extensive ulcerations may progress to ostemyelitis. Once ostemyelitis develops, it may be difficult to eradicate with antibiotics alone and amputation maybe necessary.
- retinopathy ulcerations refers to an ulcer which causes or results in damages to the eye and the eye's retina. Retinopathy ulcerations may include conditions such has retinoathic hemmorages.
- the formulations and methods of the invention may be used to treat diabetic macrovasculopathy.
- Tumor necrosis factor has been implicated in the pathophysiology of diabetic macrovasculopathy (Devaraj et al. (2000) Circulation. 102:191; Hattori Y et al. (2000) Cardiovasc Res. 46:188; Clausell N et al. (1999) Cardiovasc Pathol. 8:145).
- Diabetic macrovasculopathy complication occurs when, for example, fat and blood clots build up in the large blood vessels and stick to the vessel walls.
- Diabetic macrovasculopathies include diseases such as coronary disease, cerebrovascular disease, and peripheral vascular disease, hyperglycaemia and cardiovascular disease, and strokes.
- the formulations and methods of the invention may be used to treat obesity.
- Tumor necrosis factor has been implicated in the pathophysiology of obesity (see e.g., Pihlajamaki J et al. (2003) Obes Res. 11:912; Barbieri et al. (2003) Am J Hypertens. 16:537; Tsuda et al. (2003) J Nutr. 133:2125).
- Obesity increases a person's risk of illness and death due to diabetes, stroke, coronary artery disease, hypertension, high cholesterol, and kidney and gallbladder disorders.
- Obesity may also increase the risk for some types of cancer, and may be a risk factor for the development of osteoarthritis and sleep apnea.
- Obesity can be treated with the antibody of the invention alone or in combination with other metabolic disorders, including diabetes.
- the formulations and methods of the invention may be used to treat a subject having a vasculitis.
- TNF ⁇ has been implicated in the pathophysiology of a variety of vasculitides, (see e.g., Deguchi et al. (1989) Lancet. 2:745).
- a vasculitis in which TNF ⁇ activity is detrimental is intended to include vasculitis in which the presence of TNF ⁇ in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder.
- Such disorders may be evidenced, for example, by an increase in the concentration of TNF ⁇ in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF ⁇ in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF ⁇ antibody as described above.
- a biological fluid of a subject suffering from the disorder e.g., an increase in the concentration of TNF ⁇ in serum, plasma, synovial fluid, etc. of the subject
- an anti-TNF ⁇ antibody as described above.
- vasculitides in which TNF ⁇ activity is detrimental including Behcet's disease.
- the use of the formulations and methods of the invention in the treatment of specific vasculitides are discussed further below.
- the antibody, or antibody portion is administered to the subject in combination with another therapeutic agent, as described below
- the formulations and methods of the invention be used to treat vasculitis in which TNF ⁇ activity is detrimental, wherein inhibition of TNF ⁇ activity is expected to alleviate the symptoms and/or progression of the vasculitis or to prevent the vasculitis.
- Subjects suffering from or at risk of developing vasculitis can be identified through clinical symptoms and tests. For example, subjects with vasculitides often develop antibodies to certain proteins in the cytoplasm of neutrophils, antineutrophil cytoplasmic antibodies (ANCA). Thus, in some instances, vasculitides may be evidenced by tests (e.g., ELISA), which measure ANCA presence.
- tests e.g., ELISA
- Vasculitis and its consequences may be the sole manifestation of disease or it may be a secondary component of another primary disease.
- Vasculitis may be confined to a single organ or it may simultaneously affect several organs. and depending on the syndrome, arteries and veins of all sizes can be affected. Vasculitis can affect any organ in the body.
- vasculitis the vessel lumen is usually compromised, which is associated with ischemia of the tissues supplied by the involved vessel.
- vessel e.g., artery, vein, arteriole, venule, capillary
- vascular endothelial growth factor a type of vascular endothelial growth factor
- artery, vein, arteriole, venule, capillary any type, size and location of vessel
- venule venule, capillary
- Vasculitides are generally classified according to the size of the affected vessels, as described below. It should be noted that some small and large vessel vasculitides may involve medium-sized arteries; but large and medium-sized vessel vasculitides do not involve vessels smaller than arteries.
- Large vessel disease includes, but is not limited to, giant cell arteritis, also known as temporal arteritis or cranial arteritis, polymyalgia rheumatica, and Takayasu's disease or arteritis, which is also known as aortic arch syndrome, young female arteritis and Pulseless disease.
- Medium vessel disease includes, but is not limited to, classic polyarteritis nodosa and Kawasaki's disease, also known as mucocutaneous lymph node syndrome.
- Non-limiting examples of small vessel disease are Behcet's Syndrome, Wegner's granulomatosis, microscopic polyangitis, hypersensitivity vasculitis, also known as cutaneous vasculitis, small vessel vasculitis, Henoch-Schonlein purpura, allergic granulamotosis and vasculitis, also known as Churg Strauss syndrome.
- Other vasculitides include, but are not limited to, isolated central nervous system vasculitis, and thromboangitis obliterans, also known as Buerger's disease.
- Classic Polyarteritis nodosa (PAN), microscopic PAN, and allergic granulomatosis are also often grouped together and are called the systemic necrotizing vasculitides. A further description of vasculitis is described below:
- the formulations and methods of the invention are used to treat subjects who have large vessel vasculitis.
- large vessel(s) refers to the aorta and the largest branches directed toward major body regions.
- Large vessels include, for example, the aorta, and its branches and corresponding veins, e.g., the subclavian artery; the brachiocephalic artery; the common carotid artery; the innonimate vein; internal and external jugular veins; the pulmonary arteries and veins; the venae cavae; the renal arteries and veins; the femoral arteries and veins; and the carotid arteries. Examples of large vessel vasculitides are described below.
- GCA Giant Cell Arteritis
- the formulations and methods of the invention may be used to treat giant cell arteritis.
- Tumor necrosis factor has been implicated in the pathophysiology of giant cell arteritis (Sneller, M. C. (2002) Cleve. Clin. J. Med. 69:SII40-3; Schett, G., et al. (2002) Ann. Rheum. Dis. 61:463).
- Giant cell arteritis refers to a vasculitis involving inflammation and damage to blood vessels, particularly the large or medium arteries that branch from the external carotid artery of the neck.
- GCA is also referred to as temporal arteritis or cranial arteritis, and is the most common primary vasculitis in the elderly.
- GCA usually affects extracranial arteries. GCA can affect the branches of the carotid arteries, including the temporal artery. GCA is also a systemic disease which can involve arteries in multiple locations.
- GCA is a panarteritis with inflammatory mononuclear cell infiltrates within the vessel wall with frequent Langhans type giant cell formation. There is proliferation of the intima, granulomatous inflammation and fragmentation of the internal elastic lamina. The pathological findings in organs is the result of ischemia related to the involved vessels.
- GCA erythrocyte sedimentation rate
- Other typical indications of GCA include jaw or tongue claudication, scalp tenderness, constitutional symptoms, pale optic disc edema (particularly ‘chalky white’ disc edema), and vision disturbances.
- the diagnosis is confirmed by temporal artery biopsy.
- the formulations and methods of the invention may be used to treat polymyalgia rheumatica.
- Tumor necrosis factor has been implicated in the pathophysiology of polymyalgia rheumatica (Straub, R. H., et al. (2002) Rheumatology (Oxford) 41:423; Uddhammar, A., et al. (1998) Br. J. Rheumatol. 37:766).
- Polymyalgia rheumatica refers to a rheumatic disorder that is associated with moderate to severe muscle pain and stiffness in the neck, shoulder, and hip, most noticeable in the morning.
- IL-6 and IL-1 ⁇ expression has also been detected in a majority of the circulating monocytes in patients with the polymyalgia rheumatica.
- Polymyalgia rheumatica may occur independently, or it may coexist with or precede GCA, which is an inflammation of blood vessels.
- the formulations and methods of the invention may be used to treat Takayasu's arteritis.
- Tumor necrosis factor has been implicated in the pathophysiology of Takayasu's arteritis (Kobayashi, Y. and Numano, F. (2002) Intern. Med. 41:44; Fraga, A. and Medina F. (2002) Curr. Rheumatol. Rep. 4:30).
- Takayasu's arteritis refers to a vasculitis characterized by an inflammation of the aorta and its major branches.
- Takayasu's arteritis also known as Aortic arch syndrome, young female arteritis and Pulseless disease
- Takayasu's arteritis affects the thoracic and abdominal aorta and its main branches or the pulmonary arteries.
- Fibrotic thickening of the aortic wall and its branches e.g., carotid, inominate, and subclavian arteries
- This condition also typically affects the renal arteries.
- Takayasu's arteritis primarily affects young women, usually aged 20-40 years old, particularly of Asian descent, and may be manifested by malaise, arthralgias and the gradual onset of extremity claudication. Most patients have asymmetrically reduced pulses, usually along with a blood pressure differential in the arms. Coronary and/or renal artery stenosis may occur.
- the clinical features of Takayasu's arteritis may be divided into the features of the early inflammatory disease and the features of the later disease.
- the clinical features of the early inflammatory stage of Takayasu's disease are: malaise, low grade fever, weight loss, myalgia, arthralgia, and erythema multiforme.
- Later stages of Takayasu's disease are characterised by fibrotic stenosis of arteries and thrombosis.
- the main resulting clinical features are ischaemic phenomena, e.g. weak and asymmetrical arterial pulses, blood pressure discrepancy between the arms, visual disturbance, e.g. scotomata and hemianopia, other neurological features including vertigo and syncope, hemiparesis or stroke.
- the clinical features result from ischaemia due to arterial stenosis and thrombosis.
- the formulations and methods of the invention may be used to treat subjects who have medium vessel vasculitis.
- medium vessel(s) is used to refer to those blood vessels which are the main visceral arteries.
- medium vessels include the mesenteric arteries and veins, the iliac arteries and veins, and the maxillary arteries and veins. Examples of medium vessel vasculitides are described below.
- the formulations and methods of the invention may be used to treat polyarteritis nodosa.
- Tumor necrosis factor has been implicated in the pathophysiology of polyarteritis nodosa (DiGirolamo, N., et al. (1997) J. Leukoc. Biol. 61:667).
- Polyarteritis nodosa, or periarteritis nodosa refers to vasculitis which is a serious blood vessel disease in which small and medium-sized arteries become swollen and damaged because they are attacked by rogue immune cells.
- Polyarteritis nodosa usually affects adults more frequently than children. It damages the tissues supplied by the affected arteries because they don't receive enough oxygen and nourishment without a proper blood supply.
- Symptoms which are exhibited in patients with polyarteritis nodosa generally result from damage to affected organs, often the skin, heart, kidneys, and nervous system.
- Generalized symptoms of polyarteritis nodosa include fever, fatigue, weakness, loss of appetite, and weight loss.
- Muscle aches (myalgia) and joint aches (arthralgia) are common.
- the skin of subjects with polyarteritis nodosa may also show rashes, swelling, ulcers, and lumps (nodular lesions).
- Classic PAN (polyarteritis nodosa) is a systemic arteritis of small to medium muscular arteritis in which involvement of renal and visceral arteries is common Abdominal vessels have aneurysms or occlusions in 50% of PAN patients.
- Classic PAN does not involve the pulmonary arteries although the bronchial vessels may be involved.
- Granulomas, significant eosinophilia and an allergic diathesis are not part of the syndrome.
- any organ system may be involved, the most common manifestations include peripheral neuropathy, mononeuritis multiplex, intestinal ischemia, renal ischemia, testicular pain and livedo reticularis.
- the formulations and methods of the invention may be used to treat Kawasaki's disease.
- Tumor necrosis factor has been implicated in the pathophysiology of Kawasaki's disease (Sundel, R. P. (2002) Curr. Rheumatol. Rep. 4:474; Gedalia, A. (2002) Curr. Rheumatol. Rep. 4:25).
- the cause of Kawasaki's disease is unknown, it is associated with acute inflammation of the coronary arteries, suggesting that the tissue damage associated with this disease may be mediated by proinflammatory agents such as TNF ⁇ .
- Kawasaki's disease refers to a vasculitis that affects the mucus membranes, lymph nodes, lining of the blood vessels, and the heart.
- Kawasaki's disease is also often referred to as mucocutaneous lymph node syndrome, mucocutaneous lymph node disease, and infantile polyarteritis.
- Subjects afflicted with Kawasaki's disease develop vasculitis often involving the coronary arteries which can lead to myocarditis and pericarditis. Often as the acute inflammation diminishes, the coronary arteries may develop aneurysm, thrombosis, and lead to myocardial infarction.
- Kawasaki's disease is a febrile systemic vasculitis associated with edema in the palms and the soles of the feet, with enlargement of cervical lymph nodes, cracked lips and “strawberry tongue”. Although the inflammatory response is found in vessels throughout the body, the most common site of end-organ damage is the coronary arteries. Kawasaki's Disease predominantly affects children under the age of 5. The highest incidence is in Japan but is becoming increasingly recognized in the West and is now the leading cause of acquired heart disease in US children. The most serious complication of Kawasaki disease is coronary arteritis and aneurysm formation that occurs in a third of untreated patients.
- the formulations and methods of the invention may be used to treat small vessel disease.
- the TNF ⁇ antibody of the invention is used to treat subjects who have small vessel vasculitis.
- small vessel(s) is used to refer to arterioles, venules and capillaries.
- Arterioles are arteries that contain only 1 or 2 layers of sooth muscle cells and are terminal to and continuous with the capillary network. Venules carry blood from the capillary network to veins and capillaries connect arterioles and venules. Examples of small vessel vasculitides are described below.
- the formulations and methods of the invention may be used to treat Behcet's disease.
- Tumor necrosis factor has been implicated in the pathophysiology of Behcet's disease (Sfikakis, P. P. (2002) Ann. Rheum. Dis. 61:ii51-3; Dogan, D. and Farah, C. (2002) Oftalmologia. 52:23).
- Behcet's disease is a chronic disorder that involves inflammation of blood vessels throughout the body. Behcet's disease may also cause various types of skin lesions, arthritis, bowel inflammation, and meningitis (inflammation of the membranes of the brain and spinal cord).
- Behcet's disease As a result of Behcet's disease, the subject with the disorder may have inflammation in tissues and organs throughout the body, including the gastrointestinal tract, central nervous system, vascular system, lungs, and kidneys. Behcet's disease is three times more common in males than females and is more common in the east Mediterranean and Japan.
- the formulations and methods of the invention may be used to treat Wegener's granulomatosis.
- Tumor necrosis factor has been implicated in the pathophysiology of Wegener's granulomatosis (Marquez, J., et al. (2003) Curr. Rheumatol. Rep. 5:128; Harman, L. E. and Margo, C. E. (1998) Surv. Ophthalmol. 42:458).
- Wegener's granulomatosis refers to a vasculitis that causes inflammation of blood vessels in the upper respiratory tract (nose, sinuses, ears), lungs, and kidneys.
- Wegener's granulomatosis is also referred to as midline granulomatosis.
- Wegener's granulomatosis includes a granulomatous inflammation involving the respiratory tract, and necrotizing vasculitis affecting small to medium-sized vessels. Subjects who have Wegener's granulomatosis often also have arthritis (joint inflammation). Glomerulonephritis may also be present in affected subjects, but virtually any organ may be involved.
- the formulations and methods of the invention may be used to treat Churg-Strauss syndrome.
- Tumor necrosis factor has been implicated in the pathophysiology of Churg-Strauss syndrome (Gross, W. L (2002) Curr. Opin. Rheumatol. 14:11; Churg, W. A. (2001) Mod. Pathol. 14:1284).
- Churg-Strauss syndrome refers to a vasculitis that is systemic and shows early manifestation signs of asthma and eosinophilia.
- Churg-Strauss syndrome is also referred to as allergic granulomatosis and angiitis, and occurs in the setting of allergic rhinitis, asthma and eosinophilia.
- Sinusitis and pulmonary infiltrates also occur in Churg-Strauss syndrome, primarily affecting the lung and heart.
- Peripheral neuropathy, coronary arteritis and gastrointestinal involvement are common
- the formulations and methods of the invention may be used to treat various other disorders in which TNFalpha activity is detrimental.
- diseases and disorders in which TNFalpha activity has been implicated in the pathophysiology include inflammatory bone disorders and bone resorption disease (see e.g., Bertolini. D. R., et al. (1986) Nature 319:516-518; Konig, A. et al. (1988) J. Bone Miner. Res. 3:621-627; Lerner, U. H. and Ohlin, A. (1993) J. Bone Miner. Res. 8:147-155; and Shanlar. G. and Stem, P. H.
- hepatitis including alcoholic hepatitis (see e.g., McClain, C. J. and Cohen, D. A. (1989) Hepatology 9:349-351; Felver, M. E., et al. (1990) Alcohol. Clin. Exp. Res. 14:255-259; and Hansen, J., et al. (1994) Hepatology 20:461-474), viral hepatitis (Sheron, N., et al. (1991) J. Hepatol. 12:241-245; and Hussain, M. J., et al. (1994) J. Clin. Pathol.
- the formulation and methods of the invention are used to treat rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis.
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis.
- a dose of about 40 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject every other week for the treatment of rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis.
- a human TNF alpha antibody, or antigen-binding portion thereof, e.g., adalimumab
- a dose of about 40 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention is administered to a human subject every other week for the treatment of rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis.
- a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis.
- the formulation is administered subcutaneously, every other week (also referred to as biweekly, see methods of administration described in US20030235585, incorporated by reference herein) for the treatment of rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis.
- the formulation is administered subcutaneously, monthly for the treatment of rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis.
- the formulation of the invention is used to treat Crohn's disease or ulcerative colitis.
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating Crohn's disease.
- a dose of about 160 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 1.6 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject initially at about day 1, followed by a subsequent dose of 80 mg of the antibody (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) two weeks later, followed by administration of about 40 mg (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) every other week for the treatment of Crohn's disease.
- adalimumab e.g., 1.6 mL of a 100 mg/mL formulation of the invention
- 80 mg of the antibody e.g., 0.8 mL of a 100 mg/mL formulation of the invention
- administration of about 40 mg e.g., 0.4 mL of a 100 mg/
- the formulation is administered subcutaneously, according to a multiple variable dose regimen comprising an induction dose(s) and maintenance dose(s) (see, for example, U.S. Patent Publication Nos. US20060009385 and US20090317399, incorporated by reference herein) for the treatment of Crohn's disease or ulcerative colitis, each of which are incorporated by reference herein) for the treatment of Crohn's disease or ulcerative colitis.
- the formulation is administered subcutaneously, biweekly or monthly for the treatment of Crohn's disease or ulcerative colitis.
- a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of Crohn's disease or ulcerative colitis.
- the formulation of the invention is used to treat psoriasis.
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating psoriasis.
- an isolated human TNF alpha antibody, or antigen-binding portion thereof e.g., adalimumab
- an initial dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject, followed by a subsequent dose of 40 mg of the antibody (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) every other week starting one week after the initial dose.
- a human TNF alpha antibody, or antigen-binding portion thereof, e.g., adalimumab
- a subsequent dose of 40 mg of the antibody e.g., 0.4 mL of a 100 mg/mL formulation of the invention
- the formulation is administered subcutaneously, according to a multiple variable dose regimen comprising an induction dose(s) and maintenance dose(s) (see, for example, US 20060009385 and WO 2007/120823, each of which are incorporated by reference herein) for the treatment of psoriasis.
- the formulation is administered subcutaneously, biweekly or monthly for the treatment of psoriasis.
- a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of psoriasis.
- a human TNF alpha antibody, or antigen-binding portion thereof, e.g., adalimumab
- 0.8 mL of a 100 mg/mL formulation of the invention is administered to a human subject monthly for the treatment of psoriasis.
- the formulation of the invention is used to treat juvenile idiopathic arthritis (JIA).
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating JIA.
- 20 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention e.g., 0.2 mL of a 100 mg/mL formulation of the invention
- 40 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention is administered to a subject weighing more than or equal to 30 kg (66 lbs) every other week for the treatment of JIA.
- the formulation is administered subcutaneously, according to a weight-based fixed dose (see, for example, U.S. Patent Publication No. 20090271164, incorporated by reference herein) for the treatment of JIA.
- the formulation is administered subcutaneously biweekly or monthly for the treatment of JIA
- an isolated human TNF alpha antibody, or antigen-binding portion thereof, may be administered to a human subject for treatment of a disorder associated with detrimental TNFa activity according to a monthly dosing schedule, whereby the antibody is administered once every month or once every four weeks.
- disorders that may be treated according to a monthly dosing schedule using the formulations and methods of the invention include, but are not limited to, rheumatoid arthritis, ankylosing spondylitis, JIA, psoriasis, Crohn's disease, ulcerative colitis, hidradenitis suppurativa, giant cell arteritis, Behcet's disease, sarcoidosis, diabetic retinopathy, or psoriatic arthritis.
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject for treatment of a disorder associated with detrimental TNFa activity according to a monthly dosing schedule.
- 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention e.g., 0.8 mL of a 100 mg/mL formulation of the invention
- a subject having a disorder associated with detrimental TNFa activity is administered to a subject having a disorder associated with detrimental TNFa activity.
- 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention is administered monthly or biweekly to a subject for the treatment of a disorder associated with detrimental TNFa activity.
- Dose amounts described herein may be delivered as a single dose (e.g., a single dose of 40 mg in 0.4 mL or 80 mg dose in 0.8 mL), or, alternatively may be delivered as multiple doses (e.g., four 40 mg doses or two 80 mg doses for delivery of a 160 mg dose).
- the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) may also be administered to a subject in combination with an additional therapeutic agent.
- the formulation is administered to a human subject for treatment of rheumatoid arthritis in combination with methotrexate or other disease-modifying anti-rheumatic drugs (DMARDs).
- DMARDs disease-modifying anti-rheumatic drugs
- the formulation is administered to a human subject for treatment of JIA in combination with methotrexate or other disease-modifying anti-rheumatic drugs (DMARDs). Additional combination therapies are described in U.S. Pat. Nos. 6,258,562 and 7,541,031; and U.S. Patent Publication No. US20040126372, the entire contents of all of which are incorporated by reference herein.
- the formulation of the invention comprising a human TNF alpha antibody, or antigen-binding portion thereof, may also be used to treat a subject who has failed previous TNF inhibitor therapy, e.g., a subject who has lost response to or is intolerant to infliximab.
- adalimumab a human anti-TNF ⁇ antibody
- adalimumab a human anti-TNF ⁇ antibody
- injection site reactions erythema and/or itching, haemorrhage, pain or swelling
- Most injection site reactions are mild and do not generally necessitate drug discontinuation.
- the injection pain associated with adalimumab There are two main components of the injection pain associated with adalimumab: the pain associated with the needle stick, and the pain associated with the injection of drug into the tissue.
- the injection-related pain may be related to the Adalimumab formulation and/or to the volume of medication. The following study examined whether various formulations have an impact on injection pain following subcutaneous delivery of adalimumab.
- the primary objectives of this study were to compare injection-related pain of three high concentration (100 mg/mL) adalimumab formulations in the PHYSIOLISTM pre-filled syringe with the current (50 mg/mL) adalimumab commercial formulation in the current pre-filled syringe; and to assess the bioavailability of three high concentration (100 mg/mL) adalimumab formulations in comparison to the current (50 mg/mL) adalimumab commercial formulation.
- the secondary objective of this study was to assess the safety and tolerability of all four adalimumab formulations.
- PK pharmacokinetics
- Subjects from each treatment group were scheduled to receive one subcutaneous injection of adalimumab 40 mg via a pre-filled syringe. There were four treatment groups, one for each of the four formulations as set forth in Table 1 below. After meeting the selection criteria, subjects were randomly assigned in roughly equal numbers to one of the four treatment groups shown in Table 1.
- the three high concentration formulations (F1, F3, and F4), each contained 40 mg of adalimumab in 0.4 mL of solution in the PHYSIOLISTM pre-filled syringe.
- F1, F3, and F4 were compared to the current adalimumab commercial formulation of 40 mg of adalimumab in 0.8 mL of solution in the current pre-filled syringe.
- the ingredients for each of the formulations is described below in Table 1.
- the formulations described in Table 1 also refer to the formulations described in Examples 2-7 below.
- adalimumab Formulation 4 (F4) Polysorbate 80, (40 mg/0.4 mL in Water for injection the PHYSIOLIS TM pre-filled syringe) D 50 Current adalimumab, Commercial Mannitol, Formulation Citric acid monohydrate, (40 mg/0.8 mL in Sodium citrate, the current pre-filled Disodium phosphate syringe) dihydrate, Sodium dihydrogen phosphate dihydrate, Sodium chloride, Polysorbate 80, Water for injection, Sodium Hydroxide added as necessary to adjust pH
- PK pharmacokinetic
- Pharmacokinetic sample collection and pain assessments was done for all subjects in the first two cohorts of about 100 patients (Cohorts 1 and 2). Subjects in Cohorts 3-5 only participated in pain assessments, and no pharmacokinetic samples were be collected for these subjects. Safety and tolerability were to be assessed in all subjects of all 5 cohorts. Each subject was randomly assigned to receive one injection of adalimumab on Study Day 1. Each dose of study drug was to be administered subcutaneously by an appropriate site staff member via a pre-filled syringe in accordance with the proper injection method. The injection was given subcutaneously in the abdomen 2 inches to the right of the navel. Questionnaires were administered by a different study staff member than the individual administering the injection, as often as possible.
- Subjects in Cohorts 1 and 2 were confined to the study site and supervised for approximately 10 days (9 nights). Confinement for each subject began on Study Day ⁇ 1 (1 day prior to the dosing day) and ended after the collection of the 192 hour blood samples and scheduled study procedures on Study Day 9. Serial blood samples were collected through Study Day 57 after dosing with subjects returning for outpatient visits. Safety and tolerability were assessed throughout the study. Subjects in Cohorts 3-5 (pain assessments only) were confined to the study site and supervised for approximately 3 days (2 nights). Confinement for each subject began on Study Day ⁇ 1 (1 day prior to the dosing day) and ended after the completed study procedures on Study Day 2. Safety and tolerability were assessed throughout the study.
- tolerability was preferably assessed as follows:
- Draize Scale (hemorrhage, petechiae, erythema, edema, and pruritus) was evaluated by a qualified site staff member.
- the demographics of subjects in the treatment groups are as follows, shown in Table 3, below.
- Formulation 1, 3, or 4 Three new high concentration formulations (referred to herein as Formulation 1, 3, or 4; or F1, F3, or F4, respectively) were studied relative to the commercial 50 mg/mL adalimumab formulation.
- the compositions of each of these formulations are listed below in Tables 4-7.
- Formulation 1 COMPOSITION OF THE BULK SOLUTION 1 mL bulk solution contains Concentration Name of ingredient [mg] Active Substance adalimumab (A-765865)* 100.00 Excipients Mannitol 42.00 Citric acid monohydrate 1.31 Sodium citrate 0.31 Disodium phosphate dihydrate 1.53 Sodium dihydrogen phosphate dihydrate 0.86 Polysorbate 80 1.00 Sodium Hydroxide q.s. Water for injections ad 1,041.00 Nitrogen — Density of the solution: 1.041 g/mL *Used as concentrate.
- Study drug (adalimumab) in the various formulations was administered in the morning at Hour 0 on Study Day 1.
- the four treatment groups are set forth in Table 1 above as Groups A, B, C and D.
- Subjects in each treatment group were subcutaneously injected with only a single adalimumab formulation via a pre-filled syringe.
- the PHYSIOLISTM pre-filled syringe has a 29 gauge needle (the current pre-filled syringe has a 27 gauge 1 ⁇ 2 inch length fixed needle), a latex-free needle shield, and a plunger stopper which is coated to minimize leachables.
- VAS Pain Visual Analog Scale
- the pain scale was administered to the subject at three different times after the injection: immediately after the injection, at 15 minutes after the injection, and at 30 minutes after the injection on Study Day 1.
- the pain scale was shown and read to the subject, who was asked to place one straight vertical mark along the line in the pain scale to indicate their current level of pain at the injection site (for example see below).
- An indication of 0 meant no pain, while the highest score (10) indicated “the worst imaginable pain.”
- An illustrative pain scale used in the study is shown below:
- Formulations F1, F3, and F4 have half of the volume (i.e., 0.4 mL vs. 0.8 mL) and twice the protein concentration (100 mg/mL vs. 50 mg/mL) compared to the current commercial adalimumab formulation, and they also have different excipient compositions. Experiments described herein were designed to assess whether any of the new formulations are superior to the current commercial adalimumab formulation.
- the pain visual analog scale was chosen to assess injection site pain, and was used to evaluate impact of formulation composition on pain sensations.
- tolerability of various new adalimumab 100 mg/mL formulations were compared to the current commercial formulation (50 mg/mL adalimumab formulation).
- Data in this example supports the surprising finding that the new formulations, especially Formulation 3 (F3), decreases pain significantly relative to the current commercial formulation. Surprisingly, F3 also decreased pain significantly relative to formulations F1 and F4.
- FIG. 1 shows that administration of high concentration Formulations 1 and 3 resulted in a significant decrease in pain assessment at all time points after injection (immediately, 15 minutes, and 30 minutes), compared to the other treatment groups (F4 and the current commercial formulation).
- Table 8 shown below, summarizes the individual data and shows a comparison of the F1, F3, and F4 formulations with the 0.8 mL, 50 mg/mL commercial formulation.
- a Qualitative Assessment of Pain was also administered to subjects immediately after injection, 15 minutes after injection and at 30 minutes after injection for all four adalimumab treatments Immediately after injection, an assessment of “no discomfort” was reported with greatest frequency by 31 subjects (31/50, 62.0%) who had received Formulation 3, followed by 19 subjects (19/50, 38.0%) who had received Formulation 1, 7 subjects (7/50, 14.0%) who had received the current Humira formulation, and one subject (1/50, 2.0%) who had received Formulation 4. Of those subjects who reported discomfort immediately after injection, “stinging pain” was the most frequently reported sensation with 30 subjects (30/50, 60%) for each of the current formulation and formulation 4, 16 subjects (16/50, 32.0%) for Formulation 1, and 4 subjects (4/50, 8.0%) for Formulation 3. At 15 minutes after injection, a large majority of subjects receiving each treatment reported “no discomfort” at the injection site.
- Study site staff also utilized the Draize Scale to evaluate hemorrhage/petechiae, erythema, edema and pruritis at the injection site of each subject. Ten minutes after injection the majority of subjects in all treatment groups had no observed injection-site hemorrhages or petechiae, edema or pruritis.
- the data demonstrates that the new 100 mg/mL formulations, especially formulations 1 and 3, are well tolerated, and were effective in reducing injection site pain after subcutaneous injection of similar therapeutic doses as compared to the currently marketed adalimumab formulation.
- Formulation F3 had a particularly low VAS score relative to the other formulations tested.
- the reduction in pain using the VAS score was not related to the difference in needle size (a 27 G needle was used to administer the current adalimumab commercial formulation and a 29 G needle was used to administer formulations F1, F3, and F4).
- a needle prick accounts for an immediate pain response, whereas the pain response measured by the VAS scale indicated a prolonged persistent pain over several minutes, demonstrating that the injected solution itself contributes to the majority of the response.
- all of the test formulations (F1, F3, and F4) were injected using the same size needle, yet F1, F3, and F4 had very different VAS scores. This result further demonstrates that it was the formulation contributing to the pain effect. and that this can be separated from the size of the needle used to administer the formulations.
- the following example describes a Phase 1, single-blind, single-dose, parallel-group design, randomized study in healthy volunteers (same study described above in Example 1).
- the primary objectives of this study were to compare injection-related pain of three high concentration (100 mg/mL) adalimumab formulations in the Physiolis PFS with the current (50 mg/mL) adalimumab (Humira) formulation in the current PFS (see Example 1), and to assess the bioavailability of three high concentration (100 mg/mL) adalimumab formulations in comparison to the current commercial (50 mg/mL) adalimumab (Humira) formulation.
- the secondary objective of this study was to assess the safety and tolerability of all four adalimumab formulations.
- Each dose of study drug was administered subcutaneously by an appropriate site staff member in accordance with the proper injection method as described in the protocol.
- the injection was given subcutaneously in the abdomen 2 inches to the right of the navel.
- Questionnaires were administered by a different study staff member than the individual administering the injection, as often as possible.
- T max , C max , AUC 0-360 and AUC 0-1344 were similar between Treatments A, B (high concentration adalimumab Formulations 1 and 3, respectively) and D (current commercial Humira formulation).
- mean T. was earlier for Treatment C (high concentration adalimumab Formulation 4) relative to Treatment D ( FIGS. 2 and 3 ).
- the central values of C. and AUC 0-360 values were greater (p ⁇ 0.05) for Treatment C versus Treatment D.
- Treatment Group A For Treatment Group A versus D, the point estimates for the ratios of C max , AUC 0-360 , and AUC 0-1344 central values for Treatments A and B were near unity, and the 90% confidence intervals were within the 0.80 to 1.25 range.
- Treatment B versus D the point estimates for the ratios of C. and AUC 0-360 central values were near unity and the 90% confidence intervals were within the 0.80 to 1.25 range.
- AUC 0-1344 the upper bound of the 90% confidence interval for Treatments B versus D was above 1.25.
- Treatments A, B or C a single dose of high concentration adalimumab Formulation 1, 3 or 4, respectively, administered as a single sc injection using a Physiolis PFS (40 mg/0.4 mL).
- Treatment D a single dose of the current Humira formulation administered as a single sc injection using the currently available glass PFS (40 mg/0.8 mL).
- PK Pharmacokinetic.
- the relative bioavailability of Treatments A and B were similar to Treatment D, the currently marketed Humira formulation.
- the relative bioavailability of Treatment C was greater when compared to Treatment D.
- the unexpected increase in bioavailability for Treatment C suggests that the effective dose amount administered to a subject may be reduced.
- the tolerability assessments that were conducted included completion of a Pain Assessment Module (Pain Visual Analog Scale [VAS]), Qualitative Assessment of Pain and Needle Pain Assessment) and the Draize Scale (see Example 1).
- VAS Pain Assessment Module
- Qualitative Assessment of Pain and Needle Pain Assessment Qualitative Assessment of Pain and Needle Pain Assessment
- the objective of the following study was to evaluate the pharmacokinetic profiles of adalimumab formulation F4 in contrast to the adalimumab commercial formulation (see Table 7 above for a description of the formulation).
- HUMIRA HUMIRA commercial formulation
- adalimumab HUMIRA test formulation corresponding to formulation F4 of the previous examples
- i.v. intravenous injection of the HUMIRA commercial formulation
- Adalimumab serum exposure levels blood samples were collected at 0.083, 4, 24, 48, 96, 168, 240, 312, 384, 456, 528 and 864 hours post administration (p.a.). Examined parameters were clinical signs (twice weekly) and mortality.
- the following example compares the stability of high concentration formulations F1, F3, and F4 with the commercial adalimumab formulation. Stability was examined using freeze/thaw tests.
- High concentration human anti-TNF ⁇ antibody formulations were prepared as described in Example 1, Table 1 above.
- the compounded solutions were sterile filtered and aliquoted in 8 ⁇ 30 mL PETG bottles at 20 mL, respectively.
- the solutions were practically free from particles in visual inspection.
- the samples for T0 were directly placed into a 2-8° C. refrigerator.
- the other bottles were put into the ⁇ 80° C. cube to freeze.
- T0 before any freeze-thaw cycles
- T1 after one freeze-thaw cycle
- T3 after three freeze-thaw cycles
- T5 after five freeze-thaw cycles
- E161118001CL 94 0 0 T0 HC F3 (25° C.)
- E161119001CL 6 3 1 T0 HC F3 (37° C.)
- E161119001CL 12 2 0 T1 HC F3 25° C.
- E161119001CL 4 1 0 T1 HC F3 37° C.
- E161120001CL 22 1 0 T0 commercial (25° C.)
- E161121001CL 464 2 1 T0 commercial (37° C.)
- E161121001CL 198 0 0 T1 commercial 25° C.
- E161121001CL 143 1 0 T1 commercial 37° C.
- E161121001CL 285 0 0 T3 commercial 25° C.
- E161121001CL 108 0 0 T3 commercial 37° C.
- E161121001CL 224 0 0 T5 commercial 25° C.
- E161121001CL 39 0 0 T5 commercial 37° C.
- Table 17 indicates the percentages of SEC aggregates, monomers, and fragments in each of the solutions at T0 (before any freeze-thaw cycles), T1 (after one freeze-thaw cycle), T3 (after three freeze-thaw cycles) and T5 (after five freeze-thaw cycles). These results indicate that each of formulations 1, 3, and 4 show stabilities similar to that of the commercial formulation.
- Table 17 Percentages of Aggregates, Monomers, and Fragments Before and after Freeze-Thaw Cycles as Assessed by SEC
- IEC Ion Exchange Chromatography
- the vials, stir bars, and stoppers were steam sterilized prior to use.
- the vials were kept at 5° C. over night. The next morning the samples (one per protein solution, because in the beginning they were all the same) were measured with the turbidity meter. The measured solutions were filled back in the vials prior start of the experiment. After 1, 4, 24, and 48 h samples were taken and the turbidity was determined
- the unstirred samples were only measured at the time points 0 and 48 h.
- Humira HC 100 mg/mL
- F3, pH 5.2 showed only a slight increase of the turbidity over the time.
- the commercial Humira solution showed both a significantly higher starting value and increase in turbidity over the time.
- formulation 3 showed lower turbidity than the commercial Humira formulation.
- the stirred samples showed a higher turbidity compared with the unstirred controls.
- the turbidity of the unstirred controls remained almost constant in comparison to the 0 h samples, indicating that running the experiment at room temperature did not bias the results.
- Table 20 shows the results for the numbers of subvisible particles.
- Example 5 Overall, the results of the experiments presented in Example 5 showed that formulation 3, when subjected to stirring stress, was surprisingly stable compared with commercial Humira solution. Formulation 3 was robust to stirring stress according to the turbidity measure, and stirring of formulation 3 also had little or no effect on formation of subvisible particles.
- Formulations F1, F3, and F4 were tested prior to long term storage (Initial), and after 3, 6, 9, 12, 18, and 24 months of storage.
- the following storage conditions were used: (1) 5° C., (2) 25° C./60% relative humidity (R.H), and (3) 40° C./75% R.H.
- the samples were packaged in a 1 ml pre-filled syringe (colorless, glass type I, Ph.Eur.); BD Hypak Syringe BD 260 with a grey DB Hypak 4023/50 Fluorotec stopper.
- Liquid pharmaceutical products containing therapeutic antibodies often require storage at 2-8° C. until end-of-shelf-life. Cooling is therefore also required by patients between purchasing of the medicines until use. Depending on the proposed dosing regimen, this can result in storage times under patient's responsibility in the case of self-administration drugs for up to several weeks.
- drugs that do not require storage under refrigerated conditions display both a significant increase in patient convenience for home care products and reduction of drug quality concerns in case of improper storage, thereby reducing complaint rates and temperature excursion investigations.
- Adalimumab containing product (Humira) was successfully reformulated at a higher protein concentration as Formulation F3, as described above in Examples 1-6.
- the following stability data for Formulation F3 resulted in findings of improved stability against protein degradation.
- the resulting degradation kinetics measured at 25° C. complied with requirements for ambient storage for up to 3 months.
- the following data describes long-term storage characteristics for Formulation F3.
- the data shows that even after 18 months and 24 months of long-term storage at 2-5° C., additional storage at 25° C./30° C. is acceptable.
- the conductivity of the high concentration anti-TNF ⁇ antibody formulations F3 and F4 was determined using an InoLab Cond Level2 WTW device normalized to 25° C. Table 26 shows the influence of non-ionic excipients on the conductivity of the F3 and F4 adalimumab formulations.
- Dynamic light scattering analysis of diluted solutions was used to assess the hydrodynamic diameter (reported as the mean or Z-average size, calculated by cumulants analysis of the DLS measured intensity autocorrelation function and polydispersity index, PDI, of the size distribution of particles).
- DLS measurements were specifically used to detect low amounts of higher molecular weight species, e.g. aggregates, in a size distribution, since those species possess higher scattering intensity (proportional to d6) and, therefore, will influence the Z-average and Polydispersity Index (PDI) as an indicator of the Z-average size distribution significantly.
- the z-average measurement for both F3 and F4 was less than 4 nm. This low hydrodynamic diameter is representative of the fact that both formulations F3 and F4 do not contain additional excipients other than a polysorbate and a polyol or a polysorbate.
- Formulations containing 100 mg/ml of adalimumab in water were prepared. Subsequently, various concentrations of either mannitol or polysorbate were added in a concentration range to determine the impact of each excipient on the stability of the formulation, as measured by aggregation and fragmentation.
- the concentrations of polysorbate and mannitol ranged from 0.1 to 1.0 mg/ml and 0-72 mg/ml, respectively, as shown in FIGS. 3A and 3B .
- concentration of polysorbate and mannitol ranged from 0.1 to 1.0 mg/ml and 0-72 mg/ml, respectively, as shown in FIGS. 3A and 3B .
- FIG. 3A varying the concentration of mannitol from about 12 to about 72 mg/ml had a minimal effect on the stability of adalimumab.
- varying the concentration of polysorbate-80 from about 0.1 to about 1.0 mg/ml had no effect on the stability of a
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physical Education & Sports Medicine (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Ophthalmology & Optometry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 13/294,692, filed Nov. 11, 2011, which claims priority to U.S. Provisional Application No. 61/412,728 filed on Nov. 11, 2010 and U.S. Provisional Application No. 61/413,960 filed on Nov. 15, 2010. The entire contents of each of the foregoing applications are incorporated herein by this reference in their entireties.
- The formulation of therapeutic proteins, such as antibodies, is often a challenge given the numerous desirable properties that the formulation must have to be economically and therapeutically successful, e.g., stability, suitability for administration, concentration. During manufacturing, storage, and delivery, therapeutic proteins have been known to undergo physical and chemical degradations. These instabilities can reduce the potency of the protein and increase the risk of adverse events in patients, and, therefore, significantly impact regulatory approval (see, e.g., Wang et al. J. Pharm. Sci. 96:1, 2007). As such, a stable protein formulation is essential to the success of a therapeutic protein.
- To be effective, many therapeutic proteins require the administration of high doses, which, ideally, are formulated in high concentration formulations. High protein concentration formulations are desirable as they can impact the mode (e.g., intravenous vs. subcutaneous) and frequency of administration of the drug to a subject.
- Despite the benefits of high protein concentration formulations, formulating high concentration therapeutic proteins presents numerous challenges. For example, increasing protein concentration often negatively impacts protein aggregation, solubility, stability, and viscosity (see, e.g., Shire et al. J. Pharm. Sci. 93:1390, 2004). Increased viscosity, which is a very common challenge for high protein solutions, can have negative ramifications on administration of the formulation, e.g., felt pain and burning syndromes and limitations in manufacturing, processing, fill-finish and drug delivery device options (see, e.g., Shire et al. J. Pharm. Sci. 93:1390, 2004). Even for therapeutic proteins having common structural features, e.g., antibodies, approved formulations to date have had varying ingredients and ranges of concentrations. For example, the anti-CD20 antibody Rituxan is formulated for intravenous administration at a concentration of 10 mg/mL, while the anti-RSV antibody Synagis is formulated for intramuscular administration at a concentration of 100 mg/mL. Thus, high protein formulations, especially antibody formulations, which can be used for therapeutic purposes remain a challenge.
- Another challenge associated with therapeutic proteins, such as antibodies, is drug delivery. While self-administering devices allow patients to avoid unnecessary trips to medical facilities to receive treatments, patients' self-awareness and fear of the pain associated with self-administration may frequently impact self-administered drug delivery. Moreover, formulations having high concentrations of protein may have high viscosity resulting in increased pain upon delivery, particularly for subcutaneous administration. Thus, there is especially a need for high concentration formulations that reduce pain associated with drug delivery (e.g., self-injection).
- Accordingly, there is a need for stable, high concentration protein formulations that provide dosing and administrative advantages, particularly with respect to a decrease in pain for the patient and/or improved bioavailability.
- The present invention is based, at least in part, on the discovery of new high-concentration formulations for therapeutic antibodies (including human anti-TNF-α antibodies, or antigen-binding fragments thereof, e.g., adalimumab). The formulations of the invention provide a number of surprising characteristics given the high concentration of the therapeutic antibody. Specifically, the present invention provides pharmaceutical formulations comprising human anti-TNFα antibodies which surprisingly have improved bioavailability or decreased pain upon subcutaneous injection.
- In particular, the present invention is based, at least partly, on the unexpected and surprising discovery that a formulation having a high antibody concentration, a surfactant, and a polyol, provides dramatically reduced pain to the patient during drug delivery, particularly subcutaneous administration of the antibody through, for example, self-injection. The formulations of the invention are established, at least in part, on the surprising finding that a therapeutic protein (e.g., an anti-TNF-alpha antibody, or antigen-binding portion thereof), can remain soluble at a high protein concentration (e.g., at least about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 96, 100, 105, 110 mg/ml, or more) and maintain a viscosity suitable for injection (e.g., subcutaneous administration). The formulation of the present invention is further surprising, in that the formulation does not contain a buffer or a salt, yet has a high concentration of antibody. Notably, the formulation of the invention reduces pain associated with injection in a patient by at least about 50% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer.
- Thus, in one aspect, the invention provides a liquid aqueous formulation comprising an anti-TNFα antibody, or antigen-binding portion thereof; a surfactant; and, a polyol; wherein the formulation does not contain a buffer or a salt, and reduces pain associated with injection in a patient by at least about 50% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer.
- In another aspect, the invention provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/mL of a polyol, wherein injection of the formulation into a human subject results in a Pain Visual Analog Scale (VAS) score of less than 1.0. In one embodiment, the invention provides a liquid aqueous formulation consisting essentially of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/mL of a polyol, wherein injection of the formulation into a human subject results in a Pain Visual Analog Scale (VAS) score of less than 1.0. In one embodiment, the VAS scale is from 0 (no pain) to 10 (excruciating pain)
- In a further aspect, the invention provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/ml of a polyol, wherein the formulation does not contain a buffer and a salt, and wherein injection of the formulation reduces pain associated with the injection in a human subject by at least about 50% when compared to injection of an otherwise identical formulation that comprises a salt and/or a buffer. In one embodiment, the otherwise identical comprises a citrate and phosphate buffer and sodium chloride.
- The invention further provides a liquid aqueous formulation comprising an anti-TNFα antibody or antigen-binding portion thereof, at a concentration of at least about 50 mg/mL; a surfactant; and, a polyol, wherein the formulation has a conductivity of less than about 2 mS/cm. In one embodiment, the formulation has a conductivity of less than 1 mS/cm. In another embodiment, the formulation has a conductivity of less than 0.9 mS/cm.
- The invention also provides, in another embodiment, a liquid aqueous formulation comprising an anti-TNFα antibody or antigen-binding portion thereof, at a concentration of at least about 50 mg/mL; a surfactant; and, a polyol, wherein the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter of less than 4 nm in the formulation. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than 3 nm in the formulation.
- The present invention also provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation has a characteristic selected from the group consisting of a conductivity of less than about 2 mS/cm; a hydrodynamic diameter (Dh) which is at least about 50% less than the Dh of the protein in a buffered solution at a given concentration; and a hydrodynamic diameter (Dh) of less than about 4 nm. In one embodiment, the formulation has a conductivity of less than about 1 mS/cm. In another embodiment, the formulation has a conductivity of less than about 0.9 mS/cm. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 3 nm in the formulation. In another embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 2 nm in the formulation.
- The invention also provides a liquid aqueous formulation consisting essentially of an anti-TNFα antibody or antigen-binding portion thereof; a surfactant; and, a polyol; wherein the concentration of the anti-TNFα antibody or antigen-binding portion thereof is at least about 50 mg/mL, 75 mg/mL, 100 mg/mL, or greater than 100 mg/mL.
- In a particular embodiment, the invention provides a liquid aqueous formulation consisting essentially of a concentration of 90-110 mg/ml of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, having a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position position polysorbate 80; and, about 38-46 mg/ml of a polyol, e.g., mannitol. - In another aspect, the present invention provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation is stable up to about 30 degrees C. for at least about 6 days, about 10, days, or about 14 days, or is stable at about 28 degrees C. for up to about 24 months.
- In another aspect, the invention provides a method of administering an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, to a subject such that injection pain is reduced upon administration, said method comprising subcutaneously administering to the subject a formulation comprising the antibody, or antigen-binding portion thereof, such that injection pain is reduced upon administration, wherein the formulation comprises more than 50 mg/ml of the antibody, or antigen-binding portion thereof; a surfactant; and less than 50 mg/ml of a polyol. In one embodiment, the injection pain is determined to be less than 1.0 according to a Pain Visual Analog Scale (VAS).
- In certain embodiments, pain associated with injection is assessed using a pain visual analog scale (VAS). In one embodiment, the VAS scale is from 0 (no pain) to 10 (excruciating pain)
- In certain embodiments, the pain associated with injection is assessed after injection (e.g., immediately, no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 minutes, or no more than 15 minutes after injection).
- In certain embodiments, the formulation reduces pain associated with injection in the patient by at least about 60%, 70%, 80% or more, when compared to injecting the otherwise identical formulation comprising the at least one salt and/or at least one buffer.
- The invention further provides a liquid aqueous formulation comprising an anti-TNFα antibody or antigen-binding portion thereof, at a concentration of at least about 50, 75, 100 mg/mL, or greater than 100 mg/mL; a surfactant; and, a polyol; wherein the formulation does not contain a buffer and a salt.
- In another aspect, the invention provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof; a surfactant; and, less than 50 mg/ml of a polyol; wherein the formulation is stable for up to about 30 degrees C. for at least about 6 days. In one embodiment, the formulation is stable at room temperature for at least about 7 days. In one embodiment, the formulation is stable at room temperature for at least about 8 days. In one embodiment, the formulation is stable at room temperature for at least about 9 days. In one embodiment, the formulation is stable at room temperature for at least about 10 days. In one embodiment, the formulation is stable at room temperature for at least about 11 days. In one embodiment, the formulation is stable at room temperature for at least about 12 days. In one embodiment, the formulation is stable at room temperature for at least about 13 days. In one embodiment, the formulation is stable at room temperature for at least about 14 days. In one embodiment, the formulation is stable at room temperature for at least about 15 days.
- In one embodiment, the polyol used in the formulation of the invention is mannitol or sorbitol.
- In one embodiment, the formulation of the invention contains about 20-60 mg/mL mannitol, or, alternatively, about 30-50 mg/mL. In one embodiment, the formulation contains about 38-46 mg/ml of mannitol.
- The present invention is also based, at least in part, on the unexpected and surprising discovery that a formulation having a high antibody concentration and a surfactant provides notably higher bioavailability than similar formulations containing additional excipients, such as a buffer, a polyol and/or a salt.
- Thus, in one aspect, the invention provides a liquid aqueous formulation comprising a surfactant and 30-90 mg of an isolated human anti-TNFα antibody or antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation relative to a formulation comprising a citrate phosphate buffer, sodium chloride, and mannitol.
- In one aspect, the invention provides a liquid aqueous formulation consisting essentially of a surfactant and 30-90 mg of an isolated human anti-TNFα antibody or antigen-binding portion, wherein the concentration of the antibody, or antigen-binding portion thereof, is 90-110 mg/ml.
- In another aspect, the invention provides a liquid aqueous formulation comprising a surfactant and 30-90 mg of an isolated human anti-TNFα antibody, or an antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, in a human subject upon subcutaneous injection of the formulation, such that the antibody or antigen-binding portion thereof, has an AUC0-360 greater than about 1300 μg*hr/ml.
- In another aspect, the invention provides a method for improving the bioavailability of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, in a human subject, said method comprising administering a formulation comprising an effective amount of the antibody, or antigen-binding portion thereof, and a surfactant to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved, wherein the formulation does not contain a buffer, a polyol, or a salt.
- In a further aspect, the invention provides a method of improving the bioavailability of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, in a subject, said method comprising administering a formulation comprising an effective amount of the antibody, or antigen-binding portion thereof, and a surfactant to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, in the subject is improved, at least about 15% over a second formulation, wherein the formulation does not contain a buffer, a polyol, or a salt, and wherein the second formulation comprises a buffer, a polyol, and a salt. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is improved at least about 30% over the second formulation. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is improved at least about 40% over the second formulation.
- The invention further provides a method of improving the bioavailability of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, in a human subject, said method comprising administering a formulation comprising a surfactant and an effective amount of the antibody, or antigen-binding portion thereof, to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved, wherein the formulation has a characteristic selected from the group consisting of a conductivity of less than about 2 mS/cm; the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter (Dh) which is at least about 50% less than the Dh of the antibody, or antigen-binding portion thereof, in a buffered solution at the given concentration; and the antibody, or antigen-binding portion thereof, has a hydrodynamic diameter (Dh) of less than about 4 nm. In one embodiment, the formulation has a conductivity of less than about 1 mS/cm. In another embodiment, the formulation has a conductivity of less than about 0.9 mS/cm. In one embodiment, the antibody or antigen-binding portion thereof, has a hydrodynamic diameter of less than about 3 nm in the formulation.
- In one embodiment, the bioavailability is determined according to either an AUC level or a Cmax. In one embodiment, the bioavailability is determined according to either an AUC0-360 or an AUC0-1344. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is an AUC0-360 greater than about 1300 μg*hr/ml when subcutaneously injected into the human subject.
- In certain embodiments, the anti-TNFα antibody is an isolated human antibody (e.g., a human IgG1 kappa antibody), a humanized antibody, a chimeric antibody, or a murine antibody. For example, the chimeric antibody may be infliximab or a biosimilar thereof, and the human antibody may be golimumab or adalimumab, or a biosimilar thereof.
- In one embodiment, the human anti-TNFα antibody, or an antigen-binding portion thereof, is an IgG1 or an IgG4.
- In one embodiment, human anti-TNFα antibody, or an antigen-binding portion thereof, dissociates from human TNFα with a Kd of 1×10−8 M or less and has a koff rate constant of 1×10−3 s−1 or less, both determined by surface plasmon resonance. In certain embodiments, the human anti-TNFα antibody, or an antigen-binding portion thereof, dissociates from human TNFα with a Kd of 1×10−8 M or less and a koff rate constant of 1×10−3 s−1 or less, both determined by surface plasmon resonance, and neutralizes human TNFα cytotoxicity in a standard in vitro L929 assay with an IC50 of 1×10−7 M or less.
- In certain embodiments, the human anti-TNFα antibody, or an antigen-binding portion thereof, has the following characteristics: dissociates from human TNFα with a koff rate constant of 1×10−3 s−1 or less, as determined by surface plasmon resonance; has a light chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position positions position positions - In certain embodiments, the human anti-TNFα antibody, or an antigen-binding portion thereof, has a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position position - In certain embodiments, the human anti-TNFα antibody, or an antigen-binding portion thereof, has a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position position - In certain embodiments, the human anti-TNFα antibody, or an antigen-binding portion thereof, has a light chain variable region (LCVR) comprising the amino acid sequence of SEQ ID NO: 1 and a heavy chain variable region (HCVR) comprising the amino acid sequence of SEQ ID NO: 2.
- In one embodiment, the human anti-TNFα antibody, or an antigen-binding portion thereof, comprises the CDRs corresponding to adalimumab.
- In one embodiment, the human anti-TNFα antibody, or an antigen-binding portion thereof, is adalimumab or golimumab, or a biosimilar thereof.
- In certain embodiments, the concentration of the human anti-TNFα antibody, or antigen-binding portion thereof, in the formulation is at least about 50 mg/mL, about 75 mg/mL, about 100 mg/mL, or greater than 100 mg/mL. In one embodiment, the concentration of the human anti-TNFα antibody, or antigen-binding portion thereof, in the formulation of the invention is 90-110 mg/ml. In one embodiment, the concentration of the human anti-TNFα antibody, or antigen-binding portion thereof, in the formulation of the invention is 95-105 mg/ml. In one embodiment, the formulation comprises more than 75 mg/ml of the antibody, or antigen-binding portion thereof. In one embodiment, the invention provides a stable, liquid aqueous formulation comprising a high concentration, e.g., 75-125 mg/mL, of a human anti-hTNFα antibody.
- In certain embodiments, the surfactant used in the formulation of the invention is a polysorbate. In one embodiment, the concentration of polysorbate is about 0.1-1.5 mg/ml, about 0.2-1.4 mg/ml, about 0.3-1.3 mg/ml, about 0.4-1.2 mg/ml, about 0.5-1.1 mg/ml, about 0.6-1.0 mg/ml, about 0.6-1.1 mg/ml, about 0.7-1.1 mg/ml, about 0.8-1.1 mg/ml, or about 0.9-1.1 mg/ml. In certain embodiments, the polysorbate is at a concentration of about 0.1-10 mg/mL, about 0.5-5 mg/mL, about 0.1-2 mg/mL, or about 1 mg/mL. In one embodiment, the surfactant is
polysorbate 80. - In certain embodiments, the patient is human, or a non-human mammal.
- In certain embodiments, the formulation is
Formulation 3 orFormulation 4 described in the Examples. - In certain embodiments, the otherwise identical formulation is the commercially available adalimumab formulation containing adalimumab, sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol,
polysorbate 80, and water for Injection. - In one embodiment, the otherwise identical formulation contains a buffer and a salt. In certain embodiments, the salt is a neutral salt, or a salt from a base (e.g., NaOH) used for pH adjustment. In certain embodiments, the buffer comprises a phosphate buffer and/or a citrate buffer. For example, the phosphate buffer may contain about 1.35-1.75 mg/mL or about 1.50-1.56 mg/mL of Na2HPO4.2H2O, and about 0.75-0.95 mg/mL or about 0.83-0.89 mg/mL of NaH2PO4.2H2O). The citrate buffer may contain about 1.15-1.45 mg/mL or about 1.30-1.31 mg/mL of citric acid.H2O, and about 0.2-0.4 mg/mL or about 0.30-0.31 mg/mL of sodium citrate dehydrate. The at least one salt may be a neutral salt, such as a neutral sodium salt (e.g., NaCl).
- In one embodiment, the formulation of the invention is a pharmaceutical formulation.
- In certain embodiments, the formulation of the invention is suitable for subcutaneous injection. In one embodiment, the formulation of the invention is suitable for subcutaneous self-administration by a subject.
- In certain embodiments, the volume of the aqueous formulation is no more than 1.5 mL, 1.0 mL, 0.8 mL, 0.5 mL, or 0.4 mL.
- In certain embodiments, the formulation comprises a dose of about 30-90 mg of the antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 40 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 50 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 60 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 70 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 80 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises about 90 mg of the anti-TNFα antibody, or antigen binding portion thereof. In one embodiment, the formulation comprises 60-85 mg. In another embodiment, the formulation comprises 70-90 mg. In yet a further embodiment, the formulation contains 30-110 mg. In one embodiment, the formulation contains 70-110 mg.
- Another aspect of the invention provides a pre-filled syringe or autoinjector device, comprising any of the subject formulations described herein. In certain embodiments, the aqueous formulation stored in the pre-filled syringe or autoinjector device contains about 40 mg of adalimumab, or biosimilar thereof. In certain embodiments, the aqueous formulation stored in the pre-filled syringe or autoinjector device contains about 80 mg of adalimumab, or biosimilar thereof.
- Another aspect of the invention provides a method of treating a disorder associated with detrimental TNFα activity in a patient, comprising administering to the patient any one of the formulations described herein.
- In one embodiment, the formulation or method of the invention is used to treat a subject having rheumatoid arthritis. In one embodiment, the formulation or method of the invention is used to treat a subject having Crohn's disease. In one embodiment, the formulation or method of the invention is used to treat a subject having psoriatic arthritis. In one embodiment, the formulation or method of the invention is used to treat a subject having psoriasis. In one embodiment, the formulation or method of the invention is used to treat a subject having juvenile idiopathic arthritis (JIA). In one embodiment, the formulation or method of the invention is used to treat a subject having ankylosing spondylitis. In one embodiment, the formulation or method of the invention is used to treat a subject having ulcerative colitis. In one embodiment, the formulation or method of the invention is used to treat a subject having hidradenitis suppurativa. In one embodiment, the formulation or method of the invention is used to treat a subject having diabetic retinopathy. In one embodiment, the formulation or method of the invention is used to treat a subject having giant cell arteritis. In one embodiment, the formulation or method of the invention is used to treat a subject having Behcet's disease. In one embodiment, the formulation or method of the invention is used to treat a subject having sarcoidosis, e.g. cutaneous sarcoidosis. In one embodiment, the formulation or method of the invention is used to treat a subject having axial spondyloarthropathy. In one embodiment, the formulation or method of the invention is used to treat a subject having uveitis.
- In one embodiment, the formulation is administered to the subject according to a periodicity selected from the group consisting of weekly, biweekly, every three weeks, and monthly. In one embodiment, the formulation of the invention contains 30-90 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered on a biweekly dosing regimen. In another embodiment, the formulation of the invention contains 30-90 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered according to a monthly dosing regimen. In one embodiment, the formulation of the invention contains 60-85 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered on a biweekly dosing regimen. In another embodiment, the formulation of the invention contains 60-85 mg of a human anti-TNFa antibody, or antigen-binding portion thereof, and is administered according to a monthly dosing regimen.
- In certain embodiments, the administration of the formulation of the invention to a subject is via self-administration.
- It is contemplated that any one embodiment described herein can be combined with one or more other embodiments of the invention, including embodiments described only under one aspect of the invention.
-
FIG. 1 is a panel of graphs that show administration of high concentration formulations 1 (F1) and 2 (F2) resulted in a significant decrease in pain assessment at all time points after injection (immediately, 15 minutes, and 30 minutes), compared to the other treatment groups (F4 and the current commercial formulation). -
FIG. 2 shows, on a linear scale, the means and standard deviations of adalimumab serum concentrations over a time period of 56 days following a single 40 mg SC dose of adalimumab. -
FIGS. 3A and 3B are graphs that show the stability of the various adalimumab formulations assessed by the number of sum aggregates in the formulations (3A) or the sum aggregates (3B) over a range of polysorbate or a range of polyol. - In order that the present invention may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this invention.
- The term “pain associated with injection (in a patient),” as used herein, refers to the pain associated with the injection of drug into the patient's or subject's tissue. In one embodiment, the pain is separate from the pain caused by the injection device (if any), such as the injection needle stick. In one embodiment, the pain associated with injection may originate from the drug formulation being injected into patient's tissue.
- The pain associated with injection may be evaluated using a number of art-recognized means, such as the Pain Visual Analog Scale (VAS). The pain measurement is, in one embodiment, quantifiable, such that a percentage pain scale reduction/increase can be directly compared using statistical methods. For example, when the Pain Visual Analog Scale is used, a numeric pain value (e.g., average±SD) can be assigned to each treatment group, such that a percentage increase or reduction can be calculated.
- In general, a Visual Analogue Scale (VAS) is a measurement instrument that measures a characteristic or attitude that is believed to range across a continuum of values (see, e.g., Singer and Thods (1998) Academic Emergency Medicine 5:1007). For example, the amount of pain that a patient feels ranges across a continuum from none (a score of, for example, 0) to an extreme amount of pain (a score of, for example, 10). From the patient's perspective this spectrum appears continuous—their pain does not take discrete jumps, as a categorization of none, mild, moderate and severe would suggest. Operationally, a VAS is usually a horizontal line, 100 mm in length, anchored by word descriptors at each end, such as “no pain” at one end, and “extreme pain” (or some variation thereof) on the other end. The patient marks on the line at a point (for example, a score of 0-10) that they feel represents their perception of their current state. The VAS score may determined by measuring in millimeters from the left hand end of the line to the point that the patient marks.
- There are various ways in which VAS have been presented, including vertical lines and lines with extra descriptors. See Wewers & Lowe (“A critical review of visual analogue scales in the measurement of clinical phenomena.” Research in Nursing and Health 13: 227-236, 1990, incorporated by reference herein) provide an informative discussion of the benefits and shortcomings of different styles of VAS.
- The term “liquid formulation” refers to a formulation in a liquid state and is not intended to refer to resuspended lyophilized formulations. A liquid formulation of the invention is stable upon storage, and does not rely upon lyophilization (or other state change methods, e.g., spray drying) for stability.
- The term “liquid aqueous formulation” refers to a liquid formulation using water as a solvent. In one embodiment, a liquid aqueous formulation is a formulation that maintains stability (e.g., chemical and/or physical stability/and/or biological activity) without the need for lyophilization, spray-drying, and/or freezing.
- The term “pharmaceutical,” as used herein, refers to a composition, e.g., an aqueous formulation, that it is useful for treating a disease or disorder.
- The term “subject” or “patient” is intended to include mammalian organisms. Examples of subjects/patients include humans and non-human mammals, e.g., non-human primates, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In specific embodiments of the invention, the subject is a human.
- The term “excipient” refers to an agent which may be added to a formulation to provide a desired characteristic, e.g., consistency, improving stability, and/or to adjust osmolality. Examples of commonly used excipients include, but are not limited to, sugars, polyols, amino acids, surfactants, and polymers.
- A commonly used excipient is a polyol. As used herein, a “polyol” is a substance with multiple hydroxyl groups, and includes sugars (reducing and nonreducing sugars), sugar alcohols and sugar acids. Non-limiting examples of polyols are fructose, mannose, maltose, lactose, arabinose, xylose, ribose, rhamnose, galactose, glucose, sucrose, trehalose, sorbose, melezitose, raffinose, mannitol, xylitol, erythritol, threitol, sorbitol, glycerol, L-gluconate and metallic salts thereof. In one embodiment, the polyol used in the formulation or methods of the invention is mannitol. In one embodiment, the polyol used in the formulation or methods of the invention is sorbitol.
- A “therapeutically active antibody” or “therapeutic antibody” refers to an antibody which may be used for therapeutic purposes, i.e., for the treatment of a disorder in a subject. It should be noted that while therapeutic proteins may be used for treatment purposes, the invention is not limited to such use, as said proteins may also be used for in vitro studies.
- As used herein, “buffer” is an agent(s) in a solution that allows the solution to resist changes in pH by the action of its acid-base conjugate components. Examples of buffers include acetate (e.g. sodium acetate), succinate (such as sodium succinate), gluconate, histidine, methionine, citrate, phosphate, citrate/phosphate, imidazole, combinations thereof, and other organic acid buffers. In one embodiment, a buffer is not a protein. A buffer may provide a solution with a pH in the range from about 4 to about 8; from about 4.5 to about 7; or from about 5.0 to about 6.5.
- Although the formulations of the invention do not contain a buffer(s), otherwise identical formulations containing one or more buffers may be used for pain or bioavailability comparison purposes. Examples of such buffers include phosphate, acetate (e.g., sodium acetate), succinate (such as sodium succinate), gluconate, glutamate, histidine, citrate and other organic acid buffers. In one embodiment, a representative buffer in the otherwise identical formulation comprises a citrate buffer and/or a phosphate buffer.
- As used herein, the term “surfactant” generally includes an agent that protects the protein, e.g., antibody, from air/solution interface-induced stresses, solution/surface induced-stresses, to reduce aggregation of the antibody, or to minimize the formation of particulates in the formulation. Exemplary surfactants include, but are not limited to, nonionic surfactants such as polysorbates (e.g. polysorbates 20 and 80) or poloxamers (e.g. poloxamer 188). The term “surfactant” or “detergent” includes nonionic surfactants such as, but not limited to, polysorbates. In one embodiment, a surfactant includes poloxamers, e.g., Poloxamer 188, Poloxamer 407; polyoxyethylene alkyl ethers, e.g., Brij 35®, Cremophor A25, Sympatens ALM/230; and polysorbates/Tweens, e.g., Polysorbate 20 (Tween 20), Polysorbate 80 (Tween 80), Mirj, and Poloxamers, e.g., Poloxamer 188.
- A “stable” formulation is one in which the antibody therein essentially retains its physical stability and/or chemical stability and/or biological activity during the manufacturing process and/or upon storage. Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991); and Jones, A. (1993) Adv. Drug Delivery Rev. 10: 29-90 (both incorporated by reference). For example, in one embodiment, the stability of a protein is determined according to the percentage of monomer protein in the solution, with a low percentage of degraded (e.g., fragmented) and/or aggregated protein. In one embodiment, the formulation may be stable at room temperature, at about 25-30° C., or at 40° C. for at least 1 month and/or stable at about 2-8° C. for at least 1 month, 1 year, or, alternatively, for at least 2 years. In another embodiment, the formulation may be stable up to about 30 degrees C. for at least about 6 days, about 10, days, or about 14 days, or is stable at about 28 degrees C. for up to about 24 months. In one embodiment, the formulation may be stable following freezing (to, e.g., −70° C.) and thawing of the formulation, hereinafter referred to as a “freeze/thaw cycle.”
- An antibody “retains its physical stability” in a pharmaceutical formulation if it shows substantially no signs of, e.g., aggregation, precipitation and/or denaturation upon visual examination of color and/or clarity, or as measured by UV light scattering or by size exclusion chromatography. Aggregation is a process whereby individual molecules or complexes associate covalently or non-covalently to form aggregates. Aggregation can proceed to the extent that a visible precipitate is formed.
- Stability, such as physical stability of a formulation, may be assessed by methods well-known in the art, including measurement of a sample's apparent attenuation of light (absorbance, or optical density). Such a measurement of light attenuation relates to the turbidity of a formulation. The turbidity of a formulation is partially an intrinsic property of the protein dissolved in solution and is commonly determined by nephelometry, and measured in Nephelometric Turbidity Units (NTU).
- The degree of turbidity, e.g., as a function of the concentration of one or more of the components in the solution, e.g., protein and/or salt concentration, is also referred to as the “opalescence” or “opalescent appearance” of a formulation. The degree of turbidity can be calculated by reference to a standard curve generated using suspensions of known turbidity. Reference standards for determining the degree of turbidity for pharmaceutical compositions can be based on the European Pharmacopeia criteria (European Pharmacopoeia, Fourth Ed., Directorate for the Quality of Medicine of the Council of Europe (EDQM), Strasbourg, France). According to the European Pharmacopeia criteria, a clear solution is defined as one with a turbidity less than or equal to a reference suspension which has a turbidity of approximately 3 according to European Pharmacopeia standards. Nephelometric turbidity measurements can detect Rayleigh scatter, which typically changes linearly with concentration, in the absence of association or nonideality effects. Other methods for assessing physical stability are well-known in the art.
- An antibody “retains its chemical stability” in a pharmaceutical formulation, if the chemical stability at a given time is such that the antibody is considered to still retain its biological activity as defined below. Chemical stability can be assessed by, e.g., detecting and quantifying chemically altered forms of the antibody. Chemical alteration may involve size modification (e.g. clipping) which can be evaluated using size exclusion chromatography, SDS-PAGE and/or matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS), for example. Other types of chemical alteration include charge alteration (e.g. occurring as a result of deamidation or oxidation) which can be evaluated by ion-exchange chromatography, for example.
- An antibody “retains its biological activity” in a pharmaceutical formulation, if the antibody in a pharmaceutical formulation is biologically active for its intended purpose. For example, biological activity is retained if the biological activity of the antibody in the pharmaceutical formulation is within about 30%, about 20%, or about 10% (within the errors of the assay) of the biological activity exhibited at the time the pharmaceutical formulation was prepared (e.g., as determined in an antigen binding assay).
- In a pharmacological sense, in the context of the present invention, a “therapeutically effective amount” or “effective amount” of an antibody refers to an amount effective in the prevention or treatment or alleviation of a symptom of a disorder for the treatment of which the antibody is effective.
- The term “human TNF-alpha” (abbreviated herein as hTNF-alpha, TNFα, or simply hTNF), as used herein, is intended to refer to a human cytokine that exists as a 17 kDa secreted form and a 26 kDa membrane associated form, the biologically active form of which is composed of a trimer of noncovalently bound 17 kDa molecules. The structure of hTNF-alpha is described further in, for example, Pennica, D., et al. (1984) Nature 312:724-729; Davis, J. M., et al. (1987) Biochem 26:1322-1326; and Jones, E. Y., et al. (1989) Nature 338:225-228. The term human TNF-alpha is intended to include recombinant human TNF-alpha (rhTNF-alpha), which can be prepared by standard recombinant expression methods or purchased commercially (R & D Systems, Catalog No. 210-TA, Minneapolis, Minn.).
- The term “antibody,” as used herein, is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Other naturally occurring antibodies of altered structure, such as, for example, camelid antibodies, are also included in this definition. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In one embodiment of the invention, the formulation contains an antibody with CDR1, CDR2, and CDR3 sequences like those described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein. In certain embodiments, the formulation contains an antibody as claimed in U.S. Pat. Nos. 6,090,382 and 6,258,562.
- As used herein, the term “CDR” refers to the complementarity determining region within a antibody variable sequence. There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the heavy and light chain variable regions. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Id.) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Chothia et al. found that certain sub-portions within Kabat CDRs adopt nearly identical peptide backbone conformations, despite having great diversity at the level of amino acid sequence (Chothia et al. (1987) Mol. Biol. 196:901-917; Chothia et al. (1989) Nature 342:877-883) These sub-portions were designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (1995) FASEB J. 9:133-139 and MacCallum (1996) J. Mol. Biol. 262(5):732-45. Still other CDR boundary definitions may not strictly follow one of the herein described systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems, although certain embodiments use Kabat or Chothia defined CDRs. In one embodiment, the antibody used in the methods and compositions of the invention includes the six CDRs from the antibody adalimumab.
- The term “antigen-binding portion” of an antibody (or simply “antibody portion”), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., hTNF-alpha). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123). In one embodiment of the invention, the formulation contains an antigen-binding portions described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein.
- The phrase “recombinant antibody” refers to antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992) Nucl. Acids Res. 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of particular immunoglobulin gene sequences (such as human immunoglobulin gene sequences) to other DNA sequences. Examples of recombinant antibodies include recombinant human, chimeric, CDR-grafted and humanized antibodies.
- The term “human antibody,” as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies used in the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human antibody,” as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- The term “chimeric antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species and constant region sequences from another species, such as antibodies having murine heavy and light chain variable regions linked to human constant regions.
- The term “CDR-grafted antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species but in which the sequences of one or more of the CDR regions of VH and/or VL are replaced with CDR sequences of another species, such as antibodies having murine heavy and light chain variable regions in which one or more of the murine CDRs (e.g., CDR3) has been replaced with human CDR sequences.
- An “isolated antibody,” as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds hTNF-alpha is substantially free of antibodies that specifically bind antigens other than hTNF-alpha). An isolated antibody that specifically binds hTNF-alpha may, however, have cross-reactivity to other antigens, such as TNF-alpha molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.
- A “neutralizing antibody,” as used herein (or an “antibody that neutralized hTNF-alpha activity”), is intended to refer to an antibody whose binding to hTNF-alpha results in inhibition of the biological activity of hTNF-alpha. This inhibition of the biological activity of hTNF-alpha can be assessed by measuring one or more indicators of hTNF-alpha biological activity, such as hTNF-alpha-induced cytotoxicity (either in vitro or in vivo), hTNF-alpha-induced cellular activation and hTNF-alpha binding to hTNF-alpha receptors. These indicators of hTNF-alpha biological activity can be assessed by one or more of several standard in vitro or in vivo assays known in the art, and described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each incorporated by reference herein. In one embodiment, the ability of an antibody to neutralize hTNF-alpha activity is assessed by inhibition of hTNF-alpha-induced cytotoxicity of L929 cells. As an additional or alternative parameter of hTNF-alpha activity, the ability of an antibody to inhibit hTNF-alpha-induced expression of ELAM-1 on HUVEC, as a measure of hTNF-alpha-induced cellular activation, can be assessed.
- The term “surface plasmon resonance,” as used herein, refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). For further descriptions, see Jonsson, U., et al. (1993) Ann. Biol. Clin. 51:19-26; Jonsson, U., et al. (1991) Biotechniques 11:620-627; Johnsson, B., et al. (1995) J. Mol. Recognit. 8:125-131; and Johnnson, B., et al. (1991) Anal. Biochem. 198:268-277.
- The term “kon,” as used herein, is intended to refer to the on rate constant for association of a binding protein (e.g., an antibody) to the antigen to form the, e.g., antibody/antigen complex as is known in the art.
- The term “koff,” as used herein, is intended to refer to the off rate constant for dissociation of an antibody from the antibody/antigen complex.
- The term “Kd,” as used herein, is intended to refer to the dissociation constant of a particular antibody-antigen interaction and refers to the value obtained in a titration measurement at equilibrium, or by dividing the dissociation rate constant (koff) by the association rate constant (kon).
- As used herein, “biosimilar” (of an approved reference product/biological drug, such as a protein therapeutic, antibody, etc.) refers to a biologic product that is similar to the reference product based upon data derived from (a) analytical studies that demonstrate that the biological product is highly similar to the reference product notwithstanding minor differences in clinically inactive components; (b) animal studies (including the assessment of toxicity); and/or (c) a clinical study or studies (including the assessment of immunogenicity and pharmacokinetics or pharmacodynamics) that are sufficient to demonstrate safety, purity, and potency in one or more appropriate conditions of use for which the reference product is licensed and intended to be used and for which licensure is sought for the biological product. In one embodiment, the biosimilar biological product and reference product utilize the same mechanism or mechanisms of action for the condition or conditions of use prescribed, recommended, or suggested in the proposed labeling, but only to the extent the mechanism or mechanisms of action are known for the reference product. In one embodiment, the condition or conditions of use prescribed, recommended, or suggested in the labeling proposed for the biological product have been previously approved for the reference product. In one embodiment, the route of administration, the dosage form, and/or the strength of the biological product are the same as those of the reference product. In one embodiment, the facility in which the biological product is manufactured, processed, packed, or held meets standards designed to assure that the biological product continues to be safe, pure, and potent. The reference product may be approved in at least one of the U.S., Europe, or Japan.
- The term “dosing”, as used herein, refers to the administration of a substance (e.g., an anti-TNFa antibody) to achieve a therapeutic objective (e.g., the treatment of a TNFa-associated disorder).
- The terms “weekly dosing regimen”, “weekly dosing” and “weekly administration” as used herein, refer to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNFα antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNFα-associated disorder). In one embodiment, the antibody, or antigen-binding portion thereof, is administered every 6-8 days, or, alternatively, every 7 days.
- The terms “biweekly dosing regimen”, “biweekly dosing”, and “biweekly administration”, as used herein, refer to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNFα antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNFα-associated disorder). The biweekly dosing regimen is not intended to include a weekly dosing regimen. In one embodiment, the antibody, or antigen-binding portion thereof, is administered every 9-19 days, more preferably, every 11-17 days, even more preferably, every 13-15 days, and most preferably, every 14 days.
- The terms “monthly dosing regimen”, “monthly dosing”, and “monthly administration”, as used herein, refer to a certain time course (or periodicity) of administering a substance (e.g., an anti-TNFα antibody) to a subject to achieve a therapeutic objective (e.g., the treatment of a TNFα-associated disorder). In one embodiment, a monthly dosing regimen means that the antibody, or antigen-binding portion thereof, is administered every 28-31 days. In another embodiment, a monthly dosing regimen means that the antibody, or antigen-binding portion thereof, is administered once a month, e.g. on the same day each month, such as, for example, the first day of each month.
- AUC, Cmax, and Tmax are pharmacokinetic parameters that may be used to characterize the pharmacokinetic responses of a particular drug product in an animal or human subject. The term “AUC” refers to the “area under the curve” that represents changes in blood, serum, or plasma concentrations of a substance, e.g., a human anti-TNFα antibody, over time. As used herein, the term “Cmax” refers to the maximum or peak blood, serum, or plasma concentration of substance observed in a subject after its administration. The term “Tmax” refers to the time at which the Cmax occurred, as measured from the time point of administration.”
- The term “hydrodynamic diameter” or “Dh” of a particle refers to the diameter of a sphere that has the density of water and the same velocity as the particle. Thus, the term “hydrodynamic diameter of an antibody” as used herein refers to a size determination for an antibody, or an antigen-binding portion thereof, e.g., a human anti-TNFα antibody, or antigen-binding fragment thereof, in solution using dynamic light scattering (DLS). A DLS-measuring instrument measures the time-dependent fluctuation in the intensity of light scattered from the antibody, or antigen-binding fragment thereof, in solution at a fixed scattering angle. Dh is determined from the intensity autocorrelation function of the time-dependent fluctuation in intensity. Scattering intensity data are processed using DLS instrument software to determine the value for the hydrodynamic diameter and the size distribution of the scattering molecules, e.g. the human anti-TNFα antibody, or antigen-binding fragment thereof, specimen.
- The term “conductivity,” as used herein, refers to the ability of an aqueous solution to conduct an electric current between two electrodes. Generally, electrical conductivity or specific conductivity is a measure of a material's ability to conduct an electric current. In solution, the current flows by ion transport. Therefore, with an increasing amount of ions present in the aqueous solution, the solution will have a higher conductivity. The unit of measurement for conductivity is mmhos (mS/cm), and can be measured using a conductivity meter sold, e.g., by Orion Research, Inc. (Beverly, Mass.). The conductivity of a solution may be altered by changing the concentration of ions therein. For example, the concentration of buffer and/or salt, in the solution may be altered in order to achieve the desired conductivity.
- Conductivity of a solution is measured according to methods known in the art. Conductivity meters and cells may be used to determine the conductivity of the aqueous formulation, and should be calibrated to a standard solution before use. Examples of conductivity meters available in the art include MYRON L Digital (Cole Parmer®), Conductometer (Metrohm AG), and Series 3105/3115 Integrated Conductivity Analyzers (Kemotron).
- Conductivity measurements may be taken with any commercially available conductivity meter suitable for conductivity analysis in protein solutions, e.g. conductivity meter Model SevenMulti, with expansion capacity for broad pH range (Mettler Toledo, Schwerzenbach, Switzerland). The instrument is operated according to the manufacturers instructions (e.g., if the conductivity sensor is changed in the Mettler Toledo instrument, calibration must be performed again, as each sensor has a different cell constant; refer to Operating Instructions of Model SevenMulti conductivity meter). If the instructions are followed, conductivity measurements can be taken by directly immersing the measuring probe into the sample solution.
- Various aspects of the invention are described in further detail in the following subsections.
- The present invention features stable, liquid aqueous pharmaceutical formulations comprising an anti-TNFα antibody, or an antigen binding portion thereof, having improved properties as compared to art-recognized formulations. While high concentration formulations containing human anti-TNFα antibodies are known in the art (see, for example, US20060153846 and US20100278822), the instant invention provides high concentration formulations having unexpected characteristics, i.e., significantly decreased pain or increased bioavailability. The formulations of the invention are based, at least in part, on the combination of only one or two excipients, i.e., a surfactant and a polyol or, alternatively, a surfactant alone. Despite having few excipients, the formulations of the invention contain a high concentration of an antibody, e.g. 90-110 mg/ml, and are stable.
- As described in the working examples below, a formulation containing an antibody concentration of more than 50 mg/ml of an isolated human anti-TNFα antibody, less than 50 mg/ml of a polyol, (such as mannitol), and a surfactant, (such as a polysorbate), was shown to have dramatically reduced pain upon injection relative to other high concentration formulations, including the commercial adalimumab formulation described in US20060153846, and the formulation described in US20100278822, each of which is incorporated by reference herein. Thus, in one embodiment, the formulations of the invention are associated with a reduction of pain, despite having a high antibody concentration (e.g., 100 mg/mL) and having no buffer or salt. The low-pain formulations described herein are based, at least in part, on the surprising finding that by removing or excluding salt (e.g., NaCl) and/or a buffer (e.g., a phosphate/citrate buffer) the concentration of a human anti-TNF alpha antibody in a formulation can be increased, e.g., to about 100 mg/mL, while decreasing pain upon delivery to a patient.
- In one embodiment, the formulation of the invention is surprising, in that the formulation does not contain a buffer or a salt, and reduces pain associated with injection in a patient by at least about 50% when compared to injecting an otherwise identical formulation comprising at least one salt and/or at least one buffer. In one embodiment, the formulation reduces pain associated with the injection in a human subject by at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% (e.g., about 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80%) when compared to the injection of an otherwise identical formulation that further comprises a salt and/or a buffer.
- In one embodiment, the otherwise identical formulation used for pain comparison assay comprises at least one buffer, such as a citrate buffer and a phosphate buffer, and/or a salt, e.g., NaCl. For example, the buffer (excluded from the formulation of the invention and present in the reference formulation for pain comparisons) may include citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate. The buffer may include about 1.15-1.45 mg/ml of citric acid (e.g., about 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, or 1.45), about 0.2-0.4 mg/mL of sodium citrate dehydrate (e.g., about 0.2, 0.25, 0.3, 0.35, or 0.4), about 1.35-1.75 mg/mL of disodium phosphate dehydrate (e.g., about 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, or 1.75), about 0.75-0.95 mg/mL of sodium dihydrogen phosphate dehydrate (e.g., about 0.75, 0.80, 0.85, 0.9, or 0.95). Values and ranges intermediate to the aforementioned concentrations are also intended to be part of this invention. In addition, ranges of values using a combination of any of the above-recited values as upper and/or lower limits are intended to be included, e.g., 0.1 to 0.5 mg/mL or 1.20-1.40 mg/mL. In one embodiment, the pH of the formulation is adjusted with sodium hydroxide.
- In one embodiment, the formulation of the invention includes high concentrations of human anti-TNFa antibodies, or antigen binding portions thereof, e.g., 90-110 mg/ml, a polyol at a concentration less than 50 mg/ml, and a surfactant, such that the formulation is suitable for administration without significant pain as determined by a visual analog scale (VAS) score. In one embodiment, the formulation and methods of the invention include high concentrations of anti-TNFα antibodies, or antigen binding portions thereof, and no buffer or salt, such that they are suitable for, administration, e.g., subcutaneous administration, without significant felt pain as determined by a visual analog scale (VAS) score. For example, the formulation of the invention may result in a VAS score of less than 1 on a scale of 0 (no pain) to 10 (worst imaginable pain) following subcutaneous injection. As described in Example 1, a formulation having 100 mg/ml of adalimumab,
polysorbate 80, and mannitol (less than 50 mg/ml) resulted in a VAS score of less than 1, e.g., 0.56, whereas other high antibody concentration formulations resulted in VAS scores ranging from 1.79 to 4.12. - In one embodiment, the invention provides a liquid aqueous formulation comprising an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, a surfactant, and less than 50 mg/ml of a polyol, wherein subcutaneous injection of the formulation results in a Pain Visual Analog Scale score of less than 1.0 following injection. In one embodiment, the formulation does not contain a buffer and a salt, and results in a reduction of pain of at least about 50% upon subcutaneous injection when compared to an injection of an otherwise identical formulation that further comprises a salt and/or a buffer(s).
- Thus, in one aspect of the invention, liquid formulations of the invention have advantageous tolerability properties in that the formulations produce less pain relative to formulations containing a buffer and a salt. In certain embodiments, the formulation reduces pain associated with injection (or any other form of administration) in a subject. In some embodiments, pain associated with injection is reduced by at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% (e.g., at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95%). In one embodiment, pain is reduced by at least about 50%.
- Pain may be evaluated using any type of pain assessment known in the art, including, for example, visual analog scales, qualitative assessments of pain, or needle pain assessments. For example, subject-perceived injection site pain may be assessed using the Pain Visual Analog Scale (VAS). A VAS is a measurement instrument that measures pain as it ranges across a continuum of values, e.g., from none to an extreme amount of pain. Operationally a VAS is a horizontal line, about 100 mm in length, anchored by numerical and/or word descriptors, e.g., 0 or 10, or “no pain” or “excruciating pain,” optionally with additional word or numeric descriptors between the extremes, e.g., mild, moderate, and severe; or 1 through 9) (see, e.g., Lee J S, et al. (2000) Acad Emerg Med 7:550, or Singer and Thods (1998) Academic Emergency Medicine 5:1007). Pain may be assessed at a single time or at various times following administration of a formulation of the invention such as, for example, immediately after injection, at about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, or 45 minutes after injection.
- In a certain embodiment of the invention, injection of the formulation into a subject results in a Pain Visual Analog Scale score of less than 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, or 5.0 on a scale of 0 (no pain) to 10 (excruciating pain).
- Other tools for pain assessment are known in the art, including, for example, the Numerical Rating Scale, the Verbal Rating Scale, and the Brief Pain Inventory. Such tools could also be used to assess pain in accordance with the invention.
- Additional indices for skin irritation may be used, including, e.g., the Draize Scale (hemorrhage, petechiae, erythema, edema, pruritus).
- Formulations of the invention containing a polyol preferably contain less than about 50 mg of the polyol. In one embodiment, the formulations contain less than about 45 mg/mL of the polyol. In another embodiment, the formulations of the invention contain about 38-46 mg/mL of the polyol (e.g., mannitol), e.g., about 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 mg/mL of the polyol. In addition, ranges of values using a combination of any of the above recited values as upper and/or lower limits are intended to be included, e.g., 39-45 mg/ml, 40-44 mg/ml, or 37-47 mg/ml. In one embodiment, the formulations of the invention contain about 12-72 mg/ml of polyol, e.g., mannitol. In one embodiment, suitable polyols for use in the formulations and methods of the invention are mannitol or sorbitol.
- In one embodiment, the formulation of the invention contains adalimumab (or a biosimilar thereof),
polysorbate 80, mannitol, and water for injection. In one embodiment, the formulation contains 80 mg of adalimumab, water for injection, 42 mg/ml of mannitol, and 1 mg/ml ofpolysorbate 80. In one embodiment, the formulation may contain 20-110 mg, alternatively 20-90 mg of adalimumab or, alternatively, 30-80 mg of the antibody. In one embodiment, the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 100 mg, 101 mg, 102 mg, 103 mg, 104 mg, 105 mg, 106 mg, 107 mg, 108 mg, 109 mg, or 110 mg of the antibody. Ranges including the aforementioned numbers are also included in the invention, e.g., 70-90 mg, 65-95, or 60-85 mg. - The present invention is also based, at least in part on the surprising discovery that a liquid aqueous pharmaceutical formulation having a high concentration of a human anti-TNFα antibody, or antigen binding portion thereof, and a surfactant (i.e., in the absence of additional excipients), has greater bioavailability than other high concentration formulations having additional excipients. As described in the working examples below, a formulation containing more than 50 mg/ml of an isolated human anti-TNFα antibody, and a polysorbate was shown to have increased bioavailability relative to other high concentration formulations, including the commercial adalimumab formulation described in US20060153846.
- As described in Example 2 below, bioavailability of an anti-TNFa antibody can be increased by combining the antibody with a surfactant, e.g.,
polysorbate 80. The increase in bioavailability is based on the combination of the antibody and surfactant and the omission or removal of other excipients, including a buffer, polyol, and salt. The increase in bioavailability results in an AUC0-360 of the anti-TNFα antibody, or an antigen-binding portion thereof, of greater than about 1300 μg*hr/ml or an AUC0-1344 of the anti-TNFα antibody, or an antigen-binding portion thereof, of greater than about 2600 μg*hr/ml, when subcutaneously injected into a human subject. - Accordingly, the present invention provides methods for improving the bioavailability of an isolated anti-TNFα antibody, or an antigen-binding portion thereof, in a pharmaceutical formulation. The methods include combining a therapeutically effective amount of the anti-TNFa antibody, or antigen-binding portion thereof, with a surfactant and excluding or removing other excipients, e.g., a buffer(s), salt, and polyol, or combinations thereof, such that the bioavailability of the antibody, or antigen-binding portion thereof, is improved. In one embodiment, the formulation is injected subcutaneously into a human subject. The methods may improve the bioavailability by providing an AUC0-360 of the anti-TNFα antibody, or an antigen-binding portion thereof, of greater than about 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, or about 1500 μg*hr/ml when subcutaneously injected into a human subject.
- The invention further provides a method of improving the bioavailability of an isolated human anti-TNFα antibody, or an antigen-binding portion thereof, in a subject, said method comprising administering a formulation comprising a surfactant and an effective amount of the antibody, or antigen-binding portion thereof, to the subject such that the bioavailability of the antibody, or antigen-binding portion thereof, in the subject is improved at least about 15% over a second formulation. In one embodiment, the formulation of the invention does not contain a buffer, a polyol, or a salt, and the second formulation comprises a buffer, a polyol, and a salt. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is improved at least about 30% over the second formulation. In one embodiment, the bioavailability of the antibody, or antigen-binding portion thereof, is improved at least about 40% over the second formulation. In one embodiment, the bioavailability may be determined according to either an AUC level, e.g., AUC0-360 or an AUC0-1344, or a Cmax.
- In one embodiment, the present invention provides a liquid aqueous formulation which includes a surfactant and about 30-90 mg of an isolated human anti-TNFα antibody or antigen-binding portion, wherein the formulation has an antibody concentration of about 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation relative to a formulation comprising citrate phosphate buffer, sodium chloride, and mannitol.
- In one embodiment, the present invention provides liquid aqueous formulations which include a surfactant and 30-90 mg of an isolated human anti-TNFα antibody, or an antigen-binding portion, wherein the formulation has an antibody concentration of 90-110 mg/ml, and wherein the formulation provides increased bioavailability of the antibody, or antigen-binding portion thereof, to a human subject upon subcutaneous injection of the formulation, such that the antibody or antigen-binding portion thereof, has an AUC0-360 greater than about 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, or about 1500 μg*hr/ml.
- In one embodiment, the formulation of the invention contains adalimumab (or a biosimilar thereof),
polysorbate 80, and water for injection. In one embodiment, the formulation contains 80 mg of adalimumab, water for injection, and 1 mg/ml polysorbate 80. The formulation may contain 20-110 mg, alternatively 20-90 mg of adalimumab or, alternatively, 30-80 mg of the antibody. In one embodiment, the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 100 mg, 101 mg, 102 mg, 103 mg, 104 mg, 105 mg, 106 mg, 107 mg, 108 mg, 109 mg, or 110 mg of the antibody. Ranges including the aforementioned numbers are also included in the invention, e.g., 70-90 mg, 65-95 mg, or 60-85 mg. - Thus, the high antibody formulations and methods of the invention not only overcome a number of known challenges for pharmaceutical formulations, including high concentrations in a stable formulation, but also possesses the added benefit of producing improved bioavailability or providing significantly low levels of pain when injected into patients.
- Another obstacle overcome by the formulations of the invention is the ability to remain stable at room temperature (at about 25 degree C. or up to about 30 degrees C.). Such stability provides advantages for the user of the antibody, providing for more flexible storage options, as the constant need for refrigeration is unnecessary. Both the decreased pain formulation and the increased bioavailability formulation (exemplified by formulations F3 and F4, respectively, in the Examples below) are stable for at least 6 days at about 25 degrees C. or up to about 30 degrees C. As described in more detail in the Examples, the formulations of the invention are stable at up to 30 degrees C. for at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days, at least 11 days, at least 12 days, at least 13 days, and at least 14 days. Thus, the invention further provides formulations having extended (i.e., at least 6 days, 10 days or 14 days) shelf life at room temperature (or about 25 degrees C. or up to about 30 degrees C.). In one embodiment, the formulation of the invention is stable at 20 to 32 degrees C. for at least 6 days. Temperatures intermediate to the above recited concentrations are also intended to be part of this invention, i.e., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 degrees Celsius (C). Ranges including the aforementioned temperatures are also included in the invention, e.g., 22-26 degrees C., 25-30 degrees C., etc.
- The formulations of the invention contain a high antibody concentration, including, for example, an antibody concentration of about 50 mg/mL, 55 mg/mL, 60 mg/mL. 65 mg/mL, 70 mg/mL, 75 mg/ml, 80 mg/mL, 85 mg/mL, 90 mg/mL, 95 mg/
mL 100 mg/mL, 105 mg/mL, 110 mg/mL, 115 mg/mL (or higher) of a human anti-TNF-alpha antibody or antigen-binding fragment thereof. Accordingly, as described in the examples below, in one aspect of the invention the liquid pharmaceutical formulations of the invention contain a human anti-TNF alpha antibody concentration of 50-100 mg/mL or greater. In one embodiment, the formulations of the invention may comprise an antibody concentration between about 1 mg/mL-150 mg/mL or about 40 mg/mL-125 mg/mL. In one embodiment, the antibody concentration of the formulation is 50-150 mg/ml, 55-150 mg/ml, 60-150 mg/ml, 65-150 mg/ml, 70-150 mg/ml, 75-150 mg/ml, 80-150 mg/ml, 85-150 mg/ml, 90-150 mg/ml, 90-110 mg/ml, 95-105 mg/ml, 95-150 mg/ml, 100-150 mg/ml, 105-150 mg/ml, 110-150 mg/ml, 115-150 mg/ml, 120-150 mg/ml, 125-150 mg/ml, 50-130 mg/ml, 75-125 mg/ml, etc. Concentrations and ranges intermediate to the above recited concentrations are also intended to be part of this invention (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150 mg/mL). - The formulations of the invention may contain an effective amount of the antibody. In one embodiment, an effective amount is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg of the human anti-TNFα antibody, or antigen-binding portion thereof. In one embodiment, the formulations and methods of the invention comprise about 20-100, about 20-90, about 30-90, about 30-100, about 60-100, about 70-90, about 40-90, about 60-85 mg, or about 40-100 mg of a human anti-TNFα antibody, or antigen-binding portion thereof. In one embodiment, the formulation contains 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, or 90 mg of the antibody. Ranges including the aforementioned numbers are also included in the invention, e.g., 70-90 or 75-85 mg or 60-85 mg.
- An important aspect of the formulations and methods of the invention is the omission of a buffer and salt. Thus, in one embodiment, the formulations and methods of the invention do not contain any buffer(s) (e.g., citrate and phosphate) and salts. It should be noted, however, that although the preferred formulations of the invention do not contain buffers or salts (e.g., NaCl), a small amount of buffer and/or salt may be present in the formulations. Thus, in one embodiment, the formulations of the invention do not contain detectable levels of a buffer(s) and/or a salt.
- In one embodiment, the buffer(s) omitted from the formulations of the invention (or those formulations for comparison which include a buffer(s)) may include citric acid (e.g., about 1.3-1.31 mg/mL or 1.305 mg/mL). In another embodiment, the buffer system includes sodium citrate dehydrate (e.g., about 0.27-0.33 mg/mL or about 0.305 mg/mL). In one embodiment, the buffer system includes disodium phosphate dehydrate (e.g., about 1.5-1.56 mg/mL or about 1.53 mg/mL). In another embodiment, the buffer system includes sodium dihydrogen phosphate dihydrate (e.g., about 0.83-0.89 mg/mL or about 0.86 mg/mL).
- In one embodiment of the invention, the conductivity of the formulation may be used to determine if a formulation has a buffer and/or salt. Both Formulation F3 and F4 (described in the working examples below) have been determined to have a conductivity of less than about 2 mS/cm, e.g., about 0.7 μS/cm. Thus, in one embodiment, the reduced pain and increased bioavailability formulations of the invention have a conductivity of less than about 2 mS/cm. In another embodiment, the formulations of the invention have a conductivity of less than about 1 mS/cm.
- In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), and has a conductivity of less than 2 mS/cm. In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), less than about 50 mg/ml of a polyol (e.g., sorbitol or mannitol), and has a conductivity of less than 2 mS/cm.
- In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), and has a conductivity of less than 2 mS/cm. In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), and has a conductivity of less than 2 mS/cm.
- In another embodiment, the invention provides a stable formulation having a high concentration antibody, or antigen-binding portion thereof, wherein the antibody, or antigen has a hydrodynamic diameter (z-average) of less than about 4 nm or wherein the antibody, or antigen has a hydrodynamic diameter (z-average) which is at least about 50% less than the hydrodynamic diameter of a buffered solution at the same antibody concentration. In one embodiment, the antibody, or antigen has a hydrodynamic diameter (z-average) of less than about 3 nm.
- In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), and has a hydrodynamic diameter of less than 4 nm. In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), less than about 50 mg/ml of a polyol (e.g., sorbitol or mannitol), and has a hydrodynamic diameter of less than 4 nm.
- In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), and has a hydrodynamic diameter of less than 4 nm. In one embodiment, the formulation of the invention contains of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), about 0.8-1.3 mg/ml of a surfactant (e.g., polysorbate 80), and has a hydrodynamic diameter of less than 4 nm.
- A detergent or surfactant is included in the antibody formulation of the invention. Exemplary detergents include nonionic detergents such as polysorbates (e.g. polysorbates 20, 80, etc.) or poloxamers (e.g. poloxamer 188). The amount of detergent added is such that it reduces aggregation of the formulated antibody and/or minimizes the formation of particulates in the formulation and/or reduces adsorption. In a preferred embodiment of the invention, the formulation includes a surfactant which is a polysorbate. In another preferred embodiment of the invention, the formulation contains the
detergent polysorbate 80. In one embodiment, the formulation contains between about 0.1 and about 2.0 mg/mL of surfactant (e.g., polysorbate), e.g., about 1 mg/mL. Other ranges of polysorbate that may be included in the formulations of the invention include 0.1 to 1.5 mg/ml, alternatively 0.2-1.4 mg/ml, 0.3-1.3 mg/ml, 0.4-1.2 mg/ml, 0.5-1.1 mg/ml, 0.6-1.0 mg/ml, 0.6-1.1 mg/ml, 0.7-1.1 mg/ml, 0.8-1.1 mg/ml, or 0.9-1.1 mg/ml. Values and ranges intermediate to the above recited concentrations are also intended to be part of this invention, e.g., 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9. In addition, ranges of values using a combination of any of the above-recited values as upper and/or lower limits are intended to be included, e.g., 0.3 to 1.1 mg/mL. - In one embodiment, the formulation of the invention consists essentially of a human anti-TNF alpha antibody, or antigen binding portion thereof, at a concentration of about 100 mg/mL (or 75-125 mg/mL), a surfactant (e.g., polysorbate 80), a polyol (e.g., sorbitol or mannitol), does not contain a buffer(s) (e.g., citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate), and does not contain a salt (e.g., NaCl).
- In certain embodiments, the otherwise identical formulation to which the formulation of the invention is compared for pain or bioavailability purposes is a formulation containing adalimumab, sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol,
polysorbate 80, and Water for Injection. - The formulation herein may also be combined with one or more other therapeutic agents as necessary for the particular indication being treated. In one embodiment, those with complementary activities that do not adversely affect the antibody of the formulation. Such therapeutic agents are suitably present in combination in amounts that are effective for the purpose intended. Additional therapeutic agents which can be combined with the formulation of the invention are further described in U.S. Pat. Nos. 6,090,382 and 6,258,562, each of which is incorporated herein by reference.
- All formulations described herein may be used in the methods of the invention as well.
- The formulations and methods of the invention include an antibody, or antigen binding portion thereof, particularly an anti-TNFα antibody, or antigen binding portion or fragment thereof. Examples of antibodies that may be used in the invention include chimeric antibodies, non-human antibodies, isolated human antibodies, humanized antibodies, and domain antibodies (dAbs). All antibodies described herein may be used in the methods of the invention as well.
- In one embodiment, the formulations of the invention comprises an antibody, or antigen-binding portion thereof, which binds human TNFα, including, for example, adalimumab (also referred to as Humira, adalimumab, or D2E7; Abbott Laboratories). In a further embodiment, the formulation comprises an antibody that binds the same epitope as adalimumab, such as, but not limited to, an adalimumab biosimilar antibody. In one embodiment, the antibody is a human IgG1 antibody having six CDRs corresponding to those of the light and heavy chain of adalimumab.
- In one embodiment, the invention features an isolated human antibody, or antigen-binding portion thereof, that binds to human TNF-alpha with high affinity and a low off rate, and also has a high neutralizing capacity. In one embodiment, the human antibodies used in the invention are recombinant, neutralizing human anti-hTNF-alpha antibodies.
- In one aspect, the invention pertains to adalimumab antibodies and antibody portions, adalimumab-related antibodies and antibody portions, and other human antibodies and antibody portions with equivalent properties to adalimumab, such as high affinity binding to hTNFa. with low dissociation kinetics and high neutralizing capacity. In one embodiment, the antibody, or antigen-binding fragment thereof, is defined according to dissociation and binding characteristics similar to adalimumab. For example, the formulation may include a human antibody that dissociates from human TNFα with a Kd of 1×10−8 M or less, and a koff rate constant of 1×10−3 s−1 or less, both determined by surface plasmon resonance. In another embodiment, the human antibody that dissociates from human TNFα with a Kd of 1×10−9 M or less.
- In one embodiment, the antibody, or antigen-binding fragment thereof, is a human antibody that dissociates from human TNFα with a Kd of 1×10−8 M or less, and a koff rate constant of 1×10−3 s−1 or less, both determined by surface plasmon resonance, and neutralizes human TNFα cytotoxicity in a standard in vitro L929 assay with an IC50 of 1×10−7 M or less. Examples and methods for making human, neutralizing antibodies which have a high affinity for human TNFα, including sequences of the antibodies, are described in U.S. Pat. No. 6,090,382 (referred to as D2E7), incorporated by reference herein. The amino sequences of D2E7 as described in U.S. Pat. No. 6,090,382 are incorporated in their entirety herein.
- In one embodiment, the antibody used in the formulation of the invention is D2E7, also referred to as HUMIRA™ or adalimumab (the amino acid sequence of the D2E7 VL region is shown in SEQ ID NO: 1; the amino acid sequence of the D2E7 VH region is shown in SEQ ID NO: 2). The properties of D2E7 (adalimumab/HUMIRA®) have been described in Salfeld et al., U.S. Pat. Nos. 6,090,382, 6,258,562, and 6,509,015, which are each incorporated by reference herein.
- In one embodiment, the human TNF-alpha, or an antigen-binding portion thereof, dissociates from human TNF-alpha with a Kd of 1×10−8 M or less and a koff rate constant of 1×10−3 s−1 or less, both determined by surface plasmon resonance, and neutralizes human TNF-alpha cytotoxicity in a standard in vitro L929 assay with an IC50 of 1×10−7 M or less. In one embodiment, the isolated human antibody, or antigen-binding portion thereof, dissociates from human TNF-alpha with a koff of 5×10−4 s−1 or less; or, in one embodiment, with a koff of 1×10−4 s−1 or less. In one embodiment, the isolated human antibody, or antigen-binding portion thereof, neutralizes human TNF-alpha cytotoxicity in a standard in vitro L929 assay with an IC50 of 1×10−8 M or less; or, in one embodiment, with an IC50 of 1×10−9 M or less; or, in one embodiment, with an IC50 of 1×10−10 M or less. In one embodiment, the antibody is an isolated human recombinant antibody, or an antigen-binding portion thereof.
- It is well known in the art that antibody heavy and light chain CDR3 domains play an important role in the binding specificity/affinity of an antibody for an antigen. Accordingly, in another aspect, the antibody used in the formulation of the invention has slow dissociation kinetics for association with hTNF-alpha and has light and heavy chain CDR3 domains that structurally are identical to or related to those of adalimumab. Position 9 of the adalimumab VL CDR3 can be occupied by Ala or Thr without substantially affecting the Koff. Accordingly, a consensus motif for the adalimumab VL CDR3 comprises the amino acid sequence: Q-R-Y-N-R-A-P-Y-(T/A) (SEQ ID NO: 3). Additionally,
position 12 of the adalimumab VH CDR3 can be occupied by Tyr or Asn, without substantially affecting the koff. Accordingly, a consensus motif for the adalimumab VH CDR3 comprises the amino acid sequence: V-S-Y-L-S-T-A-S-S-L-D-(Y/N) (SEQ ID NO: 4). Moreover, as demonstrated in Example 2 of U.S. Pat. No. 6,090,382, the CDR3 domain of the adalimumab heavy and light chains is amenable to substitution with a single alanine residue (atposition position Positions 2 and 5 of the adalimumab VL CDR3 and positions 1 and 7 of the adalimumab VH CDR3 appear to be critical for interaction with hTNF alpha, and thus, conservative amino acid substitutions preferably are not made at these positions (although an alanine substitution atposition 5 of the adalimumab VL CDR3 is acceptable, as described above) (see U.S. Pat. No. 6,090,382). - Accordingly, in one embodiment, the antibody or antigen-binding portion thereof, used in the formulation of the invention contains the following characteristics:
- a) dissociates from human TNFα with a koff rate constant of 1×10−3 s−1 or less, as determined by surface plasmon resonance;
- b) has a light chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position positions - c) has a heavy chain CDR3 domain comprising the amino acid sequence of SEQ ID NO: 4, or modified from SEQ ID NO: 4 by a single alanine substitution at
position positions - In certain embodiments, the antibody or antigen-binding portion thereof, dissociates from human TNF-alpha with a koff of 5×10−4 s−1 or less. In certain embodiments, the antibody or antigen-binding portion thereof, dissociates from human TNF-alpha with a koff of 1×10−4 s−1 or less.
- In yet another embodiment, the antibody or antigen-binding portion thereof contains a light chain variable region (LCVR) having a CDR3 domain comprising the amino acid sequence of SEQ ID NO: 3, or modified from SEQ ID NO: 3 by a single alanine substitution at
position position - Accordingly, in another embodiment, the antibody or antigen-binding portion thereof contains a light chain variable region (LCVR) comprising the amino acid sequence of SEQ ID NO: 1 (i.e., the adalimumab VL) and a heavy chain variable region (HCVR) comprising the amino acid sequence of SEQ ID NO: 2 (i.e., the adalimumab VH). In certain embodiments, the antibody comprises a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region. In certain embodiments, the heavy chain constant region is an IgG1 heavy chain constant region or an IgG4 heavy chain constant region. Furthermore, the antibody can comprise a light chain constant region, either a kappa light chain constant region or a lambda light chain constant region. In one embodiment, the antibody comprises a kappa light chain constant region. Alternatively, the antibody portion can be, for example, a Fab fragment or a single chain Fv fragment.
- In still other embodiments, the invention includes uses of an isolated human antibody, or an antigen-binding portion thereof, containing adalimumab-related VL and VH CDR3 domains. For example, antibodies or antigen-binding portions thereof may have a light chain variable region (LCVR) having a CDR3 domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25 and SEQ ID NO: 26 or with a heavy chain variable region (HCVR) having a CDR3 domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34 and SEQ ID NO: 35.
- In one embodiment, the TNFα antibody used in the invention includes the chimeric antibody infliximab (Remicade®, Johnson and Johnson; described in U.S. Pat. No. 5,656,272, incorporated by reference herein), CDP571 (a humanized monoclonal anti-TNF-alpha IgG4 antibody), CDP 870 (a humanized monoclonal anti-TNF-alpha antibody fragment), an anti-TNF dAb (Peptech), or CNTO 148 (golimumab; Medarex and Centocor, see WO 02/12502). Additional TNF antibodies which may be used in the invention are described in U.S. Pat. Nos. 6,593,458; 6,498,237; 6,451,983; and 6,448,380, each of which is incorporated by reference herein.
- An antibody, or antibody portion, used in the methods and compositions of the invention, can be prepared by recombinant expression of immunoglobulin light and heavy chain genes in a host cell. To express an antibody recombinantly, a host cell is transfected with one or more recombinant expression vectors carrying DNA fragments encoding the immunoglobulin light and heavy chains of the antibody such that the light and heavy chains are expressed in the host cell and, preferably, secreted into the medium in which the host cells are cultured, from which medium the antibodies can be recovered. Standard recombinant DNA methodologies are used to obtain antibody heavy and light chain genes, incorporate these genes into recombinant expression vectors and introduce the vectors into host cells, such as those described in Sambrook, Fritsch and Maniatis (eds), Molecular Cloning; A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), Ausubel, F. M. et al. (eds.) Current Protocols in Molecular Biology, Greene Publishing Associates, (1989) and in U.S. Pat. No. 4,816,397 by Boss et al.
- To express an anti-TNFa antibody, e.g., adalimumab (D2E7) or an adalimumab (D2E7)-related antibody, DNA fragments encoding the light and heavy chain variable regions are first obtained. These DNAs can be obtained by amplification and modification of germline light and heavy chain variable sequences using the polymerase chain reaction (PCR). Germline DNA sequences for human heavy and light chain variable region genes are known in the art (see e.g., the “Vbase” human germline sequence database; see also Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson, I. M., et al. (1992) “The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops” J. Mol. Biol. 227:776-798; and Cox, J. P. L. et al. (1994) “A Directory of Human Germ-line V78 Segments Reveals a Strong Bias in their Usage” Eur. J. Immunol. 24:827-836; the contents of each of which are expressly incorporated herein by reference). For example, to obtain a DNA fragment encoding the heavy chain variable region of D2E7, or a D2E7-related antibody, a member of the VH3 family of human germline VH genes is amplified by standard PCR. In certain embodiments, the DP-31 VH germline sequence is amplified. To obtain a DNA fragment encoding the light chain variable region of D2E7, or a D2E7-related antibody, a member of the VκI family of human germline VL genes is amplified by standard PCR. In certain embodiments, the A20 VL germline sequence is amplified. PCR primers suitable for use in amplifying the DP-31 germline VH and A20 germline VL sequences can be designed based on the nucleotide sequences disclosed in the references cited supra, using standard methods.
- Once the germline VH and VL fragments are obtained, these sequences can be mutated to encode the anti-TNFa antibody amino acid sequences disclosed herein. The amino acid sequences encoded by the germline VH and VL DNA sequences are first compared to the anti-TNFa antibody VH and VL amino acid sequences to identify amino acid residues in the anti-TNFa antibody sequence that differ from germline. Then, the appropriate nucleotides of the germline DNA sequences are mutated such that the mutated germline sequence encodes the anti-TNFa antibody amino acid sequence, using the genetic code to determine which nucleotide changes should be made. Mutagenesis of the germline sequences is carried out by standard methods, such as PCR-mediated mutagenesis (in which the mutated nucleotides are incorporated into the PCR primers such that the PCR product contains the mutations) or site-directed mutagenesis.
- Moreover, it should be noted that if the “germline” sequences obtained by PCR amplification encode amino acid differences in the framework regions from the true germline configuration (i.e., differences in the amplified sequence as compared to the true germline sequence, for example as a result of somatic mutation), it may be desirable to change these amino acid differences back to the true germline sequences (i.e., “backmutation” of framework residues to the germline configuration).
- Once DNA fragments encoding the anti-TNFa antibody VH and VL segments are obtained (e.g., by amplification and mutagenesis of germline VH and VL genes, as described above), these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to a scFv gene. In these manipulations, a VL- or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker. The term “operatively linked,” as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
- The isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3). The sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 or IgG4 constant region. For a Fab fragment heavy chain gene, the VH-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
- The isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL. The sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The light chain constant region can be a kappa or lambda constant region. In one embodiment, the light chain constant region is a kappa constant region.
- To create a scFv gene, the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4-Ser)3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., Nature (1990) 348:552-554).
- To express the antibodies, or antibody portions used in the invention, DNAs encoding partial or full-length light and heavy chains, obtained as described above, are inserted into expression vectors such that the genes are operatively linked to transcriptional and translational control sequences. In this context, the term “operatively linked” is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene. The expression vector and expression control sequences are chosen to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector. The antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present). Prior to insertion of the anti-TNFa antibody light or heavy chain sequences, the expression vector may already carry antibody constant region sequences. For example, one approach to converting the anti-TNFa antibody VH and VL sequences to full-length antibody genes is to insert them into expression vectors already encoding heavy chain constant and light chain constant regions, respectively, such that the VH segment is operatively linked to the CH segment(s) within the vector and the VL segment is operatively linked to the CL segment within the vector. Additionally or alternatively, the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from a host cell. The antibody chain gene can be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the antibody chain gene. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
- In addition to the antibody chain genes, the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell. The term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. Preferred regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)) and polyoma. For further description of viral regulatory elements, and sequences thereof, see e.g., U.S. Pat. No. 5,168,062 by Stinski, U.S. Pat. No. 4,510,245 by Bell et al. and U.S. Pat. No. 4,968,615 by Schaffner et al.
- In addition to the antibody chain genes and regulatory sequences, the recombinant expression vectors used in the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017, all by Axel et al.). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr− host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- For expression of the light and heavy chains, the expression vector(s) encoding the heavy and light chains is transfected into a host cell by standard techniques. The various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. Although it is theoretically possible to express the antibodies of the invention in either prokaryotic or eukaryotic host cells, expression of antibodies is preferably in eukaryotic cells. In one embodiment, mammalian host cells, is the most preferred because such eukaryotic cells, and in particular mammalian cells, are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active antibody. Prokaryotic expression of antibody genes has been reported to be ineffective for production of high yields of active antibody (Boss, M. A. and Wood, C. R. (1985) Immunology Today 6:12-13).
- Preferred mammalian host cells for expressing the recombinant antibodies of the invention include Chinese Hamster Ovary (CHO cells) (including dhfr− CHO cells, described in Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) Mol. Biol. 159:601-621), NS0 myeloma cells, COS cells and SP2 cells. When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more, in one embodiment, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.
- Host cells can also be used to produce portions of intact antibodies, such as Fab fragments or scFv molecules. It is understood that variations on the above procedure are within the scope of the present invention. For example, it may be desirable to transfect a host cell with DNA encoding either the light chain or the heavy chain (but not both) of an antibody of this invention. Recombinant DNA technology may also be used to remove some or all of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to hTNF alpha. The molecules expressed from such truncated DNA molecules are also encompassed by the antibodies of the invention. In addition, bifunctional antibodies may be produced in which one heavy and one light chain are an antibody of the invention and the other heavy and light chain are specific for an antigen other than hTNF alpha by crosslinking an antibody of the invention to a second antibody by standard chemical crosslinking methods.
- In a preferred system for recombinant expression of an antibody, or antigen-binding portion thereof, of the invention, a recombinant expression vector encoding both the antibody heavy chain and the antibody light chain is introduced into dhfr-CHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the antibody heavy and light chain genes are each operatively linked to CMV enhancer/AdMLP promoter regulatory elements to drive high levels of transcription of the genes. The recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are culture to allow for expression of the antibody heavy and light chains and intact antibody is recovered from the culture medium. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the antibody from the culture medium.
- In view of the foregoing, nucleic acid, vector and host cell compositions that can be used for recombinant expression of the antibodies and antibody portions used in the invention include nucleic acids, and vectors comprising said nucleic acids, comprising the human TNF alpha antibody adalimumab (D2E7). The nucleotide sequence encoding the D2E7 light chain variable region is shown in SEQ ID NO: 36. The CDR1 domain of the LCVR encompasses nucleotides 70-102, the CDR2 domain encompasses nucleotides 148-168 and the CDR3 domain encompasses nucleotides 265-291. The nucleotide sequence encoding the D2E7 heavy chain variable region is shown in SEQ ID NO: 37. The CDR1 domain of the HCVR encompasses nucleotides 91-105, the CDR2 domain encompasses nucleotides 148-198 and the CDR3 domain encompasses nucleotides 295-330. It will be appreciated by the skilled artisan that nucleotide sequences encoding D2E7-related antibodies, or portions thereof (e.g., a CDR domain, such as a CDR3 domain), can be derived from the nucleotide sequences encoding the D2E7 LCVR and HCVR using the genetic code and standard molecular biology techniques.
- In one embodiment, the liquid pharmaceutical formulation comprises a human TNF alpha antibody, or antigen-binding portion thereof, that is a bioequivalent or biosimilar to the antibody adalimumab. In one embodiment, a biosimilar antibody is an antibody which shows no clinically meaningful difference when compared to a reference antibody, e.g., adalimumab. A biosimilar antibody has equivalent safety, purity, and potency as a reference antibody, e.g., adalimumab.
- An advantage of the formulations of the invention is that they may be used to deliver a high concentration of an anti-TNF alpha antibody, or antigen-binding portion, (e.g., adalimumab) to a subject subcutaneously such that either pain upon injection is decreased or the bioavailability of the antibody is improved. Thus, in one embodiment, the formulation of the invention is delivered to a subject subcutaneously. In one embodiment, the subject administers the formulation to himself/herself (self-administration).
- In one embodiment, an effective amount of the formulation is administered. An example of an effective amount of the formulation is an amount sufficient to inhibit detrimental TNF-alpha activity or treat a disorder in which TNF alpha activity is detrimental.
- As used herein, the term “a disorder in which TNF-alpha activity is detrimental” is intended to include diseases and other disorders in which the presence of TNF-alpha. in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-alpha. activity is detrimental is a disorder in which inhibition of TNF-alpha activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-alpha. in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-alpha. in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-alpha. antibody.
- In one embodiment, the effective amount of antibody may be determined according to a strictly weight based dosing scheme (e.g., mg/kg) or may be a total body dose (also referred to as a fixed dose) which is independent of weight. In one embodiment, an effective amount of the antibody is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg of the human anti-TNFα antibody, or antigen-binding portion thereof. In one embodiment, an effective amount of the antibody is about 20-100, about 20-90, about 30-90, about 30-100, about 60-100, about 70-90, about 40-90, about 60-85 mg, or about 40-100 mg. In one embodiment, the formulation contains an effective amount of the antibody of 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, or 100 mg of the antibody. Ranges including the aforementioned numbers are also included in the invention, e.g., 70-90 or 75-85 mg or 60-85 mg.
- In one example, an effective amount of the formulation is 0.4 mL or 0.8 mL of the formulation containing a total body dose of about 80 mg of antibody (i.e., 0.8 mL of a 100 mg/mL antibody formulation of the invention). In another example, an effective amount of the formulation is 0.4 mL of the formulation of the invention containing a total body dose of about 40 mg of antibody (i.e., 0.4 mL of a 100 mg/mL antibody formulation of the invention). In yet another example, an effective amount of the formulation is twice 0.8 mL of the formulation containing a total body dose of about 160 mg of antibody (i.e., two units containing 0.8 mL each of a 100 mg/mL antibody formulation of the invention). In a further example, an effective amount of the formulation is 0.2 mL of the formulation of the invention containing a total body dose of about 20 mg of antibody (i.e., 0.2 mL of a 100 mg/mL antibody formulation of the invention). Alternatively, an effective amount may be determined according to a weight-based fixed dosing regimen (see, e.g., WO 2008/154543, incorporated by reference herein).
- In one embodiment, the TNF-alpha is human TNF-alpha and the subject is a human subject. Alternatively, the subject can be a mammal expressing a TNF-alpha with which an antibody of the invention cross-reacts. Still further the subject can be a mammal into which has been introduced hTNF-alpha (e.g., by administration of hTNF-alpha or by expression of an hTNF-alpha transgene).
- A formulation of the invention may be administered to a human subject for therapeutic purposes (discussed further below). In one embodiment of the invention, the liquid pharmaceutical formulation is easily administratable, which includes, for example, a formulation which is self-administered by the patient. In one embodiment, the formulation of the invention is administered through subcutaneous injection, such as single use subcutaneous injection. Moreover, a formulation of the invention can be administered to a non-human mammal expressing a TNF-alpha with which the antibody cross-reacts (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of antibodies of the invention (e.g., testing of dosages and time courses of administration).
- The formulations of the invention may be administered according to a certain dosing schedule. For example, the formulations may be administered according to a weekly, biweekly, or monthly dosing regimen. Alternatively, the formulation may be administered once every three weeks. In one embodiment, the formulations and methods comprise administration to the subject of a human anti-TNFα antibody according to a periodicity selected from the group consisting of weekly, biweekly, every three weeks, and monthly.
- In one embodiment, the liquid aqueous formulation of the invention may be administered to a subject via, for example, a prefilled syringe, an autoinjector pen, or a needle-free administration device. Thus, the invention also features an autoinjector pen, a prefilled syringe, or a needle-free administration device comprising the liquid aqueous formulation of the invention. In one embodiment, the invention features a delivery device comprising a dose of the formulation comprising 100 mg/mL a human TNF alpha antibody, or antigen-binding portion thereof, e.g., an autoinjector pen or prefilled syringe comprises a dose of about 19 mg, 20, mg, 21 mg, 22 mg, 23 mg, 24 mg, 25 mg, 26 mg, 27 mg, 28 mg, 29 mg, 30 mg, 31 mg, 32 mg, 33 mg, 34 mg, 35 mg, 36 mg, 37 mg, 38 mg, 39 mg, 40 mg, 41 mg, 42 mg, 43 mg, 44 mg, 45 mg, 46 mg, 47 mg, 48 mg, 49 mg, 50 mg, 51 mg, 52 mg, 53 mg, 54 mg, 55 mg, 56 mg, 57 mg, 58 mg, 59 mg, 60 mg, 61 mg, 62 mg, 63 mg, 64 mg, 65 mg, 66 mg, 67 mg, 68 mg, 69 mg, 70 mg, 71 mg, 72 mg, 73 mg, 74 mg, 75 mg, 76 mg, 77 mg, 78 mg, 79 mg, 80 mg, 81 mg, 82 mg, 83 mg, 84 mg, 85 mg, 86 mg, 87 mg, 88 mg, 89 mg, 90 mg, 91 mg, 92 mg, 93 mg, 94 mg, 95 mg, 96 mg, 97 mg, 98 mg, 99 mg, 100 mg, 101 mg, 102 mg, 103 mg, 104 mg, 105 mg, etc. of the formulation. In one embodiment, the syringe or autoinjector contains 60-100 mg, 70-90 mg, or about 80 mg of the antibody.
- In one embodiment, the formulations of the invention may be self administered using, e.g., a preloaded syringe or an automatic injection device. Automatic injection devices offer an alternative to manually-operated syringes for delivering therapeutic agents into patients' bodies and allowing patients to self-administer injections. Automatic injection devices are described, for example, in the following publications, each of which is hereby incorporated herein by reference WO 2008/005315, WO 2010/127146, WO 2006/000785, WO 2011/075524, WO 2005/113039, WO 2011/075524.
- Accordingly, in one embodiment, the present invention provides pre-filled syringes or autoinjector devices containing the formulations of the invention, as well as use of pre-filled syringes or autoinjector devices comprising the formulations described herein in the methods of the invention.
- In one embodiment, the formulation of the invention is used to treat disorders in which TNF alpha activity is detrimental. As used herein, the term “a disorder in which TNF-alpha activity is detrimental” is intended to include diseases and other disorders in which the presence of TNF-alpha in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-alpha activity is detrimental is a disorder in which inhibition of TNF-alpha activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-alpha in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-alpha in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-alpha antibody as described above.
- There are numerous examples of disorders in which TNF-alpha activity is detrimental. Examples in which TNF-alpha activity is detrimental are also described in U.S. Pat. Nos. 6,015,557; 6,177,077; 6,379,666; 6,419,934; 6,419,944; 6,423,321; 6,428,787; and 6,537,549; and PCT Publication Nos. WO 00/50079 and WO 01/49321, the entire contents of all of which are incorporated herein by reference. The formulations of the invention may also be used to treat disorders in which TNF alpha activity is detrimental as described in U.S. Pat. Nos. 6,090,382, 6,258,562 and U.S. Patent Application Publication No. US20040126372, the entire contents of all of which are incorporated herein by reference.
- The use of the formulations of the invention in the treatment of specific exemplary disorders is discussed further below:
- A. Sepsis
- The formulations and methods of the invention may be used to treat subjects having sepsis. Tumor necrosis factor has an established role in the pathophysiology of sepsis, with biological effects that include hypotension, myocardial suppression, vascular leakage syndrome, organ necrosis, stimulation of the release of toxic secondary mediators and activation of the clotting cascade (see e.g., Tracey, K. J. and Cerami, A. (1994) Annu. Rev. Med. 45:491-503; Russell, D and Thompson, R. C. (1993) Curr. Opin. Biotech. 4:714-721). Accordingly, the formulation of the invention can be used to treat sepsis in any of its clinical settings, including septic shock, endotoxic shock, gram negative sepsis and toxic shock syndrome.
- Furthermore, to treat sepsis, the formulation of the invention can be coadministered with one or more additional therapeutic agents that may further alleviate sepsis, such as an interleukin-1 inhibitor (such as those described in PCT Publication Nos. WO 92/16221 and WO 92/17583), the cytokine interleukin-6 (see e.g., PCT Publication No. WO 93/11793) or an antagonist of platelet activating factor (see e.g., European Patent Application Publication No. EP 374 510).
- Additionally, in one embodiment, the formulation of the invention is administered to a human subject within a subgroup of sepsis patients having a serum or plasma concentration of IL-6 above 500 pg/ml; or, in one embodiment, 1000 pg/ml, at the time of treatment (see PCT Publication No. WO 95/20978).
- B. Autoimmune Diseases
- The formulations and methods of the invention may be used to treat subjects having an autoimmune disease. Tumor necrosis factor has been implicated in playing a role in the pathophysiology of a variety of autoimmune diseases. For example, TNF-alpha has been implicated in activating tissue inflammation and causing joint destruction in rheumatoid arthritis (see e.g., Tracey and Cerami, supra; Arend, W. P. and Dayer, J-M. (1995) Arth. Rheum. 38:151-160; Fava, R. A., et al. (1993) Clin. Exp. Immunol. 94:261-266). TNF-alpha also has been implicated in promoting the death of islet cells and in mediating insulin resistance in diabetes (see e.g., Tracey and Cerami, supra; PCT Publication No. WO 94/08609). TNF-alpha also has been implicated in mediating cytotoxicity to oligodendrocytes and induction of inflammatory plaques in multiple sclerosis (see e.g., Tracey and Cerami, supra). Also included in autoimmune diseases that may be treated using the formulations and methods of the invention is juvenile idiopathic arthritis (JIA) (also referred to as juvenile rheumatoid arthritis) (see Grom et al. (1996) Arthritis Rheum. 39:1703; Mangge et al. (1995) Arthritis Rheum. 8:211).
- The formulation of the invention can be used to treat autoimmune diseases, in particular those associated with inflammation, including rheumatoid arthritis, rheumatoid spondylitis (also referred to as ankylosing spondylitis), osteoarthritis and gouty arthritis, allergy, multiple sclerosis, autoimmune diabetes, autoimmune uveitis, juvenile idiopathic arthritis (also referred to as juvenile rheumatoid arthritis), and nephrotic syndrome.
- C. Infectious Diseases
- The formulations and methods of the invention may be used to treat subjects having an infectious disease. Tumor necrosis factor has been implicated in mediating biological effects observed in a variety of infectious diseases. For example, TNF-alpha has been implicated in mediating brain inflammation and capillary thrombosis and infarction in malaria (see e.g., Tracey and Cerami, supra). TNF-alpha also has been implicated in mediating brain inflammation, inducing breakdown of the blood-brain barrier, triggering septic shock syndrome and activating venous infarction in meningitis (see e.g., Tracey and Cerami, supra). TNF-alpha also has been implicated in inducing cachexia, stimulating viral proliferation and mediating central nervous system injury in acquired immune deficiency syndrome (AIDS) (see e.g., Tracey and Cerami, supra). Accordingly, the antibodies, and antibody portions, of the invention, can be used in the treatment of infectious diseases, including bacterial meningitis (see e.g., European Patent Application Publication No. EP 585 705), cerebral malaria, AIDS and AIDS-related complex (ARC) (see e.g., European Patent Application Publication No. EP 230 574), as well as cytomegalovirus infection secondary to transplantation (see e.g., Fietze, E., et al. (1994) Transplantation 58:675-680). The formulation of the invention, also can be used to alleviate symptoms associated with infectious diseases, including fever and myalgias due to infection (such as influenza) and cachexia secondary to infection (e.g., secondary to AIDS or ARC).
- D. Transplantation
- The formulations and methods of the invention may be used to treat subjects having a transplantation. Tumor necrosis factor has been implicated as a key mediator of allograft rejection and graft versus host disease (GVHD) and in mediating an adverse reaction that has been observed when the rat antibody OKT3, directed against the T cell receptor CD3 complex, is used to inhibit rejection of renal transplants (see e.g., Tracey and Cerami, supra; Eason, J. D., et al. (1995) Transplantation 59:300-305; Suthanthiran, M. and Strom, T. B. (1994) New Engl. J. Med. 331:365-375). Accordingly, the formulations of the invention can be used to inhibit transplant rejection, including rejections of allografts and xenografts and to inhibit GVHD. Although the antibody or antibody portion may be used alone, it can be used in combination with one or more other agents that inhibit the immune response against the allograft or inhibit GVHD. For example, in one embodiment, the formulations of the invention are used in combination with OKT3 to inhibit OKT3-induced reactions. In another embodiment, the formulation of the invention is used in combination with one or more antibodies directed at other targets involved in regulating immune responses, such as the cell surface molecules CD25 (interleukin-2 receptor-.alpha.), CD11a (LFA-1), CD54 (ICAM-1), CD4, CD45, CD28/CTLA4, CD80 (B7-1) and/or CD86 (B7-2). In yet another embodiment, the formulation of the invention is used in combination with one or more general immunosuppressive agents, such as cyclosporin A or FK506.
- E. Malignancy
- The formulations and methods of the invention may be used to treat subjects having cancer or a malignant tumor. Tumor necrosis factor has been implicated in inducing cachexia, stimulating tumor growth, enhancing metastatic potential and mediating cytotoxicity in malignancies (see e.g., Tracey and Cerami, supra). Accordingly, the formulations of the invention can be used in the treatment of malignancies, to inhibit tumor growth or metastasis and/or to alleviate cachexia secondary to malignancy. The formulation of the invention may be administered systemically or locally to the tumor site.
- F. Pulmonary Disorders
- The formulations and methods of the invention may be used to treat subjects having a pulmonary disease. Tumor necrosis factor has been implicated in the pathophysiology of adult respiratory distress syndrome, including stimulating leukocyte-endothelial activation, directing cytotoxicity to pneumocytes and inducing vascular leakage syndrome (see e.g., Tracey and Cerami, supra). Accordingly, the formulations of the invention can be used to treat various pulmonary disorders, including adult respiratory distress syndrome (see e.g., PCT Publication No. WO 91/04054), shock lung, chronic pulmonary inflammatory disease, pulmonary sarcoidosis, pulmonary fibrosis and silicosis. The formulation of the invention may be administered systemically or locally to the lung surface, for example as an aerosol.
- G. Intestinal Disorders
- The formulations and methods of the invention may be used to treat subjects having an intestinal disorder. Tumor necrosis factor has been implicated in the pathophysiology of inflammatory bowel disorders (see e.g., Tracy, K. J., et al. (1986) Science 234:470-474; Sun, X-M., et al. (1988) J. Clin. Invest. 81:1328-1331; MacDonald, T. T., et al. (1990) Clin. Exp. Immunol. 81:301-305) Chimeric murine anti-hTNF-alpha antibodies have undergone clinical testing for treatment of Crohn's disease (van Dullemen, H. M., et al. (1995) Gastroenterology 109:129-135). The formulation of the invention, also can be used to treat intestinal disorders, such as idiopathic inflammatory bowel disease, which includes two syndromes, Crohn's disease and ulcerative colitis. In one embodiment, the formulation of the invention is used to treat Crohn's disease. In one embodiment, the formulation of the invention is used to treat ulcerative colitis.
- H. Cardiac Disorders
- The formulations and methods of the invention, also can be used to treat various cardiac disorders, including ischemia of the heart (see e.g., European Patent Application Publication No. EP 453 898) and heart insufficiency (weakness of the heart muscle)(see e.g., PCT Publication No. WO 94/20139).
- I. Spondyloarthropathies
- The formulations and methods of the invention may also be used to treat subjects who have a spondyloarthropathy, including, for example, an axial spondyloarthropathy. TNFα has been implicated in the pathophysiology of a wide variety of disorders, including inflammatory diseases such as spondyloarthopathies (see e.g., Moeller, A., et al. (1990) Cytokine 2:162-169; U.S. Pat. No. 5,231,024 to Moeller et al.; European Patent Publication No. 260 610 B1 by Moeller, A). In one embodiment, the spondyloarthropathy is an axial spondyloarthropathy. Other examples of spondyloarthropathies which can be treated with the TNFα antibody of the invention are described below:
- 1. Psoriatic Arthritis
- The formulations and methods of the invention may also be used to treat subjects who have psoriatic arthritis. Tumor necrosis factor has been implicated in the pathophysiology of psoriatic arthritis (Partsch et al. (1998) Ann Rheum Dis. 57:691; Ritchlin et al. (1998) J Rheumatol. 25:1544). As referred to herein, psoriatic arthritis (PsA) or psoriasis associated with the skin, refers to chronic inflammatory arthritis which is associated with psoriasis. Psoriasis is a common chronic skin condition that causes red patches on the body. About 1 in 20 individuals with psoriasis will develop arthritis along with the skin condition, and in about 75% of cases, psoriasis precedes the arthritis. PsA exhibits itself in a variety of ways, ranging from mild to severe arthritis, wherein the arthritis usually affects the fingers and the spine. When the spine is affected, the symptoms are similar to those of ankylosing spondylitis, as described above.
- PsA is sometimes associated with arthritis mutilans. Arthritis mutilans refers to a disorder which is characterized by excessive bone erosion resulting in a gross, erosive deformity which mutilates the joint. In one embodiment, formulations and methods of the invention can be used to treat arthritis mutilans.
- 2. Reactive Arthritis/Reiter's Syndrome
- The formulations and methods of the invention may also be used to treat subjects who have Reiter's syndrome or reactive arthritis. Tumor necrosis factor has been implicated in the pathophysiology of reactive arthritis, which is also referred to as Reiter's syndrome (Braun et al. (1999) Arthritis Rheum. 42(10):2039). Reactive arthritis (ReA) refers to arthritis which complicates an infection elsewhere in the body, often following enteric or urogenital infections. ReA is often characterized by certain clinical symptoms, including inflammation of the joints (arthritis), urethritis, conjunctivitis, and lesions of the skin and mucous membranes. In addition, ReA can occurs following infection with a sexually transmitted disease or dysenteric infection, including chlamydia, campylobacter, salmonella, or yersinia.
- 3. Undifferentiated Spondyloarthropathies
- The formulations and methods of the invention may also be used to treat subjects who have an undifferentiated spondyloarthropathy (see Zeidler et al. (1992) Rheum Dis Clin North Am. 18:187). Other terms used to describe undifferentiated spondyloarthropathies include seronegative oligoarthritis and undifferentiated oligoarthritis. Undifferentiated spondyloarthropathies, as used herein, refers to a disorder wherein the subject demonstrates only some of the symptoms associated with a spondyloarthropathy. This condition is usually observed in young adults who do not have IBD, psoriasis, or the classic symptoms of AS or Reiter's syndrome. In some instances, undifferentiated spondyloarthropathies may be an early indication of AS.
- J. Skin and Nail Disorders
- In one embodiment, the formulations and methods of the invention are used to treat a skin and/or a nail disorder. As used herein, the term “skin and nail disorder in which TNFα activity is detrimental” is intended to include skin and/or nail disorders and other disorders in which the presence of TNF alpha in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder, e.g., psoriasis. An example of a skin disorder which may be treated using the formulation of the invention is psoriasis. In one embodiment, the formulation of the invention is used to treat plaque psoriasis. Tumor necrosis factor has been implicated in the pathophysiology of psoriasis (Takematsu et al. (1989) Arch Dermatol Res. 281:398; Victor and Gottlieb (2002) J Drugs Dermatol. 1(3):264).
- 1. Psoriasis
- The formulations and methods of the invention may be used to treat subjects having psoriasis, including subjects having plaque psoriasis. Tumor necrosis factor has been implicated in the pathophysiology of psoriasis (Takematsu et al. (1989) Arch Dermatol Res. 281:398; Victor and Gottlieb (2002) J Drugs Dermatol. 1(3):264). Psoriasis is described as a skin inflammation (irritation and redness) characterized by frequent episodes of redness, itching, and thick, dry, silvery scales on the skin. In particular, lesions are formed which involve primary and secondary alterations in epidermal proliferation, inflammatory responses of the skin, and an expression of regulatory molecules such as lymphokines and inflammatory factors. Psoriatic skin is morphologically characterized by an increased turnover of epidermal cells, thickened epidermis, abnormal keratinization, inflammatory cell infiltrates into the epidermis and polymorphonuclear leukocyte and lymphocyte infiltration into the epidermis layer resulting in an increase in the basal cell cycle. Psoriasis often involves the nails, which frequently exhibit pitting, separation of the nail, thickening, and discoloration. Psoriasis is often associated with other inflammatory disorders, for example arthritis, including rheumatoid arthritis, inflammatory bowel disease (IBD), and Crohn's disease.
- Evidence of psoriasis is most commonly seen on the trunk, elbows, knees, scalp, skin folds, or fingernails, but it may affect any or all parts of the skin. Normally, it takes about a month for new skin cells to move up from the lower layers to the surface. In psoriasis, this process takes only a few days, resulting in a build-up of dead skin cells and formation of thick scales. Symptoms of psoriasis include: skin patches, that are dry or red, covered with silvery scales, raised patches of skin, accompanied by red borders, that may crack and become painful, and that are usually located on the elbows, knees, trunk, scalp, and hands; skin lesions, including pustules, cracking of the skin, and skin redness; joint pain or aching which may be associated with of arthritis, e.g., psoriatic arthritis.
- Treatment for psoriasis often includes a topical corticosteroids, vitamin D analogs, and topical or oral retinoids, or combinations thereof. In one embodiment, the TNFalpha inhibitor of the invention is administered in combination with or the presence of one of these common treatments.
- The diagnosis of psoriasis is usually based on the appearance of the skin. Additionally a skin biopsy, or scraping and culture of skin patches may be needed to rule out other skin disorders. An x-ray may be used to check for psoriatic arthritis if joint pain is present and persistent.
- In one embodiment of the invention, a TNFalpha inhibitor is used to treat psoriasis, including chronic plaque psoriasis, guttate psoriasis, inverse psoriasis, pustular psoriasis, pemphigus vulgaris, erythrodermic psoriasis, psoriasis associated with inflammatory bowel disease (IBD), and psoriasis associated with rheumatoid arthritis (RA). Specific types of psoriasis included in the treatment methods of the invention are described in detail below:
- a. Chronic Plaque Psoriasis
- The formulations and methods of the invention may be used to treat subjects having chronic plaque psoriasis. Tumor necrosis factor has been implicated in the pathophysiology of chronic plaque psoriasis (Asadullah et al. (1999) Br J Dermatol. 141:94). Chronic plaque psoriasis (also referred to as psoriasis vulgaris) is the most common form of psoriasis. Chronic plaque psoriasis is characterized by raised reddened patches of skin, ranging from coin-sized to much larger. In chronic plaque psoriasis, the plaques may be single or multiple, they may vary in size from a few millimeters to several centimeters. The plaques are usually red with a scaly surface, and reflect light when gently scratched, creating a “silvery” effect. Lesions (which are often symmetrical) from chronic plaque psoriasis occur all over body, but with predilection for extensor surfaces, including the knees, elbows, lumbosacral regions, scalp, and nails. Occasionally chronic plaque psoriasis can occur on the penis, vulva and flexures, but scaling is usually absent. Diagnosis of patients with chronic plaque psoriasis is usually based on the clinical features described above. In particular, the distribution, color and typical silvery scaling of the lesion in chronic plaque psoriasis are characteristic of chronic plaque psoriasis.
- b. Guttate Psoriasis
- The formulations and methods of the invention may be used to treat subjects having guttate psoriasis. Guttate psoriasis refers to a form of psoriasis with characteristic water drop shaped scaly plaques. Flares of guttate psoriasis generally follow an infection, most notably a streptococcal throat infection. Diagnosis of guttate psoriasis is usually based on the appearance of the skin, and the fact that there is often a history of recent sore throat.
- c. Inverse Psoriasis
- The formulations and methods of the invention may be used to treat subjects having inverse psoriasis. Inverse psoriasis is a form of psoriasis in which the patient has smooth, usually moist areas of skin that are red and inflamed, which is unlike the scaling associated with plaque psoriasis. Inverse psoriasis is also referred to as intertiginous psoriasis or flexural psoriasis. Inverse psoriasis occurs mostly in the armpits, groin, under the breasts and in other skin folds around the genitals and buttocks, and, as a result of the locations of presentation, rubbing and sweating can irritate the affected areas.
- d. Pustular Psoriasis
- The formulations and methods of the invention may be used to treat subjects having pustular psoriasis. Pustular psoriasis is a form of psoriasis that causes pus-filled blisters that vary in size and location, but often occur on the hands and feet. The blisters may be localized, or spread over large areas of the body. Pustular psoriasis can be both tender and painful, can cause fevers.
- e. Other Psoriasis Disorders
- Other examples of psoriatic disorders which can be treated with the formulations and methods of the invention include erythrodermic psoriasis, vulgaris, psoriasis associated with IBD, and psoriasis associated with arthritis, including rheumatoid arthritis.
- 2. Pemphigus Vulgaris
- The formulations and methods of the invention may be used to treat subjects having pemphigus vulgaris. Pemphigus vulgaris is a serious autoimmune systemic dermatologic disease that often affects the oral mucous membrane and skin. The pathogenesis of pemphigus vulgaris is thought to be an autoimmune process that is directed at skin and oral mucous membrane desmosomes. Consequentially, cells do not adhere to each other. The disorder manifests as large fluid-filled, rupture-prone bullae, and has a distinctive histologic appearance. Anti-inflammatory agents are the only effective therapy for this disease which has a high mortality rate. Complications that arise in patients suffering from pemphigus vulgaris are intractable pain, interference with nutrition and fluid loss, and infections.
- 3. Atopic Dermatitis/Eczema
- The formulations and methods of the invention may be used to treat subjects having atopic dermatitis. Atopic dermatitis (also referred to as eczema) is a chronic skin disorder categorized by scaly and itching plaques. People with eczema often have a family history of allergic conditions like asthma, hay fever, or eczema. Atopic dermatitis is a hypersensitivity reaction (similar to an allergy) which occurs in the skin, causing chronic inflammation. The inflammation causes the skin to become itchy and scaly. Chronic irritation and scratching can cause the skin to thicken and become leathery-textured. Exposure to environmental irritants can worsen symptoms, as can dryness of the skin, exposure to water, temperature changes, and stress.
- Subjects with atopic dermatitis can be identified by certain symptoms, which often include intense itching, blisters with oozing and crusting, skin redness or inflammation around the blisters, rash, dry, leathery skin areas, raw areas of the skin from scratching, and ear discharges/bleeding.
- 4. Sarcoidosis
- The formulations and methods of the invention may be used to treat subjects having sarcoidosis. Sarcoidosis is a disease in which granulomatous inflammation occurs in the lymph nodes, lungs, liver, eyes, skin, and/or other tissues. Sarcoidosis includes cutaneous sarcoidosis (sarcoidosis of the skin) and nodular sarcoidosis (sarcoidosis of the lymph nodes). Patients with sarcoidosis can be identified by the symptoms, which often include general discomfort, uneasiness, or an ill feeling; fever; skin lesions.
- 5. Erythema Nodosum
- The formulations and methods of the invention may be used to treat subjects having erythema nodosum. Erythema nodosum refers to an inflammatory disorder that is characterized by tender, red nodules under the skin, typically on the anterior lower legs. Lesions associated with erythema nodosum often begin as flat, but firm, hot red painful lumps (approximately an inch across). Within a few days the lesions may become purplish, and then over several weeks fade to a brownish flat patch.
- In some instances, erythema nodosum may be associated with infections including, streptococcus, coccidioidomycosis, tuberculosis, hepatitis B, syphilis, cat scratch disease, tularemia, yersinia, leptospirosis psittacosis, histoplasmosis, mononucleosis (EBV). In other instances, erythema nodosum may be associated with sensitivity to certain medications including, oralcontraceptives, penicillin, sulfonamides, sulfones, barbiturates, hydantoin, phenacetin, salicylates, iodides, and progestin. Erythema nodosum is often associated with other disorders including, leukemia, sarcoidosis, rheumatic fever, and ulcerative colitis.
- Symptoms of erythema nodosum usually present themselves on the shins, but lesions may also occur on other areas of the body, including the buttocks, calves, ankles, thighs and upper extremities. Other symptoms in subjects with erythema nodosum can include fever and malaise.
- 6. Hidradenitis Suppurativa
- The formulations and methods of the invention may be used to treat subjects having hidradenitis suppurativa. Hidradenitis suppurativa refers to a skin disorder in which swollen, painful, inflamed lesions or lumps develop in the groin and sometimes under the arms and under the breasts. Hidradenitis suppurativa occurs when apocrine gland outlets become blocked by perspiration or are unable to drain normally because of incomplete gland development. Secretions trapped in the glands force perspiration and bacteria into surrounding tissue, causing subcutaneous induration, inflammation, and infection. Hidradenitis suppurativa is confined to areas of the body that contain apocrine glands. These areas are the axillae, areola of the nipple, groin, perineum, circumanal, and periumbilical regions.
- 7. Lichen Planus
- The formulations and methods of the invention may be used to treat subjects having lichen planus. Tumor necrosis factor has been implicated in the pathophysiology of lichen planus (Sklavounou et al. (2000) J Oral Pathol Med. 29:370). Lichen planus refers to a disorder of the skin and the mucous membranes resulting in inflammation, itching, and distinctive skin lesions. Lichen planus may be associated with hepatitis C or certain medications.
- 8. Sweet's Syndrome
- The formulations and methods of the invention may be used to treat subjects having Sweet's syndrome. Inflammatory cytokines, including tumor necrosis factor, have been implicated in the pathophysiology of Sweet's syndrome (Reuss-Borst et al. (1993) Br J Haematol. 84:356). Sweet's syndrome, which was described by R. D. Sweet in 1964, is characterized by the sudden onset of fever, leukocytosis, and cutaneous eruption. The eruption consists of tender, erythematous, well-demarcated papules and plaques which show dense neutrophilic infiltrates microscopically. The lesions may appear anywhere, but favor the upper body including the face. The individual lesions are often described as pseudovesicular or pseudopustular, but may be frankly pustular, bullous, or ulcerative. Oral and eye involvement (conjunctivitis or episcleritis) have also been frequently reported in patients with Sweet's syndrome. Leukemia has also been associated with Sweet's syndrome.
- 9. Vitiligo
- The formulations and methods of the invention may be used to treat subjects having vitiligo. Vitiligo refers to a skin condition in which there is loss of pigment from areas of skin resulting in irregular white patches with normal skin texture. Lesions characteristic of vitiligo appear as flat depigmented areas. The edges of the lesions are sharply defined but irregular. Frequently affected areas in subjects with vitiligo include the face, elbows and knees, hands and feet, and genitalia.
- 10. Scleroderma
- The formulations and methods of the invention may be used to treat subjects having scleroderma. Tumor necrosis factor has been implicated in the pathophysiology of scleroderma (Tutuncu Z et al. (2002) Clin Exp Rheumatol. 20(6 Suppl 28):5146-51; Mackiewicz Z et al. (2003) Clin Exp Rheumatol. 21(1):41-8; Murota H et al. (2003) Arthritis Rheum. 48(4):1117-25). Scleroderma refers to a diffuse connective tissue disease characterized by changes in the skin, blood vessels, skeletal muscles, and internal organs. Scleroderma is also referred to as CREST syndrome or Progressive systemic sclerosis, and usually affects people between the ages 30-50. Women are affected more often than men.
- The cause of scleroderma is unknown. The disease may produce local or systemic symptoms. The course and severity of the disease varies widely in those affected. Excess collagen deposits in the skin and other organs produce the symptoms. Damage to small blood vessels within the skin and affected organs also occurs. In the skin, ulceration, calcification, and changes in pigmentation may occur. Systemic features may include fibrosis and degeneration of the heart, lungs, kidneys and gastrointestinal tract.
- Patients suffering from scleroderma exhibit certain clinical features, including, blanching, blueness, or redness of fingers and toes in response to heat and cold (Raynaud's phenomenon), pain, stiffness, and swelling of fingers and joints, skin thickening and shiny hands and forearm, esophageal reflux or heartburn, difficulty swallowing, and shortness of breath. Other clinical symptoms used to diagnose scleroderma include, an elevated erythrocyte sedimentation rate (ESR), an elevated rheumatoid factor (RF), a positive antinuclear antibody test, urinalysis that shows protein and microscopic blood, a chest X-ray that may show fibrosis, and pulmonary function studies that show restrictive lung disease.
- 11. Nail Disorders
- The formulations and methods of the invention may be used to treat subjects having a nail disorder. Nail disorders include any abnormality of the nail Specific nail disorders include, but are not limited to, pitting, koilonychia, Beau's lines, spoon nails, onycholysis, yellow nails, pterygium (seen in lichen planus), and leukonychia. Pitting is characterized by the presence of small depressions on the nail surface. Ridges or linear elevations can develop along the nail occurring in a “lengthwise” or “crosswise” direction. Beau's lines are linear depressions that occur “crosswise” (transverse) in the fingernail. Leukonychia describes white streaks or spots on the nails. Koilonychia is an abnormal shape of the fingernail where the nail has raised ridges and is thin and concave Koilonychia is often associated with iron deficiency.
- Nail disorders which can be treated with the TNFalpha antibody of the invention also include psoriatic nails. Psoriatic nails include changes in nails which are attributable to psoriasis. In some instances psoriasis may occur only in the nails and nowhere else on the body. Psoriatic changes in nails range from mild to severe, generally reflecting the extent of psoriatic involvement of the nail plate, nail matrix, i.e., tissue from which the nail grows, nail bed, i.e., tissue under the nail, and skin at the base of the nail Damage to the nail bed by the pustular type of psoriasis can result in loss of the nail. Nail changes in psoriasis fall into general categories that may occur singly or all together. In one category of psoriatic nails, the nail plate is deeply pitted, probably due to defects in nail growth caused by psoriasis. IN another category, the nail has a yellow to yellow-pink discoloration, probably due to psoriatic involvement of the nail bed. A third subtype of psoriatic nails are characterized by white areas which appear under the nail plate. The white areas are actually air bubbles marking spots where the nail plate is becoming detached from the nail bed. There may also be reddened skin around the nail A fourth category is evidenced by the nail plate crumbling in yellowish patches, i.e., onychodystrophy, probably due to psoriatic involvement in the nail matrix. A fifth category is characterized by the loss of the nail in its entirety due to psoriatic involvement of the nail matrix and nail bed.
- The formulations and methods of the invention may also be used to treat nail disorders often associated with lichen planus. Nails in subjects with lichen planus often show thinning and surface roughness of the nail plate with longitudinal ridges or pterygium.
- The formulations and methods of the invention may be used to treat nail disorders, such as those described herein. Often nail disorders are associated with skin disorders. In one embodiment, the invention includes a method of treatment for nail disorders with a TNFalpha antibody. In another embodiment, the nail disorder is associated with another disorder, including a skin disorder such as psoriasis. In another embodiment, the disorder associated with a nail disorder is arthritis, including psoriatic arthritis.
- 12. Other Skin and Nail Disorders
- The formulations and methods of the invention may be used to treat other skin and nail disorders, such as chronic actinic dermatitis, bullous pemphigoid, and alopecia areata. Chronic actinic dermatitis (CAD) is also referred to as photosensitivity dermatitis/actinic reticuloid syndrome (PD/AR). CAD is a condition in which the skin becomes inflamed, particularly in areas that have been exposed to sunlight or artificial light. Commonly, CAD patients have allergies to certain substances that come into contact with their skin, particularly various flowers, woods, perfumes, sunscreens and rubber compounds. Bullous pemphigoid refers to A skin disorder characterized by the formation of large blisters on the trunk and extremities. Alopecia areata refers to hair loss characterized by round patches of complete baldness in the scalp or beard.
- K. Metabolic Disorders
- The formulations and methods of the invention may be used to treat a metabolic disease. TNFα has been implicated in the pathophysiology of a wide variety of disorders, including metabolic disorders, such as diabetes and obesity (Spiegelman and Hotamisligil (1993) Cell 73:625; Chu et al. (2000) Int J Obes Relat Metab Disord. 24:1085; Ishii et al. (2000) Metabolism. 49:1616).
- Metabolic disorders affect how the body processes substances needed to carry out physiological functions. A number of metabolic disorders of the invention share certain characteristics, i.e. they are associated the insulin resistance, lack of ability to regulate blood sugar, weight gain, and increase in body mass index. Examples of metabolic disorders include diabetes and obesity. Examples of diabetes include
type 1 diabetes mellitus, type 2 diabetes mellitus, diabetic neuropathy, peripheral neuropathy, diabetic retinopathy, diabetic ulcerations, retinopathy ulcerations, diabetic macrovasculopathy, and obesity. Examples of metabolic disorders which can be treated with the formulations and methods of the invention are described in more detail below: - 1. Diabetes
- The formulations and methods of the invention may be used to treat diabetes. Tumor necrosis factor has been implicated in the pathophysiology of diabetes. (see e.g., Navarro J. F., Mora C., Maca, Am J Kidney Dis. 2003 July; 42(1):53-61; Daimon M et al., Diabetes Care. 2003 July; 26(7):2015-20; Zhang M et al., J Tongji Med Univ. 1999; 19(3):203-5, Barbieri M et al., Am J Hypertens. 2003 July; 16(7):537-43.) For example, TNFα is implicated in the pathophysiology for insulin resistance. It has been found that serum TNF levels in patients with gastrointestinal cancer correlates with insulin resistance (see e.g., McCall, J. et al. Br. J. Surg. 1992; 79: 1361-3).
- Diabetes includes the two most common types of the disorder, namely type I diabetes and type II diabetes, which both result from the body's inability to regulate insulin. Insulin is a hormone released by the pancreas in response to increased levels of blood sugar (glucose) in the blood.
- The term “
type 1 diabetes,” as used herein, refers to a chronic disease that occurs when the pancreas produces too little insulin to regulate blood sugar levels appropriately.Type 1 diabetes is also referred to as insulin-dependent diabetes mellitus, IDMM, juvenile onset diabetes, and diabetes—type I. Type 1 diabetes represents is the result of a progressive autoimmune destruction of the pancreatic β-cells with subsequent insulin deficiency. - The term “type 2 diabetes,” refers to a chronic disease that occurs when the pancreas does not make enough insulin to keep blood glucose levels normal, often because the body does not respond well to the insulin. Type 2 diabetes is also referred to as noninsulin-dependent diabetes mellitus, NDDM, and diabetes—type II
- Diabetes is can be diagnosed by the administration of a glucose tolerance test. Clinically, diabetes is often divided into several basic categories. Primary examples of these categories include, autoimmune diabetes mellitus, non-insulin-dependent diabetes mellitus (
type 1 NDDM), insulin-dependant diabetes mellitus (type 2 IDDM), non-autoimmune diabetes mellitus, non-insulin-dependant diabetes mellitus (type 2 NIDDM), and maturity-onset diabetes of the young (MODY). A further category, often referred to as secondary, refers to diabetes brought about by some identifiable condition which causes or allows a diabetic syndrome to develop. Examples of secondary categories include, diabetes caused by pancreatic disease, hormonal abnormalities, drug- or chemical-induced diabetes, diabetes caused by insulin receptor abnormalities, diabetes associated with genetic syndromes, and diabetes of other causes. (see e.g., Harrison's (1996) 14th ed., New York, McGraw-Hill). - Diabetes manifests itself in the foregoing categories and can cause several complications that are discussed in the following sections. Accordingly, the antibody, or antigen-binding fragment thereof, of the invention can be used to treat diabetes. In one embodiment, the TNFα antibody, or antigen-binding fragment thereof, of the invention is used to treat diabetes associated with the above identified categories.
- Diabetes is often treated with diet, insulin dosages, and various medications described herein. Accordingly, the formulations of the invention may also be administered in combination with agents commonly used to treat metabolic disorders and pain commonly associated with diabetes.
- Diabetes manifests itself in many complications and conditions associated with diabetes, including the following categories:
- a. Diabetic Neuropathy and Peripheral Neuropathy
- The formulations and methods of the invention may be used to treat diabetic neuropathy or peripheral neuropathy. Tumor necrosis factor has been implicated in the pathophysiology of diabetic neuropathy and peripheral neuropathy. (See Benj afield et al. (2001) Diabetes Care. 24:753; Qiang, X. et al. (1998) Diabetologia. 41:1321-6; Pfeiffer et al. (1997) Horm Metab Res. 29:111).
- The term “neuropathy,” also referred to as nerve damage-diabetic, as used herein, refers to a common complication of diabetes in which nerves are damaged as a result of hyperglycemia (high blood sugar levels). A variety of diabetic neuropathies are recognized, such as distal sensorimotror polyneuropathy, focal motor neuropathy, and autonomic neuropathy.
- The term “peripheral neuropathy,” also known as peripheral neuritis and diabetic neuropathy, as used herein, refers to the failure of the nerves to carry information to and from the brain and spinal cord. Peripheral neuropathy produces symptoms such as pain, loss of sensation, and the inability to control muscles. In some cases, the failure of nerves to control blood vessels, intestinal function, and other organs results in abnormal blood pressure, digestion, and loss of other basic involuntary processes. Peripheral neuropathy may involve damage to a single nerve or nerve group (mononeuropathy) or may affect multiple nerves (polyneuropathy).
- Neuropathies that affect small myelinated and unmyelinated fibers of the sympathetic and parasympathetic nerves are known as “peripheral neuropathies.” Furthermore, the related disorder of peripheral neuropathy, also known as peripheral neuritis and diabetic neuropathy, refers to the failure of the nerves to carry information to and from the brain and spinal cord. This produces symptoms such as pain, loss of sensation, and the inability to control muscles. In some cases, failure of nerves controlling blood vessels, intestinal function, and other organs results in abnormal blood pressure, digestion, and loss of other basic involuntary processes. Peripheral neuropathy may involve damage to a single nerve or nerve group (mononeuropathy) or may affect multiple nerves (polyneuropathy).
- The term “diabetic neuropathy” refers to a common complication of diabetes in which nerves are damaged as a result of hyperglycemia (high blood sugar levels). Diabetic neuropathy is also referred to as neuropathy and nerve damage-diabetic. A variety of diabetic neuropathies are recognized, such as distal sensorimotror polyneuropathy, focal motor neuropathy, and autonomic neuropathy.
- b. Diabetic Retinopathy
- The formulations and methods of the invention may be used to treat diabetic retinopathy. Tumor necrosis factor has been implicated in the pathophysiology of diabetic retinopthy (Scholz et al. (2003) Trends Microbiol. 11:171). The term “diabetic retinopathy” as used herein, refers to progressive damage to the eye's retina caused by long-term diabetes. Diabetic retinopathy, includes proliferative retinopathy. Proliferative neuropathy in turn includes neovascularization, pertinal hemmorrhave and retinal detachment.
- In advanced retinopathy, small vessels proliferate on the surface of the retina. These blood vessels are fragile, tend to bleed and can cause peretinal hemorrhages. The hemorrhage can obscure vision, and as the hemorrhage is resorbed fibrous tissue forms predisposing to retinal detachments and loss of vision. In addition, diabetic retinopathy includes proliferative retinopathy which includes neovascularization, pertinal hemmorrhave and retinal detachment. Diabetic retinopathy also includes “background retinopathy” which involves changes occurring with the layers of the retina.
- c. Diabetic Ulcerations and Retinopathy Ulcerations
- The formulations and methods of the invention may be used to treat diabetic ulcerations or retinopathy ulcerations. Tumor necrosis factor has been implicated in the pathophysiology of diabetic ulcerations, (see Lee et al. (2003) Hum Immunol. 64:614; Navarro et al. (2003) Am J Kidney Dis. 42:53; Daimon et al (2003) Diabetes Care. 26:2015; Zhang et al. (1999) J Tongji Med Univ. 19:203; Barbieri et al. (2003) Am J Hypertens. 16:537; Venn et al. (1993) Arthritis Rheum. 36:819; Westacott et al. (1994) J Rheumatol. 21:1710).
- The term “diabetic ulcerations,” as used herein, refers to an ulcer which results as a complication of diabetes. An ulcer is a crater-like lesion on the skin or mucous membrane caused by an inflammatory, infectious, malignant condition, or metabolic disorder. Typically diabetic ulcers can be found on limbs and extremeties, more typically the feet. These ulcers, caused by diabetic conditions, such as neurapthy and a vacualr insufficiency, can lead to ischemia and poor wound healing. More extensive ulcerations may progress to ostemyelitis. Once ostemyelitis develops, it may be difficult to eradicate with antibiotics alone and amputation maybe necessary.
- The term “retinopathy ulcerations,” as used herein refers to an ulcer which causes or results in damages to the eye and the eye's retina. Retinopathy ulcerations may include conditions such has retinoathic hemmorages.
- d. Diabetic Macrovasculopathy
- The formulations and methods of the invention may be used to treat diabetic macrovasculopathy. Tumor necrosis factor has been implicated in the pathophysiology of diabetic macrovasculopathy (Devaraj et al. (2000) Circulation. 102:191; Hattori Y et al. (2000) Cardiovasc Res. 46:188; Clausell N et al. (1999) Cardiovasc Pathol. 8:145). The term “diabetic macrovasculopathy,” also referred to as “macrovascular disease,” as used herein, refers to a disease of the blood vessels that results from diabetes. Diabetic macrovasculopathy complication occurs when, for example, fat and blood clots build up in the large blood vessels and stick to the vessel walls. Diabetic macrovasculopathies include diseases such as coronary disease, cerebrovascular disease, and peripheral vascular disease, hyperglycaemia and cardiovascular disease, and strokes.
- 2. Obesity
- The formulations and methods of the invention may be used to treat obesity. Tumor necrosis factor has been implicated in the pathophysiology of obesity (see e.g., Pihlajamaki J et al. (2003) Obes Res. 11:912; Barbieri et al. (2003) Am J Hypertens. 16:537; Tsuda et al. (2003) J Nutr. 133:2125). Obesity increases a person's risk of illness and death due to diabetes, stroke, coronary artery disease, hypertension, high cholesterol, and kidney and gallbladder disorders. Obesity may also increase the risk for some types of cancer, and may be a risk factor for the development of osteoarthritis and sleep apnea. Obesity can be treated with the antibody of the invention alone or in combination with other metabolic disorders, including diabetes.
- L. Vasculitides
- The formulations and methods of the invention may be used to treat a subject having a vasculitis. TNFα has been implicated in the pathophysiology of a variety of vasculitides, (see e.g., Deguchi et al. (1989) Lancet. 2:745). As used herein, the term “a vasculitis in which TNFα activity is detrimental” is intended to include vasculitis in which the presence of TNFα in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNFα in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNFα in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNFα antibody as described above.
- There are numerous examples of vasculitides in which TNFα activity is detrimental, including Behcet's disease. The use of the formulations and methods of the invention in the treatment of specific vasculitides are discussed further below. In certain embodiments, the antibody, or antibody portion, is administered to the subject in combination with another therapeutic agent, as described below
- The formulations and methods of the invention be used to treat vasculitis in which TNFα activity is detrimental, wherein inhibition of TNFα activity is expected to alleviate the symptoms and/or progression of the vasculitis or to prevent the vasculitis. Subjects suffering from or at risk of developing vasculitis can be identified through clinical symptoms and tests. For example, subjects with vasculitides often develop antibodies to certain proteins in the cytoplasm of neutrophils, antineutrophil cytoplasmic antibodies (ANCA). Thus, in some instances, vasculitides may be evidenced by tests (e.g., ELISA), which measure ANCA presence.
- Vasculitis and its consequences may be the sole manifestation of disease or it may be a secondary component of another primary disease. Vasculitis may be confined to a single organ or it may simultaneously affect several organs. and depending on the syndrome, arteries and veins of all sizes can be affected. Vasculitis can affect any organ in the body.
- In vasculitis, the vessel lumen is usually compromised, which is associated with ischemia of the tissues supplied by the involved vessel. The broad range of disorders that may result from this process is due to the fact that any type, size and location of vessel (e.g., artery, vein, arteriole, venule, capillary) can be involved. Vasculitides are generally classified according to the size of the affected vessels, as described below. It should be noted that some small and large vessel vasculitides may involve medium-sized arteries; but large and medium-sized vessel vasculitides do not involve vessels smaller than arteries. Large vessel disease includes, but is not limited to, giant cell arteritis, also known as temporal arteritis or cranial arteritis, polymyalgia rheumatica, and Takayasu's disease or arteritis, which is also known as aortic arch syndrome, young female arteritis and Pulseless disease. Medium vessel disease includes, but is not limited to, classic polyarteritis nodosa and Kawasaki's disease, also known as mucocutaneous lymph node syndrome. Non-limiting examples of small vessel disease are Behcet's Syndrome, Wegner's granulomatosis, microscopic polyangitis, hypersensitivity vasculitis, also known as cutaneous vasculitis, small vessel vasculitis, Henoch-Schonlein purpura, allergic granulamotosis and vasculitis, also known as Churg Strauss syndrome. Other vasculitides include, but are not limited to, isolated central nervous system vasculitis, and thromboangitis obliterans, also known as Buerger's disease. Classic Polyarteritis nodosa (PAN), microscopic PAN, and allergic granulomatosis are also often grouped together and are called the systemic necrotizing vasculitides. A further description of vasculitis is described below:
- 1. Large Vessel Vasculitis
- In one embodiment, the formulations and methods of the invention are used to treat subjects who have large vessel vasculitis. The term “large vessel(s)” as used herein, refers to the aorta and the largest branches directed toward major body regions. Large vessels include, for example, the aorta, and its branches and corresponding veins, e.g., the subclavian artery; the brachiocephalic artery; the common carotid artery; the innonimate vein; internal and external jugular veins; the pulmonary arteries and veins; the venae cavae; the renal arteries and veins; the femoral arteries and veins; and the carotid arteries. Examples of large vessel vasculitides are described below.
- a. Giant Cell Arteritis (GCA)
- The formulations and methods of the invention may be used to treat giant cell arteritis. Tumor necrosis factor has been implicated in the pathophysiology of giant cell arteritis (Sneller, M. C. (2002) Cleve. Clin. J. Med. 69:SII40-3; Schett, G., et al. (2002) Ann. Rheum. Dis. 61:463). Giant cell arteritis (GCA), refers to a vasculitis involving inflammation and damage to blood vessels, particularly the large or medium arteries that branch from the external carotid artery of the neck. GCA is also referred to as temporal arteritis or cranial arteritis, and is the most common primary vasculitis in the elderly. It almost exclusively affects individuals over 50 years of age, however, there are well-documented cases of
patients 40 years and younger. GCA usually affects extracranial arteries. GCA can affect the branches of the carotid arteries, including the temporal artery. GCA is also a systemic disease which can involve arteries in multiple locations. - Histopathologically, GCA is a panarteritis with inflammatory mononuclear cell infiltrates within the vessel wall with frequent Langhans type giant cell formation. There is proliferation of the intima, granulomatous inflammation and fragmentation of the internal elastic lamina. The pathological findings in organs is the result of ischemia related to the involved vessels.
- Patients suffering from GCA exhibit certain clinical symptoms, including fever, headache, anemia and high erythrocyte sedimentation rate (ESR). Other typical indications of GCA include jaw or tongue claudication, scalp tenderness, constitutional symptoms, pale optic disc edema (particularly ‘chalky white’ disc edema), and vision disturbances. The diagnosis is confirmed by temporal artery biopsy.
- b. Polymyalgia Rheumatica
- The formulations and methods of the invention may be used to treat polymyalgia rheumatica. Tumor necrosis factor has been implicated in the pathophysiology of polymyalgia rheumatica (Straub, R. H., et al. (2002) Rheumatology (Oxford) 41:423; Uddhammar, A., et al. (1998) Br. J. Rheumatol. 37:766). Polymyalgia rheumatica refers to a rheumatic disorder that is associated with moderate to severe muscle pain and stiffness in the neck, shoulder, and hip, most noticeable in the morning. IL-6 and IL-1β expression has also been detected in a majority of the circulating monocytes in patients with the polymyalgia rheumatica. Polymyalgia rheumatica may occur independently, or it may coexist with or precede GCA, which is an inflammation of blood vessels.
- c. Takayasu's Arteritis
- The formulations and methods of the invention may be used to treat Takayasu's arteritis. Tumor necrosis factor has been implicated in the pathophysiology of Takayasu's arteritis (Kobayashi, Y. and Numano, F. (2002) Intern. Med. 41:44; Fraga, A. and Medina F. (2002) Curr. Rheumatol. Rep. 4:30). Takayasu's arteritis refers to a vasculitis characterized by an inflammation of the aorta and its major branches. Takayasu's arteritis (also known as Aortic arch syndrome, young female arteritis and Pulseless disease) affects the thoracic and abdominal aorta and its main branches or the pulmonary arteries. Fibrotic thickening of the aortic wall and its branches (e.g., carotid, inominate, and subclavian arteries) can lead to reduction of lumen size of vessels that arise from the aortic arch. This condition also typically affects the renal arteries.
- Takayasu's arteritis primarily affects young women, usually aged 20-40 years old, particularly of Asian descent, and may be manifested by malaise, arthralgias and the gradual onset of extremity claudication. Most patients have asymmetrically reduced pulses, usually along with a blood pressure differential in the arms. Coronary and/or renal artery stenosis may occur.
- The clinical features of Takayasu's arteritis may be divided into the features of the early inflammatory disease and the features of the later disease. The clinical features of the early inflammatory stage of Takayasu's disease are: malaise, low grade fever, weight loss, myalgia, arthralgia, and erythema multiforme. Later stages of Takayasu's disease are characterised by fibrotic stenosis of arteries and thrombosis. The main resulting clinical features are ischaemic phenomena, e.g. weak and asymmetrical arterial pulses, blood pressure discrepancy between the arms, visual disturbance, e.g. scotomata and hemianopia, other neurological features including vertigo and syncope, hemiparesis or stroke. The clinical features result from ischaemia due to arterial stenosis and thrombosis.
- 2. Medium Vessel Disease
- The formulations and methods of the invention may be used to treat subjects who have medium vessel vasculitis. The term “medium vessel(s)” is used to refer to those blood vessels which are the main visceral arteries. Examples of medium vessels include the mesenteric arteries and veins, the iliac arteries and veins, and the maxillary arteries and veins. Examples of medium vessel vasculitides are described below.
- a. Polyarteritis Nodosa
- The formulations and methods of the invention may be used to treat polyarteritis nodosa. Tumor necrosis factor has been implicated in the pathophysiology of polyarteritis nodosa (DiGirolamo, N., et al. (1997) J. Leukoc. Biol. 61:667). Polyarteritis nodosa, or periarteritis nodosa refers to vasculitis which is a serious blood vessel disease in which small and medium-sized arteries become swollen and damaged because they are attacked by rogue immune cells. Polyarteritis nodosa usually affects adults more frequently than children. It damages the tissues supplied by the affected arteries because they don't receive enough oxygen and nourishment without a proper blood supply.
- Symptoms which are exhibited in patients with polyarteritis nodosa generally result from damage to affected organs, often the skin, heart, kidneys, and nervous system. Generalized symptoms of polyarteritis nodosa include fever, fatigue, weakness, loss of appetite, and weight loss. Muscle aches (myalgia) and joint aches (arthralgia) are common. The skin of subjects with polyarteritis nodosa may also show rashes, swelling, ulcers, and lumps (nodular lesions).
- Classic PAN (polyarteritis nodosa) is a systemic arteritis of small to medium muscular arteritis in which involvement of renal and visceral arteries is common Abdominal vessels have aneurysms or occlusions in 50% of PAN patients. Classic PAN does not involve the pulmonary arteries although the bronchial vessels may be involved. Granulomas, significant eosinophilia and an allergic diathesis are not part of the syndrome. Although any organ system may be involved, the most common manifestations include peripheral neuropathy, mononeuritis multiplex, intestinal ischemia, renal ischemia, testicular pain and livedo reticularis.
- b. Kawasaki's Disease
- The formulations and methods of the invention may be used to treat Kawasaki's disease. Tumor necrosis factor has been implicated in the pathophysiology of Kawasaki's disease (Sundel, R. P. (2002) Curr. Rheumatol. Rep. 4:474; Gedalia, A. (2002) Curr. Rheumatol. Rep. 4:25). Although the cause of Kawasaki's disease is unknown, it is associated with acute inflammation of the coronary arteries, suggesting that the tissue damage associated with this disease may be mediated by proinflammatory agents such as TNFα. Kawasaki's disease refers to a vasculitis that affects the mucus membranes, lymph nodes, lining of the blood vessels, and the heart. Kawasaki's disease is also often referred to as mucocutaneous lymph node syndrome, mucocutaneous lymph node disease, and infantile polyarteritis. Subjects afflicted with Kawasaki's disease develop vasculitis often involving the coronary arteries which can lead to myocarditis and pericarditis. Often as the acute inflammation diminishes, the coronary arteries may develop aneurysm, thrombosis, and lead to myocardial infarction.
- Kawasaki's disease is a febrile systemic vasculitis associated with edema in the palms and the soles of the feet, with enlargement of cervical lymph nodes, cracked lips and “strawberry tongue”. Although the inflammatory response is found in vessels throughout the body, the most common site of end-organ damage is the coronary arteries. Kawasaki's Disease predominantly affects children under the age of 5. The highest incidence is in Japan but is becoming increasingly recognized in the West and is now the leading cause of acquired heart disease in US children. The most serious complication of Kawasaki disease is coronary arteritis and aneurysm formation that occurs in a third of untreated patients.
- 3. Small Vessel Disease
- The formulations and methods of the invention may be used to treat small vessel disease. In one embodiment, the TNFα antibody of the invention is used to treat subjects who have small vessel vasculitis. The term “small vessel(s)” is used to refer to arterioles, venules and capillaries. Arterioles are arteries that contain only 1 or 2 layers of sooth muscle cells and are terminal to and continuous with the capillary network. Venules carry blood from the capillary network to veins and capillaries connect arterioles and venules. Examples of small vessel vasculitides are described below.
- a. Behcet's Disease
- The formulations and methods of the invention may be used to treat Behcet's disease. Tumor necrosis factor has been implicated in the pathophysiology of Behcet's disease (Sfikakis, P. P. (2002) Ann. Rheum. Dis. 61:ii51-3; Dogan, D. and Farah, C. (2002) Oftalmologia. 52:23). Behcet's disease is a chronic disorder that involves inflammation of blood vessels throughout the body. Behcet's disease may also cause various types of skin lesions, arthritis, bowel inflammation, and meningitis (inflammation of the membranes of the brain and spinal cord). As a result of Behcet's disease, the subject with the disorder may have inflammation in tissues and organs throughout the body, including the gastrointestinal tract, central nervous system, vascular system, lungs, and kidneys. Behcet's disease is three times more common in males than females and is more common in the east Mediterranean and Japan.
- b. Wegener's Granulomatosis
- The formulations and methods of the invention may be used to treat Wegener's granulomatosis. Tumor necrosis factor has been implicated in the pathophysiology of Wegener's granulomatosis (Marquez, J., et al. (2003) Curr. Rheumatol. Rep. 5:128; Harman, L. E. and Margo, C. E. (1998) Surv. Ophthalmol. 42:458). Wegener's granulomatosis refers to a vasculitis that causes inflammation of blood vessels in the upper respiratory tract (nose, sinuses, ears), lungs, and kidneys. Wegener's granulomatosis is also referred to as midline granulomatosis. Wegener's granulomatosis includes a granulomatous inflammation involving the respiratory tract, and necrotizing vasculitis affecting small to medium-sized vessels. Subjects who have Wegener's granulomatosis often also have arthritis (joint inflammation). Glomerulonephritis may also be present in affected subjects, but virtually any organ may be involved.
- c. Churg-Strauss Syndrome
- The formulations and methods of the invention may be used to treat Churg-Strauss syndrome. Tumor necrosis factor has been implicated in the pathophysiology of Churg-Strauss syndrome (Gross, W. L (2002) Curr. Opin. Rheumatol. 14:11; Churg, W. A. (2001) Mod. Pathol. 14:1284). Churg-Strauss syndrome refers to a vasculitis that is systemic and shows early manifestation signs of asthma and eosinophilia. Churg-Strauss syndrome is also referred to as allergic granulomatosis and angiitis, and occurs in the setting of allergic rhinitis, asthma and eosinophilia. Sinusitis and pulmonary infiltrates also occur in Churg-Strauss syndrome, primarily affecting the lung and heart. Peripheral neuropathy, coronary arteritis and gastrointestinal involvement are common
- M. Other Diseases
- The formulations and methods of the invention may be used to treat various other disorders in which TNFalpha activity is detrimental. Examples of other diseases and disorders in which TNFalpha activity has been implicated in the pathophysiology, and thus which can be treated using an antibody, or antibody portion, of the invention, include inflammatory bone disorders and bone resorption disease (see e.g., Bertolini. D. R., et al. (1986) Nature 319:516-518; Konig, A. et al. (1988) J. Bone Miner. Res. 3:621-627; Lerner, U. H. and Ohlin, A. (1993) J. Bone Miner. Res. 8:147-155; and Shanlar. G. and Stem, P. H. (1993) Bone 14:871-876), hepatitis, including alcoholic hepatitis (see e.g., McClain, C. J. and Cohen, D. A. (1989) Hepatology 9:349-351; Felver, M. E., et al. (1990) Alcohol. Clin. Exp. Res. 14:255-259; and Hansen, J., et al. (1994) Hepatology 20:461-474), viral hepatitis (Sheron, N., et al. (1991) J. Hepatol. 12:241-245; and Hussain, M. J., et al. (1994) J. Clin. Pathol. 47:1112-1115), and fulminant hepatitis; coagulation disturbances (see e.g., van der Poll, T., et al. (1990) N. Engl. J. Med. 322:1622-1627; and van der Poll, T., et al. (1991) Prog. Clin. Biol. Res. 367:55-60), bums (see eg., Giroir, B. P., et al. (1994) Am. J. Physiol. 267:H 118-124; and Liu. X. S., et al. (1994) Burns 20:40-44), reperfusion injury (see e.g., Scales. W. E., et al. (1994) Am. J Physiol. 267:G1122-1127; Serrick, C., et al. (1994) Transplantation 58:1158-1162; and Yao, Y. M., et al. (1995) Resuscitation 29:157-168), keloid formation (see e.g., McCauley, R. L., et al. (1992) J. Clin. Immunol. 12:300-308), scar tissue formation; pyrexia; periodontal disease; obesity and radiation toxicity.
- Examples of other disorders that may be treated with the formulations and methods of the invention are described in US20040126372 and U.S. Pat. No. 6,258,562, each of which is incorporated by reference herein.
- In one embodiment, the formulation and methods of the invention are used to treat rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. The formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. In one embodiment, a dose of about 40 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject every other week for the treatment of rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. In one embodiment, a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis. In one embodiment, the formulation is administered subcutaneously, every other week (also referred to as biweekly, see methods of administration described in US20030235585, incorporated by reference herein) for the treatment of rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis. In one embodiment, the formulation is administered subcutaneously, monthly for the treatment of rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis.
- In one embodiment, the formulation of the invention is used to treat Crohn's disease or ulcerative colitis. The formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating Crohn's disease. In one embodiment, a dose of about 160 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 1.6 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject initially at about
day 1, followed by a subsequent dose of 80 mg of the antibody (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) two weeks later, followed by administration of about 40 mg (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) every other week for the treatment of Crohn's disease. In one embodiment, the formulation is administered subcutaneously, according to a multiple variable dose regimen comprising an induction dose(s) and maintenance dose(s) (see, for example, U.S. Patent Publication Nos. US20060009385 and US20090317399, incorporated by reference herein) for the treatment of Crohn's disease or ulcerative colitis, each of which are incorporated by reference herein) for the treatment of Crohn's disease or ulcerative colitis. In one embodiment, the formulation is administered subcutaneously, biweekly or monthly for the treatment of Crohn's disease or ulcerative colitis. In one embodiment, a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of Crohn's disease or ulcerative colitis. In one embodiment, the formulation of the invention is used to treat psoriasis. - The formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating psoriasis. In one embodiment, an initial dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject, followed by a subsequent dose of 40 mg of the antibody (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) every other week starting one week after the initial dose. In one embodiment, the formulation is administered subcutaneously, according to a multiple variable dose regimen comprising an induction dose(s) and maintenance dose(s) (see, for example, US 20060009385 and WO 2007/120823, each of which are incorporated by reference herein) for the treatment of psoriasis. In one embodiment, the formulation is administered subcutaneously, biweekly or monthly for the treatment of psoriasis. In one embodiment, a dose of about 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) in the formulation of the invention is administered to a human subject monthly for the treatment of psoriasis.
- In one embodiment, the formulation of the invention is used to treat juvenile idiopathic arthritis (JIA). The formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject according to a dosing scheme and dose amount effective for treating JIA. In one embodiment, 20 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention (e.g., 0.2 mL of a 100 mg/mL formulation of the invention) is administered to a subject weighing 15 kg (about 33 lbs) to less than 30 kg (66 lbs) every other week for the treatment of JIA. In another embodiment, 40 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention (e.g., 0.4 mL of a 100 mg/mL formulation of the invention) is administered to a subject weighing more than or equal to 30 kg (66 lbs) every other week for the treatment of JIA. In one embodiment, the formulation is administered subcutaneously, according to a weight-based fixed dose (see, for example, U.S. Patent Publication No. 20090271164, incorporated by reference herein) for the treatment of JIA. In one embodiment, the formulation is administered subcutaneously biweekly or monthly for the treatment of JIA
- In one embodiment, an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject for treatment of a disorder associated with detrimental TNFa activity according to a monthly dosing schedule, whereby the antibody is administered once every month or once every four weeks. As described above, examples of disorders that may be treated according to a monthly dosing schedule using the formulations and methods of the invention include, but are not limited to, rheumatoid arthritis, ankylosing spondylitis, JIA, psoriasis, Crohn's disease, ulcerative colitis, hidradenitis suppurativa, giant cell arteritis, Behcet's disease, sarcoidosis, diabetic retinopathy, or psoriatic arthritis. Thus, the formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab), may be administered to a human subject for treatment of a disorder associated with detrimental TNFa activity according to a monthly dosing schedule. In one embodiment, 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) is administered to a subject having a disorder associated with detrimental TNFa activity. In one embodiment, 80 mg of a human TNF alpha antibody, or antigen-binding portion thereof, in the formulation of the invention (e.g., 0.8 mL of a 100 mg/mL formulation of the invention) is administered monthly or biweekly to a subject for the treatment of a disorder associated with detrimental TNFa activity.
- Dose amounts described herein may be delivered as a single dose (e.g., a single dose of 40 mg in 0.4 mL or 80 mg dose in 0.8 mL), or, alternatively may be delivered as multiple doses (e.g., four 40 mg doses or two 80 mg doses for delivery of a 160 mg dose).
- The formulation of the invention comprising an isolated human TNF alpha antibody, or antigen-binding portion thereof, (e.g., adalimumab) may also be administered to a subject in combination with an additional therapeutic agent. In one embodiment, the formulation is administered to a human subject for treatment of rheumatoid arthritis in combination with methotrexate or other disease-modifying anti-rheumatic drugs (DMARDs). In another embodiment, the formulation is administered to a human subject for treatment of JIA in combination with methotrexate or other disease-modifying anti-rheumatic drugs (DMARDs). Additional combination therapies are described in U.S. Pat. Nos. 6,258,562 and 7,541,031; and U.S. Patent Publication No. US20040126372, the entire contents of all of which are incorporated by reference herein.
- The formulation of the invention comprising a human TNF alpha antibody, or antigen-binding portion thereof, may also be used to treat a subject who has failed previous TNF inhibitor therapy, e.g., a subject who has lost response to or is intolerant to infliximab.
- The invention is further illustrated in the following examples, which should not be construed as further limiting.
- There have been reports of pain associated with the subcutaneous administration of a human anti-TNFα antibody, e.g., adalimumab. In placebo-controlled trials, 20% of patients treated with adalimumab developed injection site reactions (erythema and/or itching, haemorrhage, pain or swelling), compared to 14% of patients receiving placebo. Most injection site reactions are mild and do not generally necessitate drug discontinuation.
- There are two main components of the injection pain associated with adalimumab: the pain associated with the needle stick, and the pain associated with the injection of drug into the tissue. The injection-related pain may be related to the Adalimumab formulation and/or to the volume of medication. The following study examined whether various formulations have an impact on injection pain following subcutaneous delivery of adalimumab.
- The primary objectives of this study were to compare injection-related pain of three high concentration (100 mg/mL) adalimumab formulations in the PHYSIOLIS™ pre-filled syringe with the current (50 mg/mL) adalimumab commercial formulation in the current pre-filled syringe; and to assess the bioavailability of three high concentration (100 mg/mL) adalimumab formulations in comparison to the current (50 mg/mL) adalimumab commercial formulation. The secondary objective of this study was to assess the safety and tolerability of all four adalimumab formulations.
- 200 healthy adult male and female subjects who fulfilled the study eligibility criteria were recruited to participate in the study. Generally, the study was conducted according to a randomized parallel-group design. Pain assessment data was preferably obtained from all 200 subjects. Evaluation of pharmacokinetics (PK) was done only for the first 100 or so subjects.
- Subjects from each treatment group were scheduled to receive one subcutaneous injection of
adalimumab 40 mg via a pre-filled syringe. There were four treatment groups, one for each of the four formulations as set forth in Table 1 below. After meeting the selection criteria, subjects were randomly assigned in roughly equal numbers to one of the four treatment groups shown in Table 1. - The three high concentration formulations (F1, F3, and F4), each contained 40 mg of adalimumab in 0.4 mL of solution in the PHYSIOLIS™ pre-filled syringe. F1, F3, and F4 were compared to the current adalimumab commercial formulation of 40 mg of adalimumab in 0.8 mL of solution in the current pre-filled syringe. The ingredients for each of the formulations is described below in Table 1. The formulations described in Table 1 also refer to the formulations described in Examples 2-7 below.
-
TABLE 1 Treatment Groups Treatment No. of Study Day 1 SCGroup Subjects Injection Formulation A 50 High Conc. adalimumab, Formulation 1 (F1) Mannitol, (40 mg/0.4 mL in Citric acid monohydrate, the PHYSIOLIS ™ Sodium citrate, pre-filled syringe) Disodium phosphate dihydrate, Polysorbate 80,Water for injection, Sodium Hydroxide added as necessary to adjust pH. B 50 High Conc. adalimumab, Formulation 3 (F3) Mannitol, (40 mg/0.4 mL in Polysorbate 80,the PHYSIOLIS ™ Water for injection pre-filled syringe) C 50 High Conc. adalimumab, Formulation 4 (F4) Polysorbate 80,(40 mg/0.4 mL in Water for injection the PHYSIOLIS ™ pre-filled syringe) D 50 Current adalimumab, Commercial Mannitol, Formulation Citric acid monohydrate, (40 mg/0.8 mL in Sodium citrate, the current pre-filled Disodium phosphate syringe) dihydrate, Sodium dihydrogen phosphate dihydrate, Sodium chloride, Polysorbate 80,Water for injection, Sodium Hydroxide added as necessary to adjust pH - The first about 100 subjects to fulfill all entry criteria and enroll in the study were randomized to the four treatment groups in roughly equal numbers in each group and participated as either
Cohort 1 or Cohort 2. The second about 100 subjects to fulfill all entry criteria and enroll in the study were randomized to the four treatment groups, in roughly equal numbers in each group, and participated as Cohorts 3-5. It is the Cohort number that specifies if a subject has pharmacokinetic (PK) and pain assessments or only pain assessments as described in Table 2 below. -
TABLE 2 Assignment of Study Subjects Total No. of Subjects Cohort N Assessments A B C D 1 50 PK and Pain 13 12 13 12 2 44 PK and Pain 11 12 10 11 3 38 Pain 9 9 10 10 4 39 Pain 10 10 10 9 5 29 Pain 7 7 7 8 - Pharmacokinetic sample collection and pain assessments was done for all subjects in the first two cohorts of about 100 patients (
Cohorts 1 and 2). Subjects in Cohorts 3-5 only participated in pain assessments, and no pharmacokinetic samples were be collected for these subjects. Safety and tolerability were to be assessed in all subjects of all 5 cohorts. Each subject was randomly assigned to receive one injection of adalimumab onStudy Day 1. Each dose of study drug was to be administered subcutaneously by an appropriate site staff member via a pre-filled syringe in accordance with the proper injection method. The injection was given subcutaneously in the abdomen 2 inches to the right of the navel. Questionnaires were administered by a different study staff member than the individual administering the injection, as often as possible. - Subjects in
Cohorts 1 and 2 (pharmacokinetic and pain assessments) were confined to the study site and supervised for approximately 10 days (9 nights). Confinement for each subject began on Study Day −1 (1 day prior to the dosing day) and ended after the collection of the 192 hour blood samples and scheduled study procedures on Study Day 9. Serial blood samples were collected through Study Day 57 after dosing with subjects returning for outpatient visits. Safety and tolerability were assessed throughout the study. Subjects in Cohorts 3-5 (pain assessments only) were confined to the study site and supervised for approximately 3 days (2 nights). Confinement for each subject began on Study Day −1 (1 day prior to the dosing day) and ended after the completed study procedures on Study Day 2. Safety and tolerability were assessed throughout the study. - In addition to bioavailability and AAA assays, tolerability was preferably assessed as follows:
- 1) Immediately following the injection on Study Day 1: Pain Assessment Module was completed by the subject.
- 2) Approximately 10 minutes following the injection on Study Day 1: Draize Scale (hemorrhage, petechiae, erythema, edema, and pruritus) was evaluated by a qualified site staff member.
- 3) Approximately 15 minutes following the injection on Study Day 1: Pain Assessment Module was completed by the subject.
- 4) Approximately 30 minutes following the injection on Study Day 1: Pain Assessment Module and Draize Scale evaluation was completed by the subject and a qualified site staff member, respectively.
- The demographics of subjects in the treatment groups are as follows, shown in Table 3, below.
-
TABLE 3 Patient Demographics High Conc. High Conc. High Conc. Commercial Formulation 1 Formulation 3Formulation 4Formulation Variable (N = 50) (N = 50) (N = 50) (N = 50) Age (yrs) 29.6 ± 8.7 29.5 ± 9.4 30.0 ± 8.9 30.3 ± 9.7 Weight 68.3 ± 13.9 69.6 ± 9.6 67.0 ± 8.4 68.5 ± 10.0 (kg) Sex 31 F (62%), 25 F (50%), 31 F (62%), 30 F (60%), 19 M (38%) 25 M (50%) 19 M (38%) 20 M (40%) Race 37 white (74%), 45 white (90%), 36 white (72%), 40 white (80%), 9 black (18%), 3 black (6%), 10 black (20%), 8 black (16%), 4 other (8%) 2 other (4%) 4 other (8%) 2 other (4%) - Three new high concentration formulations (referred to herein as
Formulation -
TABLE 4 Formulation 1 (F1) COMPOSITION OF THE BULK SOLUTION 1 mL bulk solution contains Concentration Name of ingredient [mg] Active Substance adalimumab (A-765865)* 100.00 Excipients Mannitol 42.00 Citric acid monohydrate 1.31 Sodium citrate 0.31 Disodium phosphate dihydrate 1.53 Sodium dihydrogen phosphate dihydrate 0.86 Polysorbate 80 1.00 Sodium Hydroxide q.s. Water for injections ad 1,041.00 Nitrogen — Density of the solution: 1.041 g/mL *Used as concentrate. -
TABLE 5 Formulation 3 (F3) COMPOSITION OF THE BULK SOLUTION 1 mL bulk solution contains Concentration Name of ingredient [mg] Active Substance adalimumab (A-765865)* 100 Excipients Mannitol 42.00 Polysorbate 80 1.00 Water for injections ad 1,040.00 Nitrogen — *Used as concentrate. Density of the solution: 1.040 g/mL -
TABLE 6 Formulation 4 (F4) COMPOSITION OF THE BULK SOLUTION 1 mL bulk solution contains Concentration Name of ingredient [mg] Active Substance adalimumab (A-765865)* 100.00 Excipients Polysorbate 80 1.00 Water for injections ad 1,026.00 Nitrogen — *Used as concentrate. Density of the solution: 1.026 g/mL -
TABLE 7 Commercial 50 mg/mL adalimumab formulation COMPOSITION OF THE BULK SOLUTION 1 mL bulk solution contains Concentration Name of ingredient [mg] Active Substance adalimumab (A-765865)* 50.00 Excipients Mannitol 12.00 Citric acid monohydrate 1.30 Sodium citrate 0.30 Disodium phosphate dihydrate 1.53 Sodium dihydrogen phosphate dihydrate 0.86 Polysorbate 80 1.00 Sodium Hydroxide q.s. Water for injections ad about 1,000 Sodium Chloride 6.16 Nitrogen — - Study drug (adalimumab) in the various formulations was administered in the morning at
Hour 0 onStudy Day 1. The four treatment groups are set forth in Table 1 above as Groups A, B, C and D. Subjects in each treatment group were subcutaneously injected with only a single adalimumab formulation via a pre-filled syringe. - Two types of syringes were used in this study; the currently commercially available glass pre-filled syringe (“current pre-filled syringe”) was used for the reference current adalimumab commercial formulation (40 mg of adalimumab in 0.8 mL of solution), and the PHYSIOLIS™ pre-filled syringe for the three high concentration test formulations (40 mg of adalimumab in 0.4 mL of solution). The PHYSIOLIS™ pre-filled syringe has a 29 gauge needle (the current pre-filled syringe has a 27 gauge ½ inch length fixed needle), a latex-free needle shield, and a plunger stopper which is coated to minimize leachables.
- The Pain Visual Analog Scale was used to quantitatively assess pain sensation. The following instructions were followed to assess the Pain Visual Analog Scale (VAS):
- The pain scale was administered to the subject at three different times after the injection: immediately after the injection, at 15 minutes after the injection, and at 30 minutes after the injection on Study Day 1. The pain scale was shown and read to the subject, who was asked to place one straight vertical mark along the line in the pain scale to indicate their current level of pain at the injection site (for example see below). An indication of 0 meant no pain, while the highest score (10) indicated “the worst imaginable pain.” An illustrative pain scale used in the study is shown below:
- Following the completion of the pain scale, the qualitative assessment of pain was administered three times after the injection: immediately following the injection, at 15 minutes post the injection, and 30 minutes following the injection on Study Day 1. An exemplary qualitative assessment of pain used in the study is shown below:
- After the qualitative assessment of pain was completed, a needle pain assessment was administered immediately following the injection. An exemplary needle pain assessment used in the study is shown below:
- Were you able to tell the difference between the pain from the needle entering your skin and the pain from the solution that was injected?
- a. If yes, was most of your pain caused by the needle entering your skin or was most of your pain caused by the solution that was injected?
Most of my pain was caused by the needle entry
Most of my pain was caused by the solution that was injected - Qualified site personnel completed this assessment for each subject approximately 10 minutes and 30 minutes after the injection on
Study Day 1. - Hemorrhage/Petechiae at injection site:
-
- 0: None
- 1: Isolated; up to 5 petechiae
- 2: Isolated but >5 petechiae
- 3: Many petechiae, some coalescence
- 4: Spots of blood on surface
- 5: Frank bleeding
Erythema at injection site: - 0: No erythema
- 1: Very slight (barely perceptible) erythema
- 2: Well-defined erythema
- 3: Moderate to severe erythema
- 4: Severe erythema (beet redness)
Edema at injection site: - 0: No edema
- 1: Very slight (barely perceptible) edema
- 2: Slight edema (edges of area well defined by slight raising)
- 3: Moderate edema (raised ˜1 mm)
- 4: Severe edema (raised >1 mm, extending beyond area of injection)
Pruritis at injection site: - 0: No pruritis
- 1: Occasional pruritis
- 2: Constant pruritis
- To determine whether delivery of adalimumab could be improved, new high concentration formulations were developed. Formulations F1, F3, and F4, as shown below, have half of the volume (i.e., 0.4 mL vs. 0.8 mL) and twice the protein concentration (100 mg/mL vs. 50 mg/mL) compared to the current commercial adalimumab formulation, and they also have different excipient compositions. Experiments described herein were designed to assess whether any of the new formulations are superior to the current commercial adalimumab formulation.
- The pain visual analog scale was chosen to assess injection site pain, and was used to evaluate impact of formulation composition on pain sensations. In addition, tolerability of various
new adalimumab 100 mg/mL formulations were compared to the current commercial formulation (50 mg/mL adalimumab formulation). Data in this example supports the surprising finding that the new formulations, especially Formulation 3 (F3), decreases pain significantly relative to the current commercial formulation. Surprisingly, F3 also decreased pain significantly relative to formulations F1 and F4. - Specifically,
FIG. 1 shows that administration ofhigh concentration Formulations - As described in Table 8, immediately after injection, subjects who received the current Humira formulation reported a mean (SD) pain score of 3.29 (2.57) cm. The mean pain scores for
Formulation 1 andFormulation 3 were statistically significantly lower than that for the current Humira formulation (p<0.001). The estimated differences from the current Humira formulation were −1.50 (95% CI: −2.31-−0.69 cm) for Formulation F1, and −2.70 (95% CI: −3.52-−1.89 cm) for Formulation F3. Thus, Treatments A and B (high concentration Formulations 1 and 3) resulted in 45.6% and 82.7% reductions in injection site pain, respectively. Statistical tests were not performed for the pain scores assessed at 15 minutes and 30 minutes after injection because a majority of the subjects reported no pain at these time points. As described inFIG. 1 , the minimum/maximum VAS scores immediately after injection were as follows: Formulation F1, 0.00-8.3; Formulation F3, 0.00-2.20; Formulation F4, 0.20-8.70; and current commercial formulation, 0.00-10.00. - It was apparent that the pain associated with the injection of
Formulation 3 was dramatically reduced compared to the same for the current commercial formulation. Specifically, mean pain value, as assessed by the pain visual analog scale (VAS) immediately after injection, decreased from a mean of 3.29 in the current commercial formulation to 0.56 inFormulation 3, a stark 83% reduction. In fact, the pain reduction associated withFormulation 3 was so significant, it was 69% reduced from the level of the next best formulation (in terms of pain)—Formulation 1 (1.79). - Similarly, the mean pain scale for
Formulation 1 reduced to 1.79, a 45% reduction from the 3.29 pain scale associated with the current commercial formulation. -
TABLE 8 Pain Visual Analog Scales (VAS) Immediately After Injection Comparisons with Current Mean LS Formulation& Treatment N (SD) Mean& Estimate P-value# 95% CI High Conc. 50 1.79 1.79 −1.50 <0.001 −2.31, Formulation 1 (2.08) −0.69 High Conc. 50 0.56 0.58 −2.71 <0.001 −3.52, Formulation 3 (0.56) −1.90 High Conc. 50 4.12 4.11 0.82 0.976 0.01, Formulation 4 (2.50) 1.63 Current 50 3.29 3.29 Formulation (2.57) #From a one-sided test with the null hypothesis being that the mean for the test formulation is ≧ the mean for the current formulation &Based on ANOVA. - A Qualitative Assessment of Pain was also administered to subjects immediately after injection, 15 minutes after injection and at 30 minutes after injection for all four adalimumab treatments Immediately after injection, an assessment of “no discomfort” was reported with greatest frequency by 31 subjects (31/50, 62.0%) who had received
Formulation 3, followed by 19 subjects (19/50, 38.0%) who had receivedFormulation 1, 7 subjects (7/50, 14.0%) who had received the current Humira formulation, and one subject (1/50, 2.0%) who had receivedFormulation 4. Of those subjects who reported discomfort immediately after injection, “stinging pain” was the most frequently reported sensation with 30 subjects (30/50, 60%) for each of the current formulation andformulation Formulation Formulation 3. At 15 minutes after injection, a large majority of subjects receiving each treatment reported “no discomfort” at the injection site. - Study site staff also utilized the Draize Scale to evaluate hemorrhage/petechiae, erythema, edema and pruritis at the injection site of each subject. Ten minutes after injection the majority of subjects in all treatment groups had no observed injection-site hemorrhages or petechiae, edema or pruritis.
- All four formulations were well tolerated during the study. A summary of preliminary adverse events (AE) data is shown below in Table 9.
-
TABLE 9 Preliminary Adverse Events (AE) High Conc. High Conc. High Conc. Current Formulation Formulation Formulation Formulation 1 (N = 50) 3 (N = 50) 4 (N = 50) (N = 50) Any AE 7 (14%) 7 (14%) 6 (12%) 3 (6%) Any AE at 3 (6%) 3 (6%) 2 (4%) 1 (2%) least possibly drug related Any severe AE 0 0 0 0 Any serious 0 0 0 0 AE Any AE 0 0 0 0 leading to study discontinuation Deaths 0 0 0 0 - Accordingly, the data demonstrates that the new 100 mg/mL formulations, especially
formulations - The reduction in pain using the VAS score was not related to the difference in needle size (a 27 G needle was used to administer the current adalimumab commercial formulation and a 29 G needle was used to administer formulations F1, F3, and F4). In particular, a needle prick accounts for an immediate pain response, whereas the pain response measured by the VAS scale indicated a prolonged persistent pain over several minutes, demonstrating that the injected solution itself contributes to the majority of the response. In addition, all of the test formulations (F1, F3, and F4) were injected using the same size needle, yet F1, F3, and F4 had very different VAS scores. This result further demonstrates that it was the formulation contributing to the pain effect. and that this can be separated from the size of the needle used to administer the formulations.
- The following example describes a
Phase 1, single-blind, single-dose, parallel-group design, randomized study in healthy volunteers (same study described above in Example 1). The primary objectives of this study were to compare injection-related pain of three high concentration (100 mg/mL) adalimumab formulations in the Physiolis PFS with the current (50 mg/mL) adalimumab (Humira) formulation in the current PFS (see Example 1), and to assess the bioavailability of three high concentration (100 mg/mL) adalimumab formulations in comparison to the current commercial (50 mg/mL) adalimumab (Humira) formulation. The secondary objective of this study was to assess the safety and tolerability of all four adalimumab formulations. - Two hundred healthy volunteers were enrolled in this study (Table 10). Pain assessment data were obtained from all 200 subjects. Adalimumab pharmacokinetics were evaluated in the first 100 subjects. A description of the formulations is provided above in Table 1.
-
TABLE 10 Treatment Groups Number Number of Subjects of for Treatment Subjects Pharmacokinetic Study Day 1 Group for Study Data SC Injection A 50 24 High Concentration Adalimumab Formulation No. 1 (40 mg/0.4 mL in the Physiolis PFS) B 50 24 High Concentration Adalimumab Formulation No. 3 (40 mg/0.4 mL in the Physiolis PFS) C 50 23 High Concentration Adalimumab Formulation No. 4 (40 mg/0.4 mL in the Physiolis PFS) D 50 23 Current Commercial Humira Formulation (40 mg/0.8 mL in the current PFS) *See Tables 4-7 for formulation compositions. - Subjects from each treatment group received one subcutaneous injection of 40 mg adalimumab via PFS on
Study Day 1. Each dose of study drug was administered subcutaneously by an appropriate site staff member in accordance with the proper injection method as described in the protocol. The injection was given subcutaneously in the abdomen 2 inches to the right of the navel. Questionnaires were administered by a different study staff member than the individual administering the injection, as often as possible. - Following a single subcutaneous dose of adalimumab, the central values of the pharmacokinetic parameters, Tmax, Cmax, AUC0-360 and AUC0-1344 were similar between Treatments A, B (high
concentration adalimumab Formulations FIGS. 2 and 3 ). The central values of C. and AUC0-360 values were greater (p<0.05) for Treatment C versus Treatment D. - For Treatment Group A versus D, the point estimates for the ratios of Cmax, AUC0-360, and AUC0-1344 central values for Treatments A and B were near unity, and the 90% confidence intervals were within the 0.80 to 1.25 range. For Treatment B versus D, the point estimates for the ratios of C. and AUC0-360 central values were near unity and the 90% confidence intervals were within the 0.80 to 1.25 range. For AUC0-1344, the upper bound of the 90% confidence interval for Treatments B versus D was above 1.25. For Treatment C versus D, the point estimates for the ratio of Cmax, AUC0-360 and AUC0-1344 central values were 1.429, 1.309, and 1.170 respectively, indicating that the relative bioavailability of Treatment C (Formulation 4) was greater.
-
TABLE 11 Relative Bioavailability and 90% Confidence Intervals for the Bioequivalence Assessment Relative Bioavailability Treatments£ 90% Test vs. PK Central Value Point Confidence Reference Parameter Test Reference Estimate Interval A vs. D Cmax 4.47 4.39 1.018 0.859-1.207 AUC0-360 1192.14 1192.23 1.000 0.860-1.163 AUC0-1344 2306.91 2387.28 0.966 0.814-1.147 B vs. D Cmax 4.52 4.39 1.029 0.868-1.219 AUC0-360 1222.24 1192.23 1.025 0.882-1.192 AUC0-1344 2547.95 2387.28 1.067 0.899-1.266 C vs. D Cmax 6.28 4.39 1.429 1.202-1.699 AUC0-360 1561.05 1192.23 1.309 1.123-1.527 AUC0-1344 2794.29 2387.28 1.170 0.983-1.394 £Treatments A, B or C: a single dose of high concentration adalimumab Formulation PK = Pharmacokinetic. - Based on the pharmacokinetic results, the relative bioavailability of Treatments A and B were similar to Treatment D, the currently marketed Humira formulation. The relative bioavailability of Treatment C was greater when compared to Treatment D. The unexpected increase in bioavailability for Treatment C suggests that the effective dose amount administered to a subject may be reduced.
- Twelve subjects had positive AAA samples during any time in the study, with only two subjects determined as AAA positive according to the pre defined definition. Because of the small sample size and relatively similar numbers of AAA positive samples, no conclusions can be made of the immunogenicity between the treatments.
- The treatments tested were generally well tolerated by the subjects. No clinically significant vital signs, ECG or laboratory measurements were observed during the course of the study. The majority of adverse events were assessed by the investigator as probably not or not related to study drug and mild in severity. No adverse events were assessed as severe.
- No deaths, serious adverse events or discontinuations due to adverse events occurred during the study.
- Results of other safety analyses, including individual subject changes and potentially clinically significant values for vital signs, ECG and laboratory measurements, were unremarkable for all treatment groups.
- The tolerability assessments that were conducted included completion of a Pain Assessment Module (Pain Visual Analog Scale [VAS]), Qualitative Assessment of Pain and Needle Pain Assessment) and the Draize Scale (see Example 1).
- The objective of the following study was to evaluate the pharmacokinetic profiles of adalimumab formulation F4 in contrast to the adalimumab commercial formulation (see Table 7 above for a description of the formulation).
- The pharmacokinetic profiles of HUMIRA (Adalimumab) were studied in male and female Beagle dogs (2/sex/s.c. administration and 2 males/i.v. administration, Marshall Bio Resources USA, Inc., North Rose, N.Y. 14516) after a single subcutaneous (s.c.) injection of the HUMIRA commercial formulation (adalimumab) and a HUMIRA test formulation corresponding to formulation F4 of the previous examples (adalimumab), as well as an intravenous (i.v.) injection of the HUMIRA commercial formulation as a control. The administered dose was 40 mg/dog (at 100 mg/mL for F4 and 50 mg/mL of the commercial formulation).
- For the determination of Adalimumab serum exposure levels, blood samples were collected at 0.083, 4, 24, 48, 96, 168, 240, 312, 384, 456, 528 and 864 hours post administration (p.a.). Examined parameters were clinical signs (twice weekly) and mortality.
- Apart from mucous feces in one male animal of the control group, no relevant clinical signs were observed. The incidences of clinical signs are summarized in Tables 14 and 15 below.
- The pharmacokinetic results (described in Table 12 below) of this study indicated that the bioavailability after s.c. dosing was about 80% and the exposure levels seemed to be higher in females than in males after s.c. dosing. There was a trend for higher exposure levels following s.c. dosing of the test formulation compared with s.c. dosing of the commercial formulation in males.
-
TABLE 12 Pharmacokinetic results AUC/Dose Animal AUC0-528 h (μg*Hours/mL/ Treatment Gender Number (μg*Hours/mL) mg/kg) Vdss (mL) T1/2 (Hours) Test male 1001 9020 226 708 39.3 formulation, s.c. 1003 11400 286 870 187.2 Mean 10200 ± 1680 256 ± 42.4 789 ± 115 113.3 ± 104.6 female 1002 15400 384 388 55.5 1004 15800 395 469 54.5 Mean 15600 ± 283 390 ± 7.78 429 ± 57.3 55 ± 0.7 Commercial male 2001 8010 200 692 21.4 formulation, s.c. 2003 8230 206 695 72.7 Mean 8120 ± 156 203 ± 4.24 694 ± 2.12 47.1 ± 36.3 female 2002 12700 319 385 34.0 2004 17200 431 477 119.0 Mean 15000 ± 3180 375 ± 79.2 431 ± 65.1 76.5 ± 60.1 Commercial male 3001 9360 234 548 45.5 formulation, i.v. 3003 11900 298 407 22.2 Mean 10600 ± 1800 266 ± 45.3 478 ± 99.7 33.9 ± 16.5 -
TABLE 13 Animal identification Animal No. Tattoo-No. Sex 1001 1246730 Male 1003 1230230 Male 1002 1282302 Female 1004 1288688 Female 2001 1284879 Male 2003 1298951 Male 2002 1297237 Female 2004 1280491 Female 3001 1285514 Male 3003 1290143 Male -
TABLE 14 Summary of Clinical Observations in Males Dosage Group: 2 3 1 Animals Examined: 4 4 2 Number Normal: 3 3 2 Category, Observation a b a b Excretion, feces 1 4 0 0 Note: a = Number of animals with observation b = Number of days observation seen -
TABLE 15 Summary of Clinical Observations in Females Dosage Group: 2 3 1 Animals Examined: 2 2 2 Number Normal: 2 2 2 Category, Observation Note: a = Number of animals with observation b = Number of days observation seen - The following example compares the stability of high concentration formulations F1, F3, and F4 with the commercial adalimumab formulation. Stability was examined using freeze/thaw tests.
- High concentration human anti-TNFα antibody formulations were prepared as described in Example 1, Table 1 above.
- The compounded solutions were sterile filtered and aliquoted in 8×30 mL PETG bottles at 20 mL, respectively. The solutions were practically free from particles in visual inspection.
- The samples for T0 were directly placed into a 2-8° C. refrigerator. The other bottles were put into the −80° C. cube to freeze.
- The next day the bottles were thawed in water baths with a temperature of 25° C. or 37° C., respectively.
- The Freeze/Thaw cycles were repeated 5 times. At T0 (before any freeze-thaw cycles), T1 (after one freeze-thaw cycle), T3 (after three freeze-thaw cycles) and T5 (after five freeze-thaw cycles) samples were taken for analysis and stored in a 2-8° C. fridge.
-
- n=1 per pullpoint from 4 samples
- Sample volume: 20 mL
- Freeze/Thaw: −80° C./25° C.+37° C.
- Freeze/thaw cycles: 5
- After the cycling the samples were analyzed in the lab using each of the following measures: Optical appearance (at each time point); absorption at 340 nm; subvisible particles (at GGDDA); Photon-correlation-spectroscopy (PCS); Size Exclusion Chromatography (SEC); and Ion Exchange Chromatography (IEC).
- The measurement of subvisible particles was made at the Klotz particle measurement device. The results are shown in Table 16.
-
TABLE 16 Counts of particles >=1 μm, >=10 μm, and >=25 μm Time- Temper- Particles >= point Sample ature Charge 1 μm 10 μm 25 μm T0 HC F1 (25° C.) E161118001CL 9 1 0 T0 HC F1 (37° C.) E161118001CL 7 2 1 T1 HC F1 25° C. E161118001CL 3 0 0 T1 HC F1 37° C. E161118001CL 33 1 0 T3 HC F1 25° C. E161118001CL 3 0 0 T3 HC F1 37° C. E161118001CL 20 1 0 T5 HC F1 25° C. E161118001CL 4 0 0 T5 HC F1 37° C. E161118001CL 94 0 0 T0 HC F3 (25° C.) E161119001CL 6 3 1 T0 HC F3 (37° C.) E161119001CL 12 2 0 T1 HC F3 25° C. E161119001CL 4 1 0 T1 HC F3 37° C. E161119001CL 7 2 0 T3 HC F3 25° C. E161119001CL 3 1 0 T3 HC F3 37° C. E161119001CL 9 2 1 T5 HC F3 25° C. E161119001CL 7 0 0 T5 HC F3 37° C. E161119001CL 5 0 0 T0 HC F4 (25° C.) E161120001CL 5 1 1 T0 HC F4 (37° C.) E161120001CL 7 1 0 T1 HC F4 25° C. E161120001CL 6 1 0 T1 HC F4 37° C. E161120001CL 5 1 0 T3 HC F4 25° C. E161120001CL 12 1 1 T3 HC F4 37° C. E161120001CL 60 0 0 T5 HC F4 25° C. E161120001CL 13 0 0 T5 HC F4 37° C. E161120001CL 22 1 0 T0 commercial (25° C.) E161121001CL 464 2 1 T0 commercial (37° C.) E161121001CL 198 0 0 T1 commercial 25° C. E161121001CL 143 1 0 T1 commercial 37° C. E161121001CL 285 0 0 T3 commercial 25° C. E161121001CL 108 0 0 T3 commercial 37° C. E161121001CL 224 0 0 T5 commercial 25° C. E161121001CL 39 0 0 T5 commercial 37° C. E161121001CL 151 0 0 - The >=1 μm particle data showed a clear trend to a higher particle load in Humira commercial and high concentration (HC) F1 at T5, reflecting a characteristic behavior of buffer salt or sodium chloride containing adalimumab formulations.
-
Sample name Sum Aggregates Monomer Sum Fragments T0, HC F1, 25° C. 0.42 99.50 0.09 T0, HC F1, 37° C. 0.43 99.46 0.11 T0, HC F3, 25° C. 0.39 99.54 0.07 T0, HC F3, 37° C. 0.41 99.50 0.09 T0, HC F4, 25° C. 0.43 99.46 0.11 T0, HC F4, 37° C. 0.42 99.48 0.11 T0, commercial, 25° C. 0.36 99.55 0.09 T0, commercial, 37° C. 0.35 99.56 0.09 T1, HC F1, 25° C. 0.43 99.47 0.10 T1, HC F1, 37° C. 0.44 99.48 0.08 T1, HC F3, 25° C. 0.38 99.53 0.09 T1, HC F3, 37° C. 0.37 99.54 0.09 T1, HC F4, 25° C. 0.44 99.47 0.09 T1, HC F4, 37° C. 0.44 99.46 0.10 T1, commercial, 25° C. 0.35 99.56 0.08 T1, commercial, 37° C. 0.35 99.56 0.10 T3, HC F1, 25° C. 0.42 99.47 0.10 T3, HC F1, 37° C. 0.42 99.48 0.11 T3, HC F3, 25° C. 0.40 99.48 0.12 T3, HC F3, 37° C. 0.40 99.52 0.08 T3, HC F4, 25° C. 0.48 99.41 0.11 T3, HC F4, 37° C. 0.44 99.48 0.08 T3, commercial, 25° C. 0.36 99.54 0.10 T3, commercial, 37° C. 0.34 99.55 0.11 T5, HC F1, 25° C. 0.43 99.48 0.09 T5, HC F1, 37° C. 0.45 99.45 0.10 T5, HC F3, 25° C. 0.41 99.48 0.11 T5, HC F3, 37° C. 0.39 99.48 0.13 T5, HC F4, 25° C. 0.47 99.43 0.10 T5, HC F4, 37° C. 0.49 99.40 0.11 T5, commercial, 25° C. 0.36 99.56 0.08 T5, commercial, 37° C. 0.40 99.47 0.13 - Subvisible particle counts for >=10 μm and >=25 both were very low. Freeze/thaw cycling did not lead to an increased number of subvisible particles, indicating that the tested formulations had favorable stability.
- The SEC results are shown in Table 17. Table 17 indicates the percentages of SEC aggregates, monomers, and fragments in each of the solutions at T0 (before any freeze-thaw cycles), T1 (after one freeze-thaw cycle), T3 (after three freeze-thaw cycles) and T5 (after five freeze-thaw cycles). These results indicate that each of
formulations - Table 17: Percentages of Aggregates, Monomers, and Fragments Before and after Freeze-Thaw Cycles as Assessed by SEC
- Ion exchange chromatography did not reveal different sensitivity of the tested solutions. No significant degradation could be observed.
- However, with increasing number of freeze/thaw cycles, the samples that were thawed at 25° C. showed a higher amount in the 2nd acidic region after 5 cycles.
- IEC results are shown in Table 18.
-
TABLE 18 IEC measurements before and after freeze-thaw cycles Sum Lysin 1.ac 2.ac Lysin Lysin Peak Lysin Sample name Peaks area area 0 1 between 2 T0, HC F1, 25° C. 86.74 2.09 10.51 68.63 16.72 0.99 0.40 T0, HC F3, 25° C. 87.29 1.89 10.22 66.35 16.16 0.91 3.87 T0, HC F4, 25° C. 87.35 1.85 10.20 66.46 16.15 0.89 3.85 T0, commercial, 87.18 1.93 10.22 66.25 16.12 0.94 3.88 25° C. T1, HC F1, 25° C. 87.17 1.98 10.18 66.24 16.11 0.94 3.87 T1, HC F3, 25° C. 87.30 1.81 10.24 66.39 16.13 0.90 3.88 T1, HC F4, 25° C. 87.21 1.88 10.25 66.31 16.11 0.90 3.88 T1, commercial, 87.19 2.01 10.20 66.27 16.11 0.93 3.88 25° C. T3, HC F1, 25° C. 87.23 1.94 10.20 66.34 16.12 0.91 3.87 T3, HC F3, 25° C. 87.27 1.86 10.25 66.37 16.14 0.88 3.88 T3, HC F4, 25° C. 87.26 1.82 10.27 66.34 16.15 0.88 3.88 T3, commercial, 87.20 1.88 10.28 66.29 16.11 0.91 3.89 25° C. T5, HC F1, 25° C. 87.39 1.74 10.21 66.43 16.18 0.89 3.88 T5, HC F3, 25° C. 87.27 1.79 10.32 66.42 16.15 0.84 3.86 T5, HC F4, 25° C. 87.33 1.69 10.32 66.49 16.14 0.85 3.85 T5, commercial, 87.05 1.95 10.38 66.17 16.10 0.89 3.88 25° C. T0, HC F1, 37° C. 87.25 1.94 10.19 66.36 16.13 0.90 3.86 T0, HC F3, 37° C. 87.42 1.82 10.19 66.54 16.16 0.85 3.87 T0, HC F4, 37° C. 87.38 1.89 10.11 66.52 16.14 0.86 3.86 T0, commercial, 87.25 1.86 10.24 66.34 16.12 0.91 3.88 37° C. T1, HC F1, 37° C. 87.21 1.98 10.17 66.27 16.11 0.95 3.88 T1, HC F3, 37° C. 87.32 1.91 10.12 66.40 16.13 0.90 3.88 T1, HC F4, 37° C. 87.27 1.98 10.13 66.36 16.14 0.91 3.86 T1, commercial, 87.28 1.97 10.14 66.34 16.12 0.93 3.88 37° C. T3, HC F1, 37° C. 87.27 1.95 10.15 66.36 16.11 0.94 3.86 T3, HC F3, 37° C. 87.18 2.03 10.11 66.29 16.13 0.90 3.87 T3, HC F4, 37° C. 87.21 1.95 10.15 66.35 16.09 0.92 3.85 T3, commercial, 87.31 1.95 10.21 66.50 16.09 0.91 3.81 37° C. T5, HC F1, 37° C. 87.29 2.01 10.06 66.40 16.11 0.93 3.85 T5, HC F3, 37° C. 87.25 2.07 10.06 66.37 16.10 0.92 3.87 T5, HC F4, 37° C. 87.28 2.04 10.02 66.42 16.11 0.93 3.83 T5, commercial, 87.53 1.91 10.02 66.72 16.11 0.88 3.83 37° C. - The following example describes a study which examined the stability of the F1, F3, and F4 formulations using the stir-stress test. Each formulation was tested in a range of pH levels.
-
-
Humira HC F1 pH 4.2 100 mg/mL pH 4.7 pH 5.7 pH 6.2 Humira HC F3 pH 4.2 100 mg/mL pH 4.7 pH 5.7 pH 6.2 Humira HC F4 pH 4.2 100 mg/mL pH 4.7 pH 5.7 pH 6.2 - The vials, stir bars, and stoppers were steam sterilized prior to use.
- The stirring experiment was performed with the following experimental set-up:
-
- Protein solutions: Humira HC F1, F3, F4, each at pH 4.2, 4.7, 5.7, 6.2 100 mg/mL, Humira HC F3 pH 5.2 100 mg/mL, Humira from Vetter 50 mg/mL,
- 5 mL filling volume per 6R vial
- n=3→2× stirred (with 7×2 mm magnetic bar), 1 unstirred control (without magnetic bar)
- magnetic stirrer multipoint HP: 550 rpm
- ambient temperature
- sample pull: t=0, t=1 h, t=4 h, t=24 h, t=48 h
- Three 6R vials were filled with 5 mL for each protein solution and closed with stoppers. Two of them were equipped with a magnetic stir bar.
- The vials were kept at 5° C. over night. The next morning the samples (one per protein solution, because in the beginning they were all the same) were measured with the turbidity meter. The measured solutions were filled back in the vials prior start of the experiment. After 1, 4, 24, and 48 h samples were taken and the turbidity was determined
- The unstirred samples were only measured at the
time points 0 and 48 h. - For Humira HC F3 pH 5.2 also subvisible particles were determined for all time points.
- The turbidity results for samples subjected to stir stress for 0, 1, 4, 24, or 48 hours, as well as a 48 hour unstirred control, are shown in Table 19.
-
TABLE 19 Turbidity (NTU) of samples subjected to stir stress sample 0 h 1 h 4 h 24 h 48 h Commercial 20.90 23.90 31.20 98.05 176.00 Adalimumab Humira HC F3 pH 5.2 6.13 6.69 8.92 18.05 29.50 Humira HC F1 4.2 8.62 8.89 9.40 6.48 15.05 Humira HC F1 4.7 14.00 15.50 20.05 10.88 81.40 Humira HC F1 5.7 30.70 33.25 36.40 23.40 100.40 Humira HC F1 6.2 38.00 40.95 52.60 32.65 168.00 Humira HC F3 4.2 3.20 3.35 3.72 4.88 6.69 Humira HC F3 4.7 4.81 5.20 6.09 9.54 18.70 Humira HC F3 5.7 8.75 10.03 11.30 25.90 46.10 Humira HC F3 6.2 9.24 — 13.05 22.60 37.30 Humira HC F4 4.2 3.44 3.74 3.80 6.48 9.79 Humira HC F4 4.7 5.13 5.67 6.60 10.88 17.00 Humira HC F4 5.7 9.23 10.15 12.50 23.40 32.20 Humira HC F4 6.2 10.30 11.65 15.55 32.65 56.75 - Increased pH correlated with increased turbidity for all tested formulations, both T0/unstirred and stirred samples. This effect was most pronounced for
formulation 1. Also,formulation 1 showed the highest increase of turbidity after 48 h at all pH values except 4.2.Formulation - Humira HC (100 mg/mL), F3, pH 5.2 showed only a slight increase of the turbidity over the time. In contrast, the commercial Humira solution showed both a significantly higher starting value and increase in turbidity over the time. Thus,
formulation 3 showed lower turbidity than the commercial Humira formulation. - The stirred samples showed a higher turbidity compared with the unstirred controls. The turbidity of the unstirred controls remained almost constant in comparison to the 0 h samples, indicating that running the experiment at room temperature did not bias the results.
- Table 20 shows the results for the numbers of subvisible particles.
-
TABLE 20 Counts of subvisible particles before and after stirring stress subvisible particles Humira HC F3 pH 5.2 >=1 μm >=10 μm >=25 μm 0 h 103 3 1 1 h 194 4 0 4 h 202 4 0 24 h 262 2 0 48 h 192 3 0 48 h unstirred 80 1 0 - Particles ≧1 μm
- Stirring induced a slight increase in sub-visible particle counts ≧1 μm. The unstirred control was comparable to the 0 h sample.
- Particles ≧10 μm
- Stirring had no significant effect on the particle counts ≧10 μm. The unstirred control was comparable to the 0 h sample.
- Particles ≧25 μm
- Stirring had no significant effect on the particle counts ≧25 μm. The unstirred control was comparable to the 0 h sample.
- Overall, the results of the experiments presented in Example 5 showed that
formulation 3, when subjected to stirring stress, was surprisingly stable compared with commercial Humira solution.Formulation 3 was robust to stirring stress according to the turbidity measure, and stirring offormulation 3 also had little or no effect on formation of subvisible particles. - The following example describes a study which examined the long-term storage stability (up to 24 months) of the F1, F3, and F4 formulations.
- Formulations F1, F3, and F4 were tested prior to long term storage (Initial), and after 3, 6, 9, 12, 18, and 24 months of storage. The following storage conditions were used: (1) 5° C., (2) 25° C./60% relative humidity (R.H), and (3) 40° C./75% R.H. During storage, the samples were packaged in a 1 ml pre-filled syringe (colorless, glass type I, Ph.Eur.); BD Hypak Syringe BD 260 with a grey DB Hypak 4023/50 Fluorotec stopper. The following measures were used to assess storage stability:particulate contamination: visible particles; clarity and opalescence; color of solution (visual); in vitro TNFα-neutralization; cation exchange chromatography (CEX-HPLC), size exclusion chromatography (SE-HPLC); particulate contamination—sub-visible particles; container closure integrity; pH; and microbial quality.
- All formulations tested were stable under the tested storage conditions of 2-8° C. for up
- The results for Formulation F1 are presented in Table 21.
-
TABLE 21 Stability Summary Report for Formulation F1 Duration Storage Conditions [° C./% r.H.] \\Test Item Component Specification of Testing 5° C. 25° C./60% R.H. 40° C./75% R.H. Particulate Visible particles NMT 4.5 Initial 0.0 0.0 0.0 contamination: 3 months 0.0 0.0 0.0 visible particles 6 months 0.0 0.1 0.0 9 months 0.0 — — 12 months 0.0 — — 18 months 0.0 — — 24 months 0.0 — — Clarity and Assessment Not more Initial <=RS III <=RS III <=RS III Opalescence opalescent than 3 months <=RS III <=RS III <=RS IV reference 6 months <=RS III <=RS III <=RS IV suspension IV 9 months <=RS IV — — 12 months <=RS III — — 18 months <=RS III — — 24 months <=RS III — — Color of solution BY-Scale Report value Initial <=BY 7 <=BY 7 <=BY 7 (visual) 3 months <=BY 7 <=BY 7 <=BY 7 6 months <=BY 7 <=BY 7 <=BY 6 9 months <=BY 7 — — 12 months <=BY 7 — — 18 months <=BY 7 — — 24 months <=BY 7 — — In vitro TNF- (cytotoxicity test) 80% to 125% Initial 99 99 99 Neutralization [%] of the 3 months 97 110 97 neutralization 6 months 87 81 68 capacity of the 9 months 88 — — reference 12 months 110 — — standard 18 months 97 — — 24 months 111 — — Fiducial Limit of NLT 64 Initial 96.1 96.1 96.1 error (p = 0.95) 3 months 91.1 104.7 93.2 lower Limit [%] 6 months 84.2 76.3 64.4 9 months 84.3 — — 12 months 105.2 — — 18 months 95.3 — — 24 months 108.9 — — Fiducial Limit of NMT 156 Initial 101.3 101.3 101.3 error (p = 0.95) 3 months 101.9 115.5 100.1 upper Limit [%] 6 months 90.8 85.9 71.2 9 months 90.8 — — 12 months 114.2 — — 18 months 98.8 — — 24 months 113.5 — — Cation Exchange Sum of lysine NLT 75 Initial 86.8 86.8 86.8 Chromatography variants [%] 3 months 86.2 74.7 26.0 (CEX-HPLC) 6 months 85.9 65.0 11.9 9 months 85.2 — — 12 months 85.2 — — 18 months 84.1 — — 24 months 83.9 — — Size exclusion Principal peak NLT 98 Initial 99.6 99.6 99.6 chromatography (monomer) [%] 3 months 99.5 99.0 96.4 (SE-HPLC) 6 months 99.4 98.5 92.9 9 months 99.4 — — 12 months 99.4 — — 18 months 99.3 — — 24 months 99.3 — — Particulate Particles >= 10 NMT 6000 Initial 11 11 11 contamination— μm [/container] 3 months 8 37 55 Sub-visible 6 months 33 102 98 Particles* 9 months 32 — — 12 months 58 — — 18 months 44 — — 24 months 11 — — Particles >= 25 NMT 600 Initial 0 0 0 μm [/container] 3 months 0 0 1 6 months 0 2 2 9 months 0 — — 12 months 0 — — 18 months 1 — — 24 months 0 — — Container Assessment Tight Initial Complies Complies Complies Closure Integrity 6 months Complies Complies Complies 12 months Complies — — 18 months Complies — — 24 months Complies — — pH Single values 4.7 to 5.7 Initial 5.3 5.3 5.3 3 months 5.2 5.2 5.2 6 months 5.3 5.3 5.3 9 months 5.3 — — 12 months 5.3 — — 18 months 5.3 — — 24 months 5.3 — — Microbial quality Sterility drug No evidence of Initial Complies Complies Complies product microbial growth is found - The results described above show that when stored for 24 months at 5° C., Formulation F1 showed no visible particulate contamination, clarity and opalescence<=RS III, and visual color<=BY7 (brown yellow 7). Formulation F1 also demonstrated 111% of the TNF-neutralization capacity of the reference standard, 83.9% lysine variants, 99.3% monomers, 11 particles>=10 μm, and no particles>=25 μm. Furthermore, F1 maintained a stable pH of 5.3 and showed no evidence of microbial growth. When stored for 6 months at 25° C./60% R.H., Formulation F1 showed 0.1 visible particles, clarity and opalescence<=RS III, visual color<=BY7, 81% of the TNF-neutralization capacity of the reference standard, 65% lysine variants, 98.5% monomers, 102 particles>=10 μm, 2 particles>=25 μm, a stable pH of 5.3 and no evidence of microbial growth. When stored for 6 months at 45° C./75% R.H., Formulation F1 showed no visible particles, clarity and opalescence<=RS IV, visual color<=BY6, 68% of the TNF-neutralization capacity of the reference standard, 11.9% lysine variants, 92.9% monomers, 98 particles>=10 μm, 2 particles>=25 μm, and no evidence of microbial growth.
- The results for Formulation F3 are presented in Table 22.
-
TABLE 22 Stability Summary Report for Formulation F3 Duration Storage Conditions [° C./% r.H.] Test Item Component Specification of Testing 5° C. 25° C./60% R.H. 40° C./75% R.H. Particulate Visible particles NMT 4.5 Initial 0.0 0.0 0.0 contamination: 3 months 0.0 0.0 0.2 visible particles 6 months 0.2 0.1 0.0 9 months 0.0 — — 12 months 0.0 — — 18 months 0.0 — — 24 months 0.0 — — Clarity and Assessment Not more Initial <=RS II <=RS II <=RS II Opalescence opalescent than 3 months <=RS II <=RS II <=RS II reference 6 months <=RS II <=RS II <=RS II suspension IV 9 months <=RS II — — 12 months <=RS II — — 18 months <=RS II — — 24 months <=RS II — — Color of solution BY-Scale Report value Initial <=BY 7 <=BY 7 <=BY 7 (visual) 3 months <=BY 7 <=BY 7 <=BY 7 6 months <=BY 7 <=BY 7 <=BY 6 9 months <=BY 7 — — 12 months <=BY 7 — — 18 months <=BY 7 — — 24 months <=BY 7 — — In vitro TNF- (cytotoxicity test) 80% to 125% Initial 87 87 87 Neutralization [%] of the 3 months 101 106 89 neutralization 6 months 100 101 90 capacity of the 9 months 98 — — reference 12 months 96 — — standard 18 months 96 — — 24 months 98 — — Fiducial Limit of NLT 64 Initial 85.4 85.4 85.4 error (p = 0.95) 3 months 92.9 88.1 80.6 lower Limit [%] 6 months 98.3 97.4 86.5 9 months 97.0 — — 12 months 93.3 — — 18 months 93.9 — — 24 months 96.7 — — Fiducial Limit of NMT 156 Initial 88.5 88.5 88.5 error (p = 0.95) 3 months 110.5 122.2 97.9 upper Limit [%] 6 months 101.7 103.8 92.6 9 months 99.8 — — 12 months 99.2 — — 18 months 98.1 — — 24 months 99.6 — — Cation Exchange Sum of lysine NLT 75 Initial 86.8 86.8 86.8 Chromatography variants [%] 3 months 86.6 77.8 32.8 (CEX-HPLC) 6 months 86.4 70.1 16.5 9 months 86.0 — — 12 months 86.2 — — 18 months 85.2 — — 24 months 85.1 — — Size exclusion Principal peak NLT 98 Initial 99.7 99.7 99.7 chromatography (monomer) [%] 3 months 99.6 99.2 96.9 (SE-HPLC) 6 months 99.5 98.8 93.8 9 months 99.5 — — 12 months 99.5 — — 18 months 99.4 — — 24 months 99.4 — — Particulate Particles >= 10 NMT 6000 Initial 10 10 10 contamination— μm [/container] 3 months 12 45 73 Sub-visible 6 months 22 157 275 Particles* 9 months 50 — — 12 months 54 — — 18 months 45 — — 24 months 14 — — Particles >= 25 NMT 600 Initial 0 0 0 μm [/container] 3 months 0 0 1 6 months 0 2 9 9 months 0 — — 12 months 1 — — 18 months 0 — — 24 months 0 — — Container Assessment Tight Initial Complies Complies Complies Closure Integrity 6 months Complies Complies Complies 24 months Complies — — pH Single values 4.7 to 5.7 Initial 5.2 5.2 5.2 3 months 5.3 5.3 5.3 6 months 5.2 5.2 5.3 9 months 5.3 — — 12 months 5.4 — — 18 months 5.2 — — 24 months 5.1 — — Microbial quality Sterility drug No evidence of Initial Complies Complies Complies product microbial growth is found - The results provided in Table 22 indicate that when stored for 24 months at 5° C., Formulation F3 showed no visible particulate contamination, clarity and opalescence<=RS II, and visual color<=BY7. Formulation F3 showed 98% of the TNF-neutralization capacity of the reference standard, 85.1% lysine variants, 99.4% monomers, 14 particles>=10 μm, and no particles>=25 μm. The pH showed little change and there was no evidence of microbial growth.
- When stored for 6 months at 25° C./60% R.H., Formulation F3 showed no visible particles, clarity and opalescence<=RS II, and visual color<=BY7. Also, formulation F3 showed 101% of the TNF-neutralization capacity of the reference standard, 97.4% lysine variants, 70.1% monomers, 157 particles>=10 μm, and 2 particles>=25 μm. The pH was stable and there was no evidence of microbial growth.
- When stored for 6 months at 45° C./75% R.H., Formulation F3 showed no visible particles, clarity and opalescence<=RS II, and visual color<=BY6. Also, formulation F3 showed 90% of the TNF-neutralization capacity of the reference standard, 16.5% lysine variants, 93.8% monomers, 275 particles>=10 μm, and 9 particles>=25 μm. The pH was quite stable, and there was no evidence of microbial growth.
- The results for Formulation F4 are presented in Table 23.
-
TABLE 23 Stability Summary Report for Formulation F4 Duration Storage Conditions [° C./% r.H.] Test Item Component Specification of Testing 5° C. 25° C./60% R.H. 40° C./75% R.H. Appearance Visual particles NMT 4.5 Initial 0.0 0.0 0.0 3 months 0.0 0.0 0.0 6 months 0.0 0.0 0.0 9 months 0.0 — — 12 months 0.0 — — 18 months 0.0 — — Clarity Assessment Not more Initial <=RS II <=RS II <=RS II opalescent 3 months <=RS II <=RS II <=RS II than reference 6 months <=RS II <=RS II <=RS II suspension IV 9 months <=RS II — — 12 months <=RS II — — 18 months <=RS II — — Color BY-Scale Initial <=BY 7 <=BY 7 <=BY 7 3 months <=BY 6 <=BY 6 <=BY 6 6 months <=BY 7 <=BY 7 <=BY 6 9 months <=BY 7 — — 12 months <=BY 7 — — 18 months <=BY 7 — — In vitro TNF- (cytotoxicity test) 80% to 125% Initial 111 111 111 Neutralisation [%] of the 3 months 105 101 80 (Cytotoxizitätstest) neutralization 6 months 97 101 76 capacity of the 9 months 112 — — reference 12 months 97 — — standard 18 months 104 — — Fiducial Limit of NLT 64 Initial 105.2 105.2 105.2 error (p = 0.95) 3 months 103.2 100.1 79.2 lower Limit [%] 6 months 92.9 97.5 74.7 9 months 109.3 — — 12 months 90.2 — — 18 months 101.2 — — Fiducial Limit of NMT 156 Initial 116.3 116.3 116.3 error (p = 0.95) 3 months 106.2 102.7 80.4 upper Limit [%] 6 months 101.1 103.5 78.1 9 months 113.9 — — 12 months 104.9 — — 18 months 107.5 — — Cation Exchange Sum of lysine NLT 75 Initial 85.5 85.5 85.5 Chromatography variants [%] 3 months 85.8 76.8 31.6 (CEX-HPLC) 6 months 85.4 68.7 15.7 9 months 85.2 — — 12 months 84.5 — — 18 months 84.4 — — Size exclusion Principal peak NLT 98 Initial 99.7 99.7 99.7 chromatography (monomer) [%] 3 months 99.6 99.1 96.5 (SE-HPLC) 6 months 99.6 98.8 93.1 9 months 99.5 — — 12 months 99.5 — — 18 months 99.4 — — Particulate Particles >= 10 NMT 6000 Initial 17 17 17 contamination— μm [/container] 3 months 51 174 207 Sub-visible 6 months 39 144 218 Particles 9 months 82 — — 12 months 57 — — Particles >= 25 NMT 600 Initial 0 0 0 μm [/container] 3 months 0 1 5 6 months 0 1 1 9 months 1 — — 12 months 2 — — Container closure Assessment Must comply Initial Complies Complies Complies Integrity (no blue 6 months Complies Complies Complies coloration) pH Single values 4.7 to 5.7 Initial 5.1 5.1 5.1 3 months 5.2 5.2 5.1 6 months 5.2 5.1 5.2 9 months 5.2 — — 12 months 5.2 — — 18 months 5.1 — — Microbial quality Sterility drug No evidence of Initial Complies Complies Complies product microbial growth is found - The results provided in Table 23 indicate that when stored for 18 months at 5° C., Formulation F4 showed no visible particulate contamination, clarity and opalescence<=RS II, and visual color<=BY7. Formulation F4 showed 104% of the TNF-neutralization capacity of the reference standard, 84.4% lysine variants, and 99.4% monomers. Furthermore, the pH was stable and there was no evidence of microbial growth.
- When stored for 6 months at 25° C./60% R.H., Formulation F4 showed no visible particles, clarity and opalescence<=RS II, and visual color<=BY7. Formulation F4 showed 101% of the TNF-neutralization capacity of the reference standard, 68.7% lysine variants, 98.8% monomers, 144 particles>=10 μm, and 1 particle>=25 μm. Furthermore, the pH was quite stable and there was no evidence of microbial growth.
- When stored for 6 months at 45° C./75% R.H., Formulation F4 showed no visible particles, clarity and opalescence<=RS II, and visual color<=BY6. Formulation F4 showed 76% of the TNF-neutralization capacity of the reference standard, 15.7% lysine variants, 93.1% monomers, 218 particles>=10 μm, and 1 particle>=25 μm. Furthermore, the pH was quite stable and there was no evidence of microbial growth.
- In summary, the results of the long-term stability experiments, as presented in Tables 21-23, show that high concentration formulations F1, F3, and F4 were surprisingly stable when subjected to long term storage. The stability of these formulations was similar to the commercial formulation. Formulations F1 and F3 showed stability similar to the commercial formulation after long term storage for at least 24 months. Formulation F4 showed stability similar to the commercial formulation after long term storage for at least 18 months.
- Liquid pharmaceutical products containing therapeutic antibodies often require storage at 2-8° C. until end-of-shelf-life. Cooling is therefore also required by patients between purchasing of the medicines until use. Depending on the proposed dosing regimen, this can result in storage times under patient's responsibility in the case of self-administration drugs for up to several weeks.
- Therefore, drugs that do not require storage under refrigerated conditions display both a significant increase in patient convenience for home care products and reduction of drug quality concerns in case of improper storage, thereby reducing complaint rates and temperature excursion investigations.
- The currently marketed Adalimumab containing product (Humira) was successfully reformulated at a higher protein concentration as Formulation F3, as described above in Examples 1-6. The following stability data for Formulation F3 resulted in findings of improved stability against protein degradation. The resulting degradation kinetics measured at 25° C. complied with requirements for ambient storage for up to 3 months.
- For general long-term stability data related to storage at 25° C. for Formulation F3, see Example 6 above.
- The following data describes long-term storage characteristics for Formulation F3. The data shows that even after 18 months and 24 months of long-term storage at 2-5° C., additional storage at 25° C./30° C. is acceptable.
-
TABLE 24 24 m storage of F3 at 2-8° C., followed by 7 days/14 days at accelerated conditions (25° C., 30° C.) 10 +7 Days +14 Days Test criterion Specification Characteristic (24 M 5° C.) 25° C. 30° C./65% R.H. 25° C. 30° C./65% R.H. Appearance colourless to complies complies complies complies complies slightly yellow solution Visible single vial ≦ 2=> 0.0 Value per Value per Value per Value per particles* practically free analyst: analyst: analyst: analyst: from visible 3 × 0; single 3 × 0; single 3 × 0; single 3 × 0; single particulate vial ≦ 2=> vial ≦ 2=> vial ≦ 2=> vial ≦ 2=> matter practically practically practically practically 1 vial > 10=> free from free from free from free from visible visible visible visible particulate particulate particulate particulate matter matter matter matter Size Purity % aggregate 0.4 0.4 0.4 0.4 0.4 exclusion monomer monomer 99.4 99.3 99.3 99.3 99.2 HPLC NLT 98% fragments 0.2 0.2 0.3 0.3 0.3 Cation NMT 8% first acid 2.7 2.8 3.0 2.9 3.3 exchange region HPLC NMT 16% second 10.5 10.9 11.4 11.6 12.7 acid region NLT 75% sum Lysine 85.1 84.2 83.4 83.0 81.2 variants NMT 4% peak between 1.5 1.7 1.9 1.6 1.8 Lysine 1 and Lysine 2 report value [%] peaks after 0.2 0.4 0.4 0.9 1.0 Lysine 2 PCS report value [%] Z-Average 1.390 1.365 1.395 1.397 1.420 Pdl 0.193 0.176 0.188 0.175 0.210 -
TABLE 25 18 m storage at 2-8° C. of F3, followed by 7 days/14 days at accelerated conditions (25° C., 30° C.) 10 +7 Days +14 Days (18 M 30° C./ 30° C./ Test criterion Specification Characteristics 5° C.) 25° C. 65% R.H. 25° C. 65% R.H. Appearance colourless to complies complies complies complies slightly yellow solution Visible single vial ≦ 2=> Value per Value per Value per Value per particles* practically analyst: 3 × 0; analyst: 3 × 0; analyst: 3 × 0; analyst: 3 × 0; free from single single single single visible vial ≦ 2=> vial ≦ 2=> vial ≦ 2=> vial ≦ 2=> particulate matter practically practically practically practically 1 vial > 10=> free from free from free from free from inform lab visible visible visible visible manager particulate particulate particulate particulate matter matter matter matter Particulate particles ≦ 10 μm: ≦1 μm/1 ml 2250 5623 9355 10252 contamination, ≦6000 ≦10 μm/1 ml 6 7 39 45 subvisible particles/ ≦25 μm/1 ml 0 0 0 1 particles* container particles ≦ 25 μm: ≦600 particles/ container PCS report value Z-Average 2.378 2.344 2.353 2.358 [%] Pdl 0.102 0.077 0.077 0.077 - The conductivity of the high concentration anti-TNFα antibody formulations F3 and F4 (see Examples 1-6, supra) was determined using an InoLab Cond Level2 WTW device normalized to 25° C. Table 26 shows the influence of non-ionic excipients on the conductivity of the F3 and F4 adalimumab formulations.
-
TABLE 26 Conductivity of Formulations F3 and F4 Temperature Conductivity Sample [° C.] [μS/cm] Adalimumab DP F3 1 22.4 663 2 22.4 651 3 23.8 660 4 21.4 715 5 21.7 691 6 23.1 680 7 23.3 644 8 22.9 647 Adalimumab DP F4 1 22.0 797 2 22.9 746 - As described above in Table 26, average conductivity for both formulations F3 and F4 was less than 2 mS/cm.
- Dynamic light scattering analysis of diluted solutions was used to assess the hydrodynamic diameter (reported as the mean or Z-average size, calculated by cumulants analysis of the DLS measured intensity autocorrelation function and polydispersity index, PDI, of the size distribution of particles). DLS measurements were specifically used to detect low amounts of higher molecular weight species, e.g. aggregates, in a size distribution, since those species possess higher scattering intensity (proportional to d6) and, therefore, will influence the Z-average and Polydispersity Index (PDI) as an indicator of the Z-average size distribution significantly.
- A 150 μL sample of each of formulations F3 and F4 (see examples 1-6 above) was measured to analyze the average size of the particles (Z-average) and the Polydispersity Index (PDI), an indicator of the “broadness” of the particle size distribution using DLS. The results are shown below. DLS data did not show any signs of the development of higher molecular weight aggregates, since the polydispersity index, a sensitive indicator for low levels of higher molecular weight sub-populations did not increase significantly.
-
-
Sample No. ZAve (nm) PDI 1 2.4 n.a. 2 2.3 0.08 3 2.3 0.14 4 2.3 0.09 -
-
Sample No. ZAve (nm) PDI 1 1.3 n.a. 2 2.5 n.a. - As described above, the z-average measurement for both F3 and F4 was less than 4 nm. This low hydrodynamic diameter is representative of the fact that both formulations F3 and F4 do not contain additional excipients other than a polysorbate and a polyol or a polysorbate.
- The effect of varying mannitol concentrations and polysorbate concentrations on the stability of adalimumab in water was examined.
- Formulations containing 100 mg/ml of adalimumab in water were prepared. Subsequently, various concentrations of either mannitol or polysorbate were added in a concentration range to determine the impact of each excipient on the stability of the formulation, as measured by aggregation and fragmentation. The concentrations of polysorbate and mannitol ranged from 0.1 to 1.0 mg/ml and 0-72 mg/ml, respectively, as shown in
FIGS. 3A and 3B . As shown inFIG. 3A , varying the concentration of mannitol from about 12 to about 72 mg/ml had a minimal effect on the stability of adalimumab. Similarly, varying the concentration of polysorbate-80 from about 0.1 to about 1.0 mg/ml had no effect on the stability of adalimumab. - The contents of all cited references (including, for example, literature references, patents, patent applications, and websites) that maybe cited throughout this application are hereby expressly incorporated by reference in their entirety for any purpose. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of protein formulations, which are well known in the art.
- The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.
Claims (23)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/473,775 US20140377275A1 (en) | 2010-11-11 | 2014-08-29 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATIONS |
US14/814,051 US20160017030A1 (en) | 2010-11-11 | 2015-07-30 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATION |
US16/101,349 US20190211093A1 (en) | 2010-11-11 | 2018-08-10 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
US17/177,022 US20220010005A1 (en) | 2010-11-11 | 2021-02-16 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41272810P | 2010-11-11 | 2010-11-11 | |
US41396010P | 2010-11-15 | 2010-11-15 | |
US13/294,692 US8821865B2 (en) | 2010-11-11 | 2011-11-11 | High concentration anti-TNFα antibody liquid formulations |
US14/473,775 US20140377275A1 (en) | 2010-11-11 | 2014-08-29 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATIONS |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/294,692 Continuation US8821865B2 (en) | 2010-11-11 | 2011-11-11 | High concentration anti-TNFα antibody liquid formulations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/814,051 Continuation US20160017030A1 (en) | 2010-11-11 | 2015-07-30 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATION |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140377275A1 true US20140377275A1 (en) | 2014-12-25 |
Family
ID=46051586
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/294,692 Active US8821865B2 (en) | 2010-11-11 | 2011-11-11 | High concentration anti-TNFα antibody liquid formulations |
US14/473,775 Abandoned US20140377275A1 (en) | 2010-11-11 | 2014-08-29 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATIONS |
US14/814,051 Abandoned US20160017030A1 (en) | 2010-11-11 | 2015-07-30 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATION |
US16/101,349 Abandoned US20190211093A1 (en) | 2010-11-11 | 2018-08-10 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
US17/177,022 Abandoned US20220010005A1 (en) | 2010-11-11 | 2021-02-16 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/294,692 Active US8821865B2 (en) | 2010-11-11 | 2011-11-11 | High concentration anti-TNFα antibody liquid formulations |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/814,051 Abandoned US20160017030A1 (en) | 2010-11-11 | 2015-07-30 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY FORMULATION |
US16/101,349 Abandoned US20190211093A1 (en) | 2010-11-11 | 2018-08-10 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
US17/177,022 Abandoned US20220010005A1 (en) | 2010-11-11 | 2021-02-16 | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS |
Country Status (29)
Country | Link |
---|---|
US (5) | US8821865B2 (en) |
EP (1) | EP2637690B1 (en) |
JP (3) | JP5919606B2 (en) |
KR (1) | KR101841527B1 (en) |
CN (2) | CN103458926B (en) |
AU (2) | AU2011325974B2 (en) |
BR (1) | BR112013011699B1 (en) |
CA (1) | CA2815689C (en) |
CY (1) | CY1118373T1 (en) |
DK (1) | DK2637690T3 (en) |
ES (1) | ES2601202T3 (en) |
HK (1) | HK1189162A1 (en) |
HR (1) | HRP20161753T1 (en) |
HU (1) | HUE029457T2 (en) |
IL (1) | IL226217A (en) |
LT (1) | LT2637690T (en) |
ME (1) | ME02506B (en) |
MX (1) | MX344727B (en) |
NZ (1) | NZ609469A (en) |
PL (1) | PL2637690T3 (en) |
PT (1) | PT2637690T (en) |
RS (1) | RS55385B1 (en) |
RU (2) | RU2639386C2 (en) |
SG (2) | SG190069A1 (en) |
SI (1) | SI2637690T1 (en) |
SM (1) | SMT201600443B (en) |
TW (2) | TWI603739B (en) |
WO (1) | WO2012065072A2 (en) |
ZA (1) | ZA201406542B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9062106B2 (en) | 2011-04-27 | 2015-06-23 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9085619B2 (en) | 2007-11-30 | 2015-07-21 | Abbvie Biotechnology Ltd. | Anti-TNF antibody formulations |
US9150645B2 (en) | 2012-04-20 | 2015-10-06 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9181572B2 (en) | 2012-04-20 | 2015-11-10 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9193787B2 (en) | 2012-04-20 | 2015-11-24 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
US9200070B2 (en) | 2013-10-18 | 2015-12-01 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9206390B2 (en) | 2012-09-02 | 2015-12-08 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9234033B2 (en) | 2012-09-02 | 2016-01-12 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9249182B2 (en) | 2012-05-24 | 2016-02-02 | Abbvie, Inc. | Purification of antibodies using hydrophobic interaction chromatography |
US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
US9550826B2 (en) | 2013-11-15 | 2017-01-24 | Abbvie Inc. | Glycoengineered binding protein compositions |
US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US9688752B2 (en) | 2013-10-18 | 2017-06-27 | Abbvie Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
US10179811B2 (en) | 2015-04-10 | 2019-01-15 | Fresenius Kabi Deutschland Gmbh | Methods of treating Crohn's disease or ulcerative colitis using an induction dosing regimen comprising anti-TNF-alpha antibody |
US10183994B2 (en) | 2014-06-30 | 2019-01-22 | Merck Patent Gmbh | Anti-TNFα antibodies with pH-dependent antigen binding for improved target clearence |
US10376582B2 (en) | 2013-10-16 | 2019-08-13 | Outlook Therapeutics, Inc. | Buffer formulations for enhanced antibody stability |
US10696735B2 (en) | 2015-01-21 | 2020-06-30 | Outlook Therapeutics, Inc. | Modulation of charge variants in a monoclonal antibody composition |
US11285210B2 (en) | 2016-02-03 | 2022-03-29 | Outlook Therapeutics, Inc. | Buffer formulations for enhanced antibody stability |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090280065A1 (en) * | 2006-04-10 | 2009-11-12 | Willian Mary K | Uses and Compositions for Treatment of Psoriasis |
US20040033228A1 (en) | 2002-08-16 | 2004-02-19 | Hans-Juergen Krause | Formulation of human antibodies for treating TNF-alpha associated disorders |
NZ595225A (en) | 2005-05-16 | 2013-05-31 | Abbott Biotech Ltd | Use of tnf inhibitor for treatment of erosive polyarthritis |
MX2007015476A (en) | 2005-06-14 | 2008-02-25 | Amgen Inc | Self-buffering protein formulations. |
CA2623940C (en) | 2005-09-27 | 2017-01-10 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and methods of use |
US9605064B2 (en) * | 2006-04-10 | 2017-03-28 | Abbvie Biotechnology Ltd | Methods and compositions for treatment of skin disorders |
DK2235059T3 (en) | 2007-12-26 | 2015-03-30 | Xencor Inc | FC-VERSIONS OF MODIFIED BINDING TO FcRn |
ES2939310T3 (en) | 2008-10-27 | 2023-04-20 | Genalyte Inc | Biosensors based on optical probing and detection |
SG190069A1 (en) * | 2010-11-11 | 2013-06-28 | Abbvie Biotechnology Ltd | IMPROVED HIGH CONCENTRATION ANTI-TNFa ANTIBODY LIQUID FORMULATIONS |
US9682044B2 (en) | 2011-06-10 | 2017-06-20 | Tissuetech, Inc. | Methods of processing fetal support tissues, fetal support tissue powder products, and uses thereof |
GB201112429D0 (en) | 2011-07-19 | 2011-08-31 | Glaxo Group Ltd | Antigen-binding proteins with increased FcRn binding |
JP2015519382A (en) * | 2012-06-12 | 2015-07-09 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pharmaceutical formulations for therapeutic antibodies |
CN104619352B (en) | 2012-07-11 | 2022-02-18 | 组织技术公司 | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
LT2892550T (en) * | 2012-09-07 | 2020-04-10 | Coherus Biosciences, Inc. | Stable aqueous formulations of adalimumab |
CA2889271A1 (en) * | 2012-10-26 | 2014-05-01 | Lupin Atlantis Holdings Sa | Stable pharmaceutical composition of tnfr:fc fusion protein |
US9844594B2 (en) | 2012-12-18 | 2017-12-19 | Merck Sharp & Dohme Corp. | Liquid formulations for an anti-TNF α antibody |
CA2898262A1 (en) | 2013-01-24 | 2014-07-31 | Glaxosmithkline Intellectual Property Development Limited | Tnf-alpha antigen-binding proteins |
US8921526B2 (en) | 2013-03-14 | 2014-12-30 | Abbvie, Inc. | Mutated anti-TNFα antibodies and methods of their use |
AU2013384204B2 (en) | 2013-03-14 | 2017-03-16 | Abbvie Inc. | Low acidic species compositions and methods for producing and using the same |
EP2970375A1 (en) | 2013-03-14 | 2016-01-20 | AbbVie Inc. | Low acidic species compositions and methods for producing the same using displacement chromatography |
MX2016000405A (en) | 2013-07-19 | 2016-09-09 | Hexal Ag | Methods and formulations which allow the modulation of immune responses related to the administration of a biopharmaceutical drug. |
AU2014318637B2 (en) | 2013-09-11 | 2020-01-23 | Eagle Biologics, Inc. | Liquid protein formulations containing viscosity-lowering agents |
US8946395B1 (en) | 2013-10-18 | 2015-02-03 | Abbvie Inc. | Purification of proteins using hydrophobic interaction chromatography |
IN2014MU01248A (en) * | 2014-04-02 | 2015-10-09 | Intas Pharmaceuticals Ltd | |
EP2946767B1 (en) | 2014-05-23 | 2016-10-05 | Ares Trading S.A. | Liquid pharmaceutical composition |
EP2946766B1 (en) | 2014-05-23 | 2016-03-02 | Ares Trading S.A. | Liquid pharmaceutical composition |
RS55548B1 (en) * | 2014-05-23 | 2017-05-31 | Ares Trading Sa | Liquid pharmaceutical composition |
TW201603818A (en) | 2014-06-03 | 2016-02-01 | 組織科技股份有限公司 | Compositions and methods |
KR102614827B1 (en) * | 2014-10-08 | 2023-12-19 | 아지노모토 가부시키가이샤 | Evaluating method, evaluating apparatus, evaluating program product, evaluating system, and terminal apparatus |
TW201628649A (en) | 2014-10-09 | 2016-08-16 | 再生元醫藥公司 | Process for reducing subvisible particles in a pharmaceutical formulation |
WO2016138025A2 (en) | 2015-02-23 | 2016-09-01 | Tissuetech, Inc. | Apparatuses and methods for treating ophthalmic diseases and disorders |
US10342831B2 (en) | 2015-05-20 | 2019-07-09 | Tissuetech, Inc. | Composition and methods for preventing the proliferation and epithelial-mesenchymal transition of epithelial cells |
EP3328883A1 (en) | 2015-07-31 | 2018-06-06 | GlaxoSmithKline Intellectual Property Development Limited | Antibody variants |
US11229702B1 (en) | 2015-10-28 | 2022-01-25 | Coherus Biosciences, Inc. | High concentration formulations of adalimumab |
TW201733600A (en) | 2016-01-29 | 2017-10-01 | 帝聖工業公司 | Fetal support tissue products and methods of use |
WO2017184880A1 (en) | 2016-04-20 | 2017-10-26 | Coherus Biosciences, Inc. | A method of filling a container with no headspace |
CA3031742A1 (en) | 2016-08-16 | 2018-02-22 | Regeneron Pharmaceuticals, Inc. | Methods for quantitating individual antibodies from a mixture |
JP7261158B2 (en) | 2016-10-19 | 2023-04-19 | インベンラ, インコーポレイテッド | antibody construct |
CN114917185B (en) | 2016-10-21 | 2023-11-14 | 美国安进公司 | Pharmaceutical formulations and methods of making the same |
CN109923411B (en) | 2016-10-25 | 2022-05-31 | 里珍纳龙药品有限公司 | Method and system for chromatographic data analysis |
WO2018115485A1 (en) | 2016-12-22 | 2018-06-28 | Pierfrancesco Tassone | A monoclonal antibody targeting a unique sialoglycosilated cancer-associated epitope of cd43 |
CN108239150A (en) | 2016-12-24 | 2018-07-03 | 信达生物制药(苏州)有限公司 | Anti- PCSK9 antibody and application thereof |
JOP20190162A1 (en) | 2016-12-30 | 2019-06-27 | Biocad Joint Stock Co | Aqueous Pharmaceutical Composition of a Recombinant Monoclonal Antibody to TNF? |
RU2665966C2 (en) * | 2016-12-30 | 2018-09-05 | Закрытое Акционерное Общество "Биокад" | Recombinant monoclonal antibody to tnf-alpha aqueous pharmaceutical composition |
KR20180106974A (en) * | 2017-03-16 | 2018-10-01 | 주식회사 엘지화학 | A liquid formulation of anti-TNF alpha antibody |
KR20190024572A (en) * | 2017-08-30 | 2019-03-08 | (주)셀트리온 | Subcutaneous Dose Regimen For Treating TNFα-related Disorders |
CN111201042B (en) | 2017-09-19 | 2024-05-10 | 里珍纳龙药品有限公司 | Method of reducing particle formation and compositions formed thereby |
EP3684407A1 (en) * | 2017-09-20 | 2020-07-29 | Alvotech HF | Pharmaceutical formulations for adalimumab |
WO2019147824A1 (en) | 2018-01-26 | 2019-08-01 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with a pde4 inhibitor |
US20210231651A1 (en) * | 2018-04-30 | 2021-07-29 | Genalyte, Inc. | Methods and compositions for point of care measurement of the bioavailability of therapeutic biologics |
WO2019234136A1 (en) | 2018-06-05 | 2019-12-12 | King's College London | Btnl3/8 targeting constructs for delivery of payloads to the gastrointestinal system |
EP3810095A1 (en) | 2018-06-20 | 2021-04-28 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with a tnf inhibitor |
WO2019246312A1 (en) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immunomodulator |
US20230009902A1 (en) | 2018-06-20 | 2023-01-12 | Progenity, Inc. | Treatment of a disease or condition in a tissue orginating from the endoderm |
EP3810094A1 (en) | 2018-06-20 | 2021-04-28 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with a jak or other kinase inhibitor |
US20210363233A1 (en) | 2018-06-20 | 2021-11-25 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an il-12/il-23 inhibitor |
US20230033021A1 (en) | 2018-06-20 | 2023-02-02 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an integrin inhibitor |
JP7566637B2 (en) | 2018-07-02 | 2024-10-15 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Use of multiple hydrophobic interaction chromatography to prepare polypeptides from a mixture - Patents.com |
MA55033A (en) | 2019-02-18 | 2021-12-29 | Lilly Co Eli | THERAPEUTIC ANTIBODY FORMULATION |
US20230203147A1 (en) * | 2019-03-18 | 2023-06-29 | Alvotech Hf | Aqueous formulations of tnf-alpha antibodies in high concentrations |
KR102676428B1 (en) * | 2019-07-08 | 2024-06-19 | 가부시키가이샤 모레스코 | Compositions for preparing microemulsions, microemulsions, methods for producing them, and use of microemulsions |
JP6667043B1 (en) * | 2019-10-25 | 2020-03-18 | 株式会社Moresco | Microemulsions and the use of microemulsions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090291062A1 (en) * | 2007-11-30 | 2009-11-26 | Wolfgang Fraunhofer | Protein formulations and methods of making same |
Family Cites Families (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237054A (en) | 1987-02-20 | 1993-08-17 | Akzo Pharma | Stabilized aqueous composition containing antibodies |
WO1991002078A1 (en) | 1989-08-07 | 1991-02-21 | Peptide Technology Ltd | Tumour necrosis factor binding ligands |
US5945098A (en) | 1990-02-01 | 1999-08-31 | Baxter International Inc. | Stable intravenously-administrable immune globulin preparation |
JPH0565233A (en) | 1991-03-08 | 1993-03-19 | Mitsui Toatsu Chem Inc | Monoclonal antibody-containing lyophilized preparation |
US6277969B1 (en) | 1991-03-18 | 2001-08-21 | New York University | Anti-TNF antibodies and peptides of human tumor necrosis factor |
US20060246073A1 (en) | 1991-03-18 | 2006-11-02 | Knight David M | Anti-TNF antibodies and peptides of human tumor necrosis factor |
US6165467A (en) | 1991-07-20 | 2000-12-26 | Yoshihide Hagiwara | Stabilized human monoclonal antibody preparation |
GB9122820D0 (en) | 1991-10-28 | 1991-12-11 | Wellcome Found | Stabilised antibodies |
US5358708A (en) | 1993-01-29 | 1994-10-25 | Schering Corporation | Stabilization of protein formulations |
ZA955642B (en) | 1994-07-07 | 1997-05-06 | Ortho Pharma Corp | Lyophilized imaging agent formulation |
US6090382A (en) | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
SK284040B6 (en) | 1996-02-09 | 2004-08-03 | Abbott Laboratories (Bermuda) Ltd. | Human antibodies that bind human TNFalpha |
GB9610992D0 (en) | 1996-05-24 | 1996-07-31 | Glaxo Group Ltd | Concentrated antibody preparation |
EP0852951A1 (en) | 1996-11-19 | 1998-07-15 | Roche Diagnostics GmbH | Stable lyophilized monoclonal or polyclonal antibodies containing pharmaceuticals |
GB9705810D0 (en) | 1997-03-20 | 1997-05-07 | Common Services Agency | Intravenous immune globulin |
US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
CN1149100C (en) | 1997-10-23 | 2004-05-12 | 三菱制药株式会社 | Room temperature storable immunoglobulin preparation for intravenous injection |
EP1174148A4 (en) | 1999-04-28 | 2005-05-04 | Yamanouchi Pharma Co Ltd | Parenteral medicinal composition containing humanized monoclonal antibody fragment and method for stabilizing the same |
JP4516711B2 (en) | 1999-12-28 | 2010-08-04 | 中外製薬株式会社 | Stable antibody composition and injection preparation |
DE10022092A1 (en) | 2000-05-08 | 2001-11-15 | Aventis Behring Gmbh | Stabilized protein preparation and process for its preparation |
JP4555436B2 (en) * | 2000-06-29 | 2010-09-29 | 富士通株式会社 | Resin molding method for thin film resin substrate and high frequency module |
AU2001276737A1 (en) | 2000-08-04 | 2002-02-18 | Chugai Seiyaku Kabushiki Kaisha | Protein injection preparations |
UA81743C2 (en) | 2000-08-07 | 2008-02-11 | Центокор, Инк. | HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS |
JP5485489B2 (en) | 2000-08-11 | 2014-05-07 | 中外製薬株式会社 | Antibody-containing stabilized preparation |
SE0003045D0 (en) | 2000-08-29 | 2000-08-29 | Probi Ab | New method |
PT1324776E (en) | 2000-10-12 | 2009-12-23 | Genentech Inc | Reduced-viscosity concentrated protein formulations |
WO2002096461A1 (en) | 2001-05-25 | 2002-12-05 | Abbott Gmbh & Co. Kg | Use of anti-tnf antibodies as drugs in treating septic disorders of anemic patients |
EP1391209A4 (en) | 2001-05-30 | 2009-12-16 | Chugai Pharmaceutical Co Ltd | Protein formulations |
GB0113179D0 (en) | 2001-05-31 | 2001-07-25 | Novartis Ag | Organic compounds |
CA2868614A1 (en) | 2001-06-08 | 2002-12-08 | Abbott Laboratories (Bermuda) Ltd. | Methods of administering anti-tnf.alpha. antibodies |
AU2002320122B2 (en) | 2001-06-21 | 2007-07-26 | Genentech, Inc. | Sustained release formulation |
JP4317010B2 (en) * | 2001-07-25 | 2009-08-19 | ピーディーエル バイオファーマ,インコーポレイティド | Stable lyophilized pharmaceutical formulation of IgG antibody |
US7682608B2 (en) | 2001-08-29 | 2010-03-23 | Chugai Seiyaku Kabushiki Kaisha | Stabilized preparations containing antibody |
US6818613B2 (en) | 2001-11-07 | 2004-11-16 | Ortho-Mcneil Pharmaceutical, Inc. | Aqueous sustained-release formulations of proteins |
JP5290489B2 (en) | 2001-11-08 | 2013-09-18 | アッヴィ・バイオセラピューティクス・インコーポレイテッド | Stable liquid pharmaceutical formulation of IGG antibody |
GB0202633D0 (en) | 2002-02-05 | 2002-03-20 | Delta Biotechnology Ltd | Stabilization of protein preparations |
RU2335299C2 (en) | 2002-02-14 | 2008-10-10 | Чугаи Сейяку Кабусики Кайся | Preparations in the form of solutions, containing antibodies |
US20030161828A1 (en) | 2002-02-19 | 2003-08-28 | Abbott Gmbh & Co. Kg | Use of TNF antagonists as drugs for the treatment of patients with an inflammatory reaction and without suffering from total organ failure |
AU2003219958B2 (en) | 2002-02-27 | 2006-01-05 | Immunex Corporation | Polypeptide formulation |
US20040009172A1 (en) | 2002-04-26 | 2004-01-15 | Steven Fischkoff | Use of anti-TNFalpha antibodies and another drug |
US20030206898A1 (en) | 2002-04-26 | 2003-11-06 | Steven Fischkoff | Use of anti-TNFalpha antibodies and another drug |
CA2490423A1 (en) | 2002-06-21 | 2003-12-31 | Biogen Idec Inc. | Buffered formulations for concentrating antibodies and methods of use thereof |
JP2006506465A (en) | 2002-07-19 | 2006-02-23 | アボツト・バイオテクノロジー・リミテツド | Treatment of TNFα related diseases |
US20090280065A1 (en) | 2006-04-10 | 2009-11-12 | Willian Mary K | Uses and Compositions for Treatment of Psoriasis |
US20040033228A1 (en) | 2002-08-16 | 2004-02-19 | Hans-Juergen Krause | Formulation of human antibodies for treating TNF-alpha associated disorders |
MY150740A (en) | 2002-10-24 | 2014-02-28 | Abbvie Biotechnology Ltd | Low dose methods for treating disorders in which tnf? activity is detrimental |
US20040191243A1 (en) | 2002-12-13 | 2004-09-30 | Bei Chen | System and method for stabilizing antibodies with histidine |
CN1771053B (en) | 2003-02-10 | 2012-10-03 | 伊兰药品公司 | Immunoglobulin formulation and method of preparation thereof |
ATE394123T1 (en) | 2003-02-28 | 2008-05-15 | Ares Trading Sa | LIQUID FORMULATIONS OF THE TUMOR NECROSIS FRACTOR BINDING PROTEIN TBP-1 |
CA2517310C (en) | 2003-02-28 | 2015-11-24 | Chugai Seiyaku Kabushiki Kaisha | Stabilized protein-containing formulations comprising a poloxamer |
ES2609010T3 (en) | 2003-04-04 | 2017-04-18 | Genentech, Inc. | Antibody and protein formulations at high concentration |
FR2853551B1 (en) | 2003-04-09 | 2006-08-04 | Lab Francais Du Fractionnement | STABILIZING FORMULATION FOR IMMUNOGLOBULIN G COMPOSITIONS IN LIQUID FORM AND LYOPHILIZED FORM |
US7344716B2 (en) * | 2003-05-13 | 2008-03-18 | Depuy Spine, Inc. | Transdiscal administration of specific inhibitors of pro-inflammatory cytokines |
SI1698640T2 (en) | 2003-10-01 | 2019-08-30 | Kyowa Hakko Kirin Co., Ltd. | Method of stabilizing antibody and stabilized solution-type antibody preparation |
JPWO2005063291A1 (en) | 2003-12-25 | 2007-07-19 | 麒麟麦酒株式会社 | Stable aqueous pharmaceutical formulations containing antibodies |
DE602005004014T2 (en) | 2004-03-12 | 2008-12-11 | Intercell Ag | PROCESS FOR SOLUBILIZING PEPTIDE MIXTURES |
TW201705980A (en) | 2004-04-09 | 2017-02-16 | 艾伯維生物技術有限責任公司 | Multiple-variable dose regimen for treating TNF[alpha]-related disorders |
JP2008500995A (en) | 2004-06-01 | 2008-01-17 | アレス トレーディング ソシエテ アノニム | Protein stabilization method |
EP1807111A4 (en) | 2004-10-08 | 2009-05-27 | Abbott Biotech Ltd | Respiratory syncytial virus (rsv) infection |
JO3000B1 (en) | 2004-10-20 | 2016-09-05 | Genentech Inc | Antibody Formulations. |
TW200638943A (en) | 2005-01-28 | 2006-11-16 | Wyeth Corp | Stabilized liquid polypeptide formulations |
TWI398272B (en) | 2005-03-08 | 2013-06-11 | Intervet Int Bv | Chemically defined stabiliser |
NZ595225A (en) | 2005-05-16 | 2013-05-31 | Abbott Biotech Ltd | Use of tnf inhibitor for treatment of erosive polyarthritis |
JP5053264B2 (en) | 2005-05-19 | 2012-10-17 | アムジェン インコーポレイテッド | Compositions and methods for increasing antibody stability |
MX2007015476A (en) | 2005-06-14 | 2008-02-25 | Amgen Inc | Self-buffering protein formulations. |
EP2264162A1 (en) | 2005-07-02 | 2010-12-22 | Arecor Limited | Stable aqueous systems comprising proteins |
CA2615731A1 (en) | 2005-07-29 | 2007-02-08 | Amgen Inc. | Formulations that inhibit protein aggregation |
NZ599176A (en) | 2005-08-03 | 2014-04-30 | Immunogen Inc | Immunoconjugate formulations |
CA2915270C (en) | 2005-08-05 | 2017-07-11 | Amgen Inc. | Stable aqueous protein or antibody pharmaceutical formulations and their preparation |
US20070041905A1 (en) | 2005-08-19 | 2007-02-22 | Hoffman Rebecca S | Method of treating depression using a TNF-alpha antibody |
EP2357479A1 (en) | 2005-11-01 | 2011-08-17 | Abbott Biotechnology Ltd | Methods and compositions for diagnosing ankylosing spondylitis using biomarkers |
EP1962907A2 (en) | 2005-12-21 | 2008-09-03 | Wyeth a Corporation of the State of Delaware | Protein formulations with reduced viscosity and uses thereof |
CA2638811A1 (en) | 2006-02-03 | 2007-08-16 | Medimmune, Llc | Protein formulations |
RS52459B (en) | 2006-02-07 | 2013-02-28 | Shire Human Genetic Therapies Inc. | Stabilized composition of glucocerebrosidase |
WO2007117490A2 (en) | 2006-04-05 | 2007-10-18 | Abbott Biotechnology Ltd. | Antibody purification |
WO2008063213A2 (en) | 2006-04-10 | 2008-05-29 | Abbott Biotechnology Ltd. | Uses and compositions for treatment of psoriatic arthritis |
US20090317399A1 (en) | 2006-04-10 | 2009-12-24 | Pollack Paul F | Uses and compositions for treatment of CROHN'S disease |
US9399061B2 (en) | 2006-04-10 | 2016-07-26 | Abbvie Biotechnology Ltd | Methods for determining efficacy of TNF-α inhibitors for treatment of rheumatoid arthritis |
US20080118496A1 (en) | 2006-04-10 | 2008-05-22 | Medich John R | Uses and compositions for treatment of juvenile rheumatoid arthritis |
WO2007120626A2 (en) | 2006-04-10 | 2007-10-25 | Abbott Biotechnology Ltd. | Uses and compositions for treatment of ankylosing spondylitis |
US9605064B2 (en) | 2006-04-10 | 2017-03-28 | Abbvie Biotechnology Ltd | Methods and compositions for treatment of skin disorders |
US20080131374A1 (en) | 2006-04-19 | 2008-06-05 | Medich John R | Uses and compositions for treatment of rheumatoid arthritis |
CA2649538C (en) | 2006-04-21 | 2014-06-03 | Yatin Gokarn | Buffering agents for biopharmaceutical formulations |
TW200806315A (en) | 2006-04-26 | 2008-02-01 | Wyeth Corp | Novel formulations which stabilize and inhibit precipitation of immunogenic compositions |
US20100021451A1 (en) | 2006-06-08 | 2010-01-28 | Wong Robert L | Uses and compositions for treatment of ankylosing spondylitis |
US20080311043A1 (en) | 2006-06-08 | 2008-12-18 | Hoffman Rebecca S | Uses and compositions for treatment of psoriatic arthritis |
US7571225B2 (en) | 2006-06-29 | 2009-08-04 | Stratavia Corporation | Standard operating procedure automation in database administration |
KR101440795B1 (en) | 2006-06-30 | 2014-09-22 | 애브비 바이오테크놀로지 리미티드 | Automatic injection device |
CA2663442A1 (en) | 2006-09-13 | 2008-03-20 | Abbott Laboratories | Cell culture improvements |
KR20090060453A (en) | 2006-09-25 | 2009-06-12 | 메디뮨 엘엘씨 | Stabilized antibody formulations and uses thereof |
EP2081553B1 (en) | 2006-10-06 | 2020-08-12 | Amgen Inc. | Stable antibody formulations |
TW200833357A (en) | 2006-10-20 | 2008-08-16 | Amgen Inc | Stable polypeptide formulations |
AU2007318120B2 (en) | 2006-10-27 | 2013-07-25 | Abbvie Biotechnology Ltd | Crystalline anti-hTNFalpha antibodies |
GB0700523D0 (en) | 2007-01-11 | 2007-02-21 | Insense Ltd | The Stabilisation Of Proteins |
CA2675602A1 (en) | 2007-02-16 | 2008-08-21 | Wyeth | Protein formulations containing sorbitol |
CN103990116A (en) | 2007-04-26 | 2014-08-20 | 拜尔健康护理有限责任公司 | Stabilization of liquid solutions of recombinant protein for frozen storage |
CN101674847A (en) | 2007-05-02 | 2010-03-17 | 弗·哈夫曼-拉罗切有限公司 | Method for stabilizing a protein |
EP2165194A4 (en) | 2007-05-31 | 2010-09-08 | Abbott Lab | BIOMARKERS PREDICTIVE OF THE RESPONSIVENESS TO TNF-alpha INHIBITORS IN AUTOIMMUNE DISORDERS |
EP2150537A4 (en) | 2007-06-01 | 2010-09-22 | Acologix Inc | High temperature stable peptide formulation |
WO2008150490A2 (en) | 2007-06-01 | 2008-12-11 | Abbott Biotechnology Ltd. | Uses and compositions for treatment of psoriasis and crohn's disease |
US8999337B2 (en) | 2007-06-11 | 2015-04-07 | Abbvie Biotechnology Ltd. | Methods for treating juvenile idiopathic arthritis by inhibition of TNFα |
WO2009006301A2 (en) | 2007-06-29 | 2009-01-08 | Battelle Memorial Institute | Protein stabilization |
JP2010533181A (en) | 2007-07-13 | 2010-10-21 | アボツト・バイオテクノロジー・リミテツド | Methods and compositions for pulmonary administration of TNFα inhibitors |
CA2697163A1 (en) | 2007-08-08 | 2009-02-12 | Abbott Laboratories | Compositions and methods for crystallizing antibodies |
US8969024B2 (en) | 2007-08-28 | 2015-03-03 | Abbvie Biotechnology Ltd | Compositions and methods comprising binding proteins for adalimumab |
US8883146B2 (en) | 2007-11-30 | 2014-11-11 | Abbvie Inc. | Protein formulations and methods of making same |
US20090271164A1 (en) | 2008-01-03 | 2009-10-29 | Peng Joanna Z | Predicting long-term efficacy of a compound in the treatment of psoriasis |
TWI478937B (en) | 2008-01-15 | 2015-04-01 | Abbvie Inc | Improved mammalian expression vectors and uses thereof |
MX2010007728A (en) | 2008-01-15 | 2010-12-21 | Abbott Gmbh & Co Kg | Powdered protein compositions and methods of making same. |
US20100040630A1 (en) | 2008-03-24 | 2010-02-18 | Aake Elden | Methods and compositions for treating bone loss |
US8636704B2 (en) | 2009-04-29 | 2014-01-28 | Abbvie Biotechnology Ltd | Automatic injection device |
CN102458469B (en) * | 2009-05-04 | 2014-12-24 | 艾伯维生物技术有限公司 | Stable high protein concentration formulations of human anti-tnf-alpha-antibodies |
CN102959088A (en) | 2010-02-02 | 2013-03-06 | 艾博特生物技术有限公司 | Methods and compositions for predicting responsiveness to treatment with TNF-a inhibitor |
RS57543B1 (en) | 2010-06-03 | 2018-10-31 | Abbvie Biotechnology Ltd | Uses and compositions for treatment of hidradenitis suppurativa (hs) |
SG190069A1 (en) | 2010-11-11 | 2013-06-28 | Abbvie Biotechnology Ltd | IMPROVED HIGH CONCENTRATION ANTI-TNFa ANTIBODY LIQUID FORMULATIONS |
-
2011
- 2011-11-11 SG SG2013033105A patent/SG190069A1/en unknown
- 2011-11-11 CN CN201180054481.9A patent/CN103458926B/en active Active
- 2011-11-11 RU RU2013126655A patent/RU2639386C2/en not_active Application Discontinuation
- 2011-11-11 PL PL11839071T patent/PL2637690T3/en unknown
- 2011-11-11 CA CA2815689A patent/CA2815689C/en active Active
- 2011-11-11 TW TW100141387A patent/TWI603739B/en active
- 2011-11-11 KR KR1020137014903A patent/KR101841527B1/en active IP Right Grant
- 2011-11-11 HU HUE11839071A patent/HUE029457T2/en unknown
- 2011-11-11 RS RS20160917A patent/RS55385B1/en unknown
- 2011-11-11 PT PT118390715T patent/PT2637690T/en unknown
- 2011-11-11 AU AU2011325974A patent/AU2011325974B2/en active Active
- 2011-11-11 SG SG2014015069A patent/SG2014015069A/en unknown
- 2011-11-11 ES ES11839071.5T patent/ES2601202T3/en active Active
- 2011-11-11 MX MX2013005341A patent/MX344727B/en active IP Right Grant
- 2011-11-11 BR BR112013011699-4A patent/BR112013011699B1/en active IP Right Grant
- 2011-11-11 ME MEP-2016-217A patent/ME02506B/en unknown
- 2011-11-11 TW TW105108566A patent/TWI606840B/en active
- 2011-11-11 CN CN201610221531.2A patent/CN105854016A/en active Pending
- 2011-11-11 EP EP11839071.5A patent/EP2637690B1/en not_active Revoked
- 2011-11-11 RU RU2015154965A patent/RU2015154965A/en not_active Application Discontinuation
- 2011-11-11 LT LTEP11839071.5T patent/LT2637690T/en unknown
- 2011-11-11 SI SI201130979A patent/SI2637690T1/en unknown
- 2011-11-11 NZ NZ609469A patent/NZ609469A/en unknown
- 2011-11-11 JP JP2013538935A patent/JP5919606B2/en active Active
- 2011-11-11 DK DK11839071.5T patent/DK2637690T3/en active
- 2011-11-11 US US13/294,692 patent/US8821865B2/en active Active
- 2011-11-11 WO PCT/US2011/060388 patent/WO2012065072A2/en active Application Filing
-
2013
- 2013-05-07 IL IL226217A patent/IL226217A/en active IP Right Grant
-
2014
- 2014-03-04 HK HK14102183.7A patent/HK1189162A1/en not_active IP Right Cessation
- 2014-08-29 US US14/473,775 patent/US20140377275A1/en not_active Abandoned
- 2014-09-05 ZA ZA2014/06542A patent/ZA201406542B/en unknown
-
2015
- 2015-07-30 US US14/814,051 patent/US20160017030A1/en not_active Abandoned
-
2016
- 2016-01-18 JP JP2016006834A patent/JP6062582B2/en active Active
- 2016-04-01 JP JP2016073953A patent/JP2016172740A/en active Pending
- 2016-04-06 AU AU2016202136A patent/AU2016202136A1/en not_active Abandoned
- 2016-12-05 CY CY20161101248T patent/CY1118373T1/en unknown
- 2016-12-06 SM SM201600443T patent/SMT201600443B/en unknown
- 2016-12-20 HR HRP20161753TT patent/HRP20161753T1/en unknown
-
2018
- 2018-08-10 US US16/101,349 patent/US20190211093A1/en not_active Abandoned
-
2021
- 2021-02-16 US US17/177,022 patent/US20220010005A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090291062A1 (en) * | 2007-11-30 | 2009-11-26 | Wolfgang Fraunhofer | Protein formulations and methods of making same |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11191834B2 (en) | 2007-11-30 | 2021-12-07 | Abbvie Biotechnology Ltd | Protein formulations and methods of making same |
US9085619B2 (en) | 2007-11-30 | 2015-07-21 | Abbvie Biotechnology Ltd. | Anti-TNF antibody formulations |
US11167030B2 (en) | 2007-11-30 | 2021-11-09 | Abbvie Biotechnology Ltd | Protein formulations and methods of making same |
US9062106B2 (en) | 2011-04-27 | 2015-06-23 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9090688B2 (en) | 2011-04-27 | 2015-07-28 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9365645B1 (en) | 2011-04-27 | 2016-06-14 | Abbvie, Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9505834B2 (en) | 2011-04-27 | 2016-11-29 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9255143B2 (en) | 2011-04-27 | 2016-02-09 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
US9957318B2 (en) | 2012-04-20 | 2018-05-01 | Abbvie Inc. | Protein purification methods to reduce acidic species |
US9708400B2 (en) | 2012-04-20 | 2017-07-18 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US9359434B2 (en) | 2012-04-20 | 2016-06-07 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9683033B2 (en) | 2012-04-20 | 2017-06-20 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9193787B2 (en) | 2012-04-20 | 2015-11-24 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
US9505833B2 (en) | 2012-04-20 | 2016-11-29 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
US9181572B2 (en) | 2012-04-20 | 2015-11-10 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US9150645B2 (en) | 2012-04-20 | 2015-10-06 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9334319B2 (en) | 2012-04-20 | 2016-05-10 | Abbvie Inc. | Low acidic species compositions |
US9346879B2 (en) | 2012-04-20 | 2016-05-24 | Abbvie Inc. | Protein purification methods to reduce acidic species |
US9249182B2 (en) | 2012-05-24 | 2016-02-02 | Abbvie, Inc. | Purification of antibodies using hydrophobic interaction chromatography |
US9206390B2 (en) | 2012-09-02 | 2015-12-08 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9290568B2 (en) | 2012-09-02 | 2016-03-22 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9234033B2 (en) | 2012-09-02 | 2016-01-12 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
US9708399B2 (en) | 2013-03-14 | 2017-07-18 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US10376582B2 (en) | 2013-10-16 | 2019-08-13 | Outlook Therapeutics, Inc. | Buffer formulations for enhanced antibody stability |
US9688752B2 (en) | 2013-10-18 | 2017-06-27 | Abbvie Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9315574B2 (en) | 2013-10-18 | 2016-04-19 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9522953B2 (en) | 2013-10-18 | 2016-12-20 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9200069B2 (en) | 2013-10-18 | 2015-12-01 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9200070B2 (en) | 2013-10-18 | 2015-12-01 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9499616B2 (en) | 2013-10-18 | 2016-11-22 | Abbvie Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9266949B2 (en) | 2013-10-18 | 2016-02-23 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9550826B2 (en) | 2013-11-15 | 2017-01-24 | Abbvie Inc. | Glycoengineered binding protein compositions |
US10183994B2 (en) | 2014-06-30 | 2019-01-22 | Merck Patent Gmbh | Anti-TNFα antibodies with pH-dependent antigen binding for improved target clearence |
US10696735B2 (en) | 2015-01-21 | 2020-06-30 | Outlook Therapeutics, Inc. | Modulation of charge variants in a monoclonal antibody composition |
US10689440B2 (en) | 2015-04-10 | 2020-06-23 | Fresenius Kabi Deutschland Gmbh | Method of treating Crohn's disease and ulcerative colitis by using an induction dosing regimen of adalimumab |
US10669333B2 (en) | 2015-04-10 | 2020-06-02 | Fresenius Kabi Deutschland Gmbh | Method of treating a tumor necrosis factor α (TNFα)-related disorder by using an induction dosing regimen of adalimumab |
US10179811B2 (en) | 2015-04-10 | 2019-01-15 | Fresenius Kabi Deutschland Gmbh | Methods of treating Crohn's disease or ulcerative colitis using an induction dosing regimen comprising anti-TNF-alpha antibody |
US11285210B2 (en) | 2016-02-03 | 2022-03-29 | Outlook Therapeutics, Inc. | Buffer formulations for enhanced antibody stability |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220010005A1 (en) | HIGH CONCENTRATION ANTI-TNFalpha ANTIBODY LIQUID FORMULATIONS | |
CN102458469B (en) | Stable high protein concentration formulations of human anti-tnf-alpha-antibodies | |
ES2400458T3 (en) | Methods of administration of anti-TNF-alpha antibodies | |
US10689440B2 (en) | Method of treating Crohn's disease and ulcerative colitis by using an induction dosing regimen of adalimumab | |
CN104398471A (en) | Stable antibody compositions and methods for stabilizing same | |
CA2872088A1 (en) | Anti-tnf-alpha antibodies in solution and uses thereof | |
JP2023526359A (en) | Anti-IL-36R antibody for treatment of atopic dermatitis | |
KR20200105439A (en) | Methods for Treating TNFα-Related Diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRAUNHOFER, WOLFGANG;REDDEN, LAURA;PAULSON, SUSAN K.;AND OTHERS;SIGNING DATES FROM 20120402 TO 20140403;REEL/FRAME:034270/0193 Owner name: ABBOTT BIOTECHNOLOGY LTD., BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:034270/0255 Effective date: 20120618 Owner name: ABBOTT BIOTECHNOLOGY LTD., BERMUDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT GMBH & CO. KG;REEL/FRAME:034270/0226 Effective date: 20120427 Owner name: ABBOTT GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEU, MICHAEL;TSCHOEPE, MARKUS;WEBER, CARSTEN;AND OTHERS;SIGNING DATES FROM 20120402 TO 20120425;REEL/FRAME:034270/0140 Owner name: ABBVIE BIOTECHNOLOGY LTD., BERMUDA Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT BIOTECHNOLOGY LTD.;REEL/FRAME:034477/0356 Effective date: 20120627 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |