US20140198034A1 - Muscle interface device and method for interacting with content displayed on wearable head mounted displays - Google Patents
Muscle interface device and method for interacting with content displayed on wearable head mounted displays Download PDFInfo
- Publication number
- US20140198034A1 US20140198034A1 US14/155,087 US201414155087A US2014198034A1 US 20140198034 A1 US20140198034 A1 US 20140198034A1 US 201414155087 A US201414155087 A US 201414155087A US 2014198034 A1 US2014198034 A1 US 2014198034A1
- Authority
- US
- United States
- Prior art keywords
- interface device
- head mounted
- sensors
- mounted display
- muscle interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
Definitions
- the present disclosure relates generally to muscle interface devices, and more specifically to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- wearable head mounted displays have begun to gain wider acceptance, with a number of recently introduced wearable head mounted display devices having the potential for widespread adoption by consumers.
- a finger operable input device such as a touch pad built into the wearable head mounted display (e.g. built into a side-arm of a pair of glasses, with one of the lenses functioning as a display screen) such that a user can interact with and control content appearing on the display screen with positioning and movement of a finger along a planar direction relative to a surface of the input device.
- a finger operable input device such as a touch pad built into the wearable head mounted display (e.g. built into a side-arm of a pair of glasses, with one of the lenses functioning as a display screen)
- a user can interact with and control content appearing on the display screen with positioning and movement of a finger along a planar direction relative to a surface of the input device.
- a potential drawback of this approach is that a user is required to conspicuously raise his or her hand to touch the input device each time the user wants to interact with content displayed on the screen.
- a head mounted display provides users with supplemental information on a display screen provided in at least one of the lenses of a pair of glasses.
- a processing unit may be connected to the head mounted display to provide the computing power necessary for its operation.
- the method of user interaction with the display is not specified.
- the present disclosure relates to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize a plurality of gestures made by a user's hand and or wrist to interact with content displayed on the wearable head mounted display.
- the muscle interface device utilizes a plurality of electromyographic (EMG) sensors to detect electrical activity produced by muscles during contraction, and convert the electrical signals for processing.
- EMG electromyographic
- the electrical signals detected from the muscles are interpreted as gestures (e.g. a combination of hand, wrist and arm movements) made by a user which provide a control input to a wearable head mounted display.
- the control input is preferably provided wirelessly via a near field communication protocol, such as BluetoothTM, for example.
- various types of sensors may be used alone or in lieu of or in combination with EMG sensors to detect gestures made by a user, for processing as a control input for interacting with a wearable head mounted display.
- This may be one or more mechanomyographic (MMG) sensors to detect vibrations made by muscles during contraction, or one or more accelerometer sensors to detect larger movements.
- MMG mechanomyographic
- the muscle interface device includes a calibration module with a routine for calibrating the muscle interface device for use with the wearable head mounted display.
- FIG. 1 illustrates a user wearing a head mounted display and a muscle interface device in accordance with an embodiment.
- FIG. 2A illustrates a detailed view of a muscle interface device in accordance with an embodiment.
- FIG. 2B illustrates a data graph corresponding to an electrical signal detected by an EMG sensor.
- FIG. 3 illustrates wireless near field communication between a head mounted display and a muscle interface device in accordance with an embodiment of the invention.
- FIG. 4 illustrates a user's hand and wrist gesture processed as a control signal by the muscle interface device for interacting with content displayed on the head mounted display.
- FIG. 5 illustrates a schematic system architecture of a muscle interface device in accordance with an embodiment.
- FIG. 6 illustrates a schematic flow chart of a method in accordance with an embodiment.
- the present disclosure relates to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize gestures made by a user to interact with content displayed on the wearable head mounted display.
- the user interface method comprises processing a control signal from gestures made by a user's hand, wrist and arm movements to interact with content displayed on the wearable head mounted display.
- the muscle interface device utilizes a plurality of sensors to detect electrical signals and/or vibrations produced by muscles during contraction, and movement of the arm, and converts the electrical signals or vibrations to a digital signal for processing.
- the electrical signals and/or vibrations detected from the muscles are interpreted as gestures made by a user which provide a control input to a wearable head mounted display.
- control input is preferably provided wirelessly via a near field communication protocol, such as BluetoothTM, for example.
- a near field communication protocol such as BluetoothTM
- other types of near field communications may be used, including any NFC protocol developed for smart phones and similar devices.
- various other types of sensors may be used to detect gestures made by a user. However, some of these sensors may have drawbacks if used alone.
- sEMG sensors may be used to measure forearm muscle activity.
- An sEMG sensor typically requires direct contact with the skin of the user in order to measure the electrical activity conducted from the underlying muscles, through the fat and skin.
- sEMG surface electromyographic
- the capacitive EMG sensors of the present invention do not require direct surface contact or skin preparations.
- one or more accelerometer sensors may be used to measure larger gestures made by a user, for example involving the elbow or even the shoulders of a user.
- the accelerometer sensors may be utilized to increase the range of control inputs that may be generated for interaction with a wearable head mounted display.
- muscle interface device 200 is a flexible, stretchable band that may be worn on the forearm of user 100 as shown.
- FIG. 2A illustrates a detailed view of the muscle interface device 200 of FIG. 1 in accordance with an embodiment.
- muscle interface device 200 may comprise a central processing unit 210 , and one or more batteries 220 , which may be rechargeable, and which may be utilized concurrently or sequentially in conventional manner.
- muscle interface device 200 includes a plurality of sensors 230 which may be positioned radially around the circumference of the band, such that the sensors 230 can detect gestures made by user 100 .
- Muscle interface device 200 may further include a feedback mechanism, such as a vibratory motor 240 to provide haptic feedback as described further below.
- the muscle interface device 200 is calibrated when first worn, prior to operation, such that the positioning of the sensors 230 does not need to depend on the location of particular muscles in the forearm.
- sensors 230 include at least one or more capacitive EMG sensor adapted to detect electrical signals in the forearm of user 100 for generating a control signal.
- Capacitive EMG does not require direct contact with the skin as with sEMG sensors described earlier. Rather, capacitive EMG sensors are capacitively coupled to the electrical signals generated by contracting muscles, and may operate at a distance of up to 3 mm from the skin.
- the capacitive EMG signal can be an oscillating waveform that varies in both frequency and amplitude, and the majority of signal information is contained within the 5 Hz to 250 Hz frequency band.
- An illustrative example of an EMG signal is shown in FIG. 2B .
- one or more MMG sensors comprising piezoelectric sensors may be used to measure the vibrations at the surface of the skin produced by the underlying muscles when contracted.
- the MMG signal generated may be an oscillating waveform that varies in both frequency and amplitude, and a majority of signal information is contained within the 5 Hz to 250 Hz frequency band. Because the MMG signal is acquired via mechanical means, electrical variations like skin impedance do not have an effect on the signal.
- the MMG signal is very similar to the illustrative example of the EMG signal shown in FIG. 2B .
- capacitive EMG or MMG both provide a reliable control signal that can be obtained over the duration of a full day, as skin perspiration and moisturization changes do not affect the signal.
- sensors 230 may include one or more accelerometer sensors for detecting additional aspects of gestures made by user 100 in three degrees of freedom.
- the accelerometer signal consists of a three digital channels of data, each representing the acceleration in either the x, y, or z direction.
- the signal is subject to all of the accelerations that the users arm is subject to, and may further incorporate motion of the body as a whole.
- FIG. 3 shown is an illustration of wireless near field communication (NFC) between muscle interface device 200 and the head mounted display 310 and display control 300 .
- This wireless NFC is utilized to transmit the control signal from muscle interface device 200 to display control 300 .
- FIG. 4 This is illustrated by way of example in FIG. 4 , in which user's hand and wrist gesture is detected and processed as a control signal by the muscle interface device 200 for interacting with content displayed on the head mounted display 310 .
- a gesture 410 made by the user extending an index finger, and making a wrist flexion motion 420 is detected by the sensors 230 of muscle interface device 200 , and processed by CPU 210 ( FIG. 2 ) as a control signal for causing a menu appearing on display 310 to scroll downwards.
- a similar gesture in which user 100 extends the index finger and makes a wrist extension motion is detected by sensors 230 of muscle interface device 200 and processed by CPU 210 ( FIG. 2 ) as a control signal for causing a menu appearing on display 310 to scroll upwards.
- a gesture in which user 100 extends the index finger and makes a poking motion involving a slight movement of the elbow and shoulder may be detected by sensors 230 of muscle interface device 200 and processed by CPU 210 ( FIG. 2 ) as a control signal for causing a highlighted menu item appearing on display 310 to be selected.
- sensors 230 will detect this and may cause a different control signal to be generated.
- extending the little finger or “pinky” finger instead of the index finger may cause muscle interface device 200 to interpret the user's gestures with functions analogous to clicking a right mouse button rather than a left mouse button in a conventional mouse user interface.
- Extending both the index and pinky fingers at the same time may cause muscle interface device 200 to interpret the user's gestures with yet other functions analogous to clicking a third mouse button in a conventional mouse user interface.
- muscle interface device 200 may be adapted to be calibrated to recognize a wide range of user gestures made by a user, based on measurements from a plurality of sensors in the muscle interface device 200 .
- muscle interface device 200 may itself be adapted to interpret the gestures from the detected signals as described.
- the detected signals may be transmitted to the head mounted display 310 and display control 300 to be interpreted as gestures at the display control 300 . Whether the detected signals are interpreted at the device 200 or at the display control 300 , the detected signal is first interpreted as a recognized gesture in order to interact with content displayed on the display 310 .
- muscle interface device 200 may include a haptic feedback module to provide feedback that a gesture has been recognized.
- This haptic feedback provides a user with confirmation that the user's gesture has been recognized, and successfully converted to a control signal to interact with content displayed on display 310 .
- the haptic feedback module may comprise, for example, a vibrating mechanism such as a vibratory motor 240 built into the muscle interface device.
- confirmation of recognition of a gesture may be provided by auditory feedback, either generated by a speaker on the muscle interface device, or operatively connected to the head mounted display 310 .
- confirmation of recognition of a gesture may also be provided visually on the display 310 itself. If there is more than one possible gesture that may be interpreted from the detected signals, rather than providing resulting in an error, the muscle interface device 200 and/or the display control 300 may provide a selection of two or more possible gestures as possible interpretation, and the user may be prompted to select from one of them to confirm the intended gesture and corresponding control.
- system architecture 500 includes a CPU 502 , memory 504 , system clock 506 , an NFC module 508 (e.g. BluetoothTM), and a direct memory access (DMA) controller 510 .
- DMA controller 510 is adapted to receive inputs from various sensors including one or more EMG sensors 520 , MMG sensors 530 and accelerometer sensors 540 .
- detected signals from one or more EMG sensors 520 are processed through signal filter 532 and converted from analog to digital signals by ADC 534 . If one or more MMG sensors 530 are also used, then the detected signals from the sEMG sensors 520 are processed through signal filter 522 and converted from analog to digital signals by ADC 524 . Digital signals from one or more accelerometer sensors 540 may also be processed through signal filter 542 and received by DMA controller 510 .
- the data from the various types of sensors 520 , 530 , 540 is acquired through an analog filtering chain.
- the data is bandpassed through filters 522 , 532 between 10 Hz to 500 Hz, and amplified (e.g. by a total of 1000 times). This filtering and amplification can be altered to whatever is required to be within software parameters.
- a notch filter at 60 Hz, or at any other relevant frequency, may also be used to remove powerline noise.
- data from the sensors is converted to 12 bit digital data by ADCs 524 , 534 , and then clocked into onboard memory using clock 506 by the DMA controller 510 to be processed by the CPU 502 .
- method 600 begins at block 602 , where method 600 pairs a muscle interface device with a wearable head mounted display. Method 600 then proceeds to block 604 , where content and/or user interface (UI) is displayed on the wearable head mounted display.
- UI user interface
- Method 600 then proceeds to block 606 , where method 600 determines if the displayed content and/or UI is navigable. If no, method 600 returns to block 604 . If yes, method 600 proceeds to block 608 , where method 600 detects user gestures utilizing the muscle interface device 200 , and wirelessly transmits the identified gesture to the display control 300 ( FIG. 1 ).
- Method 600 then proceeds to block 610 , where display control 400 receives the detected gestures from the muscle interface device 200 , and translates the detected gestures to a control signal to interact with navigable content displayed on the wearable head mounted display.
- the muscle interface device and method of the present disclosure may be used for interaction with a wearable head mounted display in a wide range of applications, in virtually any application in which wearable head mounted displays are contemplated.
- a user is able to interact with such a display in any operating environment, including situations where overt gesturing (e.g. raising the hand to touch an input device provided on the wearable head mounted display itself) is not desirable.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
- The present disclosure relates generally to muscle interface devices, and more specifically to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- In recent years, wearable head mounted displays have begun to gain wider acceptance, with a number of recently introduced wearable head mounted display devices having the potential for widespread adoption by consumers.
- One such device disclosed in U.S. Pat. No. 8,203,502 issued to Chi et al. utilizes a finger operable input device such as a touch pad built into the wearable head mounted display (e.g. built into a side-arm of a pair of glasses, with one of the lenses functioning as a display screen) such that a user can interact with and control content appearing on the display screen with positioning and movement of a finger along a planar direction relative to a surface of the input device. A potential drawback of this approach is that a user is required to conspicuously raise his or her hand to touch the input device each time the user wants to interact with content displayed on the screen.
- Another such device is disclosed in US 2012/0293548 (Perez et al.) in which a head mounted display provides users with supplemental information on a display screen provided in at least one of the lenses of a pair of glasses. A processing unit may be connected to the head mounted display to provide the computing power necessary for its operation. However, the method of user interaction with the display is not specified.
- Yet another example of such a device is disclosed in U.S. Pat. No. 8,212,159 issued to Tang et al. in which a source image is projected onto screens built into head mounted displays worn by a user. Tang et al. focuses on the method and system for projection, and does not specify the manner of user interaction with the head-mounted display device.
- Therefore, what is needed is an effective user interface device for wearable head mounted displays which can be utilized in an inconspicuous manner.
- The present disclosure relates to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- More generally, the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize a plurality of gestures made by a user's hand and or wrist to interact with content displayed on the wearable head mounted display.
- In an embodiment, the muscle interface device utilizes a plurality of electromyographic (EMG) sensors to detect electrical activity produced by muscles during contraction, and convert the electrical signals for processing. The electrical signals detected from the muscles are interpreted as gestures (e.g. a combination of hand, wrist and arm movements) made by a user which provide a control input to a wearable head mounted display. The control input is preferably provided wirelessly via a near field communication protocol, such as Bluetooth™, for example.
- In another embodiment, various types of sensors may be used alone or in lieu of or in combination with EMG sensors to detect gestures made by a user, for processing as a control input for interacting with a wearable head mounted display. This may be one or more mechanomyographic (MMG) sensors to detect vibrations made by muscles during contraction, or one or more accelerometer sensors to detect larger movements.
- In another embodiment, the muscle interface device includes a calibration module with a routine for calibrating the muscle interface device for use with the wearable head mounted display.
- Other features and advantages of the present invention will become apparent from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples are given by way of illustration and not limitation. Many modifications and changes within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
-
FIG. 1 illustrates a user wearing a head mounted display and a muscle interface device in accordance with an embodiment. -
FIG. 2A illustrates a detailed view of a muscle interface device in accordance with an embodiment. -
FIG. 2B illustrates a data graph corresponding to an electrical signal detected by an EMG sensor. -
FIG. 3 illustrates wireless near field communication between a head mounted display and a muscle interface device in accordance with an embodiment of the invention. -
FIG. 4 illustrates a user's hand and wrist gesture processed as a control signal by the muscle interface device for interacting with content displayed on the head mounted display. -
FIG. 5 illustrates a schematic system architecture of a muscle interface device in accordance with an embodiment. -
FIG. 6 illustrates a schematic flow chart of a method in accordance with an embodiment. - In the drawings, embodiments of the invention are illustrated by way of example. It is to be expressly understood that the description and drawings are only for the purpose of illustration and as an aid to understanding, and are not intended as a definition of the limits of the invention.
- The present disclosure relates to a muscle interface device and method for interacting with content displayed on wearable head mounted displays.
- In an aspect, the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize gestures made by a user to interact with content displayed on the wearable head mounted display. In another aspect, the user interface method comprises processing a control signal from gestures made by a user's hand, wrist and arm movements to interact with content displayed on the wearable head mounted display.
- In a preferred embodiment, the muscle interface device utilizes a plurality of sensors to detect electrical signals and/or vibrations produced by muscles during contraction, and movement of the arm, and converts the electrical signals or vibrations to a digital signal for processing. The electrical signals and/or vibrations detected from the muscles are interpreted as gestures made by a user which provide a control input to a wearable head mounted display.
- In an embodiment, the control input is preferably provided wirelessly via a near field communication protocol, such as Bluetooth™, for example. However, it will be appreciated that other types of near field communications may be used, including any NFC protocol developed for smart phones and similar devices.
- In addition to capacitive EMG, MMG, and accelerometer sensors, various other types of sensors may be used to detect gestures made by a user. However, some of these sensors may have drawbacks if used alone.
- For example, surface electromyographic (sEMG) sensors may be used to measure forearm muscle activity. An sEMG sensor typically requires direct contact with the skin of the user in order to measure the electrical activity conducted from the underlying muscles, through the fat and skin. There are some inherent limitations with sEMG, as the quality of the acquired signal is directly related to the skin impedance, which varies according to the user's skin perspiration, amount of arm hair, fat content, and a number of other attributes. This may necessitate the use of moisturizing and conductive gels, shaving the skin, or other skin preparation practices to get a reliable and repeatable signal from this type of sensor. In contrast, the capacitive EMG sensors of the present invention do not require direct surface contact or skin preparations.
- As another example, one or more accelerometer sensors may be used to measure larger gestures made by a user, for example involving the elbow or even the shoulders of a user. When used together with EMG and/or MMG sensors for detecting more limited gestures (e.g. made by the hand and/or wrist for example), the accelerometer sensors may be utilized to increase the range of control inputs that may be generated for interaction with a wearable head mounted display.
- An illustrative embodiment will now be described with reference to the drawings.
- Shown in
FIG. 1 is anillustrative user 100 wearing a head mounteddisplay 310 withdisplay control 300, and amuscle interface device 200 in accordance with an embodiment. In this illustrative example,muscle interface device 200 is a flexible, stretchable band that may be worn on the forearm ofuser 100 as shown. -
FIG. 2A illustrates a detailed view of themuscle interface device 200 ofFIG. 1 in accordance with an embodiment. As shown,muscle interface device 200 may comprise acentral processing unit 210, and one ormore batteries 220, which may be rechargeable, and which may be utilized concurrently or sequentially in conventional manner. As shown,muscle interface device 200 includes a plurality ofsensors 230 which may be positioned radially around the circumference of the band, such that thesensors 230 can detect gestures made byuser 100.Muscle interface device 200 may further include a feedback mechanism, such as avibratory motor 240 to provide haptic feedback as described further below. - In an embodiment, the
muscle interface device 200 is calibrated when first worn, prior to operation, such that the positioning of thesensors 230 does not need to depend on the location of particular muscles in the forearm. - In an embodiment,
sensors 230 include at least one or more capacitive EMG sensor adapted to detect electrical signals in the forearm ofuser 100 for generating a control signal. Capacitive EMG does not require direct contact with the skin as with sEMG sensors described earlier. Rather, capacitive EMG sensors are capacitively coupled to the electrical signals generated by contracting muscles, and may operate at a distance of up to 3 mm from the skin. By way of example, the capacitive EMG signal can be an oscillating waveform that varies in both frequency and amplitude, and the majority of signal information is contained within the 5 Hz to 250 Hz frequency band. An illustrative example of an EMG signal is shown inFIG. 2B . - In another embodiment, one or more MMG sensors comprising piezoelectric sensors may be used to measure the vibrations at the surface of the skin produced by the underlying muscles when contracted. By way of example, the MMG signal generated may be an oscillating waveform that varies in both frequency and amplitude, and a majority of signal information is contained within the 5 Hz to 250 Hz frequency band. Because the MMG signal is acquired via mechanical means, electrical variations like skin impedance do not have an effect on the signal. The MMG signal is very similar to the illustrative example of the EMG signal shown in
FIG. 2B . - Thus, capacitive EMG or MMG both provide a reliable control signal that can be obtained over the duration of a full day, as skin perspiration and moisturization changes do not affect the signal.
- In another embodiment,
sensors 230 may include one or more accelerometer sensors for detecting additional aspects of gestures made byuser 100 in three degrees of freedom. The accelerometer signal consists of a three digital channels of data, each representing the acceleration in either the x, y, or z direction. The signal is subject to all of the accelerations that the users arm is subject to, and may further incorporate motion of the body as a whole. - Now referring to
FIG. 3 , shown is an illustration of wireless near field communication (NFC) betweenmuscle interface device 200 and the head mounteddisplay 310 anddisplay control 300. This wireless NFC is utilized to transmit the control signal frommuscle interface device 200 to displaycontrol 300. - This is illustrated by way of example in
FIG. 4 , in which user's hand and wrist gesture is detected and processed as a control signal by themuscle interface device 200 for interacting with content displayed on the head mounteddisplay 310. - In this particular example, a
gesture 410 made by the user extending an index finger, and making awrist flexion motion 420 is detected by thesensors 230 ofmuscle interface device 200, and processed by CPU 210 (FIG. 2 ) as a control signal for causing a menu appearing ondisplay 310 to scroll downwards. - As another example, a similar gesture in which
user 100 extends the index finger and makes a wrist extension motion is detected bysensors 230 ofmuscle interface device 200 and processed by CPU 210 (FIG. 2 ) as a control signal for causing a menu appearing ondisplay 310 to scroll upwards. - As yet another example, a gesture in which
user 100 extends the index finger and makes a poking motion involving a slight movement of the elbow and shoulder may be detected bysensors 230 ofmuscle interface device 200 and processed by CPU 210 (FIG. 2 ) as a control signal for causing a highlighted menu item appearing ondisplay 310 to be selected. - If the user extends a different finger other than the index finger,
sensors 230 will detect this and may cause a different control signal to be generated. For example, extending the little finger or “pinky” finger instead of the index finger may causemuscle interface device 200 to interpret the user's gestures with functions analogous to clicking a right mouse button rather than a left mouse button in a conventional mouse user interface. Extending both the index and pinky fingers at the same time may causemuscle interface device 200 to interpret the user's gestures with yet other functions analogous to clicking a third mouse button in a conventional mouse user interface. - Thus,
muscle interface device 200 may be adapted to be calibrated to recognize a wide range of user gestures made by a user, based on measurements from a plurality of sensors in themuscle interface device 200. - In an embodiment,
muscle interface device 200 may itself be adapted to interpret the gestures from the detected signals as described. - However, in an alternative embodiment, the detected signals may be transmitted to the head mounted
display 310 anddisplay control 300 to be interpreted as gestures at thedisplay control 300. Whether the detected signals are interpreted at thedevice 200 or at thedisplay control 300, the detected signal is first interpreted as a recognized gesture in order to interact with content displayed on thedisplay 310. - In another embodiment, upon interpretation of a gesture,
muscle interface device 200 may include a haptic feedback module to provide feedback that a gesture has been recognized. This haptic feedback provides a user with confirmation that the user's gesture has been recognized, and successfully converted to a control signal to interact with content displayed ondisplay 310. The haptic feedback module may comprise, for example, a vibrating mechanism such as avibratory motor 240 built into the muscle interface device. - Alternatively, rather than haptic feedback provided by the
muscle interface device 200, confirmation of recognition of a gesture may be provided by auditory feedback, either generated by a speaker on the muscle interface device, or operatively connected to the head mounteddisplay 310. - In still another embodiment, confirmation of recognition of a gesture may also be provided visually on the
display 310 itself. If there is more than one possible gesture that may be interpreted from the detected signals, rather than providing resulting in an error, themuscle interface device 200 and/or thedisplay control 300 may provide a selection of two or more possible gestures as possible interpretation, and the user may be prompted to select from one of them to confirm the intended gesture and corresponding control. - Now referring to
FIG. 5 , shown is an illustrativeschematic system architecture 500 of a muscle interface device in accordance with an embodiment. As shown,system architecture 500 includes aCPU 502,memory 504,system clock 506, an NFC module 508 (e.g. Bluetooth™), and a direct memory access (DMA)controller 510. As shown,DMA controller 510 is adapted to receive inputs from various sensors including one ormore EMG sensors 520,MMG sensors 530 andaccelerometer sensors 540. - In an embodiment, detected signals from one or
more EMG sensors 520 are processed throughsignal filter 532 and converted from analog to digital signals byADC 534. If one ormore MMG sensors 530 are also used, then the detected signals from thesEMG sensors 520 are processed throughsignal filter 522 and converted from analog to digital signals byADC 524. Digital signals from one ormore accelerometer sensors 540 may also be processed throughsignal filter 542 and received byDMA controller 510. - In an illustrative embodiment the data from the various types of
sensors filters - In an embodiment, data from the sensors is converted to 12 bit digital data by
ADCs memory using clock 506 by theDMA controller 510 to be processed by theCPU 502. - Now referring to
FIG. 6 , shown is a schematic flow chart of a method in accordance with an embodiment. As shown,method 600 begins atblock 602, wheremethod 600 pairs a muscle interface device with a wearable head mounted display.Method 600 then proceeds to block 604, where content and/or user interface (UI) is displayed on the wearable head mounted display. -
Method 600 then proceeds to block 606, wheremethod 600 determines if the displayed content and/or UI is navigable. If no,method 600 returns to block 604. If yes,method 600 proceeds to block 608, wheremethod 600 detects user gestures utilizing themuscle interface device 200, and wirelessly transmits the identified gesture to the display control 300 (FIG. 1 ). -
Method 600 then proceeds to block 610, wheredisplay control 400 receives the detected gestures from themuscle interface device 200, and translates the detected gestures to a control signal to interact with navigable content displayed on the wearable head mounted display. - As will be appreciated, the muscle interface device and method of the present disclosure may be used for interaction with a wearable head mounted display in a wide range of applications, in virtually any application in which wearable head mounted displays are contemplated. By providing a discrete method of interacting with a wearable head mounted display, a user is able to interact with such a display in any operating environment, including situations where overt gesturing (e.g. raising the hand to touch an input device provided on the wearable head mounted display itself) is not desirable.
- While various embodiments and illustrative examples have been described above, it will be appreciated that these embodiments and illustrative examples are not limiting, and the scope of the invention is defined by the following claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/155,087 US20140198034A1 (en) | 2013-01-14 | 2014-01-14 | Muscle interface device and method for interacting with content displayed on wearable head mounted displays |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361752226P | 2013-01-14 | 2013-01-14 | |
US14/155,087 US20140198034A1 (en) | 2013-01-14 | 2014-01-14 | Muscle interface device and method for interacting with content displayed on wearable head mounted displays |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140198034A1 true US20140198034A1 (en) | 2014-07-17 |
Family
ID=51164759
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/155,107 Active 2034-01-30 US10528135B2 (en) | 2013-01-14 | 2014-01-14 | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
US14/155,087 Abandoned US20140198034A1 (en) | 2013-01-14 | 2014-01-14 | Muscle interface device and method for interacting with content displayed on wearable head mounted displays |
US16/696,760 Active US11009951B2 (en) | 2013-01-14 | 2019-11-26 | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/155,107 Active 2034-01-30 US10528135B2 (en) | 2013-01-14 | 2014-01-14 | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/696,760 Active US11009951B2 (en) | 2013-01-14 | 2019-11-26 | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
Country Status (1)
Country | Link |
---|---|
US (3) | US10528135B2 (en) |
Cited By (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104461365A (en) * | 2014-12-11 | 2015-03-25 | 三星电子(中国)研发中心 | Touch method and device of terminal |
CN104666052A (en) * | 2015-02-02 | 2015-06-03 | 上海交通大学 | System and method for processing lower-limb muscle sound signals for exoskeleton robots |
US9299248B2 (en) | 2013-02-22 | 2016-03-29 | Thalmic Labs Inc. | Method and apparatus for analyzing capacitive EMG and IMU sensor signals for gesture control |
WO2016077178A1 (en) * | 2014-11-11 | 2016-05-19 | Intel Corporation | User input via elastic deformation of a material |
WO2016080873A1 (en) * | 2014-11-18 | 2016-05-26 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for video processing based on physiological data |
EP3040814A1 (en) * | 2014-12-31 | 2016-07-06 | Immersion Corporation | Systems and methods for generating haptically enhanced objects for augmented and virtual reality applications |
JP2016122445A (en) * | 2014-12-19 | 2016-07-07 | イマージョン コーポレーションImmersion Corporation | Systems and methods for object manipulation with haptic feedback |
US9600030B2 (en) | 2014-02-14 | 2017-03-21 | Thalmic Labs Inc. | Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same |
WO2017112099A1 (en) * | 2015-12-23 | 2017-06-29 | Intel Corporation | Text functions in augmented reality |
US9766449B2 (en) | 2014-06-25 | 2017-09-19 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
US9788789B2 (en) | 2013-08-30 | 2017-10-17 | Thalmic Labs Inc. | Systems, articles, and methods for stretchable printed circuit boards |
US9807221B2 (en) | 2014-11-28 | 2017-10-31 | Thalmic Labs Inc. | Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link |
DE102016212240A1 (en) * | 2016-07-05 | 2018-01-11 | Siemens Aktiengesellschaft | Method for interaction of an operator with a model of a technical system |
US9880632B2 (en) | 2014-06-19 | 2018-01-30 | Thalmic Labs Inc. | Systems, devices, and methods for gesture identification |
DE102016214523A1 (en) * | 2016-08-05 | 2018-02-08 | Bayerische Motoren Werke Aktiengesellschaft | Device for gesture-based control of a system |
US9904051B2 (en) | 2015-10-23 | 2018-02-27 | Thalmic Labs Inc. | Systems, devices, and methods for laser eye tracking |
JP2018508909A (en) * | 2015-03-20 | 2018-03-29 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Intelligent interaction method, apparatus and system |
US9958682B1 (en) | 2015-02-17 | 2018-05-01 | Thalmic Labs Inc. | Systems, devices, and methods for splitter optics in wearable heads-up displays |
US9989764B2 (en) | 2015-02-17 | 2018-06-05 | Thalmic Labs Inc. | Systems, devices, and methods for eyebox expansion in wearable heads-up displays |
US10042422B2 (en) | 2013-11-12 | 2018-08-07 | Thalmic Labs Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US10073268B2 (en) | 2015-05-28 | 2018-09-11 | Thalmic Labs Inc. | Display with integrated visible light eye tracking |
US10070799B2 (en) | 2016-12-02 | 2018-09-11 | Pison Technology, Inc. | Detecting and using body tissue electrical signals |
US10078435B2 (en) | 2015-04-24 | 2018-09-18 | Thalmic Labs Inc. | Systems, methods, and computer program products for interacting with electronically displayed presentation materials |
US10095317B2 (en) | 2015-12-18 | 2018-10-09 | Stichting Imec Nederland | System for hand gesture detection |
US10126815B2 (en) | 2016-01-20 | 2018-11-13 | Thalmic Labs Inc. | Systems, devices, and methods for proximity-based eye tracking |
US10133075B2 (en) | 2015-05-04 | 2018-11-20 | Thalmic Labs Inc. | Systems, devices, and methods for angle- and wavelength-multiplexed holographic optical elements |
JP2018190455A (en) * | 2014-11-12 | 2018-11-29 | 京セラ株式会社 | Wearable device |
US10151926B2 (en) | 2016-01-29 | 2018-12-11 | North Inc. | Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display |
US10152082B2 (en) | 2013-05-13 | 2018-12-11 | North Inc. | Systems, articles and methods for wearable electronic devices that accommodate different user forms |
US10188309B2 (en) | 2013-11-27 | 2019-01-29 | North Inc. | Systems, articles, and methods for electromyography sensors |
US10199008B2 (en) | 2014-03-27 | 2019-02-05 | North Inc. | Systems, devices, and methods for wearable electronic devices as state machines |
US10215987B2 (en) | 2016-11-10 | 2019-02-26 | North Inc. | Systems, devices, and methods for astigmatism compensation in a wearable heads-up display |
US10230929B2 (en) | 2016-07-27 | 2019-03-12 | North Inc. | Systems, devices, and methods for laser projectors |
CN109814705A (en) * | 2017-11-22 | 2019-05-28 | 意美森公司 | Tactile auxiliary equipment |
US10365549B2 (en) | 2016-04-13 | 2019-07-30 | North Inc. | Systems, devices, and methods for focusing laser projectors |
US10365492B2 (en) | 2016-12-23 | 2019-07-30 | North Inc. | Systems, devices, and methods for beam combining in wearable heads-up displays |
US10409374B2 (en) | 2015-05-12 | 2019-09-10 | Samsung Electronics Co., Ltd. | Wearable device and method for providing feedback of wearable device |
US10409057B2 (en) | 2016-11-30 | 2019-09-10 | North Inc. | Systems, devices, and methods for laser eye tracking in wearable heads-up displays |
US10409371B2 (en) | 2016-07-25 | 2019-09-10 | Ctrl-Labs Corporation | Methods and apparatus for inferring user intent based on neuromuscular signals |
US10437074B2 (en) | 2017-01-25 | 2019-10-08 | North Inc. | Systems, devices, and methods for beam combining in laser projectors |
US10459221B2 (en) | 2016-08-12 | 2019-10-29 | North Inc. | Systems, devices, and methods for variable luminance in wearable heads-up displays |
US10460455B2 (en) | 2018-01-25 | 2019-10-29 | Ctrl-Labs Corporation | Real-time processing of handstate representation model estimates |
US10489986B2 (en) | 2018-01-25 | 2019-11-26 | Ctrl-Labs Corporation | User-controlled tuning of handstate representation model parameters |
US10488662B2 (en) | 2015-09-04 | 2019-11-26 | North Inc. | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10496168B2 (en) | 2018-01-25 | 2019-12-03 | Ctrl-Labs Corporation | Calibration techniques for handstate representation modeling using neuromuscular signals |
US10504286B2 (en) | 2018-01-25 | 2019-12-10 | Ctrl-Labs Corporation | Techniques for anonymizing neuromuscular signal data |
CN110624217A (en) * | 2019-09-23 | 2019-12-31 | 孙孟雯 | Rehabilitation glove based on multi-sensor fusion and implementation method thereof |
US10528135B2 (en) | 2013-01-14 | 2020-01-07 | Ctrl-Labs Corporation | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
US20200042087A1 (en) * | 2018-08-05 | 2020-02-06 | Pison Technology, Inc. | User Interface Control of Responsive Devices |
US10558261B1 (en) * | 2018-10-29 | 2020-02-11 | Facebook Technologies, Llc | Sensor data compression |
WO2020033110A1 (en) * | 2018-08-05 | 2020-02-13 | Pison Technology, Inc. | User interface control of responsive devices |
US10592001B2 (en) | 2018-05-08 | 2020-03-17 | Facebook Technologies, Llc | Systems and methods for improved speech recognition using neuromuscular information |
US10606359B2 (en) | 2014-12-19 | 2020-03-31 | Immersion Corporation | Systems and methods for haptically-enabled interactions with objects |
CN111061368A (en) * | 2019-12-09 | 2020-04-24 | 华中科技大学鄂州工业技术研究院 | Gesture detection method and wearable device |
US10656822B2 (en) | 2015-10-01 | 2020-05-19 | North Inc. | Systems, devices, and methods for interacting with content displayed on head-mounted displays |
US10687759B2 (en) | 2018-05-29 | 2020-06-23 | Facebook Technologies, Llc | Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods |
US10765357B2 (en) | 2015-12-17 | 2020-09-08 | Industrial Technology Research Institute | System and method for detecting muscle activities |
US10772519B2 (en) | 2018-05-25 | 2020-09-15 | Facebook Technologies, Llc | Methods and apparatus for providing sub-muscular control |
US10802190B2 (en) | 2015-12-17 | 2020-10-13 | Covestro Llc | Systems, devices, and methods for curved holographic optical elements |
US10809760B1 (en) * | 2018-10-29 | 2020-10-20 | Facebook, Inc. | Headset clock synchronization |
US10817795B2 (en) | 2018-01-25 | 2020-10-27 | Facebook Technologies, Llc | Handstate reconstruction based on multiple inputs |
US10842407B2 (en) | 2018-08-31 | 2020-11-24 | Facebook Technologies, Llc | Camera-guided interpretation of neuromuscular signals |
US10901216B2 (en) | 2017-10-23 | 2021-01-26 | Google Llc | Free space multiple laser diode modules |
US10902743B2 (en) | 2017-04-14 | 2021-01-26 | Arizona Board Of Regents On Behalf Of Arizona State University | Gesture recognition and communication |
US10905383B2 (en) | 2019-02-28 | 2021-02-02 | Facebook Technologies, Llc | Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces |
US10921764B2 (en) | 2018-09-26 | 2021-02-16 | Facebook Technologies, Llc | Neuromuscular control of physical objects in an environment |
US10921886B2 (en) | 2012-06-14 | 2021-02-16 | Medibotics Llc | Circumferential array of electromyographic (EMG) sensors |
US10937414B2 (en) | 2018-05-08 | 2021-03-02 | Facebook Technologies, Llc | Systems and methods for text input using neuromuscular information |
US10959674B2 (en) | 2017-10-23 | 2021-03-30 | Datafeel Inc. | Communication devices, methods, and systems |
US10970936B2 (en) | 2018-10-05 | 2021-04-06 | Facebook Technologies, Llc | Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment |
US10970374B2 (en) | 2018-06-14 | 2021-04-06 | Facebook Technologies, Llc | User identification and authentication with neuromuscular signatures |
US10990174B2 (en) | 2016-07-25 | 2021-04-27 | Facebook Technologies, Llc | Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors |
US11000211B2 (en) | 2016-07-25 | 2021-05-11 | Facebook Technologies, Llc | Adaptive system for deriving control signals from measurements of neuromuscular activity |
US11023045B2 (en) | 2019-03-19 | 2021-06-01 | Coolso Technology Inc. | System for recognizing user gestures according to mechanomyogram detected from user's wrist and method thereof |
US11045137B2 (en) | 2018-07-19 | 2021-06-29 | Facebook Technologies, Llc | Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device |
US11069148B2 (en) | 2018-01-25 | 2021-07-20 | Facebook Technologies, Llc | Visualization of reconstructed handstate information |
US11099647B2 (en) * | 2018-08-05 | 2021-08-24 | Pison Technology, Inc. | User interface control of responsive devices |
WO2021180945A1 (en) | 2020-03-12 | 2021-09-16 | Université De Bordeaux | Method for controlling a limb of a virtual avatar by means of the myoelectric activities of a limb of an individual and system thereof |
US11157086B2 (en) | 2020-01-28 | 2021-10-26 | Pison Technology, Inc. | Determining a geographical location based on human gestures |
US11179066B2 (en) | 2018-08-13 | 2021-11-23 | Facebook Technologies, Llc | Real-time spike detection and identification |
US11199908B2 (en) | 2020-01-28 | 2021-12-14 | Pison Technology, Inc. | Wrist-worn device-based inputs for an operating system |
US11216069B2 (en) | 2018-05-08 | 2022-01-04 | Facebook Technologies, Llc | Systems and methods for improved speech recognition using neuromuscular information |
US11216083B2 (en) * | 2017-01-30 | 2022-01-04 | Seiko Epson Corporation | Display system that switches into an operation acceptable mode according to movement detected |
US11327566B2 (en) * | 2019-03-29 | 2022-05-10 | Facebook Technologies, Llc | Methods and apparatuses for low latency body state prediction based on neuromuscular data |
US11331045B1 (en) | 2018-01-25 | 2022-05-17 | Facebook Technologies, Llc | Systems and methods for mitigating neuromuscular signal artifacts |
US11337652B2 (en) | 2016-07-25 | 2022-05-24 | Facebook Technologies, Llc | System and method for measuring the movements of articulated rigid bodies |
US11426123B2 (en) | 2013-08-16 | 2022-08-30 | Meta Platforms Technologies, Llc | Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures |
US11481030B2 (en) | 2019-03-29 | 2022-10-25 | Meta Platforms Technologies, Llc | Methods and apparatus for gesture detection and classification |
US11481031B1 (en) | 2019-04-30 | 2022-10-25 | Meta Platforms Technologies, Llc | Devices, systems, and methods for controlling computing devices via neuromuscular signals of users |
US11493993B2 (en) | 2019-09-04 | 2022-11-08 | Meta Platforms Technologies, Llc | Systems, methods, and interfaces for performing inputs based on neuromuscular control |
US11567573B2 (en) | 2018-09-20 | 2023-01-31 | Meta Platforms Technologies, Llc | Neuromuscular text entry, writing and drawing in augmented reality systems |
US11635736B2 (en) | 2017-10-19 | 2023-04-25 | Meta Platforms Technologies, Llc | Systems and methods for identifying biological structures associated with neuromuscular source signals |
US11644799B2 (en) | 2013-10-04 | 2023-05-09 | Meta Platforms Technologies, Llc | Systems, articles and methods for wearable electronic devices employing contact sensors |
US11797087B2 (en) | 2018-11-27 | 2023-10-24 | Meta Platforms Technologies, Llc | Methods and apparatus for autocalibration of a wearable electrode sensor system |
US11868531B1 (en) | 2021-04-08 | 2024-01-09 | Meta Platforms Technologies, Llc | Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof |
US11907423B2 (en) | 2019-11-25 | 2024-02-20 | Meta Platforms Technologies, Llc | Systems and methods for contextualized interactions with an environment |
US11921471B2 (en) | 2013-08-16 | 2024-03-05 | Meta Platforms Technologies, Llc | Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source |
US11934583B2 (en) | 2020-10-30 | 2024-03-19 | Datafeel Inc. | Wearable data communication apparatus, kits, methods, and systems |
US11961494B1 (en) | 2019-03-29 | 2024-04-16 | Meta Platforms Technologies, Llc | Electromagnetic interference reduction in extended reality environments |
US11974857B2 (en) | 2019-10-08 | 2024-05-07 | Unlimited Tomorrow, Inc. | Biometric sensor array |
US12089953B1 (en) | 2019-12-04 | 2024-09-17 | Meta Platforms Technologies, Llc | Systems and methods for utilizing intrinsic current noise to measure interface impedances |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105247466B (en) * | 2013-05-15 | 2019-07-26 | 索尼公司 | Display control unit, display control method and recording medium |
JP2015079328A (en) * | 2013-10-16 | 2015-04-23 | ソニー株式会社 | Input device and electronic apparatus including the same |
US9582034B2 (en) * | 2013-11-29 | 2017-02-28 | Motiv, Inc. | Wearable computing device |
US9649558B2 (en) * | 2014-03-14 | 2017-05-16 | Sony Interactive Entertainment Inc. | Gaming device with rotatably placed cameras |
KR102173110B1 (en) * | 2014-05-07 | 2020-11-02 | 삼성전자주식회사 | Wearable device and controlling method thereof |
US20150325202A1 (en) * | 2014-05-07 | 2015-11-12 | Thalmic Labs Inc. | Systems, devices, and methods for wearable computers with heads-up displays |
USD756359S1 (en) * | 2014-05-15 | 2016-05-17 | Thalmic Labs Inc. | Expandable armband device |
JP2016038905A (en) * | 2014-08-08 | 2016-03-22 | パナソニックIpマネジメント株式会社 | Input device and control method of apparatus |
KR102358548B1 (en) * | 2014-10-15 | 2022-02-04 | 삼성전자주식회사 | Method and appratus for processing screen using device |
US11327711B2 (en) | 2014-12-05 | 2022-05-10 | Microsoft Technology Licensing, Llc | External visual interactions for speech-based devices |
US9720515B2 (en) * | 2015-01-02 | 2017-08-01 | Wearable Devices Ltd. | Method and apparatus for a gesture controlled interface for wearable devices |
US9612661B2 (en) * | 2015-01-02 | 2017-04-04 | Wearable Devices Ltd. | Closed loop feedback interface for wearable devices |
US9294802B1 (en) * | 2015-01-30 | 2016-03-22 | Rovi Guides, Inc. | Gesture control based on prosthetic nerve signal detection |
US9619049B2 (en) * | 2015-02-18 | 2017-04-11 | International Business Machines Corporation | One-handed operation of mobile electronic devices |
DE102015207134A1 (en) * | 2015-04-20 | 2016-10-20 | Prüftechnik Dieter Busch AG | Method for detecting vibrations of a device and vibration detection system |
WO2017047603A1 (en) * | 2015-09-15 | 2017-03-23 | 株式会社村田製作所 | Operation detection device |
EP3484578B1 (en) * | 2016-07-13 | 2023-05-03 | Ramot at Tel Aviv University, Ltd. | Novel biosignal acquisition method and algorithms for wearable devices |
US11347054B2 (en) * | 2017-02-16 | 2022-05-31 | Magic Leap, Inc. | Systems and methods for augmented reality |
US10796599B2 (en) * | 2017-04-14 | 2020-10-06 | Rehabilitation Institute Of Chicago | Prosthetic virtual reality training interface and related methods |
US10665129B2 (en) * | 2017-04-17 | 2020-05-26 | Facebook, Inc. | Haptic communication system using broad-band stimuli |
US10481699B2 (en) | 2017-07-27 | 2019-11-19 | Facebook Technologies, Llc | Armband for tracking hand motion using electrical impedance measurement |
KR102414497B1 (en) | 2017-09-29 | 2022-06-29 | 애플 인크. | IMU-Based Gloves |
US20190124022A1 (en) * | 2017-10-25 | 2019-04-25 | North Inc. | System and method for reduced visual footprint of textual communications |
US10914567B2 (en) * | 2018-02-23 | 2021-02-09 | Apple Inc. | Magnetic sensor based proximity sensing |
US11844602B2 (en) | 2018-03-05 | 2023-12-19 | The Medical Research Infrastructure And Health Services Fund Of The Tel Aviv Medical Center | Impedance-enriched electrophysiological measurements |
US11080417B2 (en) * | 2018-06-26 | 2021-08-03 | Google Llc | Private eye-to-eye communications with wearable heads up display |
CN112739254A (en) * | 2018-09-20 | 2021-04-30 | 脸谱科技有限责任公司 | Neuromuscular control of augmented reality systems |
CN113359971A (en) * | 2020-03-06 | 2021-09-07 | 中光电创境股份有限公司 | Display control method, display control system and wearable device |
US11157081B1 (en) * | 2020-07-28 | 2021-10-26 | Shenzhen Yunyinggu Technology Co., Ltd. | Apparatus and method for user interfacing in display glasses |
US11592907B2 (en) * | 2020-10-20 | 2023-02-28 | Google Llc | Gesture-triggered augmented-reality |
JP2022126548A (en) * | 2021-02-18 | 2022-08-30 | キヤノン株式会社 | Glasses type information apparatus, and method and program for the same |
US11662815B2 (en) * | 2021-10-08 | 2023-05-30 | Meta Platforms Technologies, Llc | Apparatus, system, and method for detecting user input via hand gestures and arm movements |
WO2023059458A1 (en) * | 2021-10-08 | 2023-04-13 | Meta Platforms Technologies, Llc | Apparatus, system, and method for detecting user input via hand gestures and arm movements |
US20240061514A1 (en) * | 2022-08-18 | 2024-02-22 | Meta Platforms Technologies, Llc | Navigating a user interface using in-air gestures detected via neuromuscular-signal sensors of a wearable device, and systems and methods of use thereof |
FR3144345A1 (en) * | 2022-12-22 | 2024-06-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | HAPTIC FEEDBACK GLOVE FOR PERSONAL COMMUNICATION |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012715A1 (en) * | 2003-06-12 | 2005-01-20 | Peter Charles Shann Hubird Ford | Method, system, and software for interactive communication and analysis |
US20090327171A1 (en) * | 2008-06-26 | 2009-12-31 | Microsoft Corporation | Recognizing gestures from forearm emg signals |
US20120182309A1 (en) * | 2011-01-14 | 2012-07-19 | Research In Motion Limited | Device and method of conveying emotion in a messaging application |
US20120188158A1 (en) * | 2008-06-26 | 2012-07-26 | Microsoft Corporation | Wearable electromyography-based human-computer interface |
US20130165813A1 (en) * | 2011-12-23 | 2013-06-27 | Industrial Technology Research Institute | Sensor for acquiring muscle parameters |
US20130198694A1 (en) * | 2011-06-10 | 2013-08-01 | Aliphcom | Determinative processes for wearable devices |
US20130265437A1 (en) * | 2012-04-09 | 2013-10-10 | Sony Mobile Communications Ab | Content transfer via skin input |
US8922481B1 (en) * | 2012-03-16 | 2014-12-30 | Google Inc. | Content annotation |
Family Cites Families (335)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1411995A (en) | 1919-06-20 | 1922-04-04 | Raymond W Dull | Link belt |
US3408133A (en) | 1964-01-23 | 1968-10-29 | Electro Optical Systems Inc | Kerr-cell camera shutter |
US3620208A (en) | 1969-11-03 | 1971-11-16 | Atomic Energy Commission | Ekg amplifying electrode pickup |
US3712716A (en) | 1971-04-09 | 1973-01-23 | Stanford Research Inst | Eye tracker |
US3880146A (en) | 1973-06-04 | 1975-04-29 | Donald B Everett | Noise compensation techniques for bioelectric potential sensing |
LU84250A1 (en) | 1982-07-01 | 1984-03-22 | Mardice Holding | METHOD AND DEVICE FOR THE CONTACTLESS MEASUREMENT OF VOLTAGE DIFFERENCES IN LIVING ORGANISMS |
JPS62501646A (en) | 1985-02-05 | 1987-07-02 | ミレス・ヴィクトル・アレキサンダ− | How to make jewelry or watches |
JPS61198892A (en) | 1985-02-27 | 1986-09-03 | Nec Corp | Display device |
US5003978A (en) | 1985-08-21 | 1991-04-02 | Technology 21, Inc. | Non-polarizable dry biomedical electrode |
ATE38569T1 (en) | 1986-04-01 | 1988-11-15 | Altop Sa | CLAMP MOUNTED CLOCK. |
EP0301790A3 (en) | 1987-07-24 | 1990-06-06 | BioControl Systems, Inc. | Biopotential digital controller for music and video applications |
DE3879172T2 (en) | 1987-08-26 | 1993-08-26 | Hage Sami G El | DEVICE FOR DETERMINING THE CORNEA CONTOUR OF A HUMAN EYE. |
USD322227S (en) | 1989-03-23 | 1991-12-10 | North American Watch Company | Watch |
US5231674A (en) | 1989-06-09 | 1993-07-27 | Lc Technologies, Inc. | Eye tracking method and apparatus |
US5103323A (en) | 1990-04-18 | 1992-04-07 | Holographic Optics, Inc. | Multi-layer holographic notch filter |
US5081852A (en) | 1991-02-14 | 1992-01-21 | Cox Michael F | Display bracelet |
JP3151766B2 (en) | 1992-07-31 | 2001-04-03 | キヤノン株式会社 | Image display device |
US5251189A (en) | 1992-10-16 | 1993-10-05 | Timex Corporation | Wristwatch radiotelephone |
US5596339A (en) | 1992-10-22 | 1997-01-21 | University Of Washington | Virtual retinal display with fiber optic point source |
US6008781A (en) | 1992-10-22 | 1999-12-28 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US5467104A (en) | 1992-10-22 | 1995-11-14 | Board Of Regents Of The University Of Washington | Virtual retinal display |
JPH06216475A (en) | 1993-01-21 | 1994-08-05 | Matsushita Electric Ind Co Ltd | Flexible board |
USD348660S (en) | 1993-04-29 | 1994-07-12 | Micro-Integration Corp. | Hand-held computer input device |
US5482051A (en) | 1994-03-10 | 1996-01-09 | The University Of Akron | Electromyographic virtual reality system |
DE4412278A1 (en) | 1994-04-09 | 1995-10-12 | Bosch Gmbh Robert | Circuit board with both rigid and flexible regions |
US6032530A (en) | 1994-04-29 | 2000-03-07 | Advantedge Systems Inc. | Biofeedback system for sensing body motion and flexure |
US5605059A (en) | 1995-03-09 | 1997-02-25 | Woodward; Robin | Sleeved bangle bracelet |
US6238338B1 (en) | 1999-07-19 | 2001-05-29 | Altec, Inc. | Biosignal monitoring system and method |
JP3141737B2 (en) | 1995-08-10 | 2001-03-05 | 株式会社セガ | Virtual image generation apparatus and method |
US5742421A (en) | 1996-03-01 | 1998-04-21 | Reflection Technology, Inc. | Split lens video display system |
USD391597S (en) | 1996-05-17 | 1998-03-03 | Killer Loop S.P.A. | Sunglasses |
US5683404A (en) | 1996-06-05 | 1997-11-04 | Metagen, Llc | Clamp and method for its use |
KR100227179B1 (en) | 1997-04-11 | 1999-10-15 | 박호군 | The manufacture apparatus for reflection type holographic optic element of high quality |
US6027216A (en) | 1997-10-21 | 2000-02-22 | The Johns University School Of Medicine | Eye fixation monitor and tracker |
US6880364B1 (en) | 1998-04-23 | 2005-04-19 | Michael F. Vidolin | Friendship band with exchangeable closed loop members |
EP1116211A4 (en) | 1998-09-22 | 2001-11-21 | Vega Vista Inc | Intuitive control of portable data displays |
US6244873B1 (en) | 1998-10-16 | 2001-06-12 | At&T Corp. | Wireless myoelectric control apparatus and methods |
US7640007B2 (en) | 1999-02-12 | 2009-12-29 | Fisher-Rosemount Systems, Inc. | Wireless handheld communicator in a process control environment |
US6972734B1 (en) | 1999-06-11 | 2005-12-06 | Canon Kabushiki Kaisha | Mixed reality apparatus and mixed reality presentation method |
US6924476B2 (en) | 2002-11-25 | 2005-08-02 | Microvision, Inc. | Resonant beam scanner with raster pinch compensation |
US6807438B1 (en) | 1999-08-26 | 2004-10-19 | Riccardo Brun Del Re | Electric field sensor |
JP4168221B2 (en) | 1999-09-06 | 2008-10-22 | 株式会社島津製作所 | Body-mounted display system |
US6527711B1 (en) | 1999-10-18 | 2003-03-04 | Bodymedia, Inc. | Wearable human physiological data sensors and reporting system therefor |
EP1145085B1 (en) | 1999-11-11 | 2008-09-17 | The Swatch Group Management Services AG | Electronic wrist watch comprising an integrated circuit incorporated in a flexible band |
WO2001059491A1 (en) | 2000-02-10 | 2001-08-16 | Digilens, Inc. | Switchable hologram and method of producing the same |
GB0004688D0 (en) | 2000-02-28 | 2000-04-19 | Radley Smith Philip J | Bracelet |
US6330064B1 (en) | 2000-03-13 | 2001-12-11 | Satcon Technology Corporation | Doubly-differential interferometer and method for evanescent wave surface detection |
AU5359901A (en) | 2000-04-17 | 2001-10-30 | Vivometrics Inc | Systems and methods for ambulatory monitoring of physiological signs |
US6510333B1 (en) | 2000-05-16 | 2003-01-21 | Mark J. Licata | Sensor for biopotential measurements |
US6720984B1 (en) | 2000-06-13 | 2004-04-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Characterization of bioelectric potentials |
US6813085B2 (en) | 2000-06-26 | 2004-11-02 | Angus Duncan Richards | Virtual reality display device |
US20030036691A1 (en) | 2000-08-10 | 2003-02-20 | Stanaland Thomas G. | Capacitively coupled electrode system with variable capacitance for sensing potentials at the surface of tissue |
US6487906B1 (en) | 2000-09-18 | 2002-12-03 | Advantedge Systems Inc | Flexible film sensor system for monitoring body motion |
US6743982B2 (en) | 2000-11-29 | 2004-06-01 | Xerox Corporation | Stretchable interconnects using stress gradient films |
WO2002050652A2 (en) | 2000-12-18 | 2002-06-27 | Human Bionics Llc, | Method and system for initiating activity based on sensed electrophysiological data |
US20020120916A1 (en) | 2001-01-16 | 2002-08-29 | Snider Albert Monroe | Head-up display system utilizing fluorescent material |
WO2002065904A1 (en) | 2001-02-23 | 2002-08-29 | Cordless Antistatic Research Inc. | Enhanced pickup bio-electrode |
JP2002358149A (en) | 2001-06-01 | 2002-12-13 | Sony Corp | User inputting device |
USD459352S1 (en) | 2001-08-10 | 2002-06-25 | Michael C. Giovanniello | Wireless mouse wristband |
US20030051505A1 (en) | 2001-09-14 | 2003-03-20 | Robertson Catrina M. | Selectively self-adjustable jewelry item and method of making same |
US6755795B2 (en) | 2001-10-26 | 2004-06-29 | Koninklijke Philips Electronics N.V. | Selectively applied wearable medical sensors |
US6865409B2 (en) | 2001-11-07 | 2005-03-08 | Kinesense, Inc. | Surface electromyographic electrode assembly |
JP4391717B2 (en) | 2002-01-09 | 2009-12-24 | 富士通マイクロエレクトロニクス株式会社 | Contactor, manufacturing method thereof and contact method |
JP2003220040A (en) | 2002-01-31 | 2003-08-05 | Seiko Instruments Inc | Biological information-observing device |
CA2379268A1 (en) | 2002-03-26 | 2003-09-26 | Hans Kolpin | Skin impedance matched biopotential electrode |
US20050119701A1 (en) | 2002-03-29 | 2005-06-02 | Koninklijka Philips Electronics N.V. | Wearable monitoring system and method of manufacturing of a wearable monitoring system |
US6984208B2 (en) | 2002-08-01 | 2006-01-10 | The Hong Kong Polytechnic University | Method and apparatus for sensing body gesture, posture and movement |
DE60215504T2 (en) | 2002-10-07 | 2007-09-06 | Sony France S.A. | Method and apparatus for analyzing gestures of a human, e.g. for controlling a machine by gestures |
SE524003C2 (en) | 2002-11-21 | 2004-06-15 | Tobii Technology Ab | Procedure and facility for detecting and following an eye and its angle of view |
FR2850284B1 (en) * | 2003-01-27 | 2012-11-30 | Saime Sarl | BREATHING DEVICE AND REGULATION METHOD |
US7491892B2 (en) | 2003-03-28 | 2009-02-17 | Princeton University | Stretchable and elastic interconnects |
US20040194500A1 (en) | 2003-04-03 | 2004-10-07 | Broadway Entertainment, Inc. | Article of jewelry |
US7028507B2 (en) | 2003-04-03 | 2006-04-18 | Broadway Entertainment, Inc. | Article of jewelry |
US7265298B2 (en) | 2003-05-30 | 2007-09-04 | The Regents Of The University Of California | Serpentine and corduroy circuits to enhance the stretchability of a stretchable electronic device |
US7022919B2 (en) | 2003-06-30 | 2006-04-04 | Intel Corporation | Printed circuit board trace routing method |
JP4178186B2 (en) | 2003-08-21 | 2008-11-12 | 国立大学法人 筑波大学 | Wearable motion assist device, control method for wearable motion assist device, and control program |
TWI240819B (en) | 2003-08-21 | 2005-10-01 | Toppoly Optoelectronics Corp | Flexible printed circuit board (FPC) for liquid crystal display (LCD) module |
AU2004277381B2 (en) | 2003-08-22 | 2008-04-24 | Foster-Miller, Inc. | Physiological monitoring garment |
US20050070227A1 (en) | 2003-09-30 | 2005-03-31 | Chih-Hsiang Shen | Detecting and actuating method of bluetooth devices and a control system thereof |
GB2407378B (en) | 2003-10-24 | 2006-09-06 | Lein Applied Diagnostics Ltd | Ocular property measuring apparatus and method therefor |
USD502662S1 (en) | 2004-02-23 | 2005-03-08 | Broadway Entertainment, Inc. | Bracelet |
USD503646S1 (en) | 2004-02-23 | 2005-04-05 | Broadway Entertainment, Inc. | Bracelet |
USD502661S1 (en) | 2004-02-23 | 2005-03-08 | Broadway Entertainment, Inc. | Bracelet |
US7618260B2 (en) | 2004-02-27 | 2009-11-17 | Daniel Simon R | Wearable modular interface strap |
CN101174028B (en) | 2004-03-29 | 2015-05-20 | 索尼株式会社 | Optical device and virtual image display device |
KR100541958B1 (en) | 2004-04-21 | 2006-01-10 | 삼성전자주식회사 | Flexible printed circuit board |
US7173437B2 (en) | 2004-06-10 | 2007-02-06 | Quantum Applied Science And Research, Inc. | Garment incorporating embedded physiological sensors |
US8061160B2 (en) | 2004-08-17 | 2011-11-22 | Carissa Stinespring | Adjustable fashion mechanism |
KR100594117B1 (en) | 2004-09-20 | 2006-06-28 | 삼성전자주식회사 | Apparatus and method for inputting key using biosignal in HMD information terminal |
US20090207464A1 (en) | 2004-11-24 | 2009-08-20 | John David Wiltshire | Holograms and Hologram Fabrication Methods and Apparatus |
KR100680023B1 (en) | 2004-12-06 | 2007-02-07 | 한국전자통신연구원 | Cellular phone input device using electromyography and control method thereof |
US7066593B1 (en) | 2004-12-22 | 2006-06-27 | High Rainbow Ent. Co., Ltd. | Eyeglasses frame assembly |
CA2537569C (en) | 2005-02-24 | 2014-04-29 | National Research Council Of Canada | Microblinds and a method of fabrication thereof |
US7773111B2 (en) | 2005-03-16 | 2010-08-10 | Lc Technologies, Inc. | System and method for perceived image processing in a gaze tracking system |
US8702629B2 (en) | 2005-03-17 | 2014-04-22 | Great Lakes Neuro Technologies Inc. | Movement disorder recovery system and method for continuous monitoring |
USD535401S1 (en) | 2005-06-21 | 2007-01-16 | Biocare Systems, Inc. | Heat and light therapy device |
US7086218B1 (en) | 2005-08-18 | 2006-08-08 | M & J - R & R Grosbard, Inc. | Linked ring structures |
US7271774B2 (en) | 2005-10-21 | 2007-09-18 | Suunto Oy | Electronic wearable device |
US7517725B2 (en) | 2005-11-28 | 2009-04-14 | Xci, Inc. | System and method for separating and packaging integrated circuits |
USD543212S1 (en) | 2006-01-04 | 2007-05-22 | Sony Computer Entertainment Inc. | Object for interfacing with a computer program |
US7809435B1 (en) | 2006-01-11 | 2010-10-05 | Iq Biolabs, Inc. | Adjustable wireless electromyography sensor and system |
US7636549B2 (en) | 2006-04-21 | 2009-12-22 | Abbott Medical Optics Inc. | Automated bonding for wireless devices |
US7558622B2 (en) | 2006-05-24 | 2009-07-07 | Bao Tran | Mesh network stroke monitoring appliance |
US8120828B2 (en) | 2006-05-12 | 2012-02-21 | Seereal Technologies S.A. | Reflective optical system, tracking system and holographic projection system and method |
GB0614261D0 (en) | 2006-07-18 | 2006-08-30 | Univ Sussex The | Electric Potential Sensor |
US7844310B2 (en) | 2006-07-20 | 2010-11-30 | L3 Communications Corporation | Wearable communication device with contoured back |
US8437844B2 (en) | 2006-08-21 | 2013-05-07 | Holland Bloorview Kids Rehabilitation Hospital | Method, system and apparatus for real-time classification of muscle signals from self-selected intentional movements |
US8212859B2 (en) | 2006-10-13 | 2012-07-03 | Apple Inc. | Peripheral treatment for head-mounted displays |
GB0622325D0 (en) | 2006-11-09 | 2006-12-20 | Optos Plc | Improvements in or relating to retinal scanning |
US20080136775A1 (en) | 2006-12-08 | 2008-06-12 | Conant Carson V | Virtual input device for computing |
US8718742B2 (en) | 2007-05-24 | 2014-05-06 | Hmicro, Inc. | Integrated wireless patch for physiological monitoring |
US20090007597A1 (en) | 2007-07-02 | 2009-01-08 | Hanevold Gail F | Body attached band with removal visual image pockets |
CA2693193A1 (en) | 2007-07-16 | 2009-01-22 | Sunrise Medical Hhg Inc. | Physiological data collection system |
US8016241B2 (en) * | 2007-07-30 | 2011-09-13 | The Boeing Company | Self supporting cellular thermal acoustic insulation |
US7601963B2 (en) * | 2007-07-30 | 2009-10-13 | Siemens Medical Solutions Usa, Inc. | High-resolution depth-of-interaction PET detector |
US7925100B2 (en) | 2007-07-31 | 2011-04-12 | Microsoft Corporation | Tiled packaging of vector image data |
JP5057070B2 (en) | 2007-07-31 | 2012-10-24 | 株式会社エクォス・リサーチ | ECG sensor |
US20090031757A1 (en) | 2007-08-01 | 2009-02-05 | Funki Llc | Modular toy bracelet |
JP4434247B2 (en) | 2007-08-10 | 2010-03-17 | ソニー株式会社 | Remote controller, remote control system, and remote control method |
US9046919B2 (en) | 2007-08-20 | 2015-06-02 | Hmicro, Inc. | Wearable user interface device, system, and method of use |
WO2009052621A1 (en) | 2007-10-22 | 2009-04-30 | D-Wave Systems Inc. | Systems, methods, and apparatus for electrical filters and input/output systems |
JP4989417B2 (en) | 2007-10-26 | 2012-08-01 | キヤノン株式会社 | Image display system, image display apparatus, control method therefor, and computer program |
US8164600B2 (en) | 2007-12-06 | 2012-04-24 | Barco Nv | Method and system for combining images generated by separate sources |
US8355671B2 (en) | 2008-01-04 | 2013-01-15 | Kopin Corporation | Method and apparatus for transporting video signal over Bluetooth wireless interface |
JP5094430B2 (en) | 2008-01-10 | 2012-12-12 | キヤノン株式会社 | Image processing method, image processing apparatus, and system |
US10969917B2 (en) | 2008-01-30 | 2021-04-06 | Apple Inc. | Auto scanning for multiple frequency stimulation multi-touch sensor panels |
EP2259603B1 (en) | 2008-03-28 | 2015-04-08 | Sharp Kabushiki Kaisha | Remote operation device, device to be operated, control method for remote operation device, control method for device to be operated, and remote operation system |
US20090251407A1 (en) | 2008-04-03 | 2009-10-08 | Microsoft Corporation | Device interaction with combination of rings |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
JP5580292B2 (en) | 2008-05-01 | 2014-08-27 | スリーエム イノベイティブ プロパティズ カンパニー | Elastic conductive connector |
JP2010000283A (en) | 2008-06-23 | 2010-01-07 | Shimadzu Corp | Real-time simultaneous measuring system, real-time simultaneous measuring instrument, real-time simultaneous measuring method and program |
US8207473B2 (en) | 2008-06-24 | 2012-06-26 | Imec | Method for manufacturing a stretchable electronic device |
EP2138886A3 (en) | 2008-06-25 | 2011-10-05 | Samsung Electronics Co., Ltd. | Compact virtual display |
US8170656B2 (en) | 2008-06-26 | 2012-05-01 | Microsoft Corporation | Wearable electromyography-based controllers for human-computer interface |
EP2296544A4 (en) | 2008-07-07 | 2012-12-05 | Heard Systems Pty Ltd | A system for sensing electrophysiological signals |
CA3080431A1 (en) | 2008-07-29 | 2010-02-04 | James B. Klassen | Balance training system |
US7850306B2 (en) | 2008-08-28 | 2010-12-14 | Nokia Corporation | Visual cognition aware display and visual data transmission architecture |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US9393418B2 (en) | 2011-06-03 | 2016-07-19 | Great Lakes Neuro Technologies Inc. | Movement disorder therapy system, devices and methods of tuning |
US8647287B2 (en) | 2008-12-07 | 2014-02-11 | Andrew Greenberg | Wireless synchronized movement monitoring apparatus and system |
JP4780186B2 (en) | 2008-12-09 | 2011-09-28 | ソニー株式会社 | Hologram recording film, method for producing the same, and image display device |
US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
US7870211B2 (en) | 2008-12-23 | 2011-01-11 | At&T Mobility Ii Llc | Conversation message routing supporting dynamic class transitions |
WO2010086033A1 (en) | 2009-01-30 | 2010-08-05 | Interuniversitair Microelektronica Centrum Vzw | Stretchable electronic device |
WO2010086034A1 (en) | 2009-01-30 | 2010-08-05 | Interuniversitair Microelektronica Centrum Vzw | Stretchable electronic device |
GB0902468D0 (en) | 2009-02-16 | 2009-04-01 | Light Blue Optics Ltd | Optical systems |
USD661613S1 (en) | 2009-02-19 | 2012-06-12 | 1922 Manifatture Preziose Torino SpA | Jewelry |
EP2236078A1 (en) | 2009-04-02 | 2010-10-06 | Koninklijke Philips Electronics N.V. | Processing a bio-physiological signal |
EP2429390B1 (en) | 2009-05-15 | 2015-09-09 | Nox Medical | System and methods using flexible capacitive electrodes for measuring biosignals |
US8427977B2 (en) | 2009-06-23 | 2013-04-23 | CSC Holdings, LLC | Wireless network polling and data warehousing |
AU2009348759B2 (en) | 2009-06-26 | 2013-10-03 | T&W Engineering A/S | EEG monitoring apparatus and method for presenting messages therein |
US8883287B2 (en) | 2009-06-29 | 2014-11-11 | Infinite Corridor Technology, Llc | Structured material substrates for flexible, stretchable electronics |
WO2011007569A1 (en) | 2009-07-15 | 2011-01-20 | 国立大学法人筑波大学 | Classification estimating system and classification estimating program |
WO2011018655A2 (en) | 2009-08-13 | 2011-02-17 | Bae Systems Plc | Head up display system |
US8181029B2 (en) | 2009-09-23 | 2012-05-15 | At&T Intellectual Property I, L.P. | Apparatus, methods, and computer program products for entering secure passwords |
FR2950713A1 (en) | 2009-09-29 | 2011-04-01 | Movea Sa | SYSTEM AND METHOD FOR RECOGNIZING GESTURES |
USD671590S1 (en) | 2010-09-10 | 2012-11-27 | X6D Limited | 3D glasses |
USD669522S1 (en) | 2010-08-27 | 2012-10-23 | X6D Limited | 3D glasses |
USD692941S1 (en) | 2009-11-16 | 2013-11-05 | X6D Limited | 3D glasses |
USD626583S1 (en) | 2009-11-19 | 2010-11-02 | Silhouette International Schmied Ag | Nose cover for eyeglasses, sunglasses, goggles, or like eyewear |
KR101708682B1 (en) | 2010-03-03 | 2017-02-21 | 엘지전자 주식회사 | Apparatus for displaying image and and method for operationg the same |
US8620361B2 (en) | 2009-12-08 | 2013-12-31 | At&T Mobility Ii Llc | Intelligent routing of SMS and MMS messages to short codes |
WO2011070554A2 (en) | 2009-12-13 | 2011-06-16 | Ringbow Ltd. | Finger-worn input devices and methods of use |
US8677268B2 (en) | 2010-01-26 | 2014-03-18 | Apple Inc. | Device, method, and graphical user interface for resizing objects |
CA2788731C (en) | 2010-02-01 | 2016-06-21 | Widex A/S | A portable eeg monitor system with wireless communication |
US20110213278A1 (en) | 2010-02-26 | 2011-09-01 | Apdm, Inc. | Movement monitoring system and apparatus for objective assessment of movement disorders |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US20110224499A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
KR101114870B1 (en) | 2010-03-22 | 2012-03-06 | (주)헤리트 | Intelligent led lighting control system and control method thereof |
WO2011130752A1 (en) | 2010-04-16 | 2011-10-20 | Mastandrea Nicholas J | Wearable motion sensing computing interface |
JP5702947B2 (en) | 2010-04-22 | 2015-04-15 | 矢崎総業株式会社 | Wiring material |
KR101130697B1 (en) | 2010-05-07 | 2012-04-02 | 삼성전자주식회사 | Multilayer stretchable cable |
USD628616S1 (en) | 2010-05-14 | 2010-12-07 | Hi-Shock Digital Electronics Technologies Co., Ltd. | 3D glasses |
USD633939S1 (en) | 2010-05-17 | 2011-03-08 | Ronald Puentes | Glasses |
US20130127708A1 (en) | 2010-05-28 | 2013-05-23 | The Regents Of The University Of California | Cell-phone based wireless and mobile brain-machine interface |
USD643428S1 (en) | 2010-07-07 | 2011-08-16 | Iota, Inc. | Wearable mobile accessory |
US8634119B2 (en) | 2010-07-09 | 2014-01-21 | Tipd, Llc | System for holography |
TWD140566S1 (en) | 2010-07-16 | 2011-05-11 | 羅一國際股份有限公司; | glasses |
JP5915981B2 (en) | 2010-08-09 | 2016-05-11 | 国立大学法人静岡大学 | Gaze point detection method and gaze point detection device |
EP2422697B1 (en) | 2010-08-27 | 2014-04-16 | General Electric Company | Sensor for measuring biosignals |
AU336341S (en) | 2010-11-02 | 2011-05-03 | Sharp Kk | 3D glasses |
US9406166B2 (en) | 2010-11-08 | 2016-08-02 | Seereal Technologies S.A. | Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles |
US10244988B2 (en) | 2010-12-16 | 2019-04-02 | Nokia Technologies Oy | Method, apparatus and computer program of using a bio-signal profile |
USD649177S1 (en) | 2011-01-10 | 2011-11-22 | Samsung Electronics Co., Inc. | Glasses for watching 3D image |
US20120203076A1 (en) | 2011-02-08 | 2012-08-09 | Jean Pierre Fatta | Portable Physiological Data Monitoring Device |
USD667482S1 (en) | 2011-02-17 | 2012-09-18 | Dolby Laboratories Licensing Corporation | 3D eyeglasses |
KR101448106B1 (en) | 2011-02-17 | 2014-10-08 | 주식회사 라이프사이언스테크놀로지 | Analisys Method of Rehabilitation status using Electromyogram |
KR101206280B1 (en) | 2011-02-28 | 2012-11-29 | (주)락싸 | Electric contactless electric potential sensor circuit |
USD646192S1 (en) | 2011-03-11 | 2011-10-04 | Jamie Renae Woode | Bracelet |
US20120265090A1 (en) | 2011-04-13 | 2012-10-18 | Fink Rainer J | System and method of acquiring uterine emg signals and wirelessly transmitting the same |
US8666212B1 (en) | 2011-04-28 | 2014-03-04 | Google Inc. | Head mounted display using a fused fiber bundle |
US8760499B2 (en) | 2011-04-29 | 2014-06-24 | Austin Russell | Three-dimensional imager and projection device |
US9330499B2 (en) | 2011-05-20 | 2016-05-03 | Microsoft Technology Licensing, Llc | Event augmentation with real-time information |
US8203502B1 (en) | 2011-05-25 | 2012-06-19 | Google Inc. | Wearable heads-up display with integrated finger-tracking input sensor |
US9018532B2 (en) | 2011-06-09 | 2015-04-28 | Multi-Fineline Electronix, Inc. | Stretchable circuit assemblies |
US8879276B2 (en) | 2011-06-15 | 2014-11-04 | Power Gold LLC | Flexible circuit assembly and method thereof |
US9089270B2 (en) | 2011-06-29 | 2015-07-28 | Lg Electronics Inc. | Terminal and control method thereof |
US8817379B2 (en) | 2011-07-12 | 2014-08-26 | Google Inc. | Whole image scanning mirror display system |
US8179604B1 (en) | 2011-07-13 | 2012-05-15 | Google Inc. | Wearable marker for passive interaction |
US8471967B2 (en) | 2011-07-15 | 2013-06-25 | Google Inc. | Eyepiece for near-to-eye display with multi-reflectors |
US20140204455A1 (en) | 2011-08-24 | 2014-07-24 | Milan Momcilo Popovich | Wearable data display |
WO2013030712A1 (en) | 2011-08-31 | 2013-03-07 | Koninklijke Philips Electronics N.V. | Light control panel |
USD654622S1 (en) | 2011-09-15 | 2012-02-21 | Shih-Ling Hsu | Hair band |
US20130080794A1 (en) | 2011-09-24 | 2013-03-28 | Jawbone Industrial Co., Ltd. | Wireless controller with universal serial bus and system having the same |
US20130271292A1 (en) | 2011-10-09 | 2013-10-17 | James Andrew McDermott | Driver Alert and Monitoring System |
US8934160B2 (en) | 2011-10-25 | 2015-01-13 | National Central University | Optical head-mounted display with mechanical one-dimensional scanner |
US8467270B2 (en) | 2011-10-26 | 2013-06-18 | Google Inc. | Smart-watch with user interface features |
US8704882B2 (en) | 2011-11-18 | 2014-04-22 | L-3 Communications Corporation | Simulated head mounted display system and method |
JP5906692B2 (en) | 2011-11-29 | 2016-04-20 | セイコーエプソン株式会社 | Display device |
USD682343S1 (en) | 2011-12-23 | 2013-05-14 | Michael Waters | Lighted glasses |
US8971023B2 (en) | 2012-03-21 | 2015-03-03 | Google Inc. | Wearable computing device frame |
US20130191741A1 (en) | 2012-01-24 | 2013-07-25 | Motorola Mobility, Inc. | Methods and Apparatus for Providing Feedback from an Electronic Device |
JP5464219B2 (en) | 2012-02-03 | 2014-04-09 | 株式会社デンソー | Head-up display device for vehicle |
US10188307B2 (en) | 2012-02-23 | 2019-01-29 | Bio-Signal Group Corp. | Shielded multi-channel EEG headset systems and methods |
US8970571B1 (en) | 2012-03-13 | 2015-03-03 | Google Inc. | Apparatus and method for display lighting adjustment |
CN104169778A (en) | 2012-03-15 | 2014-11-26 | 松下电器产业株式会社 | Optical reflecting element and actuator |
USD684084S1 (en) | 2012-03-27 | 2013-06-11 | Bulgari S.P.A. | Necklace |
US9170674B2 (en) | 2012-04-09 | 2015-10-27 | Qualcomm Incorporated | Gesture-based device control using pressure-sensitive sensors |
KR20130121303A (en) | 2012-04-27 | 2013-11-06 | 한국전자통신연구원 | System and method for gaze tracking at a distance |
US20130297460A1 (en) * | 2012-05-01 | 2013-11-07 | Zambala Lllp | System and method for facilitating transactions of a physical product or real life service via an augmented reality environment |
USD716457S1 (en) | 2012-05-23 | 2014-10-28 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation device |
US9278453B2 (en) | 2012-05-25 | 2016-03-08 | California Institute Of Technology | Biosleeve human-machine interface |
US20130332196A1 (en) | 2012-06-07 | 2013-12-12 | The Government Of The United States As Represented By The Secretary Of The Army | Diabetes Monitoring Using Smart Device |
US9536449B2 (en) | 2013-05-23 | 2017-01-03 | Medibotics Llc | Smart watch and food utensil for monitoring food consumption |
US9398229B2 (en) | 2012-06-18 | 2016-07-19 | Microsoft Technology Licensing, Llc | Selective illumination of a region within a field of view |
US8954135B2 (en) | 2012-06-22 | 2015-02-10 | Fitbit, Inc. | Portable biometric monitoring devices and methods of operating same |
US9615447B2 (en) | 2012-07-23 | 2017-04-04 | Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. | Multilayer electronic support structure with integral constructional elements |
EP2698686B1 (en) | 2012-07-27 | 2018-10-10 | LG Electronics Inc. | Wrist-wearable terminal and control method thereof |
US9235241B2 (en) | 2012-07-29 | 2016-01-12 | Qualcomm Incorporated | Anatomical gestures detection system using radio signals |
US20140045547A1 (en) | 2012-08-10 | 2014-02-13 | Silverplus, Inc. | Wearable Communication Device and User Interface |
TWD152714S (en) | 2012-08-15 | 2013-04-01 | 昆盈企業股份有限公司 | Ring mouse |
US20140049417A1 (en) | 2012-08-20 | 2014-02-20 | Playtabase, LLC | Wireless motion activated command transfer device, system, and method |
US8895865B2 (en) | 2012-09-07 | 2014-11-25 | Conor P. Lenahan | Conductive connections allowing XYZ translation |
US9211417B2 (en) | 2012-09-10 | 2015-12-15 | Great Lakes Neurotechnologies Inc | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
USD687087S1 (en) | 2012-09-14 | 2013-07-30 | Michele Iurilli | Eyeglasses |
USD710928S1 (en) | 2012-09-25 | 2014-08-12 | Google Inc. | Wearable display device |
CN203252647U (en) | 2012-09-29 | 2013-10-30 | 艾利佛公司 | Wearable device for judging physiological features |
USD695454S1 (en) | 2012-10-24 | 2013-12-10 | Patricia Lynn Moore | Hair holding device |
KR101975090B1 (en) | 2012-10-26 | 2019-05-03 | 나이키 이노베이트 씨.브이. | Athletic performance monitoring system utilizing heart rate information |
KR102043703B1 (en) | 2012-11-12 | 2019-11-12 | 한국전자통신연구원 | method for manufacturing stretchable thin film transistor |
US9477313B2 (en) | 2012-11-20 | 2016-10-25 | Samsung Electronics Co., Ltd. | User gesture input to wearable electronic device involving outward-facing sensor of device |
USD724647S1 (en) | 2012-11-29 | 2015-03-17 | Sbg Revo Holdings, Llc | Eyeglass and eyeglass components |
USD685019S1 (en) | 2012-12-11 | 2013-06-25 | Weihua Li | Sunglasses camera |
US9042829B2 (en) | 2013-01-04 | 2015-05-26 | Nokia Corporation | Method, apparatus, and computer program product for wireless short-range communication |
US10528135B2 (en) | 2013-01-14 | 2020-01-07 | Ctrl-Labs Corporation | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
US20150362734A1 (en) | 2013-01-28 | 2015-12-17 | Ecole Polytechnique Federale De Lausanne (Epfl) | Transflective holographic film for head worn display |
US9223139B2 (en) | 2013-02-15 | 2015-12-29 | Google Inc. | Cascading optics in optical combiners of head mounted displays |
US9211073B2 (en) | 2013-02-20 | 2015-12-15 | Tosense, Inc. | Necklace-shaped physiological monitor |
US20140249397A1 (en) | 2013-03-01 | 2014-09-04 | Thalmic Labs Inc. | Differential non-contact biopotential sensor |
US20140257141A1 (en) | 2013-03-05 | 2014-09-11 | Great Lakes Neurotechnologies Inc. | Movement disorder monitoring and symptom quantification system and method |
US20150182113A1 (en) | 2013-12-31 | 2015-07-02 | Aliphcom | Real-time fatigue, personal effectiveness, injury risk device(s) |
US20140334653A1 (en) | 2013-03-14 | 2014-11-13 | Aliphcom | Combination speaker and light source responsive to state(s) of an organism based on sensor data |
US20140285326A1 (en) | 2013-03-15 | 2014-09-25 | Aliphcom | Combination speaker and light source responsive to state(s) of an organism based on sensor data |
US9146730B2 (en) | 2013-03-15 | 2015-09-29 | Netgear, Inc. | System and method for remotely updating cable modem software |
US9392129B2 (en) | 2013-03-15 | 2016-07-12 | John Castle Simmons | Light management for image and data control |
EP3296797B1 (en) | 2013-03-25 | 2019-11-06 | North Inc. | Method for displaying an image projected from a head-worn display with multiple exit pupils |
US20140299362A1 (en) | 2013-04-04 | 2014-10-09 | Electronics And Telecommunications Research Institute | Stretchable electric device and manufacturing method thereof |
USD701555S1 (en) | 2013-04-29 | 2014-03-25 | Cross Optical Group, Inc. | Eyeglasses |
KR102043200B1 (en) | 2013-05-07 | 2019-11-11 | 엘지전자 주식회사 | Smart watch and method for controlling thereof |
US9582317B2 (en) | 2013-05-10 | 2017-02-28 | Samsung Electronics Co., Ltd. | Method of using use log of portable terminal and apparatus using the same |
US10152082B2 (en) | 2013-05-13 | 2018-12-11 | North Inc. | Systems, articles and methods for wearable electronic devices that accommodate different user forms |
USD695333S1 (en) | 2013-05-13 | 2013-12-10 | Dolby Laboratories Licensing Corporation | Large format 3D eyeglasses |
US9706647B2 (en) | 2013-05-14 | 2017-07-11 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
USD750623S1 (en) | 2013-05-16 | 2016-03-01 | Samsung Electronics Co., Ltd. | Smart watch |
USD741855S1 (en) | 2013-05-16 | 2015-10-27 | Samsung Electronics Co., Ltd. | Smart watch |
US9395810B2 (en) | 2013-05-28 | 2016-07-19 | The Boeing Company | Ubiquitous natural user system |
US9904356B2 (en) | 2013-05-28 | 2018-02-27 | The Boeing Company | Tracking a user to support tasks performed on complex-system components |
KR101501661B1 (en) | 2013-06-10 | 2015-03-12 | 한국과학기술연구원 | Wearable electromyogram sensor system |
KR102131358B1 (en) | 2013-06-17 | 2020-07-07 | 삼성전자주식회사 | User interface device and method of operation of user interface device |
USD704248S1 (en) | 2013-06-17 | 2014-05-06 | Liberty Sport Inc | Sunglasses |
CA2913483A1 (en) | 2013-06-21 | 2014-12-24 | Mc10, Inc. | Band with conformable electronics |
US9408316B2 (en) | 2013-07-22 | 2016-08-02 | Thalmic Labs Inc. | Systems, articles and methods for strain mitigation in wearable electronic devices |
US20150036221A1 (en) | 2013-08-04 | 2015-02-05 | Robert S. Stephenson | Wide-field head-up display (HUD) eyeglasses |
USD738373S1 (en) | 2013-08-09 | 2015-09-08 | Kopin Corporation | Eyewear viewing device |
US11426123B2 (en) | 2013-08-16 | 2022-08-30 | Meta Platforms Technologies, Llc | Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures |
US10042422B2 (en) | 2013-11-12 | 2018-08-07 | Thalmic Labs Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US20150124566A1 (en) | 2013-10-04 | 2015-05-07 | Thalmic Labs Inc. | Systems, articles and methods for wearable electronic devices employing contact sensors |
WO2015027089A1 (en) | 2013-08-23 | 2015-02-26 | Thalmic Labs Inc. | Systems, articles, and methods for human-electronics interfaces |
US9788789B2 (en) | 2013-08-30 | 2017-10-17 | Thalmic Labs Inc. | Systems, articles, and methods for stretchable printed circuit boards |
JP6600310B2 (en) | 2013-09-04 | 2019-10-30 | エシロール エンテルナショナル | Navigation method based on see-through head-mounted device |
WO2015033737A1 (en) | 2013-09-06 | 2015-03-12 | 株式会社村田製作所 | Multilayer substrate |
US9372535B2 (en) | 2013-09-06 | 2016-06-21 | Thalmic Labs Inc. | Systems, articles, and methods for electromyography-based human-electronics interfaces |
US9483123B2 (en) | 2013-09-23 | 2016-11-01 | Thalmic Labs Inc. | Systems, articles, and methods for gesture identification in wearable electromyography devices |
CN105849671B (en) | 2013-10-14 | 2020-04-14 | 耐克创新有限合伙公司 | Computing pace and energy expenditure from motion movement attributes |
US9389694B2 (en) | 2013-10-22 | 2016-07-12 | Thalmic Labs Inc. | Systems, articles, and methods for gesture identification in wearable electromyography devices |
KR102268462B1 (en) | 2013-11-27 | 2021-06-22 | 매직 립, 인코포레이티드 | Virtual and augmented reality systems and methods |
WO2015081113A1 (en) | 2013-11-27 | 2015-06-04 | Cezar Morun | Systems, articles, and methods for electromyography sensors |
US9367086B2 (en) | 2013-12-10 | 2016-06-14 | Atmel Corporation | Smart watch with adaptive touch screen |
US9367139B2 (en) | 2013-12-12 | 2016-06-14 | Thalmic Labs Inc. | Systems, articles, and methods for gesture identification in wearable electromyography devices |
US20150185838A1 (en) | 2013-12-27 | 2015-07-02 | Jose R. Camacho-Perez | Wrist based wearable virtual keyboard |
USD751065S1 (en) | 2013-12-28 | 2016-03-08 | Intel Corporation | Wearable computing device |
US20150182130A1 (en) | 2013-12-31 | 2015-07-02 | Aliphcom | True resting heart rate |
US20150205134A1 (en) | 2014-01-17 | 2015-07-23 | Thalmic Labs Inc. | Systems, articles, and methods for wearable heads-up displays |
US9600030B2 (en) | 2014-02-14 | 2017-03-21 | Thalmic Labs Inc. | Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same |
WO2015123775A1 (en) | 2014-02-18 | 2015-08-27 | Sulon Technologies Inc. | Systems and methods for incorporating a real image stream in a virtual image stream |
TWI596994B (en) | 2014-02-20 | 2017-08-21 | Tear-resistant structure of the flexible circuit board | |
USD747714S1 (en) | 2014-03-07 | 2016-01-19 | Sony Mobile Communications Ab | Watch shaped communications equipment |
US20150261306A1 (en) | 2014-03-17 | 2015-09-17 | Thalmic Labs Inc. | Systems, devices, and methods for selecting between multiple wireless connections |
USD736664S1 (en) | 2014-03-18 | 2015-08-18 | Google Technology Holdings LLC | Wrist band for an electronic device |
US10199008B2 (en) | 2014-03-27 | 2019-02-05 | North Inc. | Systems, devices, and methods for wearable electronic devices as state machines |
TWD165563S (en) | 2014-04-08 | 2015-01-21 | 緯創資通股份有限公司 | Portion of wearable electronic device |
US20150296553A1 (en) | 2014-04-11 | 2015-10-15 | Thalmic Labs Inc. | Systems, devices, and methods that establish proximity-based wireless connections |
US20150325202A1 (en) | 2014-05-07 | 2015-11-12 | Thalmic Labs Inc. | Systems, devices, and methods for wearable computers with heads-up displays |
CN106464371B (en) | 2014-05-12 | 2018-12-14 | 康普技术有限责任公司 | Operate the method with the long distance wireless dateline of wireless wire jumper connection |
USD717685S1 (en) | 2014-05-15 | 2014-11-18 | Thalmic Labs Inc. | Expandable armband |
USD756359S1 (en) | 2014-05-15 | 2016-05-17 | Thalmic Labs Inc. | Expandable armband device |
JP6362444B2 (en) | 2014-06-16 | 2018-07-25 | 日本メクトロン株式会社 | Flexible printed circuit board and method for manufacturing flexible printed circuit board |
US9880632B2 (en) | 2014-06-19 | 2018-01-30 | Thalmic Labs Inc. | Systems, devices, and methods for gesture identification |
US9477079B2 (en) | 2014-06-25 | 2016-10-25 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
USD747759S1 (en) | 2014-08-13 | 2016-01-19 | Alpha Primitus, Inc. | Clip-on lens carrier for smart eyewear |
USD723093S1 (en) | 2014-08-13 | 2015-02-24 | Weihua Li | High definition glasses camera |
US9807221B2 (en) | 2014-11-28 | 2017-10-31 | Thalmic Labs Inc. | Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD758476S1 (en) | 2014-12-31 | 2016-06-07 | Alpha Primitus, Inc. | Clip-on lens carrier for smart eyewear |
USD771735S1 (en) | 2015-02-17 | 2016-11-15 | Electronics And Telecommunications Research Institute | Spectacle frame for measuring bio-signal |
SG11201706548QA (en) | 2015-02-17 | 2017-09-28 | Thalmic Labs Inc | Systems, devices, and methods for eyebox expansion in wearable heads-up displays |
USD766895S1 (en) | 2015-03-13 | 2016-09-20 | Samsung Electronics Co., Ltd. | Display device |
USD768627S1 (en) | 2015-03-16 | 2016-10-11 | Samsung Electronics Co., Ltd. | Display device |
US20160274365A1 (en) | 2015-03-17 | 2016-09-22 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays with heterogeneous display quality |
US20160274758A1 (en) | 2015-03-20 | 2016-09-22 | Thalmic Labs Inc. | Systems, devices, and methods for mitigating false positives in human-electronics interfaces |
USD760313S1 (en) | 2015-04-10 | 2016-06-28 | Alpha Primitus, Inc. | Full immersive shield for smart glasses |
US20160309249A1 (en) | 2015-04-16 | 2016-10-20 | Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. | Wearable electronic device |
US10078435B2 (en) | 2015-04-24 | 2018-09-18 | Thalmic Labs Inc. | Systems, methods, and computer program products for interacting with electronically displayed presentation materials |
US10175488B2 (en) | 2015-05-04 | 2019-01-08 | North Inc. | Systems, devices, and methods for spatially-multiplexed holographic optical elements |
KR102474236B1 (en) | 2015-05-28 | 2022-12-05 | 구글 엘엘씨 | Systems, devices and methods for integrating eye tracking and scanning laser projection in wearable heads-up displays |
WO2017041010A1 (en) | 2015-09-04 | 2017-03-09 | Thalmic Labs Inc. | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US20170097753A1 (en) | 2015-10-01 | 2017-04-06 | Thalmic Labs Inc. | Systems, devices, and methods for interacting with content displayed on head-mounted displays |
JP1589016S (en) | 2015-10-02 | 2017-10-23 | ||
US9904051B2 (en) | 2015-10-23 | 2018-02-27 | Thalmic Labs Inc. | Systems, devices, and methods for laser eye tracking |
US20170153701A1 (en) | 2015-12-01 | 2017-06-01 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays as wireless controllers |
US20170212290A1 (en) | 2015-12-17 | 2017-07-27 | Thalmic Labs Inc. | Systems, devices, and methods for curved holographic optical elements |
US10303246B2 (en) | 2016-01-20 | 2019-05-28 | North Inc. | Systems, devices, and methods for proximity-based eye tracking |
US10151926B2 (en) | 2016-01-29 | 2018-12-11 | North Inc. | Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display |
CA3020631A1 (en) | 2016-04-13 | 2017-10-19 | Thalmic Labs Inc. | Systems, devices, and methods for focusing laser projectors |
-
2014
- 2014-01-14 US US14/155,107 patent/US10528135B2/en active Active
- 2014-01-14 US US14/155,087 patent/US20140198034A1/en not_active Abandoned
-
2019
- 2019-11-26 US US16/696,760 patent/US11009951B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012715A1 (en) * | 2003-06-12 | 2005-01-20 | Peter Charles Shann Hubird Ford | Method, system, and software for interactive communication and analysis |
US20090327171A1 (en) * | 2008-06-26 | 2009-12-31 | Microsoft Corporation | Recognizing gestures from forearm emg signals |
US20120188158A1 (en) * | 2008-06-26 | 2012-07-26 | Microsoft Corporation | Wearable electromyography-based human-computer interface |
US20120182309A1 (en) * | 2011-01-14 | 2012-07-19 | Research In Motion Limited | Device and method of conveying emotion in a messaging application |
US20130198694A1 (en) * | 2011-06-10 | 2013-08-01 | Aliphcom | Determinative processes for wearable devices |
US20130165813A1 (en) * | 2011-12-23 | 2013-06-27 | Industrial Technology Research Institute | Sensor for acquiring muscle parameters |
US8922481B1 (en) * | 2012-03-16 | 2014-12-30 | Google Inc. | Content annotation |
US20130265437A1 (en) * | 2012-04-09 | 2013-10-10 | Sony Mobile Communications Ab | Content transfer via skin input |
Cited By (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10921886B2 (en) | 2012-06-14 | 2021-02-16 | Medibotics Llc | Circumferential array of electromyographic (EMG) sensors |
US11009951B2 (en) | 2013-01-14 | 2021-05-18 | Facebook Technologies, Llc | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
US10528135B2 (en) | 2013-01-14 | 2020-01-07 | Ctrl-Labs Corporation | Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display |
US9299248B2 (en) | 2013-02-22 | 2016-03-29 | Thalmic Labs Inc. | Method and apparatus for analyzing capacitive EMG and IMU sensor signals for gesture control |
US10152082B2 (en) | 2013-05-13 | 2018-12-11 | North Inc. | Systems, articles and methods for wearable electronic devices that accommodate different user forms |
US11426123B2 (en) | 2013-08-16 | 2022-08-30 | Meta Platforms Technologies, Llc | Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures |
US11921471B2 (en) | 2013-08-16 | 2024-03-05 | Meta Platforms Technologies, Llc | Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source |
US9788789B2 (en) | 2013-08-30 | 2017-10-17 | Thalmic Labs Inc. | Systems, articles, and methods for stretchable printed circuit boards |
US11644799B2 (en) | 2013-10-04 | 2023-05-09 | Meta Platforms Technologies, Llc | Systems, articles and methods for wearable electronic devices employing contact sensors |
US10101809B2 (en) | 2013-11-12 | 2018-10-16 | Thalmic Labs Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US11079846B2 (en) | 2013-11-12 | 2021-08-03 | Facebook Technologies, Llc | Systems, articles, and methods for capacitive electromyography sensors |
US10310601B2 (en) | 2013-11-12 | 2019-06-04 | North Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US10042422B2 (en) | 2013-11-12 | 2018-08-07 | Thalmic Labs Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US10331210B2 (en) | 2013-11-12 | 2019-06-25 | North Inc. | Systems, articles, and methods for capacitive electromyography sensors |
US10362958B2 (en) | 2013-11-27 | 2019-07-30 | Ctrl-Labs Corporation | Systems, articles, and methods for electromyography sensors |
US10898101B2 (en) | 2013-11-27 | 2021-01-26 | Facebook Technologies, Llc | Systems, articles, and methods for electromyography sensors |
US10188309B2 (en) | 2013-11-27 | 2019-01-29 | North Inc. | Systems, articles, and methods for electromyography sensors |
US11666264B1 (en) | 2013-11-27 | 2023-06-06 | Meta Platforms Technologies, Llc | Systems, articles, and methods for electromyography sensors |
US10251577B2 (en) | 2013-11-27 | 2019-04-09 | North Inc. | Systems, articles, and methods for electromyography sensors |
US9600030B2 (en) | 2014-02-14 | 2017-03-21 | Thalmic Labs Inc. | Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same |
US10199008B2 (en) | 2014-03-27 | 2019-02-05 | North Inc. | Systems, devices, and methods for wearable electronic devices as state machines |
US9880632B2 (en) | 2014-06-19 | 2018-01-30 | Thalmic Labs Inc. | Systems, devices, and methods for gesture identification |
US10684692B2 (en) | 2014-06-19 | 2020-06-16 | Facebook Technologies, Llc | Systems, devices, and methods for gesture identification |
US9766449B2 (en) | 2014-06-25 | 2017-09-19 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
US10012829B2 (en) | 2014-06-25 | 2018-07-03 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
US10067337B2 (en) | 2014-06-25 | 2018-09-04 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
US9874744B2 (en) | 2014-06-25 | 2018-01-23 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
US10054788B2 (en) | 2014-06-25 | 2018-08-21 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays |
CN107003722A (en) * | 2014-11-11 | 2017-08-01 | 英特尔公司 | Inputted by the elastically-deformable user of material |
US9886084B2 (en) | 2014-11-11 | 2018-02-06 | Intel Corporation | User input via elastic deformation of a material |
JP2017534988A (en) * | 2014-11-11 | 2017-11-24 | インテル コーポレイション | User input by elastic deformation of material |
WO2016077178A1 (en) * | 2014-11-11 | 2016-05-19 | Intel Corporation | User input via elastic deformation of a material |
JP2018190455A (en) * | 2014-11-12 | 2018-11-29 | 京セラ株式会社 | Wearable device |
WO2016080873A1 (en) * | 2014-11-18 | 2016-05-26 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for video processing based on physiological data |
US9807221B2 (en) | 2014-11-28 | 2017-10-31 | Thalmic Labs Inc. | Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link |
CN104461365A (en) * | 2014-12-11 | 2015-03-25 | 三星电子(中国)研发中心 | Touch method and device of terminal |
US10606359B2 (en) | 2014-12-19 | 2020-03-31 | Immersion Corporation | Systems and methods for haptically-enabled interactions with objects |
JP2016122445A (en) * | 2014-12-19 | 2016-07-07 | イマージョン コーポレーションImmersion Corporation | Systems and methods for object manipulation with haptic feedback |
EP3040814A1 (en) * | 2014-12-31 | 2016-07-06 | Immersion Corporation | Systems and methods for generating haptically enhanced objects for augmented and virtual reality applications |
CN104666052A (en) * | 2015-02-02 | 2015-06-03 | 上海交通大学 | System and method for processing lower-limb muscle sound signals for exoskeleton robots |
US10613331B2 (en) | 2015-02-17 | 2020-04-07 | North Inc. | Systems, devices, and methods for splitter optics in wearable heads-up displays |
US9958682B1 (en) | 2015-02-17 | 2018-05-01 | Thalmic Labs Inc. | Systems, devices, and methods for splitter optics in wearable heads-up displays |
US10031338B2 (en) | 2015-02-17 | 2018-07-24 | Thalmic Labs Inc. | Systems, devices, and methods for eyebox expansion in wearable heads-up displays |
US9989764B2 (en) | 2015-02-17 | 2018-06-05 | Thalmic Labs Inc. | Systems, devices, and methods for eyebox expansion in wearable heads-up displays |
US10191283B2 (en) | 2015-02-17 | 2019-01-29 | North Inc. | Systems, devices, and methods for eyebox expansion displays in wearable heads-up displays |
JP2018508909A (en) * | 2015-03-20 | 2018-03-29 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Intelligent interaction method, apparatus and system |
US10078435B2 (en) | 2015-04-24 | 2018-09-18 | Thalmic Labs Inc. | Systems, methods, and computer program products for interacting with electronically displayed presentation materials |
US10175488B2 (en) | 2015-05-04 | 2019-01-08 | North Inc. | Systems, devices, and methods for spatially-multiplexed holographic optical elements |
US10197805B2 (en) | 2015-05-04 | 2019-02-05 | North Inc. | Systems, devices, and methods for eyeboxes with heterogeneous exit pupils |
US10133075B2 (en) | 2015-05-04 | 2018-11-20 | Thalmic Labs Inc. | Systems, devices, and methods for angle- and wavelength-multiplexed holographic optical elements |
CN114610146A (en) * | 2015-05-12 | 2022-06-10 | 三星电子株式会社 | Wearable device and method for providing feedback of wearable device |
US11016569B2 (en) | 2015-05-12 | 2021-05-25 | Samsung Electronics Co., Ltd. | Wearable device and method for providing feedback of wearable device |
EP3287871B1 (en) * | 2015-05-12 | 2022-03-02 | Samsung Electronics Co., Ltd. | Wearable device and method for providing feedback of wearable device |
US10409374B2 (en) | 2015-05-12 | 2019-09-10 | Samsung Electronics Co., Ltd. | Wearable device and method for providing feedback of wearable device |
US10488661B2 (en) | 2015-05-28 | 2019-11-26 | North Inc. | Systems, devices, and methods that integrate eye tracking and scanning laser projection in wearable heads-up displays |
US10078220B2 (en) | 2015-05-28 | 2018-09-18 | Thalmic Labs Inc. | Wearable heads-up display with integrated eye tracker |
US10114222B2 (en) | 2015-05-28 | 2018-10-30 | Thalmic Labs Inc. | Integrated eye tracking and laser projection methods with holographic elements of varying optical powers |
US10073268B2 (en) | 2015-05-28 | 2018-09-11 | Thalmic Labs Inc. | Display with integrated visible light eye tracking |
US10139633B2 (en) | 2015-05-28 | 2018-11-27 | Thalmic Labs Inc. | Eyebox expansion and exit pupil replication in wearable heads-up display having integrated eye tracking and laser projection |
US10180578B2 (en) | 2015-05-28 | 2019-01-15 | North Inc. | Methods that integrate visible light eye tracking in scanning laser projection displays |
US10078219B2 (en) | 2015-05-28 | 2018-09-18 | Thalmic Labs Inc. | Wearable heads-up display with integrated eye tracker and different optical power holograms |
US10705342B2 (en) | 2015-09-04 | 2020-07-07 | North Inc. | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10718945B2 (en) | 2015-09-04 | 2020-07-21 | North Inc. | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10877272B2 (en) | 2015-09-04 | 2020-12-29 | Google Llc | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10890765B2 (en) | 2015-09-04 | 2021-01-12 | Google Llc | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10488662B2 (en) | 2015-09-04 | 2019-11-26 | North Inc. | Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses |
US10656822B2 (en) | 2015-10-01 | 2020-05-19 | North Inc. | Systems, devices, and methods for interacting with content displayed on head-mounted displays |
US9904051B2 (en) | 2015-10-23 | 2018-02-27 | Thalmic Labs Inc. | Systems, devices, and methods for laser eye tracking |
US10606072B2 (en) | 2015-10-23 | 2020-03-31 | North Inc. | Systems, devices, and methods for laser eye tracking |
US10228558B2 (en) | 2015-10-23 | 2019-03-12 | North Inc. | Systems, devices, and methods for laser eye tracking |
US10765357B2 (en) | 2015-12-17 | 2020-09-08 | Industrial Technology Research Institute | System and method for detecting muscle activities |
US10802190B2 (en) | 2015-12-17 | 2020-10-13 | Covestro Llc | Systems, devices, and methods for curved holographic optical elements |
US10095317B2 (en) | 2015-12-18 | 2018-10-09 | Stichting Imec Nederland | System for hand gesture detection |
WO2017112099A1 (en) * | 2015-12-23 | 2017-06-29 | Intel Corporation | Text functions in augmented reality |
US9697648B1 (en) | 2015-12-23 | 2017-07-04 | Intel Corporation | Text functions in augmented reality |
US10082940B2 (en) | 2015-12-23 | 2018-09-25 | Intel Corporation | Text functions in augmented reality |
US10126815B2 (en) | 2016-01-20 | 2018-11-13 | Thalmic Labs Inc. | Systems, devices, and methods for proximity-based eye tracking |
US10303246B2 (en) | 2016-01-20 | 2019-05-28 | North Inc. | Systems, devices, and methods for proximity-based eye tracking |
US10241572B2 (en) | 2016-01-20 | 2019-03-26 | North Inc. | Systems, devices, and methods for proximity-based eye tracking |
US10151926B2 (en) | 2016-01-29 | 2018-12-11 | North Inc. | Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display |
US10451881B2 (en) | 2016-01-29 | 2019-10-22 | North Inc. | Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display |
US10437067B2 (en) | 2016-01-29 | 2019-10-08 | North Inc. | Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display |
US10365549B2 (en) | 2016-04-13 | 2019-07-30 | North Inc. | Systems, devices, and methods for focusing laser projectors |
US10365548B2 (en) | 2016-04-13 | 2019-07-30 | North Inc. | Systems, devices, and methods for focusing laser projectors |
US10365550B2 (en) | 2016-04-13 | 2019-07-30 | North Inc. | Systems, devices, and methods for focusing laser projectors |
US10642377B2 (en) | 2016-07-05 | 2020-05-05 | Siemens Aktiengesellschaft | Method for the interaction of an operator with a model of a technical system |
DE102016212240A1 (en) * | 2016-07-05 | 2018-01-11 | Siemens Aktiengesellschaft | Method for interaction of an operator with a model of a technical system |
US10990174B2 (en) | 2016-07-25 | 2021-04-27 | Facebook Technologies, Llc | Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors |
US11000211B2 (en) | 2016-07-25 | 2021-05-11 | Facebook Technologies, Llc | Adaptive system for deriving control signals from measurements of neuromuscular activity |
US11337652B2 (en) | 2016-07-25 | 2022-05-24 | Facebook Technologies, Llc | System and method for measuring the movements of articulated rigid bodies |
US10409371B2 (en) | 2016-07-25 | 2019-09-10 | Ctrl-Labs Corporation | Methods and apparatus for inferring user intent based on neuromuscular signals |
US10656711B2 (en) | 2016-07-25 | 2020-05-19 | Facebook Technologies, Llc | Methods and apparatus for inferring user intent based on neuromuscular signals |
US10250856B2 (en) | 2016-07-27 | 2019-04-02 | North Inc. | Systems, devices, and methods for laser projectors |
US10230929B2 (en) | 2016-07-27 | 2019-03-12 | North Inc. | Systems, devices, and methods for laser projectors |
US10277874B2 (en) | 2016-07-27 | 2019-04-30 | North Inc. | Systems, devices, and methods for laser projectors |
DE102016214523A1 (en) * | 2016-08-05 | 2018-02-08 | Bayerische Motoren Werke Aktiengesellschaft | Device for gesture-based control of a system |
US10459222B2 (en) | 2016-08-12 | 2019-10-29 | North Inc. | Systems, devices, and methods for variable luminance in wearable heads-up displays |
US10459223B2 (en) | 2016-08-12 | 2019-10-29 | North Inc. | Systems, devices, and methods for variable luminance in wearable heads-up displays |
US10459221B2 (en) | 2016-08-12 | 2019-10-29 | North Inc. | Systems, devices, and methods for variable luminance in wearable heads-up displays |
US10345596B2 (en) | 2016-11-10 | 2019-07-09 | North Inc. | Systems, devices, and methods for astigmatism compensation in a wearable heads-up display |
US10215987B2 (en) | 2016-11-10 | 2019-02-26 | North Inc. | Systems, devices, and methods for astigmatism compensation in a wearable heads-up display |
US10459220B2 (en) | 2016-11-30 | 2019-10-29 | North Inc. | Systems, devices, and methods for laser eye tracking in wearable heads-up displays |
US10409057B2 (en) | 2016-11-30 | 2019-09-10 | North Inc. | Systems, devices, and methods for laser eye tracking in wearable heads-up displays |
US11484242B2 (en) | 2016-12-02 | 2022-11-01 | Pison Technology, Inc. | Detecting and using body tissue electrical signals |
US10070799B2 (en) | 2016-12-02 | 2018-09-11 | Pison Technology, Inc. | Detecting and using body tissue electrical signals |
US10663732B2 (en) | 2016-12-23 | 2020-05-26 | North Inc. | Systems, devices, and methods for beam combining in wearable heads-up displays |
US10365492B2 (en) | 2016-12-23 | 2019-07-30 | North Inc. | Systems, devices, and methods for beam combining in wearable heads-up displays |
US10437073B2 (en) | 2017-01-25 | 2019-10-08 | North Inc. | Systems, devices, and methods for beam combining in laser projectors |
US10718951B2 (en) | 2017-01-25 | 2020-07-21 | North Inc. | Systems, devices, and methods for beam combining in laser projectors |
US10437074B2 (en) | 2017-01-25 | 2019-10-08 | North Inc. | Systems, devices, and methods for beam combining in laser projectors |
US11226689B2 (en) * | 2017-01-30 | 2022-01-18 | Seiko Epson Corporation | Display system that selects a character string according to movement detected |
US11216083B2 (en) * | 2017-01-30 | 2022-01-04 | Seiko Epson Corporation | Display system that switches into an operation acceptable mode according to movement detected |
US10902743B2 (en) | 2017-04-14 | 2021-01-26 | Arizona Board Of Regents On Behalf Of Arizona State University | Gesture recognition and communication |
US11635736B2 (en) | 2017-10-19 | 2023-04-25 | Meta Platforms Technologies, Llc | Systems and methods for identifying biological structures associated with neuromuscular source signals |
US10901216B2 (en) | 2017-10-23 | 2021-01-26 | Google Llc | Free space multiple laser diode modules |
US11931174B1 (en) | 2017-10-23 | 2024-03-19 | Datafeel Inc. | Communication devices, methods, and systems |
US11589816B2 (en) | 2017-10-23 | 2023-02-28 | Datafeel Inc. | Communication devices, methods, and systems |
US12097161B2 (en) | 2017-10-23 | 2024-09-24 | Datafeel Inc. | Communication devices, methods, and systems |
US11864913B2 (en) | 2017-10-23 | 2024-01-09 | Datafeel Inc. | Communication devices, methods, and systems |
US11684313B2 (en) | 2017-10-23 | 2023-06-27 | Datafeel Inc. | Communication devices, methods, and systems |
US11300788B2 (en) | 2017-10-23 | 2022-04-12 | Google Llc | Free space multiple laser diode modules |
US12036174B1 (en) | 2017-10-23 | 2024-07-16 | Datafeel Inc. | Communication devices, methods, and systems |
US10959674B2 (en) | 2017-10-23 | 2021-03-30 | Datafeel Inc. | Communication devices, methods, and systems |
US11864914B2 (en) | 2017-10-23 | 2024-01-09 | Datafeel Inc. | Communication devices, methods, and systems |
US11484263B2 (en) | 2017-10-23 | 2022-11-01 | Datafeel Inc. | Communication devices, methods, and systems |
CN109814705A (en) * | 2017-11-22 | 2019-05-28 | 意美森公司 | Tactile auxiliary equipment |
EP3489804A1 (en) * | 2017-11-22 | 2019-05-29 | Immersion Corporation | Haptic accessory apparatus |
US10460455B2 (en) | 2018-01-25 | 2019-10-29 | Ctrl-Labs Corporation | Real-time processing of handstate representation model estimates |
US11331045B1 (en) | 2018-01-25 | 2022-05-17 | Facebook Technologies, Llc | Systems and methods for mitigating neuromuscular signal artifacts |
US10950047B2 (en) | 2018-01-25 | 2021-03-16 | Facebook Technologies, Llc | Techniques for anonymizing neuromuscular signal data |
US11587242B1 (en) | 2018-01-25 | 2023-02-21 | Meta Platforms Technologies, Llc | Real-time processing of handstate representation model estimates |
US10489986B2 (en) | 2018-01-25 | 2019-11-26 | Ctrl-Labs Corporation | User-controlled tuning of handstate representation model parameters |
US10817795B2 (en) | 2018-01-25 | 2020-10-27 | Facebook Technologies, Llc | Handstate reconstruction based on multiple inputs |
US11163361B2 (en) | 2018-01-25 | 2021-11-02 | Facebook Technologies, Llc | Calibration techniques for handstate representation modeling using neuromuscular signals |
US11069148B2 (en) | 2018-01-25 | 2021-07-20 | Facebook Technologies, Llc | Visualization of reconstructed handstate information |
US11361522B2 (en) | 2018-01-25 | 2022-06-14 | Facebook Technologies, Llc | User-controlled tuning of handstate representation model parameters |
US11127143B2 (en) | 2018-01-25 | 2021-09-21 | Facebook Technologies, Llc | Real-time processing of handstate representation model estimates |
US10496168B2 (en) | 2018-01-25 | 2019-12-03 | Ctrl-Labs Corporation | Calibration techniques for handstate representation modeling using neuromuscular signals |
US10504286B2 (en) | 2018-01-25 | 2019-12-10 | Ctrl-Labs Corporation | Techniques for anonymizing neuromuscular signal data |
US10592001B2 (en) | 2018-05-08 | 2020-03-17 | Facebook Technologies, Llc | Systems and methods for improved speech recognition using neuromuscular information |
US11036302B1 (en) | 2018-05-08 | 2021-06-15 | Facebook Technologies, Llc | Wearable devices and methods for improved speech recognition |
US11216069B2 (en) | 2018-05-08 | 2022-01-04 | Facebook Technologies, Llc | Systems and methods for improved speech recognition using neuromuscular information |
US10937414B2 (en) | 2018-05-08 | 2021-03-02 | Facebook Technologies, Llc | Systems and methods for text input using neuromuscular information |
US10772519B2 (en) | 2018-05-25 | 2020-09-15 | Facebook Technologies, Llc | Methods and apparatus for providing sub-muscular control |
US10687759B2 (en) | 2018-05-29 | 2020-06-23 | Facebook Technologies, Llc | Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods |
US11129569B1 (en) | 2018-05-29 | 2021-09-28 | Facebook Technologies, Llc | Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods |
US10970374B2 (en) | 2018-06-14 | 2021-04-06 | Facebook Technologies, Llc | User identification and authentication with neuromuscular signatures |
US11045137B2 (en) | 2018-07-19 | 2021-06-29 | Facebook Technologies, Llc | Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device |
WO2020033110A1 (en) * | 2018-08-05 | 2020-02-13 | Pison Technology, Inc. | User interface control of responsive devices |
US20200042087A1 (en) * | 2018-08-05 | 2020-02-06 | Pison Technology, Inc. | User Interface Control of Responsive Devices |
US10802598B2 (en) * | 2018-08-05 | 2020-10-13 | Pison Technology, Inc. | User interface control of responsive devices |
US11099647B2 (en) * | 2018-08-05 | 2021-08-24 | Pison Technology, Inc. | User interface control of responsive devices |
US11543887B2 (en) * | 2018-08-05 | 2023-01-03 | Pison Technology, Inc. | User interface control of responsive devices |
US10671174B2 (en) | 2018-08-05 | 2020-06-02 | Pison Technology, Inc. | User interface control of responsive devices |
US10627914B2 (en) | 2018-08-05 | 2020-04-21 | Pison Technology, Inc. | User interface control of responsive devices |
US11179066B2 (en) | 2018-08-13 | 2021-11-23 | Facebook Technologies, Llc | Real-time spike detection and identification |
US10842407B2 (en) | 2018-08-31 | 2020-11-24 | Facebook Technologies, Llc | Camera-guided interpretation of neuromuscular signals |
US10905350B2 (en) | 2018-08-31 | 2021-02-02 | Facebook Technologies, Llc | Camera-guided interpretation of neuromuscular signals |
US11567573B2 (en) | 2018-09-20 | 2023-01-31 | Meta Platforms Technologies, Llc | Neuromuscular text entry, writing and drawing in augmented reality systems |
US10921764B2 (en) | 2018-09-26 | 2021-02-16 | Facebook Technologies, Llc | Neuromuscular control of physical objects in an environment |
US10970936B2 (en) | 2018-10-05 | 2021-04-06 | Facebook Technologies, Llc | Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment |
US10558261B1 (en) * | 2018-10-29 | 2020-02-11 | Facebook Technologies, Llc | Sensor data compression |
US10809760B1 (en) * | 2018-10-29 | 2020-10-20 | Facebook, Inc. | Headset clock synchronization |
US11797087B2 (en) | 2018-11-27 | 2023-10-24 | Meta Platforms Technologies, Llc | Methods and apparatus for autocalibration of a wearable electrode sensor system |
US11941176B1 (en) | 2018-11-27 | 2024-03-26 | Meta Platforms Technologies, Llc | Methods and apparatus for autocalibration of a wearable electrode sensor system |
US10905383B2 (en) | 2019-02-28 | 2021-02-02 | Facebook Technologies, Llc | Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces |
US11023045B2 (en) | 2019-03-19 | 2021-06-01 | Coolso Technology Inc. | System for recognizing user gestures according to mechanomyogram detected from user's wrist and method thereof |
US11961494B1 (en) | 2019-03-29 | 2024-04-16 | Meta Platforms Technologies, Llc | Electromagnetic interference reduction in extended reality environments |
US11327566B2 (en) * | 2019-03-29 | 2022-05-10 | Facebook Technologies, Llc | Methods and apparatuses for low latency body state prediction based on neuromuscular data |
US11481030B2 (en) | 2019-03-29 | 2022-10-25 | Meta Platforms Technologies, Llc | Methods and apparatus for gesture detection and classification |
US11481031B1 (en) | 2019-04-30 | 2022-10-25 | Meta Platforms Technologies, Llc | Devices, systems, and methods for controlling computing devices via neuromuscular signals of users |
US11493993B2 (en) | 2019-09-04 | 2022-11-08 | Meta Platforms Technologies, Llc | Systems, methods, and interfaces for performing inputs based on neuromuscular control |
CN110624217A (en) * | 2019-09-23 | 2019-12-31 | 孙孟雯 | Rehabilitation glove based on multi-sensor fusion and implementation method thereof |
US11974857B2 (en) | 2019-10-08 | 2024-05-07 | Unlimited Tomorrow, Inc. | Biometric sensor array |
US11907423B2 (en) | 2019-11-25 | 2024-02-20 | Meta Platforms Technologies, Llc | Systems and methods for contextualized interactions with an environment |
US12089953B1 (en) | 2019-12-04 | 2024-09-17 | Meta Platforms Technologies, Llc | Systems and methods for utilizing intrinsic current noise to measure interface impedances |
CN111061368A (en) * | 2019-12-09 | 2020-04-24 | 华中科技大学鄂州工业技术研究院 | Gesture detection method and wearable device |
US11409371B2 (en) | 2020-01-28 | 2022-08-09 | Pison Technology, Inc. | Systems and methods for gesture-based control |
US11199908B2 (en) | 2020-01-28 | 2021-12-14 | Pison Technology, Inc. | Wrist-worn device-based inputs for an operating system |
US11567581B2 (en) | 2020-01-28 | 2023-01-31 | Pison Technology, Inc. | Systems and methods for position-based gesture control |
US11157086B2 (en) | 2020-01-28 | 2021-10-26 | Pison Technology, Inc. | Determining a geographical location based on human gestures |
WO2021180945A1 (en) | 2020-03-12 | 2021-09-16 | Université De Bordeaux | Method for controlling a limb of a virtual avatar by means of the myoelectric activities of a limb of an individual and system thereof |
FR3108025A1 (en) * | 2020-03-12 | 2021-09-17 | Université De Bordeaux | Method of controlling a member of a virtual avatar by the myoelectric activities of a subject member and associated system |
US11809625B2 (en) | 2020-03-12 | 2023-11-07 | Université De Bordeaux | Method for controlling a limb of a virtual avatar by means of the myoelectric activities of a limb of an individual and system thereof |
US11934583B2 (en) | 2020-10-30 | 2024-03-19 | Datafeel Inc. | Wearable data communication apparatus, kits, methods, and systems |
US11868531B1 (en) | 2021-04-08 | 2024-01-09 | Meta Platforms Technologies, Llc | Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
US10528135B2 (en) | 2020-01-07 |
US11009951B2 (en) | 2021-05-18 |
US20140198035A1 (en) | 2014-07-17 |
US20200159325A1 (en) | 2020-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140198034A1 (en) | Muscle interface device and method for interacting with content displayed on wearable head mounted displays | |
US9299248B2 (en) | Method and apparatus for analyzing capacitive EMG and IMU sensor signals for gesture control | |
US11921471B2 (en) | Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source | |
US11045117B2 (en) | Systems and methods for determining axial orientation and location of a user's wrist | |
KR100793079B1 (en) | Wrist-wear user input apparatus and methods | |
KR100680023B1 (en) | Cellular phone input device using electromyography and control method thereof | |
KR20040032820A (en) | User input apparatus | |
US20230073303A1 (en) | Wearable devices for sensing neuromuscular signals using a small number of sensor pairs, and methods of manufacturing the wearable devices | |
JP2008305199A (en) | Input system and program | |
CN105814511B (en) | Offset plane wrist input device, method and computer readable medium | |
KR20140016122A (en) | Finger-mounted type apparatus for transmitting and receiving data | |
WO2019199351A1 (en) | Sensors for electronic finger devices | |
KR20190098806A (en) | A smart hand device for gesture recognition and control method thereof | |
KR101497829B1 (en) | Watch type device utilizing motion input | |
US8704757B2 (en) | Input system and input apparatus | |
JP5794526B2 (en) | Interface system | |
CN106716304B (en) | Control unit and method for interacting with a graphical user interface | |
EP3759577A1 (en) | Wearable gesture recognition device and associated operation method and system | |
KR101918265B1 (en) | Wearable device for display contents control based on hand movement recognition | |
KR101771927B1 (en) | Apparatus and Method for Contact Free Interfacing Between User and Smart Device Using Electromyogram Signal | |
US20200169627A1 (en) | Wrist wearable device activation | |
TWI640899B (en) | Contactless gesture determining system for wearable device and determining method thereof | |
US11995237B1 (en) | Arm-wearable device for sensing neuromuscular signals using a shared reference electrode that is shared between two or more electrodes and methods of use thereof | |
JP7468785B2 (en) | Proximity Sensors and Controllers | |
KR20160034598A (en) | Apparatus and Method for Contact Free Interfacing Between User and Smart Device Using Electromyogram Signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THALMIC LABS INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAILEY, MATTHEW;GRANT, AARON;LAKE, STEPHEN;SIGNING DATES FROM 20140310 TO 20140311;REEL/FRAME:032543/0171 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NORTH INC., CANADA Free format text: CHANGE OF NAME;ASSIGNOR:THALMIC LABS INC.;REEL/FRAME:050387/0892 Effective date: 20180830 Owner name: CTRL-LABS CORPORATION, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTH INC.;REEL/FRAME:050390/0392 Effective date: 20190502 |
|
AS | Assignment |
Owner name: FACEBOOK TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CTRL-LABS CORPORATION;REEL/FRAME:051649/0001 Effective date: 20200116 |
|
AS | Assignment |
Owner name: FACEBOOK TECHNOLOGIES, LLC, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 051649 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CTRL-LABS CORPORATION;REEL/FRAME:051867/0136 Effective date: 20200116 |
|
AS | Assignment |
Owner name: META PLATFORMS TECHNOLOGIES, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FACEBOOK TECHNOLOGIES, LLC;REEL/FRAME:060199/0876 Effective date: 20220318 |