US20140182820A1 - Vapor chamber structure - Google Patents
Vapor chamber structure Download PDFInfo
- Publication number
- US20140182820A1 US20140182820A1 US13/732,417 US201313732417A US2014182820A1 US 20140182820 A1 US20140182820 A1 US 20140182820A1 US 201313732417 A US201313732417 A US 201313732417A US 2014182820 A1 US2014182820 A1 US 2014182820A1
- Authority
- US
- United States
- Prior art keywords
- vapor chamber
- chamber
- radiating fins
- main body
- chamber structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0028—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
Definitions
- the present invention relates to a vapor chamber structure, and more particularly to a vapor chamber structure that is integrally formed by way of extrusion to have a sealed chamber and a plurality of outward extended radiating fins.
- the heat dissipation devices generally adopted by the electronic industry for removing heat from the electronic elements include fans, heat sinks and heat pipes.
- the heat sink is provided to contact with a heat source for absorbing heat, and the absorbed heat is then transferred to a remote location by a heat pipe for dissipating into ambient air.
- the fan is used to force air flow through the heat sink to carry the absorbed heat away from the heat sink.
- a vapor chamber is usually selected as the heat dissipation element for heat transfer and heat dissipation.
- a conventional vapor chamber is formed by closing two mating plates to each other, so as to define a sealed chamber between the two closed plates.
- the sealed chamber is in a vacuum state and has a supporting structure and a wick structure provided therein.
- the wick structure for the conventional vapor chamber can be a mesh structure, a sintered-powder structure or a plurality of grooves, and is formed, in a secondary processing, on one side of the plate that is to be closed by the other plate.
- the prior art vapor chamber has the following disadvantages: (1) requiring higher manufacturing cost; and (2) requiring longer manufacturing time.
- a primary object of the present invention is to provide a vapor chamber structure that is manufactured with reduced labor cost and shortened manufacturing time.
- the vapor chamber structure includes a main body internally defining a sealed chamber and having a plurality of radiating fins externally provided thereon.
- the radiating fins are integrally formed on and outward extended from one side of the main body in a direction opposite to the chamber; and the chamber is internally provided with a wick structure and filled with a working fluid.
- the vapor chamber structure according to the present invention can be integrally formed by way of extrusion to have the sealed chamber and the plurality of outward extended radiating fins. In this way, the vapor chamber structure can be manufactured with reduced material and labor as well as shortened manufacturing time to largely lower the overall manufacturing cost thereof.
- FIG. 1A is a perspective sectional view of a vapor chamber structure according to a first embodiment of the present invention
- FIG. 1B is a cross sectional view of the vapor chamber structure of FIG. 1A ;
- FIG. 2 is a cross sectional view of a vapor chamber structure according to a second embodiment of the present invention.
- FIG. 3 is a cross sectional view of a vapor chamber structure according to a third embodiment of the present invention.
- FIG. 4A is a perspective sectional view of a vapor chamber structure according to a fourth embodiment of the present invention.
- FIG. 4B is a cross sectional view of the vapor chamber structure of FIG. 4A .
- FIGS. 1A and 1B are perspective sectional and cross sectional views, respectively, of a vapor chamber structure 1 according to a first embodiment of the present invention.
- the vapor chamber structure 1 in the first embodiment includes a main body 10 , which defines a sealed chamber 102 and has a plurality of radiating fins 101 provided thereon.
- the radiating fins 101 are outward extended from one side of the main body 10 in a direction opposite to the chamber 102 .
- the chamber 102 is internally provided with a wick structure 1021 and filled with a working fluid 1022 .
- the wick structure 1021 can be formed of a plurality of grooves, a sintered powder structure, or a mesh structure. In the first embodiment, the wick structure 1021 is illustrated as a plurality of grooves without limiting the present invention thereto.
- the radiating fins 101 and the chamber 102 are integrally formed with one another.
- FIG. 2 is a cross sectional view of a vapor chamber structure 1 according to a second embodiment of the present invention.
- the vapor chamber structure 1 in the second embodiment is generally structurally similar to that in the first embodiment, except that the wick structure 1021 in the second embodiment is illustrated as a sintered-powder structure without limiting the present invention thereto.
- FIG. 3 is a cross sectional view of a vapor chamber structure 1 according to a third embodiment of the present invention.
- the vapor chamber structure 1 in the third embodiment is generally structurally similar to that in the first embodiment, except that the wick structure 1021 in the third embodiment is illustrated as a mesh structure without limiting the present invention thereto.
- FIGS. 4A and 4B are perspective sectional and cross sectional views, respectively, of a vapor chamber structure 1 according to a fourth embodiment of the present invention.
- the vapor chamber structure 1 in the fourth embodiment is generally structurally similar to that in the first embodiment, except that the main body 10 in the fourth embodiment includes a first side 11 and an opposite second side 12 .
- the radiating fins 101 can be selectively formed on the first side 11 or the second side 12 to outward extend therefrom, while the other side of the main body 10 without the radiating fins 101 is for contacting with a heat source 2 .
- the manufacturing process of the vapor chamber structure 1 is effectively simplified to reduce the labor cost and the manufacturing time thereof.
- the vapor chamber structure according to the present invention has the following advantages: (1) reduced manufacturing cost; and (2) reduced labor cost and shortened manufacturing time.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A vapor chamber structure includes a main body internally defining a sealed chamber and having a plurality of radiating fins externally provided thereon. The radiating fins are integrally formed on and outward extended from one side of the main body in a direction opposite to the chamber; and the chamber is internally provided with a wick structure and filled with a working fluid. By integrally forming the radiating fins and the chamber with one another, the vapor chamber structure can be manufactured with reduced labor cost and shortened manufacturing time.
Description
- The present invention relates to a vapor chamber structure, and more particularly to a vapor chamber structure that is integrally formed by way of extrusion to have a sealed chamber and a plurality of outward extended radiating fins.
- Due to the rapid progress in different technological fields, most of the currently available electronic products have largely enhanced functions, and many internal electronic elements of these functionally enhanced electronic products, such as the central processing unit (CPU), the chipset, or the display unit thereof, also have constantly increased operating speed. The electronic elements operating at high speed would produce more heat in one unit time. The produced heat must be timely removed with proper means, so as to avoid lowered stability and performance of the electronic products or even burnout of the electronic elements.
- The heat dissipation devices generally adopted by the electronic industry for removing heat from the electronic elements include fans, heat sinks and heat pipes. The heat sink is provided to contact with a heat source for absorbing heat, and the absorbed heat is then transferred to a remote location by a heat pipe for dissipating into ambient air. The fan is used to force air flow through the heat sink to carry the absorbed heat away from the heat sink. For a heat source that is located in a considerably narrow space or has a considerably large area, a vapor chamber is usually selected as the heat dissipation element for heat transfer and heat dissipation.
- A conventional vapor chamber is formed by closing two mating plates to each other, so as to define a sealed chamber between the two closed plates. The sealed chamber is in a vacuum state and has a supporting structure and a wick structure provided therein. The wick structure for the conventional vapor chamber can be a mesh structure, a sintered-powder structure or a plurality of grooves, and is formed, in a secondary processing, on one side of the plate that is to be closed by the other plate. After the two plates are closed together, air enclosed in the sealed chamber is evacuated to produce a vacuum state in the chamber, and then the chamber is filled with a working fluid. When forming the conventional vapor chamber through the above procedures, a lot of labor, time and material are required.
- In conclusion, the prior art vapor chamber has the following disadvantages: (1) requiring higher manufacturing cost; and (2) requiring longer manufacturing time.
- It is therefore tried by the inventor to develop an improved vapor chamber structure to eliminate the disadvantages in the prior art vapor chamber.
- A primary object of the present invention is to provide a vapor chamber structure that is manufactured with reduced labor cost and shortened manufacturing time.
- To achieve the above and other objects, the vapor chamber structure according to the present invention includes a main body internally defining a sealed chamber and having a plurality of radiating fins externally provided thereon. The radiating fins are integrally formed on and outward extended from one side of the main body in a direction opposite to the chamber; and the chamber is internally provided with a wick structure and filled with a working fluid.
- The vapor chamber structure according to the present invention can be integrally formed by way of extrusion to have the sealed chamber and the plurality of outward extended radiating fins. In this way, the vapor chamber structure can be manufactured with reduced material and labor as well as shortened manufacturing time to largely lower the overall manufacturing cost thereof.
- The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
-
FIG. 1A is a perspective sectional view of a vapor chamber structure according to a first embodiment of the present invention; -
FIG. 1B is a cross sectional view of the vapor chamber structure ofFIG. 1A ; -
FIG. 2 is a cross sectional view of a vapor chamber structure according to a second embodiment of the present invention; -
FIG. 3 is a cross sectional view of a vapor chamber structure according to a third embodiment of the present invention; -
FIG. 4A is a perspective sectional view of a vapor chamber structure according to a fourth embodiment of the present invention; andFIG. 4B is a cross sectional view of the vapor chamber structure ofFIG. 4A . - The present invention will now be described with some preferred embodiments thereof and with reference to the accompanying drawings. For the purpose of easy to understand, elements that are the same in the preferred embodiments are denoted by the same reference numerals.
- Please refer to
FIGS. 1A and 1B that are perspective sectional and cross sectional views, respectively, of a vapor chamber structure 1 according to a first embodiment of the present invention. As shown, the vapor chamber structure 1 in the first embodiment includes amain body 10, which defines a sealedchamber 102 and has a plurality ofradiating fins 101 provided thereon. Theradiating fins 101 are outward extended from one side of themain body 10 in a direction opposite to thechamber 102. Thechamber 102 is internally provided with awick structure 1021 and filled with a workingfluid 1022. - The
wick structure 1021 can be formed of a plurality of grooves, a sintered powder structure, or a mesh structure. In the first embodiment, thewick structure 1021 is illustrated as a plurality of grooves without limiting the present invention thereto. - In the present invention, the
radiating fins 101 and thechamber 102 are integrally formed with one another. - Please refer to
FIG. 2 that is a cross sectional view of a vapor chamber structure 1 according to a second embodiment of the present invention. As shown, the vapor chamber structure 1 in the second embodiment is generally structurally similar to that in the first embodiment, except that thewick structure 1021 in the second embodiment is illustrated as a sintered-powder structure without limiting the present invention thereto. -
FIG. 3 is a cross sectional view of a vapor chamber structure 1 according to a third embodiment of the present invention. As shown, the vapor chamber structure 1 in the third embodiment is generally structurally similar to that in the first embodiment, except that thewick structure 1021 in the third embodiment is illustrated as a mesh structure without limiting the present invention thereto. -
FIGS. 4A and 4B are perspective sectional and cross sectional views, respectively, of a vapor chamber structure 1 according to a fourth embodiment of the present invention. - As shown, the vapor chamber structure 1 in the fourth embodiment is generally structurally similar to that in the first embodiment, except that the
main body 10 in the fourth embodiment includes afirst side 11 and an oppositesecond side 12. Theradiating fins 101 can be selectively formed on thefirst side 11 or thesecond side 12 to outward extend therefrom, while the other side of themain body 10 without theradiating fins 101 is for contacting with a heat source 2. - By integrally forming the
radiating fins 101 and thechamber 102 with one another in manufacturing the vapor chamber structure 1, it is not necessary to assemble the radiating fins to the vapor chamber by welding or other additional mechanical processing. Therefore, the manufacturing process of the vapor chamber structure 1 is effectively simplified to reduce the labor cost and the manufacturing time thereof. - In summary, compared to the prior art, the vapor chamber structure according to the present invention has the following advantages: (1) reduced manufacturing cost; and (2) reduced labor cost and shortened manufacturing time.
- The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Claims (4)
1. A vapor chamber structure, comprising a main body internally defining a sealed chamber and having a plurality of radiating fins provided thereon; the radiating fins being outward extended from one side of the main body in a direction opposite to the chamber; and the chamber being internally provided with a wick structure and filled with a working fluid.
2. The vapor chamber structure as claimed in claim 1 , wherein the main body has a first side and an opposite second side; the radiating fins being outward extended from one of the first and the second side, and the other side of the main body without the radiating fins being used to contact with a heat source.
3. The vapor chamber structure as claimed in claim 1 , wherein the wick structure is selected from the group consisting of a plurality of grooves, a sintered-powder structure, and a mesh structure.
4. The vapor chamber structure as claimed in claim 1 , wherein the radiating fins and the chamber are integrally formed with one another.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/732,417 US20140182820A1 (en) | 2013-01-01 | 2013-01-01 | Vapor chamber structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/732,417 US20140182820A1 (en) | 2013-01-01 | 2013-01-01 | Vapor chamber structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140182820A1 true US20140182820A1 (en) | 2014-07-03 |
Family
ID=51015818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/732,417 Abandoned US20140182820A1 (en) | 2013-01-01 | 2013-01-01 | Vapor chamber structure |
Country Status (1)
Country | Link |
---|---|
US (1) | US20140182820A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3121546A1 (en) | 2015-07-21 | 2017-01-25 | Ernst Gruber | Heat distributor element |
WO2017030706A3 (en) * | 2015-08-14 | 2017-04-20 | Microsoft Technology Licensing, Llc | Heat dissipation in electronics |
JP2023009837A (en) * | 2021-07-08 | 2023-01-20 | 明正 陳 | Heat radiation net and vapor chamber with the heat radiation net installed |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082443A (en) * | 1997-02-13 | 2000-07-04 | The Furukawa Electric Co., Ltd. | Cooling device with heat pipe |
US20020144804A1 (en) * | 2001-01-19 | 2002-10-10 | Yue Liang | Thermal transfer device and working fluid therefor including a kinetic ice inhibitor |
US6749013B2 (en) * | 1997-12-25 | 2004-06-15 | The Furukawa Electric Co., Ltd. | Heat sink |
US7011146B2 (en) * | 2003-02-27 | 2006-03-14 | Nationaltsing Hua University | Microchannel heat pipe with parallel grooves for recycling coolant |
US20080068802A1 (en) * | 2006-09-19 | 2008-03-20 | Inventec Corporation | Heatsink device with vapor chamber |
US20080110594A1 (en) * | 2006-11-10 | 2008-05-15 | Martin Yves C | Air/fluid cooling system |
US20090151905A1 (en) * | 2007-12-14 | 2009-06-18 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat sink with vapor chamber |
US7599185B2 (en) * | 2008-02-04 | 2009-10-06 | Celsia Technologies Taiwan, Inc. | Cooling device |
US7621316B2 (en) * | 2003-09-12 | 2009-11-24 | The Furukawa Electric Co., Ltd. | Heat sink with heat pipes and method for manufacturing the same |
US20100326630A1 (en) * | 2009-06-24 | 2010-12-30 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat spreader with vapor chamber and method for manufacturing the same |
US20100326644A1 (en) * | 2009-06-30 | 2010-12-30 | Shui-Hsu Hung | Plane-type heat-dissipating structure with high heat-dissipating effect and method for manufacturing the same |
-
2013
- 2013-01-01 US US13/732,417 patent/US20140182820A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082443A (en) * | 1997-02-13 | 2000-07-04 | The Furukawa Electric Co., Ltd. | Cooling device with heat pipe |
US6749013B2 (en) * | 1997-12-25 | 2004-06-15 | The Furukawa Electric Co., Ltd. | Heat sink |
US20020144804A1 (en) * | 2001-01-19 | 2002-10-10 | Yue Liang | Thermal transfer device and working fluid therefor including a kinetic ice inhibitor |
US7011146B2 (en) * | 2003-02-27 | 2006-03-14 | Nationaltsing Hua University | Microchannel heat pipe with parallel grooves for recycling coolant |
US7621316B2 (en) * | 2003-09-12 | 2009-11-24 | The Furukawa Electric Co., Ltd. | Heat sink with heat pipes and method for manufacturing the same |
US20110030924A1 (en) * | 2003-09-12 | 2011-02-10 | The Furukawa Electric Co., Ltd. | Heat sink with heat pipes and method for manufacturing the same |
US20080068802A1 (en) * | 2006-09-19 | 2008-03-20 | Inventec Corporation | Heatsink device with vapor chamber |
US20080110594A1 (en) * | 2006-11-10 | 2008-05-15 | Martin Yves C | Air/fluid cooling system |
US20090151905A1 (en) * | 2007-12-14 | 2009-06-18 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat sink with vapor chamber |
US7599185B2 (en) * | 2008-02-04 | 2009-10-06 | Celsia Technologies Taiwan, Inc. | Cooling device |
US20100326630A1 (en) * | 2009-06-24 | 2010-12-30 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat spreader with vapor chamber and method for manufacturing the same |
US20100326644A1 (en) * | 2009-06-30 | 2010-12-30 | Shui-Hsu Hung | Plane-type heat-dissipating structure with high heat-dissipating effect and method for manufacturing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3121546A1 (en) | 2015-07-21 | 2017-01-25 | Ernst Gruber | Heat distributor element |
WO2017030706A3 (en) * | 2015-08-14 | 2017-04-20 | Microsoft Technology Licensing, Llc | Heat dissipation in electronics |
US10098259B2 (en) | 2015-08-14 | 2018-10-09 | Microsoft Technology Licensing, Llc | Heat dissipation in electronics |
JP2023009837A (en) * | 2021-07-08 | 2023-01-20 | 明正 陳 | Heat radiation net and vapor chamber with the heat radiation net installed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9721869B2 (en) | Heat sink structure with heat exchange mechanism | |
US9303927B2 (en) | Heat spreader structure and manufacturing method thereof | |
US10082340B2 (en) | Heat pipe structure | |
TWI622342B (en) | Heat dissipation apparatus | |
US20130048251A1 (en) | Heat dissipation device incorporating heat spreader | |
US20130206369A1 (en) | Heat dissipating device | |
US10016857B2 (en) | Method of removing ineffective portion of flat heat pipe | |
US20150096720A1 (en) | Heat dissipation module | |
CN203708744U (en) | Enclosed circular heat radiation module | |
US20140182820A1 (en) | Vapor chamber structure | |
US20140182132A1 (en) | Method of manufacturing a vapor chamber structure | |
US20130092353A1 (en) | Vapor chamber structure and method of manufacturing same | |
US20130168055A1 (en) | Thermal module | |
TW201423020A (en) | Vapor chamber structure and manufacturing method thereof | |
US8893384B2 (en) | Heat pipe manufacturing method | |
US20140165402A1 (en) | Vapor chamber and method of manufacturing same | |
US20200041213A1 (en) | Flat-plate heat pipe structure | |
CN107514927A (en) | A kind of heat exchanger fin | |
US20180213679A1 (en) | Heat dissipation unit | |
US10215499B2 (en) | Heat dissipation device | |
US20110146953A1 (en) | Heat sink | |
US20120261096A1 (en) | Radiating fin structureand thermal module using same | |
US9989321B2 (en) | Heat dissipation device | |
TW201522894A (en) | Heat dissipation device | |
US20150308749A1 (en) | Combination fin and heat pipe assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASIA VITAL COMPONENTS CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, CHIH-PENG;REEL/FRAME:029551/0427 Effective date: 20130101 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |