Nothing Special   »   [go: up one dir, main page]

US20140176889A1 - Liquid Crystal Display Device - Google Patents

Liquid Crystal Display Device Download PDF

Info

Publication number
US20140176889A1
US20140176889A1 US14/192,384 US201414192384A US2014176889A1 US 20140176889 A1 US20140176889 A1 US 20140176889A1 US 201414192384 A US201414192384 A US 201414192384A US 2014176889 A1 US2014176889 A1 US 2014176889A1
Authority
US
United States
Prior art keywords
insulating layer
liquid crystal
pixel electrode
thickness
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/192,384
Inventor
Kimitoshi Ougiichi
Hirotaka Imayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd, Japan Display Inc filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to US14/192,384 priority Critical patent/US20140176889A1/en
Publication of US20140176889A1 publication Critical patent/US20140176889A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present invention relates to a liquid crystal display device in which liquid crystal molecules are aligned by an electric field generated by two electrodes stacked via an insulating layer.
  • liquid crystal display devices are classified into ones of a vertical electric field system and ones of a horizontal electric field system.
  • a liquid crystal display device of the horizontal electric field system may obtain wider viewing angle characteristics compared with those of a liquid crystal display device of the vertical electric field system.
  • liquid crystal display devices of the horizontal electric field system ones in which a pixel electrode and a common electrode are stacked via an insulating layer, one of the electrodes having slits formed therein and the other of the electrodes being in the shape of an even plane without an opening, are used when high transmittance is required. This is because an arc-like electric flux is distributed to the vicinity of the center of the electrode having the slits formed therein so as to connect the pixel electrode and the common electrode which are in different layers.
  • examples of the electrode having slits formed therein include a comb electrode in which one ends of the slits are closed while the other ends are open, and an electrode in which both the ends of the slits are closed. Further, in a multi-domain liquid crystal display device, such slits in the electrode are inflected. When an electric field is generated by an electrode having slits formed therein and an electrode in the shape of an even plane without an opening, an electric field in the vicinity of ends in a longitudinal direction of the slits or in the vicinity of inflected portions of the slits is distributed in such a way that control of the alignment of the liquid crystal molecules is difficult.
  • a region in which the alignment of the liquid crystal molecules cannot be controlled (hereinafter, referred to as domain) is generated in the vicinity of the ends in the longitudinal direction of the slits or in the vicinity of the inflected portions of the slits.
  • the domain is responsible for lowering the transmittance in the liquid crystal display device. Accordingly, as disclosed in, for example, Japanese Patent Application Laid-open No. 2008-276172, a liquid crystal display device which reduces such a domain has been proposed.
  • the number of ends of slits is reduced by providing the slits so as to extend continuously over a plurality of pixels.
  • the domain is reduced by reducing the number of ends of slits which are responsible for generation of the domain.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a liquid crystal display device which improves the transmittance.
  • a liquid crystal display device including a pixel electrode; and a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode included slits formed therein, and the insulating layer is formed so as to increase in thickness from a vicinity of ends in a longitudinal direction of the slits toward the ends.
  • the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends.
  • the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends.
  • the vicinity of the ends in the longitudinal direction of the slits may be a domain generating region.
  • a liquid crystal display device including a pixel electrode; a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode includes slits formed therein, and the slits are inflected, and the insulating layer is formed so as to increase in thickness from a vicinity of inflected portions of the slits toward the inflected portions.
  • the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • the vicinity of the inflected portions may be a domain generating region.
  • a liquid crystal display device including a pixel electrode; a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode includes slits formed therein the slits are inflected, and the insulating layer is formed so as to increase in thickness from a vicinity of ends in a longitudinal direction of the slits toward the ends and is formed so as to increase in thickness from a vicinity of inflected portions of the slits toward the inflected portions.
  • the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends and so as to gradually increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends and so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • the vicinity of the ends in the longitudinal direction of the slits and the vicinity of the inflected portions may be domain generating regions.
  • the one of the pixel electrode and the common electrode including the slits formed therein may be a comb electrode, and one of the ends in the longitudinal direction of the slits may be open while another end is closed.
  • the ends in the longitudinal direction of the slits may be closed.
  • the insulating layer is formed so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends, to thereby lower the intensity of the electric field in the vicinity of the ends in the longitudinal direction of the slits.
  • the liquid crystal molecules are normally aligned around the ends in the longitudinal direction of the slits and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the ends in the longitudinal direction of the slits. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • the slits are formed in one of the pixel electrode and the common electrode, and the liquid crystal molecules are aligned by an electric field generated by the pixel electrode and the common electrode, the slits are formed so as to be inflected, and the insulating layer is formed so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions, to thereby lower the intensity of the electric field in the vicinity of the inflected portions of the slits.
  • the liquid crystal molecules are normally aligned around the inflected portions of the slits and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the inflected portions of the slits. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • the slits are formed in one of the pixel electrode and the common electrode, and the liquid crystal molecules are aligned by an electric field generated by the pixel electrode and the common electrode, the slits are formed so as to be inflected, the insulating layer is formed so as to increase in thickness from the ends in the longitudinal direction of the slits toward the ends, and the insulating layer is formed so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions, to thereby lower the intensity of the electric field in the vicinity of the ends in the longitudinal direction of the slits and in the vicinity of the inflected portions.
  • the liquid crystal molecules are normally aligned around the ends in the longitudinal direction of the slits and around the inflected portions and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the ends in the longitudinal direction of the slits and in the vicinity of the inflected portions. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • FIG. 1 is a schematic view illustrating a structure of a liquid crystal display device according to a first embodiment of the present invention
  • FIG. 2 is a detailed explanatory diagram of a structure of a liquid crystal display panel illustrated in FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel taken along the line A 1 -A 2 of FIG. 2 ;
  • FIG. 4 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the liquid crystal display panel taken along the line B 1 -B 2 -B 3 of FIG. 4 ;
  • FIG. 6 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the liquid crystal display panel taken along the line C 1 -C 2 -C 3 of FIG. 6 ;
  • FIG. 8 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the liquid crystal display panel taken along the line D 1 -D 2 -D 3 of FIG. 8 .
  • FIG. 1 is a schematic view illustrating a structure of a liquid crystal display device 100 according to a first embodiment of the present invention.
  • FIG. 2 is a detailed explanatory diagram of a structure of a liquid crystal display panel 10 illustrated in FIG. 1 .
  • the part of a liquid crystal display panel 10 is enlarged to explain the structure of pixels.
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel 10 taken along the line A 1 -A 2 of FIG. 2 .
  • the liquid crystal display device 100 is of the horizontal electric field system, and includes the liquid crystal display panel 10 , a data driver 2 , a scanning driver 3 , a backlight unit 4 , and a control unit 5 .
  • the liquid crystal display panel 10 includes a plurality of video signal lines DL (DL 1 , . . . , DL n , where n is a natural number) which extend in a Y direction and a plurality of scanning signal lines GL (GL 1 , . . . , GL m , where m is a natural number) which extend in an X direction.
  • the plurality of scanning signal lines GL are formed so as to be in parallel to one another, and each of the plurality of video signal lines DL is formed so as to cross the scanning signal lines GL.
  • a pixel D is formed in a region surrounded by those video signal lines DL and scanning signal lines GL.
  • a liquid crystal material 40 containing liquid crystal molecules is sealed between a TFT substrate 20 and a counter substrate 30 in the liquid crystal display panel 10 .
  • the TFT substrate 20 is a substrate including an insulating substrate such as a glass substrate, and the scanning signal lines GL, the video signal lines DL, thin film transistors TFTs, a common electrode CT, and pixel electrodes Px provided thereon. More specifically, the TFT substrate 20 has the scanning signal lines GL provided on an insulating substrate SUB 1 such as a glass substrate.
  • the scanning signal lines GL are formed by, for example, etching a film of a conductor such as aluminum.
  • the video signal line DL (source electrode SD 1 ) and a drain electrode SD 2 of the thin film transistor TFT are provided above the scanning signal line GL via a first insulating layer PAS 1 .
  • the common electrode CT is provided above the video signal line DL and the like via a second insulating layer PAS 2 .
  • the common electrode CT is formed by etching a film of a conductor having high light transmittance such as ITO, and is formed in the shape of an even plane without an opening in a region which overlaps the pixel electrode Px in plan view.
  • the pixel electrode Px is provided above the common electrode CT via a third insulating layer PAS 3 .
  • the pixel electrode Px is formed by etching a film of a conductor having high light transmittance such as ITO.
  • the pixel electrode Px is connected to the drain electrode SD 2 via a through hole TH.
  • the pixel electrode Px has a plurality of slits SL formed in the region overlapping the common electrode CT in plan view, the slits SL having the long sides in a direction in which the video signal lines DL extend.
  • the pixel electrode Px is a comb electrode, and one ends of the slits SL are open while the other ends of the slits SL are closed.
  • the pixel electrode Px has a plurality of strip-like portions 11 formed in stripes and a joining portion 12 for joining one ends of the plurality of strip-like portions 11 together.
  • the joining portion 12 is connected to the drain electrode SD 2 .
  • the slits SL of the pixel electrode Px are formed by the strip-like portions 11 and the joining portion 12 .
  • the slits SL each have a closed end 13 a and an open end 13 b.
  • the closed end 13 a is an end closed by the joining portion 12 of the ends in the longitudinal direction of the slit SL.
  • the distribution of an electric field in the vicinity of the closed ends 13 a is affected not only by the strip-like portions 11 but also by the joining portion 12 .
  • the vicinity of the closed ends 13 a is a domain generating region.
  • the open end 13 b is an open end of the ends in the longitudinal direction of the slit SL.
  • the distribution of an electric field in the vicinity of the open ends 13 b is affected by tip portions of the strip-like portions 11 .
  • the vicinity of the open ends 13 b is a domain generating region.
  • a light shielding film BM called a black matrix and a color filter CF are provided on a surface of an insulating substrate SUB 2 such as a glass substrate.
  • the light shielding film BM is formed by, for example, etching a conductive film or an insulating film having a light transmittance of almost zero to form a lattice-like pattern for separating the respective pixels D from one another.
  • the color filter CF is formed by, for example, etching or exposing to light and developing an insulating film and periodically arranging a filter for displaying red (R), a filter for displaying green (G), and a filter for displaying blue (B) in an aperture region of the light shielding film.
  • an alignment film ORI 2 is provided above the light shielding film BM and the color filter CF via, for example, an overcoating layer OC.
  • the data driver 2 generates video signals (gradation voltages) to be input to the plurality of video signal lines DL, respectively.
  • the scanning driver 3 sequentially inputs scanning signals to the plurality of scanning signal lines GL.
  • the data driver 2 and the scanning driver 3 are electrically connected to the liquid crystal display panel 10 via a flexible board or the like (not shown) connected to an outer peripheral portion of the liquid crystal display panel 10 .
  • the backlight unit 4 is materialized by a light-emitting diode or the like, and irradiates light from a back surface side of the liquid crystal display panel 10 .
  • the control unit 5 is materialized by a CPU or the like, and is electrically connected to respective portions of the liquid crystal display device 100 including the data driver 2 , the scanning driver 3 , and the backlight unit 4 , for controlling the overall operation of the liquid crystal display device 100 .
  • the control unit 5 includes a memory or the like (not shown) for temporarily holding video data which is input from an external system.
  • the third insulating layer PAS 3 is specifically described. As illustrated in FIG. 3 , the third insulating layer PAS 3 has a first inclination layer PAS 31 and a second inclination layer PAS 32 .
  • the first inclination layer PAS 31 is an insulating layer formed on the common electrode CT.
  • the first inclination layer PAS 31 has an inclined portion TP.
  • the inclined portion TP is a portion of the first inclination layer PAS 31 which is processed so as to form an inclined surface.
  • the first inclination layer PAS 31 starts its inclination at a bottom end TPb of the inclined portion TP and ends its inclination at a top end TPt.
  • the inclined portion TP is processed in advance before the second inclination layer PAS 32 is stacked thereon.
  • the inclined portion TP is inclined at a predetermined inclination angle with respect to a surface of the common electrode CT.
  • the inclined portion TP is inclined at a predetermined inclination angle with respect to a surface of the common electrode CT.
  • the inclined portion TP is inclined at a predetermined inclination angle with respect to a surface of the common electrode CT.
  • the first inclination layer PAS 31 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b.
  • the second inclination layer PAS 32 is an insulating layer formed on the first inclination layer PAS 31 after the first inclination layer PAS 31 is processed to be inclined as described above.
  • the third insulating layer PAS 3 is formed by the first inclination layer PAS 31 which is processed to be inclined and the second inclination layer PAS 32 which is stacked on the first inclination layer PAS 31 , so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Therefore, in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b, that is, in the domain generating regions, the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the closed ends 13 a and toward the open ends 13 b, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • the third insulating layer PAS 3 gradually increase in thickness, but it is enough that the control of the alignment of the liquid crystal molecules is not adversely affected.
  • the third insulating layer PAS 3 increases in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and from the vicinity of the open ends 13 b toward the open ends 13 b, respectively.
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and is formed so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b, to thereby lower the intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • the liquid crystal molecules which are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b due to the lowered intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b suppress the enlargement of the domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b, and thus, even when the screen of the liquid crystal display panel 10 is pressed, the enlargement of the domain may be suppressed and time necessary for the screen to return to its original state may be shortened.
  • FIG. 4 is a detailed explanatory diagram of a structure of a liquid crystal display panel 60 of a liquid crystal display device 200 according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the liquid crystal display panel 60 taken along the line B 1 -B 2 -B 3 of FIG. 4 .
  • the slits SL are in the shape of straight lines, but, in the second embodiment, the slits SL each have a inflected portion 13 c.
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c.
  • Other structures in the second embodiment are the same as those in the first embodiment, and like reference symbols are used to designate like structural elements.
  • a pixel electrode Px has a plurality of strip-like portions 11 formed in stripes and a joining portion 12 for joining one ends of the plurality of strip-like portions 11 together.
  • the strip-like portions 11 are inflected so as to be V-shaped.
  • the slits SL which are inflected to be V-shaped are formed by the strip-like portions 11 and the joining portion 12 .
  • the inflected portions 13 c correspond to the inflected shape of the pixel electrode Px.
  • Such V-shaped slits SL are widely employed in multi-domain liquid crystal display devices.
  • the distribution of an electric field in the vicinity of the inflected portions 13 c is affected by the inflected shape.
  • the vicinity of the inflected portions 13 c is a domain generating region.
  • an alignment film ORI 1 is provided on the pixel electrode Px.
  • the shape of the slits SL is not limited to being inflected so as to be V-shaped. It is enough that the slits SL have inflected portions which accommodate a multi-domain liquid crystal display device.
  • the third insulating layer PAS 3 is specifically described. As illustrated in FIG. 5 , the third insulating layer PAS 3 has a first inclination layer PAS 33 and a second inclination layer PAS 34 .
  • the first inclination layer PAS 33 is an insulating layer formed on the common electrode CT.
  • the first inclination layer PAS 33 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 13 c of the slits SL toward the inflected portions 13 c.
  • the second inclination layer PAS 34 is an insulating layer formed on the first inclination layer PAS 33 after the first inclination layer PAS 33 is processed to be inclined as described above.
  • the third insulating layer PAS 3 is formed by the first inclination layer PAS 33 which is processed to be inclined and the second inclination layer PAS 34 which is stacked on the first inclination layer PAS 33 , so as to gradually increase in thickness from the vicinity of the inflected portions 13 c of the slits SL toward the inflected portions 13 c. Therefore, in the vicinity of the inflected portions 13 c, that is, in the domain generating region, the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the inflected portions 13 c, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c, to thereby lower the intensity of the electric field in the vicinity of the inflected portions 13 c. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinity of the inflected portions 13 c and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the inflected portions 13 c . Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • the pixel electrode Px is inflected, and thus, restrictions on the viewing angle may be eased.
  • FIG. 6 is a detailed explanatory diagram of a structure of a liquid crystal display panel 70 of a liquid crystal display device 300 according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the liquid crystal display panel 70 taken along the line C 1 -C 2 -C 3 of FIG. 6 .
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c.
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and is formed so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b.
  • Other structures in the third embodiment are the same as those in the second embodiment, and like reference symbols are used to designate like structural elements.
  • the third insulating layer PAS 3 is specifically described. As illustrated in FIG, 7 , the third insulating layer PAS 3 has a first inclination layer PAS 35 and a second inclination layer PAS 36 .
  • the first inclination layer PAS 35 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Further, the first inclination layer PAS 35 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c.
  • the second inclination layer PAS 36 is an insulating layer formed on the first inclination layer PAS 35 after the first inclination layer PAS 35 is processed to be inclined as described above.
  • the third insulating layer PAS 3 is formed by the first inclination layer PAS 35 which is processed to be inclined and the second inclination layer PAS 36 which is stacked on the first inclination layer PAS 35 , so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Further, the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c.
  • the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the closed ends 13 a, toward the open ends 13 b, and toward the inflected portions 13 c, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • the third insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c, to thereby obtain the same effect as that in the second embodiment, and is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b, to thereby lower the intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b.
  • liquid crystal molecules are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • FIG. 8 is a detailed explanatory diagram of a structure of a liquid crystal display panel 80 of a liquid crystal display device 400 according to the fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the liquid crystal display panel 80 taken along the line D 1 -D 2 -D 3 of FIG. 8 .
  • the pixel electrode Px of the liquid crystal display panel 70 is a comb electrode in which one ends of both ends in the longitudinal direction of the slits SL are open, but, in the fourth embodiment, the pixel electrode Px of the liquid crystal display panel 80 is an electrode in which both ends in the longitudinal direction of the slits SL are closed.
  • the pixel electrode Px has a plurality of strip-like portions 14 formed in stripes and joining portions 15 each for joining ends of the plurality of strip-like portions 14 together on one side.
  • the slits SL of the pixel electrode Px are formed by the strip-like portions 14 and the joining portions 15 .
  • the slits SL each have closed ends 70 a and 70 b and a inflected portion 70 c .
  • the closed ends 70 a and 70 b are ends closed by the joining portions 15 .
  • the distribution of an electric field in the vicinity of the closed ends 70 a and 70 b is affected not only by the strip-like portions 14 but also by the joining portions 15 .
  • the vicinities of the closed ends 70 a and 70 b are domain generating regions.
  • the inflected portions 70 c correspond to the inflected shape of the pixel electrode Px.
  • the distribution of an electric field in the vicinity of the inflected portions 70 c is affected by the inflected shape.
  • the vicinity of the inflected portions 70 c is a domain generating region.
  • the third insulating layer PAS 3 has a first inclination layer PAS 37 and a second inclination layer PAS 38 .
  • Other structures in the fourth embodiment are the same as those in the third embodiment, and like reference symbols are used to designate like structural elements.
  • the first inclination layer PAS 37 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a and so as to gradually increase in thickness from the vicinity of the closed ends 70 b toward the closed ends 70 b.
  • the third insulating layer PAS 3 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c.
  • the second inclination layer PAS 38 is an insulating layer formed on the first inclination layer PAS 37 after the first inclination layer PAS 37 is processed to be inclined as described above.
  • the third insulating layer PAS 3 is formed by the first inclination layer PAS 37 which is processed to be inclined and the second inclination layer PAS 38 which is stacked on the first inclination layer PAS 37 , so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a and so as to gradually increase in thickness from the vicinity of the closed ends 70 b to the closed ends 70 b. Further, the third insulating layer PAS 3 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c.
  • the insulating layer PAS 3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a, so as to gradually increase in thickness from the vicinity of the closed ends 70 b toward the closed ends 70 b, and further so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c, to thereby lower the intensity of the electric field in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c.
  • liquid crystal molecules are normally aligned in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c and thus suppress enlargement of a domain which is generated by the electric field in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c. Therefore, even when the pixel electrode Px is a pixel electrode in which both ends of the slits SL are closed, the transmittance may be improved.
  • the longitudinal direction of the slits SL is the direction in which the video signal lines DL extend, but the present invention is not limited thereto.
  • the longitudinal direction of the slits SL may be a direction in which the scanning signal lines GL extend.
  • the pixel electrode Px is provided above the common electrode CT, but the present invention is not limited thereto.
  • the arrangement may be upside down in which the pixel electrode Px is provided below the common electrode CT.
  • the pixel electrode Px has the slits SL formed therein and the common electrode CT is in the shape of an even plane without an opening, but the present invention is not limited thereto.
  • the pixel electrode Px may be in the shape of an even plane without an opening and the common electrode CT may have the slits SL formed therein.
  • the third insulating layer PAS 3 is gradually increased in thickness by processing the first inclination layer PAS 31 , PAS 33 , PAS 35 , or PAS 37 to be inclined in advance, but the present invention is not limited thereto. It is enough that the third insulating layer PAS 3 gradually increases in thickness from the vicinities of ends of the slits SL toward the ends of the slits SL or from the vicinity of the inflected portions of the slits SL toward the inflected portions.
  • the third insulating layer PAS 3 may have a single-layer structure and the single-layer-structured third insulating layer PAS 3 may be processed to be inclined in advance.
  • the third insulating layer PAS 3 is gradually increased in thickness toward both the ends of the slits SL, but the present invention is not limited thereto.
  • the third insulating layer PAS 3 may gradually increase in thickness only toward one ends of the slits SL.
  • the slits SL are inflected, but the present invention is not limited thereto, and the slits SL may be in the shape of straight lines.
  • the present invention is not limited to the first to fourth embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device includes a pixel electrode, a common electrode, and an insulating layer which is formed between the pixel electrode and the common electrode. The pixel electrode or the common electrode includes at least one strip shaped portion which is extended in a first direction. A first thickness of the insulating layer between the pixel and common electrodes at a first portion extending from a vicinity of end of the at least one strip shaped portion in the first direction toward the end of the at least one strip shaped portion is thicker than a second thickness of the insulating layer between the pixel and the common electrodes at a second portion extending from the vicinity of end of the at least one strip shaped portion in the first direction toward a center of the at least one strip shaped portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. application Ser. No. 13/272,304, filed Oct. 13, 2011, the contents of which are incorporated herein by reference.
  • The present application claims priority from Japanese application JP 2010-236077 filed on Oct. 21, 2010, the content of which is hereby incorporated by reference into this application.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a liquid crystal display device in which liquid crystal molecules are aligned by an electric field generated by two electrodes stacked via an insulating layer.
  • 2. Description of the Related Art
  • Conventionally, liquid crystal display devices are classified into ones of a vertical electric field system and ones of a horizontal electric field system. A liquid crystal display device of the horizontal electric field system may obtain wider viewing angle characteristics compared with those of a liquid crystal display device of the vertical electric field system. Among liquid crystal display devices of the horizontal electric field system, ones in which a pixel electrode and a common electrode are stacked via an insulating layer, one of the electrodes having slits formed therein and the other of the electrodes being in the shape of an even plane without an opening, are used when high transmittance is required. This is because an arc-like electric flux is distributed to the vicinity of the center of the electrode having the slits formed therein so as to connect the pixel electrode and the common electrode which are in different layers.
  • By the way, examples of the electrode having slits formed therein include a comb electrode in which one ends of the slits are closed while the other ends are open, and an electrode in which both the ends of the slits are closed. Further, in a multi-domain liquid crystal display device, such slits in the electrode are inflected. When an electric field is generated by an electrode having slits formed therein and an electrode in the shape of an even plane without an opening, an electric field in the vicinity of ends in a longitudinal direction of the slits or in the vicinity of inflected portions of the slits is distributed in such a way that control of the alignment of the liquid crystal molecules is difficult. Therefore, a region in which the alignment of the liquid crystal molecules cannot be controlled (hereinafter, referred to as domain) is generated in the vicinity of the ends in the longitudinal direction of the slits or in the vicinity of the inflected portions of the slits. The domain is responsible for lowering the transmittance in the liquid crystal display device. Accordingly, as disclosed in, for example, Japanese Patent Application Laid-open No. 2008-276172, a liquid crystal display device which reduces such a domain has been proposed.
  • SUMMARY OF THE INVENTION
  • In the liquid crystal display device disclosed in Japanese Patent Application Laid-open No. 2008-276172, the number of ends of slits is reduced by providing the slits so as to extend continuously over a plurality of pixels. In other words, in the liquid crystal display device, the domain is reduced by reducing the number of ends of slits which are responsible for generation of the domain.
  • However, in the liquid crystal display device disclosed in Japanese Patent Application Laid-open No. 2008-276172, not all the ends of slits are eliminated, and thus, the problem that a domain generated in the vicinity of ends of slits lowers the transmittance is not solved.
  • The present invention has been made in view of the above, and an object of the present invention is to provide a liquid crystal display device which improves the transmittance.
  • In order to solve the above-mentioned problem and to achieve the object, according to a first aspect of the present invention, there is provided a liquid crystal display device, including a pixel electrode; and a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode included slits formed therein, and the insulating layer is formed so as to increase in thickness from a vicinity of ends in a longitudinal direction of the slits toward the ends.
  • Further, in the liquid crystal display device according to the first aspect of the present invention, the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends.
  • Further, in the liquid crystal display device according to the first aspect of the present invention, the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends.
  • Further, in the liquid crystal display device according to the first aspect of the present invention, the vicinity of the ends in the longitudinal direction of the slits may be a domain generating region.
  • Further, in order to solve the above-mentioned problem and to achieve the object, according to a second aspect of the present invention, there is provided a liquid crystal display device, including a pixel electrode; a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode includes slits formed therein, and the slits are inflected, and the insulating layer is formed so as to increase in thickness from a vicinity of inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the second aspect of the present invention, the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the second aspect of the present invention, the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the second aspect of the present invention, the vicinity of the inflected portions may be a domain generating region.
  • Further, in order to solve the above-mentioned problem and to achieve the object, according to a third aspect of the present invention, there is provided a liquid crystal display device, including a pixel electrode; a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and an insulating layer which is stacked between the pixel electrode and the common electrode; wherein one of the pixel electrode and the common electrode includes slits formed therein the slits are inflected, and the insulating layer is formed so as to increase in thickness from a vicinity of ends in a longitudinal direction of the slits toward the ends and is formed so as to increase in thickness from a vicinity of inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the third aspect of the present invention, the insulating layer may be formed so as to gradually increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends and so as to gradually increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the third aspect of the present invention, the insulating layer may be processed to be inclined in advance so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends and so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions.
  • Further, in the liquid crystal display device according to the third aspect of the present invention, the vicinity of the ends in the longitudinal direction of the slits and the vicinity of the inflected portions may be domain generating regions.
  • Further, in the liquid crystal display device according to the present invention, the one of the pixel electrode and the common electrode including the slits formed therein may be a comb electrode, and one of the ends in the longitudinal direction of the slits may be open while another end is closed.
  • Further, in the liquid crystal display device according to the present invention, the ends in the longitudinal direction of the slits may be closed.
  • In the liquid crystal display device according to the present invention in which the pixel electrode and the common electrode are stacked via the insulating layer, the slits are formed in one of the pixel electrode and the common electrode, and the liquid crystal molecules are aligned by an electric field generated by the pixel electrode and the common electrode, the insulating layer is formed so as to increase in thickness from the vicinity of the ends in the longitudinal direction of the slits toward the ends, to thereby lower the intensity of the electric field in the vicinity of the ends in the longitudinal direction of the slits. Because of the lowered intensity of the electric field, the liquid crystal molecules are normally aligned around the ends in the longitudinal direction of the slits and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the ends in the longitudinal direction of the slits. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • Further, in the liquid crystal display device according to the present invention in which the pixel electrode and the common electrode are stacked via the insulating layer, the slits are formed in one of the pixel electrode and the common electrode, and the liquid crystal molecules are aligned by an electric field generated by the pixel electrode and the common electrode, the slits are formed so as to be inflected, and the insulating layer is formed so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions, to thereby lower the intensity of the electric field in the vicinity of the inflected portions of the slits. Because of the lowered intensity of the electric field, the liquid crystal molecules are normally aligned around the inflected portions of the slits and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the inflected portions of the slits. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • Further, in the liquid crystal display device according to the present invention in which the pixel electrode and the common electrode are stacked via the insulating layer, the slits are formed in one of the pixel electrode and the common electrode, and the liquid crystal molecules are aligned by an electric field generated by the pixel electrode and the common electrode, the slits are formed so as to be inflected, the insulating layer is formed so as to increase in thickness from the ends in the longitudinal direction of the slits toward the ends, and the insulating layer is formed so as to increase in thickness from the vicinity of the inflected portions of the slits toward the inflected portions, to thereby lower the intensity of the electric field in the vicinity of the ends in the longitudinal direction of the slits and in the vicinity of the inflected portions. Because of the lowered intensity of the electric field, the liquid crystal molecules are normally aligned around the ends in the longitudinal direction of the slits and around the inflected portions and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the ends in the longitudinal direction of the slits and in the vicinity of the inflected portions. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • FIG. 1 is a schematic view illustrating a structure of a liquid crystal display device according to a first embodiment of the present invention;
  • FIG. 2 is a detailed explanatory diagram of a structure of a liquid crystal display panel illustrated in FIG. 1;
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel taken along the line A1-A2 of FIG. 2;
  • FIG. 4 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a second embodiment of the present invention;
  • FIG. 5 is a cross-sectional view of the liquid crystal display panel taken along the line B1-B2-B3 of FIG. 4;
  • FIG. 6 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a third embodiment of the present invention;
  • FIG. 7 is a cross-sectional view of the liquid crystal display panel taken along the line C1-C2-C3 of FIG. 6;
  • FIG. 8 is a detailed explanatory diagram of a structure of a liquid crystal display panel of a liquid crystal display device according to a fourth embodiment of the present invention; and
  • FIG. 9 is a cross-sectional view of the liquid crystal display panel taken along the line D1-D2-D3 of FIG. 8.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Liquid crystal display devices according to preferred embodiments of the present invention are described in detail in the following with reference to the attached drawings.
  • First Embodiment
  • FIG. 1 is a schematic view illustrating a structure of a liquid crystal display device 100 according to a first embodiment of the present invention. FIG. 2 is a detailed explanatory diagram of a structure of a liquid crystal display panel 10 illustrated in FIG. 1. In FIG. 2, the part of a liquid crystal display panel 10 is enlarged to explain the structure of pixels. FIG. 3 is a cross-sectional view of the liquid crystal display panel 10 taken along the line A1-A2 of FIG. 2. The liquid crystal display device 100 is of the horizontal electric field system, and includes the liquid crystal display panel 10, a data driver 2, a scanning driver 3, a backlight unit 4, and a control unit 5.
  • As illustrated in FIG. 1, the liquid crystal display panel 10 includes a plurality of video signal lines DL (DL1, . . . , DLn, where n is a natural number) which extend in a Y direction and a plurality of scanning signal lines GL (GL1, . . . , GLm, where m is a natural number) which extend in an X direction. Further, in the liquid crystal display panel 10, the plurality of scanning signal lines GL are formed so as to be in parallel to one another, and each of the plurality of video signal lines DL is formed so as to cross the scanning signal lines GL. A pixel D is formed in a region surrounded by those video signal lines DL and scanning signal lines GL.
  • As illustrated in FIG. 3, a liquid crystal material 40 containing liquid crystal molecules is sealed between a TFT substrate 20 and a counter substrate 30 in the liquid crystal display panel 10. The TFT substrate 20 is a substrate including an insulating substrate such as a glass substrate, and the scanning signal lines GL, the video signal lines DL, thin film transistors TFTs, a common electrode CT, and pixel electrodes Px provided thereon. More specifically, the TFT substrate 20 has the scanning signal lines GL provided on an insulating substrate SUB1 such as a glass substrate. The scanning signal lines GL are formed by, for example, etching a film of a conductor such as aluminum.
  • The video signal line DL (source electrode SD1) and a drain electrode SD2 of the thin film transistor TFT are provided above the scanning signal line GL via a first insulating layer PAS1.
  • The common electrode CT is provided above the video signal line DL and the like via a second insulating layer PAS2. The common electrode CT is formed by etching a film of a conductor having high light transmittance such as ITO, and is formed in the shape of an even plane without an opening in a region which overlaps the pixel electrode Px in plan view. The pixel electrode Px is provided above the common electrode CT via a third insulating layer PAS3.
  • The pixel electrode Px is formed by etching a film of a conductor having high light transmittance such as ITO. The pixel electrode Px is connected to the drain electrode SD2 via a through hole TH. The pixel electrode Px has a plurality of slits SL formed in the region overlapping the common electrode CT in plan view, the slits SL having the long sides in a direction in which the video signal lines DL extend. The pixel electrode Px is a comb electrode, and one ends of the slits SL are open while the other ends of the slits SL are closed.
  • As illustrated in FIG. 2, the pixel electrode Px has a plurality of strip-like portions 11 formed in stripes and a joining portion 12 for joining one ends of the plurality of strip-like portions 11 together. The joining portion 12 is connected to the drain electrode SD2. The slits SL of the pixel electrode Px are formed by the strip-like portions 11 and the joining portion 12.
  • The slits SL each have a closed end 13 a and an open end 13 b. The closed end 13 a is an end closed by the joining portion 12 of the ends in the longitudinal direction of the slit SL. The distribution of an electric field in the vicinity of the closed ends 13 a is affected not only by the strip-like portions 11 but also by the joining portion 12. Specifically, the vicinity of the closed ends 13 a is a domain generating region. The open end 13 b is an open end of the ends in the longitudinal direction of the slit SL. The distribution of an electric field in the vicinity of the open ends 13 b is affected by tip portions of the strip-like portions 11. Specifically, the vicinity of the open ends 13 b is a domain generating region.
  • As illustrated in FIG. 3, in the counter substrate 30, a light shielding film BM called a black matrix and a color filter CF are provided on a surface of an insulating substrate SUB2 such as a glass substrate. The light shielding film BM is formed by, for example, etching a conductive film or an insulating film having a light transmittance of almost zero to form a lattice-like pattern for separating the respective pixels D from one another. The color filter CF is formed by, for example, etching or exposing to light and developing an insulating film and periodically arranging a filter for displaying red (R), a filter for displaying green (G), and a filter for displaying blue (B) in an aperture region of the light shielding film. Further, an alignment film ORI2 is provided above the light shielding film BM and the color filter CF via, for example, an overcoating layer OC.
  • The data driver 2 generates video signals (gradation voltages) to be input to the plurality of video signal lines DL, respectively.
  • The scanning driver 3 sequentially inputs scanning signals to the plurality of scanning signal lines GL. The data driver 2 and the scanning driver 3 are electrically connected to the liquid crystal display panel 10 via a flexible board or the like (not shown) connected to an outer peripheral portion of the liquid crystal display panel 10.
  • The backlight unit 4 is materialized by a light-emitting diode or the like, and irradiates light from a back surface side of the liquid crystal display panel 10.
  • The control unit 5 is materialized by a CPU or the like, and is electrically connected to respective portions of the liquid crystal display device 100 including the data driver 2, the scanning driver 3, and the backlight unit 4, for controlling the overall operation of the liquid crystal display device 100. The control unit 5 includes a memory or the like (not shown) for temporarily holding video data which is input from an external system.
  • Here, the third insulating layer PAS3 is specifically described. As illustrated in FIG. 3, the third insulating layer PAS3 has a first inclination layer PAS31 and a second inclination layer PAS32.
  • The first inclination layer PAS31 is an insulating layer formed on the common electrode CT. The first inclination layer PAS31 has an inclined portion TP. The inclined portion TP is a portion of the first inclination layer PAS31 which is processed so as to form an inclined surface. The first inclination layer PAS31 starts its inclination at a bottom end TPb of the inclined portion TP and ends its inclination at a top end TPt. The inclined portion TP is processed in advance before the second inclination layer PAS32 is stacked thereon.
  • The inclined portion TP is inclined at a predetermined inclination angle with respect to a surface of the common electrode CT. For example, the inclined portion
  • TP is inclined at an inclination angle of 10 degrees with respect to the surface of the common electrode CT. Note that, the inclination angle of the inclined portion TP is not limited to 10 degrees. In other words, the inclination angle may be appropriately set depending on the domain generating region. The first inclination layer PAS31 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b.
  • The second inclination layer PAS32 is an insulating layer formed on the first inclination layer PAS31 after the first inclination layer PAS31 is processed to be inclined as described above.
  • The third insulating layer PAS3 is formed by the first inclination layer PAS31 which is processed to be inclined and the second inclination layer PAS32 which is stacked on the first inclination layer PAS31, so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Therefore, in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b, that is, in the domain generating regions, the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the closed ends 13 a and toward the open ends 13 b, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • Note that, it is desired that the third insulating layer PAS3 gradually increase in thickness, but it is enough that the control of the alignment of the liquid crystal molecules is not adversely affected. For example, it is enough that the third insulating layer PAS3 increases in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and from the vicinity of the open ends 13 b toward the open ends 13 b, respectively.
  • In the first embodiment of the present invention, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and is formed so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b, to thereby lower the intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • Further, in the first embodiment of the present invention, the liquid crystal molecules which are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b due to the lowered intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b suppress the enlargement of the domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b, and thus, even when the screen of the liquid crystal display panel 10 is pressed, the enlargement of the domain may be suppressed and time necessary for the screen to return to its original state may be shortened.
  • Second Embodiment
  • Next, a second embodiment of the present invention is described with reference to FIG. 4 and FIG. 5. FIG. 4 is a detailed explanatory diagram of a structure of a liquid crystal display panel 60 of a liquid crystal display device 200 according to the second embodiment of the present invention. FIG. 5 is a cross-sectional view of the liquid crystal display panel 60 taken along the line B1-B2-B3 of FIG. 4. In the first embodiment of the present invention, the slits SL are in the shape of straight lines, but, in the second embodiment, the slits SL each have a inflected portion 13 c. The third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c. Other structures in the second embodiment are the same as those in the first embodiment, and like reference symbols are used to designate like structural elements.
  • As illustrated in FIG. 4, a pixel electrode Px has a plurality of strip-like portions 11 formed in stripes and a joining portion 12 for joining one ends of the plurality of strip-like portions 11 together. The strip-like portions 11 are inflected so as to be V-shaped. In the pixel electrode Px, the slits SL which are inflected to be V-shaped are formed by the strip-like portions 11 and the joining portion 12.
  • The inflected portions 13 c correspond to the inflected shape of the pixel electrode Px. Such V-shaped slits SL are widely employed in multi-domain liquid crystal display devices. The distribution of an electric field in the vicinity of the inflected portions 13 c is affected by the inflected shape. Specifically, the vicinity of the inflected portions 13 c is a domain generating region. As illustrated in FIG. 5, an alignment film ORI1 is provided on the pixel electrode Px. Note that, the shape of the slits SL is not limited to being inflected so as to be V-shaped. It is enough that the slits SL have inflected portions which accommodate a multi-domain liquid crystal display device.
  • Here, the third insulating layer PAS3 is specifically described. As illustrated in FIG. 5, the third insulating layer PAS3 has a first inclination layer PAS33 and a second inclination layer PAS34.
  • The first inclination layer PAS33 is an insulating layer formed on the common electrode CT. The first inclination layer PAS33 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 13 c of the slits SL toward the inflected portions 13 c.
  • The second inclination layer PAS34 is an insulating layer formed on the first inclination layer PAS33 after the first inclination layer PAS33 is processed to be inclined as described above.
  • The third insulating layer PAS3 is formed by the first inclination layer PAS33 which is processed to be inclined and the second inclination layer PAS34 which is stacked on the first inclination layer PAS33, so as to gradually increase in thickness from the vicinity of the inflected portions 13 c of the slits SL toward the inflected portions 13 c. Therefore, in the vicinity of the inflected portions 13 c, that is, in the domain generating region, the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the inflected portions 13 c, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • In the second embodiment of the present invention, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c, to thereby lower the intensity of the electric field in the vicinity of the inflected portions 13 c. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinity of the inflected portions 13 c and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the inflected portions 13 c. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • Further, in the second embodiment of the present invention, the pixel electrode Px is inflected, and thus, restrictions on the viewing angle may be eased.
  • Third Embodiment
  • Next, a third embodiment of the present invention is described with reference to FIG. 6 and FIG. 7. FIG. 6 is a detailed explanatory diagram of a structure of a liquid crystal display panel 70 of a liquid crystal display device 300 according to the third embodiment of the present invention. FIG. 7 is a cross-sectional view of the liquid crystal display panel 70 taken along the line C1-C2-C3 of FIG. 6. In the second embodiment of the present invention, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c. In the third embodiment, further, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and is formed so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Other structures in the third embodiment are the same as those in the second embodiment, and like reference symbols are used to designate like structural elements.
  • Here, the third insulating layer PAS3 is specifically described. As illustrated in FIG, 7, the third insulating layer PAS3 has a first inclination layer PAS35 and a second inclination layer PAS36.
  • The first inclination layer PAS35 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Further, the first inclination layer PAS35 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c.
  • The second inclination layer PAS36 is an insulating layer formed on the first inclination layer PAS35 after the first inclination layer PAS35 is processed to be inclined as described above.
  • The third insulating layer PAS3 is formed by the first inclination layer PAS35 which is processed to be inclined and the second inclination layer PAS36 which is stacked on the first inclination layer PAS35, so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b. Further, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c. Therefore, in the vicinity of the closed ends 13 a, in the vicinity of the open ends 13 b, and in the vicinity of the inflected portions 13 c, that is, in the domain generating regions, the intensity of the electric field generated by the pixel electrode Px and the common electrode CT becomes lower. Further, the intensity of the electric field changes so as to be gradually lowered toward the closed ends 13 a, toward the open ends 13 b, and toward the inflected portions 13 c, and thus, control of the alignment of the liquid crystal molecules is not adversely affected.
  • In the third embodiment of the present invention, the third insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the inflected portions 13 c toward the inflected portions 13 c, to thereby obtain the same effect as that in the second embodiment, and is formed so as to gradually increase in thickness from the vicinity of the closed ends 13 a toward the closed ends 13 a and so as to gradually increase in thickness from the vicinity of the open ends 13 b toward the open ends 13 b, to thereby lower the intensity of the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b and thus suppress enlargement of a domain which is generated by the electric field in the vicinity of the closed ends 13 a and in the vicinity of the open ends 13 b. Therefore, the domain reduces, and, as a consequence, the transmittance may be improved.
  • Fourth Embodiment
  • Next, a fourth embodiment of the present invention is described with reference to FIG. 8 and FIG. 9. FIG. 8 is a detailed explanatory diagram of a structure of a liquid crystal display panel 80 of a liquid crystal display device 400 according to the fourth embodiment of the present invention. FIG. 9 is a cross-sectional view of the liquid crystal display panel 80 taken along the line D1-D2-D3 of FIG. 8. In the third embodiment, the pixel electrode Px of the liquid crystal display panel 70 is a comb electrode in which one ends of both ends in the longitudinal direction of the slits SL are open, but, in the fourth embodiment, the pixel electrode Px of the liquid crystal display panel 80 is an electrode in which both ends in the longitudinal direction of the slits SL are closed.
  • As illustrated in FIG. 8, the pixel electrode Px has a plurality of strip-like portions 14 formed in stripes and joining portions 15 each for joining ends of the plurality of strip-like portions 14 together on one side. The slits SL of the pixel electrode Px are formed by the strip-like portions 14 and the joining portions 15.
  • The slits SL each have closed ends 70 a and 70 b and a inflected portion 70 c. The closed ends 70 a and 70 b are ends closed by the joining portions 15. The distribution of an electric field in the vicinity of the closed ends 70 a and 70 b is affected not only by the strip-like portions 14 but also by the joining portions 15. Specifically, the vicinities of the closed ends 70 a and 70 b are domain generating regions. The inflected portions 70 c correspond to the inflected shape of the pixel electrode Px. The distribution of an electric field in the vicinity of the inflected portions 70 c is affected by the inflected shape. Specifically, the vicinity of the inflected portions 70 c is a domain generating region. Further, as illustrated in FIG. 9, the third insulating layer PAS3 has a first inclination layer PAS37 and a second inclination layer PAS38. Other structures in the fourth embodiment are the same as those in the third embodiment, and like reference symbols are used to designate like structural elements.
  • As illustrated in FIG. 9, the first inclination layer PAS37 is processed to be inclined so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a and so as to gradually increase in thickness from the vicinity of the closed ends 70 b toward the closed ends 70 b. Further, the third insulating layer PAS3 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c. The second inclination layer PAS38 is an insulating layer formed on the first inclination layer PAS37 after the first inclination layer PAS37 is processed to be inclined as described above.
  • The third insulating layer PAS3 is formed by the first inclination layer PAS37 which is processed to be inclined and the second inclination layer PAS38 which is stacked on the first inclination layer PAS37, so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a and so as to gradually increase in thickness from the vicinity of the closed ends 70 b to the closed ends 70 b. Further, the third insulating layer PAS3 is processed to be inclined so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c.
  • In the fourth embodiment of the present invention, the insulating layer PAS3 is formed so as to gradually increase in thickness from the vicinity of the closed ends 70 a toward the closed ends 70 a, so as to gradually increase in thickness from the vicinity of the closed ends 70 b toward the closed ends 70 b, and further so as to gradually increase in thickness from the vicinity of the inflected portions 70 c toward the inflected portions 70 c, to thereby lower the intensity of the electric field in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c. Because of the lowered intensity of the electric field, liquid crystal molecules are normally aligned in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c and thus suppress enlargement of a domain which is generated by the electric field in the vicinities of the closed ends 70 a and 70 b and in the vicinity of the inflected portions 70 c. Therefore, even when the pixel electrode Px is a pixel electrode in which both ends of the slits SL are closed, the transmittance may be improved.
  • Note that, in the first to fourth embodiments of the present invention, the longitudinal direction of the slits SL is the direction in which the video signal lines DL extend, but the present invention is not limited thereto. For example, the longitudinal direction of the slits SL may be a direction in which the scanning signal lines GL extend.
  • Further, in the first to fourth embodiments of the present invention, the pixel electrode Px is provided above the common electrode CT, but the present invention is not limited thereto. For example, the arrangement may be upside down in which the pixel electrode Px is provided below the common electrode CT.
  • Further, in the first to fourth embodiments of the present invention, the pixel electrode Px has the slits SL formed therein and the common electrode CT is in the shape of an even plane without an opening, but the present invention is not limited thereto. For example, the pixel electrode Px may be in the shape of an even plane without an opening and the common electrode CT may have the slits SL formed therein.
  • Further, in the first to fourth embodiments of the present invention, the third insulating layer PAS3 is gradually increased in thickness by processing the first inclination layer PAS31, PAS33, PAS35, or PAS37 to be inclined in advance, but the present invention is not limited thereto. It is enough that the third insulating layer PAS3 gradually increases in thickness from the vicinities of ends of the slits SL toward the ends of the slits SL or from the vicinity of the inflected portions of the slits SL toward the inflected portions. For example, the third insulating layer PAS3 may have a single-layer structure and the single-layer-structured third insulating layer PAS3 may be processed to be inclined in advance.
  • Further, in the first, second, and fourth embodiments of the present invention, the third insulating layer PAS3 is gradually increased in thickness toward both the ends of the slits SL, but the present invention is not limited thereto. For example, the third insulating layer PAS3 may gradually increase in thickness only toward one ends of the slits SL.
  • Further, in the fourth embodiment of the present invention, the slits SL are inflected, but the present invention is not limited thereto, and the slits SL may be in the shape of straight lines.
  • Note that, the present invention is not limited to the first to fourth embodiments of the present invention.
  • While there have been described what are at present considered to be certain embodiments of the invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the true spirit and scope of the invention.

Claims (14)

What is claimed is:
1. A liquid crystal display device comprising:
a pixel electrode;
a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and
an insulating layer which is formed between the pixel electrode and the common electrode;
wherein one of the pixel electrode and the common electrode includes at least one strip shaped portion formed therein which is extended in a first direction; and
wherein a first thickness of the insulating layer between the pixel electrode and the common electrode at a first portion of the insulating layer extending from a vicinity of end of the at least one strip shaped portion in the first direction toward the end of the at least one strip shaped portion is thicker than a second thickness of the insulating layer between the pixel electrode and the common electrode at a second portion of the insulating layer extending from the vicinity of end of the at least one strip shaped portion in the first direction toward a center of the at least one strip shaped portion.
2. The liquid crystal display device according to claim 1, wherein one of the pixel electrode and the common electrode includes a plurality of strip shaped portions which have the at least one strip shaped portion and are extended in the first direction.
3. The liquid crystal display device according to claim 1, wherein a difference between the first thickness and the second thickness of the insulating layer is formed by a first lamination number of the insulating layer at the first portion being larger than a second lamination number of the insulating layer at the second portion.
4. The liquid crystal display device according to claim 1, wherein the first portion is a domain generating region.
5. A liquid crystal display device comprising:
a pixel electrode;
a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and
an insulating layer which is formed between the pixel electrode and the common electrode;
wherein one of the pixel electrode and the common electrode includes at least one strip shaped portion,
wherein the at least one strip shaped portion includes a first extended portion which is extended in a first direction, a second extended portion which is extended in a second direction differing from the first direction, and an inflected portion which is arranged between the first extended portion and the second extended portion; and
wherein a first thickness of the insulating layer between the pixel electrode and the common electrode at the first extended portion is thinner than a second thickness of the insulating layer between the pixel electrode and the common electrode at the inflected portion.
6. The liquid crystal display device according to claim 5, wherein one of the pixel electrode and the common electrode includes a plurality of strip shaped portions which have the at least one strip shaped portion, each of the plurality of strip shaped portions having the first extended portion, the second extended portion, and the inflected portion.
7. The liquid crystal display device according to claim 5, wherein a difference between the first thickness and the second thickness of the insulating layer is formed by a first lamination number of the insulating layer at the first extended portion being smaller than a second lamination number of the insulating layer at the inflected portion.
8. The liquid crystal display device according to claim 5, wherein the inflected portion is a domain generating region.
9. The liquid crystal display device according to claim 5, wherein a third thickness of the insulating layer between the pixel electrode and the common electrode at the second extended portion is thinner than the second thickness of the insulating layer.
10. A liquid crystal display device comprising a pixel electrode;
a common electrode generating an electric field to align liquid crystal molecules in cooperation with the pixel electrode; and
an insulating layer which is stacked between the pixel electrode and the common electrode;
wherein one of the pixel electrode and the common electrode includes at least one strip shaped portion,
wherein the at least one strip shaped portion includes a first extended portion which is extended in a first direction, a second extended portion which is extended in a second direction differing from the first direction, and an inflected portion which is arranged between the first extended portion and the second extended portion;
wherein a first thickness of the insulating layer between the pixel electrode and the common electrode at the first extended portion is thinner than a second thickness of the insulating layer between the pixel electrode and the common electrode at the inflected portion; and
wherein a third thickness of the insulating layer between the pixel electrode and the common electrode at a first portion of the first extended portion from a vicinity of end of the at least one strip shaped portion in the first direction toward the end of the at least one strip shaped portion is thicker than the first thickness of the insulating layer between the pixel electrode and the common electrode at a second portion of the first extended portion from the vicinity of end of the at least one strip shaped portion in the first direction toward a center of the at least one strip shaped portion.
11. The liquid crystal display device according to claim 10, wherein one of the pixel electrode and the common electrode includes a plurality of strip shaped portions which have the at least one strip shaped portion, each of the plurality of strip shaped portions having the first extended portion, the second extended portion, and the inflected portion.
12. The liquid crystal display device according to claim 10, wherein a difference between the first thickness and the second thickness of the insulating layer is formed by a first lamination number of the insulating layer at the first extended portion being smaller than a second lamination number of the insulating layer at the inflected portion, and
a difference between the first thickness and the third thickness of the insulating layer is formed by the first lamination number of the insulating layer at the second portion of the first extended portion being smaller than a third lamination number of the insulating layer at the first portion of the first extended portion.
13. The liquid crystal display device according to claim 10, wherein each of the inflected portion and the first portion of the first extended portion is a domain generating region.
14. The liquid crystal display device according to claim 10, wherein a fourth thickness of the insulating layer between the pixel electrode and the common electrode at the second extended portion is thinner than the second thickness of the insulating layer.
US14/192,384 2010-10-21 2014-02-27 Liquid Crystal Display Device Abandoned US20140176889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/192,384 US20140176889A1 (en) 2010-10-21 2014-02-27 Liquid Crystal Display Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-236077 2010-10-21
JP2010236077A JP2012088582A (en) 2010-10-21 2010-10-21 Liquid crystal display device
US13/272,304 US8670095B2 (en) 2010-10-21 2011-10-13 Liquid crystal display device
US14/192,384 US20140176889A1 (en) 2010-10-21 2014-02-27 Liquid Crystal Display Device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/272,304 Continuation US8670095B2 (en) 2010-10-21 2011-10-13 Liquid crystal display device

Publications (1)

Publication Number Publication Date
US20140176889A1 true US20140176889A1 (en) 2014-06-26

Family

ID=45972758

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/272,304 Expired - Fee Related US8670095B2 (en) 2010-10-21 2011-10-13 Liquid crystal display device
US14/192,384 Abandoned US20140176889A1 (en) 2010-10-21 2014-02-27 Liquid Crystal Display Device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/272,304 Expired - Fee Related US8670095B2 (en) 2010-10-21 2011-10-13 Liquid crystal display device

Country Status (2)

Country Link
US (2) US8670095B2 (en)
JP (1) JP2012088582A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750074B2 (en) 2012-03-12 2015-07-15 株式会社ジャパンディスプレイ Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus
US9360715B2 (en) * 2012-05-10 2016-06-07 Sharp Kabushiki Kaisha Liquid crystal display device
JP6029410B2 (en) * 2012-10-01 2016-11-24 株式会社ジャパンディスプレイ Liquid crystal display
JP6279248B2 (en) 2013-08-20 2018-02-14 株式会社ジャパンディスプレイ Liquid crystal display
CN104483788B (en) * 2014-10-10 2018-04-10 上海中航光电子有限公司 Dot structure and its manufacture method, array base palte, display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080151156A1 (en) * 2006-12-25 2008-06-26 Sony Corporation Liquid crystal display device and display apparatus
US20080239215A1 (en) * 2007-04-02 2008-10-02 Gee-Sung Chae Array substrate for liquid crystal display device and manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923707B1 (en) * 1999-09-07 2009-10-27 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display
JP5167781B2 (en) 2007-03-30 2013-03-21 セイコーエプソン株式会社 Electric field drive type device, liquid crystal device and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080151156A1 (en) * 2006-12-25 2008-06-26 Sony Corporation Liquid crystal display device and display apparatus
US20080239215A1 (en) * 2007-04-02 2008-10-02 Gee-Sung Chae Array substrate for liquid crystal display device and manufacturing method of the same

Also Published As

Publication number Publication date
US8670095B2 (en) 2014-03-11
US20120099066A1 (en) 2012-04-26
JP2012088582A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US10802358B2 (en) Display device with signal lines routed to decrease size of non-display area
US9875699B2 (en) Display device
US8395744B2 (en) Display device including dummy pixel region
US20090309821A1 (en) Display Device
WO2014073483A1 (en) Active matrix substrate and display device using same
US11662637B2 (en) Display device
JP2012103343A (en) Liquid crystal display panel and liquid crystal display device
US11467455B2 (en) Display device
US20140176889A1 (en) Liquid Crystal Display Device
US8552973B2 (en) Liquid crystal display device having display divided into first and second display regions along a border line in a direction in which scanning signal lines extend
US10847109B2 (en) Active matrix substrate and display panel
US10714038B2 (en) Display device
US10168581B2 (en) Display device
US9864237B2 (en) Display device
JP5100462B2 (en) Liquid crystal device and electronic device
US9117703B2 (en) Liquid crystal display device
JP4747572B2 (en) Electro-optical device and electronic apparatus
KR20170079533A (en) Liquid crystal display device
US8624830B2 (en) Display device with arrangement to reduce fluctuations in brightness of pixels caused by parasitic capacitance
TWI771244B (en) Display device
JP2011128335A (en) Liquid crystal device and electronic equipment
JP2006189671A (en) Liquid crystal apparatus and electronic device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION