US20140154210A9 - Solid Forms of a Thiophosphoramidate Nucleotide Prodrug - Google Patents
Solid Forms of a Thiophosphoramidate Nucleotide Prodrug Download PDFInfo
- Publication number
- US20140154210A9 US20140154210A9 US13/794,380 US201313794380A US2014154210A9 US 20140154210 A9 US20140154210 A9 US 20140154210A9 US 201313794380 A US201313794380 A US 201313794380A US 2014154210 A9 US2014154210 A9 US 2014154210A9
- Authority
- US
- United States
- Prior art keywords
- peak
- optionally substituted
- ppm
- degrees
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ATWDJQAAJJIQTP-UHFFFAOYSA-N CC(=O)OCC(C)(C)COC(C)C Chemical compound CC(=O)OCC(C)(C)COC(C)C ATWDJQAAJJIQTP-UHFFFAOYSA-N 0.000 description 6
- SVVMKTAHKNZXSD-FAGJFJLWSA-N BBC=P1(C)OC(C)(C)[C@@]2(C)OC(C)(C)C(C)(C)C2(C)O1 Chemical compound BBC=P1(C)OC(C)(C)[C@@]2(C)OC(C)(C)C(C)(C)C2(C)O1 SVVMKTAHKNZXSD-FAGJFJLWSA-N 0.000 description 2
- NDIFZDCTUPBJME-UHFFFAOYSA-N CC(C)P(C)(C)=O Chemical compound CC(C)P(C)(C)=O NDIFZDCTUPBJME-UHFFFAOYSA-N 0.000 description 2
- KSDNQMHNBKLTOG-MRXNPFEDSA-N cc1(C)c(C)(C)[C@@](C)(C(C)(C)C)CC1(C)C Chemical compound cc1(C)c(C)(C)[C@@](C)(C(C)(C)C)CC1(C)C KSDNQMHNBKLTOG-MRXNPFEDSA-N 0.000 description 2
- ITMKORFUOMGVTM-AVQDKQDASA-N CC(C)OC(=O)[C@H](C)NP(=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)NP(=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@]2(C)OC3(CCCC3)O[C@H]12)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)N[P@@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)N[P@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.C[C@@]1(O)[C@H](O)[C@@H](CO)O[C@H]1N1C=CC(=O)CC1=O.C[C@@]12OC3(CCCC3)O[C@@H]1[C@@H](CO)O[C@H]2N1C=CC(=O)CC1=O Chemical compound CC(C)OC(=O)[C@H](C)NP(=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)NP(=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@]2(C)OC3(CCCC3)O[C@H]12)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)N[P@@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.CC(C)OC(=O)[C@H](C)N[P@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)CC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1.C[C@@]1(O)[C@H](O)[C@@H](CO)O[C@H]1N1C=CC(=O)CC1=O.C[C@@]12OC3(CCCC3)O[C@@H]1[C@@H](CO)O[C@H]2N1C=CC(=O)CC1=O ITMKORFUOMGVTM-AVQDKQDASA-N 0.000 description 1
- XFJMOMBVBMXWCV-UWJKSZNLSA-N CC(C)OC(=O)[C@H](C)N[P@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)NC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1 Chemical compound CC(C)OC(=O)[C@H](C)N[P@](=S)(OC[C@H]1O[C@@H](N2C=CC(=O)NC2=O)[C@](C)(O)[C@@H]1O)OC1=CC=CC=C1 XFJMOMBVBMXWCV-UWJKSZNLSA-N 0.000 description 1
- ACXUUMPFNJGWGC-ZYADHFCISA-N COC(=O)N[C@H](C(=O)N1CCC[C@H]1C1=NC=C(C2=CC=C(C3=CC=C(C4=CN=C([C@@H]5CCCN5C(=O)[C@@H](NC(=O)OC)C(C)C)N4)C=C3)C=C2)C1)C(C)C Chemical compound COC(=O)N[C@H](C(=O)N1CCC[C@H]1C1=NC=C(C2=CC=C(C3=CC=C(C4=CN=C([C@@H]5CCCN5C(=O)[C@@H](NC(=O)OC)C(C)C)N4)C=C3)C=C2)C1)C(C)C ACXUUMPFNJGWGC-ZYADHFCISA-N 0.000 description 1
- DFACANFILCCXLD-YFERDDRHSA-N COC1=CC=C2C(O[C@@H]3C[C@H]4C(=O)C[C@]5(C(=O)NS(=O)(=O)C6CC6)C[C@H]5/C=C\CCCCN(C)C(=O)[C@@H]4C3)=CC(C3=NC(C(C)C)=CS3)=NC2=C1C Chemical compound COC1=CC=C2C(O[C@@H]3C[C@H]4C(=O)C[C@]5(C(=O)NS(=O)(=O)C6CC6)C[C@H]5/C=C\CCCCN(C)C(=O)[C@@H]4C3)=CC(C3=NC(C(C)C)=CS3)=NC2=C1C DFACANFILCCXLD-YFERDDRHSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7068—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
- A61K31/7072—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
- C07H1/06—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7068—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present application relates to solid state forms, for example, crystalline forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate, pharmaceutical compositions that can include one or more solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate, and methods of treating or ameliorating diseases and/or conditions with one or more solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate.
- Nucleoside analogs are a class of compounds that have been shown to exert antiviral and anticancer activity both in vitro and in vivo, and thus, have been the subject of widespread research for the treatment of viral infections and cancer.
- Nucleoside analogs are usually therapeutically inactive compounds that are converted by host or viral enzymes to their respective active anti-metabolites, which, in turn, may inhibit polymerases involved in viral or cell proliferation. The activation occurs by a variety of mechanisms, such as the addition of one or more phosphate groups and, or in combination with, other metabolic processes.
- Compound 1 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate which has the structure below:
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form A.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form B.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form C.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form D.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form F.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form G.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form H.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form I.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form J.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form K.
- Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form L.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form M.
- Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form N.
- Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Amorphous Form 0.
- Some embodiments disclosed herein generally relate to a process for producing a solvated solid form of Compound 1 that can include:
- Some embodiments disclosed herein generally relate to a method of ameliorating or treating a viral infection (for example, a HCV infection) in a subject, said method can include administering to said subject an effective amount of one or more solid forms of Compound 1 as described herein.
- a viral infection for example, a HCV infection
- compositions that can include one or more solid forms of Compound 1 as described herein.
- Some embodiments disclosed herein generally relate to a pharmaceutical composition that can include one or more solid forms of Compound 1, and one or more additional agent(s).
- Some embodiments disclosed herein relate to a method of ameliorating and/or treating a HCV infection that can include administering to a subject identified as suffering from the HCV infection an effective amount of a compound described herein or a pharmaceutically acceptable salt thereof (for example, one or more solid forms of Compound 1, or a pharmaceutically acceptable salt thereof), or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with an agent selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an other antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the foregoing.
- a compound described herein or a pharmaceutically acceptable salt thereof for example, one or more solid forms of Compound 1, or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, or
- FIG. 1 is an XRPD spectrum of Form A.
- FIG. 2 is a DSC spectrum of Form A.
- FIG. 3 is a 13 C ssNMR spectrum of Form A.
- FIG. 4 is an XRPD spectrum of Form B.
- FIG. 5 is a 13 C ssNMR spectrum of Form B.
- FIG. 6 is an XRPD spectrum of Form C.
- FIG. 7 is a 13 C ssNMR spectrum of Form C.
- FIG. 8 is an XRPD spectrum of Form D.
- FIG. 9 is a 13 C ssNMR spectrum of Form D.
- FIG. 10 is an XRPD spectrum of a mixture of Form A and Form E.
- FIG. 11 is a 13 C ssNMR spectrum of a mixture of Form A and Form E.
- FIG. 12 is an XRPD spectrum of a mixture of Form A and Form F.
- FIG. 13 is a 13 C ssNMR spectrum of a mixture of Form A and Form F.
- FIG. 14 is an XRPD spectrum of Form G.
- FIG. 15 is a 13 C ssNMR spectrum of Form G.
- FIG. 16 is an XRPD spectrum of Form H.
- FIG. 17 is a 13 C ssNMR spectrum of Form H.
- FIG. 18 is an XRPD spectrum of Form I.
- FIG. 19 is a 13 C ssNMR spectrum of Form I.
- FIG. 20 is an XRPD spectrum of Form J.
- FIG. 21 is a DSC spectrum of Form J.
- FIG. 22 is a 13 C ssNMR spectrum of Form J.
- FIG. 23 is an XRPD spectrum of Form K.
- FIG. 24 is a 13 C ssNMR spectrum of Form K.
- FIG. 25 is an XRPD spectrum of Form L.
- FIG. 26 is a 13 C ssNMR spectrum of Form L.
- FIG. 27 is an XRPD spectrum of Form M.
- FIG. 28 is a 13 C ssNMR spectrum of Form M.
- FIG. 29 is an XRPD spectrum of Form N.
- FIG. 30 is a 13 C ssNMR spectrum of Form N.
- FIG. 31 is an XRPD spectrum of Amorphous Form 0.
- FIG. 32 shows examples of additional agents that can be used to treat HCV.
- FIG. 33 shows examples of Compounds of Formula (BB).
- FIG. 34 shows the generic Formula (DD).
- substantially crystalline refers to a substance that has its atoms, molecules or ions packed in a regularly ordered three-dimensional pattern.
- substantially crystalline refers to a substance where a substantial portion of the substance is crystalline.
- substantially crystalline materials can have more than about 85% crystallinity (e.g., more than about 90% crystallinity, more than about 95% crystallinity, or more than about 99% crystallinity).
- nucleoside refers to a compound composed of an optionally substituted pentose moiety or modified pentose moiety attached to a heterocyclic base or tautomer thereof via a N-glycosidic bond, such as attached via the 9-position of a purine-base or the 1-position of a pyrimidine-base. Examples include, but are not limited to, a ribonucleoside comprising a ribose moiety and a deoxyribonucleoside comprising a deoxyribose moiety.
- a modified pentose moiety is a pentose moiety in which an oxygen atom has been replaced with a carbon and/or a carbon has been replaced with a sulfur or an oxygen atom.
- a “nucleoside” is a monomer that can have a substituted base and/or sugar moiety. Additionally, a nucleoside can be incorporated into larger DNA and/or RNA polymers and oligomers. In some instances, the nucleoside can be a nucleoside analog drug.
- pharmaceutically acceptable salt refers to a salt of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound.
- the salt is an acid addition salt of the compound.
- Pharmaceutical salts can be obtained by reacting a compound with inorganic acids such as hydrohalic acid (e.g., hydrochloric acid or hydrobromic acid), sulfuric acid, nitric acid and phosphoric acid.
- compositions can also be obtained by reacting a compound with an organic acid such as aliphatic or aromatic carboxylic or sulfonic acids, for example formic, acetic, succinic, lactic, malic, tartaric, citric, ascorbic, nicotinic, methanesulfonic, ethanesulfonic, p-toluensulfonic, salicylic or naphthalenesulfonic acid.
- organic acid such as aliphatic or aromatic carboxylic or sulfonic acids
- Pharmaceutical salts can also be obtained by reacting a compound with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C 1 -C 7 alkylamine, cyclohexylamine, triethanolamine, ethylenediamine, and salts with amino acids such as arginine and lysine.
- a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C 1 -C 7 alkylamine, cyclohexy
- room temperature refers to a temperature in the range of about 20° C. to about 25° C., such as a temperature in the range of about 21° C. to about 23° C.
- the term “comprising” is to be interpreted synonymously with the phrases “having at least” or “including at least”.
- the term “comprising” means that the process includes at least the recited steps, but may include additional steps.
- the term “comprising” means that the compound, composition or device includes at least the recited features or components, but may also include additional features or components.
- a group of items linked with the conjunction ‘and’ should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as ‘and/or’ unless expressly stated otherwise.
- a group of items linked with the conjunction ‘or’ should not be read as requiring mutual exclusivity among that group, but rather should be read as ‘and/or’ unless expressly stated otherwise.
- each center may independently be of R-configuration or S-configuration or a mixture thereof.
- the compounds provided herein may be enantiomerically pure, enantiomerically enriched, racemic mixture, diastereomerically pure, diastereomerically enriched, or a stereoisomeric mixture.
- each double bond may independently be E or Z a mixture thereof. Unless otherwise stated, all tautomeric forms of Compound 1 are intended to be included.
- valencies are to be filled with hydrogens or isotopes thereof, e.g., hydrogen-1 (protium) and hydrogen-2 (deuterium).
- each chemical element as represented in a compound structure may include any isotope of said element.
- a hydrogen atom may be explicitly disclosed or understood to be present in the compound.
- the hydrogen atom can be any isotope of hydrogen, including but not limited to hydrogen-1 (protium) and hydrogen-2 (deuterium).
- reference herein to a compound encompasses all potential isotopic forms unless the context clearly dictates otherwise.
- the methods and combinations described herein include crystalline forms (also known as polymorphs, which include the different crystal packing arrangements of the same elemental composition of a compound), amorphous phases, salts, solvates, and hydrates.
- the compounds described herein exist in solvated forms with pharmaceutically acceptable solvents such as water, ethanol, or the like.
- the compounds described herein exist in unsolvated form.
- Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and may be formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, or the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol.
- the solvated forms are considered equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form A.
- Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 8.3 to about 8.7 degrees, a peak in the range of from about 15.6 to about 16.0 degrees, a peak in the range of from about 21.2 to about 21.6 degrees, a peak in the range of from about 21.8 to about 22.2 degrees, a peak in the range of from about 22.4 to about 22.8 degrees, and a peak in the range of from about 23.1 to about 23.5 degrees.
- Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 8.3 to about 8.7 degrees, a peak in the range of from about 15.6 to about 16.0 degrees and a peak in the range of from about 21.2 to about 21.6 degrees.
- Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees.
- Form A can be characterized by a peak at about 8.5 degrees, a peak at about 15.8 degrees, and a peak at about 21.4 degrees in an X-ray powder diffraction pattern.
- Form A can be characterized by a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees in an X-ray powder diffraction pattern.
- Form A can be characterized by a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, and a peak at about 21.4 degrees in an X-ray powder diffraction pattern.
- Form A can be characterized by a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees in an X-ray powder diffraction pattern.
- Form A can exhibit an X-ray powder diffraction pattern as shown in FIG. 1 .
- Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form A can be characterized by a DSC thermogram as shown in FIG. 2 .
- Form A can be characterized by a melting point in the range of from about 137° C. to about 139° C. In other embodiments, Form A can be characterized by a melting point of about 138° C. In some embodiments, Form A can be characterized by a melting point of about 138.4° C. In some embodiments, Form A can be characterized by an endotherm in the range of from about 137° C. to about 139° C. In other embodiments, Form A can be characterized by an endotherm of about 138° C. In some embodiments, Form A can be characterized by an endotherm of about 138.4° C.
- Form A can be characterized by a peak at about 130.4 ppm, a peak at about 69.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13 C NMR solid state spectrum.
- Form A can be characterized by a peak at about 172.0 ppm, a peak at about 146.6 ppm, a peak at about 130.4 ppm, a peak at about 104.1 ppm, a peak at about 69.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13 C NMR solid state spectrum.
- Form A can exhibit a 13 C NMR solid state spectrum as shown in FIG. 3 .
- Form A can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form B.
- Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.5 to about 5.9 degrees, a peak in the range of from about 9.2 to about 9.6 degrees, a peak in the range of from about 16.8 to about 17.2 degrees, and a peak in the range of from about 26.0 to about 26.4 degrees.
- Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.7 degrees, a peak at about 9.4 degrees, a peak at about 17.0 degrees, and a peak at about 26.2 degrees.
- Form B can be characterized by a peak at about 5.7 degrees, a peak at about 9.4 degrees, a peak at about 17.0 degrees, and a peak at about 26.2 degrees in an X-ray powder diffraction pattern.
- Form B can be characterized by an X-ray diffraction pattern of FIG. 4 .
- Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form B can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 68.5 ppm, a peak at about 27.1 ppm, or a peak at about 19.5 ppm.
- Form B can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 72.3 ppm, a peak at about 68.5 ppm, a peak at about 49.2 ppm, a peak at about 27.1 ppm and a peak at about 19.5 ppm.
- Form B can be a methyl tert-butyl solvate.
- Form B can be characterized by a peak at about 118.3 ppm, a peak at about 68.5 ppm, and a peak at about 27.1 ppm in a 13 C NMR solid state spectrum.
- Form B can be characterized by a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 68.5 ppm, a peak at about 27.1 ppm, and a peak at about 19.5 ppm in a 13 C NMR solid state spectrum.
- Form B can be characterized by a 13 C NMR solid state spectrum of FIG. 5 .
- Form B (methyl tert-butyl ether solvate) can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Form B can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.3 ppm, a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, a peak at about 79.8 ppm, a peak at about 27.2 ppm, and a peak at about 21.8 ppm.
- Form B can be a cyclohexane solvate.
- Form B can be characterized by a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, and a peak at about 21.8 ppm in a 13 C NMR solid state spectrum.
- Form B can be characterized by a peak at about 170.3 ppm, a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, a peak at about 79.8 ppm, a peak at about 27.2 ppm, and a peak at about 21.8 ppm in a 13 C NMR solid state spectrum.
- Form B (cyclohexane solvate) can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form C.
- Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 4.8 to about 5.2 degrees, a peak in the range of from about 6.4 to about 6.8 degrees, a peak in the range of from about 8.0 to about 8.4 degrees, a peak in the range of from about 9.0 to about 9.4 degrees, a peak in the range of from about 9.4 to about 9.8 degrees, a peak in the range of from about 16.1 to about 16.5 degrees, and a peak in the range of from about 22.1 to about 22.5 degrees.
- Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, a peak at about 9.2 degrees, a peak at about 9.6 degrees, a peak at about 16.3 degrees, and a peak at about 22.3 degrees.
- Form C can be characterized by a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, and a peak at about 22.3 degrees in an X-ray powder diffraction pattern.
- Form C can be characterized by a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, a peak at about 9.2 degrees, a peak at about 9.6 degrees, a peak at about 16.3 degrees, and a peak at about 22.3 degrees in an X-ray powder diffraction pattern.
- Form C can be characterized by an X-ray powder diffraction pattern of FIG. 6 .
- Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form C can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm.
- Form C can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 63.8 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm.
- Form C can be characterized by a peak at about 173.7 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, and a peak at about 25.1 ppm in a 13 C NMR solid state spectrum.
- Form C can be characterized by a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm in a 13 C NMR solid state spectrum.
- Form C can be characterized by a 13 C NMR solid state spectrum of FIG. 7 .
- Form C can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form D.
- Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.9 to about 8.3 degrees, a peak in the range of from about 13.2 to about 13.6 degrees, a peak in the range of from about 14.2 to about 14.6 degrees, a peak in the range of from about 17.0 to about 17.4 degrees, a peak in the range of from about 29.4 to about 29.8 degrees, and a peak in the range of from about 34.8 to about 35.2 degrees.
- Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 14.4 degrees, a peak at about 17.2 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees.
- Form D can be characterized by a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees in an X-ray powder diffraction pattern.
- Form D can be characterized by a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 14.4 degrees, a peak at about 17.2 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees in an X-ray powder diffraction pattern.
- Form D can be characterized by an X-ray powder diffraction pattern of FIG. 8 .
- Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form D can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 139.1 ppm, a peak at about 125.3 ppm, a peak at about 120.8 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, a peak at about 67.5 ppm, and a peak at about 63.0 ppm.
- Form D can be characterized by a peak at about 125.3 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, and a peak at about 67.5 ppm in a 13 C NMR solid state spectrum.
- Form D can be characterized by a peak at about 139.1 ppm, a peak at about 125.3 ppm, a peak at about 120.8 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, a peak at about 67.5 ppm, and a peak at about 63.0 ppm in a 13 C NMR solid state spectrum.
- Form D can be characterized by a 13 C NMR solid state spectrum of FIG. 9 .
- Form D can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 10.4 to about 10.8 degrees, a peak in the range of from about 12.7 to about 13.1 degrees, a peak in the range of from about 21.4 to about 21.8 degrees, a peak in the range of from about 24.3 to about 24.7 degrees, and a peak in the range of from about 24.8 to about 25.2 degrees.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 12.7 to about 13.1 degrees, a peak in the range of from about 21.4 to about 21.8 degrees, and a peak in the range of from about 24.8 to about 25.2 degrees.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees.
- Form E can be characterized by a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak from about 7.6 to about 8.0 degrees, a peak from about 10.4 to about 10.8 degrees, a peak from about 12.7 to about 13.1 degrees, a peak from about 24.3 to about 24.7 degrees, and a peak from about 24.8 to about 25.2 degrees.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees.
- Form E can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- Form E can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- Form E can be characterized by a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form E can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm.
- Form E can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 68.0 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm.
- Form E can be characterized by a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, and a peak at about 67.0 ppm in a 13 C NMR solid state spectrum.
- Form E can be characterized by a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm in a 13 C NMR solid state spectrum.
- Form E can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 118.3 ppm, or a peak at about 73.9 ppm. In some embodiments, Form E can be characterized by a peak at about 118.3 ppm, and a peak at about 73.9 ppm in a 13 C NMR solid state spectrum.
- Form E can be characterized by a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 118.3 ppm, and a peak at about 73.9 ppm in a 13 C NMR solid state spectrum.
- Form E can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form F.
- Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.8 to about 6.2 degrees, a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 17.3 to about 17.7 degrees, and a peak in the range of from about 17.8 to about 18.2 degrees.
- Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.0 degrees, a peak at about 7.0 degrees, a peak at about 17.5 degrees, and a peak at about 18.0 degrees.
- Form F can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- Form F can be characterized by a peak at about 6.0 degrees, a peak at about 7.0 degrees, a peak at about 17.5 degrees, and a peak at about 18.0 degrees in an X-ray powder diffraction pattern.
- Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form F can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm.
- Form F can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 68.2 ppm, a peak at about 66.9 ppm, a peak at about 25.7 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm.
- Form F can be characterized by a peak at about 130.4 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13 C NMR solid state spectrum. In still a further embodiment, Form F can be characterized by a peak at about 6.1 degrees in an X-ray powder diffraction pattern.
- Form F can be characterized by a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm in a 13 C NMR solid state spectrum.
- Form F can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, or a peak at about 21.8 ppm. In some embodiments, Form F can be characterized by a peak at about 73.5 ppm in a 13 C NMR solid state spectrum.
- Form F can be characterized by a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, and a peak at about 21.8 ppm in a 13 C NMR solid state spectrum.
- Form F can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form G.
- Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.7 to about 6.1 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 12.3 to about 12.7 degrees, a peak in the range of from about 17.5 to about 17.9 degrees, and a peak in the range of from about 18.0 to about 18.4 degrees.
- Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.7 to about 6.1 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 7.6 to about 8.0 degrees and a peak in the range of from about 17.5 to about 17.9 degrees.
- Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, a peak at about 12.5 degrees, a peak at about 17.7 degrees, and a peak at about 18.2 degrees.
- Form G can be characterized by a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, and a peak at about 17.7 degrees in an X-ray powder diffraction pattern.
- Form G can be characterized by a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, a peak at about 12.5 degrees, a peak at about 17.7 degrees, and a peak at about 18.2 degrees in an X-ray powder diffraction pattern.
- Form G can be characterized by an X-ray powder diffraction pattern of FIG. 14 .
- Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form G can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, and a peak at about 20.4 ppm.
- Form G can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, a peak at about 54.2 ppm, and a peak at about 20.4 ppm.
- Form G can be characterized by a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, and a peak at about 69.0 ppm in a 13 C NMR solid state spectrum.
- Form G can be characterized by a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, and a peak at about 20.4 ppm in a 13 C NMR solid state spectrum.
- Form G can be characterized by a 13 C NMR solid state spectrum of FIG. 15 .
- Form G can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form H.
- Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.9 to about 8.3 degrees, a peak in the range of from about 13.8 to about 14.2 degrees, a peak in the range of from about 17.0 to about 17.4 degrees, and a peak in the range of from about 19.9 to about 20.3 degrees.
- Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 8.1 degrees, a peak at about 14.0 degrees, a peak at about 17.2 degrees, and a peak at about 20.1 degrees.
- Form H can be characterized by a peak at about 8.1 degrees, a peak at about 14.0 degrees, a peak at about 17.2 degrees, and a peak at about 20.1 degrees in an X-ray powder diffraction pattern.
- Form H can be characterized by an X-ray powder diffraction pattern of FIG. 16 .
- Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form H can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, and a peak at about 20.6 ppm.
- Form H can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, a peak at about 20.6 ppm, and a peak at about 2.2 ppm.
- Form H can be characterized by a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 119.8 ppm, and a peak at about 104.6 ppm in a 13 C NMR solid state spectrum.
- Form H can be characterized by a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, and a peak at about 20.6 ppm in a 13 C NMR solid state spectrum.
- Form H can be characterized by a 13 C NMR solid state spectrum of FIG. 17 .
- Form H can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form I.
- Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.2 to about 6.6 degrees, a peak in the range of from about 9.1 to about 9.5 degrees, a peak in the range of from about 10.6 to about 11.0 degrees, and a peak in the range of from about 11.6 to about 12.0 degrees.
- Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.4 degrees, a peak at about 9.3 degrees, a peak at about 10.8 degrees, and a peak at about 11.8 degrees.
- Form I can be characterized by a peak at about 6.4 degrees, a peak at about 9.3 degrees, a peak at about 10.8 degrees, and a peak at about 11.8 degrees in an X-ray powder diffraction pattern.
- Form I can be characterized by an X-ray powder diffraction pattern of FIG. 18 .
- Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
- Form I can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm.
- Form I can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.1 ppm, a peak at about 168.6 ppm, a peak at about 152.1 ppm, a peak at about 123.6 ppm, a peak at about 102.6 ppm, a peak at about 71.4 ppm, a peak at about 63.5 ppm, a peak at about 61.9 ppm, a peak at about 22.4 ppm, and a peak at about 15.5 ppm.
- Form I can be an ethyl acetate solvate.
- Form I ethyl acetate solvate
- Form I can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Form I can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 168.4 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm.
- Form I can be an isopropyl acetate solvate.
- Form I can be characterized by a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, and a peak at about 63.3 ppm in a 13 C NMR solid state spectrum.
- Form I can be characterized by a peak at about 173.0 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm in a 13 C NMR solid state spectrum.
- Form I can be characterized by a 13 C NMR solid state spectrum of FIG. 19 .
- Form I (isopropyl acetate solvate) can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form J.
- Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.9 to about 6.3 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 11.9 to about 12.3 degrees, a peak in the range of from about 13.1 to about 13.5 degrees, a peak in the range of from about 13.8 to about 14.2 degrees, a peak in the range of from about 18.3 to about 18.7 degrees, a peak in the range of from about 22.4 to about 22.8 degrees, a peak in the range of from about 33.0 to about 33.4 degrees, a peak in the range of from about 33.8 to about 34.2 degrees, and a peak in the range of from about 35.1 to about 35.5 degrees.
- Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.9 to about 6.3 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 11.9 to about 12.3 degrees, a peak in the range of from about 13.1 to about 13.5 degrees, a peak in the range of from about 13.8 to about 14.2 degrees and a peak in the range of from about 18.3 to about 18.7 degrees.
- Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, a peak at about 18.5 degrees, a peak at about 22.6 degrees, a peak at about 33.2 degrees, a peak at about 34.0 degrees, and a peak at about 35.3 degrees.
- Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, and a peak at about 18.5 degrees.
- Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, a peak at about 18.5 degrees, a peak at about 22.6 degrees, a peak at about 33.2 degrees, a peak at about 34.0 degrees, and a peak at about 35.3 degrees.
- Form J can be characterized by an X-ray powder diffraction pattern of FIG. 20 .
- Form J can be characterized by one or more XRPD peaks selected from the table below.
- Form J can be characterized by a DSC thermogram as shown in FIG. 21 .
- Form J can be characterized by a DSC thermogram showing a first endotherm in the range of about 121° C. to about 127° C. (for example, at about 126° C.).
- Form J can be characterized by a DSC thermogram showing an exotherm in the range of about 127° C. to about 132° C. (for example, at about 129° C.).
- Form J can be characterized by a DSC thermogram showing a second endotherm in the range of about 135° C. to about 142° C. (for example, at about 138° C.).
- Form J can be characterized by a DSC thermogram showing a first melting temperature in the range of about 121° C. to about 127° C. (for example, at about 126° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a recrystallization at a temperature in the range of about 127° C. to about 132° C. (for example, at about 129° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a second melting temperature in the range of about 135° C. to about 142° C. (for example, at about 138° C.). In some embodiments, Form J can be characterized by a melting temperature in the range of about 121° C. to about 127° C. (for example, at about 126° C.).
- Form J can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 175.6 ppm, a peak at about 141.4 ppm, a peak at about 127.8 ppm, a peak at about 123.4 ppm, a peak at about 103.1 ppm, a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, a peak at about 25.6 ppm, and a peak at about 19.6 ppm.
- Form J can be characterized by a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, and a peak at about 25.6 ppm in a 13 C NMR solid state spectrum.
- Form J can be characterized by a peak at about 175.6 ppm, a peak at about 141.4 ppm, a peak at about 127.8 ppm, a peak at about 123.4 ppm, a peak at about 103.1 ppm, a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, a peak at about 25.6 ppm, and a peak at about 19.6 ppm in a 13 C NMR solid state spectrum.
- Form J can be characterized by a 13 C NMR solid state spectrum of FIG. 22 .
- Form J can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form K.
- Form K can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 22.4 to about 22.8 degrees, a peak in the range of from about 27.1 to about 27.5 degrees, a peak in the range of from about 28.1 to about 28.5 degrees, and a peak in the range of from about 31.0 to about 31.4 degrees.
- Form K can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 22.6 degrees, a peak at about 27.3 degrees, a peak at about 28.3 degrees, and a peak at about 31.2 degrees.
- Form K can be characterized by a peak at about 22.6 degrees, a peak at about 27.3 degrees, a peak at about 28.3 degrees, and a peak at about 31.2 degrees in an X-ray powder diffraction pattern.
- Form K can be characterized by an X-ray powder diffraction pattern of FIG. 23 .
- Form K can be characterized by one or more XRPD peaks selected from the table below.
- Form K can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm.
- Form K can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 80.4 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm.
- Form K can be characterized by a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 101.9 ppm, and a peak at about 92.0 ppm in a 13 C NMR solid state spectrum.
- Form K can be characterized by a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm in a 13 C NMR solid state spectrum.
- Form K can be characterized by a 13 C NMR solid state spectrum of FIG. 24 .
- Form K can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form L.
- Form L can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.5 to about 5.9 degrees, a peak in the range of from about 5.8 to about 6.2 degrees, a peak in the range of from about 15.0 to about 15.4 degrees, and a peak in the range of from about 15.9 to about 16.3 degrees.
- Form L can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.7 degrees, a peak at about 6.0 degrees, a peak at about 15.2 degrees, and a peak at about 16.1 degrees.
- Form L can be characterized by a peak at about 5.7 degrees, a peak at about 6.0 degrees, a peak at about 15.2 degrees, and a peak at about 16.1 degrees in an X-ray powder diffraction pattern.
- Form L can be characterized by an X-ray powder diffraction pattern of FIG. 25 .
- Form L can be characterized by one or more XRPD peaks selected from the table below.
- Form L can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm.
- Form L can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, a peak at about 20.9 ppm, and a peak at about 1.6 ppm.
- Form L can be characterized by a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm in a 13 C NMR solid state spectrum.
- Form L can be characterized by a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm in a 13 C NMR solid state spectrum.
- Form L can be characterized by a 13 C NMR solid state spectrum of FIG. 26 .
- Form L can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form M.
- Form M can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.1 to about 6.5 degrees, a peak in the range of from about 13.0 to about 13.4 degrees, a peak in the range of from about 22.0 to about 22.4 degrees, and a peak in the range of from about 23.3 to about 23.7 degrees.
- Form M can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.3 degrees, a peak at about 13.2 degrees, a peak at about 22.2 degrees, and a peak at about 23.5 degrees.
- Form M can be characterized by a peak at about 6.3 degrees, a peak at about 13.2 degrees, a peak at about 22.2 degrees, and a peak at about 23.5 degrees in an X-ray powder diffraction pattern.
- Form M can be characterized by an X-ray powder diffraction pattern of FIG. 27 .
- Form M can be characterized by one or more XRPD peaks selected from the table below.
- Form M can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 174.0 ppm, a peak at about 170.5 ppm, a peak at about 129.5 ppm, a peak at about 79.6 ppm, a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, a peak at about 24.0 ppm, and a peak at about 19.5 ppm.
- Form M can be characterized by a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, and a peak at about 24.0 ppm in a 13 C NMR solid state spectrum.
- Form M can be characterized by a peak at about 174.0 ppm, a peak at about 170.5 ppm, a peak at about 129.5 ppm, a peak at about 79.6 ppm, a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, a peak at about 24.0 ppm, and a peak at about 19.5 ppm in a 13 C NMR solid state spectrum.
- Form M can be characterized by a 13 C NMR solid state spectrum of FIG. 28 .
- Form M can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form N.
- Form N can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 12.2 to about 12.6 degrees, a peak in the range of from about 15.1 to about 15.5 degrees, a peak in the range of from about 16.9 to about 17.3 degrees, and a peak in the range of from about 17.7 to about 18.1 degrees.
- Form N can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 12.4 degrees, a peak at about 15.3 degrees, a peak at about 17.1 degrees, and a peak at about 17.9 degrees.
- Form N can be characterized by a peak at about 12.4 degrees, a peak at about 15.3 degrees, a peak at about 17.1 degrees, and a peak at about 17.9 degrees in an X-ray powder diffraction pattern.
- Form N can be characterized by an X-ray powder diffraction pattern of FIG. 29 .
- Form N can be characterized by one or more XRPD peaks selected from the table below.
- Form N can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm.
- Form N can be characterized by one or more peaks in a 13 C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.5 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm.
- Form N can be characterized by a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, and a peak at about 67.7 ppm in a 13 C NMR solid state spectrum.
- Form N can be characterized by a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm in a 13 C NMR solid state spectrum.
- Form N can be characterized by a 13 C solid state NMR solid state spectrum of FIG. 30 .
- Form N can be characterized by one or more peaks in a 13 C NMR solid state spectrum selected from the table below.
- Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Amorphous Form 0.
- the Amorphous Form O contains less than about 30% crystallinity. In other embodiments, the Amorphous Form O contains less than about 15% crystallinity. In still other embodiments, the Amorphous Form O contains less than about 1.0% crystallinity. In yet still other embodiments, the Amorphous Form O contains substantially no crystallinity. In some embodiments, the Amorphous Form O is substantially amorphous. In other embodiments, the Amorphous Form O is completely amorphous (i.e., 100% amorphous).
- the temperature in step b) can be in the range of from about 55° C. to about 65° C. (for example, about 60° C.).
- the temperature in step c) can be in the range of from about 18° C. to about 24° C. (for example, about 21° C.). In some embodiments, the temperature in step c) can be room temperature (RT).
- the second amount of ethyl acetate in step d) can be approximately equal to the first amount of ethyl acetate used in step a). In other embodiments, the second amount of ethyl acetate in step d) can be up to five times the first amount of ethyl acetate used in step a). In other still other embodiments, the second amount of ethyl acetate in step d) can be less than the first amount of ethyl acetate used in step a). In some embodiments, the first amount of ethyl acetate in step a) can be in the range of from about 1 mL to about 3 mL per gram of Compound 1. In some embodiments, the first amount of ethyl acetate in step a) can be about 2 mL per gram of Compound 1.
- steps a, b and c can be repeated at least one time. In other embodiments, steps a, b and c can be repeated at least 2 times. In some embodiments, steps a, b and c can be repeated one time.
- Form A can be isolated from the mixture by filtration.
- the mixture can be stirred at room temperature for about 12 hours before isolating Form J. In some embodiments, the mixture can be stirred at a temperature in the range of about 20° C. to about 30° C. for about 12 hours before isolating Form J.
- about 100 mg of Amorphous Form O can be contacted with an amount of ethanol in the range of from about 100 ⁇ L to about 200 ⁇ L of ethanol. In other embodiments, about 100 mg of Amorphous Form O can be contacted with about 150 ⁇ L of ethanol. In some embodiments, the ethanol can be HPLC grade ethanol.
- Form J can be isolated from the mixture by filtration.
- Still other embodiments described herein relate to a process for producing a solvated solid form of Compound 1, that can include
- the solvated solid form of Compound 1 can be isolated from the mixture by a method selected from filtration and evaporation.
- the solvent can be MTBE, cyclohexane, nitromethane, acetonitrile, dioxane, THF, dichloromethane, ethyl acetate, isopropyl acetate, chloroform, chlorobenzene, 1,2-dichloroethane, 1,2,3-trichloroethane, or toluene.
- the solvent can be MTBE or cyclohexane and the solvated solid form can be Form B.
- the solvent can be nitromethane and the solvated solid form can be Form C.
- the solvent can be dioxane and the solvated solid form can be Form E.
- the solvent can be THF and the solvated solid form can be Form F.
- the solvent can be dichloromethane and the solvated solid form can be Form G.
- the solvent can be acetonitrile and the solvated solid form can be Form H or Form L.
- the solvent can be ethyl acetate or isopropyl acetate and the solvated solid form can be Form I.
- the solvent can be chloroform, chlorobenzene, 1,2-dichloroethane or 1,2,3-trichloroethane and the solvated solid form can be Form K.
- the solvent can be toluene and the solvated solid form can be Form N.
- the mixture can be sonicated before isolating the solvated solid form.
- the amount of solvent added in step a) above is in the range of from about 0.5 mL to about 10 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 0.83 mL per gram of Compound 1. In other embodiments, the amount of solvent added in step a) above is about 1.0 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 1.5 mL per gram of Compound 1. In yet still other embodiments, the amount of solvent added in step a) above is about 1.9 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 2.0 mL per gram of Compound 1.
- the amount of solvent added in step a) above is about 2.5 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 3.3 mL per gram of Compound 1. In yet still other embodiments, the amount of solvent added in step a) above is about 4.0 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 5.0 mL per gram of Compound 1. In other embodiments, the amount of solvent added in step a) above is about 6.1 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 10.0 mL per gram of Compound 1.
- the process further can include removing the solvent from the solvated solid form of Compound 1, including one or more of those described herein, to provide a desolvated solid form of Compound 1.
- the desolvated solid form of Compound 1 can be Form D. In other embodiments, the desolvated solid form of Compound 1 can be Form M.
- compositions described herein generally relate to a pharmaceutical composition that can include one or more solid forms of Compound 1 as described herein, and optionally comprise a pharmaceutically acceptable carrier, adjuvant or vehicle.
- compositions can include one or more solid forms of Compound 1, and one or more additional agent(s).
- the one or more additional agent(s) can be selected from Pegylated interferon-alpha-2a (brand name PEGASYS®) and ribavirin, Pegylated interferon-alpha-2b (brand name PEG-INTRON®) and ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, and a NS5A inhibitor.
- the one or more agents can be selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- the one or more agents can be selected from Compounds 1000-1066 and 8001-8012, or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- the pharmaceutical composition can include a single diastereomer of Compound 1, or a pharmaceutically acceptable salt thereof, (for example, a single diastereomer is present in the pharmaceutical composition at a concentration of greater than 99% compared to the total concentration of the diastereomers of Compound 1).
- the pharmaceutical composition can include a mixture of diastereomers of Compound 1, or a pharmaceutically acceptable salt thereof.
- the pharmaceutical composition can include a concentration of one diastereomer of >50%, ⁇ 60%, ⁇ 70%, ⁇ 80%, ⁇ 90%, ⁇ 95%, or ⁇ 98%, as compared to the total concentration of diastereomers of Compound 1.
- the pharmaceutical composition includes a 1:1 mixture of two diastereomers of Compound 1, or a pharmaceutically acceptable salt thereof.
- composition refers to a mixture of one or more compounds or forms disclosed herein with other chemical components, such as diluents or carriers.
- the pharmaceutical composition facilitates administration of the compound to an organism.
- Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and salicylic acid.
- Pharmaceutical compositions will generally be tailored to the specific intended route of administration.
- physiologically acceptable defines a carrier, diluent or excipient that does not abrogate the biological activity and properties of the compound.
- a “carrier” refers to a compound that facilitates the incorporation of a compound into cells or tissues.
- DMSO dimethyl sulfoxide
- a “diluent” refers to an ingredient in a pharmaceutical composition that lacks pharmacological activity but may be pharmaceutically necessary or desirable.
- a diluent may be used to increase the bulk of a potent drug whose mass is too small for manufacture and/or administration. It may also be a liquid for the dissolution of a drug to be administered by injection, ingestion or inhalation.
- a common form of diluent in the art is a buffered aqueous solution such as, without limitation, phosphate buffered saline that mimics the composition of human blood.
- an “excipient” refers to an inert substance that is added to a pharmaceutical composition to provide, without limitation, bulk, consistency, stability, binding ability, lubrication, disintegrating ability etc., to the composition.
- a “diluent” is a type of excipient.
- compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or carriers, diluents, excipients or combinations thereof. Proper formulation is dependent upon the route of administration chosen. Techniques for formulation and administration of the compounds described herein are known to those skilled in the art.
- compositions disclosed herein may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tableting processes. Additionally, the active ingredients are contained in an amount effective to achieve its intended purpose. Many of the compounds used in the pharmaceutical combinations disclosed herein may be provided as salts with pharmaceutically compatible counterions.
- Multiple techniques of administering a compound exist in the art including, but not limited to, oral, rectal, topical, aerosol, injection and parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intranasal and intraocular injections.
- compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
- the pack may for example comprise metal or plastic foil, such as a blister pack.
- the pack or dispenser device may be accompanied by instructions for administration.
- the pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert.
- Compositions that can include a compound described herein formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
- Some embodiments disclosed herein relate to a method of treating and/or ameliorating a disease or condition that can include administering to a subject an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- Some embodiments disclosed herein relates to a method of ameliorating or treating a viral infection that can include administering to a subject suffering from the viral infection an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- Other embodiments described herein relate to the use of an effective amount of one or more solid forms of Compound 1 as described herein in the preparation of a medicament for ameliorating or treating a viral infection.
- Still other embodiments described herein relate to one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, that can be used for ameliorating and/or treating a viral infection by administering an effective amount of said compound(s).
- the viral infection can be a hepatitis C viral (HCV) infection.
- Some embodiments disclosed herein relate to methods of ameliorating and/or treating a viral infection that can include contacting a cell infected with the virus with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- Other embodiments described herein relate to using one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, in the manufacture of a medicament for ameliorating and/or treating a viral infection that can include contacting a cell infected with the virus with an effective amount of said compound(s).
- the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the virus can be a HCV virus.
- Some embodiments disclosed herein relate to methods of inhibiting replication of a virus that can include contacting a cell infected with the virus with an effective amount of one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, or a pharmaceutical composition that includes one or more compounds described herein, or a pharmaceutically acceptable salt thereof.
- Other embodiments described herein relate to using one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, in the manufacture of a medicament for inhibiting replication of a virus that can include contacting a cell infected with the virus with an effective amount of said compound(s).
- the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the virus can be a HCV virus.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can inhibit an RNA dependent RNA polymerase. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can inhibit a HCV polymerase (for example, NS5B polymerase).
- HCV polymerase for example, NS5B polymerase
- Some embodiments described herein relate to a method for inhibiting NS5B polymerase activity of a virus that can include contacting a cell (such as a cell infected with HCV) with an effective amount of a compound described herein, whereby inhibiting the NS5B polymerase activity of the virus (for example, HCV).
- a cell such as a cell infected with HCV
- an effective amount of a compound described herein whereby inhibiting the NS5B polymerase activity of the virus (for example, HCV).
- Other embodiments described herein relate to the use of an effective amount of a compound as described as described herein for preparing a medicament for inhibiting NS5B polymerase activity of a virus, such as the NS5B polymerase activity of a hepatitis C virus.
- Still other embodiments described herein relate to a compound described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for inhibiting NS5B polymerase activity that can include contacting a cell (such as a cell infected with HCV) an effective amount of said compound(s).
- the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the virus can be a HCV virus.
- HCV is an enveloped positive strand RNA virus in the Flaviviridae family.
- NS5B is believed to be an RNA-dependent RNA polymerase involved in the replication of HCV RNA.
- Some embodiments described herein relate to a method of treating HCV infection in a subject suffering from a HCV infection that can include administering to the subject an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- Other embodiments described herein relate to the use of an effective amount of a compound as described as described herein for preparing a medicament for treating HCV infection in a subject suffering from a HCV infection.
- Still other embodiments described herein relate to a compound described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for treating HCV infection in a subject suffering from a HCV infection that can include administering an effective amount of said compound(s).
- genotypes of HCV there are a variety of genotypes of HCV, and a variety of subtypes within each genotype. For example, at present it is known that there are eleven (numbered 1 through 11) main genotypes of HCV, although others have classified the genotypes as 6 main genotypes. Each of these genotypes is further subdivided into subtypes (1a-1c; 2a-2c; 3a-3b; 4a-4e; 5a; 6a; 7a-7b; 8a-8b; 9a; 10a; and 11a).
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be effective to treat at least one genotype of HCV.
- a compound described herein for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein
- a compound described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein) can be effective to treat 3 or more, 5 or more, 7 or more of 9 more genotypes of HCV.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is more effective against a larger number of HCV genotypes than the standard of care.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is more effective against a particular HCV genotype than the standard of care (such as genotype 1, 2, 3, 4, 5 and/or 6).
- Suitable indicators include, but are not limited to, a reduction in viral load, a reduction in viral replication, a reduction in time to seroreversion (virus undetectable in patient serum), an increase in the rate of sustained viral response to therapy, a reduction of morbidity or mortality in clinical outcomes, a reduction in the rate of liver function decrease; stasis in liver function; improvement in liver function; reduction in one or more markers of liver dysfunction, including alanine transaminase, aspartate transaminase, total bilirubin, conjugated bilirubin, gamma glutamyl transpeptidase, and/or other indicator of disease response.
- successful therapy with an effective amount of a compound or a pharmaceutical composition described herein can reduce the incidence of liver cancer in HCV patients.
- Some embodiments described herein relate to a method of treating a condition selected from liver fibrosis, liver cirrhosis, and liver cancer in a subject suffering from one or more of the aforementioned liver conditions that can include administering to the subject an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein).
- a compound or a pharmaceutical composition described herein for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- One cause of the liver fibrosis, liver cirrhosis, and/or liver cancer can be a HCV infection.
- Some embodiments described herein relate to a method of increasing liver function in a subject having a HCV infection that can include administering to the subject an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein).
- a compound or a pharmaceutical composition described herein for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- this method comprises slowing or halting the progression of liver disease.
- the course of the disease is reversed, and stasis or improvement in liver function is contemplated.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount that is effective to reduce viral titers undetectable levels, for example, to about 100 to about 500, to about 50 to about 100, to about 10 to about 50, or to about 15 to about 25 international units/mL serum.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount that is effective to reduce viral load compared to the viral load before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the viral load is measured before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and again after completion of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein (for example, 1 month after completion).
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof; or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be an amount that is effective to reduce viral load to lower than about 100 genome copies/mL serum.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount that is effective to achieve a reduction in viral titer in the serum of the subject in the range of about 1.5-log to about a 2.5-log reduction, about a 3-log to about a 4-log reduction, or a greater than about 5-log reduction compared to the viral load before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the viral load can be measured before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and again after completion of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein (for example, 1 month after completion).
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can result in at least a 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100-fold or more reduction in the replication of HCV relative to pre-treatment levels in a subject, as determined after completion of the treatment regime (for example 1 month after completion).
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can result in a reduction of the replication of HCV relative to pre-treatment levels in the range of about 2 to about 5 fold, about 10 to about 20 fold, about 15 to about 40 fold, or about 50 to about 100 fold.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can result in a reduction of HCV replication in the range of 1 to 1.5 log, 1.5 log to 2 log, 2 log to 2.5 log, 2.5 to 3 log, 3 log to 3.5 log or 3.5 to 4 log more reduction of HCV replication compared to the reduction of HCV reduction achieved by pegylated interferon in combination with ribavirin, administered according to the standard of care, or may achieve the same reduction as that standard of care therapy in a shorter period of time, for example, in one month, two months, or three months, as compared to the reduction achieved after six months of standard of care therapy with ribavirin and pegylated interferon.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount that is effective to achieve a sustained viral response, for example, non-detectable or substantially non-detectable HCV RNA (e.g., less than about 500, less than about 400, less than about 200, or less than about 100 genome copies per milliliter serum) is found in the subject's serum for a period of at least about one month, at least about two months, at least about three months, at least about four months, at least about five months, or at least about six months following cessation of therapy.
- a sustained viral response for example, non-detectable or substantially non-detectable HCV RNA (e.g., less than about 500, less than about 400, less than about 200, or less than about 100 genome copies per milliliter serum) is found in the subject's serum for a period of at least about one month, at least about two months
- an effective amount one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can reduce a level of a marker of liver fibrosis by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to the level of the marker in an untreated subject, or to a placebo-treated subject.
- markers are known to those skilled in the art and include immunological-based methods, e.g., enzyme-linked immunosorbent assays (ELISA), radioimmunoassays, and the like, using antibody specific for a given serum marker.
- immunological-based methods e.g., enzyme-linked immunosorbent assays (ELISA), radioimmunoassays, and the like, using antibody specific for a given serum marker.
- markers include measuring the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT) and total bilirubin (TBIL) using known methods.
- ALT serum alanine aminotransferase
- AST aspartate aminotransferase
- ALP alkaline phosphatase
- GTT gamma-glutamyl transpeptidase
- TBIL total
- an ALT level of less than about 45 IU/L (international units/liter), an AST in the range of 10-34 IU/L, ALP in the range of 44-147 IU/L, GGT in the range of 0-51 IU/L, TBIL in the range of 0.3-1.9 mg/dL is considered normal.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount effective to reduce ALT, AST, ALP, GGT and/or TBIL levels to with what is considered a normal level.
- Subjects who are clinically diagnosed with HCV infection include “na ⁇ ve” subjects (e.g., subjects not previously treated for HCV, particularly those who have not previously received IFN-alpha-based and/or ribavirin-based therapy) and individuals who have failed prior treatment for HCV (“treatment failure” subjects).
- Treatment failure subjects include “non-responders” (i.e., subjects in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV ( ⁇ 0.5 log IU/mL), for example, a previous IFN-alpha monotherapy, a previous IFN-alpha and ribavirin combination therapy, or a previous pegylated IFN-alpha and ribavirin combination therapy); and “relapsers” (i.e., subjects who were previously treated for HCV, for example, who received a previous IFN-alpha monotherapy, a previous IFN-alpha and ribavirin combination therapy, or a previous pegylated IFN-alpha and ribavirin combination therapy, whose HCV titer decreased, and subsequently increased).
- non-responders i.e., subjects in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV ( ⁇ 0.5 log IU/mL), for example, a previous IFN-al
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a treatment failure subject suffering from HCV.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a non-responder subject suffering from HCV.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a relapsed subject suffering from HCV.
- infectious agents can develop resistance to one or more therapeutic agents.
- resistance refers to a viral strain displaying a delayed, lessened and/or null response to a therapeutic agent(s).
- the viral load of a subject infected with a resistant virus may be reduced to a lesser degree compared to the amount in viral load reduction exhibited by a subject infected with a non-resistant strain.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a subject infected with an HCV strain that is resistant to one or more different anti-HCV agents.
- development of resistant HCV strains is delayed when patients are treated with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, compared to the development of HCV strains resistant to other HCV drugs.
- an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a subject for whom other anti-HCV medications are contraindicated.
- administration of pegylated interferon alpha in combination with ribavirin is contraindicated in subjects with hemoglobinopathies (e.g., thalassemia major, sickle-cell anemia) and other subjects at risk from the hematologic side effects of current therapy.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be provided to a subject that is hypersensitive to interferon or ribavirin.
- viral load rebound refers to a sustained ⁇ 0.5 log IU/mL increase of viral load above nadir before the end of treatment, where nadir is a ⁇ 0.5 log IU/mL decrease from baseline.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered to a subject experiencing viral load rebound, or can prevent such viral load rebound when used to treat the subject.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can decrease the number and/or severity of side effects that can be observed in HCV patients being treated with ribavirin and pegylated interferon according to the standard of care.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be provided to a subject that discontinued a HCV therapy because of one or more adverse effects or side effects associated with one or more other HCV agents.
- Table 1 provides some embodiments of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, compared to the standard of care. Examples include the following: in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, results in a percentage of non-responders that is 10% less than the percentage of non-responders receiving the standard of care; in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, results number of side effects that is in the range of about 10% to about 30% less than compared to the number of side effects experienced by a subject receiving the standard of care; and in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt
- a “subject” refers to an animal that is the object of treatment, observation or experiment.
- Animal includes cold- and warm-blooded vertebrates and invertebrates such as fish, shellfish, reptiles and, in particular, mammals.
- “Mammal” includes, without limitation, mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, primates, such as monkeys, chimpanzees, and apes, and, in particular, humans.
- the subject is human.
- treatment does not necessarily mean total cure or abolition of the disease or condition. Any alleviation of any undesired signs or symptoms of a disease or condition, to any extent can be considered treatment and/or therapy.
- treatment may include acts that may worsen the patient's overall feeling of well-being or appearance.
- an effective amount is used to indicate an amount of an active compound, or pharmaceutical agent, that elicits the biological or medicinal response indicated.
- an effective amount of compound can be the amount needed to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated This response may occur in a tissue, system, animal or human and includes alleviation of the signs or symptoms of the disease being treated. Determination of an effective amount is well within the capability of those skilled in the art, in view of the disclosure provided herein.
- the effective amount of the compounds disclosed herein required as a dose will depend on the route of administration, the type of animal, including human, being treated, and the physical characteristics of the specific animal under consideration. The dose can be tailored to achieve a desired effect, but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize.
- the useful in vivo dosage to be administered and the particular mode of administration will vary depending upon the age, weight, the severity of the affliction, and mammalian species treated, the particular compounds employed, and the specific use for which these compounds are employed.
- the determination of effective dosage levels that is the dosage levels necessary to achieve the desired result, can be accomplished by one skilled in the art using routine methods, for example, human clinical trials and in vitro studies.
- the dosage may range broadly, depending upon the desired effects and the therapeutic indication. Alternatively dosages may be based and calculated upon the surface area of the patient, as understood by those of skill in the art. Although the exact dosage will be determined on a drug-by-drug basis, in most cases, some generalizations regarding the dosage can be made.
- the daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.01 mg and 3000 mg of each active ingredient, preferably between 1 mg and 700 mg, e.g. 5 to 200 mg.
- the dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the subject.
- the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered less frequently compared to the frequency of administration of an agent within the standard of care.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered one time per day.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered one time per day to a subject suffering from a HCV infection.
- the total time of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can less compared to the total time of the treatment regime with the standard of care.
- human dosages for compounds have been established for at least some condition, those same dosages may be used, or dosages that are between about 0.1% and 500%, more preferably between about 25% and 250% of the established human dosage.
- a suitable human dosage can be inferred from ED 50 or ID 50 values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals.
- dosages may be calculated as the free base.
- dosages may be necessary to administer one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein in amounts that exceed, or even far exceed, the above-stated, preferred dosage range in order to effectively and aggressively treat particularly aggressive diseases or infections.
- Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC).
- MEC minimal effective concentration
- the MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations. Dosage intervals can also be determined using MEC value.
- Compositions should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.
- the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity or organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity).
- the magnitude of an administrated dose in the management of the disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The severity of the condition may, for example, be evaluated, in part, by standard prognostic evaluation methods. Further, the dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.
- the toxicology of a particular compound, or of a subset of the compounds, sharing certain chemical moieties may be established by determining in vitro toxicity towards a cell line, such as a mammalian, and preferably human, cell line. The results of such studies are often predictive of toxicity in animals, such as mammals, or more specifically, humans.
- a cell line such as a mammalian, and preferably human, cell line.
- the results of such studies are often predictive of toxicity in animals, such as mammals, or more specifically, humans.
- the toxicity of particular compounds in an animal model, such as mice, rats, rabbits, or monkeys may be determined using known methods.
- the efficacy of a particular compound may be established using several recognized methods, such as in vitro methods, animal models, or human clinical trials. When selecting a model to determine efficacy, the skilled artisan can be guided by the state of the art to choose an appropriate model, dose, route of administration and/or regime.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with one or more additional agent(s).
- agents that can be used in combination with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein include, but are not limited to, agents currently used in a conventional standard of care for treating HCV, HCV protease inhibitors, HCV polymerase inhibitors, NS5A inhibitors, other antiviral compounds, compounds of Formula (BB) (including pharmaceutically acceptable salts and pharmaceutical compositions that can include a compound of Formula (BB), or a pharmaceutically acceptable salt thereof), compounds of Formula (DD) (including pharmaceutically acceptable salts and pharmaceutical compositions that can include a compound of Formula (DD), or a pharmaceutically acceptable salt thereof), and/or combinations thereof.
- agents currently used in a conventional standard of care for treating HCV include, HCV protease inhibitors, HCV polymerase inhibitors, NS5A inhibitors, other antiviral compounds, compounds of Formula (BB) (including pharmaceutically acceptable salts and pharmaceutical compositions that can include a
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used with one, two, three or more additional agents described herein.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with an agent(s) currently used in a conventional standard of care therapy.
- a compound disclosed herein can be used in combination with Pegylated interferon-alpha-2a (brand name PEGASYS®) and ribavirin, or Pegylated interferon-alpha-2b (brand name PEG-INTRON®) and ribavirin.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be substituted for an agent currently used in a conventional standard of care therapy.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in place of ribavirin.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with an interferon, such as a pegylated interferon.
- an interferon such as a pegylated interferon.
- suitable interferons include, but are not limited to, Pegylated interferon-alpha-2a (brand name PEGASYS®), Pegylated interferon-alpha-2b (brand name PEG-INTRON®), interferon alfacon-1 (brand name INFERGEN®), pegylated interferon lambda and/or a combination thereof.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with a HCV protease inhibitor.
- HCV protease inhibitors include the following: VX-950 (TELAPREVIR®), MK-5172, ABT-450, BILN-2061, BI-201335, BMS-650032, SCH 503034 (BOCEPREVIR®), GS-9256, GS-9451, IDX-320, ACH-1625, ACH-2684, TMC-435, ITMN-191 (DANOPREVIR®) and/or a combination thereof.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with a HCV polymerase inhibitor.
- the HCV polymerase inhibitor can be a nucleoside inhibitor. In other embodiments, the HCV polymerase inhibitor can be a non-nucleoside inhibitor.
- nucleoside inhibitors examples include, but are not limited to, RG7128, PSI-7851, PSI-7977, PSI-352938, PSI-661, 4′-azidouridine (including known prodrugs of 4′-azidouridine), GS-6620, and TMC649128 and/or combinations thereof.
- suitable non-nucleoside inhibitors include, but are not limited to, ABT-333, ANA-598, VX-222, HCV-796, BI-207127, GS-9190, PF-00868554 (FILIBUVIR®), VX-497 and/or combinations thereof.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with a NS5A inhibitor.
- NS5A inhibitors include BMS-790052, GSK-2336805, ACH-3102, PPI-461, ACH-2928, GS-5885, BMS-824393 and/or combinations thereof.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with other antiviral compounds.
- other antiviral compounds include, but are not limited to, Debio-025, MIR-122 and/or combinations thereof.
- a non-limiting list of example other antiviral compounds are provided in FIG. 32 .
- a non-limiting list of additional agents that can be used in combination with more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, include the following compounds provided in FIG.
- one or more solid forms of Compound 1, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (I), or a pharmaceutically acceptable salt thereof can be used in combination with a compound of Formula (BB), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (BB), or a pharmaceutically acceptable salt thereof (see, U.S. Publication No. 2012/0165286, filed Dec. 20, 2011 the contents of which are incorporated by reference in its entirety):
- B BB1 can be an optionally substituted heterocyclic base or an optionally substituted heterocyclic base with a protected amino group
- X BB can be O (oxygen) or S (sulfur)
- R BB1 can be selected from —Z BB —R BB9 , an optionally substituted N-linked amino acid and an optionally substituted N-linked amino acid ester derivative
- Z BB can be selected from O (oxygen), S (sulfur) and N(R BB10 )
- R BB2 and R BB3 can be independently selected from hydrogen, an optionally substituted C 1-6 alkyl, an optionally substituted C 2-6 alkenyl, an optionally substituted C 2-6 alkynyl, an optionally substituted C 1-6 haloalkyl and an optionally substituted aryl(C 1-6 alkyl); or R BB2 and R BB3 can be taken together to form a group selected from an optionally substituted C 3-6 cycloalkyl, an optionally
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be used in combination with a compound of Formula (DD), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (DD), or a pharmaceutically acceptable salt thereof (see, U.S. Publication No. 2010/0249068, filed Mar. 19, 2010, the contents of which are incorporated by reference in its entirety):
- a DD1 can be selected from C (carbon), O (oxygen) and S (sulfur); B DD1 can be an optionally substituted heterocyclic base or a derivative thereof; D DD1 can be selected from C ⁇ CH 2 , CH 2 , O (oxygen), S (sulfur), CHF, and CF 2 ; R DD1 can be hydrogen, an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aralkyl, dialkylaminoalkylene, alkyl-C( ⁇ O)—, aryl-C( ⁇ O)—, alkoxyalkyl-C( ⁇ O)—, aryloxyalkyl-C( ⁇ O)—, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl,
- R DD2 and R DD3 can be each independently selected from hydrogen, an optionally substituted C 1-6 alkyl, an optionally substituted C 2-6 alkenyl, an optionally substituted C 2-6 alkynyland an optionally substituted C 1-6 haloalkyl, provided that at least one of R DD2 and R DD3 cannot be hydrogen; or R DD2 and R DD3 are taken together to form a group selected from among C 3-6 cycloalkyl, C 3-6 cycloalkenyl, C 3-6 aryl, and a C 3-6 heteroaryl; R DD4 and R DD9 can be independently selected from hydrogen, halogen, —NH 2 , —NHR DDa1 , NR DDa1 R DDb1 , —OR DDa1 , —SR DDa1 , —CN, —NC, —N 3 , —NO 2 ,
- R DD11 can be selected from O ⁇ , —OH, an optionally substituted aryloxy or aryl-O—,
- each R DD12 and each R DD13 can be independently —C ⁇ N or an optionally substituted substituent selected from C 1-8 organylcarbonyl, C 1-8 alkoxycarbonyl and C 1-8 organylaminocarbonyl; each R DD14 can be hydrogen or an optionally substituted C 1-6 -alkyl; each m DD can be independently 1 or 2, and if both R DD10 and R DD11 are
- each R DD12 , each R DD13 , each R DD14 and each m DD can be the same or different.
- R DD8 can be halogen, —OR DDa1 , an optionally substituted C 1-6 alkyl, an optionally substituted C 2-6 alkenyl, an optionally substituted C 2-6 alkynyl and an optionally substituted C 1-6 haloalkyl.
- Additional examples of compounds that can be used in combination with one or more solid forms of Compound 1 described herein, or a pharmaceutically acceptable salt thereof, include those described in the following: WO 99/07733 (Boehringer Ingelheim), WO 99/07734 (Boehringer Ingelheim), WO 00/09558 (Boehringer Ingelheim), WO 00/09543 (Boehringer Ingelheim), WO 00/59929 (Boehringer Ingelheim), WO 02/060926 (BMS), WO 2006/039488 (Vertex), WO 2005/077969 (Vertex), WO 2005/035525 (Vertex), WO 2005/028502 (Vertex), WO 2005/007681 (Vertex), WO 2004/092162 (Vertex), WO 2004/092161 (Vertex), WO 2003/035060 (Vertex), WO 03/087092 (Vertex), WO 02/18369 (Vertex), WO 98/17679 (Vertex),
- Compound 1 described herein examples include the following: R1626, R1479 (Roche), MK-0608 (Merck), R1656, (Roche-Pharmasset), Valopicitabine (Idenix), JTK-002/003, JTK-109 (Japan Tobacco), GS-7977(Gilead), EDP-239 (Enanta), PPI-1301 (Presido Pharmaceuticals), (Gao M. et al.
- class I interferons such as alpha-interferons, beta-interferons, delta-interferons, omega-interferons, tau-inteferons, x-interferons, consensus interferons and asialo-interferons
- class II interferons such as gamma-interferons
- pegylated interferons interferon alpha 1A, interferon alpha 1 B, interferon alpha 2A, and interferon alpha 2B, thalidomide, IL-2; hematopoietins, IMPDH inhibitors (for example, Merimepodib (Vertex Pharmaceuticals Inc.)), natural interferon (such as OMNIFERON, Viragen and SUMIFERON, Sumitomo, and a blend of natural interferon
- Some embodiments described herein relate to a method of ameliorating or treating a viral infection that can include contacting a cell infected with the viral infection with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a mono-, di, and/or tri-phosphate thereof, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to a method of ameliorating or treating a viral infection that can include administering to a subject suffering from the viral infection an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to a method of inhibiting viral replication of a virus that can include contacting a cell infected with the virus with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to the use of a compound described herein, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for ameliorating or treating a HCV infection, wherein the medicament can be manufactured for use in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- a compound described herein, or a pharmaceutically acceptable salt thereof in the preparation of a medicament for contacting a cell infected with a hepatitis C virus, wherein the medicament can be manufactured for use in combination with one or more agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- kits for treating diseases and conditions for treating viral replication of a virus (for example, HCV), wherein the medicament can be manufactured for use in combination with one or more agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered with one or more additional agent(s) together in a single pharmaceutical composition.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered with one or more additional agent(s) as two or more separate pharmaceutical compositions.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered in one pharmaceutical composition, and at least one of the additional agents can be administered in a second pharmaceutical composition. If there are at least two additional agents, one or more of the additional agents can be in a first pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and at least one of the other additional agent(s) can be in a second pharmaceutical composition.
- one or more solid forms of Compound 1 described herein can be used in combination with VX-950 (TELAPREVIR®) for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV.
- Form J can be used in combination with VX-950 (TELAPREVIR®) for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV.
- one or more solid forms of Compound 1 described herein can be used in combination with VX-222 for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV.
- Form J can be used in combination with VX-222 for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV.
- the dosing amount(s) and dosing schedule(s) when using one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agents are within the knowledge of those skilled in the art.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered in addition to that therapy, or in place of one of the agents of a combination therapy, using effective amounts and dosing protocols as described herein.
- the order of administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, with one or more additional agent(s) can vary.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered prior to all additional agents.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered prior to at least one additional agent.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered concomitantly with one or more additional agent(s).
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered subsequent to the administration of at least one additional agent.
- one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein can be administered subsequent to the administration of all additional agents.
- the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in an additive effect.
- the combination one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in a synergistic effect.
- the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in a strongly synergistic effect.
- the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) is not antagonistic.
- the term “antagonistic” means that the activity of the combination of compounds is less compared to the sum of the activities of the compounds in combination when the activity of each compound is determined individually (i.e. as a single compound).
- the term “synergistic effect” means that the activity of the combination of compounds is greater than the sum of the individual activities of the compounds in the combination when the activity of each compound is determined individually.
- the term “additive effect” means that the activity of the combination of compounds is about equal to the sum of the individual activities of the compound in the combination when the activity of each compound is determined individually.
- a potential advantage of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) may be a reduction in the required amount(s) of one or more compounds of FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) that is effective in treating a disease condition disclosed herein (for example, HCV), as compared to the amount required to achieve same therapeutic result when one or more compounds of FIGS.
- a disease condition disclosed herein for example, HCV
- 32-34 are administered without one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- the amount of a compound in FIGS. 32-34 can be less compared to the amount of the compound in FIGS. 32-34 (including a pharmaceutically acceptable salt and prodrug thereof), needed to achieve the same viral load reduction when administered as a monotherapy.
- Another potential advantage of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) is that the use of two or more compounds having different mechanism of actions can create a higher barrier to the development of resistant viral strains compared to the barrier when a compound is administered as monotherapy.
- Additional advantages of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in FIGS. 32-34 may include little to no cross resistance between one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agent(s) in FIGS.
- samples were scanned on the Bruker D8 Discover operated at 40 kV, 35 mA. Two frames were registered with an exposure of 120 seconds. Data were integrated over the range of 4.5°-39.0° 2 theta with a step size of 0.02° and merged into one continuous pattern. All XRPD spectra provided herein are measured on a degrees 2-Theta scale.
- Compound 3b-2 (10 g, 16.4 mmol) was suspended in 100 mL of 80% formic acid and the reaction mixture was stirred at 50° C. for 1.5 hours. Solvent was evaporated and the residue was co-evaporated with toluene to remove traces of acid and water. The residue was purified by RP HPLC (0.5% HCOOH in MeCN and water as mobile phase) to give Compound 1(rac) (a mixture of two P-diastereomers, 5.6 g, 63%).
- Step 4 Separation of Compound 1 and Compound 1—
- Nitrogen flow 10 L/min
- Nitrogen max pressure 10 psi
- Inlet temperature 95-100° C.
- Form A Representative XRPD peaks for Form A are shown in the table below. Form A can be identified and/or characterized by one or more of the peaks in the table below.
- Form A can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form B methyl tert-butyl ether solvate
- Form B cyclohexane solvate
- Form A To a vial containing 20 mg of Form A was added 200 ⁇ L of HPLC grade methyl tert-butyl ether (MTBE). The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The mixture was filtered through a 0.22 ⁇ m PVDF filter to provide Form B (methyl tert-butyl ether solvate).
- MTBE HPLC grade methyl tert-butyl ether
- Form B methyl tert-butyl ether solvate
- peaks from the 13 C NMR solid state spectrum of Form B are shown in the table below.
- Form B methyl tert-butyl ether solvate
- Form B methyl tert-butyl ether solvate
- peaks from the XRPD spectrum of Form B are shown in the table below.
- Form B methyl tert-butyl ether solvate
- Form A To a vial containing 20 mg of Form A was added 200 ⁇ l of HPLC grade cyclohexane. The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The mixture was filtered through a 0.22 ⁇ m PVDF filter to provide Form B (cyclohexane solvate).
- Form B cyclohexane solvate
- Representative peaks from the 13 C NMR solid state spectrum of Form B are shown in the table below.
- Form B cyclohexane solvate
- Form B can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form B cyclohexane solvate
- peaks from the XRPD spectrum of Form B are shown in the table below.
- Form B cyclohexane solvate
- Form B can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form C nitromethane solvate
- peaks from the 13 C NMR solid state spectrum of Form C are shown in the table below.
- Form C nitromethane solvate
- Form C can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form C nitromethane solvate
- peaks from the XRPD spectrum of Form C are shown in the table below.
- Form C nitromethane solvate
- Form C can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form A To a vial containing 50 mg of Form A was added 100 ⁇ L of HPLC grade acetonitrile (ACN) and stirred at RT until all solids dissolved. The vial was then stirred at an intermediate speed (250 rpm) on a stir plate at 5° C. for 3 weeks. The mixture was filtered through a 0.22 ⁇ m PVDF filter, and the isolated solid was dried at RT and atmospheric pressure until the solid was substantially desolvated to provide Form D (desolvated acetonitrile solvate).
- ACN HPLC grade acetonitrile
- Form D desolvated acetonitrile solvate
- peaks from the 13 C NMR solid state spectrum of Form D are shown in the table below.
- Form D desolvated acetonitrile solvate
- Form D can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form D desolvated acetonitrile solvate
- peaks from the XRPD spectrum of Form D are shown in the table below.
- Form D desolvated acetonitrile solvate
- Form E dioxane solvate
- peaks from the 13 C NMR solid state spectrum of Form E are shown in the table below.
- Form E dioxane solvate
- Form E can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form E dioxane solvate
- peaks from the XRPD spectrum of Form E are shown in the table below.
- Form E dioxane solvate
- Form E can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form F tetrahydrofuran solvate
- Table G Representative peaks from the 13 C NMR solid state spectrum of Form F (tetrahydrofuran solvate) are shown in the table below.
- Form F tetrahydrofuran solvate
- Form F tetrahydrofuran solvate
- peaks from the XRPD spectrum of Form F are shown in the table below.
- Form F tetrahydrofuran solvate
- Form G (dichloromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form G (dichloromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
- Amorphous Form O To a vial containing 120 mg of Amorphous Form O was added 100 ⁇ L of HPLC grade acetonitrile (ACN), and the mixture was stirred at RT until the solids dissolved. The vial was then sonicated in an ultrasonicator for 2 minutes, and the mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 5 minutes. The mixture was filtered through a 0.22 ⁇ m PVDF filter to provide Form H (acetonitrile solvate).
- ACN HPLC grade acetonitrile
- Form H acetonitrile solvate
- Representative peaks from the 13 C NMR solid state spectrum of Form H are shown in the table below.
- Form H acetonitrile solvate
- Form H acetonitrile solvate
- peaks from the XRPD spectrum of Form H are shown in the table below.
- Form H acetonitrile solvate
- Form I isostructural Form I (isopropyl acetate solvate) and Form I (ethyl acetate solvate).
- Form I isopropyl acetate solvate
- Form I ethyl acetate solvate
- Form I isopropyl acetate solvate
- peaks from the 13 C NMR solid state spectrum of Form I are shown in the table below.
- Form I isopropyl acetate solvate
- Form I isopropyl acetate solvate
- peaks from the XRPD spectrum of Form I are shown in the table below.
- Form I isopropyl acetate solvate
- Form I ethyl acetate solvate
- peaks from the 13 C NMR solid state spectrum of Form I are shown in the table below.
- Form I ethyl acetate solvate
- Form I ethyl acetate solvate
- peaks from the XRPD spectrum of Form I are shown in the table below.
- Form I ethyl acetate solvate
- Form I can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form J can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form J Representative peaks from the 13 C NMR solid state spectrum of Form J are shown in the table below.
- Form J can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form K Representative peaks from the 13 C NMR solid state spectrum of Form K are shown in the table below.
- Form K can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form K can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form L acetonitrile solvate
- Representative peaks from the 13 C NMR solid state spectrum of Form L are shown in the table below.
- Form L acetonitrile solvate
- Form L can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form L acetonitrile solvate
- peaks from the XRPD spectrum of Form L are shown in the table below.
- Form L acetonitrile solvate
- Form L as produced above, was isolated from the mixture and placed in a vacuum overnight until the solid was substantially desolvated, to provide Form M.
- Form M Representative peaks from the 13 C NMR solid state spectrum of Form M are shown in the table below.
- Form M can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form M can be identified and/or characterized by one or more of the peaks selected from the table below.
- Form N toluene solvate
- peaks from the 13 C NMR solid state spectrum of Form N are shown in the table below.
- Form N toluene solvate
- Form N toluene solvate
- peaks from the XRPD spectrum of Form N are shown in the table below.
- Form N toluene solvate
- Form N can be identified and/or characterized by one or more of the peaks selected from the table below.
- Huh-7 cells containing the self-replicating, subgenomic HCV replicon with a stable luciferase (LUC) reporter were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 2 mM L-glutamine and supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomyocin, 1% nonessential amino acids, and 0.5 mg/mL G418.
- DMEM Dulbecco's modified Eagle's medium
- FBS heat-inactivated fetal bovine serum
- penicillin-streptomyocin 1% nonessential amino acids
- Determination of 50% inhibitory concentration (EC 50 ) of compounds in HCV replicon cells were performed by the following procedure. On the first day, 5,000 HCV replicon cells were plated per well in a 96-well plate. On the following day, test compounds were solubilized in 100% DMSO to 100 ⁇ the desired final testing concentration. Each compound was then serially diluted (1:3) up to 9 different concentrations. Compounds in 100% DMSO are reduced to 10% DMSO by diluting 1:10 in cell culture media. The compounds were diluted to 10% DMSO with cell culture media, which were used to dose the HCV replicon cells in 96-well format. The final DMSO concentration was 1%. The HCV replicon cells were incubated at 37° C.
- Compound 1 was determined to have an EC 50 of less than 1 ⁇ M by the above procedure.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. 119(e) to U.S. provisional application No. 61/613,972, filed on Mar. 21, 2012. The entire contents of which is incorporated herein by reference.
- The present application relates to solid state forms, for example, crystalline forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate, pharmaceutical compositions that can include one or more solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate, and methods of treating or ameliorating diseases and/or conditions with one or more solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate. Also disclosed herein are methods of treating diseases and/or conditions with one or more solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate in combination with one or more other agents.
- Nucleoside analogs are a class of compounds that have been shown to exert antiviral and anticancer activity both in vitro and in vivo, and thus, have been the subject of widespread research for the treatment of viral infections and cancer. Nucleoside analogs are usually therapeutically inactive compounds that are converted by host or viral enzymes to their respective active anti-metabolites, which, in turn, may inhibit polymerases involved in viral or cell proliferation. The activation occurs by a variety of mechanisms, such as the addition of one or more phosphate groups and, or in combination with, other metabolic processes.
- Some embodiments disclosed herein generally relate to solid forms of 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate (hereinafter “Compound 1”) which has the structure below:
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form A.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form B.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form C.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form D.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form F.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form G.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form H.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form I.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form J.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form K.
- In some embodiments, Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form L.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form M.
- In some embodiments, Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form N.
- In some embodiments, Compound 1 can be T-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as
Amorphous Form 0. - Some embodiments disclosed herein generally relate to a process for producing Form
- A that can include:
- a) contacting Compound 1 with a first amount of ethyl acetate to form a mixture;
- b) heating the mixture until the solids are dissolved;
- c) cooling the mixture to allow precipitation of a solid;
- d) optionally adding a second amount of ethyl acetate and repeating steps a, b and c; and
- e) isolating Form A from said mixture.
- Some embodiments disclosed herein generally relate to a process for producing Form J that can include:
- a) contacting Amorphous Form O with ethanol to form a mixture; and
- b) isolating Form J from said mixture.
- Some embodiments disclosed herein generally relate to a process for producing a solvated solid form of Compound 1 that can include:
- a) contacting Compound 1 with a solvent to form a mixture; and
- b) isolating the solvated solid form of Compound 1 from said mixture.
- Some embodiments disclosed herein generally relate to a method of ameliorating or treating a viral infection (for example, a HCV infection) in a subject, said method can include administering to said subject an effective amount of one or more solid forms of Compound 1 as described herein.
- Some embodiments disclosed herein relate to a pharmaceutical composition that can include one or more solid forms of Compound 1 as described herein.
- Some embodiments disclosed herein generally relate to a pharmaceutical composition that can include one or more solid forms of Compound 1, and one or more additional agent(s).
- Some embodiments disclosed herein relate to a method of ameliorating and/or treating a HCV infection that can include administering to a subject identified as suffering from the HCV infection an effective amount of a compound described herein or a pharmaceutically acceptable salt thereof (for example, one or more solid forms of Compound 1, or a pharmaceutically acceptable salt thereof), or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with an agent selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an other antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the foregoing.
-
FIG. 1 is an XRPD spectrum of Form A. -
FIG. 2 is a DSC spectrum of Form A. -
FIG. 3 is a 13C ssNMR spectrum of Form A. -
FIG. 4 is an XRPD spectrum of Form B. -
FIG. 5 is a 13C ssNMR spectrum of Form B. -
FIG. 6 is an XRPD spectrum of Form C. -
FIG. 7 is a 13C ssNMR spectrum of Form C. -
FIG. 8 is an XRPD spectrum of Form D. -
FIG. 9 is a 13C ssNMR spectrum of Form D. -
FIG. 10 is an XRPD spectrum of a mixture of Form A and Form E. -
FIG. 11 is a 13C ssNMR spectrum of a mixture of Form A and Form E. -
FIG. 12 is an XRPD spectrum of a mixture of Form A and Form F. -
FIG. 13 is a 13C ssNMR spectrum of a mixture of Form A and Form F. -
FIG. 14 is an XRPD spectrum of Form G. -
FIG. 15 is a 13C ssNMR spectrum of Form G. -
FIG. 16 is an XRPD spectrum of Form H. -
FIG. 17 is a 13C ssNMR spectrum of Form H. -
FIG. 18 is an XRPD spectrum of Form I. -
FIG. 19 is a 13C ssNMR spectrum of Form I. -
FIG. 20 is an XRPD spectrum of Form J. -
FIG. 21 is a DSC spectrum of Form J. -
FIG. 22 is a 13C ssNMR spectrum of Form J. -
FIG. 23 is an XRPD spectrum of Form K. -
FIG. 24 is a 13C ssNMR spectrum of Form K. -
FIG. 25 is an XRPD spectrum of Form L. -
FIG. 26 is a 13C ssNMR spectrum of Form L. -
FIG. 27 is an XRPD spectrum of Form M. -
FIG. 28 is a 13C ssNMR spectrum of Form M. -
FIG. 29 is an XRPD spectrum of Form N. -
FIG. 30 is a 13C ssNMR spectrum of Form N. -
FIG. 31 is an XRPD spectrum ofAmorphous Form 0. -
FIG. 32 shows examples of additional agents that can be used to treat HCV. -
FIG. 33 shows examples of Compounds of Formula (BB). -
FIG. 34 shows the generic Formula (DD). - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications referenced herein are incorporated by reference in their entirety unless stated otherwise. In the event that there are a plurality of definitions for a term herein, those in this section prevail unless stated otherwise. As used herein, the following definitions shall apply unless otherwise indicated.
- The term “crystalline” refers to a substance that has its atoms, molecules or ions packed in a regularly ordered three-dimensional pattern. The term “substantially crystalline” refers to a substance where a substantial portion of the substance is crystalline. For example, substantially crystalline materials can have more than about 85% crystallinity (e.g., more than about 90% crystallinity, more than about 95% crystallinity, or more than about 99% crystallinity).
- The chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry”, Thomas Sorrell, University Science Books, Sausalito: 1999, and “March's Advanced Organic Chemistry”, 5th Ed., Ed.: Smith, M. B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.
- As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (See, Biochem. 11:942-944 (1972)).
- The term “nucleoside” refers to a compound composed of an optionally substituted pentose moiety or modified pentose moiety attached to a heterocyclic base or tautomer thereof via a N-glycosidic bond, such as attached via the 9-position of a purine-base or the 1-position of a pyrimidine-base. Examples include, but are not limited to, a ribonucleoside comprising a ribose moiety and a deoxyribonucleoside comprising a deoxyribose moiety. A modified pentose moiety is a pentose moiety in which an oxygen atom has been replaced with a carbon and/or a carbon has been replaced with a sulfur or an oxygen atom. A “nucleoside” is a monomer that can have a substituted base and/or sugar moiety. Additionally, a nucleoside can be incorporated into larger DNA and/or RNA polymers and oligomers. In some instances, the nucleoside can be a nucleoside analog drug.
- The term “pharmaceutically acceptable salt” refers to a salt of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In some embodiments, the salt is an acid addition salt of the compound. Pharmaceutical salts can be obtained by reacting a compound with inorganic acids such as hydrohalic acid (e.g., hydrochloric acid or hydrobromic acid), sulfuric acid, nitric acid and phosphoric acid. Pharmaceutical salts can also be obtained by reacting a compound with an organic acid such as aliphatic or aromatic carboxylic or sulfonic acids, for example formic, acetic, succinic, lactic, malic, tartaric, citric, ascorbic, nicotinic, methanesulfonic, ethanesulfonic, p-toluensulfonic, salicylic or naphthalenesulfonic acid. Pharmaceutical salts can also be obtained by reacting a compound with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C1-C7 alkylamine, cyclohexylamine, triethanolamine, ethylenediamine, and salts with amino acids such as arginine and lysine.
- As used herein, the term “room temperature” refers to a temperature in the range of about 20° C. to about 25° C., such as a temperature in the range of about 21° C. to about 23° C.
- Terms and phrases used in this application, and variations thereof, especially in the appended claims, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing, the term ‘including’ should be read to mean ‘including, without limitation,’ ‘including but not limited to,’ or the like; the term ‘comprising’ as used herein is synonymous with ‘including,’ ‘containing,’ or ‘characterized by,’ and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps; the term ‘having’ should be interpreted as ‘having at least;’ the term ‘includes’ should be interpreted as ‘includes but is not limited to;’ the term ‘example’ is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; and use of terms like ‘preferably,’ ‘preferred,’‘desired,’ or ‘desirable,’ and words of similar meaning should not be understood as implying that certain features are critical, essential, or even important to the structure or function of the invention, but instead as merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the invention. In addition, the term “comprising” is to be interpreted synonymously with the phrases “having at least” or “including at least”. When used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound, composition or device, the term “comprising” means that the compound, composition or device includes at least the recited features or components, but may also include additional features or components. Likewise, a group of items linked with the conjunction ‘and’ should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as ‘and/or’ unless expressly stated otherwise. Similarly, a group of items linked with the conjunction ‘or’ should not be read as requiring mutual exclusivity among that group, but rather should be read as ‘and/or’ unless expressly stated otherwise.
- With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. The indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.
- It is understood that, in any compound described herein having one or more chiral centers, if an absolute stereochemistry is not expressly indicated, then each center may independently be of R-configuration or S-configuration or a mixture thereof. Thus, the compounds provided herein may be enantiomerically pure, enantiomerically enriched, racemic mixture, diastereomerically pure, diastereomerically enriched, or a stereoisomeric mixture. In addition it is understood that, in any compound described herein having one or more double bond(s) generating geometrical isomers that can be defined as E or Z, each double bond may independently be E or Z a mixture thereof. Unless otherwise stated, all tautomeric forms of Compound 1 are intended to be included.
- Likewise, it is understood that, in any compound described, all tautomeric forms are also intended to be included. For example all tautomers of phosphate groups are intended to be included. Furthermore, all tautomers of heterocyclic bases known in the art are intended to be included, including tautomers of natural and non-natural purine-bases and pyrimidine-bases.
- It is to be understood that where compounds disclosed herein have unfilled valencies, then the valencies are to be filled with hydrogens or isotopes thereof, e.g., hydrogen-1 (protium) and hydrogen-2 (deuterium).
- It is understood that the compounds described herein can be labeled isotopically. Substitution with isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, such as, for example, increased in vivo half-life or reduced dosage requirements. Each chemical element as represented in a compound structure may include any isotope of said element. For example, in a compound structure a hydrogen atom may be explicitly disclosed or understood to be present in the compound. At any position of the compound that a hydrogen atom may be present, the hydrogen atom can be any isotope of hydrogen, including but not limited to hydrogen-1 (protium) and hydrogen-2 (deuterium). Thus, reference herein to a compound encompasses all potential isotopic forms unless the context clearly dictates otherwise.
- It is understood that the methods and combinations described herein include crystalline forms (also known as polymorphs, which include the different crystal packing arrangements of the same elemental composition of a compound), amorphous phases, salts, solvates, and hydrates. In some embodiments, the compounds described herein exist in solvated forms with pharmaceutically acceptable solvents such as water, ethanol, or the like. In other embodiments, the compounds described herein exist in unsolvated form. Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and may be formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, or the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.
- Where a range of values is provided, it is understood that the upper and lower limit, and each intervening value between the upper and lower limit of the range is encompassed within the embodiments.
- All XRPD spectra provided herein are measured on a degrees 2-Theta scale, and all 13C solid state NMR's are referenced to adamantane at 29.5 ppm.
- Form A
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form A.
- In some embodiments, Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 8.3 to about 8.7 degrees, a peak in the range of from about 15.6 to about 16.0 degrees, a peak in the range of from about 21.2 to about 21.6 degrees, a peak in the range of from about 21.8 to about 22.2 degrees, a peak in the range of from about 22.4 to about 22.8 degrees, and a peak in the range of from about 23.1 to about 23.5 degrees.
- In some embodiments, Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 8.3 to about 8.7 degrees, a peak in the range of from about 15.6 to about 16.0 degrees and a peak in the range of from about 21.2 to about 21.6 degrees.
- In some embodiments, Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees.
- In some embodiments, Form A can be characterized by a peak at about 8.5 degrees, a peak at about 15.8 degrees, and a peak at about 21.4 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form A can be characterized by a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form A can be characterized by a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, and a peak at about 21.4 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form A can be characterized by a peak at about 7.0 degrees, a peak at about 8.5 degrees, a peak at about 15.8 degrees, a peak at about 21.4 degrees, a peak at about 22.0 degrees, a peak at about 22.6 degrees, and a peak at about 23.3 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form A can exhibit an X-ray powder diffraction pattern as shown in
FIG. 1 . - In some embodiments, Form A can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 7.0* 91.8 2 8.5* 100.0 3 10.0 70.0 4 11.0 73.4 5 14.7 90.3 6 15.5 76.7 7 15.8* 79.6 8 16.6 90.9 9 17.8 81.1 10 18.0 99.2 11 18.8 72.2 12 19.9 76.1 13 20.8 73.5 14 21.4* 77.0 15 22.0** 68.9 16 22.6** 73.0 17 23.3** 68.8 18 25.8 71.7 19 28.7 67.4 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form A can be characterized by a DSC thermogram as shown in
FIG. 2 . In some embodiments, Form A can be characterized by a melting point in the range of from about 137° C. to about 139° C. In other embodiments, Form A can be characterized by a melting point of about 138° C. In some embodiments, Form A can be characterized by a melting point of about 138.4° C. In some embodiments, Form A can be characterized by an endotherm in the range of from about 137° C. to about 139° C. In other embodiments, Form A can be characterized by an endotherm of about 138° C. In some embodiments, Form A can be characterized by an endotherm of about 138.4° C. - In some embodiments, Form A can be characterized by a peak at about 130.4 ppm, a peak at about 69.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form A can be characterized by a peak at about 172.0 ppm, a peak at about 146.6 ppm, a peak at about 130.4 ppm, a peak at about 104.1 ppm, a peak at about 69.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form A can exhibit a 13C NMR solid state spectrum as shown in
FIG. 3 . - In some embodiments, Form A can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0 24.12 2 172.0* 23.11 3 170.2 24.80 4 151.3 28.62 5 150.5 38.71 6 146.6* 14.23 7 143.9 12.74 8 130.4* 36.15 9 126.2 27.80 10 122.9 3.91 11 120.4 33.00 12 104.1* 23.68 13 102.2 23.18 14 92.8 20.65 15 92.2 17.13 16 84.1 27.03 17 79.7 68.89 18 75.0 28.02 19 73.5 33.05 20 69.5* 34.76 21 69.2 27.63 22 66.9* 40.98 23 50.4 22.59 24 21.9 100.00 25 20.6* 39.44 Peaks with an asterisk (*) are major peaks - Form B
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form B.
- In some embodiments, Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.5 to about 5.9 degrees, a peak in the range of from about 9.2 to about 9.6 degrees, a peak in the range of from about 16.8 to about 17.2 degrees, and a peak in the range of from about 26.0 to about 26.4 degrees.
- In some embodiments, Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.7 degrees, a peak at about 9.4 degrees, a peak at about 17.0 degrees, and a peak at about 26.2 degrees.
- In some embodiments, Form B can be characterized by a peak at about 5.7 degrees, a peak at about 9.4 degrees, a peak at about 17.0 degrees, and a peak at about 26.2 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form B can be characterized by an X-ray diffraction pattern of
FIG. 4 . - In some embodiments, Form B can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.720* 71.8 2 9.395* 31.2 3 17.042* 100.0 4 26.219* 28.5 Peaks with an asterisk (*) are major peaks - In some embodiments, Form B can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 68.5 ppm, a peak at about 27.1 ppm, or a peak at about 19.5 ppm.
- In some embodiments, Form B can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 72.3 ppm, a peak at about 68.5 ppm, a peak at about 49.2 ppm, a peak at about 27.1 ppm and a peak at about 19.5 ppm. In some embodiments, Form B can be a methyl tert-butyl solvate.
- In some embodiments, Form B can be characterized by a peak at about 118.3 ppm, a peak at about 68.5 ppm, and a peak at about 27.1 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form B can be characterized by a peak at about 173.2 ppm, a peak at about 129.9 ppm, a peak at about 118.3 ppm, a peak at about 68.5 ppm, a peak at about 27.1 ppm, and a peak at about 19.5 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form B can be characterized by a 13C NMR solid state spectrum of
FIG. 5 . - In some embodiments, Form B (methyl tert-butyl ether solvate) can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.2* 55.0 2 169.9 24.91 3 151.1 50.46 4 144.7 20.81 5 129.9* 100.00 6 123.3 47.74 7 118.3* 77.98 8 103.5 41.84 9 92.8 29.78 10 82.4 43.94 11 79.8 88.11 12 74.1 57.28 13 72.3* 20.83 14 68.5* 76.94 15 68.1 67.80 16 50.9 12.62 17 50.3 27.03 18 49.2* 57.83 19 27.1* 61.90 20 22.6 76.64 21 22.2 75.51 22 22.0 16.01 23 21.7 65.44 24 19.5* 52.58 Peaks with an asterisk (*) are major peaks - In some embodiments, Form B can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.3 ppm, a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, a peak at about 79.8 ppm, a peak at about 27.2 ppm, and a peak at about 21.8 ppm.
- In other embodiments, Form B can be a cyclohexane solvate.
- In some embodiments, Form B can be characterized by a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, and a peak at about 21.8 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form B can be characterized by a peak at about 170.3 ppm, a peak at about 150.5 ppm, a peak at about 129.8 ppm, a peak at about 118.2 ppm, a peak at about 79.8 ppm, a peak at about 27.2 ppm, and a peak at about 21.8 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form B (cyclohexane solvate) can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 172.6 20.01 2 170.3* 26.09 3 150.5* 39.10 4 146.6 15.32 5 144.4 12.23 6 129.8* 31.00 7 126.3 25.02 8 122.6 15.89 9 120.4 26.04 10 118.2* 30.57 11 104.1 18.00 12 102.2 17.34 13 92.8 19.56 14 84.2 16.62 15 79.8* 53.48 16 75.0 22.56 17 73.6 20.49 18 69.5 21.11 19 68.1 19.74 20 66.9 21.59 21 64.0 13.37 22 50.5 20.41 23 40.8 12.34 24 27.2* 21.00 25 21.8* 100.00 26 18.6 15.87 Peaks with an asterisk (*) are major peaks - Form C
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form C.
- In some embodiments, Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 4.8 to about 5.2 degrees, a peak in the range of from about 6.4 to about 6.8 degrees, a peak in the range of from about 8.0 to about 8.4 degrees, a peak in the range of from about 9.0 to about 9.4 degrees, a peak in the range of from about 9.4 to about 9.8 degrees, a peak in the range of from about 16.1 to about 16.5 degrees, and a peak in the range of from about 22.1 to about 22.5 degrees.
- In some embodiments, Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, a peak at about 9.2 degrees, a peak at about 9.6 degrees, a peak at about 16.3 degrees, and a peak at about 22.3 degrees.
- In some embodiments, Form C can be characterized by a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, and a peak at about 22.3 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form C can be characterized by a peak at about 5.0 degrees, a peak at about 6.6 degrees, a peak at about 8.2 degrees, a peak at about 9.2 degrees, a peak at about 9.6 degrees, a peak at about 16.3 degrees, and a peak at about 22.3 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form C can be characterized by an X-ray powder diffraction pattern of
FIG. 6 . - In some embodiments, Form C can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 4.980* 27.4 2 6.573* 31.0 3 8.174* 39.0 4 9.151** 47.4 5 9.585** 56.2 6 16.337** 62.7 7 22.340* 28.1 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form C can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm.
- In some embodiments, Form C can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 63.8 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm.
- In some embodiments, Form C can be characterized by a peak at about 173.7 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, and a peak at about 25.1 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form C can be characterized by a peak at about 173.7 ppm, a peak at about 151.9 ppm, a peak at about 103.2 ppm, a peak at about 83.3 ppm, a peak at about 80.8 ppm, a peak at about 73.3 ppm, a peak at about 25.1 ppm, and a peak at about 20.1 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form C can be characterized by a 13C NMR solid state spectrum of
FIG. 7 . - In some embodiments, Form C can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.7* 72.2 2 163.6 27.15 3 162.7 27.66 4 152.6 33.02 5 151.9* 39.39 6 151.3 17.72 7 150.4 19.06 8 144.1 20.92 9 140.7 19.90 10 129.6 32.86 11 126.7 18.14 12 126.1 20.87 13 125.5 22.15 14 123.3 27.16 15 122.8 35.54 16 103.2* 40.00 17 102.5 24.12 18 101.9 21.60 19 93.3 34.02 20 92.4 35.66 21 83.3* 51.71 22 81.5 57.50 23 80.8* 54.60 24 80.3 75.92 25 73.3* 88.51 26 69.4 39.18 27 68.3 39.61 28 65.5 23.22 29 64.9 26.70 30 63.8* 54.98 31 51.8 21.78 32 50.6 28.73 33 25.1* 71.94 34 20.8 88.14 35 20.1* 100.00 36 18.8 24.24 Peaks with an asterisk (*) are major peaks - Form D
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form D.
- In some embodiments, Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.9 to about 8.3 degrees, a peak in the range of from about 13.2 to about 13.6 degrees, a peak in the range of from about 14.2 to about 14.6 degrees, a peak in the range of from about 17.0 to about 17.4 degrees, a peak in the range of from about 29.4 to about 29.8 degrees, and a peak in the range of from about 34.8 to about 35.2 degrees.
- In some embodiments, Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 14.4 degrees, a peak at about 17.2 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees.
- In some embodiments, Form D can be characterized by a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form D can be characterized by a peak at about 8.1 degrees, a peak at about 13.4 degrees, a peak at about 14.4 degrees, a peak at about 17.2 degrees, a peak at about 29.6 degrees, and a peak at about 35.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form D can be characterized by an X-ray powder diffraction pattern of
FIG. 8 . - In some embodiments, Form D can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 8.105* 55.6 2 13.357* 44.1 3 14.424** 100.0 4 17.215** 66.0 5 29.590* 29.1 6 35.019* 25.3 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form D can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 139.1 ppm, a peak at about 125.3 ppm, a peak at about 120.8 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, a peak at about 67.5 ppm, and a peak at about 63.0 ppm.
- In some embodiments, Form D can be characterized by a peak at about 125.3 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, and a peak at about 67.5 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form D can be characterized by a peak at about 139.1 ppm, a peak at about 125.3 ppm, a peak at about 120.8 ppm, a peak at about 105.2 ppm, a peak at about 72.8 ppm, a peak at about 67.5 ppm, and a peak at about 63.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form D can be characterized by a 13C NMR solid state spectrum of
FIG. 9 . - In some embodiments, Form D can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 172.5 31.47 2 170.3 39.91 3 163.0 36.97 4 152.7 57.96 5 150.4 41.72 6 143.3 19.06 7 139.1* 20.55 8 130.9 74.16 9 130.2 33.92 10 125.3* 71.51 11 124.4 39.60 12 120.8* 61.60 13 105.2* 73.13 14 92.3 31.47 15 91.0 29.46 16 81.8 47.28 17 79.9 100.00 18 78.5 65.96 19 73.6 52.41 20 72.8* 51.48 21 69.4 48.17 22 67.5* 45.52 23 63.0* 84.89 24 53.6 23.06 25 50.8 25.81 26 23.7 50.37 27 22.8 89.54 28 22.0 51.17 29 21.3 98.72 30 20.8 54.41 31 18.3 54.61 Peaks with an asterisk (*) are major peaks - Form E
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 10.4 to about 10.8 degrees, a peak in the range of from about 12.7 to about 13.1 degrees, a peak in the range of from about 21.4 to about 21.8 degrees, a peak in the range of from about 24.3 to about 24.7 degrees, and a peak in the range of from about 24.8 to about 25.2 degrees.
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form E.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 12.7 to about 13.1 degrees, a peak in the range of from about 21.4 to about 21.8 degrees, and a peak in the range of from about 24.8 to about 25.2 degrees.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees.
- In some embodiments, Form E can be characterized by a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak from about 7.6 to about 8.0 degrees, a peak from about 10.4 to about 10.8 degrees, a peak from about 12.7 to about 13.1 degrees, a peak from about 24.3 to about 24.7 degrees, and a peak from about 24.8 to about 25.2 degrees.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees.
- In some embodiments, Form E can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form E can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form E can be characterized by a peak at about 7.8 degrees, a peak at about 10.6 degrees, a peak at about 12.9 degrees, a peak at about 24.5 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form E can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 7.765* 58.9 2 10.563** 22.3 3 12.901* 40.7 4 21.571* 26.4 5 24.466** 51.4 6 25.016* 31.6 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form E can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm.
- In some embodiments, Form E can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 68.0 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm.
- In some embodiments, Form E can be characterized by a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, and a peak at about 67.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form E can be characterized by a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 130.2 ppm, a peak at about 118.3 ppm, a peak at about 73.9 ppm, a peak at about 67.0 ppm, and a peak at about 22.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form E can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 118.3 ppm, or a peak at about 73.9 ppm. In some embodiments, Form E can be characterized by a peak at about 118.3 ppm, and a peak at about 73.9 ppm in a 13C NMR solid state spectrum. In some embodiments, Form E can be characterized by a peak at about 173.0 ppm, a peak at about 150.7 ppm, a peak at about 118.3 ppm, and a peak at about 73.9 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form E can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0* 56.27 2 172.1 10.64 3 170.1 29.76 4 151.3 14.75 5 150.7* 55.30 6 146.7 6.43 7 145.2 17.07 8 144.0 6.43 9 130.2* 78.40 10 126.2 14.42 11 123.7 34.51 12 120.5 15.84 13 118.3* 65.27 14 104.1 11.22 15 103.2 33.55 16 102.2 11.20 17 92.7 28.19 18 84.1 12.31 19 82.4 35.17 20 80.1 73.44 21 79.8 36.49 22 75.0 14.45 23 73.9* 48.37 24 69.2 53.62 25 68.0* 59.07 26 67.0* 32.83 27 50.4 28.84 28 22.0* 100.00 29 21.7 93.59 30 21.4 58.58 31 20.6 18.91 32 19.4 40.73 Peaks with an asterisk (*) are major peaks - Form F
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form F.
- In some embodiments, Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.8 to about 6.2 degrees, a peak in the range of from about 6.8 to about 7.2 degrees, a peak in the range of from about 17.3 to about 17.7 degrees, and a peak in the range of from about 17.8 to about 18.2 degrees.
- In some embodiments, Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.0 degrees, a peak at about 7.0 degrees, a peak at about 17.5 degrees, and a peak at about 18.0 degrees.
- In some embodiments, Form F can be characterized by a peak at about 7.8 degrees, a peak at about 12.9 degrees, a peak at about 21.6 degrees, and a peak at about 25.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form F can be characterized by a peak at about 6.0 degrees, a peak at about 7.0 degrees, a peak at about 17.5 degrees, and a peak at about 18.0 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form F can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.090* 100.0 2 6.970* 32.4 3 17.538* 30.7 4 18.048* 56.0 Peaks with an asterisk (*) are major peaks - In some embodiments, Form F can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm.
- In some embodiments, Form F can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 68.2 ppm, a peak at about 66.9 ppm, a peak at about 25.7 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm.
- In some embodiments, Form F can be characterized by a peak at about 130.4 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, and a peak at about 20.6 ppm in a 13C NMR solid state spectrum. In still a further embodiment, Form F can be characterized by a peak at about 6.1 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form F can be characterized by a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 130.4 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, a peak at about 66.9 ppm, a peak at about 21.8 ppm, and a peak at about 20.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form F can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, or a peak at about 21.8 ppm. In some embodiments, Form F can be characterized by a peak at about 73.5 ppm in a 13C NMR solid state spectrum. In some embodiments, Form F can be characterized by a peak at about 170.2 ppm, a peak at about 150.5 ppm, a peak at about 79.7 ppm, a peak at about 73.5 ppm, and a peak at about 21.8 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form F can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0 21.53 2 172.0 24.07 3 170.2* 27.88 4 151.3 28.85 5 150.5* 40.71 6 146.6 11.13 7 145.2 6.82 8 143.9 11.03 9 130.4* 33.74 10 126.2 25.38 11 123.1 8.05 12 120.4 29.96 13 104.0 20.89 14 103.2 9.89 15 102.2 20.47 16 92.8 22.77 17 92.2 18.97 18 84.0 21.12 19 81.9 7.45 20 79.7* 71.06 21 75.0 24.15 22 73.5* 30.33 23 69.5 29.78 24 69.2 27.71 25 68.2* 20.78 26 66.9* 34.82 27 50.4 28.03 28 25.7* 7.70 29 21.8* 100.00 30 20.6* 39.64 Peaks with an asterisk (*) are major peaks - Form G
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form G.
- In some embodiments, Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.7 to about 6.1 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 7.6 to about 8.0 degrees, a peak in the range of from about 12.3 to about 12.7 degrees, a peak in the range of from about 17.5 to about 17.9 degrees, and a peak in the range of from about 18.0 to about 18.4 degrees.
- In some embodiments, Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.7 to about 6.1 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 7.6 to about 8.0 degrees and a peak in the range of from about 17.5 to about 17.9 degrees.
- In some embodiments, Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, a peak at about 12.5 degrees, a peak at about 17.7 degrees, and a peak at about 18.2 degrees.
- In some embodiments, Form G can be characterized by a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, and a peak at about 17.7 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form G can be characterized by a peak at about 5.9 degrees, a peak at about 7.5 degrees, a peak at about 7.8 degrees, a peak at about 12.5 degrees, a peak at about 17.7 degrees, and a peak at about 18.2 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form G can be characterized by an X-ray powder diffraction pattern of
FIG. 14 . - In some embodiments, Form G can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.857* 100.0 2 7.498* 41.6 3 7.835* 32.1 4 12.522** 23.5 5 17.733* 53.0 6 18.193** 23.5 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form G can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, and a peak at about 20.4 ppm.
- In some embodiments, Form G can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, a peak at about 54.2 ppm, and a peak at about 20.4 ppm.
- In some embodiments, Form G can be characterized by a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, and a peak at about 69.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form G can be characterized by a peak at about 172.9 ppm, a peak at about 150.8 ppm, a peak at about 130.4 ppm, a peak at about 119.6 ppm, a peak at about 118.7 ppm, a peak at about 83.1 ppm, a peak at about 69.0 ppm, and a peak at about 20.4 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form G can be characterized by a 13C NMR solid state spectrum of
FIG. 15 . - In some embodiments, Form G can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 172.9* 47.8 2 172.5 60.77 3 170.1 31.87 4 150.8* 97.73 5 145.6 17.22 6 143.7 10.94 7 130.4* 78.80 8 123.6 13.92 9 122.8 39.28 10 122.2 22.62 11 119.6* 30.97 12 118.7* 83.25 13 103.6 49.34 14 103.2 27.56 15 93.1 34.63 16 92.6 30.12 17 83.1* 44.78 18 82.6 41.59 19 80.2 49.48 20 79.9 89.47 21 79.5 48.95 22 74.4 42.00 23 73.5 36.87 24 73.3 36.16 25 69.0* 46.99 26 68.8 93.22 27 68.5 53.49 28 68.3 50.90 29 68.0 70.75 30 54.2* 17.40 31 50.5 44.46 32 23.4 36.90 33 22.9 82.85 34 22.6 100.00 35 21.8 87.94 36 21.4 85.89 37 20.4* 70.1 38 20.1 39.2 Peaks with an asterisk (*) are major peaks - Form H
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form H.
- In some embodiments, Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 7.9 to about 8.3 degrees, a peak in the range of from about 13.8 to about 14.2 degrees, a peak in the range of from about 17.0 to about 17.4 degrees, and a peak in the range of from about 19.9 to about 20.3 degrees.
- In some embodiments, Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 8.1 degrees, a peak at about 14.0 degrees, a peak at about 17.2 degrees, and a peak at about 20.1 degrees.
- In some embodiments, Form H can be characterized by a peak at about 8.1 degrees, a peak at about 14.0 degrees, a peak at about 17.2 degrees, and a peak at about 20.1 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form H can be characterized by an X-ray powder diffraction pattern of
FIG. 16 . - In some embodiments, Form H can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 8.132* 81.7 2 14.020* 34.6 3 17.226* 61.7 4 20.902* 27.3 Peaks with an asterisk (*) are major peaks - In some embodiments, Form H can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, and a peak at about 20.6 ppm.
- In some embodiments, Form H can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, a peak at about 20.6 ppm, and a peak at about 2.2 ppm.
- In some embodiments, Form H can be characterized by a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 119.8 ppm, and a peak at about 104.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form H can be characterized by a peak at about 173.4 ppm, a peak at about 153.4 ppm, a peak at about 152.2 ppm, a peak at about 129.8 ppm, a peak at about 119.8 ppm, a peak at about 104.6 ppm, a peak at about 79.4 ppm, and a peak at about 20.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form H can be characterized by a 13C NMR solid state spectrum of
FIG. 17 . - In some embodiments, Form H can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.4* 70.7 2 164.4 44.87 3 153.4* 31.83 4 152.2* 61.17 5 141.4 42.94 6 129.8* 70.37 7 123.6 53.72 8 119.8* 55.92 9 104.6* 76.16 10 92.3 56.76 11 82.6 35.67 12 81.9 32.74 13 79.4* 100.00 14 73.4 96.98 15 68.9 54.71 16 61.7 73.15 17 53.6 47.24 18 23.4 79.96 19 22.9 86.96 20 21.6 41.15 21 20.6* 90.05 22 2.2* 14.59 Peaks with an asterisk (*) are major peaks - Form I
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form I.
- In some embodiments, Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.2 to about 6.6 degrees, a peak in the range of from about 9.1 to about 9.5 degrees, a peak in the range of from about 10.6 to about 11.0 degrees, and a peak in the range of from about 11.6 to about 12.0 degrees.
- In some embodiments, Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.4 degrees, a peak at about 9.3 degrees, a peak at about 10.8 degrees, and a peak at about 11.8 degrees.
- In some embodiments, Form I can be characterized by a peak at about 6.4 degrees, a peak at about 9.3 degrees, a peak at about 10.8 degrees, and a peak at about 11.8 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form I can be characterized by an X-ray powder diffraction pattern of
FIG. 18 . - In some embodiments, Form I can be characterized by one or more peaks in an X-ray powder diffraction pattern selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.434* 59.2 2 9.283* 30.8 3 10.831* 55.3 4 11.794* 28.3 Peaks with an asterisk (*) are major peaks - In some embodiments, Form I can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm.
- In some embodiments, Form I can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.1 ppm, a peak at about 168.6 ppm, a peak at about 152.1 ppm, a peak at about 123.6 ppm, a peak at about 102.6 ppm, a peak at about 71.4 ppm, a peak at about 63.5 ppm, a peak at about 61.9 ppm, a peak at about 22.4 ppm, and a peak at about 15.5 ppm. In some embodiments, Form I can be an ethyl acetate solvate.
- In some embodiments, Form I (ethyl acetate solvate) can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.2 27.6 2 173.1* 34.33 3 170.3 20.24 4 168.6* 20.76 5 152.1* 41.55 6 151.1 35.37 7 144.9 20.96 8 143.6 18.23 9 129.4 12.59 10 126.1 23.63 11 123.6* 24.98 12 119.3 10.42 13 102.6* 56.41 14 93.2 22.66 15 91.1 23.83 16 81.7 36.81 17 80.6 41.38 18 79.6 68.17 19 74.3 34.18 20 73.2 33.47 21 71.4* 32.36 22 69.3 33.35 23 68.7 34.79 24 63.5* 32.91 25 61.9* 21.88 26 51.3 22.60 27 50.5 21.35 28 22.4* 100.00 29 20.1 52.23 30 15.5* 16.24 Peaks with an asterisk (*) are major peaks - In some embodiments, Form I can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.0 ppm, a peak at about 168.4 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm. In some embodiments, Form I can be an isopropyl acetate solvate.
- In some embodiments, Form I can be characterized by a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, and a peak at about 63.3 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form I can be characterized by a peak at about 173.0 ppm, a peak at about 152.1 ppm, a peak at about 126.1 ppm, a peak at about 102.7 ppm, a peak at about 74.5 ppm, a peak at about 71.2 ppm, a peak at about 63.3 ppm, and a peak at about 23.3 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form I can be characterized by a 13C NMR solid state spectrum of
FIG. 19 . - In some embodiments, Form I (isopropyl acetate solvate) can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.2 28.4 2 173.0* 35.35 3 170.1 18.49 4 168.4* 18.99 5 152.1* 44.16 6 151.0 35.26 7 144.8 19.59 8 143.5 18.22 9 129.9 26.35 10 126.1* 27.72 11 123.4 33.24 12 122.8 27.21 13 119.6 9.23 14 102.7* 56.58 15 93.2 23.93 16 91.1 24.94 17 81.6 37.12 18 80.5 42.31 19 79.6 73.82 20 74.5* 37.87 21 73.2 37.91 22 71.2* 34.86 23 69.3 62.97 24 68.8 39.70 25 63.3* 34.57 26 51.1 22.87 27 50.3 19.47 28 23.3* 100.00 29 22.8 76.24 30 21.9 75.98 31 21.4 42.76 32 20.4 36.17 33 20.0 38.34 Peaks with an asterisk (*) are major peaks - Form J
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form J.
- In some embodiments, Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.9 to about 6.3 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 11.9 to about 12.3 degrees, a peak in the range of from about 13.1 to about 13.5 degrees, a peak in the range of from about 13.8 to about 14.2 degrees, a peak in the range of from about 18.3 to about 18.7 degrees, a peak in the range of from about 22.4 to about 22.8 degrees, a peak in the range of from about 33.0 to about 33.4 degrees, a peak in the range of from about 33.8 to about 34.2 degrees, and a peak in the range of from about 35.1 to about 35.5 degrees.
- In some embodiments, Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.9 to about 6.3 degrees, a peak in the range of from about 7.3 to about 7.7 degrees, a peak in the range of from about 11.9 to about 12.3 degrees, a peak in the range of from about 13.1 to about 13.5 degrees, a peak in the range of from about 13.8 to about 14.2 degrees and a peak in the range of from about 18.3 to about 18.7 degrees.
- In some embodiments, Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, a peak at about 18.5 degrees, a peak at about 22.6 degrees, a peak at about 33.2 degrees, a peak at about 34.0 degrees, and a peak at about 35.3 degrees.
- In some embodiments, Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, and a peak at about 18.5 degrees.
- In some embodiments, Form J can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.1 degrees, a peak at about 7.5 degrees, a peak at about 12.1 degrees, a peak at about 13.3 degrees, a peak at about 14.0 degrees, a peak at about 18.5 degrees, a peak at about 22.6 degrees, a peak at about 33.2 degrees, a peak at about 34.0 degrees, and a peak at about 35.3 degrees.
- In some embodiments, Form J can be characterized by an X-ray powder diffraction pattern of
FIG. 20 . - In some embodiments, Form J can be characterized by one or more XRPD peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.1* 69.2 2 7.5* 54.4 3 9.0 21.2 4 9.9 21.2 5 10.8 34.0 6 11.1 44.2 7 11.4 26.5 8 12.1* 100.0 9 12.9 24.6 10 13.3* 31.2 11 14.0* 27.2 12 14.8 28.3 13 15.1 30.2 14 15.4 29.5 15 16.1 33.0 16 16.7 41.0 17 17.6 29.8 18 18.0 54.6 19 18.5* 47.3 20 18.9 25.6 21 19.4 41.6 22 19.6 35.8 23 20.3 43.5 24 20.7 59.8 25 21.1 43.8 26 21.7 35.5 27 22.6** 30.1 28 22.3 24.3 29 23.8 23.1 30 24.7 32.7 31 25.2 23.7 32 25.7 20.8 33 26.6 26.7 34 27.5 24.3 35 27.8 23.6 36 28.3 20.7 37 29.6 22.9 38 32.2 20.3 39 33.2** 21.5 40 34.0** 19.2 41 35.3** 19.3 42 35.4 19.4 43 36.5 19.0 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - In some embodiments, Form J can be characterized by a DSC thermogram as shown in
FIG. 21 . In some embodiments, Form J can be characterized by a DSC thermogram showing a first endotherm in the range of about 121° C. to about 127° C. (for example, at about 126° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing an exotherm in the range of about 127° C. to about 132° C. (for example, at about 129° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a second endotherm in the range of about 135° C. to about 142° C. (for example, at about 138° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a first melting temperature in the range of about 121° C. to about 127° C. (for example, at about 126° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a recrystallization at a temperature in the range of about 127° C. to about 132° C. (for example, at about 129° C.). In some embodiments, Form J can be characterized by a DSC thermogram showing a second melting temperature in the range of about 135° C. to about 142° C. (for example, at about 138° C.). In some embodiments, Form J can be characterized by a melting temperature in the range of about 121° C. to about 127° C. (for example, at about 126° C.). - In some embodiments, Form J can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 175.6 ppm, a peak at about 141.4 ppm, a peak at about 127.8 ppm, a peak at about 123.4 ppm, a peak at about 103.1 ppm, a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, a peak at about 25.6 ppm, and a peak at about 19.6 ppm.
- In some embodiments, Form J can be characterized by a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, and a peak at about 25.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form J can be characterized by a peak at about 175.6 ppm, a peak at about 141.4 ppm, a peak at about 127.8 ppm, a peak at about 123.4 ppm, a peak at about 103.1 ppm, a peak at about 83.5 ppm, a peak at about 81.1 ppm, a peak at about 62.2 ppm, a peak at about 25.6 ppm, and a peak at about 19.6 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form J can be characterized by a 13C NMR solid state spectrum of
FIG. 22 . - In some embodiments, Form J can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 175.6* 26.8 2 172.6 39.76 3 165.8 13.72 4 162.9 22.43 5 162.5 16.16 6 153.0 15.82 7 152.8 15.88 8 151.5 29.40 9 151.1 11.45 10 150.7 36.85 11 150.1 21.71 12 141.4* 19.34 13 140.1 11.81 14 131.1 29.77 15 129.7 35.60 16 129.5 26.33 17 127.8* 25.20 18 127.1 17.58 19 126.3 27.54 20 123.8 29.09 21 123.4* 32.43 22 122.8 26.21 23 103.1* 37.64 24 101.3 27.86 25 93.8 22.55 26 93.3 16.53 27 91.7 18.80 28 83.5* 35.20 29 81.1* 35.52 30 80.7 100.00 31 79.8 28.76 32 78.6 42.08 33 74.4 37.67 34 73.4 41.04 35 73.1 28.84 36 72.3 39.74 37 70.1 57.8 38 63.7 44.0 39 62.2* 33.4 40 53.1 21.6 41 52.5 16.9 42 50.8 15.9 43 25.6* 36.7 44 23.7 60.6 45 23.0 34.4 46 22.5 64.4 47 22.1 46.4 48 21.7 36.1 49 19.6* 34.5 50 18.8 34.8 51 18.4 29.1 Peaks with an asterisk (*) are major peaks - Form K
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form K.
- In some embodiments, Form K can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 22.4 to about 22.8 degrees, a peak in the range of from about 27.1 to about 27.5 degrees, a peak in the range of from about 28.1 to about 28.5 degrees, and a peak in the range of from about 31.0 to about 31.4 degrees.
- In some embodiments, Form K can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 22.6 degrees, a peak at about 27.3 degrees, a peak at about 28.3 degrees, and a peak at about 31.2 degrees.
- In some embodiments, Form K can be characterized by a peak at about 22.6 degrees, a peak at about 27.3 degrees, a peak at about 28.3 degrees, and a peak at about 31.2 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form K can be characterized by an X-ray powder diffraction pattern of
FIG. 23 . - In some embodiments, Form K can be characterized by one or more XRPD peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 22.620* 27.5 2 27.257* 26.7 3 28.272* 25.0 4 31.216* 27.0 Peaks with an asterisk (*) are major peaks - In some embodiments, Form K can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm.
- In some embodiments, Form K can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 80.4 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm.
- In some embodiments, Form K can be characterized by a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 101.9 ppm, and a peak at about 92.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form K can be characterized by a peak at about 173.9 ppm, a peak at about 173.4 ppm, a peak at about 151.8 ppm, a peak at about 150.5 ppm, a peak at about 101.9 ppm, a peak at about 92.0 ppm, a peak at about 73.5 ppm, a peak at about 22.1 ppm, and a peak at about 20.4 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form K can be characterized by a 13C NMR solid state spectrum of
FIG. 24 . - In some embodiments, Form K can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.9* 40.0 2 173.4* 39.97 3 169.9 23.72 4 168.7 24.10 5 151.8* 45.42 6 150.5* 44.95 7 144.6 27.19 8 144.1 24.43 9 129.8 17.44 10 126.2 30.54 11 125.8 20.97 12 122.5 16.21 13 101.9* 81.01 14 93.4 34.58 15 92.0* 35.25 16 81.6 54.04 17 80.4* 88.61 18 79.7 51.32 19 78.6 62.92 20 73.5* 72.84 21 70.6 49.15 22 69.5 50.72 23 68.1 46.78 24 63.6 47.15 25 50.8 55.38 26 23.2 76.97 27 22.8 67.52 28 22.1* 100.00 29 20.7 68.21 30 20.4* 97.77 Peaks with an asterisk (*) are major peaks - Form L
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form L.
- In some embodiments, Form L can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 5.5 to about 5.9 degrees, a peak in the range of from about 5.8 to about 6.2 degrees, a peak in the range of from about 15.0 to about 15.4 degrees, and a peak in the range of from about 15.9 to about 16.3 degrees.
- In some embodiments, Form L can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 5.7 degrees, a peak at about 6.0 degrees, a peak at about 15.2 degrees, and a peak at about 16.1 degrees.
- In some embodiments, Form L can be characterized by a peak at about 5.7 degrees, a peak at about 6.0 degrees, a peak at about 15.2 degrees, and a peak at about 16.1 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form L can be characterized by an X-ray powder diffraction pattern of
FIG. 25 . - In some embodiments, Form L can be characterized by one or more XRPD peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.662* 27.0 2 6.036* 27.2 3 15.174* 100.0 4 16.102* 56.5 Peaks with an asterisk (*) are major peaks - In some embodiments, Form L can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm.
- In some embodiments, Form L can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, a peak at about 20.9 ppm, and a peak at about 1.6 ppm.
- In some embodiments, Form L can be characterized by a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form L can be characterized by a peak at about 173.2 ppm, a peak at about 151.4 ppm, a peak at about 140.9 ppm, a peak at about 118.5 ppm, a peak at about 81.5 ppm, a peak at about 80.1 ppm, a peak at about 73.4 ppm, a peak at about 61.6 ppm, and a peak at about 20.9 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form L can be characterized by a 13C NMR solid state spectrum of
FIG. 26 . - In some embodiments, Form L can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.2* 32.2 2 172.6 13.04 3 164.3 20.50 4 152.9 15.62 5 152.3 18.02 6 151.4* 22.38 7 150.8 10.20 8 150.6 15.53 9 142.9 7.14 10 140.9* 17.32 11 130.3 17.85 12 129.9 17.36 13 125.7 15.60 14 124.7 11.99 15 123.4 12.87 16 118.5* 18.82 17 103.8 8.86 18 103.3 18.66 19 102.9 15.60 20 101.5 12.23 21 92.7 29.36 22 92.3 25.58 23 81.5* 51.96 24 80.1* 100.00 25 73.4* 51.97 26 69.9 17.16 27 69.3 27.18 28 68.0 11.49 29 63.0 15.93 30 61.9 24.74 31 61.6* 32.16 32 54.0 18.79 33 53.0 14.69 34 52.2 16.30 35 23.7 12.59 36 23.3 12.87 37 23.0 28.2 38 22.5 42.2 39 22.0 47.5 40 21.4 43.2 41 20.9* 50.2 42 20.2 17.4 43 19.8 22.2 44 19.2 15.2 45 18.9 14.8 46 1.6* 12.9 Peaks with an asterisk (*) are major peaks - Form M
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form M.
- In some embodiments, Form M can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 6.1 to about 6.5 degrees, a peak in the range of from about 13.0 to about 13.4 degrees, a peak in the range of from about 22.0 to about 22.4 degrees, and a peak in the range of from about 23.3 to about 23.7 degrees.
- In some embodiments, Form M can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 6.3 degrees, a peak at about 13.2 degrees, a peak at about 22.2 degrees, and a peak at about 23.5 degrees.
- In some embodiments, Form M can be characterized by a peak at about 6.3 degrees, a peak at about 13.2 degrees, a peak at about 22.2 degrees, and a peak at about 23.5 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form M can be characterized by an X-ray powder diffraction pattern of
FIG. 27 . - In some embodiments, Form M can be characterized by one or more XRPD peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.274* 66.2 2 13.200* 40.5 3 22.225* 50.0 4 23.520* 38.7 Peaks with an asterisk (*) are major peaks - In some embodiments, Form M can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 174.0 ppm, a peak at about 170.5 ppm, a peak at about 129.5 ppm, a peak at about 79.6 ppm, a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, a peak at about 24.0 ppm, and a peak at about 19.5 ppm.
- In some embodiments, Form M can be characterized by a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, and a peak at about 24.0 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form M can be characterized by a peak at about 174.0 ppm, a peak at about 170.5 ppm, a peak at about 129.5 ppm, a peak at about 79.6 ppm, a peak at about 69.7 ppm, a peak at about 63.2 ppm, a peak at about 51.8 ppm, a peak at about 24.0 ppm, and a peak at about 19.5 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form M can be characterized by a 13C NMR solid state spectrum of
FIG. 28 . - In some embodiments, Form M can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.0* 31.8 2 173.2 13.03 3 172.3 7.89 4 170.5* 25.18 5 163.6 11.98 6 163.0 24.93 7 162.4 16.01 8 152.8 24.75 9 151.8 15.28 10 151.3 19.55 11 150.7 13.04 12 150.3 26.82 13 149.8 8.82 14 149.3 28.40 15 141.0 21.01 16 138.9 14.25 17 131.3 17.74 18 130.3 11.77 19 129.5* 32.91 20 127.0 27.77 21 126.6 24.70 22 124.7 17.32 23 124.0 14.60 24 122.4 15.29 25 121.3 12.07 26 118.5 11.42 27 103.5 34.79 28 102.7 10.83 29 102.2 27.86 30 101.7 8.62 31 92.5 36.95 32 83.2 31.87 33 81.5 45.71 34 80.6 14.75 35 80.1 18.58 36 79.6* 100.00 37 74.3 44.8 38 73.3 44.3 39 70.5 10.0 40 69.7* 44.6 41 67.5 8.1 42 64.5 8.8 43 64.0 9.6 44 63.2* 39.5 45 61.4 8.0 46 53.3 20.6 47 51.8* 33.6 48 24.0* 37.0 49 23.7 47.1 50 23.3 62.9 51 22.4 67.7 52 21.9 44.5 53 21.6 52.4 54 20.5 8.9 55 19.5* 49.4 Peaks with an asterisk (*) are major peaks - Form N
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as Form N.
- In some embodiments, Form N can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak in the range of from about 12.2 to about 12.6 degrees, a peak in the range of from about 15.1 to about 15.5 degrees, a peak in the range of from about 16.9 to about 17.3 degrees, and a peak in the range of from about 17.7 to about 18.1 degrees.
- In some embodiments, Form N can be characterized by one or more peaks in an X-ray powder diffraction pattern, wherein the one or more peaks is selected from a peak at about 12.4 degrees, a peak at about 15.3 degrees, a peak at about 17.1 degrees, and a peak at about 17.9 degrees.
- In some embodiments, Form N can be characterized by a peak at about 12.4 degrees, a peak at about 15.3 degrees, a peak at about 17.1 degrees, and a peak at about 17.9 degrees in an X-ray powder diffraction pattern.
- In some embodiments, Form N can be characterized by an X-ray powder diffraction pattern of
FIG. 29 . - In some embodiments, Form N can be characterized by one or more XRPD peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 12.419* 25.7 2 15.310* 41.7 3 17.149* 76.6 4 17.873* 57.0 Peaks with an asterisk (*) are major peaks - In some embodiments, Form N can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm.
- In some embodiments, Form N can be characterized by one or more peaks in a 13C NMR solid state spectrum, wherein the one or more peaks is selected from a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.5 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm.
- In some embodiments, Form N can be characterized by a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, and a peak at about 67.7 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form N can be characterized by a peak at about 172.6 ppm, a peak at about 130.4 ppm, a peak at about 129.2 ppm, a peak at about 128.4 ppm, a peak at about 82.2 ppm, a peak at about 74.0 ppm, a peak at about 67.7 ppm, and a peak at about 21.3 ppm in a 13C NMR solid state spectrum.
- In some embodiments, Form N can be characterized by a 13C solid state NMR solid state spectrum of
FIG. 30 . - In some embodiments, Form N can be characterized by one or more peaks in a 13C NMR solid state spectrum selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 172.6* 60.5 2 170.3 21.21 3 169.9 20.31 4 151.5 28.70 5 151.1 40.12 6 150.6 26.12 7 145.2 33.34 8 130.4* 78.13 9 129.5* 87.88 10 129.2* 70.02 11 128.4* 64.31 12 125.5 40.20 13 124.4 31.97 14 124.2 31.70 15 120.8 66.36 16 120.0 74.60 17 103.5 40.76 18 103.2 33.90 19 92.8 37.18 20 82.6 41.88 21 82.2* 37.02 22 79.6 64.84 23 79.3 68.37 24 74.0* 88.74 25 68.6 28.92 26 68.4 57.45 27 68.1 92.39 28 67.7* 51.91 29 50.2 29.20 30 23.0 54.35 31 22.3 18.31 32 21.8 60.50 33 21.3* 100.00 34 21.1 61.99 35 20.6 18.12 36 20.2 58.39 37 19.3 34.4 Peaks with an asterisk (*) are major peaks - Amorphous Form O
- In some embodiments, Compound 1 can be 2′-C-methyluridine-5′-(O-phenyl-N—(S)-1-(isopropoxycarbonyl)ethyl)thiophosphoramidate characterized as
Amorphous Form 0. - In some embodiments, the Amorphous Form O contains less than about 30% crystallinity. In other embodiments, the Amorphous Form O contains less than about 15% crystallinity. In still other embodiments, the Amorphous Form O contains less than about 1.0% crystallinity. In yet still other embodiments, the Amorphous Form O contains substantially no crystallinity. In some embodiments, the Amorphous Form O is substantially amorphous. In other embodiments, the Amorphous Form O is completely amorphous (i.e., 100% amorphous).
- Some embodiments described herein relate to a process for producing Form A that can include:
-
- a) contacting Compound 1 with a first amount of ethyl acetate to form a mixture;
- b) heating the mixture until the solids are dissolved;
- c) cooling the mixture to allow precipitation of a solid;
- d) optionally adding a second amount of ethyl acetate and repeating steps a, b and c; and
- e) isolating the solid Form A from said mixture.
- In some embodiments, the temperature in step b) can be in the range of from about 55° C. to about 65° C. (for example, about 60° C.).
- In some embodiments, the temperature in step c) can be in the range of from about 18° C. to about 24° C. (for example, about 21° C.). In some embodiments, the temperature in step c) can be room temperature (RT).
- In some embodiments, the second amount of ethyl acetate in step d) can be approximately equal to the first amount of ethyl acetate used in step a). In other embodiments, the second amount of ethyl acetate in step d) can be up to five times the first amount of ethyl acetate used in step a). In other still other embodiments, the second amount of ethyl acetate in step d) can be less than the first amount of ethyl acetate used in step a). In some embodiments, the first amount of ethyl acetate in step a) can be in the range of from about 1 mL to about 3 mL per gram of Compound 1. In some embodiments, the first amount of ethyl acetate in step a) can be about 2 mL per gram of Compound 1.
- In some embodiments, steps a, b and c can be repeated at least one time. In other embodiments, steps a, b and c can be repeated at least 2 times. In some embodiments, steps a, b and c can be repeated one time.
- In some embodiments, Form A can be isolated from the mixture by filtration.
- Other embodiments described herein relate to a process for producing Form J, that can include
- a) contacting Amorphous Form O with ethanol to form a mixture; and
- b) isolating Form J from said mixture.
- In some embodiments, the mixture can be stirred at room temperature for about 12 hours before isolating Form J. In some embodiments, the mixture can be stirred at a temperature in the range of about 20° C. to about 30° C. for about 12 hours before isolating Form J.
- In some embodiments, about 100 mg of Amorphous Form O can be contacted with an amount of ethanol in the range of from about 100 μL to about 200 μL of ethanol. In other embodiments, about 100 mg of Amorphous Form O can be contacted with about 150 μL of ethanol. In some embodiments, the ethanol can be HPLC grade ethanol.
- In some embodiments, Form J can be isolated from the mixture by filtration.
- Still other embodiments described herein relate to a process for producing a solvated solid form of Compound 1, that can include
- a) contacting Compound 1 with a solvent to form a mixture; and
- b) isolating the solvated solid form of Compound 1 from said mixture.
- In some embodiments, the solvated solid form of Compound 1 can be isolated from the mixture by a method selected from filtration and evaporation.
- In some embodiments, the solvent can be MTBE, cyclohexane, nitromethane, acetonitrile, dioxane, THF, dichloromethane, ethyl acetate, isopropyl acetate, chloroform, chlorobenzene, 1,2-dichloroethane, 1,2,3-trichloroethane, or toluene.
- In some embodiments, the solvent can be MTBE or cyclohexane and the solvated solid form can be Form B. In other embodiments, the solvent can be nitromethane and the solvated solid form can be Form C. In still other embodiments, the solvent can be dioxane and the solvated solid form can be Form E. In yet still other embodiments, the solvent can be THF and the solvated solid form can be Form F. In some embodiments, the solvent can be dichloromethane and the solvated solid form can be Form G. In other embodiments, the solvent can be acetonitrile and the solvated solid form can be Form H or Form L. In still other embodiments, the solvent can be ethyl acetate or isopropyl acetate and the solvated solid form can be Form I. In yet still other embodiments, the solvent can be chloroform, chlorobenzene, 1,2-dichloroethane or 1,2,3-trichloroethane and the solvated solid form can be Form K. In some embodiments, the solvent can be toluene and the solvated solid form can be Form N.
- In some embodiments, the mixture can be sonicated before isolating the solvated solid form.
- In some embodiments, the amount of solvent added in step a) above is in the range of from about 0.5 mL to about 10 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 0.83 mL per gram of Compound 1. In other embodiments, the amount of solvent added in step a) above is about 1.0 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 1.5 mL per gram of Compound 1. In yet still other embodiments, the amount of solvent added in step a) above is about 1.9 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 2.0 mL per gram of Compound 1. In other embodiments, the amount of solvent added in step a) above is about 2.5 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 3.3 mL per gram of Compound 1. In yet still other embodiments, the amount of solvent added in step a) above is about 4.0 mL per gram of Compound 1. In some embodiments, the amount of solvent added in step a) above is about 5.0 mL per gram of Compound 1. In other embodiments, the amount of solvent added in step a) above is about 6.1 mL per gram of Compound 1. In still other embodiments, the amount of solvent added in step a) above is about 10.0 mL per gram of Compound 1.
- In some embodiments, the process further can include removing the solvent from the solvated solid form of Compound 1, including one or more of those described herein, to provide a desolvated solid form of Compound 1. In some embodiments, the desolvated solid form of Compound 1 can be Form D. In other embodiments, the desolvated solid form of Compound 1 can be Form M.
- Uses, Formulation and Administration
- Pharmaceutically Acceptable Compositions
- Some embodiments described herein generally relate to a pharmaceutical composition that can include one or more solid forms of Compound 1 as described herein, and optionally comprise a pharmaceutically acceptable carrier, adjuvant or vehicle.
- Other embodiments described herein relate to a pharmaceutical composition that can include one or more solid forms of Compound 1, and one or more additional agent(s). In some embodiments, the one or more additional agent(s) can be selected from Pegylated interferon-alpha-2a (brand name PEGASYS®) and ribavirin, Pegylated interferon-alpha-2b (brand name PEG-INTRON®) and ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, and a NS5A inhibitor.
- In some embodiments, the one or more agents can be selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- In some embodiments, the one or more agents can be selected from Compounds 1000-1066 and 8001-8012, or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- In some embodiments, including those embodiments described previously, the pharmaceutical composition can include a single diastereomer of Compound 1, or a pharmaceutically acceptable salt thereof, (for example, a single diastereomer is present in the pharmaceutical composition at a concentration of greater than 99% compared to the total concentration of the diastereomers of Compound 1). In other embodiments, the pharmaceutical composition can include a mixture of diastereomers of Compound 1, or a pharmaceutically acceptable salt thereof. For example, the pharmaceutical composition can include a concentration of one diastereomer of >50%, ≧60%, ≧70%, ≧80%, ≧90%, ≧95%, or ≧98%, as compared to the total concentration of diastereomers of Compound 1. In some embodiments, the pharmaceutical composition includes a 1:1 mixture of two diastereomers of Compound 1, or a pharmaceutically acceptable salt thereof.
- The term “pharmaceutical composition” refers to a mixture of one or more compounds or forms disclosed herein with other chemical components, such as diluents or carriers. The pharmaceutical composition facilitates administration of the compound to an organism. Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and salicylic acid. Pharmaceutical compositions will generally be tailored to the specific intended route of administration.
- The term “physiologically acceptable” defines a carrier, diluent or excipient that does not abrogate the biological activity and properties of the compound.
- As used herein, a “carrier” refers to a compound that facilitates the incorporation of a compound into cells or tissues. For example, without limitation, dimethyl sulfoxide (DMSO) is a commonly utilized carrier that facilitates the uptake of many organic compounds into cells or tissues of a subject.
- As used herein, a “diluent” refers to an ingredient in a pharmaceutical composition that lacks pharmacological activity but may be pharmaceutically necessary or desirable. For example, a diluent may be used to increase the bulk of a potent drug whose mass is too small for manufacture and/or administration. It may also be a liquid for the dissolution of a drug to be administered by injection, ingestion or inhalation. A common form of diluent in the art is a buffered aqueous solution such as, without limitation, phosphate buffered saline that mimics the composition of human blood.
- As used herein, an “excipient” refers to an inert substance that is added to a pharmaceutical composition to provide, without limitation, bulk, consistency, stability, binding ability, lubrication, disintegrating ability etc., to the composition. A “diluent” is a type of excipient.
- The pharmaceutical compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or carriers, diluents, excipients or combinations thereof. Proper formulation is dependent upon the route of administration chosen. Techniques for formulation and administration of the compounds described herein are known to those skilled in the art.
- The pharmaceutical compositions disclosed herein may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tableting processes. Additionally, the active ingredients are contained in an amount effective to achieve its intended purpose. Many of the compounds used in the pharmaceutical combinations disclosed herein may be provided as salts with pharmaceutically compatible counterions.
- Multiple techniques of administering a compound exist in the art including, but not limited to, oral, rectal, topical, aerosol, injection and parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intranasal and intraocular injections.
- One may also administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into the infected area, often in a depot or sustained release formulation. Furthermore, one may administer the compound in a targeted drug delivery system, for example, in a liposome coated with a tissue-specific antibody. The liposomes will be targeted to and taken up selectively by the organ.
- The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. Compositions that can include a compound described herein formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
- Uses of the Solid Forms and Pharmaceutically Acceptable Compositions
- Some embodiments disclosed herein relate to a method of treating and/or ameliorating a disease or condition that can include administering to a subject an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein.
- Some embodiments disclosed herein relates to a method of ameliorating or treating a viral infection that can include administering to a subject suffering from the viral infection an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. Other embodiments described herein relate to the use of an effective amount of one or more solid forms of Compound 1 as described herein in the preparation of a medicament for ameliorating or treating a viral infection. Still other embodiments described herein relate to one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, that can be used for ameliorating and/or treating a viral infection by administering an effective amount of said compound(s). In some embodiments, the viral infection can be a hepatitis C viral (HCV) infection.
- Some embodiments disclosed herein relate to methods of ameliorating and/or treating a viral infection that can include contacting a cell infected with the virus with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. Other embodiments described herein relate to using one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, in the manufacture of a medicament for ameliorating and/or treating a viral infection that can include contacting a cell infected with the virus with an effective amount of said compound(s). Still other embodiments described herein relate to one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for ameliorating and/or treating a viral infection by contacting a cell infected with the virus with an effective amount of said compound(s). In some embodiments, the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In other embodiments, the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In some embodiments, the virus can be a HCV virus.
- Some embodiments disclosed herein relate to methods of inhibiting replication of a virus that can include contacting a cell infected with the virus with an effective amount of one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, or a pharmaceutical composition that includes one or more compounds described herein, or a pharmaceutically acceptable salt thereof. Other embodiments described herein relate to using one or more compounds described herein, or a pharmaceutically acceptable salt of a compound described herein, in the manufacture of a medicament for inhibiting replication of a virus that can include contacting a cell infected with the virus with an effective amount of said compound(s). Still other embodiments described herein relate to a compound described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for inhibiting replication of a virus by contacting a cell infected with the virus with an effective amount of said compound(s). In some embodiments, the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In other embodiments, the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In some embodiments, the virus can be a HCV virus.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can inhibit an RNA dependent RNA polymerase. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can inhibit a HCV polymerase (for example, NS5B polymerase). Some embodiments described herein relate to a method for inhibiting NS5B polymerase activity of a virus that can include contacting a cell (such as a cell infected with HCV) with an effective amount of a compound described herein, whereby inhibiting the NS5B polymerase activity of the virus (for example, HCV). Other embodiments described herein relate to the use of an effective amount of a compound as described as described herein for preparing a medicament for inhibiting NS5B polymerase activity of a virus, such as the NS5B polymerase activity of a hepatitis C virus. Still other embodiments described herein relate to a compound described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for inhibiting NS5B polymerase activity that can include contacting a cell (such as a cell infected with HCV) an effective amount of said compound(s). In some embodiments, the compound can be one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In other embodiments, the compound can be a mono-, di- and/or tri-phosphate of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. In some embodiments, the virus can be a HCV virus.
- HCV is an enveloped positive strand RNA virus in the Flaviviridae family. There are various nonstructural proteins of HCV, such as NS2, NS3, NS4A, NS4B, NS5A, and NS5B. NS5B is believed to be an RNA-dependent RNA polymerase involved in the replication of HCV RNA.
- Some embodiments described herein relate to a method of treating HCV infection in a subject suffering from a HCV infection that can include administering to the subject an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. Other embodiments described herein relate to the use of an effective amount of a compound as described as described herein for preparing a medicament for treating HCV infection in a subject suffering from a HCV infection. Still other embodiments described herein relate to a compound described herein, or a pharmaceutically acceptable salt of a compound described herein, that can be used for treating HCV infection in a subject suffering from a HCV infection that can include administering an effective amount of said compound(s).
- There are a variety of genotypes of HCV, and a variety of subtypes within each genotype. For example, at present it is known that there are eleven (numbered 1 through 11) main genotypes of HCV, although others have classified the genotypes as 6 main genotypes. Each of these genotypes is further subdivided into subtypes (1a-1c; 2a-2c; 3a-3b; 4a-4e; 5a; 6a; 7a-7b; 8a-8b; 9a; 10a; and 11a). In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be effective to treat at least one genotype of HCV. In some embodiments, a compound described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein) can be effective to treat all 11 genotypes of HCV. In some embodiments, a compound described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein) can be effective to treat 3 or more, 5 or more, 7 or more of 9 more genotypes of HCV. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is more effective against a larger number of HCV genotypes than the standard of care. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, is more effective against a particular HCV genotype than the standard of care (such as
genotype - Various indicators for determining the effectiveness of a method for treating a HCV infection are known to those skilled in the art. Example of suitable indicators include, but are not limited to, a reduction in viral load, a reduction in viral replication, a reduction in time to seroreversion (virus undetectable in patient serum), an increase in the rate of sustained viral response to therapy, a reduction of morbidity or mortality in clinical outcomes, a reduction in the rate of liver function decrease; stasis in liver function; improvement in liver function; reduction in one or more markers of liver dysfunction, including alanine transaminase, aspartate transaminase, total bilirubin, conjugated bilirubin, gamma glutamyl transpeptidase, and/or other indicator of disease response. Similarly, successful therapy with an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein) can reduce the incidence of liver cancer in HCV patients.
- Some embodiments described herein relate to a method of treating a condition selected from liver fibrosis, liver cirrhosis, and liver cancer in a subject suffering from one or more of the aforementioned liver conditions that can include administering to the subject an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein). One cause of the liver fibrosis, liver cirrhosis, and/or liver cancer can be a HCV infection. Some embodiments described herein relate to a method of increasing liver function in a subject having a HCV infection that can include administering to the subject an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein). Also contemplated is a method for reducing or eliminating further virus-caused liver damage in a subject having an HCV infection by administering to the subject an effective amount of a compound or a pharmaceutical composition described herein (for example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein). In some embodiments, this method comprises slowing or halting the progression of liver disease. In other embodiments, the course of the disease is reversed, and stasis or improvement in liver function is contemplated.
- In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, is an amount that is effective to reduce viral titers undetectable levels, for example, to about 100 to about 500, to about 50 to about 100, to about 10 to about 50, or to about 15 to about 25 international units/mL serum. In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, is an amount that is effective to reduce viral load compared to the viral load before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. For example, wherein the viral load is measured before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and again after completion of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein (for example, 1 month after completion). In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof; or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be an amount that is effective to reduce viral load to lower than about 100 genome copies/mL serum. In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, is an amount that is effective to achieve a reduction in viral titer in the serum of the subject in the range of about 1.5-log to about a 2.5-log reduction, about a 3-log to about a 4-log reduction, or a greater than about 5-log reduction compared to the viral load before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. For example, the viral load can be measured before administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and again after completion of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein (for example, 1 month after completion).
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can result in at least a 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100-fold or more reduction in the replication of HCV relative to pre-treatment levels in a subject, as determined after completion of the treatment regime (for example 1 month after completion). In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can result in a reduction of the replication of HCV relative to pre-treatment levels in the range of about 2 to about 5 fold, about 10 to about 20 fold, about 15 to about 40 fold, or about 50 to about 100 fold. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can result in a reduction of HCV replication in the range of 1 to 1.5 log, 1.5 log to 2 log, 2 log to 2.5 log, 2.5 to 3 log, 3 log to 3.5 log or 3.5 to 4 log more reduction of HCV replication compared to the reduction of HCV reduction achieved by pegylated interferon in combination with ribavirin, administered according to the standard of care, or may achieve the same reduction as that standard of care therapy in a shorter period of time, for example, in one month, two months, or three months, as compared to the reduction achieved after six months of standard of care therapy with ribavirin and pegylated interferon.
- In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, is an amount that is effective to achieve a sustained viral response, for example, non-detectable or substantially non-detectable HCV RNA (e.g., less than about 500, less than about 400, less than about 200, or less than about 100 genome copies per milliliter serum) is found in the subject's serum for a period of at least about one month, at least about two months, at least about three months, at least about four months, at least about five months, or at least about six months following cessation of therapy.
- In some embodiments, an effective amount one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can reduce a level of a marker of liver fibrosis by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%, or more, compared to the level of the marker in an untreated subject, or to a placebo-treated subject. Methods of measuring serum markers are known to those skilled in the art and include immunological-based methods, e.g., enzyme-linked immunosorbent assays (ELISA), radioimmunoassays, and the like, using antibody specific for a given serum marker. A non-limiting list of examples of markers include measuring the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT) and total bilirubin (TBIL) using known methods. In general, an ALT level of less than about 45 IU/L (international units/liter), an AST in the range of 10-34 IU/L, ALP in the range of 44-147 IU/L, GGT in the range of 0-51 IU/L, TBIL in the range of 0.3-1.9 mg/dL is considered normal. In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein is an amount effective to reduce ALT, AST, ALP, GGT and/or TBIL levels to with what is considered a normal level.
- Subjects who are clinically diagnosed with HCV infection include “naïve” subjects (e.g., subjects not previously treated for HCV, particularly those who have not previously received IFN-alpha-based and/or ribavirin-based therapy) and individuals who have failed prior treatment for HCV (“treatment failure” subjects). Treatment failure subjects include “non-responders” (i.e., subjects in whom the HCV titer was not significantly or sufficiently reduced by a previous treatment for HCV (≦0.5 log IU/mL), for example, a previous IFN-alpha monotherapy, a previous IFN-alpha and ribavirin combination therapy, or a previous pegylated IFN-alpha and ribavirin combination therapy); and “relapsers” (i.e., subjects who were previously treated for HCV, for example, who received a previous IFN-alpha monotherapy, a previous IFN-alpha and ribavirin combination therapy, or a previous pegylated IFN-alpha and ribavirin combination therapy, whose HCV titer decreased, and subsequently increased).
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a treatment failure subject suffering from HCV. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a non-responder subject suffering from HCV. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a relapsed subject suffering from HCV.
- After a period of time, infectious agents can develop resistance to one or more therapeutic agents. The term “resistance” as used herein refers to a viral strain displaying a delayed, lessened and/or null response to a therapeutic agent(s). For example, after treatment with an antiviral agent, the viral load of a subject infected with a resistant virus may be reduced to a lesser degree compared to the amount in viral load reduction exhibited by a subject infected with a non-resistant strain. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a subject infected with an HCV strain that is resistant to one or more different anti-HCV agents. In some embodiments, development of resistant HCV strains is delayed when patients are treated with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, compared to the development of HCV strains resistant to other HCV drugs.
- In some embodiments, an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a subject for whom other anti-HCV medications are contraindicated. For example, administration of pegylated interferon alpha in combination with ribavirin is contraindicated in subjects with hemoglobinopathies (e.g., thalassemia major, sickle-cell anemia) and other subjects at risk from the hematologic side effects of current therapy. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be provided to a subject that is hypersensitive to interferon or ribavirin.
- Some subjects being treated for HCV experience a viral load rebound. The term “viral load rebound” as used herein refers to a sustained ≧0.5 log IU/mL increase of viral load above nadir before the end of treatment, where nadir is a ≧0.5 log IU/mL decrease from baseline. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered to a subject experiencing viral load rebound, or can prevent such viral load rebound when used to treat the subject.
- The standard of care for treating HCV has been associated with several side effects (adverse events). In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can decrease the number and/or severity of side effects that can be observed in HCV patients being treated with ribavirin and pegylated interferon according to the standard of care. Examples of side effects include, but are not limited to fever, malaise, tachycardia, chills, headache, arthralgias, myalgias, fatigue, apathy, loss of appetite, nausea, vomiting, cognitive changes, asthenia, drowsiness, lack of initiative, irritability, confusion, depression, severe depression, suicidal ideation, anemia, low white blood cell counts, and thinning of hair. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be provided to a subject that discontinued a HCV therapy because of one or more adverse effects or side effects associated with one or more other HCV agents.
- Table 1 provides some embodiments of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, compared to the standard of care. Examples include the following: in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, results in a percentage of non-responders that is 10% less than the percentage of non-responders receiving the standard of care; in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, results number of side effects that is in the range of about 10% to about 30% less than compared to the number of side effects experienced by a subject receiving the standard of care; and in some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, results a severity of a side effect (such as one of those described herein) that is 25% less than compared to the severity of the same side effect experienced by a subject receiving the standard of care. Methods of quantifying the severity of a side effect are known to those skilled in the art.
-
TABLE 1 Percentage Percentage of non- Percentage of Percentage of of viral load Number of Severity of responders relapsers resistance rebound side effects side effects 10% less 10% less 10% less 10% less 10% less 10% less 25% less 25% less 25% less 25% less 25% less 25% less 40% less 40% less 40% less 40% less 40% less 40% less 50% less 50% less 50% less 50% less 50% less 50% less 60% less 60% less 60% less 60% less 60% less 60% less 70% less 70% less 70% less 70% less 70% less 70% less 80% less 80% less 80% less 80% less 80% less 80% less 90% less 90% less 90% less 90% less 90% less 90% less about 10% to about 10% about 10% about 10% to about 10% to about 10% to about 30% to about to about about 30% about 30% about 30% less 30% less 30% less less less less about 20% to about 20% about 20% about 20% to about 20% to about 20% to about 50% to about to about about 50% about 50% about 50% less 50% less 50% less less less less about 30% to about 30% about 30% about 30% to about 30% to about 30% to about 70% to about to about about 70% about 70% about 70% less 70% less 70% less less less less about 20% to about 20% about 20% about 20% to about 20% to about 20% to about 80% to about to about about 80% about 80% about 80% less 80% less 80% less less less less - As used herein, a “subject” refers to an animal that is the object of treatment, observation or experiment. “Animal” includes cold- and warm-blooded vertebrates and invertebrates such as fish, shellfish, reptiles and, in particular, mammals. “Mammal” includes, without limitation, mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, primates, such as monkeys, chimpanzees, and apes, and, in particular, humans. In some embodiments, the subject is human.
- As used herein, the terms “treating,” “treatment,” “therapeutic,” or “therapy” do not necessarily mean total cure or abolition of the disease or condition. Any alleviation of any undesired signs or symptoms of a disease or condition, to any extent can be considered treatment and/or therapy. Furthermore, treatment may include acts that may worsen the patient's overall feeling of well-being or appearance.
- The term “effective amount” is used to indicate an amount of an active compound, or pharmaceutical agent, that elicits the biological or medicinal response indicated. For example, an effective amount of compound can be the amount needed to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated This response may occur in a tissue, system, animal or human and includes alleviation of the signs or symptoms of the disease being treated. Determination of an effective amount is well within the capability of those skilled in the art, in view of the disclosure provided herein. The effective amount of the compounds disclosed herein required as a dose will depend on the route of administration, the type of animal, including human, being treated, and the physical characteristics of the specific animal under consideration. The dose can be tailored to achieve a desired effect, but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize.
- As will be readily apparent to one skilled in the art, the useful in vivo dosage to be administered and the particular mode of administration will vary depending upon the age, weight, the severity of the affliction, and mammalian species treated, the particular compounds employed, and the specific use for which these compounds are employed. The determination of effective dosage levels, that is the dosage levels necessary to achieve the desired result, can be accomplished by one skilled in the art using routine methods, for example, human clinical trials and in vitro studies.
- The dosage may range broadly, depending upon the desired effects and the therapeutic indication. Alternatively dosages may be based and calculated upon the surface area of the patient, as understood by those of skill in the art. Although the exact dosage will be determined on a drug-by-drug basis, in most cases, some generalizations regarding the dosage can be made. The daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.01 mg and 3000 mg of each active ingredient, preferably between 1 mg and 700 mg, e.g. 5 to 200 mg. The dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the subject. In some embodiments, the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered less frequently compared to the frequency of administration of an agent within the standard of care. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered one time per day. For example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered one time per day to a subject suffering from a HCV infection. In some embodiments, the total time of the treatment regime with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can less compared to the total time of the treatment regime with the standard of care.
- In instances where human dosages for compounds have been established for at least some condition, those same dosages may be used, or dosages that are between about 0.1% and 500%, more preferably between about 25% and 250% of the established human dosage. Where no human dosage is established, as will be the case for newly-discovered pharmaceutical compositions, a suitable human dosage can be inferred from ED50 or ID50 values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals.
- In cases of administration of a pharmaceutically acceptable salt, dosages may be calculated as the free base. As will be understood by those of skill in the art, in certain situations it may be necessary to administer one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein in amounts that exceed, or even far exceed, the above-stated, preferred dosage range in order to effectively and aggressively treat particularly aggressive diseases or infections.
- Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations. Dosage intervals can also be determined using MEC value. Compositions should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.
- It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity or organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The severity of the condition may, for example, be evaluated, in part, by standard prognostic evaluation methods. Further, the dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.
- Compounds disclosed herein can be evaluated for efficacy and toxicity using known methods. For example, the toxicology of a particular compound, or of a subset of the compounds, sharing certain chemical moieties, may be established by determining in vitro toxicity towards a cell line, such as a mammalian, and preferably human, cell line. The results of such studies are often predictive of toxicity in animals, such as mammals, or more specifically, humans. Alternatively, the toxicity of particular compounds in an animal model, such as mice, rats, rabbits, or monkeys, may be determined using known methods. The efficacy of a particular compound may be established using several recognized methods, such as in vitro methods, animal models, or human clinical trials. When selecting a model to determine efficacy, the skilled artisan can be guided by the state of the art to choose an appropriate model, dose, route of administration and/or regime.
- Combination Therapies
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with one or more additional agent(s).
- Examples of additional agents that can be used in combination with one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, include, but are not limited to, agents currently used in a conventional standard of care for treating HCV, HCV protease inhibitors, HCV polymerase inhibitors, NS5A inhibitors, other antiviral compounds, compounds of Formula (BB) (including pharmaceutically acceptable salts and pharmaceutical compositions that can include a compound of Formula (BB), or a pharmaceutically acceptable salt thereof), compounds of Formula (DD) (including pharmaceutically acceptable salts and pharmaceutical compositions that can include a compound of Formula (DD), or a pharmaceutically acceptable salt thereof), and/or combinations thereof. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used with one, two, three or more additional agents described herein. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with an agent(s) currently used in a conventional standard of care therapy. For example, for the treatment of HCV, a compound disclosed herein can be used in combination with Pegylated interferon-alpha-2a (brand name PEGASYS®) and ribavirin, or Pegylated interferon-alpha-2b (brand name PEG-INTRON®) and ribavirin.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be substituted for an agent currently used in a conventional standard of care therapy. For example, for the treatment of HCV, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in place of ribavirin.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with an interferon, such as a pegylated interferon. Examples of suitable interferons include, but are not limited to, Pegylated interferon-alpha-2a (brand name PEGASYS®), Pegylated interferon-alpha-2b (brand name PEG-INTRON®), interferon alfacon-1 (brand name INFERGEN®), pegylated interferon lambda and/or a combination thereof.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with a HCV protease inhibitor. A non-limiting list of example HCV protease inhibitors include the following: VX-950 (TELAPREVIR®), MK-5172, ABT-450, BILN-2061, BI-201335, BMS-650032, SCH 503034 (BOCEPREVIR®), GS-9256, GS-9451, IDX-320, ACH-1625, ACH-2684, TMC-435, ITMN-191 (DANOPREVIR®) and/or a combination thereof.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with a HCV polymerase inhibitor. In some embodiments, the HCV polymerase inhibitor can be a nucleoside inhibitor. In other embodiments, the HCV polymerase inhibitor can be a non-nucleoside inhibitor. Examples of suitable nucleoside inhibitors include, but are not limited to, RG7128, PSI-7851, PSI-7977, PSI-352938, PSI-661, 4′-azidouridine (including known prodrugs of 4′-azidouridine), GS-6620, and TMC649128 and/or combinations thereof. A non-limiting list of example nucleoside inhibitors as provided in
FIG. 32 . Examples of suitable non-nucleoside inhibitors include, but are not limited to, ABT-333, ANA-598, VX-222, HCV-796, BI-207127, GS-9190, PF-00868554 (FILIBUVIR®), VX-497 and/or combinations thereof. A non-limiting list of example non-nucleoside as provided inFIG. 32 . - In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with a NS5A inhibitor. A non-limiting list of example NS5A inhibitors include BMS-790052, GSK-2336805, ACH-3102, PPI-461, ACH-2928, GS-5885, BMS-824393 and/or combinations thereof. A non-limiting list of example NS5A inhibitors as provided in
FIG. 32 . - In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with other antiviral compounds. Examples of other antiviral compounds include, but are not limited to, Debio-025, MIR-122 and/or combinations thereof. A non-limiting list of example other antiviral compounds are provided in
FIG. 32 . - A non-limiting list of additional agents that can be used in combination with more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, include the following compounds provided in
FIG. 32 : 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, and 1066. - In some embodiments, one or more solid forms of Compound 1, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (I), or a pharmaceutically acceptable salt thereof, can be used in combination with a compound of Formula (BB), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (BB), or a pharmaceutically acceptable salt thereof (see, U.S. Publication No. 2012/0165286, filed Dec. 20, 2011 the contents of which are incorporated by reference in its entirety):
- wherein BBB1 can be an optionally substituted heterocyclic base or an optionally substituted heterocyclic base with a protected amino group; XBB can be O (oxygen) or S (sulfur); RBB1 can be selected from —ZBB—RBB9, an optionally substituted N-linked amino acid and an optionally substituted N-linked amino acid ester derivative; ZBB can be selected from O (oxygen), S (sulfur) and N(RBB10); RBB2 and RBB3 can be independently selected from hydrogen, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl, an optionally substituted C1-6 haloalkyl and an optionally substituted aryl(C1-6alkyl); or RBB2 and RBB3 can be taken together to form a group selected from an optionally substituted C3-6 cycloalkyl, an optionally substituted C3-6 cycloalkenyl, an optionally substituted C3-6 aryl and an optionally substituted C3-6heteroaryl; RBB4 can be selected from hydrogen, halogen, azido, cyano, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl and an optionally substituted allenyl; RBB5 can be hydrogen or an optionally substituted C1-6 alkyl; RBB6 can be selected from hydrogen, halogen, azido, amino, cyano, an optionally substituted C1-6 alkyl, —ORBBI11 and —OC(═O)RB12; RBB7 can be selected from hydrogen, halogen, azido, cyano, an optionally substituted C1-6 alkyl, —ORBB13 and —OC(═O)RBB14; RBB8 can be selected from hydrogen, halogen, azido, cyano, an optionally substituted C1-6 alkyl, —ORBB15 and —OC(═O)RBB16; RBB9 can be selected from an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heterocyclyl, an optionally substituted aryl(C1-6alkyl), an optionally substituted heteroaryl(C1-6alkyl) and an optionally substituted heterocyclyl(C1-6alkyl); RBB10 can be selected from hydrogen, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heterocyclyl, an optionally substituted aryl(C1-6alkyl), an optionally substituted heteroaryl(C1-6alkyl) and an optionally substituted heterocyclyl(C1-6alkyl); RBB11, RBB13 and RBB15 can be independently hydrogen or an optionally substituted C1-6 alkyl; and RBB12, RBB14 and RBB16 can be independently an optionally substituted C1-6 alkyl or an optionally substituted C3-6 cycloalkyl. In some embodiments, at least one of RBB2 and RBB3 is not hydrogen. A non-limiting list of example compounds of Formula (BB) includes the compound numbered 8001-8012 in
FIG. 33 . - In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be used in combination with a compound of Formula (DD), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes a compound of Formula (DD), or a pharmaceutically acceptable salt thereof (see, U.S. Publication No. 2010/0249068, filed Mar. 19, 2010, the contents of which are incorporated by reference in its entirety):
- wherein each can be independently a double or single bond; ADD1 can be selected from C (carbon), O (oxygen) and S (sulfur); BDD1 can be an optionally substituted heterocyclic base or a derivative thereof; DDD1 can be selected from C═CH2, CH2, O (oxygen), S (sulfur), CHF, and CF2; RDD1 can be hydrogen, an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aralkyl, dialkylaminoalkylene, alkyl-C(═O)—, aryl-C(═O)—, alkoxyalkyl-C(═O)—, aryloxyalkyl-C(═O)—, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl,
- an —O-linked amino acid, diphosphate, triphosphate or derivatives thereof; RDD2 and RDD3 can be each independently selected from hydrogen, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyland an optionally substituted C1-6 haloalkyl, provided that at least one of RDD2 and RDD3 cannot be hydrogen; or RDD2 and RDD3 are taken together to form a group selected from among C3-6 cycloalkyl, C3-6 cycloalkenyl, C3-6 aryl, and a C3-6 heteroaryl; RDD4 and RDD9 can be independently selected from hydrogen, halogen, —NH2, —NHRDDa1, NRDDa1RDDb1, —ORDDa1, —SRDDa1, —CN, —NC, —N3, —NO2, —N(RDDc1)—NRDDa1RDDb1, —N(RDDc1)—ORDDa1, —S—SRDDa1, —C(═O)RDDa1, —C(═O)ORDDa1, —C(═O)NRDDa1RDDb1, —O—(C═O)RDDa1, —O—C(═O)ORDDa1, —O—C(═O)NRDDa1RDDb1, —N(RDDc1)—C(═O)NRDDa1RDDb1, —S(═O)RDDa1, S(═O)2RDDa1, —O—S(═O)2NRDDa1RDDb1, —N(RDDc1)—S(═O)2NRDDa1RDDb1, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl, an optionally substituted aralkyl and an —O-linked amino acid; RDD5, RDD6 and RDD7 can be independently absent or selected from hydrogen, halogen, —NH2, —NHRDDa1, NRDDa1RDDb1, —ORDDa1, —SRDDa1, —CN, —NC, —N3, —NO2, —N(RDDc1)—NRDDa1RDDb1, —N(RDDc1)—ORDDa1, —S—SRDDa1, —C(═O)RDDa1, —C(═O)ORDDa1, —C(═O)NRDDa1RDDb1, —O—(C═O)RDDa1, —O—C(═O)ORDDa1, —O—C(═O)NRDDa1RDDb1, —N(RDDc1)—C(═O)NRDDa1RDDb1, —S(═O)RDDa1, S(═O)2RDDa1, —O—S(═O)2NRDDa1RDDb1, —N(RDDc1)—S(═O)2NRDDa1RDDb1, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl, an optionally substituted aralkyl and an —O-linked amino acid; or RDD6 and RDD7 taken together form —O—C(═O)—O—; RDD8 can be absent or selected from the group consisting of hydrogen, halogen, —NH2, —NHRDDa1, NRDDa1RDDb1, —ORDDa1, —SRDDa1, —CN, —NC, —N3, —NO2, —N(RDDc1)—NRDDa1RDDb1, —N(RDDc1)—ORDDa1, —S—SRDDa1, —C(═O)RDDa1, —C(═O)ORDDa1, —C(═O)NRDDa1RDDb1, —O—(C═O)RDDa1, —O—C(═O)ORDDa1, —O—C(═O)NRDDa1RDDb1, —N(RDDc1)—C(═O)NRDDa1RDDb1, —S(═O)RDDa1, S(═O)2RDDa1, —O—S(═O)2NRDDa1RDDb1, —N(RDDc1)—S(═O)2NRDDa1RDDb1—, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl, an optionally substituted haloalkyl, an optionally substituted hydroxyalkyl and an —O-linked amino acid, or when the bond to RDD7 indicated by is a double bond, then RDD7 is a C2-6 alkylidene and RDD8 is absent; RDDa1, RDDb1 and RDDc1 can be each independently selected from hydrogen, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl and an optionally substituted heteroaryl(C1-6 alkyl); RDD10 can be selected from O−, —OH, an optionally substituted aryloxy or aryl-O—,
- alkyl-C(═O)—O—CH2—O—, alkyl-C(═O)—S—CH2CH2—O— and an —N-linked amino acid; RDD11 can be selected from O−, —OH, an optionally substituted
aryloxy or aryl-O—, - alkyl-C(═O)—O—CH2—O—, alkyl-C(═O)—S—CH2CH2—O— and an —N-linked amino acid; each RDD12 and each RDD13 can be independently —C≡N or an optionally substituted substituent selected from C1-8 organylcarbonyl, C1-8 alkoxycarbonyl and C1-8 organylaminocarbonyl; each RDD14 can be hydrogen or an optionally substituted C1-6-alkyl; each mDD can be independently 1 or 2, and if both RDD10 and RDD11 are
- each RDD12, each RDD13, each RDD14 and each mDD can be the same or different. In some embodiments, RDD8 can be halogen, —ORDDa1, an optionally substituted C1-6 alkyl, an optionally substituted C2-6 alkenyl, an optionally substituted C2-6 alkynyl and an optionally substituted C1-6 haloalkyl.
- Additional examples of compounds that can be used in combination with one or more solid forms of Compound 1 described herein, or a pharmaceutically acceptable salt thereof, include those described in the following: WO 99/07733 (Boehringer Ingelheim), WO 99/07734 (Boehringer Ingelheim), WO 00/09558 (Boehringer Ingelheim), WO 00/09543 (Boehringer Ingelheim), WO 00/59929 (Boehringer Ingelheim), WO 02/060926 (BMS), WO 2006/039488 (Vertex), WO 2005/077969 (Vertex), WO 2005/035525 (Vertex), WO 2005/028502 (Vertex), WO 2005/007681 (Vertex), WO 2004/092162 (Vertex), WO 2004/092161 (Vertex), WO 2003/035060 (Vertex), WO 03/087092 (Vertex), WO 02/18369 (Vertex), WO 98/17679 (Vertex), WO 03/010140 (Boehringer Ingelheim), WO 03/026587 (Bristol Myers Squibb), WO 02/100846 A1, WO 02/100851 A2, WO 01/85172 A1 (GSK), WO 02/098424 A1 (GSK), WO 00/06529 (Merck), WO 02/06246 A1 (Merck), WO 01/47883 (Japan Tobacco), WO 03/000254 (Japan Tobacco), EP 1 256 628 A2 (Agouron), WO 01/90121 A2 (Idenix), WO 02/069903 A2 (Biocryst Pharmaceuticals Inc.), WO 02/057287 A2 (Merck/Isis), WO 02/057425 A2 (Merck/lsis), WO 2010/117635, WO 2010/117977, WO 2010/117704, WO 2010/1200621, WO 2010/096302, WO 2010/017401, WO 2009/102633, WO 2009/102568, WO 2009/102325, WO 2009/102318, WO 2009/020828, WO 2009/020825, WO 2008/144380, WO 2008/021936, WO 2008/021928, WO 2008/021927, WO 2006/133326, WO 2004/014852, WO 2004/014313, WO 2010/096777, WO 2010/065681, WO 2010/065668, WO 2010/065674, WO 2010/062821, WO 2010/099527, WO 2010/096462, WO 2010/091413, WO 2010/094077, WO 2010/111483, WO 2010/120935, WO 2010/126967, WO 2010/132538, WO 2010/122162 and WO 2006/019831 (PTC therapeutics), wherein all the aforementioned are hereby incorporated by reference for the limited purpose of the chemical structures and chemical compounds disclosed therein.
- Further examples of compounds that can be used in combination with one or more solid forms of Compound 1 described herein, or a pharmaceutically acceptable salt thereof, include the following: R1626, R1479 (Roche), MK-0608 (Merck), R1656, (Roche-Pharmasset), Valopicitabine (Idenix), JTK-002/003, JTK-109 (Japan Tobacco), GS-7977(Gilead), EDP-239 (Enanta), PPI-1301 (Presido Pharmaceuticals), (Gao M. et al. Nature, 465, 96-100 (2010)), JTK-853 (Japan Tobacco), RO-5303253 Hoffmann-La Roche), IDX-184 (Idenix Pharmaceuticals), class I interferons (such as alpha-interferons, beta-interferons, delta-interferons, omega-interferons, tau-inteferons, x-interferons, consensus interferons and asialo-interferons), class II interferons (such as gamma-interferons), pegylated interferons, interferon alpha 1A, interferon alpha 1 B, interferon alpha 2A, and interferon alpha 2B, thalidomide, IL-2; hematopoietins, IMPDH inhibitors (for example, Merimepodib (Vertex Pharmaceuticals Inc.)), natural interferon (such as OMNIFERON, Viragen and SUMIFERON, Sumitomo, and a blend of natural interferons), natural interferon alpha (ALFERON, Hemispherx Biopharma, Inc.), interferon alpha n1 from lymphblastoid cells (WELLFERON, Glaxo Wellcome), oral alpha interferon, Peg-interferon, Peg-interferon alpha 2a (PEGASYS, Roche), recombinant interferon alpha 2a (ROFERON, Roche), inhaled interferon alpha 2b (AERX, Aradigm), Peg-interferon alpha 2b (ALBUFERON, Human Genome Sciences/Novartis, PEGINTRON, Schering), recombinant interferon alpha 2b (INTRON A, Schering), pegylated interferon alpha 2b (PEG-INTRON, Schering, VIRAFERONPEG, Schering), interferon beta-1a (REBIF, Serono, Inc. and Pfizer), consensus interferon alpha (INFERGEN, Valeant Pharmaceutical), interferon gamma-1b (ACTIMMUNE, Intermune, Inc.), synthetic thymosin alpha 1 (ZADAXIN, SciClone Pharmaceuticals Inc.), an antisense agent (for example, ISIS-14803), SCH-6, ITMN-B (InterMune), GS9132 (Gilead), ISIS-14803 (ISIS Pharmaceuticals), ribavirin, amantadine, merimepodib, Levovirin, Viramidine, maxamine, silybum marianum, interleukine-12, amantadine, ribozyme, thymosin, N-acetyl cysteine and cyclosporin.
- Some embodiments described herein relate to a method of ameliorating or treating a viral infection that can include contacting a cell infected with the viral infection with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a mono-, di, and/or tri-phosphate thereof, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to a method of ameliorating or treating a viral infection that can include administering to a subject suffering from the viral infection an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to a method of inhibiting viral replication of a virus that can include contacting a cell infected with the virus with an effective amount of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt of any of the aforementioned compounds.
- Some embodiments described herein relate to the use of a compound described herein, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for ameliorating or treating a HCV infection, wherein the medicament can be manufactured for use in combination with one or more agents selected from an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB) and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- Other embodiments described herein relate to the use of a compound described herein, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for contacting a cell infected with a hepatitis C virus, wherein the medicament can be manufactured for use in combination with one or more agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- Other embodiments described herein relate to the use of a compound described herein, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for inhibiting viral replication of a virus (for example, HCV), wherein the medicament can be manufactured for use in combination with one or more agents selected from the group consisting of an interferon, ribavirin, a HCV protease inhibitor, a HCV polymerase inhibitor, a NS5A inhibitor, an antiviral compound, a compound of Formula (BB), and a compound of Formula (DD), or a pharmaceutically acceptable salt any of the aforementioned compounds.
- In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered with one or more additional agent(s) together in a single pharmaceutical composition. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered with one or more additional agent(s) as two or more separate pharmaceutical compositions. For example, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered in one pharmaceutical composition, and at least one of the additional agents can be administered in a second pharmaceutical composition. If there are at least two additional agents, one or more of the additional agents can be in a first pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and at least one of the other additional agent(s) can be in a second pharmaceutical composition.
- In some embodiments, one or more solid forms of Compound 1 described herein can be used in combination with VX-950 (TELAPREVIR®) for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV. In some embodiments, Form J can be used in combination with VX-950 (TELAPREVIR®) for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV. In some embodiments, one or more solid forms of Compound 1 described herein can be used in combination with VX-222 for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV. In some embodiments, Form J can be used in combination with VX-222 for treating and/or ameliorating HCV, inhibiting NS5B activity of HCV and/or inhibiting replication of HCV.
- The dosing amount(s) and dosing schedule(s) when using one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agents are within the knowledge of those skilled in the art. For example, when performing a conventional standard of care therapy using art-recognized dosing amounts and dosing schedules, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered in addition to that therapy, or in place of one of the agents of a combination therapy, using effective amounts and dosing protocols as described herein.
- The order of administration of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, with one or more additional agent(s) can vary. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered prior to all additional agents. In other embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered prior to at least one additional agent. In still other embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered concomitantly with one or more additional agent(s). In yet still other embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered subsequent to the administration of at least one additional agent. In some embodiments, one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, can be administered subsequent to the administration of all additional agents.
- In some embodiments, the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in
FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in an additive effect. In some embodiments, the combination one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in a synergistic effect. In some embodiments, the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) can result in a strongly synergistic effect. In some embodiments, the combination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) is not antagonistic. - As used herein, the term “antagonistic” means that the activity of the combination of compounds is less compared to the sum of the activities of the compounds in combination when the activity of each compound is determined individually (i.e. as a single compound). As used herein, the term “synergistic effect” means that the activity of the combination of compounds is greater than the sum of the individual activities of the compounds in the combination when the activity of each compound is determined individually. As used herein, the term “additive effect” means that the activity of the combination of compounds is about equal to the sum of the individual activities of the compound in the combination when the activity of each compound is determined individually.
- A potential advantage of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in
FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) may be a reduction in the required amount(s) of one or more compounds ofFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) that is effective in treating a disease condition disclosed herein (for example, HCV), as compared to the amount required to achieve same therapeutic result when one or more compounds ofFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) are administered without one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein. For example, the amount of a compound inFIGS. 32-34 (including a pharmaceutically acceptable salt and prodrug thereof), can be less compared to the amount of the compound inFIGS. 32-34 (including a pharmaceutically acceptable salt and prodrug thereof), needed to achieve the same viral load reduction when administered as a monotherapy. Another potential advantage of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) is that the use of two or more compounds having different mechanism of actions can create a higher barrier to the development of resistant viral strains compared to the barrier when a compound is administered as monotherapy. - Additional advantages of utilizing one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, in combination with one or more additional agent(s) in
FIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) may include little to no cross resistance between one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof) thereof; different routes for elimination of one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof); little to no overlapping toxicities between one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof); little to no significant effects on cytochrome P450; and/or little to no pharmacokinetic interactions between one or more solid forms of Compound 1 as described herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition that includes one or more solid forms of Compound 1 as described herein, and one or more additional agent(s) inFIGS. 32-34 (including pharmaceutically acceptable salts and prodrugs thereof). - In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
- Methods & Materials
- XRPD (X-Ray Powder Diffraction)
- Unless otherwise specified, samples were scanned on the Bruker D8 Discover operated at 40 kV, 35 mA. Two frames were registered with an exposure of 120 seconds. Data were integrated over the range of 4.5°-39.0° 2 theta with a step size of 0.02° and merged into one continuous pattern. All XRPD spectra provided herein are measured on a degrees 2-Theta scale.
- Differential Scanning Calorimetry (DSC)
- The following DSC method was used:
- 1: Data storage: Off
- 2: Equilibrate at −20.00° C. or 25.00° C.
- 3: Modulate +/−1.00° C. every 60 seconds
- 4: Isothermal for 5.00 min
- 5: Data storage: On
- 6: Ramp 2.00-3.00° C./min to 250.00° C.
- Solid State Nuclear Magnetic Spectroscopy
- Samples were packed into Bruker-Biospin 4 mm ZrO2 rotors (approximately 65 mg or less each depending on sample availability). The rotors were spun inside a Bruker-Biospin 4 mm HFX probe, which was placed in 400 MHz Bruker-Biospin wide bore magnet. Magic angle spinning (MAS) speed of typically 12.5 kHz was used (10.0 kHz if a suspension was characterized instead of a dry powder). The samples were referenced to adamantane at 29.5 ppm. The proton relaxation time was measured using 1H MAS T1 saturation recovery relaxation experiment in order to set up proper recycle delay of the 13C cross-polarization (CP) MAS experiment. The CP contact time was set to 2 ms. A CP proton pulse with linear ramp (from 50% to 100%) was employed. The Hartmann-Hahn match was optimized on external reference sample of glycine. SPINAL 64 decoupling was used with the field strength of approximately 90 kHz.
- Synthesis of Compound 1 and the Solid Forms of Compound 1.
-
- Step 1: Compound 3b-1—
- To a suspension of 2′-methyluridine (20 g, 77.52 mmol) in dry CH3CN (200 mL) were added cyclopentanone (20 mL) and trimethylorthoformate (20 mL) followed by p-toluenesulfonic acid monohydrate (7.4 g, 38.76 mmol). The reaction mixture was stirred at 40° C. overnight. The solvent was evaporated. The residue was dissolved in ethyl acetate and washed with brine. The organic layer was dried and evaporated to give pure 3b-1 as a white solid (14.5 g, 57.7%). 1H NMR (CDCl3, 400 MHz) δ8.86 (s, 1H), 7.67 (d, J=8.0 Hz, 1H), 6.06 (s, 1H), 5.73 (d, J=8.0 Hz, 1H), 4.50 (d, J=4.8 Hz, 1H), 4.21 (m, 1H), 4.02-3.86 (m, 2H), 2.17 (m, 1H), 1.98, 1.83, 1.68 (m, 8H), 1.30 (s, 3H).
- Step 2: Compound 3b-2—
- To a suspension of 3b-1 (20 g, 61.7 mmol) in dry CH3CN (100 mL) was added N-methylimidazole (50 mL) and 2b (80 g, 249.2 mmol). The reaction mixture was stirred at 70° C. for 2 h. Solvent was removed and the residue was dissolved in ethyl acetate (500 mL). The solution was washed with brine, dried and evaporated. The residue was purified on a silica gel column (20-50% ethylacetate (EA) in petroleum ether (PE)) to give 3b-2 as a white foam (two isomers, 12.5 g, 33%). 1H NMR (CDCl3, 400 MHz) δ8.79-8.92 (m, 1H), 7.55 (m, 1H), 7.34 (m, 2H), 7.20 (m, 3H), 6.09 (d, J=13.6 Hz, 1H), 5.70-5.61 (m, 1H), 5.06-5.01 (m, 1H), 4.38-4.09 (m, 6H), 2.08 (m, 1H), 1.96 (m, 1H), 1.73 (m, 2H), 1.66 (m, 5H), 1.39 (m, 3H), 1.23 (m, 9H); 31P NMR (CDCl3, 162 MHz) δ67.62, 67.31.
- Step 3: Compound 1(rac)—
- Compound 3b-2 (10 g, 16.4 mmol) was suspended in 100 mL of 80% formic acid and the reaction mixture was stirred at 50° C. for 1.5 hours. Solvent was evaporated and the residue was co-evaporated with toluene to remove traces of acid and water. The residue was purified by RP HPLC (0.5% HCOOH in MeCN and water as mobile phase) to give Compound 1(rac) (a mixture of two P-diastereomers, 5.6 g, 63%). 1H NMR (CD3OD, 400 MHz) δ 7.79, 7.87 (2d, J=8.0 Hz, 1H), 7.18-7.38 (m, 5H), 5.98, 6.01 (2s, 1H), 5.59, 5.63 (2d, J=8.0 Hz, 1H), 4.95-5.05 (m, 1H), 4.51-4.56 (m, 1H), 4.30-4.44 (m, 1H), 4.05-4.17 (m, 2H), 3.82-3.87 (m, 1H), 1.34, 1.38 (2d, J=7.2 Hz, 3H), 1.17, 1.25 (2d, J=6.0 Hz, 6H), 1.24, 125 (2s, 3H); 31P NMR (CD3OD, 162 MHz) δ68.17, 68.40; ESI-LCMS: m/z 544.0 [M+H]+.
- Step 4: Separation of Compound 1 and Compound 1—
- Compound 1(rac) was separated into its diastereomers by two methods: (a) supercritical fluid chromatography (SFC) and (b) crystallization.
- (a) Via SFC:
- Compound 1(rac) (440 mg, consisting of both Compound 1 and Compound 1a in ˜1:1 ratio) was subjected to separation by SFC (chiral PAK AD, 5 um. 250*30 mm using 25% MeOH and 75% CO2 as mobile phase) to give Compound 1a (123.8 mg) and Compound 1 (162.5 mg) as a white solid; Compound 1a: 1H NMR (CD3OD, 400 MHz) δ7.87 (d, J=8.4 Hz, 1H), 7.36 (t, J=8.0 Hz, 2H), 7.28 (d, J=8.8 Hz, 2H), 7.19 (t, J=7.6 Hz, 1H), 6.01 (s, 1H), 5.62 (d, J=8.0 Hz, 1H), 5.03-4.97 (m, 1H), 4.56-4.92 (m, 1H), 4.44-4.39 (m, 1H), 4.16-4.13 (m, 1H), 4.10-4.05 (m, 1H), 3.86 (d, J=9.2 Hz, 1H), 1.34 (d, J=7.2 Hz, 3H), 1.25 (d, J=6.4 Hz, 6H), 1.16 (s, 3H); 31P NMR (CD3OD, 162 MHz) δ68.18; ESI-LCMS: m/z=544 [M+H]+. Compound 1: 1H NMR (CD3OD, 400 MHz) δ7.89 (d, J=8.0 Hz, 1H), 7.36 (t, J=8.0 Hz, 2H), 7.30 (d, J=8.4 Hz, 2H), 7.20 (t, J=8.0 Hz, 1H), 5.99 (s, 1H), 5.60 (d, J=8.4 Hz, 1H), 5.03-4.97 (m, 1H), 4.56-4.51 (m, 1H), 4.35-4.30 (m, 1H), 4.14-4.10 (m, 2H), 3.83 (d, J=9.2 Hz, 1H), 1.39 (d, J=7.2 Hz, 3H), 1.25 (d, J=6.4 Hz, 6H), 1.17 (s, 3H); 31P NMR (CD3OD, 162 MHz) δ68.42; ESI-LCMS: m/z=566 [M+Na]+.
- (b) Via Crystallization:
- Method 1:
- Compound 1(rac) as a mixture of diastereomers (1:1, 10 g) was dissolved in 100 mL of dichloromethane (DCM)/ether (1:3). Hexane was added dropwise until the solution became cloudy. The solution was left at (room temperature) RT for 5 h and overnight at −20° C. Precipitated crystals were recrystallized from DCM/ether 1:3 v/v, and one more time from DCM/ether 1:2. Compound 1a (3 g) was obtained as a pure single diastereomer. The mother liquor after first crystallization was concentrated, and then dissolved in isopropanol. Hexane was added (30% by volume). The clear solution was left overnight at RT to produce a small amount of crystals, which were used as seeds. The mother liquor was evaporated and crystallized 2 times from hexane/isopropanol (4:1) to give 2.3 g of Compound 1.
- Method 2:
- 50 g of Compound 1(rac) was added to 100 mL of DCM and allowed to stir. After brief stirring almost all of the material was dissolved (<100 mg remained suspended). This was filtered and 300 mL of MTBE added while stirring. About 25 mg of Compound 1 was added as seeds and the solution cooled to 3° C. overnight. Significant precipitation was observed. The cold mixture was filtered and the solid washed with 25 mL of MTBE but not filtered dry. The product was dried on a rotvac at 8 torr and 30° C. This material was recrystallized one additional time using the procedure outline above with precipitation being observed upon the addition of 100 mg of the product from the first crystallization as seeds. XRPD indicated that the material recovered was amorphous. Additional solids had precipitated from the supernatant and were collected by filtration. These were then rinsed with 25 mL of MTBE and dried. 31P NMR showed that this material was Compound 1 with about 4% of Compound 1a.
- 350 mg of Compound 1 was weighed and added to 8 mL of a 1:1 DCM/Methanol (HPLC grade) solution in a vial. The contents were allowed to stir until a clear solution was obtained. This solution was spray dried on a Buchi B-290 Mini with a condenser attached. The resulting spray dried solid was further dried in a vacuum oven at RT overnight to remove any residual solvent. The parameters of the Buchi B-290 Mini are listed below:
- Nitrogen flow: 10 L/min;
- Nitrogen max pressure: 10 psi;
- CO2 max pressure: 15 psi;
- Inlet temperature: 95-100° C.;
- Outlet temperature: 50° C.;
- Aspirator: 100%;
- Pump: 30%; and
- Nozzle: 1.5
- To 1 g of Compound 1 was added 2 mL of ethyl acetate and the mixture was heated to 35° C. and stirred until all solids had dissolved. The mixture was then allowed to cool to room temperature to allow the solids to precipitate out of solution. An additional 2 mL of ethyl acetate was then added to the mixture, and the mixture was again heated to 35° C. until all solids dissolved. The mixture was allowed to cool to allow the solids to precipitate out of solution as above. The solid Form A was then collected by filtration.
- Representative XRPD peaks for Form A are shown in the table below. Form A can be identified and/or characterized by one or more of the peaks in the table below.
-
No. 2-Theta ° Intensity % 1 7.0* 91.8 2 8.5* 100.0 3 10.0 70.0 4 11.0 73.4 5 14.7 90.3 6 15.5 76.7 7 15.8* 79.6 8 16.6 90.9 9 17.8 81.1 10 18.0 99.2 11 18.8 72.2 12 19.9 76.1 13 20.8 73.5 14 21.4* 77.0 15 22.0** 68.9 16 22.6** 73.0 17 23.3** 68.8 18 25.8 71.7 19 28.7 67.4 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - Representative peaks from the 13C NMR solid state spectrum of Form A are shown in the table below. Form A can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0 24.12 2 172.0* 23.11 3 170.2 24.80 4 151.3 28.62 5 150.5 38.71 6 146.6* 14.23 7 143.9 12.74 8 130.4* 36.15 9 126.2 27.80 10 122.9 3.91 11 120.4 33.00 12 104.1* 23.68 13 102.2 23.18 14 92.8 20.65 15 92.2 17.13 16 84.1 27.03 17 79.7 68.89 18 75.0 28.02 19 73.5 33.05 20 69.5* 34.76 21 69.2 27.63 22 66.9* 40.98 23 50.4 22.59 24 21.9 100.00 25 20.6* 39.44 Peaks with an asterisk (*) are major peaks - Synthesis of the Form B (methyl tert-butyl ether solvate) and Form B (cyclohexane solvate). Form B (methyl tert-butyl ether solvate) and Form B (cyclohexane solvate) were determined to be isostructural by XRPD analysis.
- To a vial containing 20 mg of Form A was added 200 μL of HPLC grade methyl tert-butyl ether (MTBE). The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The mixture was filtered through a 0.22 μm PVDF filter to provide Form B (methyl tert-butyl ether solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form B (methyl tert-butyl ether solvate) are shown in the table below. Form B (methyl tert-butyl ether solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.2* 55.0 2 169.9 24.91 3 151.1 50.46 4 144.7 20.81 5 129.9* 100.00 6 123.3 47.74 7 118.3* 77.98 8 103.5 41.84 9 92.8 29.78 10 82.4 43.94 11 79.8 88.11 12 74.1 57.28 13 72.3* 20.83 14 68.5* 76.94 15 68.1 67.80 16 50.9 12.62 17 50.3 27.03 18 49.2* 57.83 19 27.1* 61.90 20 22.6 76.64 21 22.2 75.51 22 22.0 16.01 23 21.7 65.44 24 19.5* 52.58 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form B (methyl tert-butyl ether solvate) are shown in the table below. Form B (methyl tert-butyl ether solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.720* 71.8 2 9.395* 31.2 3 17.042* 100.0 4 26.219* 28.5 Peaks with an asterisk (*) are major peaks - To a vial containing 20 mg of Form A was added 200 μl of HPLC grade cyclohexane. The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The mixture was filtered through a 0.22 μm PVDF filter to provide Form B (cyclohexane solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form B (cyclohexane solvate) are shown in the table below. Form B (cyclohexane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 172.6 20.01 2 170.3* 26.09 3 150.5* 39.10 4 146.6 15.32 5 144.4 12.23 6 129.8* 31.00 7 126.3 25.02 8 122.6 15.89 9 120.4 26.04 10 118.2* 30.57 11 104.1 18.00 12 102.2 17.34 13 92.8 19.56 14 84.2 16.62 15 79.8* 53.48 16 75.0 22.56 17 73.6 20.49 18 69.5 21.11 19 68.1 19.74 20 66.9 21.59 21 64.0 13.37 22 50.5 20.41 23 40.8 12.34 24 27.2* 21.00 25 21.8* 100.00 26 18.6 15.87 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form B (cyclohexane solvate) are shown in the table below. Form B (cyclohexane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.720* 71.8 2 9.395* 31.2 3 17.042* 100.0 4 26.219* 28.5 Peaks with an asterisk (*) are major peaks - To a vial containing 20 mg of Form A was added 100 μL of HPLC grade nitromethane. The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The mixture was filtered through a 0.22 μm PVDF filter to provide Form C.
- Representative peaks from the 13C NMR solid state spectrum of Form C (nitromethane solvate) are shown in the table below. Form C (nitromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.7* 72.2 2 163.6 27.15 3 162.7 27.66 4 152.6 33.02 5 151.9* 39.39 6 151.3 17.72 7 150.4 19.06 8 144.1 20.92 9 140.7 19.90 10 129.6 32.86 11 126.7 18.14 12 126.1 20.87 13 125.5 22.15 14 123.3 27.16 15 122.8 35.54 16 103.2* 40.00 17 102.5 24.12 18 101.9 21.60 19 93.3 34.02 20 92.4 35.66 21 83.3* 51.71 22 81.5 57.50 23 80.8* 54.60 24 80.3 75.92 25 73.3* 88.51 26 69.4 39.18 27 68.3 39.61 28 65.5 23.22 29 64.9 26.70 30 63.8* 54.98 31 51.8 21.78 32 50.6 28.73 33 25.1* 71.94 34 20.8 88.14 35 20.1* 100.00 36 18.8 24.24 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form C (nitromethane solvate) are shown in the table below. Form C (nitromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 4.980* 27.4 2 6.573* 31.0 3 8.174* 39.0 4 9.151** 47.4 5 9.585** 56.2 6 16.337** 62.7 7 22.340* 28.1 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - To a vial containing 50 mg of Form A was added 100 μL of HPLC grade acetonitrile (ACN) and stirred at RT until all solids dissolved. The vial was then stirred at an intermediate speed (250 rpm) on a stir plate at 5° C. for 3 weeks. The mixture was filtered through a 0.22 μm PVDF filter, and the isolated solid was dried at RT and atmospheric pressure until the solid was substantially desolvated to provide Form D (desolvated acetonitrile solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form D (desolvated acetonitrile solvate) are shown in the table below. Form D (desolvated acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 172.5 31.47 2 170.3 39.91 3 163.0 36.97 4 152.7 57.96 5 150.4 41.72 6 143.3 19.06 7 139.1* 20.55 8 130.9 74.16 9 130.2 33.92 10 125.3* 71.51 11 124.4 39.60 12 120.8* 61.60 13 105.2* 73.13 14 92.3 31.47 15 91.0 29.46 16 81.8 47.28 17 79.9 100.00 18 78.5 65.96 19 73.6 52.41 20 72.8* 51.48 21 69.4 48.17 22 67.5* 45.52 23 63.0* 84.89 24 53.6 23.06 25 50.8 25.81 26 23.7 50.37 27 22.8 89.54 28 22.0 51.17 29 21.3 98.72 30 20.8 54.41 31 18.3 54.61 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form D (desolvated acetonitrile solvate) are shown in the table below. Form D (desolvated acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 8.105* 55.6 2 13.357* 44.1 3 14.424** 100.0 4 17.215** 66.0 5 29.590* 29.1 6 35.019* 25.3 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - To a vial containing 40 mg of Form A was added 100 μL of HPLC grade dioxane. The vial was stirred at an intermediate speed (250 rpm) on a stir plate at 5° C. for 24 hours. 100 μL of HPLC grade heptane was then added, and the vial was sonicated in a ultrasonicator for 2 minutes. The mixture was then stirred at 5° C. for an additional 3 weeks. The vial was then uncapped and placed in the open air to evaporate the solvent and provide a solid mixture of Form E (dioxane solvate) and Form A.
- Representative peaks from the 13C NMR solid state spectrum of Form E (dioxane solvate) are shown in the table below. Form E (dioxane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0* 56.27 2 172.1 10.64 3 170.1 29.76 4 151.3 14.75 5 150.7* 55.30 6 146.7 6.43 7 145.2 17.07 8 144.0 6.43 9 130.2* 78.40 10 126.2 14.42 11 123.7 34.51 12 120.5 15.84 13 118.3* 65.27 14 104.1 11.22 15 103.2 33.55 16 102.2 11.20 17 92.7 28.19 18 84.1 12.31 19 82.4 35.17 20 80.1 73.44 21 79.8 36.49 22 75.0 14.45 23 73.9* 48.37 24 69.2 53.62 25 68.0* 59.07 26 67.0* 32.83 27 50.4 28.84 28 22.0* 100.00 29 21.7 93.59 30 21.4 58.58 31 20.6 18.91 32 19.4 40.73 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form E (dioxane solvate) are shown in the table below. Form E (dioxane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 7.765* 58.9 2 10.563** 22.3 3 12.901* 40.7 4 21.571* 26.4 5 24.466** 51.4 6 25.016* 31.6 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - To a vial containing 60 mg of Form A was added 200 μL of HPLC grade tetrahydrofuran (THF). The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 weeks. The vial was then uncapped and placed in the open air to evaporate the solvent and provide a solid mixture of Form F (tetrahydrofuran solvate) and Form A.
- Representative peaks from the 13C NMR solid state spectrum of Form F (tetrahydrofuran solvate) are shown in the table below. Form F (tetrahydrofuran solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak # [ppm] [rel] 1 173.0 21.53 2 172.0 24.07 3 170.2* 27.88 4 151.3 28.85 5 150.5* 40.71 6 146.6 11.13 7 145.2 6.82 8 143.9 11.03 9 130.4* 33.74 10 126.2 25.38 11 123.1 8.05 12 120.4 29.96 13 104.0 20.89 14 103.2 9.89 15 102.2 20.47 16 92.8 22.77 17 92.2 18.97 18 84.0 21.12 19 81.9 7.45 20 79.7* 71.06 21 75.0 24.15 22 73.5* 30.33 23 69.5 29.78 24 69.2 27.71 25 68.2* 20.78 26 66.9* 34.82 27 50.4 28.03 28 25.7* 7.70 29 21.8* 100.00 30 20.6* 39.64 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form F (tetrahydrofuran solvate) are shown in the table below. Form F (tetrahydrofuran solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.090* 100.0 2 6.970* 32.4 3 17.538* 30.7 4 18.048* 56.0 Peaks with an asterisk (*) are major peaks - To a vial containing 50 mg of Amorphous Form O was added 50 μL of HPLC grade dichloromethane (DCM). The vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT for 1 hour. An aliquot (˜25 μL) was placed in a capillary tube which was then sealed off at both ends. The capillary tube was placed on an XRPD holder and analyzed (an acquisition time of 600 seconds was used for each frame).
- Representative peaks from the 13C NMR solid state spectrum of Form G (dichloromethane solvate) are shown in the table below. Form G (dichloromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 172.9* 47.8 2 172.5 60.77 3 170.1 31.87 4 150.8* 97.73 5 145.6 17.22 6 143.7 10.94 7 130.4* 78.80 8 123.6 13.92 9 122.8 39.28 10 122.2 22.62 11 119.6* 30.97 12 118.7* 83.25 13 103.6 49.34 14 103.2 27.56 15 93.1 34.63 16 92.6 30.12 17 83.1* 44.78 18 82.6 41.59 19 80.2 49.48 20 79.9 89.47 21 79.5 48.95 22 74.4 42.00 23 73.5 36.87 24 73.3 36.16 25 69.0* 46.99 26 68.8 93.22 27 68.5 53.49 28 68.3 50.90 29 68.0 70.75 30 54.2* 17.40 31 50.5 44.46 32 23.4 36.90 33 22.9 82.85 34 22.6 100.00 35 21.8 87.94 36 21.4 85.89 37 20.4* 70.1 38 20.1 39.2 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form G (dichloromethane solvate) are shown in the table below. Form G (dichloromethane solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.857* 100.0 2 7.498* 41.6 3 7.835* 32.1 4 12.522** 23.5 5 17.733* 53.0 6 18.193** 23.5 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - To a vial containing 120 mg of Amorphous Form O was added 100 μL of HPLC grade acetonitrile (ACN), and the mixture was stirred at RT until the solids dissolved. The vial was then sonicated in an ultrasonicator for 2 minutes, and the mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 5 minutes. The mixture was filtered through a 0.22 μm PVDF filter to provide Form H (acetonitrile solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form H (acetonitrile solvate) are shown in the table below. Form H (acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.4* 70.7 2 164.4 44.87 3 153.4* 31.83 4 152.2* 61.17 5 141.4 42.94 6 129.8* 70.37 7 123.6 53.72 8 119.8* 55.92 9 104.6* 76.16 10 92.3 56.76 11 82.6 35.67 12 81.9 32.74 13 79.4* 100.00 14 73.4 96.98 15 68.9 54.71 16 61.7 73.15 17 53.6 47.24 18 23.4 79.96 19 22.9 86.96 20 21.6 41.15 21 20.6* 90.05 22 2.2* 14.59 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form H (acetonitrile solvate) are shown in the table below. Form H (acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 8.132* 81.7 2 14.020* 34.6 3 17.226* 61.7 4 20.902* 27.3 Peaks with an asterisk (*) are major peaks - Synthesis of the isostructural Form I (isopropyl acetate solvate) and Form I (ethyl acetate solvate). Form I (isopropyl acetate solvate) and Form I (ethyl acetate solvate) were determined to be isostructural by XRPD analysis.
- To a vial containing 33 mg of Amorphous Form O was added 2004 of HPLC grade isopropyl acetate (IPAC). The mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 2 hours. The mixture was filtered through a 0.22 μm PVDF filter to provide Form I (isopropyl acetate solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form I (isopropyl acetate solvate) are shown in the table below. Form I (isopropyl acetate solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.2 28.4 2 173.0* 35.35 3 170.1 18.49 4 168.4* 18.99 5 152.1* 44.16 6 151.0 35.26 7 144.8 19.59 8 143.5 18.22 9 129.9 26.35 10 126.1* 27.72 11 123.4 33.24 12 122.8 27.21 13 119.6 9.23 14 102.7* 56.58 15 93.2 23.93 16 91.1 24.94 17 81.6 37.12 18 80.5 42.31 19 79.6 73.82 20 74.5* 37.87 21 73.2 37.91 22 71.2* 34.86 23 69.3 62.97 24 68.8 39.70 25 63.3* 34.57 26 51.1 22.87 27 50.3 19.47 28 23.3* 100.00 29 22.8 76.24 30 21.9 75.98 31 21.4 42.76 32 20.4 36.17 33 20.0 38.34 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form I (isopropyl acetate solvate) are shown in the table below. Form I (isopropyl acetate solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.434* 59.2 2 9.283* 30.8 3 10.831* 55.3 4 11.794* 28.3 Peaks with an asterisk (*) are major peaks - To a vial containing 33 mg of Amorphous Form O was added 2004 of HPLC grade ethyl acetate. The mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 2 hours. The mixture was filtered through a 0.22 μm PVDF filter to provide Form I (ethyl acetate solvate).
- Representative peaks from the 13C NMR solid state spectrum of Form I (ethyl acetate solvate) are shown in the table below. Form I (ethyl acetate solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.2 27.6 2 173.1* 34.33 3 170.3 20.24 4 168.6* 20.76 5 152.1* 41.55 6 151.1 35.37 7 144.9 20.96 8 143.6 18.23 9 129.4 12.59 10 126.1 23.63 11 123.6* 24.98 12 119.3 10.42 13 102.6* 56.41 14 93.2 22.66 15 91.1 23.83 16 81.7 36.81 17 80.6 41.38 18 79.6 68.17 19 74.3 34.18 20 73.2 33.47 21 71.4* 32.36 22 69.3 33.35 23 68.7 34.79 24 63.5* 32.91 25 61.9* 21.88 26 51.3 22.60 27 50.5 21.35 28 22.4* 100.00 29 20.1 52.23 30 15.5* 16.24 - Representative peaks from the XRPD spectrum of Form I (ethyl acetate solvate) are shown in the table below. Form I (ethyl acetate solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.434* 59.2 2 9.283* 30.8 3 10.831* 55.3 4 11.794* 28.3 Peaks with an asterisk (*) are major peaks - To a vial containing 100 mg of Amorphous Form O was added 150 μL of HPLC grade ethanol. The contents of the vial was stirred at an intermediate speed (250 rpm) on a stir plate at RT overnight. The mixture was filtered through a 0.22 μm PVDF filter to provide Form J.
- Representative peaks from the XRPD spectrum of Form J are shown in the table below. Form J can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.1* 69.2 2 7.5* 54.4 3 9.0 21.2 4 9.9 21.2 5 10.8 34.0 6 11.1 44.2 7 11.4 26.5 8 12.1* 100.0 9 12.9 24.6 10 13.3* 31.2 11 14.0* 27.2 12 14.8 28.3 13 15.1 30.2 14 15.4 29.5 15 16.1 33.0 16 16.7 41.0 17 17.6 29.8 18 18.0 54.6 19 18.5* 47.3 20 18.9 25.6 21 19.4 41.6 22 19.6 35.8 23 20.3 43.5 24 20.7 59.8 25 21.1 43.8 26 21.7 35.5 27 22.6** 30.1 28 22.3 24.3 29 23.8 23.1 30 24.7 32.7 31 25.2 23.7 32 25.7 20.8 33 26.6 26.7 34 27.5 24.3 35 27.8 23.6 36 28.3 20.7 37 29.6 22.9 38 32.2 20.3 39 33.2** 21.5 40 34.0** 19.2 41 35.3** 19.3 42 35.4 19.4 43 36.5 19.0 Peaks with an asterisk (*) are major peaks Peaks with a double asterisk (**) are secondary peaks - Representative peaks from the 13C NMR solid state spectrum of Form J are shown in the table below. Form J can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 175.6* 26.8 2 172.6 39.76 3 165.8 13.72 4 162.9 22.43 5 162.5 16.16 6 153.0 15.82 7 152.8 15.88 8 151.5 29.40 9 151.1 11.45 10 150.7 36.85 11 150.1 21.71 12 141.4* 19.34 13 140.1 11.81 14 131.1 29.77 15 129.7 35.60 16 129.5 26.33 17 127.8* 25.20 18 127.1 17.58 19 126.3 27.54 20 123.8 29.09 21 123.4* 32.43 22 122.8 26.21 23 103.1* 37.64 24 101.3 27.86 25 93.8 22.55 26 93.3 16.53 27 91.7 18.80 28 83.5* 35.20 29 81.1* 35.52 30 80.7 100.00 31 79.8 28.76 32 78.6 42.08 33 74.4 37.67 34 73.4 41.04 35 73.1 28.84 36 72.3 39.74 37 70.1 57.8 38 63.7 44.0 39 62.2* 334 40 53.1 21.6 41 52.5 16.9 42 50.8 15.9 43 25.6* 36.7 44 23.7 60.6 45 23.0 34.4 46 22.5 64.4 47 22.1 46.4 48 21.7 36.1 49 19.6* 34.5 50 18.8 34.8 51 18.4 29.1 Peaks with an asterisk (*) are major peaks - To a vial containing 80 mg of Form J was added 200 μL of HPLC grade chloroform. The vial was sonicated in an ultrasonicator for 1 minute, and the mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT overnight. An aliquot (−25 μL) was placed on a holder and analyzed by XRPD.
- Representative peaks from the 13C NMR solid state spectrum of Form K are shown in the table below. Form K can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.9* 40.0 2 173.4* 39.97 3 169.9 23.72 4 168.7 24.10 5 151.8* 45.42 6 150.5* 44.95 7 144.6 27.19 8 144.1 24.43 9 129.8 17.44 10 126.2 30.54 11 125.8 20.97 12 122.5 16.21 13 101.9* 81.01 14 93.4 34.58 15 92.0* 35.25 16 81.6 54.04 17 80.4* 88.61 18 79.7 51.32 19 78.6 62.92 20 73.5* 72.84 21 70.6 49.15 22 69.5 50.72 23 68.1 46.78 24 63.6 47.15 25 50.8 55.38 26 23.2 76.97 27 22.8 67.52 28 22.1* 100.00 29 20.7 68.21 30 20.4* 97.77 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form K are shown in the table below. Form K can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 22.620* 27.5 2 27.257* 26.7 3 28.272* 25.0 4 31.216* 27.0 Peaks with an asterisk (*) are major peaks - To a vial containing 80 mg of Form J was added 150 μL of HPLC grade acetonitrile (ACN). The vial was sonicated in an ultrasonicator for 1 minute, and the mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 2 days. The resulting solid Form L (acetonitrile solvate) in the mixture was analyzed by XRPD as a suspension without isolation of the solid.
- Representative peaks from the 13C NMR solid state spectrum of Form L (acetonitrile solvate) are shown in the table below. Form L (acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 173.2* 32.2 2 172.6 13.04 3 164.3 20.50 4 152.9 15.62 5 152.3 18.02 6 151.4* 22.38 7 150.8 10.20 8 150.6 15.53 9 142.9 7.14 10 140.9* 17.32 11 130.3 17.85 12 129.9 17.36 13 125.7 15.60 14 124.7 11.99 15 123.4 12.87 16 118.5* 18.82 17 103.8 8.86 18 103.3 18.66 19 102.9 15.60 20 101.5 12.23 21 92.7 29.36 22 92.3 25.58 23 81.5* 51.96 24 80.1* 100.00 25 73.4* 51.97 26 69.9 17.16 27 69.3 27.18 28 68.0 11.49 29 63.0 15.93 30 61.9 24.74 31 61.6* 32.16 32 54.0 18.79 33 53.0 14.69 34 52.2 16.30 35 23.7 12.59 36 23.3 12.87 37 23.0 28.2 38 22.5 42.2 39 22.0 47.5 40 21.4 43.2 41 20.9* 50.2 42 20.2 17.4 43 19.8 22.2 44 19.2 15.2 45 18.9 14.8 46 1.6* 12.9 - Representative peaks from the XRPD spectrum of Form L (acetonitrile solvate) are shown in the table below. Form L (acetonitrile solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 5.662* 27.0 2 6.036* 27.2 3 15.174* 100.0 4 16.102* 56.5 Peaks with an asterisk (*) are major peaks - Form L, as produced above, was isolated from the mixture and placed in a vacuum overnight until the solid was substantially desolvated, to provide Form M.
- Representative peaks from the 13C NMR solid state spectrum of Form M are shown in the table below. Form M can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 174.0* 31.8 2 173.2 13.03 3 172.3 7.89 4 170.5* 25.18 5 163.6 11.98 6 163.0 24.93 7 162.4 16.01 8 152.8 24.75 9 151.8 15.28 10 151.3 19.55 11 150.7 13.04 12 150.3 26.82 13 149.8 8.82 14 149.3 28.40 15 141.0 21.01 16 138.9 14.25 17 131.3 17.74 18 130.3 11.77 19 129.5* 32.91 20 127.0 27.77 21 126.6 24.70 22 124.7 17.32 23 124.0 14.60 24 122.4 15.29 25 121.3 12.07 26 118.5 11.42 27 103.5 34.79 28 102.7 10.83 29 102.2 27.86 30 101.7 8.62 31 92.5 36.95 32 83.2 31.87 33 81.5 45.71 34 80.6 14.75 35 80.1 18.58 36 79.6* 100.00 37 74.3 44.8 38 73.3 44.3 39 70.5 10.0 40 69.7* 44.6 41 67.5 8.1 42 64.5 8.8 43 64.0 9.6 44 63.2* 39.5 45 61.4 8.0 46 53.3 20.6 47 51.8* 33.6 48 24.0* 37.0 49 23.7 47.1 50 23.3 62.9 51 22.4 67.7 52 21.9 44.5 53 21.6 52.4 54 20.5 8.9 55 19.5* 49.4 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form M are shown in the table below. Form M can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 6.274* 66.2 2 13.200* 40.5 3 22.225* 50.0 4 23.520* 38.7 Peaks with an asterisk (*) are major peaks - To a vial containing 50 mg of Amorphous Form O was added 200 μL of HPLC grade toluene. The vial was sonicated in an ultrasonicator for 1 minute, and the mixture was then stirred at an intermediate speed (250 rpm) on a stir plate at RT for 3 days. The resulting solid Form N (toluene solvate) in the mixture was analyzed by XRPD (Bruker D8 Discover; 40 kV, 35 mA; single frame registered with an exposure of 120 seconds) as a suspension without isolation of the solid.
- Representative peaks from the 13C NMR solid state spectrum of Form N (toluene solvate) are shown in the table below. Form N (toluene solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
ν(F1) Intensity Peak [ppm] [rel] 1 172.6* 60.5 2 170.3 21.21 3 169.9 20.31 4 151.5 28.70 5 151.1 40.12 6 150.6 26.12 7 145.2 33.34 8 130.4* 78.13 9 129.5* 87.88 10 129.2* 70.02 11 128.4* 64.31 12 125.5 40.20 13 124.4 31.97 14 124.2 31.70 15 120.8 66.36 16 120.0 74.60 17 103.5 40.76 18 103.2 33.90 19 92.8 37.18 20 82.6 41.88 21 82.2* 37.02 22 79.6 64.84 23 79.3 68.37 24 74.0* 88.74 25 68.6 28.92 26 68.4 57.45 27 68.1 92.39 28 67.7* 51.91 29 50.2 29.20 30 23.0 54.35 31 22.3 18.31 32 21.8 60.50 33 21.3* 100.00 34 21.1 61.99 35 20.6 18.12 36 20.2 58.39 37 19.3 34.4 Peaks with an asterisk (*) are major peaks - Representative peaks from the XRPD spectrum of Form N (toluene solvate) are shown in the table below. Form N (toluene solvate) can be identified and/or characterized by one or more of the peaks selected from the table below.
-
No. 2-Theta ° Intensity % 1 12.419* 25.7 2 15.310* 41.7 3 17.149* 76.6 4 17.873* 57.0 Peaks with an asterisk (*) are major peaks - Cells
- Huh-7 cells containing the self-replicating, subgenomic HCV replicon with a stable luciferase (LUC) reporter were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 2 mM L-glutamine and supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomyocin, 1% nonessential amino acids, and 0.5 mg/mL G418.
- Determination of Anti-HCV Activity
- Determination of 50% inhibitory concentration (EC50) of compounds in HCV replicon cells were performed by the following procedure. On the first day, 5,000 HCV replicon cells were plated per well in a 96-well plate. On the following day, test compounds were solubilized in 100% DMSO to 100× the desired final testing concentration. Each compound was then serially diluted (1:3) up to 9 different concentrations. Compounds in 100% DMSO are reduced to 10% DMSO by diluting 1:10 in cell culture media. The compounds were diluted to 10% DMSO with cell culture media, which were used to dose the HCV replicon cells in 96-well format. The final DMSO concentration was 1%. The HCV replicon cells were incubated at 37° C. for 72 hours. At 72 hours, cells were processed when the cells are still subconfluent. Compounds that reduce the LUC signal are determined by Bright-Glo Luciferase Assay (Promega, Madison, Wis.). Percent Inhibition was determined for each compound concentration in relation to the control cells (untreated HCV replicon) to calculate the EC50.
- Compound 1 was determined to have an EC50 of less than 1 μM by the above procedure.
Claims (35)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/794,380 US8916538B2 (en) | 2012-03-21 | 2013-03-11 | Solid forms of a thiophosphoramidate nucleotide prodrug |
UY0001034701A UY34701A (en) | 2012-03-21 | 2013-03-21 | SOLID FORMS OF A THIOPHOSPHORAMIDATE NUCLEOTIDE PROFIT |
ARP130100934A AR090465A1 (en) | 2012-03-21 | 2013-03-21 | SOLID FORMS OF A THIOPHOSPHORAMIDATE NUCLEOTIDE PROFARMACO |
TW102110127A TWI583694B (en) | 2012-03-21 | 2013-03-21 | Solid forms of a thiophosphoramidate nucleotide prodrug |
US14/578,883 US9394330B2 (en) | 2012-03-21 | 2014-12-22 | Solid forms of a thiophosphoramidate nucleotide prodrug |
US15/210,509 US9856284B2 (en) | 2012-03-21 | 2016-07-14 | Solid forms of a thiophosphoramidate nucleotide prodrug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261613972P | 2012-03-21 | 2012-03-21 | |
US13/794,380 US8916538B2 (en) | 2012-03-21 | 2013-03-11 | Solid forms of a thiophosphoramidate nucleotide prodrug |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/578,883 Continuation US9394330B2 (en) | 2012-03-21 | 2014-12-22 | Solid forms of a thiophosphoramidate nucleotide prodrug |
Publications (3)
Publication Number | Publication Date |
---|---|
US20130266538A1 US20130266538A1 (en) | 2013-10-10 |
US20140154210A9 true US20140154210A9 (en) | 2014-06-05 |
US8916538B2 US8916538B2 (en) | 2014-12-23 |
Family
ID=47997873
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/794,380 Expired - Fee Related US8916538B2 (en) | 2012-03-21 | 2013-03-11 | Solid forms of a thiophosphoramidate nucleotide prodrug |
US14/578,883 Expired - Fee Related US9394330B2 (en) | 2012-03-21 | 2014-12-22 | Solid forms of a thiophosphoramidate nucleotide prodrug |
US15/210,509 Expired - Fee Related US9856284B2 (en) | 2012-03-21 | 2016-07-14 | Solid forms of a thiophosphoramidate nucleotide prodrug |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/578,883 Expired - Fee Related US9394330B2 (en) | 2012-03-21 | 2014-12-22 | Solid forms of a thiophosphoramidate nucleotide prodrug |
US15/210,509 Expired - Fee Related US9856284B2 (en) | 2012-03-21 | 2016-07-14 | Solid forms of a thiophosphoramidate nucleotide prodrug |
Country Status (9)
Country | Link |
---|---|
US (3) | US8916538B2 (en) |
EP (1) | EP2828277A1 (en) |
CN (1) | CN104321333A (en) |
AR (1) | AR090465A1 (en) |
HK (1) | HK1206362A1 (en) |
NZ (1) | NZ631601A (en) |
TW (1) | TWI583694B (en) |
UY (1) | UY34701A (en) |
WO (1) | WO2013142124A1 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8618076B2 (en) * | 2009-05-20 | 2013-12-31 | Gilead Pharmasset Llc | Nucleoside phosphoramidates |
TWI583692B (en) | 2009-05-20 | 2017-05-21 | 基利法瑪席特有限責任公司 | Nucleoside phosphoramidates |
EP2619215B1 (en) | 2010-09-22 | 2018-09-05 | Alios Biopharma, Inc. | Azido nucleosides and nucleotide analogs |
EA025341B1 (en) | 2010-09-22 | 2016-12-30 | Алиос Биофарма, Инк. | Substituted nucleotide analogs |
US8772474B2 (en) | 2010-12-22 | 2014-07-08 | Alios Biopharma, Inc. | Cyclic nucleotide analogs |
EP2794630A4 (en) | 2011-12-22 | 2015-04-01 | Alios Biopharma Inc | Substituted phosphorothioate nucleotide analogs |
LT2794627T (en) | 2011-12-22 | 2019-01-10 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
CN104334570B (en) | 2012-03-21 | 2017-06-06 | 艾丽奥斯生物制药有限公司 | The method for preparing the nucleotide analog of substitution |
WO2013142124A1 (en) | 2012-03-21 | 2013-09-26 | Vertex Pharmaceuticals Incorporated | Solid forms of a thiophosphoramidate nucleotide prodrug |
USRE48171E1 (en) | 2012-03-21 | 2020-08-25 | Janssen Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
US9441007B2 (en) | 2012-03-21 | 2016-09-13 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
NZ630805A (en) * | 2012-03-22 | 2016-01-29 | Alios Biopharma Inc | Pharmaceutical combinations comprising a thionucleotide analog |
WO2013174962A1 (en) | 2012-05-25 | 2013-11-28 | Janssen R&D Ireland | Uracyl spirooxetane nucleosides |
AU2013361193B2 (en) | 2012-12-21 | 2018-05-24 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
EP3421482A1 (en) | 2012-12-21 | 2019-01-02 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
WO2014134251A1 (en) * | 2013-02-28 | 2014-09-04 | Vertex Pharmaceuticals Incorporated | Pharmaceutical compositions |
US9504705B2 (en) * | 2013-04-05 | 2016-11-29 | Alios Biopharma, Inc. | Hepatitis C viral infection treatment using a combination of compounds |
CA2913206C (en) | 2013-06-26 | 2022-08-02 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
DK3424938T3 (en) | 2013-06-26 | 2020-10-12 | Janssen Biopharma Inc | 4'-AZIDOALKYL SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGS THEREOF |
SG10201804835VA (en) | 2013-10-11 | 2018-07-30 | Alios Biopharma Inc | Substituted nucleosides, nucleotides and analogs thereof |
WO2015065817A1 (en) * | 2013-10-30 | 2015-05-07 | Merck Sharp & Dohme Corp. | Pseudopolymorphs of an hcv ns5a inhibitor and uses thereof |
AU2015280248B2 (en) | 2014-06-24 | 2021-04-08 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
EA201692537A1 (en) | 2014-06-24 | 2017-05-31 | Элиос Биофарма, Инк. | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND THEIR ANALOGUES |
WO2016069489A1 (en) | 2014-10-28 | 2016-05-06 | Alios Biopharma, Inc. | Methods of preparing substituted nucleoside analogs |
MA41441A (en) | 2014-12-19 | 2017-12-12 | Alios Biopharma Inc | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGUES OF THEM |
MA41213A (en) | 2014-12-19 | 2017-10-24 | Alios Biopharma Inc | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGUES OF THEM |
EP3268368A4 (en) | 2015-03-11 | 2018-11-14 | Alios Biopharma, Inc. | Aza-pyridone compounds and uses thereof |
CA3041420A1 (en) * | 2016-12-22 | 2018-06-28 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | Solid form of 4'-thio-2'-fluoronucleoside phosphamide compound and preparation method therefor and use thereof |
ES2938859T3 (en) * | 2017-05-01 | 2023-04-17 | Gilead Sciences Inc | A crystalline form of (S)-2-ethylbutyl 2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4 ]triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate |
TW202322824A (en) | 2020-02-18 | 2023-06-16 | 美商基利科學股份有限公司 | Antiviral compounds |
TW202245800A (en) | 2020-02-18 | 2022-12-01 | 美商基利科學股份有限公司 | Antiviral compounds |
JP7429799B2 (en) | 2020-02-18 | 2024-02-08 | ギリアード サイエンシーズ, インコーポレイテッド | antiviral compounds |
EP4323362A1 (en) | 2021-04-16 | 2024-02-21 | Gilead Sciences, Inc. | Methods of preparing carbanucleosides using amides |
KR20240049311A (en) | 2021-08-18 | 2024-04-16 | 길리애드 사이언시즈, 인코포레이티드 | Phospholipid compounds and methods of making and using the same |
Family Cites Families (370)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2844579A (en) | 1958-07-22 | Process for thiamine monomtrate | ||
US3180859A (en) | 1962-12-05 | 1965-04-27 | Upjohn Co | Derivatives of decoyinine and process for preparing same |
US3431252A (en) | 1966-04-01 | 1969-03-04 | Merck & Co Inc | 5,5-dialkyl-d-ribofuranosyl purine compounds and intermediates |
US3480613A (en) | 1967-07-03 | 1969-11-25 | Merck & Co Inc | 2-c or 3-c-alkylribofuranosyl - 1-substituted compounds and the nucleosides thereof |
US3816399A (en) | 1970-07-14 | 1974-06-11 | Univ Bradford | 1-amine nucleosides |
GB1319303A (en) | 1970-07-14 | 1973-06-06 | Univ Bradford | Sugar derivatives |
US3872098A (en) | 1972-10-10 | 1975-03-18 | Syntex Inc | 1,n{hu 6{b ethenoadenosine cyclophosphate compounds |
US3872084A (en) | 1972-10-10 | 1975-03-18 | Syntex Inc | Purine nucleoside 3,5-cyclicphosphate compounds |
US4093714A (en) | 1974-03-15 | 1978-06-06 | Icn Pharmaceuticals, Inc. | 9β-D-Arabinofuranosylpurine nucleotides and method of use |
US4526988A (en) | 1983-03-10 | 1985-07-02 | Eli Lilly And Company | Difluoro antivirals and intermediate therefor |
PL144471B1 (en) | 1985-04-22 | 1988-05-31 | Polska Akad Nauk Centrum | Method of obtaining novel 3',5'-cyclic adensine dithiophosphate |
DK224286A (en) | 1985-05-15 | 1986-11-16 | Wellcome Found | 2 ', 3'-dideoxy nucleosides |
JPH0446124Y2 (en) | 1986-02-25 | 1992-10-29 | ||
AU8276187A (en) | 1986-10-31 | 1988-05-25 | Warner-Lambert Company | Selected n6-substituted adenosines having selective a2 binding activity |
IL86007A0 (en) | 1987-04-09 | 1988-09-30 | Wellcome Found | 6-substituted purine nucleosides,their preparation and pharmaceutical compositions containing them |
US4885739A (en) | 1987-11-13 | 1989-12-05 | Dsc Communications Corporation | Interprocessor switching network |
DE3824110A1 (en) | 1988-07-15 | 1990-01-18 | Max Planck Gesellschaft | Process for the preparation and purification of oligo- and polynucleotide sequences phosphorylated on their 5-ends and reagents for carrying out the process |
EP0371366A1 (en) | 1988-11-21 | 1990-06-06 | Syntex (U.S.A.) Inc. | Antiviral agents |
DD279247A1 (en) | 1989-01-01 | 1990-05-30 | Akad Wissenschaften Ddr | PROCESS FOR THE PREPARATION OF 1-BETA-D-ALLOFURANOSYLTHYMIN NUCLEOSIDES |
US5646128A (en) | 1989-09-15 | 1997-07-08 | Gensia, Inc. | Methods for treating adenosine kinase related conditions |
US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
GB9009861D0 (en) | 1990-05-02 | 1990-06-27 | Glaxo Group Ltd | Chemical compounds |
JPH0446124A (en) | 1990-06-13 | 1992-02-17 | Advance Co Ltd | Antiulcer agent |
US6087482A (en) | 1990-07-27 | 2000-07-11 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5610289A (en) | 1990-07-27 | 1997-03-11 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogues |
US5677437A (en) | 1990-07-27 | 1997-10-14 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5378825A (en) | 1990-07-27 | 1995-01-03 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs |
US5432272A (en) | 1990-10-09 | 1995-07-11 | Benner; Steven A. | Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases |
AU665184B2 (en) | 1991-01-23 | 1995-12-21 | Gensia, Inc. | Adenosine kinase inhibitors |
RU2126255C1 (en) | 1991-05-15 | 1999-02-20 | Йель Юниверсити | Method of inducing antitumor effect in mammalians |
IT1249732B (en) | 1991-11-26 | 1995-03-09 | Angeletti P Ist Richerche Bio | ANTISENSE OLIGONUCLEOTIDES. |
US6469158B1 (en) | 1992-05-14 | 2002-10-22 | Ribozyme Pharmaceuticals, Incorporated | Synthesis, deprotection, analysis and purification of RNA and ribozymes |
US5804683A (en) | 1992-05-14 | 1998-09-08 | Ribozyme Pharmaceuticals, Inc. | Deprotection of RNA with alkylamine |
US5686599A (en) | 1992-05-14 | 1997-11-11 | Ribozyme Pharmaceuticals, Inc. | Synthesis, deprotection, analysis and purification of RNA and ribozymes |
US5714383A (en) | 1992-05-14 | 1998-02-03 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for treating chronic myelogenous leukemia |
US5977343A (en) | 1992-05-14 | 1999-11-02 | Ribozyme Pharmaceuticals, Inc. | Synthesis, deprotection, analysis and purification of RNA and ribozymes |
US5625056A (en) | 1992-05-26 | 1997-04-29 | Biolog Life Science Institute | Derivatives of cyclic guanosine-3',5'-monophosphorothioate |
WO1993025566A1 (en) | 1992-06-18 | 1993-12-23 | Jyoti Chattopadhyaya | Deuterated nucleosides |
US5658780A (en) | 1992-12-07 | 1997-08-19 | Ribozyme Pharmaceuticals, Inc. | Rel a targeted ribozymes |
US5837542A (en) | 1992-12-07 | 1998-11-17 | Ribozyme Pharmaceuticals, Inc. | Intercellular adhesion molecule-1 (ICAM-1) ribozymes |
US5811300A (en) | 1992-12-07 | 1998-09-22 | Ribozyme Pharmaceuticals, Inc. | TNF-α ribozymes |
US5616488A (en) | 1992-12-07 | 1997-04-01 | Ribozyme Pharmaceuticals, Inc. | IL-5 targeted ribozymes |
JPH06228186A (en) | 1993-01-29 | 1994-08-16 | Yamasa Shoyu Co Ltd | 2'-deoxy-@(3754/24)2's)-alkylpyrimidine nucleoside derivative |
IL108523A0 (en) | 1993-02-03 | 1994-05-30 | Gensia Inc | Pharmaceutical compositions containing adenosine kinase inhibitors for preventing or treating conditions involving inflammatory responses and pain |
EP0701564A1 (en) | 1993-03-31 | 1996-03-20 | Sanofi | Bifunctional nucleosides, oligomers thereof, and methods of making and using the same |
WO1994022890A1 (en) | 1993-03-31 | 1994-10-13 | Sterling Winthop Inc. | Novel 5'-substituted nucleosides and oligomers produced therefrom |
GB9311682D0 (en) | 1993-06-05 | 1993-07-21 | Ciba Geigy Ag | Chemical compounds |
US6491905B1 (en) | 1993-09-14 | 2002-12-10 | The Uab Research Foundation | Recombinant bacterial cells for delivery of PNP to tumor cells |
US5552311A (en) | 1993-09-14 | 1996-09-03 | University Of Alabama At Birmingham Research Foundation | Purine nucleoside phosphorylase gene therapy for human malignancy |
US6017896A (en) | 1993-09-14 | 2000-01-25 | University Of Alabama Research Foundation And Southern Research Institute | Purine nucleoside phosphorylase gene therapy for human malignancy |
US6156501A (en) | 1993-10-26 | 2000-12-05 | Affymetrix, Inc. | Arrays of modified nucleic acid probes and methods of use |
CA2174339A1 (en) | 1993-10-27 | 1995-05-04 | Lech W. Dudycz | 2'-amido and 2'-peptido modified oligonucleotides |
DE4341161A1 (en) | 1993-12-02 | 1995-06-08 | Michael Prof Dr Zeppezauer | Membrane-active agent for disrupting DNA biosynthesis |
WO1995018139A1 (en) | 1993-12-30 | 1995-07-06 | Chemgenes Corporation | Synthesis of propargyl modified nucleosides and phosphoramidites and their incorporation into defined sequence oligonucleotides |
US5639647A (en) | 1994-03-29 | 1997-06-17 | Ribozyme Pharmaceuticals, Inc. | 2'-deoxy-2'alkylnucleotide containing nucleic acid |
US5902880A (en) | 1994-08-19 | 1999-05-11 | Ribozyme Pharmaceuticals, Inc. | RNA polymerase III-based expression of therapeutic RNAs |
US5631359A (en) | 1994-10-11 | 1997-05-20 | Ribozyme Pharmaceuticals, Inc. | Hairpin ribozymes |
US5693532A (en) | 1994-11-04 | 1997-12-02 | Ribozyme Pharmaceuticals, Inc. | Respiratory syncytial virus ribozymes |
US5620676A (en) | 1994-03-08 | 1997-04-15 | The United States Of America As Represented By The Department Of Health And Human Services | Biologically active ATP analogs |
US6639061B1 (en) | 1999-07-07 | 2003-10-28 | Isis Pharmaceuticals, Inc. | C3′-methylene hydrogen phosphonate oligomers and related compounds |
US5871918A (en) | 1996-06-20 | 1999-02-16 | The University Of North Carolina At Chapel Hill | Electrochemical detection of nucleic acid hybridization |
US6063566A (en) | 1994-05-13 | 2000-05-16 | The Scripps Research Institute | Catalytic RNA molecules |
US5580967A (en) | 1994-05-13 | 1996-12-03 | The Scripps Research Institute | Optimized catalytic DNA-cleaving ribozymes |
GB9417746D0 (en) | 1994-09-03 | 1994-10-19 | Ciba Geigy Ag | Chemical compounds |
GB9417938D0 (en) | 1994-09-06 | 1994-10-26 | Ciba Geigy Ag | Compounds |
US5681940A (en) | 1994-11-02 | 1997-10-28 | Icn Pharmaceuticals | Sugar modified nucleosides and oligonucleotides |
US7141665B1 (en) | 1998-04-29 | 2006-11-28 | The Scripps Research Institute | Enzymatic DNA molecules |
US5807718A (en) | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
WO1996023506A1 (en) | 1995-02-01 | 1996-08-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Use of 5'substituted nucleosides to provide resistance in cytostatic treatment and medicaments containing said nucleosides |
GB9505025D0 (en) | 1995-03-13 | 1995-05-03 | Medical Res Council | Chemical compounds |
WO1996030383A1 (en) | 1995-03-24 | 1996-10-03 | Christian Noe | Nucleic acid polyester polyamides |
US6132971A (en) | 1995-06-27 | 2000-10-17 | The University Of North Carolina At Chapel Hill | Microelectronic device |
US6361951B1 (en) | 1995-06-27 | 2002-03-26 | The University Of North Carolina At Chapel Hill | Electrochemical detection of nucleic acid hybridization |
US5968745A (en) | 1995-06-27 | 1999-10-19 | The University Of North Carolina At Chapel Hill | Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof |
US6004939A (en) | 1995-07-06 | 1999-12-21 | Ctrc Research Foundation Board Of Regents | Methods for modulation and inhibition of telomerase |
US20010011075A1 (en) | 1999-02-05 | 2001-08-02 | Leroy B Townsend | 5'-substituted-ribofuranosyl benzimidazoles as antiviral agents |
CA2253382A1 (en) | 1996-01-16 | 1997-07-24 | Ribozyme Pharmaceuticals, Inc. | Synthesis of methoxy nucleosides and enzymatic nucleic acid molecules |
US5767097A (en) | 1996-01-23 | 1998-06-16 | Icn Pharmaceuticals, Inc. | Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes |
EP0799834A1 (en) | 1996-04-04 | 1997-10-08 | Novartis AG | Modified nucleotides |
US20050042647A1 (en) | 1996-06-06 | 2005-02-24 | Baker Brenda F. | Phosphorous-linked oligomeric compounds and their use in gene modulation |
US20040171032A1 (en) | 1996-06-06 | 2004-09-02 | Baker Brenda F. | Non-phosphorous-linked oligomeric compounds and their use in gene modulation |
US20040171028A1 (en) | 1996-06-06 | 2004-09-02 | Baker Brenda F. | Phosphorous-linked oligomeric compounds and their use in gene modulation |
US20050032067A1 (en) | 2002-11-05 | 2005-02-10 | Prakash Thazha P. | Non-phosphorous-linked oligomeric compounds and their use in gene modulation |
AU3340797A (en) | 1996-06-28 | 1998-01-21 | Novartis Ag | Modified oligonucleotides |
ATE238328T1 (en) | 1996-10-16 | 2003-05-15 | Ribapharm Inc | MONOCYCLIC L-NUCLEOSIDES, ANALOGAS AND THEIR APPLICATIONS |
NZ505531A (en) | 1996-10-16 | 2001-08-31 | Icn Pharmaceuticals | 7-Propyl-8-oxo-alpha or beta-L-guanine alpha or beta-L-nucleoside |
NZ507848A (en) | 1996-10-28 | 2005-01-28 | Univ Washington | Method of increasing the mutation rate of a virus in a non-human by administering an RNA nucleoside analogue to a virally infected cell |
US6887707B2 (en) | 1996-10-28 | 2005-05-03 | University Of Washington | Induction of viral mutation by incorporation of miscoding ribonucleoside analogs into viral RNA |
US7078391B2 (en) | 1997-02-10 | 2006-07-18 | Inspire Pharmaceuticals, Inc. | Method of treating edematous retinal disorders |
WO2002095010A2 (en) | 2001-03-21 | 2002-11-28 | Human Genome Sciences, Inc. | Human secreted proteins |
US20030144489A1 (en) | 1997-06-09 | 2003-07-31 | Alex Burgin | Method for screening nucleic acid catalysts |
AU9210498A (en) | 1997-08-29 | 1999-03-16 | Gilead Sciences, Inc. | 5',5'-linked oligomers having anti-thrombin activity |
US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
US6232463B1 (en) | 1997-10-09 | 2001-05-15 | Isis Pharmaceuticals, Inc. | Substituted purines and oligonucleotide cross-linking |
US6703374B1 (en) | 1997-10-30 | 2004-03-09 | The United States Of America As Represented By The Department Of Health And Human Services | Nucleosides for imaging and treatment applications |
US6528640B1 (en) | 1997-11-05 | 2003-03-04 | Ribozyme Pharmaceuticals, Incorporated | Synthetic ribonucleic acids with RNAse activity |
US6617438B1 (en) | 1997-11-05 | 2003-09-09 | Sirna Therapeutics, Inc. | Oligoribonucleotides with enzymatic activity |
US20030004122A1 (en) | 1997-11-05 | 2003-01-02 | Leonid Beigelman | Nucleotide triphosphates and their incorporation into oligonucleotides |
US6482932B1 (en) | 1997-11-05 | 2002-11-19 | Ribozyme Pharmaceuticals, Incorporated | Nucleoside triphosphates and their incorporation into oligonucleotides |
US6015703A (en) | 1998-03-10 | 2000-01-18 | Iogen Corporation | Genetic constructs and genetically modified microbes for enhanced production of beta-glucosidase |
EP1073732A2 (en) | 1998-04-29 | 2001-02-07 | Ribozyme Pharmaceuticals, Inc. | Nucleoside triphosphates and their incorporation into ribozymes |
US6030957A (en) | 1998-06-29 | 2000-02-29 | Wayne Hughes Institute | Aryl phosphate derivatives of d4T having anti-HIV activity |
US7091315B1 (en) | 1998-07-15 | 2006-08-15 | Human Genome Sciences, Inc. | Protein HDPBQ71 |
WO2000014263A2 (en) | 1998-09-03 | 2000-03-16 | Board Of Regents, The University Of Texas System | Recombinant hepatitis a virus (hav), hav variants, hav-based vaccines and methods of producing them |
US6566059B1 (en) | 1998-10-01 | 2003-05-20 | Variagenics, Inc. | Method for analyzing polynucleotides |
US6458945B1 (en) | 1998-10-01 | 2002-10-01 | Variagenics, Inc. | Method for analyzing polynucleotides |
US6440705B1 (en) | 1998-10-01 | 2002-08-27 | Vincent P. Stanton, Jr. | Method for analyzing polynucleotides |
CA2252144A1 (en) | 1998-10-16 | 2000-04-16 | University Of Alberta | Dual action anticancer prodrugs |
US7064114B2 (en) | 1999-03-19 | 2006-06-20 | Parker Hughes Institute | Gel-microemulsion formulations |
WO2000056366A1 (en) | 1999-03-19 | 2000-09-28 | Parker Hughes Institute | Gel-microemulsion formulations |
US20040023265A1 (en) | 1999-07-02 | 2004-02-05 | Jeevalatha Vivekananda | Methods and compositions for nucleic acid ligands against Shiga toxin and/or Shiga-like toxin |
US6569630B1 (en) | 1999-07-02 | 2003-05-27 | Conceptual Mindworks, Inc. | Methods and compositions for aptamers against anthrax |
AU6181200A (en) | 1999-07-29 | 2001-02-19 | Helix Research Institute | Stomach cancer-associated gene |
US6831069B2 (en) | 1999-08-27 | 2004-12-14 | Ribapharm Inc. | Pyrrolo[2,3-d]pyrimidine nucleoside analogs |
RU2002103501A (en) | 1999-08-27 | 2003-09-10 | Ай-Си-Эн Фармасьютикалз, Инк. (Us) | Pyrrolo [2,3-d] pyrimidine nucleoside analogues |
US6649750B1 (en) | 2000-01-05 | 2003-11-18 | Isis Pharmaceuticals, Inc. | Process for the preparation of oligonucleotide compounds |
US6495677B1 (en) | 2000-02-15 | 2002-12-17 | Kanda S. Ramasamy | Nucleoside compounds |
AU2001235278A1 (en) | 2000-02-18 | 2001-08-27 | Shire Biochem Inc | Method for the treatment or prevention of flavivirus infections using nucleoside analogues |
EP1265913A4 (en) | 2000-03-24 | 2004-07-14 | Univ Duke | Characterization of grp94-ligand interactions and purification, screening, and therapeutic methods relating thereto |
US7235649B2 (en) | 2000-03-24 | 2007-06-26 | Duke University | Isolated GRP94 ligand binding domain polypeptide and nucleic acid encoding same, and screening methods employing same |
FR2808797A1 (en) | 2000-05-09 | 2001-11-16 | Hoechst Marion Roussel Inc | New uridine derivatives N-substituted by disaccharide residue, useful as antibiotics with strong activity against Gram positive bacteria |
AU2001274888A1 (en) | 2000-05-19 | 2001-12-03 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
MY164523A (en) | 2000-05-23 | 2017-12-29 | Univ Degli Studi Cagliari | Methods and compositions for treating hepatitis c virus |
US20020132237A1 (en) | 2000-05-26 | 2002-09-19 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of ovarian cancer |
AU2001272923A1 (en) | 2000-05-26 | 2001-12-11 | Idenix (Cayman) Limited | Methods and compositions for treating flaviviruses and pestiviruses |
US6787526B1 (en) | 2000-05-26 | 2004-09-07 | Idenix Pharmaceuticals, Inc. | Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides |
EP1292313B1 (en) | 2000-05-26 | 2004-09-08 | Idenix (Cayman) Limited | Methods for treating hepatitis delta virus infection with beta-l-2' deoxy-nucleosides |
US6974667B2 (en) | 2000-06-14 | 2005-12-13 | Gene Logic, Inc. | Gene expression profiles in liver cancer |
US6815542B2 (en) | 2000-06-16 | 2004-11-09 | Ribapharm, Inc. | Nucleoside compounds and uses thereof |
ATE494304T1 (en) | 2000-06-16 | 2011-01-15 | Human Genome Sciences Inc | IMMUNE-SPECIFIC BINDING ANTIBODIES AGAINST BLYS |
US20030207271A1 (en) | 2000-06-30 | 2003-11-06 | Holwitt Eric A. | Methods and compositions for biological sensors |
UA72612C2 (en) | 2000-07-06 | 2005-03-15 | Pyrido[2.3-d]pyrimidine and pyrimido[4.5-d]pyrimidine nucleoside analogues, prodrugs and method for inhibiting growth of neoplastic cells | |
US20030166064A1 (en) | 2000-08-03 | 2003-09-04 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of colon cancer |
US20030008841A1 (en) | 2000-08-30 | 2003-01-09 | Rene Devos | Anti-HCV nucleoside derivatives |
SV2003000617A (en) | 2000-08-31 | 2003-01-13 | Lilly Co Eli | INHIBITORS OF PROTEASA PEPTIDOMIMETICA REF. X-14912M |
EP1346040A2 (en) | 2000-09-11 | 2003-09-24 | Nuvelo, Inc. | Novel nucleic acids and polypeptides |
AU2001296301A8 (en) | 2000-09-26 | 2009-07-30 | Human Genome Sciences Inc | Nucleic acids, proteins, and antibodies |
CN1133642C (en) | 2000-10-09 | 2004-01-07 | 清华大学 | Nucleoside 5'-thiophosphoryl amino-acid ester compound |
EP1360325A2 (en) | 2000-10-18 | 2003-11-12 | Pharmasset Limited | Multiplex quantification of nucleic acids in diseased cells |
US20020150922A1 (en) | 2000-11-20 | 2002-10-17 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of colon cancer |
IL156641A0 (en) | 2001-01-22 | 2004-01-04 | Merck & Co Inc | Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase |
US7105499B2 (en) | 2001-01-22 | 2006-09-12 | Merck & Co., Inc. | Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase |
WO2002060317A2 (en) | 2001-01-30 | 2002-08-08 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of pancreatic cancer |
AU2002252183A1 (en) | 2001-03-06 | 2002-09-19 | Biocryst Pharmaceuticals, Inc. | Nucleosides, preparation thereof and use as inhibitors of rna viral polymerases |
WO2002097031A2 (en) | 2001-03-28 | 2002-12-05 | Incyte Genomics, Inc. | Molecules for diagnostics and therapeutics |
US6995148B2 (en) | 2001-04-05 | 2006-02-07 | University Of Pittsburgh | Adenosine cyclic ketals: novel adenosine analogues for pharmacotherapy |
CN1186456C (en) | 2001-04-30 | 2005-01-26 | 曹卫 | General purpose template nucleic acid detection method and kit |
WO2002092006A2 (en) | 2001-05-16 | 2002-11-21 | Micrologix Biotech, Inc. | Nucleic acid-based compounds and methods of use thereof |
US20030170891A1 (en) | 2001-06-06 | 2003-09-11 | Mcswiggen James A. | RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA) |
CA2448320A1 (en) | 2001-05-29 | 2002-12-05 | Sirna Therapeutics, Inc. | Ribozyme based treatment of female reproductive diseases |
GB0114286D0 (en) | 2001-06-12 | 2001-08-01 | Hoffmann La Roche | Nucleoside Derivatives |
EP2335700A1 (en) | 2001-07-25 | 2011-06-22 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis C virus polymerase inhibitors with a heterobicylic structure |
US20070015145A1 (en) | 2001-08-14 | 2007-01-18 | Clifford Woolf | Nucleic acid and amino acid sequences involved in pain |
WO2003016572A1 (en) | 2001-08-17 | 2003-02-27 | Eli Lilly And Company | Oligonucleotide therapeutics for treating hepatitis c virus infections |
WO2003016497A2 (en) | 2001-08-17 | 2003-02-27 | Incyte Genomics, Inc. | Molecules for disease detection and treatment |
CN1133641C (en) * | 2001-08-24 | 2004-01-07 | 清华大学 | Thiophosphamino acid ester compound containing 3'-azido-deoxythymidine and its preparing process |
CN1159332C (en) | 2001-08-24 | 2004-07-28 | 清华大学 | Thiophosphoryl amino acid ester compound and its prepn process |
CN1186457C (en) | 2001-08-29 | 2005-01-26 | 曹卫 | Homogeneous genetic matrix |
EP1430112A4 (en) | 2001-09-24 | 2005-06-15 | Nuvelo Inc | Novel nucleic acids and polypeptides |
WO2003042357A2 (en) | 2001-09-28 | 2003-05-22 | Incyte Genomics, Inc. | Enzymes |
WO2003031419A1 (en) | 2001-10-09 | 2003-04-17 | 3-Dimensional Pharmaceuticals, Inc. | Substituted diphenyloxazoles, the synthesis thereof, and the use thereof as fluorescence probes |
AU2002362935A1 (en) | 2001-10-19 | 2003-04-28 | Incyte Genomics, Inc. | Kinases and phosphatases |
US7037718B2 (en) | 2001-10-26 | 2006-05-02 | Cornell Research Foundation, Inc. | Mutant purine nucleoside phosphorylase proteins and cellular delivery thereof |
US7488598B2 (en) | 2001-10-26 | 2009-02-10 | Cornell Center For Technology Enterprise And Commercialization | Mutant purine nucleoside phosphorylase proteins and cellular delivery thereof |
AU2002359333A1 (en) | 2001-10-29 | 2003-05-12 | Incyte Genomics, Inc. | Nucleic acid-associated proteins |
AU2002351077A1 (en) | 2001-11-05 | 2003-05-19 | Exiqon A/S | Oligonucleotides modified with novel alpha-l-rna analogues |
EP1504101A2 (en) | 2001-11-09 | 2005-02-09 | Incyte Genomics, Inc. | Intracellular signaling molecules |
AU2002366951A1 (en) | 2001-12-10 | 2003-07-09 | Nuvelo,Inc. | Novel nucleic acids and polypeptides |
WO2003051896A1 (en) | 2001-12-17 | 2003-06-26 | Ribapharm Inc. | Cytidine libraries and compounds synthesized by solid-phase combinatorial strategies |
AU2002358273A1 (en) | 2001-12-19 | 2003-07-09 | Incyte Corporation | Nucleic acid-associated proteins |
WO2003072602A2 (en) | 2001-12-20 | 2003-09-04 | Cellzome Ag | Protein complexes and methods for their use |
AU2003210518A1 (en) | 2002-01-16 | 2003-09-02 | Incyte Genomics, Inc. | Molecules for diagnostics and therapeutics |
WO2003062256A1 (en) | 2002-01-17 | 2003-07-31 | Ribapharm Inc. | 2'-beta-modified-6-substituted adenosine analogs and their use as antiviral agents |
AU2002341942A1 (en) | 2002-01-17 | 2003-09-02 | Ribapharm Inc. | Sugar modified nucleosides as viral replication inhibitors |
WO2003062379A2 (en) | 2002-01-17 | 2003-07-31 | Incyte Genomics, Inc. | Molecules for disease detection and treatment |
WO2003062391A2 (en) | 2002-01-18 | 2003-07-31 | Incyte Corporation | Structural and cytoskeleton-associated proteins |
AU2003205353A1 (en) | 2002-01-25 | 2003-09-02 | Incyte Genomics, Inc. | Protein modification and maintenance molecules |
US20050042632A1 (en) | 2002-02-13 | 2005-02-24 | Sirna Therapeutics, Inc. | Antibodies having specificity for nucleic acids |
US20080207542A1 (en) | 2002-03-26 | 2008-08-28 | Sirna Therapeutics, Inc. | RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA) |
WO2003072729A2 (en) | 2002-02-22 | 2003-09-04 | Incyte Corporation | Enzymes |
CA2477741A1 (en) | 2002-02-28 | 2003-09-04 | Biota, Inc. | Nucleotide mimics and their prodrugs |
AU2003213652A1 (en) | 2002-03-01 | 2003-09-16 | Integrated Dna Technologies, Inc. | Polynomial amplification of nucleic acids |
WO2003076586A2 (en) | 2002-03-06 | 2003-09-18 | Incyte Corporation | Nucleic acid-associated proteins |
AU2003218238A1 (en) | 2002-03-15 | 2003-09-29 | Incyte Corporation | Proteins associated with growth, differentiation, and death |
WO2003083085A2 (en) | 2002-03-28 | 2003-10-09 | Incyte Corporation | Transporters and ion channels |
WO2003083084A2 (en) | 2002-03-29 | 2003-10-09 | Incyte Corporation | Protein modification and maintenance molecules |
WO2003083082A2 (en) | 2002-03-29 | 2003-10-09 | Incyte Corporation | Enzymes |
AU2003222189A1 (en) | 2002-04-05 | 2003-10-27 | Incyte Corporation | Secreted proteins |
US20030190626A1 (en) | 2002-04-09 | 2003-10-09 | Vasulinga Ravikumar | Phosphorothioate monoester modified oligomers |
US20060074035A1 (en) | 2002-04-17 | 2006-04-06 | Zhi Hong | Dinucleotide inhibitors of de novo RNA polymerases for treatment or prevention of viral infections |
AU2003237088A1 (en) | 2002-04-23 | 2003-11-10 | Viropharma Incorporated | Compounds, compositions and methods for treating or preventing viral infections and associated diseases |
WO2003093439A2 (en) | 2002-04-29 | 2003-11-13 | Incyte Corporation | Enzymes |
CN1653077A (en) | 2002-05-06 | 2005-08-10 | 健亚生物科技公司 | Nucleoside derivatives for treating hepatitis C virus infection |
AU2003232086A1 (en) | 2002-05-10 | 2003-11-11 | Incyte Corporation | Nucleic acid-associated proteins |
JP2004046124A (en) | 2002-05-15 | 2004-02-12 | Semiconductor Energy Lab Co Ltd | Passive matrix type light emitting device |
FR2840318B1 (en) | 2002-05-29 | 2004-12-03 | Quoc Kiet Pham | NOVEL ANTIRETROVIRAL SULFOLIPIDS EXTRACTED FROM SPIRULINS, PROCESS FOR OBTAINING SAME, COMPOSITIONS CONTAINING SAME AND THEIR USE AS INVERTERS OF REVERSE TRANSCRIPTASE IN HIV VIRUSES |
EP1511757B1 (en) | 2002-06-07 | 2015-11-04 | Universitair Medisch Centrum Utrecht | New compounds for modulating the activity of exchange proteins directly activated by camp (epacs) |
WO2004001008A2 (en) | 2002-06-21 | 2003-12-31 | Incyte Corporation | Kinases and phosphatases |
JP5087211B2 (en) | 2002-06-28 | 2012-12-05 | イデニクス(ケイマン)リミテツド | 2 'and 3'-nucleoside prodrugs for the treatment of flavivirus infection |
US7608600B2 (en) | 2002-06-28 | 2009-10-27 | Idenix Pharmaceuticals, Inc. | Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections |
AP2005003213A0 (en) | 2002-06-28 | 2005-03-31 | Univ Cagliari | 2'-C-methyl-3'-O-L-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections. |
AU2003245747A1 (en) | 2002-06-28 | 2004-01-19 | Incyte Corporation | Enzymes |
CN101172993A (en) | 2002-06-28 | 2008-05-07 | 埃迪尼克斯(开曼)有限公司 | 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections |
AU2003268023A1 (en) | 2002-07-23 | 2004-02-09 | Incyte Corporation | Protein modification and maintenance molecules |
WO2004014312A2 (en) | 2002-08-08 | 2004-02-19 | Sirna Therapeutics, Inc. | Small-mer compositions and methods of use |
GB0221694D0 (en) | 2002-09-18 | 2002-10-30 | Glaxo Group Ltd | Compounds |
US20070207973A1 (en) | 2002-09-24 | 2007-09-06 | Koronis Pharmaceuticals, Incorporated | 1,3,5-Triazines for Treatment of Viral Diseases |
AU2003278904A1 (en) | 2002-09-24 | 2004-04-19 | Kornis Pharmaceuticals, Incorporated | 1, 3, 5-triazines for treatment of viral diseases |
US7094768B2 (en) | 2002-09-30 | 2006-08-22 | Genelabs Technologies, Inc. | Nucleoside derivatives for treating hepatitis C virus infection |
DK1576138T3 (en) | 2002-11-15 | 2017-05-01 | Idenix Pharmaceuticals Llc | 2'-METHYL NUCLEOSIDES IN COMBINATION WITH INTERFERON AND FLAVIVIRIDAE MUTATION |
US20040197804A1 (en) | 2002-12-03 | 2004-10-07 | Keefe Anthony D. | Method for in vitro selection of 2'-substituted nucleic acids |
US20050037394A1 (en) | 2002-12-03 | 2005-02-17 | Keefe Anthony D. | Method for in vitro selection of 2'-substituted nucleic acids |
KR20050109918A (en) | 2002-12-12 | 2005-11-22 | 이데닉스 (케이만) 리미티드 | Process for the production of 2'-branched nucleosides |
JP4389443B2 (en) | 2002-12-20 | 2009-12-24 | セイコーエプソン株式会社 | Wiping unit for inkjet head, liquid droplet ejection apparatus including the same, and method for manufacturing electro-optical device |
PT1992635E (en) | 2002-12-23 | 2012-03-20 | Dynavax Tech Corp | Immunostimulatory sequence oligonucleotides and methods of using the same |
AR043006A1 (en) | 2003-02-12 | 2005-07-13 | Merck & Co Inc | PROCESS TO PREPARE RAMIFIED RIBONUCLEOSIDS |
AU2003225705A1 (en) | 2003-03-07 | 2004-09-30 | Ribapharm Inc. | Cytidine analogs and methods of use |
US7427636B2 (en) | 2003-04-25 | 2008-09-23 | Gilead Sciences, Inc. | Inosine monophosphate dehydrogenase inhibitory phosphonate compounds |
US20090247488A1 (en) | 2003-04-25 | 2009-10-01 | Carina Cannizzaro | Anti-inflammatory phosphonate compounds |
CN101410120A (en) | 2003-04-25 | 2009-04-15 | 吉里德科学公司 | Anti-inflammatory phosphonate compounds |
WO2005002626A2 (en) | 2003-04-25 | 2005-01-13 | Gilead Sciences, Inc. | Therapeutic phosphonate compounds |
US7407965B2 (en) | 2003-04-25 | 2008-08-05 | Gilead Sciences, Inc. | Phosphonate analogs for treating metabolic diseases |
US7470724B2 (en) | 2003-04-25 | 2008-12-30 | Gilead Sciences, Inc. | Phosphonate compounds having immuno-modulatory activity |
WO2004096286A2 (en) | 2003-04-25 | 2004-11-11 | Gilead Sciences, Inc. | Antiviral phosphonate analogs |
US7452901B2 (en) | 2003-04-25 | 2008-11-18 | Gilead Sciences, Inc. | Anti-cancer phosphonate analogs |
US20050261237A1 (en) | 2003-04-25 | 2005-11-24 | Boojamra Constantine G | Nucleoside phosphonate analogs |
US7432261B2 (en) | 2003-04-25 | 2008-10-07 | Gilead Sciences, Inc. | Anti-inflammatory phosphonate compounds |
US20040259934A1 (en) | 2003-05-01 | 2004-12-23 | Olsen David B. | Inhibiting Coronaviridae viral replication and treating Coronaviridae viral infection with nucleoside compounds |
US20040229839A1 (en) | 2003-05-14 | 2004-11-18 | Biocryst Pharmaceuticals, Inc. | Substituted nucleosides, preparation thereof and use as inhibitors of RNA viral polymerases |
WO2005020885A2 (en) | 2003-05-21 | 2005-03-10 | Isis Pharmaceuticals, Inc. | Compositions and methods for the treatment of severe acute respiratory syndrome (sars) |
WO2004106356A1 (en) | 2003-05-27 | 2004-12-09 | Syddansk Universitet | Functionalized nucleotide derivatives |
UA82695C2 (en) | 2003-06-06 | 2008-05-12 | Нисан Кемикал Индастриз, Лтд. | Heteroaromatic compounds as thrombopoietin receptor activators |
US20070203083A1 (en) | 2003-06-13 | 2007-08-30 | Mootha Vamsi K | Methods Of Regulating Metabolism And Mitochondrial Function |
EP1644516A4 (en) | 2003-07-14 | 2007-03-21 | Capitalbio Corp | Methods and compositions for detecting sars virus and other infectious agents |
GB0317009D0 (en) | 2003-07-21 | 2003-08-27 | Univ Cardiff | Chemical compounds |
JP2007504152A (en) | 2003-08-27 | 2007-03-01 | ビオタ, インコーポレイテッド | Novel tricyclic nucleosides or nucleotides as therapeutic agents |
US7749981B2 (en) | 2003-10-21 | 2010-07-06 | Inspire Pharmaceuticals, Inc. | Drug-eluting stents coated with non-nucleotide P2Y12 receptor antagonist compound |
JP2007509180A (en) | 2003-10-21 | 2007-04-12 | インスパイアー ファーマシューティカルズ,インコーポレイティド | Non-nucleotide compositions and methods for treating pain |
US7151089B2 (en) | 2003-10-27 | 2006-12-19 | Genelabs Technologies, Inc. | Nucleoside compounds for treating viral infections |
US7335648B2 (en) | 2003-10-21 | 2008-02-26 | Inspire Pharmaceuticals, Inc. | Non-nucleotide composition and method for inhibiting platelet aggregation |
US7504497B2 (en) | 2003-10-21 | 2009-03-17 | Inspire Pharmaceuticals, Inc. | Orally bioavailable compounds and methods for inhibiting platelet aggregation |
JP2007514647A (en) | 2003-10-21 | 2007-06-07 | インスパイアー ファーマシューティカルズ,インコーポレイティド | Tetrahydro-furo [3,4-d] dioxole compounds and compositions and methods for inhibiting platelet aggregation |
US20050239733A1 (en) | 2003-10-31 | 2005-10-27 | Coley Pharmaceutical Gmbh | Sequence requirements for inhibitory oligonucleotides |
JP2005162732A (en) | 2003-11-13 | 2005-06-23 | Bayer Cropscience Ag | Insecticidal nicotinoyl carbamate |
WO2005053603A2 (en) | 2003-12-08 | 2005-06-16 | Yeda Research And Development Co. Ltd. | Antigen receptor variable region typing |
WO2005077966A1 (en) | 2004-02-10 | 2005-08-25 | Isis Pharmaceuticals, Inc. | Substituted pixyl protecting groups for oligonucleotide synthesis |
WO2005097993A2 (en) | 2004-02-19 | 2005-10-20 | Coley Pharmaceutical Group, Inc. | Immunostimulatory viral rna oligonucleotides |
US8759317B2 (en) | 2004-03-18 | 2014-06-24 | University Of South Florida | Method of treatment of cancer using guanosine 3′, 5′ cyclic monophosphate (cyclic GMP) |
EP2399924B1 (en) | 2004-05-27 | 2015-01-28 | Alnylam Pharmaceuticals, Inc. | Nuclease resistant double-stranded ribonucleic acid |
GB0413726D0 (en) | 2004-06-18 | 2004-07-21 | Lauras As | Compounds |
AU2005327517B2 (en) | 2004-06-30 | 2011-05-26 | Alnylam Pharmaceuticals, Inc. | Oligonucleotides comprising a non-phosphate backbone linkage |
US7772271B2 (en) | 2004-07-14 | 2010-08-10 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
JP2008510748A (en) | 2004-08-23 | 2008-04-10 | エフ.ホフマン−ラ ロシュ アーゲー | Antiviral 4'-azido-nucleoside |
EP2305693B1 (en) | 2004-09-01 | 2015-07-15 | Dynavax Technologies Corporation | Methods and compositions for inhibition of innate immune responses and autoimmunity |
WO2006031725A2 (en) | 2004-09-14 | 2006-03-23 | Pharmasset, Inc. | Preparation of 2'fluoro-2'- alkyl- substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives |
US7553653B2 (en) | 2004-09-17 | 2009-06-30 | Biomarin Pharmaceutical Inc. | Variants and chemically-modified variants of phenylalanine ammonia-lyase |
CN102628044A (en) | 2004-09-24 | 2012-08-08 | 阿尔尼拉姆医药品有限公司 | RNAi modulation of APOB and uses thereof |
WO2006038865A1 (en) | 2004-10-01 | 2006-04-13 | Betagenon Ab | Nucleotide derivatives for the treatment of type 2 diabetes and other disorders |
MX2007006819A (en) | 2004-12-08 | 2007-07-24 | Nissan Chemical Ind Ltd | 3-ethylidenehydrazino substituted heterocyclic compounds as thrombopoietin receptor activators. |
CA2589406A1 (en) | 2004-12-09 | 2006-06-15 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inducing an immune response in a mammal and methods of avoiding an immune response to oligonucleotide agents such as short interfering rnas |
AU2005316503A1 (en) | 2004-12-17 | 2006-06-22 | Dynavax Technologies Corporation | Methods and compositions for induction or promotion of immune tolerance |
WO2006066080A1 (en) | 2004-12-17 | 2006-06-22 | Anadys Pharmaceuticals, Inc. | 3, 5-DISUBSTITUTED AND 3,5,7-TRISUBSTITUTED-3H-OXAZOLO AND 3H-THIAZOLO [4,5-d]PYRIMIDIN-2-ONE COMPOUNDS AND PRODRUGS THEREOF |
JP2008528508A (en) | 2005-01-21 | 2008-07-31 | イントロジェン・セラピューティクス,インコーポレイテッド | Topical administration that allows for sustained exposure of target cells to therapeutic and prophylactic nucleic acids |
JP2006228186A (en) | 2005-01-24 | 2006-08-31 | Yukichi Fukuyama | Crime prevention method and device using cellular phone |
US7638488B2 (en) | 2005-03-08 | 2009-12-29 | Intermune, Inc. | Use of alpha-glucosidase inhibitors to treat alphavirus infections |
WO2006094347A1 (en) | 2005-03-08 | 2006-09-14 | Biota Scientific Management Pty Ltd. | Bicyclic nucleosides and nucleotides as therapeutic agents |
JP2006248949A (en) | 2005-03-09 | 2006-09-21 | Univ Nagoya | Nucleoside derivative, nucleotide derivative and manufacturing method thereof |
JP2006248975A (en) | 2005-03-10 | 2006-09-21 | Tokyo Institute Of Technology | Nucleoside phosphoroamidite compound |
EP1877054A2 (en) | 2005-03-30 | 2008-01-16 | Sirtris Pharmaceuticals, Inc. | Nicotinamide riboside and analogues thereof |
ES2261072B1 (en) | 2005-04-06 | 2007-12-16 | Consejo Superior Investig. Cientificas | PHOSPHOROTIOATS DERIVED FROM NUCLEOSIDE ANALOGS FOR ANTIRRETROVIRAL THERAPY. |
US20060240462A1 (en) | 2005-04-21 | 2006-10-26 | Johnson & Johnson Research Pty Limited | Methods for amplification and detection of nucleic acids |
US8207136B2 (en) | 2005-04-26 | 2012-06-26 | The Board Of Trustees Of The University Of Illinois | Nucleoside compounds and methods of use thereof |
WO2006121820A1 (en) | 2005-05-05 | 2006-11-16 | Valeant Research & Development | Phosphoramidate prodrugs for treatment of viral infection |
WO2007027248A2 (en) | 2005-05-16 | 2007-03-08 | Valeant Research & Development | 3', 5' - cyclic nucleoside analogues for treatment of hcv |
US7953557B2 (en) | 2005-06-01 | 2011-05-31 | The Scripps Research Institute | Crystal of a cytochrome-ligand complex and methods of use |
WO2007006544A2 (en) | 2005-07-12 | 2007-01-18 | Vrije Universiteit Brussel | Cyclic adenosine monophosphate compounds for the treatment of immune-related disorders |
ATE556046T1 (en) | 2005-07-21 | 2012-05-15 | Nereus Pharmaceuticals Inc | INTERLEUKIN-1 AND TUMOR NECROSIS FACTOR A MODULATORS, SYNTHESIS OF SUCH MODULATORS AND METHODS USING SUCH MODULATORS |
US20070213292A1 (en) | 2005-08-10 | 2007-09-13 | The Rockefeller University | Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof |
WO2007020018A1 (en) | 2005-08-12 | 2007-02-22 | Universite Libre De Bruxelles | Use of purinergic and pyrimidinergic receptor agonists for dendritic cells based immunotherapies |
EP1928475B1 (en) | 2005-08-15 | 2018-05-23 | Riboscience LLC | Antiviral phosphoramidates of 4'-c-azido-substituted pronucleotides |
CA2620223A1 (en) | 2005-09-02 | 2007-03-08 | Abbott Laboratories | Novel imidazo based heterocycles |
EP2385141B1 (en) | 2005-10-07 | 2013-08-07 | SpeeDx Pty Ltd | Multicomponent nucleic acid enzymes and methods for their use |
WO2007051303A1 (en) | 2005-11-02 | 2007-05-10 | Protiva Biotherapeutics, Inc. | MODIFIED siRNA MOLECULES AND USES THEREOF |
WO2007056191A2 (en) | 2005-11-03 | 2007-05-18 | Neose Technologies, Inc. | Nucleotide sugar purification using membranes |
AU2006311725B2 (en) | 2005-11-04 | 2011-11-24 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of NAV1.8 gene |
WO2007060886A1 (en) | 2005-11-24 | 2007-05-31 | National University Corporation Hokkaido University | Therapeutic agent for neurodegenerative disease |
WO2007065829A1 (en) | 2005-12-09 | 2007-06-14 | F. Hoffmann-La Roche Ag | Antiviral nucleosides |
WO2007073489A2 (en) | 2005-12-22 | 2007-06-28 | Trustees Of Boston University | Molecules for gene delivery and gene therapy, and methods of use thereof |
US20070224644A1 (en) | 2006-01-27 | 2007-09-27 | Liotta Lance A | Ocular fluid markers |
EP1993611A4 (en) | 2006-03-16 | 2013-05-22 | Alnylam Pharmaceuticals Inc | RNAi MODULATION OF TGF-BETA AND THERAPEUTIC USES THEREOF |
EA014886B1 (en) | 2006-03-31 | 2011-02-28 | Элнилэм Фармасьютикалз, Инк. | Compositions and methods for inhibiting expression of eg5 gene |
FR2900334B1 (en) | 2006-04-28 | 2008-06-27 | Oreal | METHOD OF DEPIGMENTING THE SKIN |
US7749983B2 (en) | 2006-05-03 | 2010-07-06 | Chimerix, Inc. | Metabolically stable alkoxyalkyl esters of antiviral or antiproliferative phosphonates, nucleoside phosphonates and nucleoside phosphates |
WO2007149554A2 (en) | 2006-06-22 | 2007-12-27 | The Johns Hopkins University | Methods for restoring neural function |
US8470522B2 (en) | 2006-07-20 | 2013-06-25 | Kaohsiung Medical University | Three-dimensional culture containing human articular chondrocytes with induced terminal differentiation changes and preparation process and uses of the same |
AU2007300663A1 (en) | 2006-07-21 | 2008-04-03 | Pharmexa Inc. | Inducing cellular immune responses to influenza virus using peptide and nucleic acid compositions |
CA2661436A1 (en) | 2006-08-24 | 2008-02-28 | Serenex, Inc. | Isoquinoline, quinazoline and phthalazine derivatives |
US20080161246A1 (en) | 2006-08-31 | 2008-07-03 | Abbott Laboratories | Cytochrome P450 Oxidase Inhibitors and Uses Thereof |
WO2008033432A2 (en) | 2006-09-12 | 2008-03-20 | Coley Pharmaceutical Group, Inc. | Immune modulation by chemically modified ribonucleosides and oligoribonucleotides |
US20080161324A1 (en) | 2006-09-14 | 2008-07-03 | Johansen Lisa M | Compositions and methods for treatment of viral diseases |
GB0618235D0 (en) | 2006-09-15 | 2006-10-25 | Lauras As | Process |
CN101573370B (en) | 2006-10-10 | 2013-09-11 | 美迪维尔公司 | HCV nucleoside inhibitor |
PL216525B1 (en) | 2006-10-17 | 2014-04-30 | Ct Badań Molekularnych I Makromolekularnych Polskiej Akademii Nauk | 5'-0-[(N-acyl) amidophosphate] - and 5'-0- [(N-acyl) amidothiophosphate]- and 5'-0- [N-acyl) amidodithiophosphate] and 5'-0- [N-acyl) amidoselenophosphate] - nucleosides and method for their manufacture |
DE102006051516A1 (en) | 2006-10-31 | 2008-05-08 | Curevac Gmbh | (Base) modified RNA to increase the expression of a protein |
JP5714818B2 (en) | 2006-11-09 | 2015-05-07 | ダイナバックス テクノロジーズ コーポレイション | Long-term disease modification using immunostimulatory oligonucleotides |
US7598040B2 (en) | 2006-11-22 | 2009-10-06 | Trana Discovery, Inc. | Compositions and methods for the identification of inhibitors of protein synthesis |
US20080261913A1 (en) | 2006-12-28 | 2008-10-23 | Idenix Pharmaceuticals, Inc. | Compounds and pharmaceutical compositions for the treatment of liver disorders |
CA2673649A1 (en) | 2007-01-05 | 2008-07-17 | Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. | Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection |
DE102007001370A1 (en) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-encoded antibodies |
US20080207554A1 (en) | 2007-01-31 | 2008-08-28 | Alios Biopharma, Inc. | 2-5A Analogs and their Methods of Use |
US20100190837A1 (en) | 2007-02-15 | 2010-07-29 | Isis Pharmaceuticals, Inc. | 5'-Substituted-2-F' Modified Nucleosides and Oligomeric Compounds Prepared Therefrom |
EP2131848A4 (en) | 2007-02-16 | 2012-06-27 | Merck Sharp & Dohme | Compositions and methods for potentiated activity of biologicaly active molecules |
US20120108533A1 (en) | 2007-02-27 | 2012-05-03 | Katholieke Universiteit Leuven, K.U.Leuven R&D | Novel phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
US8242087B2 (en) | 2007-02-27 | 2012-08-14 | K.U.Leuven Research & Development | Phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
WO2008104408A2 (en) | 2007-02-27 | 2008-09-04 | K. U. Leuven Research & Development | Phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
KR20100051041A (en) | 2007-03-07 | 2010-05-14 | 엔벤타 바이오파마슈티칼스 코퍼레이션 | Double-stranded locked nucleic acid compositions |
US7964580B2 (en) | 2007-03-30 | 2011-06-21 | Pharmasset, Inc. | Nucleoside phosphoramidate prodrugs |
GB0709791D0 (en) | 2007-05-22 | 2007-06-27 | Angeletti P Ist Richerche Bio | Antiviral agents |
PL211703B1 (en) | 2007-07-03 | 2012-06-29 | Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk | Derivatives of nucleoside-5'-O-hydrophosphates and their mono- and ditiohyposphate analogues and their production method |
CN101108870A (en) | 2007-08-03 | 2008-01-23 | 冷一欣 | Process for preparation of nucleoside phosphoric acid ester compound and application thereof |
US20090318380A1 (en) | 2007-11-20 | 2009-12-24 | Pharmasset, Inc. | 2',4'-substituted nucleosides as antiviral agents |
US20100305060A1 (en) | 2007-11-29 | 2010-12-02 | Ligand Pharmaceuticals Incorporated | Nucleoside Prodrugs and Uses Thereof |
WO2009086192A1 (en) | 2007-12-21 | 2009-07-09 | Alios Biopharma, Inc. | Biodegradable phosphate protected nucleotide derivatives and their use as cancer, anti viral and anti parasitic agents |
WO2009086201A1 (en) | 2007-12-21 | 2009-07-09 | Alios Biopharma, Inc. | 2-5a analogs and their use as anti-cancer, anti-viral and anti- paras iti c agents |
KR101927905B1 (en) | 2008-04-03 | 2018-12-11 | 스프링 뱅크 파마슈티칼스, 인크. | Compositions and methods for treating viral infections |
EP2268288A4 (en) | 2008-04-15 | 2012-05-30 | Rfs Pharma Llc | Nucleoside derivatives for treatment of caliciviridae infections, including norovirus infections |
WO2009127230A1 (en) | 2008-04-16 | 2009-10-22 | Curevac Gmbh | MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION |
US8173621B2 (en) | 2008-06-11 | 2012-05-08 | Gilead Pharmasset Llc | Nucleoside cyclicphosphates |
KR20110074847A (en) | 2008-08-15 | 2011-07-04 | 더 유에이비 리서치 파운데이션 | Purine nucleoside phosphorylase as enzymatic activator of nucleoside prodrugs |
GB0815315D0 (en) | 2008-08-21 | 2008-09-24 | Univ Leiden | Organ protection |
US8163707B2 (en) | 2008-09-15 | 2012-04-24 | Enanta Pharmaceuticals, Inc. | 4′-allene-substituted nucleoside derivatives |
JP5763539B2 (en) | 2008-10-24 | 2015-08-12 | アイシス ファーマシューティカルズ, インコーポレーテッド | 5 'and 2' bis-substituted nucleosides and oligomeric compounds produced therefrom |
KR101774429B1 (en) | 2009-02-06 | 2017-09-04 | 코크리스탈 파마, 아이엔씨. | Purine nucleoside monophosphate prodrugs for treatment of cancer and viral infections |
AU2010226466A1 (en) * | 2009-03-20 | 2011-10-20 | Alios Biopharma, Inc. | Substituted nucleoside and nucleotide analogs |
US20100297079A1 (en) | 2009-05-20 | 2010-11-25 | Chimerix, Inc. | Compounds, compositions and methods for treating viral infection |
WO2011005595A2 (en) | 2009-06-24 | 2011-01-13 | Alios Biopharma, Inc. | 2-5a analogs and their methods of use |
WO2011005860A2 (en) | 2009-07-07 | 2011-01-13 | Alnylam Pharmaceuticals, Inc. | 5' phosphate mimics |
AU2011210795A1 (en) | 2010-01-29 | 2012-08-02 | Vertex Pharmaceuticals Incorporated | Therapies for treating Hepatitis C virus infection |
AR084393A1 (en) | 2010-06-10 | 2013-05-15 | Gilead Sciences Inc | METHODS TO TREAT HEPATITIS C VIRUS, COMPOSITION, USE, COMBINATION, KIT AND ONE OR MORE ANTI HCV COMPOUNDS |
EA025341B1 (en) * | 2010-09-22 | 2016-12-30 | Алиос Биофарма, Инк. | Substituted nucleotide analogs |
US20120070411A1 (en) | 2010-09-22 | 2012-03-22 | Alios Biopharma, Inc. | Substituted nucleotide analogs |
EP2619215B1 (en) | 2010-09-22 | 2018-09-05 | Alios Biopharma, Inc. | Azido nucleosides and nucleotide analogs |
US8772474B2 (en) | 2010-12-22 | 2014-07-08 | Alios Biopharma, Inc. | Cyclic nucleotide analogs |
PE20140522A1 (en) | 2011-04-13 | 2014-05-03 | Merck Sharp & Dohme | DERIVATIVES OF NUCLEOSIDES 2'- SUBSTITUTED AND METHODS OF USE OF THE SAME FOR THE TREATMENT OF VIRAL DISEASES |
TW201317223A (en) | 2011-07-26 | 2013-05-01 | Vertex Pharma | Thiophene compounds |
EP2794630A4 (en) | 2011-12-22 | 2015-04-01 | Alios Biopharma Inc | Substituted phosphorothioate nucleotide analogs |
LT2794627T (en) | 2011-12-22 | 2019-01-10 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
US9441007B2 (en) | 2012-03-21 | 2016-09-13 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
WO2013142124A1 (en) | 2012-03-21 | 2013-09-26 | Vertex Pharmaceuticals Incorporated | Solid forms of a thiophosphoramidate nucleotide prodrug |
WO2013142159A1 (en) | 2012-03-21 | 2013-09-26 | Alios Biopharma, Inc. | Pharmaceutical combinations comprising a thionucleotide analog |
KR102172040B1 (en) | 2012-03-21 | 2020-10-30 | 얀센 바이오파마, 인코퍼레이트. | Substituted nucleosides, nucleotides and analogs thereof |
CN104334570B (en) | 2012-03-21 | 2017-06-06 | 艾丽奥斯生物制药有限公司 | The method for preparing the nucleotide analog of substitution |
NZ630805A (en) | 2012-03-22 | 2016-01-29 | Alios Biopharma Inc | Pharmaceutical combinations comprising a thionucleotide analog |
EP3421482A1 (en) | 2012-12-21 | 2019-01-02 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
AU2013361193B2 (en) | 2012-12-21 | 2018-05-24 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
WO2014134251A1 (en) | 2013-02-28 | 2014-09-04 | Vertex Pharmaceuticals Incorporated | Pharmaceutical compositions |
US20140309413A1 (en) | 2013-03-11 | 2014-10-16 | Vertex Pharmaceuticals Incorporated | Methods of stereoselective synthesis of substituted nucleoside analogs |
US9504705B2 (en) | 2013-04-05 | 2016-11-29 | Alios Biopharma, Inc. | Hepatitis C viral infection treatment using a combination of compounds |
CA2913206C (en) | 2013-06-26 | 2022-08-02 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
DK3424938T3 (en) | 2013-06-26 | 2020-10-12 | Janssen Biopharma Inc | 4'-AZIDOALKYL SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGS THEREOF |
SG10201804835VA (en) | 2013-10-11 | 2018-07-30 | Alios Biopharma Inc | Substituted nucleosides, nucleotides and analogs thereof |
EA201692537A1 (en) | 2014-06-24 | 2017-05-31 | Элиос Биофарма, Инк. | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND THEIR ANALOGUES |
JP2017519779A (en) | 2014-06-24 | 2017-07-20 | アリオス バイオファーマ インク. | Methods for preparing substituted nucleotide analogs |
AU2015280248B2 (en) | 2014-06-24 | 2021-04-08 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
EP3171878A4 (en) | 2014-07-22 | 2018-03-14 | Alios Biopharma, Inc. | Methods for treating paramyxoviruses |
CA2957017A1 (en) | 2014-08-05 | 2016-02-11 | Alios Biopharma, Inc. | Combination therapy for treating a paramyxovirus |
WO2016069489A1 (en) | 2014-10-28 | 2016-05-06 | Alios Biopharma, Inc. | Methods of preparing substituted nucleoside analogs |
MA41441A (en) | 2014-12-19 | 2017-12-12 | Alios Biopharma Inc | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGUES OF THEM |
MA41213A (en) | 2014-12-19 | 2017-10-24 | Alios Biopharma Inc | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGUES OF THEM |
-
2013
- 2013-03-11 WO PCT/US2013/030267 patent/WO2013142124A1/en active Application Filing
- 2013-03-11 CN CN201380025218.6A patent/CN104321333A/en active Pending
- 2013-03-11 NZ NZ631601A patent/NZ631601A/en not_active IP Right Cessation
- 2013-03-11 US US13/794,380 patent/US8916538B2/en not_active Expired - Fee Related
- 2013-03-11 EP EP13712046.5A patent/EP2828277A1/en not_active Withdrawn
- 2013-03-21 UY UY0001034701A patent/UY34701A/en unknown
- 2013-03-21 TW TW102110127A patent/TWI583694B/en not_active IP Right Cessation
- 2013-03-21 AR ARP130100934A patent/AR090465A1/en unknown
-
2014
- 2014-12-22 US US14/578,883 patent/US9394330B2/en not_active Expired - Fee Related
-
2015
- 2015-07-23 HK HK15107043.5A patent/HK1206362A1/en unknown
-
2016
- 2016-07-14 US US15/210,509 patent/US9856284B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20130266538A1 (en) | 2013-10-10 |
HK1206362A1 (en) | 2016-01-08 |
WO2013142124A1 (en) | 2013-09-26 |
US9856284B2 (en) | 2018-01-02 |
US20160318969A1 (en) | 2016-11-03 |
UY34701A (en) | 2014-10-31 |
NZ631601A (en) | 2016-06-24 |
US8916538B2 (en) | 2014-12-23 |
EP2828277A1 (en) | 2015-01-28 |
US20150175647A1 (en) | 2015-06-25 |
WO2013142124A8 (en) | 2014-05-15 |
AR090465A1 (en) | 2014-11-12 |
US9394330B2 (en) | 2016-07-19 |
TWI583694B (en) | 2017-05-21 |
TW201343667A (en) | 2013-11-01 |
CN104321333A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9856284B2 (en) | Solid forms of a thiophosphoramidate nucleotide prodrug | |
AU2011305655B2 (en) | Substituted nucleotide analogs | |
US9012427B2 (en) | Pharmaceutical combinations comprising a thionucleotide analog | |
US9605018B2 (en) | Substituted nucleotide analogs | |
EP2984097B1 (en) | Highly active nucleoside derivative for the treatment of hcv | |
AU2013361193B2 (en) | Substituted nucleosides, nucleotides and analogs thereof | |
CA2927010C (en) | Substituted nucleosides, nucleotides and analogs thereof | |
US20120070411A1 (en) | Substituted nucleotide analogs | |
EP2709613B2 (en) | Methods for treating hcv | |
AU2011349278A1 (en) | Cyclic nucleotide analogs | |
WO2016100441A1 (en) | Substituted nucleosides, nucleotides and analogs thereof | |
OA16349A (en) | Substituted nucleotide analogs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KULDIPKUMAR, ANUJ K.;MEDEK, ALES;FERRIS, LORI ANN;AND OTHERS;SIGNING DATES FROM 20130605 TO 20130614;REEL/FRAME:030635/0923 |
|
AS | Assignment |
Owner name: MACQUARIE US TRADING LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:VERTEX PHARMACEUTICALS INCORPORATED;VERTEX PHARMACEUTICALS (SAN DIEGO) LLC;REEL/FRAME:033292/0311 Effective date: 20140709 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ALIOS BIOPHARMA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VERTEX PHARMACEUTICALS INCORPORATED;REEL/FRAME:035077/0951 Effective date: 20150218 |
|
AS | Assignment |
Owner name: VERTEX PHARMACEUTICALS (SAN DIEGO) LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MACQUARIE US TRADING LLC;REEL/FRAME:040357/0001 Effective date: 20161013 Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MACQUARIE US TRADING LLC;REEL/FRAME:040357/0001 Effective date: 20161013 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20221223 |