US20140027289A1 - Roughened substrate support - Google Patents
Roughened substrate support Download PDFInfo
- Publication number
- US20140027289A1 US20140027289A1 US13/944,357 US201313944357A US2014027289A1 US 20140027289 A1 US20140027289 A1 US 20140027289A1 US 201313944357 A US201313944357 A US 201313944357A US 2014027289 A1 US2014027289 A1 US 2014027289A1
- Authority
- US
- United States
- Prior art keywords
- substrate support
- nozzle
- scanning
- substrate
- grit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/06—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4581—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
Definitions
- Embodiments of the present invention generally relate to a substrate support for use in a substrate processing chamber.
- PECVD Plasma enhanced chemical vapor deposition
- a substrate such as a flat panel or semiconductor wafer.
- PECVD is generally accomplished by introducing a precursor gas into a vacuum chamber that contains a substrate.
- the precursor gas is typically directed through a distribution plate situated near the top of the chamber.
- the precursor gas in the chamber is energized (e.g., excited) into a plasma by applying RF power to the chamber from one or more RF sources coupled to the chamber.
- the excited gas reacts to form a layer of material on a surface of the substrate that is positioned on a temperature controlled substrate support.
- the present invention generally relates to a substrate support for use in a substrate processing chamber.
- a roughened substrate support reduces arcing within the chamber and also contributes to uniform deposition on the substrate.
- the roughening can occur in two steps. In a first step, the substrate support is bead blasted to initially roughen the surfaces. Then, the roughened surface is bead blasted with a finer grit to produce a substrate support with a surface roughness of between about 707 micro-inches and about 837 micro-inches. Following the surface roughening, the substrate support is anodized.
- a method of forming a roughened substrate support comprises bead blasting a surface of a substrate support in a first process where the beads have a first grit size and bead blasting the surface of the substrate support in a second process where the beads have a second grit size that is smaller than the first grit size.
- a method of forming a roughened substrate support comprises bead blasting a surface of a substrate support in a first process.
- the first process comprises scanning the nozzle across the surface of the substrate support in a first direction, shifting the nozzle along the surface of the substrate support in a second direction perpendicular to the first direction and scanning the nozzle across the surface of the substrate support in a third direction opposite the first direction.
- the method further comprises bead blasting the surface of the substrate support in a second process.
- the second process comprises first scanning the nozzle across the surface of the substrate support in the first direction, shifting the nozzle along the surface of the substrate support in the second direction, second scanning the nozzle across the surface of the substrate support in the third direction, rotating the substrate support about 90 degrees counterclockwise and repeating the first scanning, shifting, second scanning and rotating.
- a substrate support comprises a substrate support body having a surface roughness of between about 707 micro-inches and about 834 micro-inches and an anodized coating on the substrate support.
- FIG. 1 is a cross sectional view of a PECVD apparatus according to one embodiment of the invention.
- FIG. 2 is a partial sectional view of a substrate support according to one embodiment.
- FIG. 3A is a schematic cross-sectional view of substrate support after a first step of roughening according to one embodiment.
- FIG. 3B is a schematic cross-sectional view of the substrate support of FIG. 3A after a second step of roughening according to one embodiment.
- FIG. 4 is a schematic illustration of a roughing instrument relative to a substrate support according to one embodiment.
- FIG. 5A is a schematic illustration of a substrate support being roughened in first step according to one embodiment.
- FIG. 5B-5E are schematic illustrations of the substrate support of FIG. 5A being roughened in a second step according to one embodiment.
- the present invention generally relates to a substrate support for use in a substrate processing chamber.
- a roughened substrate support reduces arcing within the chamber and also contributes to uniform deposition on the substrate.
- the roughening can occur in two steps. In a first step, the substrate support is bead blasted to initially roughen the surfaces. Then, the roughened surface is bead blasted with a finer grit to produce a substrate support with a surface roughness of between about 707 micro-inches and about 837 micro-inches. Following the surface roughening, the substrate support is anodized.
- FIG. 1 is a cross sectional view of a PECVD apparatus that may utilize the substrate support described herein.
- the apparatus includes a chamber 100 in which one or more films may be deposited onto a substrate 120 .
- the chamber 100 generally includes walls 102 , a bottom 104 and a showerhead 106 which define a process volume.
- a substrate support 118 is disposed within the process volume.
- the process volume is accessed through a slit valve opening 108 such that the substrate 120 may be transferred in and out of the chamber 100 .
- the substrate support 118 may be coupled to an actuator 116 to raise and lower the substrate support 118 .
- Lift pins 122 are moveably disposed through the substrate support 118 to move a substrate to and from the substrate receiving surface.
- the substrate support 118 may also include heating and/or cooling elements 124 to maintain the substrate support 118 at a desired temperature.
- the substrate support 118 may also include RF return straps 126 to provide an RF return path at the periphery of the substrate support 118 .
- the showerhead 106 is coupled to a backing plate 112 by a fastening mechanism 150 .
- the showerhead 106 may be coupled to the backing plate 112 by one or more fastening mechanisms 150 to help prevent sag and/or control the straightness/curvature of the showerhead 106 .
- a gas source 132 is coupled to the backing plate 112 to provide gas through gas passages in the showerhead 106 to a processing area between the showerhead 106 and the substrate 120 .
- a vacuum pump 110 is coupled to the chamber 100 to control the process volume at a desired pressure.
- An RF source 128 is coupled through a match network 190 to the backing plate 112 and/or to the showerhead 106 to provide an RF current to the showerhead 106 . The RF current creates an electric field between the showerhead 106 and the substrate support 118 so that a plasma may be generated from the gases between the showerhead 106 and the substrate support 118 .
- a remote plasma source 130 such as an inductively coupled remote plasma source 130 , may also be coupled between the gas source 132 and the backing plate 112 . Between processing substrates, a cleaning gas may be provided to the remote plasma source 130 so that a remote plasma is generated. The radicals from the remote plasma may be provided to chamber 100 to clean chamber 100 components. The cleaning gas may be further excited by the RF source 128 provided to the showerhead 106 .
- the showerhead 106 may additionally be coupled to the backing plate 112 by showerhead suspension 134 .
- the showerhead suspension 134 is a flexible metal skirt.
- the showerhead suspension 134 may have a lip 136 upon which the showerhead 106 may rest.
- the backing plate 112 may rest on an upper surface of a ledge 114 coupled with the chamber walls 102 to seal the chamber 100 .
- FIG. 2 is a partial sectional view of the substrate support 118 .
- the substrate support 118 includes a body 202 substantially covered with an anodized coating 210 .
- the body 202 may be comprised of one or more coupled members or a unitary casted body having the heating and/or cooling elements 124 embedded therein. In one embodiment, the body 202 may comprise aluminum.
- the body 202 generally includes a substrate support surface 204 and an opposing mounting surface 206 .
- the anodized coating 210 covers at least the support surface 204 of the body 202 and provides a separating layer between the substrate 120 and the support surface 204 .
- the coating 210 includes an outer surface 212 and an inner surface 214 .
- the inner surface 214 is generally disposed directly on the body 202 .
- the anodized coating has a thickness of between about 23 ⁇ m to about 27 ⁇ m, such as about 25 ⁇ m.
- the inner surface 214 has a surface roughness that translates to the anodized coating 210 .
- a portion 218 of the outer surface 212 positioned above the substrate support surface 204 has a geometry configured to support the substrate 120 thereon.
- the portion 218 of the outer surface 212 has a surface finish 216 of a predefined roughness that promotes uniform thickness of films deposited on the substrate 140 .
- the surface finish 216 has a roughness of about 707 micro-inches to about 847 micro-inches, such as about 777 micro-inches.
- the surface finish 216 advantageously results in improved film thickness uniformity.
- the surface finish 216 of the anodized coating 210 may be achieved by treating at least a portion 220 of the outer substrate support surface 204 underlying the substrate 140 as will be discussed below.
- the surface finish 208 of the substrate support surface 204 may be formed in a number of manners, including bead blasting, abrasive blasting, grinding, embossing, sanding, texturing, etching or other method for providing a pre-defined surface roughness.
- the surface finish 208 of the support surface 204 of the body 202 is about 707 micro-inches to about 847 micro-inches, such as about 777 micro-inches.
- a strip 224 of the support surface 204 bounding the portion 220 positioned out from under the substrate 120 may be left untreated to minimize the fabrication costs.
- the strip 222 of the anodized coating 210 has a smoother surface finish than the portion 218 of the coating 210 it bounds.
- FIG. 3A is a schematic cross-sectional view of substrate support 118 after a first step of roughening according to one embodiment.
- the substrate support is exposed to a first bead blasting process to form valleys 302 within the substrate support 118 separated by plateaus 304 .
- the bead blasting may occur by exposing the substrate support 118 to beads ejected from a nozzle 402 .
- FIG. 4 is a schematic illustration of a roughing instrument (e.g., nozzle 402 ) relative to a substrate support 118 according to one embodiment.
- the nozzle 402 may be disposed at an angle ⁇ relative to the surface of the substrate support 118 that is being bead blasted.
- the angle ⁇ may be between about 85 degrees and about 95 degrees, for example, 90 degrees.
- the nozzle 402 may be spaced from the substrate support 118 by a distance “A” of between about 400 mm and about 600 mm.
- the beads for the bead blasting may have a first grit size of between about 23 grit and about 25 grit, for example 24 grit.
- the beads used are spherical beads.
- FIG. 5A is a schematic illustration of the substrate support 118 being roughened in first step according to one embodiment. As shown, the substrate support 118 has is has a generally rectangular shape such that four sides 501 - 504 are present.
- the nozzle 402 moves laterally as shown by arrows “E” and scans across the surface 505 of the substrate support 118 in a first direction from a first side 501 to a second side 502 as shown by arrow “B”. Thereafter, the nozzle 402 shifts in a second direction that is perpendicular to the first direction as shown by arrow “C”. The nozzle 402 then ejects the beads towards the surface 505 as the nozzle 402 moves in a third direction opposite the first direction from second side 502 to first side 501 as shown by arrow “D”. The nozzle 402 then shifts again in the second direction as shown by arrow “C”. When the nozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, the nozzle 402 follows a serpentine pattern to expose the entire surface 505 to bead blasting.
- FIG. 3A is a schematic cross-sectional view of the substrate support 118 of FIG. 3A after a second step of roughening according to one embodiment. As shown in FIG.
- the plateaus 304 are no longer present, but rather, a roughened surface 306 is present.
- the surface roughness of the substrate support 118 may be between about 707 micro-inches and about 837 micro-inches, for example 777 micro-inches. Because a grit size of between about 58 grit and about 61 grit, such as 60 grit, is utilized, rough peaks/edges on the substrate support 118 are few and far between. Peaks/edges are sharp points where the substrate 120 will contact the substrate support 118 and can lead to arcing between the substrate 120 and substrate support 118 , as well as scratching of the substrate 120 . Additionally, due to the uneven surface and lack of plateaus, gas that may otherwise be trapped between the substrate support 118 and substrate 120 may freely be evacuated from between the substrate support 118 and substrate 120 .
- the beads used are spherical beads.
- FIG. 5B-5E are schematic illustrations of the substrate support 118 of FIG. 5A being roughened in the second process according to one embodiment.
- the second process spaces the nozzle 402 from the substrate support 118 by the same distance and at the same angle as in the first process.
- the second process has four separate steps in the case of a rectangular shaped substrate support 118 .
- the nozzle 402 scans across the substrate support 118 in a manner similar to the first process. Namely, the nozzle 402 scans in the first direction from the first side 501 to the second side 502 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards the third side 503 . Thereafter, the nozzle scans in the third direction from the second side 502 to the first side 501 as shown by arrows “D”. The nozzle 402 then shifts again in the second direction as shown by arrows “C”. When the nozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, the nozzle 402 follows a serpentine pattern to expose the entire surface 505 to bead blasting.
- the substrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, the substrate support 118 may be rotated clockwise.
- the nozzle 402 scans in the first direction from a fourth side 504 to the third side 503 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards the first side 501 . Thereafter, the nozzle scans in the third direction from the third side 503 to the fourth side 504 as shown by arrows “D”. The nozzle 402 then shifts again in the second direction as shown by arrows “C”. When the nozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, the nozzle 402 follows a serpentine pattern to expose the entire surface 505 to bead blasting.
- the substrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, the substrate support 118 may be rotated clockwise so long as the rotation for the third step is in the same direction as in the second step.
- the nozzle 402 scans in the first direction from the second side 502 to the first side 501 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards the fourth side 504 . Thereafter, the nozzle scans in the third direction from the first side 501 to the second side 502 as shown by arrows “D”. The nozzle 402 then shifts again in the second direction as shown by arrows “C”. When the nozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, the nozzle 402 follows a serpentine pattern to expose the entire surface 505 to bead blasting.
- the substrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, the substrate support 118 may be rotated clockwise so long as the rotation for the third step is in the same direction as in the second step.
- the nozzle 402 scans in the first direction from the third side 503 to the fourth side 504 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards the second side 502 . Thereafter, the nozzle scans in the third direction from the fourth side 504 to the third side 503 as shown by arrows “D”. The nozzle 402 then shifts again in the second direction as shown by arrows “C”. When the nozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, the nozzle 402 follows a serpentine pattern to expose the entire surface 505 to bead blasting.
- the substrate support 118 has a surface 505 with a roughness of between about 707 micro-inches to about 837 micro-inches, for example 777 micro-inches.
- the substrate support 118 is anodized to form an anodized coating 210 thereover to a thickness of between about 23 ⁇ m to about 27 ⁇ m, for example, 25 ⁇ m.
- the roughened substrate support 118 reduces or eliminates arcing between the substrate support 118 and the substrate 120 . Additionally, the roughened substrate support 118 reduces or eliminates thin spots during the deposition onto the substrate 120 such that a substantially uniformly thick layer may be deposited onto the substrate 120 . Even though the substrate support 118 is roughened, the substrate support 118 does not substantially scratch the substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical Vapour Deposition (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
- This application claims benefit of U.S. Provisional Patent Application Ser. No. 61/676,790 (APPM/017682L), filed Jul. 27, 2012, which is incorporated herein by reference.
- 1. Field of the Invention
- Embodiments of the present invention generally relate to a substrate support for use in a substrate processing chamber.
- 2. Description of the Related Art
- Plasma enhanced chemical vapor deposition (PECVD) is generally employed to deposit thin films on a substrate such as a flat panel or semiconductor wafer. PECVD is generally accomplished by introducing a precursor gas into a vacuum chamber that contains a substrate. The precursor gas is typically directed through a distribution plate situated near the top of the chamber. The precursor gas in the chamber is energized (e.g., excited) into a plasma by applying RF power to the chamber from one or more RF sources coupled to the chamber. The excited gas reacts to form a layer of material on a surface of the substrate that is positioned on a temperature controlled substrate support.
- During processing, small local variations in film thickness, often manifesting as spots of thinner film thickness, have been observed which may be detrimental to the device produced. It is believed that variation is glass thickness and flatness, along with a smooth substrate support surface, creates a local capacitance variation in certain locations across the substrate, thereby creating local plasma non-uniformities that leads in deposition variations, e.g., thin spots.
- Therefore, there is a need for an improved substrate support.
- The present invention generally relates to a substrate support for use in a substrate processing chamber. A roughened substrate support reduces arcing within the chamber and also contributes to uniform deposition on the substrate. The roughening can occur in two steps. In a first step, the substrate support is bead blasted to initially roughen the surfaces. Then, the roughened surface is bead blasted with a finer grit to produce a substrate support with a surface roughness of between about 707 micro-inches and about 837 micro-inches. Following the surface roughening, the substrate support is anodized.
- In one embodiment, a method of forming a roughened substrate support comprises bead blasting a surface of a substrate support in a first process where the beads have a first grit size and bead blasting the surface of the substrate support in a second process where the beads have a second grit size that is smaller than the first grit size.
- In another embodiment, a method of forming a roughened substrate support comprises bead blasting a surface of a substrate support in a first process. The first process comprises scanning the nozzle across the surface of the substrate support in a first direction, shifting the nozzle along the surface of the substrate support in a second direction perpendicular to the first direction and scanning the nozzle across the surface of the substrate support in a third direction opposite the first direction. The method further comprises bead blasting the surface of the substrate support in a second process. The second process comprises first scanning the nozzle across the surface of the substrate support in the first direction, shifting the nozzle along the surface of the substrate support in the second direction, second scanning the nozzle across the surface of the substrate support in the third direction, rotating the substrate support about 90 degrees counterclockwise and repeating the first scanning, shifting, second scanning and rotating.
- In another embodiment, a substrate support comprises a substrate support body having a surface roughness of between about 707 micro-inches and about 834 micro-inches and an anodized coating on the substrate support.
- So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIG. 1 is a cross sectional view of a PECVD apparatus according to one embodiment of the invention. -
FIG. 2 is a partial sectional view of a substrate support according to one embodiment. -
FIG. 3A is a schematic cross-sectional view of substrate support after a first step of roughening according to one embodiment. -
FIG. 3B is a schematic cross-sectional view of the substrate support ofFIG. 3A after a second step of roughening according to one embodiment. -
FIG. 4 is a schematic illustration of a roughing instrument relative to a substrate support according to one embodiment. -
FIG. 5A is a schematic illustration of a substrate support being roughened in first step according to one embodiment. -
FIG. 5B-5E are schematic illustrations of the substrate support ofFIG. 5A being roughened in a second step according to one embodiment. - To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
- The present invention generally relates to a substrate support for use in a substrate processing chamber. A roughened substrate support reduces arcing within the chamber and also contributes to uniform deposition on the substrate. The roughening can occur in two steps. In a first step, the substrate support is bead blasted to initially roughen the surfaces. Then, the roughened surface is bead blasted with a finer grit to produce a substrate support with a surface roughness of between about 707 micro-inches and about 837 micro-inches. Following the surface roughening, the substrate support is anodized.
- The description herein will be made with reference to a PECVD chamber available from AKT America, Inc., a subsidiary of Applied Materials, Inc., Santa Clara, Calif. It is to be understood that the embodiments herein are equally applicable to other processing chambers as well, including processing chamber sold by other manufacturers.
-
FIG. 1 is a cross sectional view of a PECVD apparatus that may utilize the substrate support described herein. The apparatus includes achamber 100 in which one or more films may be deposited onto asubstrate 120. Thechamber 100 generally includeswalls 102, abottom 104 and ashowerhead 106 which define a process volume. Asubstrate support 118 is disposed within the process volume. The process volume is accessed through a slit valve opening 108 such that thesubstrate 120 may be transferred in and out of thechamber 100. Thesubstrate support 118 may be coupled to anactuator 116 to raise and lower thesubstrate support 118.Lift pins 122 are moveably disposed through thesubstrate support 118 to move a substrate to and from the substrate receiving surface. Thesubstrate support 118 may also include heating and/orcooling elements 124 to maintain thesubstrate support 118 at a desired temperature. Thesubstrate support 118 may also include RF return straps 126 to provide an RF return path at the periphery of thesubstrate support 118. - The
showerhead 106 is coupled to a backing plate 112 by a fastening mechanism 150. Theshowerhead 106 may be coupled to the backing plate 112 by one or more fastening mechanisms 150 to help prevent sag and/or control the straightness/curvature of theshowerhead 106. - A
gas source 132 is coupled to the backing plate 112 to provide gas through gas passages in theshowerhead 106 to a processing area between theshowerhead 106 and thesubstrate 120. Avacuum pump 110 is coupled to thechamber 100 to control the process volume at a desired pressure. AnRF source 128 is coupled through amatch network 190 to the backing plate 112 and/or to theshowerhead 106 to provide an RF current to theshowerhead 106. The RF current creates an electric field between theshowerhead 106 and thesubstrate support 118 so that a plasma may be generated from the gases between theshowerhead 106 and thesubstrate support 118. - A
remote plasma source 130, such as an inductively coupledremote plasma source 130, may also be coupled between thegas source 132 and the backing plate 112. Between processing substrates, a cleaning gas may be provided to theremote plasma source 130 so that a remote plasma is generated. The radicals from the remote plasma may be provided tochamber 100 to cleanchamber 100 components. The cleaning gas may be further excited by theRF source 128 provided to theshowerhead 106. - The
showerhead 106 may additionally be coupled to the backing plate 112 by showerhead suspension 134. In one embodiment, the showerhead suspension 134 is a flexible metal skirt. The showerhead suspension 134 may have alip 136 upon which theshowerhead 106 may rest. The backing plate 112 may rest on an upper surface of a ledge 114 coupled with thechamber walls 102 to seal thechamber 100. -
FIG. 2 is a partial sectional view of thesubstrate support 118. Thesubstrate support 118 includes abody 202 substantially covered with ananodized coating 210. Thebody 202 may be comprised of one or more coupled members or a unitary casted body having the heating and/orcooling elements 124 embedded therein. In one embodiment, thebody 202 may comprise aluminum. - The
body 202 generally includes asubstrate support surface 204 and an opposing mountingsurface 206. Theanodized coating 210 covers at least thesupport surface 204 of thebody 202 and provides a separating layer between thesubstrate 120 and thesupport surface 204. - The
coating 210 includes anouter surface 212 and aninner surface 214. Theinner surface 214 is generally disposed directly on thebody 202. In one embodiment, the anodized coating has a thickness of between about 23 μm to about 27 μm, such as about 25 μm. Theinner surface 214 has a surface roughness that translates to theanodized coating 210. Aportion 218 of theouter surface 212 positioned above thesubstrate support surface 204 has a geometry configured to support thesubstrate 120 thereon. Theportion 218 of theouter surface 212 has asurface finish 216 of a predefined roughness that promotes uniform thickness of films deposited on the substrate 140. Thesurface finish 216 has a roughness of about 707 micro-inches to about 847 micro-inches, such as about 777 micro-inches. Thesurface finish 216 advantageously results in improved film thickness uniformity. - The
surface finish 216 of theanodized coating 210 may be achieved by treating at least aportion 220 of the outersubstrate support surface 204 underlying the substrate 140 as will be discussed below. Thesurface finish 208 of thesubstrate support surface 204 may be formed in a number of manners, including bead blasting, abrasive blasting, grinding, embossing, sanding, texturing, etching or other method for providing a pre-defined surface roughness. In one embodiment, thesurface finish 208 of thesupport surface 204 of thebody 202 is about 707 micro-inches to about 847 micro-inches, such as about 777 micro-inches. - Optionally, a
strip 224 of thesupport surface 204 bounding theportion 220 positioned out from under thesubstrate 120 may be left untreated to minimize the fabrication costs. This results in astrip 222 of theanodized coating 210 above theuntreated strip 224 that may have a finish different than thefinish 216, but as thestrip 222 is beyond thesubstrate 120, the surface finish of thestrip 222 has no effect on film deposition uniformity. In one embodiment, thestrip 222 of theanodized coating 210 has a smoother surface finish than theportion 218 of thecoating 210 it bounds. - In order to roughen the
substrate support 118, a two step process may occur.FIG. 3A is a schematic cross-sectional view ofsubstrate support 118 after a first step of roughening according to one embodiment. In the first step of the process, the substrate support is exposed to a first bead blasting process to formvalleys 302 within thesubstrate support 118 separated byplateaus 304. The bead blasting may occur by exposing thesubstrate support 118 to beads ejected from anozzle 402. -
FIG. 4 is a schematic illustration of a roughing instrument (e.g., nozzle 402) relative to asubstrate support 118 according to one embodiment. Thenozzle 402 may be disposed at an angle α relative to the surface of thesubstrate support 118 that is being bead blasted. The angle α may be between about 85 degrees and about 95 degrees, for example, 90 degrees. Thenozzle 402 may be spaced from thesubstrate support 118 by a distance “A” of between about 400 mm and about 600 mm. The beads for the bead blasting may have a first grit size of between about 23 grit and about 25 grit, for example 24 grit. The beads used are spherical beads. - In operation, the
nozzle 402 scans over thesubstrate support 118, however, it is contemplated that thesubstrate support 118 can move relative to thenozzle 402 or both thenozzle 402 andsubstrate support 118 may move.FIG. 5A is a schematic illustration of thesubstrate support 118 being roughened in first step according to one embodiment. As shown, thesubstrate support 118 has is has a generally rectangular shape such that four sides 501-504 are present. - The
nozzle 402 moves laterally as shown by arrows “E” and scans across thesurface 505 of thesubstrate support 118 in a first direction from afirst side 501 to asecond side 502 as shown by arrow “B”. Thereafter, thenozzle 402 shifts in a second direction that is perpendicular to the first direction as shown by arrow “C”. Thenozzle 402 then ejects the beads towards thesurface 505 as thenozzle 402 moves in a third direction opposite the first direction fromsecond side 502 tofirst side 501 as shown by arrow “D”. Thenozzle 402 then shifts again in the second direction as shown by arrow “C”. When thenozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, thenozzle 402 follows a serpentine pattern to expose theentire surface 505 to bead blasting. - Following the first bead blasting process, the
substrate support 118 is roughened as shown inFIG. 3A , but thesurface 505 is not sufficiently rough. Additionally, duringsubstrate 120 placement onto thesubstrate support 118 and during processing, gas may be trapped within thevalleys 302 and be unable to escape because theplateaus 304 contact thesubstrate 120 and prevent gas from escaping thevalleys 302. Therefore, thesubstrate support 118 is bead blasted in a second process to roughen theplateaus 304 and further roughen thevalleys 302.FIG. 3B is a schematic cross-sectional view of thesubstrate support 118 ofFIG. 3A after a second step of roughening according to one embodiment. As shown inFIG. 3B , theplateaus 304 are no longer present, but rather, a roughenedsurface 306 is present. Following the second bead blasting process, the surface roughness of thesubstrate support 118 may be between about 707 micro-inches and about 837 micro-inches, for example 777 micro-inches. Because a grit size of between about 58 grit and about 61 grit, such as 60 grit, is utilized, rough peaks/edges on thesubstrate support 118 are few and far between. Peaks/edges are sharp points where thesubstrate 120 will contact thesubstrate support 118 and can lead to arcing between thesubstrate 120 andsubstrate support 118, as well as scratching of thesubstrate 120. Additionally, due to the uneven surface and lack of plateaus, gas that may otherwise be trapped between thesubstrate support 118 andsubstrate 120 may freely be evacuated from between thesubstrate support 118 andsubstrate 120. The beads used are spherical beads. -
FIG. 5B-5E are schematic illustrations of thesubstrate support 118 ofFIG. 5A being roughened in the second process according to one embodiment. The second process spaces thenozzle 402 from thesubstrate support 118 by the same distance and at the same angle as in the first process. The second process has four separate steps in the case of a rectangular shapedsubstrate support 118. - In the first step of the second process, shown in
FIG. 5B , thenozzle 402 scans across thesubstrate support 118 in a manner similar to the first process. Namely, thenozzle 402 scans in the first direction from thefirst side 501 to thesecond side 502 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards thethird side 503. Thereafter, the nozzle scans in the third direction from thesecond side 502 to thefirst side 501 as shown by arrows “D”. Thenozzle 402 then shifts again in the second direction as shown by arrows “C”. When thenozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, thenozzle 402 follows a serpentine pattern to expose theentire surface 505 to bead blasting. - In the second step, shown in
FIG. 5C , thesubstrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, thesubstrate support 118 may be rotated clockwise. Following the rotation, thenozzle 402 scans in the first direction from afourth side 504 to thethird side 503 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards thefirst side 501. Thereafter, the nozzle scans in the third direction from thethird side 503 to thefourth side 504 as shown by arrows “D”. Thenozzle 402 then shifts again in the second direction as shown by arrows “C”. When thenozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, thenozzle 402 follows a serpentine pattern to expose theentire surface 505 to bead blasting. - In the third step, shown in
FIG. 5D , thesubstrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, thesubstrate support 118 may be rotated clockwise so long as the rotation for the third step is in the same direction as in the second step. Following the rotation, thenozzle 402 scans in the first direction from thesecond side 502 to thefirst side 501 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards thefourth side 504. Thereafter, the nozzle scans in the third direction from thefirst side 501 to thesecond side 502 as shown by arrows “D”. Thenozzle 402 then shifts again in the second direction as shown by arrows “C”. When thenozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, thenozzle 402 follows a serpentine pattern to expose theentire surface 505 to bead blasting. - In the fourth step, shown in
FIG. 5E , thesubstrate support 118 is rotated counterclockwise about 90 degrees. It is to be understood that rather than counterclockwise, thesubstrate support 118 may be rotated clockwise so long as the rotation for the third step is in the same direction as in the second step. Following the rotation, thenozzle 402 scans in the first direction from thethird side 503 to thefourth side 504 as shown by arrow “B”. Then, the nozzle shifts as shown by arrows “C” in the second direction towards thesecond side 502. Thereafter, the nozzle scans in the third direction from thefourth side 504 to thethird side 503 as shown by arrows “D”. Thenozzle 402 then shifts again in the second direction as shown by arrows “C”. When thenozzle 402 shifts, the nozzle shifts a distance of between about 20 mm and about 40 mm. Thus, thenozzle 402 follows a serpentine pattern to expose theentire surface 505 to bead blasting. - Now that the second bead blasting process is complete, the
substrate support 118 has asurface 505 with a roughness of between about 707 micro-inches to about 837 micro-inches, for example 777 micro-inches. Following the bead blasting process, thesubstrate support 118 is anodized to form ananodized coating 210 thereover to a thickness of between about 23 μm to about 27 μm, for example, 25 μm. - The roughened
substrate support 118 reduces or eliminates arcing between thesubstrate support 118 and thesubstrate 120. Additionally, the roughenedsubstrate support 118 reduces or eliminates thin spots during the deposition onto thesubstrate 120 such that a substantially uniformly thick layer may be deposited onto thesubstrate 120. Even though thesubstrate support 118 is roughened, thesubstrate support 118 does not substantially scratch the substrate. - While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/944,357 US20140027289A1 (en) | 2012-07-27 | 2013-07-17 | Roughened substrate support |
US14/675,379 US10434629B2 (en) | 2012-07-27 | 2015-03-31 | Roughened substrate support |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261676790P | 2012-07-27 | 2012-07-27 | |
US13/944,357 US20140027289A1 (en) | 2012-07-27 | 2013-07-17 | Roughened substrate support |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/675,379 Continuation US10434629B2 (en) | 2012-07-27 | 2015-03-31 | Roughened substrate support |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140027289A1 true US20140027289A1 (en) | 2014-01-30 |
Family
ID=49993810
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/944,357 Abandoned US20140027289A1 (en) | 2012-07-27 | 2013-07-17 | Roughened substrate support |
US14/675,379 Active 2035-01-31 US10434629B2 (en) | 2012-07-27 | 2015-03-31 | Roughened substrate support |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/675,379 Active 2035-01-31 US10434629B2 (en) | 2012-07-27 | 2015-03-31 | Roughened substrate support |
Country Status (5)
Country | Link |
---|---|
US (2) | US20140027289A1 (en) |
KR (1) | KR102101192B1 (en) |
CN (2) | CN104508180A (en) |
TW (1) | TWI652145B (en) |
WO (1) | WO2014018285A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016118737A1 (en) * | 2015-01-22 | 2016-07-28 | Neocis, Inc. | Interactive guidance and manipulation detection arrangements for a surgical robotic system, and associated method |
CN107932340A (en) * | 2017-11-01 | 2018-04-20 | 福建晶安光电有限公司 | A kind of single-sided polishing ultra-thin wafers processing method for flattening |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102320533B1 (en) * | 2015-12-14 | 2021-11-03 | (주)위지트 | Susceptor surface processing method |
TWI709459B (en) * | 2019-11-06 | 2020-11-11 | 大陸商福暘技術開發有限公司 | Method for roughening the surface of glass substrate |
JP7259773B2 (en) * | 2020-01-14 | 2023-04-18 | 新東工業株式会社 | Blasting device and blasting method |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2276594A (en) * | 1939-11-17 | 1942-03-17 | George T Trundle | Process of preparing printing members and product thereof |
US2929120A (en) * | 1957-12-04 | 1960-03-22 | Gen Motors Corp | Method of definning sand cores |
US5271188A (en) * | 1991-05-17 | 1993-12-21 | Sony Corporation | Powder blasting apparatus |
US5423713A (en) * | 1992-10-30 | 1995-06-13 | Sony Corporation | Powder beam etching method |
US5833517A (en) * | 1994-12-08 | 1998-11-10 | Create Kabushikigaisha | Light guiding plate and flat optical source device |
US5839945A (en) * | 1996-07-04 | 1998-11-24 | Blast Cleaning Products Ltd. | Rotatable blast cleaning conveying surface and apparatus |
US6042151A (en) * | 1998-08-11 | 2000-03-28 | Ali; Terry | Single sheet sandpaper delivery system with single sheet sandpaper having application coordinating indicia and legend |
US20040099285A1 (en) * | 2002-11-25 | 2004-05-27 | Applied Materials, Inc. | Method of cleaning a coated process chamber component |
US6808439B2 (en) * | 2000-06-14 | 2004-10-26 | Roto-Finish Company, Inc. | Vibratory finisher with blasting nozzle |
US20040221959A1 (en) * | 2003-05-09 | 2004-11-11 | Applied Materials, Inc. | Anodized substrate support |
US20050048876A1 (en) * | 2003-09-02 | 2005-03-03 | Applied Materials, Inc. | Fabricating and cleaning chamber components having textured surfaces |
US6957511B1 (en) * | 1999-11-12 | 2005-10-25 | Seagate Technology Llc | Single-step electromechanical mechanical polishing on Ni-P plated discs |
US20060009133A1 (en) * | 2002-07-24 | 2006-01-12 | Fujitsu Ltd | Light-emitting display device and method for making the same |
US20060032586A1 (en) * | 2003-05-09 | 2006-02-16 | Applied Materials, Inc. | Reducing electrostatic charge by roughening the susceptor |
US20060194527A1 (en) * | 2003-10-14 | 2006-08-31 | Hawkins James H | Multiple cutting edged sanding wheel |
US7585201B2 (en) * | 2007-06-14 | 2009-09-08 | Disco Corporation | Water jet processing method |
US20100124872A1 (en) * | 2008-11-17 | 2010-05-20 | Flow International Corporation | Processes and apparatuses for enhanced cutting using blends of abrasive materials |
US20100321783A1 (en) * | 2009-06-18 | 2010-12-23 | Panasonic Corporation | Method of making antireflective roughened surface and lens barrel with roughened surface made by the method |
US20110135877A1 (en) * | 2007-02-23 | 2011-06-09 | Karl-Heinz Ullerich | Method and device for grinding and polishing wooden materials, and corresponding wooden parts |
US8257146B2 (en) * | 2006-11-22 | 2012-09-04 | Turbocoating S.P.A. | Process for surface preparation of parts to be coated |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6805952B2 (en) | 2000-12-29 | 2004-10-19 | Lam Research Corporation | Low contamination plasma chamber components and methods for making the same |
US6777045B2 (en) | 2001-06-27 | 2004-08-17 | Applied Materials Inc. | Chamber components having textured surfaces and method of manufacture |
US6780787B2 (en) * | 2002-03-21 | 2004-08-24 | Lam Research Corporation | Low contamination components for semiconductor processing apparatus and methods for making components |
US7221553B2 (en) | 2003-04-22 | 2007-05-22 | Applied Materials, Inc. | Substrate support having heat transfer system |
KR20050054317A (en) * | 2003-12-04 | 2005-06-10 | 엘지.필립스 엘시디 주식회사 | Method of manufacturing a susceptor which comprises blast process, and the susceptor manufactured thereof |
JP4417197B2 (en) * | 2004-07-30 | 2010-02-17 | 住友大阪セメント株式会社 | Susceptor device |
KR200418119Y1 (en) | 2005-01-18 | 2006-06-08 | 어플라이드 머티어리얼스, 인코포레이티드 | Corrosion-resistant aluminum component having multi-layer coating |
US7713379B2 (en) * | 2005-06-20 | 2010-05-11 | Lam Research Corporation | Plasma confinement rings including RF absorbing material for reducing polymer deposition |
TWI375295B (en) * | 2005-07-15 | 2012-10-21 | Applied Materials Inc | Reducing electrostatic charge by roughening the susceptor |
US7972470B2 (en) * | 2007-05-03 | 2011-07-05 | Applied Materials, Inc. | Asymmetric grounding of rectangular susceptor |
US7964430B2 (en) * | 2007-05-23 | 2011-06-21 | Applied Materials, Inc. | Silicon layer on a laser transparent conductive oxide layer suitable for use in solar cell applications |
KR100927509B1 (en) * | 2007-05-23 | 2009-11-17 | 어플라이드 머티어리얼스, 인코포레이티드 | A method of depositing a silicon layer over a laser scribed transmissive conductive oxide layer suitable for use in the solar cell field |
US20080289686A1 (en) * | 2007-05-23 | 2008-11-27 | Tae Kyung Won | Method and apparatus for depositing a silicon layer on a transmitting conductive oxide layer suitable for use in solar cell applications |
KR100938874B1 (en) * | 2007-07-24 | 2010-01-27 | 주식회사 에스에프에이 | Susceptor for Supporting Flat Display and Method for Manufacturing Thereof, and Chemical Vapor Deposition Apparatus Having the Same |
JPWO2009128324A1 (en) * | 2008-04-17 | 2011-08-04 | 三菱電機株式会社 | Substrate roughening method and photovoltaic device manufacturing method |
-
2013
- 2013-07-12 KR KR1020157003873A patent/KR102101192B1/en active IP Right Grant
- 2013-07-12 CN CN201380037798.0A patent/CN104508180A/en active Pending
- 2013-07-12 CN CN201911423044.4A patent/CN111485226A/en active Pending
- 2013-07-12 WO PCT/US2013/050365 patent/WO2014018285A1/en active Application Filing
- 2013-07-17 US US13/944,357 patent/US20140027289A1/en not_active Abandoned
- 2013-07-19 TW TW102125972A patent/TWI652145B/en not_active IP Right Cessation
-
2015
- 2015-03-31 US US14/675,379 patent/US10434629B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2276594A (en) * | 1939-11-17 | 1942-03-17 | George T Trundle | Process of preparing printing members and product thereof |
US2929120A (en) * | 1957-12-04 | 1960-03-22 | Gen Motors Corp | Method of definning sand cores |
US5271188A (en) * | 1991-05-17 | 1993-12-21 | Sony Corporation | Powder blasting apparatus |
US5423713A (en) * | 1992-10-30 | 1995-06-13 | Sony Corporation | Powder beam etching method |
US5833517A (en) * | 1994-12-08 | 1998-11-10 | Create Kabushikigaisha | Light guiding plate and flat optical source device |
US5839945A (en) * | 1996-07-04 | 1998-11-24 | Blast Cleaning Products Ltd. | Rotatable blast cleaning conveying surface and apparatus |
US6042151A (en) * | 1998-08-11 | 2000-03-28 | Ali; Terry | Single sheet sandpaper delivery system with single sheet sandpaper having application coordinating indicia and legend |
US6957511B1 (en) * | 1999-11-12 | 2005-10-25 | Seagate Technology Llc | Single-step electromechanical mechanical polishing on Ni-P plated discs |
US6808439B2 (en) * | 2000-06-14 | 2004-10-26 | Roto-Finish Company, Inc. | Vibratory finisher with blasting nozzle |
US20060009133A1 (en) * | 2002-07-24 | 2006-01-12 | Fujitsu Ltd | Light-emitting display device and method for making the same |
US20040099285A1 (en) * | 2002-11-25 | 2004-05-27 | Applied Materials, Inc. | Method of cleaning a coated process chamber component |
US20040221959A1 (en) * | 2003-05-09 | 2004-11-11 | Applied Materials, Inc. | Anodized substrate support |
US20060032586A1 (en) * | 2003-05-09 | 2006-02-16 | Applied Materials, Inc. | Reducing electrostatic charge by roughening the susceptor |
US20050048876A1 (en) * | 2003-09-02 | 2005-03-03 | Applied Materials, Inc. | Fabricating and cleaning chamber components having textured surfaces |
US20060194527A1 (en) * | 2003-10-14 | 2006-08-31 | Hawkins James H | Multiple cutting edged sanding wheel |
US8257146B2 (en) * | 2006-11-22 | 2012-09-04 | Turbocoating S.P.A. | Process for surface preparation of parts to be coated |
US20110135877A1 (en) * | 2007-02-23 | 2011-06-09 | Karl-Heinz Ullerich | Method and device for grinding and polishing wooden materials, and corresponding wooden parts |
US7585201B2 (en) * | 2007-06-14 | 2009-09-08 | Disco Corporation | Water jet processing method |
US20100124872A1 (en) * | 2008-11-17 | 2010-05-20 | Flow International Corporation | Processes and apparatuses for enhanced cutting using blends of abrasive materials |
US20100321783A1 (en) * | 2009-06-18 | 2010-12-23 | Panasonic Corporation | Method of making antireflective roughened surface and lens barrel with roughened surface made by the method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016118737A1 (en) * | 2015-01-22 | 2016-07-28 | Neocis, Inc. | Interactive guidance and manipulation detection arrangements for a surgical robotic system, and associated method |
KR20170110632A (en) * | 2015-01-22 | 2017-10-11 | 네오시스, 인크. | Interaction guidance and manipulation detection devices and related methods for surgical robot systems |
KR102005751B1 (en) | 2015-01-22 | 2019-07-31 | 네오시스, 인크. | A tooth implant system comprising a patient-interaction device |
EP3653162A1 (en) * | 2015-01-22 | 2020-05-20 | Neocis Inc. | Interactive guidance and manipulation detection arrangements for a surgical robotic system, and associated method |
US11033366B2 (en) | 2015-01-22 | 2021-06-15 | Neocis Inc. | Interactive guidance and manipulation detection arrangements for a surgical robotic system, and associated method |
CN107932340A (en) * | 2017-11-01 | 2018-04-20 | 福建晶安光电有限公司 | A kind of single-sided polishing ultra-thin wafers processing method for flattening |
Also Published As
Publication number | Publication date |
---|---|
CN111485226A (en) | 2020-08-04 |
KR20150036607A (en) | 2015-04-07 |
CN104508180A (en) | 2015-04-08 |
TWI652145B (en) | 2019-03-01 |
US10434629B2 (en) | 2019-10-08 |
TW201410388A (en) | 2014-03-16 |
US20150202739A1 (en) | 2015-07-23 |
WO2014018285A1 (en) | 2014-01-30 |
KR102101192B1 (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10434629B2 (en) | Roughened substrate support | |
US8372205B2 (en) | Reducing electrostatic charge by roughening the susceptor | |
US11658036B2 (en) | Apparatus for processing substrate | |
US9214376B2 (en) | Substrate mounting stage and surface treatment method therefor | |
US10854498B2 (en) | Wafer-supporting device and method for producing same | |
US7732010B2 (en) | Method for supporting a glass substrate to improve uniform deposition thickness | |
KR101441858B1 (en) | Reducing electrostatic charge by roughening the susceptor | |
JP4657824B2 (en) | Substrate mounting table, substrate processing apparatus, and method for manufacturing substrate mounting table | |
US20050120962A1 (en) | Substrate supporting table, method for producing same, and processing system | |
CN108242381B (en) | Gas supply device, method for manufacturing the same, and plasma processing apparatus | |
JP2002313898A5 (en) | ||
US7815492B2 (en) | Surface treatment method | |
JP6937753B2 (en) | Fused cover ring | |
JP6727338B2 (en) | Non-shadow flame plasma processing chamber | |
CN111557040A (en) | Partially anodized showerhead | |
US11450514B1 (en) | Methods of reducing particles in a physical vapor deposition (PVD) chamber | |
US9721766B2 (en) | Method for processing target object | |
KR20210006286A (en) | Plasma processing apparatus | |
JP2022014978A (en) | Sputtering apparatus and film deposition method of metal compound film | |
KR102328916B1 (en) | Apparatus for processing substrate | |
CN118299244A (en) | Electrostatic holding disk, substrate processing apparatus, and method for manufacturing electrostatic holding disk | |
CN118299243A (en) | Electrostatic holding disk, substrate processing apparatus, and method for manufacturing electrostatic holding disk | |
JP2004260201A (en) | Treatment apparatus | |
TW202405230A (en) | Thermal shield for processing chamber | |
KR20220136123A (en) | Substrate mounting table polishing method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, DONGSUH;STERLING, WILLIAM N.;PARK, BEOM SOO;AND OTHERS;SIGNING DATES FROM 20130711 TO 20130717;REEL/FRAME:030817/0709 |
|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER 13/994,357 PREVIOUSLY RECORDED ON REEL 030817 FRAME 0709. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:LEE, DONGSUH;STERLING, WILLIAM N.;PARK, BEOM SOO;AND OTHERS;SIGNING DATES FROM 20130711 TO 20130717;REEL/FRAME:030938/0188 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |