Nothing Special   »   [go: up one dir, main page]

US20120199160A1 - Device and Method for Cleaning a French or Coffee Press - Google Patents

Device and Method for Cleaning a French or Coffee Press Download PDF

Info

Publication number
US20120199160A1
US20120199160A1 US13/453,480 US201213453480A US2012199160A1 US 20120199160 A1 US20120199160 A1 US 20120199160A1 US 201213453480 A US201213453480 A US 201213453480A US 2012199160 A1 US2012199160 A1 US 2012199160A1
Authority
US
United States
Prior art keywords
press
coffee
ramp
grinds
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/453,480
Inventor
Pio Galbis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/453,480 priority Critical patent/US20120199160A1/en
Publication of US20120199160A1 publication Critical patent/US20120199160A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/18Apparatus in which ground coffee or tea-leaves are immersed in the hot liquid in the beverage container
    • A47J31/20Apparatus in which ground coffee or tea-leaves are immersed in the hot liquid in the beverage container having immersible, e.g. rotatable, filters

Definitions

  • the present invention relates generally to cleaning a coffee press. More particularly, the present invention relates to a device and method for removing coffee grinds from a coffee press.
  • a French press is often credited for producing a stronger, creamier coffee than produced by other brewing devices or techniques.
  • usage of the French press generally contributes to a coffee having great flavor and consistency due, at least in part, to being able to control the extraction time and delivery of oils that are frequently trapped in the filters used by other brewing devices.
  • the French press may also be referred to as a press pot, coffee press, coffee plunger, or cafetière. Although some may discern a technical distinction amongst the aforementioned devices, as used in herein, the expressions “French press,” “press pot,” “coffee press,” “coffee plunger,” and “cafetière” shall be deemed to have the same meaning and will be used interchangeably.
  • the French press includes a glass, plastic, or similarly rigid jug having a cylindrical shape.
  • the French press is equipped with a lid and a plunger that fits tightly inside the jug.
  • the plunger includes a fine wire or nylon mesh that serves as a filter.
  • coffee having a coarse grind is placed inside of the jug, and hot water is poured over the grinds.
  • the coffee is allowed to steep for a few minutes, and then a plunger is depressed into the bottom to separate the grinds from the liquid.
  • the coffee can be poured from a spout in the jug into a cup or other container for drinking while the grinds remain trapped underneath the filter at the bottom of the jug.
  • a common technique for removing grinds is to fill the French press with water to make the grinds more liquid and less paste-like.
  • the water is swirled inside the French press, and the contents are dumped into a sink. Discarding them into the sink generally creates a cumbersome mess; however the larger drawback to this technique is that the accumulation of grinds in the pipes often clogs the plumbing.
  • a common technique for cleaning the grinds from a French press involves using a large spoon and painstakingly scooping and scraping the grinds out of the French press. Yet, another technique is to knock the French press against a soft-edged garbage pail and hope the grinds will simply fall into the pail, this results most often in only partially removing the grinds with the remainder adhering to the sides of the cafetière. This latter technique is also problematic because, along with the grinds some liquid always remains at the bottom of the coffee press and when disposed inside a pail, the water content can leak though a porous trash bag or pail; additionally, this technique does not completely remove the grinds, since much of the grinds remain adhering to the sides or bottom of the French press.
  • the various methods engaged in removing grinds, such as the spooning and dumping techniques waste generous amounts of time and effort, and rarely completely remove the grinds.
  • the present invention relates to a device and method for removing coffee grinds and other particles from the bottom of a French press with a minimal amount of effort.
  • a press cleaning device is configured to be positioned inside any size French press.
  • the press cleaning device includes a stem (providing a central axis for rotating the device) having a handle disposed at a first end (the top) and a circular-shaped ramp or declining plane whose floor is flat disposed at a second end (the bottom); both ends are attached at their centers and perpendicularly to the stem.
  • the stem is a relatively thin tube having a height that is greater than the height of the French press.
  • the stem can be fabricated to fit one of a plurality of configurations, including, but not limited to, circular, square, poly-sided, or the like.
  • the handle is coupled to the top of the stem and enables a user to rotate or twist the stem.
  • the circular disk-shaped ramp is coupled at its center to the stem, and forms a curving, gradually descending plane beneath the stem.
  • the circumference of the ramp is substantially the same as the circumference of the inside of the French press. In an embodiment, the circumference of the lowermost portion of the ramp is slightly smaller than the circumference of the upper portion of the ramp.
  • the ramp includes a cut from the outside edge of the ramp along the diameter of the ramp toward the middle where the ramp is coupled to the stem; the cut is similar to the radius of a circle.
  • the cut provides a leading edge and an ending edge.
  • the leading edge is fabricated to be lower than the ending edge and parallel to the bottom or floor of the French press so that from the lower, leading edge, a circular ramp wraps around in an incline to the upper, ending edge.
  • the leading edge is slightly less in length than the remainder of the ramp and of the ending edge (whereas, the ending edge produces a circumference that is substantially the same as the inner circumference of the French press), this adjustment provides for the fact that coffee presses are molded so that the region where the vertical sides meets the bottom of the coffee press is an inward curve, resulting in the bottom being of lesser circumference than the remainder of the coffee press; this shorter and lower leading edge allows the device to reach the bottom.
  • the stem is rotated to cause the sharp leading edge to screw around and downward toward the bottom of the French press thereby slicing through the coffee grinds and other particles (e.g., tea is sometimes brewed in French presses) settled at the bottom of the French press.
  • the grinds are transferred up the ramp and efficiently compacted and stacked upon the ramp.
  • the sides of the French press function as walls and the ramp functions as a floor for the grinds as they are neatly stacked. The grinds readily adhere to each other and form the shape of the inside surface of the French press.
  • FIG. 1 illustrates an embodiment of a press cleaning device.
  • FIG. 2 illustrates an embodiment of a press cleaning device positioned within a French press.
  • FIG. 3 illustrates an embodiment of an expanded view of the lower portion and inside curvature of the French press of FIG. 2 .
  • FIG. 4 illustrates an embodiment of an expanded view of the lower portion of the press cleaning device of FIG. 1 .
  • FIG. 1 and FIG. 2 illustrate an embodiment of a press cleaning device 100 that can be operatively positioned inside of a French press, such as French press 210 , to remove coffee grinds and other particles from the inside bottom of the French press.
  • the press cleaning device 100 includes a cylindrical stem 110 having a handle 120 disposed at a first end and a flat circular disk-shaped ramp 130 disposed at a second end.
  • the stem 110 provides a central axis for manipulating the device 100 , as described herein.
  • the stem 110 is a relatively thin tube having a vertical height that is slightly and comfortably greater than the height of the French press 210 .
  • the stem 110 is illustrated in FIG. 1 as having a tubular shape, various other configurations can be utilized.
  • a cross-sectional view of the various configurations for the stem 110 can be circular, oval, triangular, square, poly-sided, star-shaped, or the like.
  • the handle 120 is coupled to the stem 110 to enable a user to rotate or twist the stem 110 .
  • the handle 120 is illustrated as being perpendicular to the top of stem 110 , but the handle 120 can be positioned at other angles or possess other configurations, for example a spherical shape, as long the handle 120 permits the user to easily grip and rotate the stem 110 on a central axis.
  • the handle 120 is coupled in the middle to the top of the stem 110 and enables the user to rotate the stem 110 in a clockwise motion.
  • the handle 120 is coupled to enable the user to rotate the stem 110 in a counter-clockwise motion.
  • a knob is included and adapted to be pushed at the handle end of the stem and results in the ramp 130 below rotating.
  • the center of the disk-shaped ramp 130 is perpendicularly coupled on its central axis to the stem 110 , and forms a gradually descending curving plane or ramp beneath the stem 110 .
  • the ramp 130 is also positioned onto the stem 110 such that the leading lower edge 150 of the ramp 130 is parallel to the handle 120 (which parallels the floor of the French press 210 ).
  • the circumference of the ramp 130 is substantially the same as the circumference of the inside of the French press 210 .
  • the outside edges of the ramp 130 can be made of a malleable or pliable material, such as soft rubber or plastic, which allows for a minimally wider diameter (than the inside diameter of the French press 210 ) thus affecting a thorough scraping of the walls of the French press 210 .
  • the ramp 130 is a rigid, solid floored or non-porous device; however in other embodiments, the ramp 130 could be a rigid porous screen-like material that allows the liquid to strain through but not the larger, coarse coffee grinds. Since French presses may vary in size or volume, the circumference of ramp 130 can also vary to match the inner circumference of the French press 210 that the device 100 is being used to clean. Therefore in an embodiment, the ramp 130 could be detachable from stem 110 so that differently sized ramps 130 can be attached and removed from device 100 and therefore used with differently sized French presses. In another embodiment, the device 100 is a single unit, with no detachable parts therefore requiring different devices at different circumferences for different sized presses.
  • the ramp 130 is formed or threaded around the stem 110 in a corkscrew manner.
  • the ramp 130 essentially begins as a circle that has been cut from the outside circumference of the ramp 130 along half the diameter of the ramp 130 toward the center where the ramp 130 is coupled on its central axis to the stem 110 , this cut is equal to the radius of the inner circumference of the French press 210 and produces two edges.
  • One edge of this cut is then engineered or manipulated from the inside (stem side) or center of the circle and along its entire length to become lower than the other cut (the upper or ending edge 140 ) and becomes the leading edge 150 —whose entire edge parallels the floor of the French press 210 and the handle 120 .
  • this cut also produces another edge known as the upper or ending edge 140 .
  • the leading edge 150 is also slightly less in length or radius than the final edge 140 to accommodate for the lesser circumference on the bottom of the French press 210 due to the curve where the side meets the bottom or floor of the cafetière, discussed in greater detail below with reference to FIG. 3 and FIG. 4 .
  • the leading edge 150 is lower than the ending edge 140 and behind it the plane of the ramp 130 revolves gradually upward so that the circular disc-shape of the ramp 130 follows like an inclined ramp to the ending edge 140 .
  • the ending edge 140 is positioned directly above the leading edge 150 with a small height difference between the two (as described in greater detail below with reference to FIG. 3 and FIG. 4 ).
  • the ramp 130 continues to thread around the stem 110 beyond the point where the leading edge 150 and the ending edge 140 are vertically aligned.
  • the ramp 130 can continue a full circle and a quarter or a full circle and a half In either case, grinds or other particles that are pushed over ending edge 140 fall and remain on the ramp 130 positioned below.
  • the leading edge 150 screws around and downward toward the bottom or floor of the French press 210 . Accordingly, the leading edge 150 is configured to penetrate or slice through any coffee grinds and other particles settled at the bottom of the French press 210 . As the leading edge 150 continues to penetrate, the grinds are transferred up the ramp 130 and neatly compacted and stacked on the ramp 130 . During the stacking process, the sides of the French press 210 function as retaining walls and the ramp 130 functions as a supporting floor for the grinds as they are stacked. The grinds readily adhere to each other and form the shape of the inside surface of the French press 210 . The user can continue to turn the handle 120 of the device 100 until there is no resistance.
  • the device 100 overcomes the drawbacks of conventional techniques for removing coffee grinds that are time consuming and results in significant residue and dregs.
  • the device 100 with the grinds stacked and compacted can be tapped on the side of a garbage pail, and all the grinds readily slide off the ramp 130 and fall inside the pail with only a trace of moisture.
  • An advantage of this device 100 is that it cleans all the grinds from a French press 210 easily and quickly with a minimal amount of effort, and permits the French press 210 , itself, to be easily rinsed clean of the remaining coffee liquid without harm to the plumbing.
  • the height difference between the leading edge 150 and the ending edge 140 should be set to enable the leading edge 150 which parallels the bottom surface or floor of the French press 210 to reach the bottom of the French press 210 ; coffee presses generally have a slightly rounded bottom edge where the inner wall of the French press meets the bottom as they are commonly molded glass (as shown in FIG. 2 ; which represents a difference in circumferences: the lesser circumference of the bottom or floor and the greater circumference of the majority upper and parallel sides of the French press container).
  • the difference in height between the leading edge 150 and the ending edge 140 should, at a minimum, be equivalent to the height of the curving on the rounded bottom edge within the French press 210 commonly three-eighths to three-fourths of an inch, depending on the size of the French press 210 .
  • the height can be greater, has long as it is more than the difference between these two circumferences. This can be further explained with reference to FIGS. 3 and 4 .
  • FIG. 3 illustrates an expanded view of the lower portion of the French press 210 to emphasize the curvature 340 a - 340 b of the inside bottom surface.
  • the vertical sides of the French press 210 are molded so that the region where the vertical sides meet the horizontal bottom or floor of the French press 210 is an inward curve (i.e., curvature 340 a - 340 b ).
  • Upper indicators 310 a - 310 b specify an area immediately above the curvature 340 a - 340 b
  • lower indicators 320 a - 320 b specify area where the curvature 340 a - 340 b meets the bottom of the French press 210
  • the vertical height 330 of the curvature 340 a - 340 b is measured from the bottom to the upper indicators 310 a - 310 b.
  • the horizontal distance between upper indicators 310 a - 310 b defines a first diameter at a point immediately above the curvature 340 a - 340 b.
  • the horizontal distance between lower indicators 320 a - 320 b defines a second diameter of the bottom of French press 210 , which coincidentally is the area immediately below the curvature 340 a - 340 b. Since the second diameter is smaller than the first diameter, the circumference for the bottom of the French press 210 is less than the circumference for the remainder of the coffee press.
  • the curvature 340 a - 340 b of the inner bottom of the French press 210 also causes the bottom circumference (measured from lower indicators 320 a - 320 b ) to be slightly smaller than the inner circumference (measured from upper indicators 310 a - 310 b ) of the French press 210 immediately above the curvature 340 a - 340 b.
  • the length of leading edge 150 has a bit cut off; therefore, its radius is less than the radius of the ending edge 140 and equivalent or less than the circumference of the bottom-most part of the French press 210 , which as mentioned above is a lesser circumference than the remainder of the French press 210 due to the molded inward slanted curve (curvature 340 a - 340 ) where the sides meet the floor.
  • the outside corner of the length of leading edge 150 has the most cut-off.
  • the amount cut-off reduces gradually as it continues up the ascending slant of the ramp 130 until it equals the larger circumference that is above the rounded bottom of the inside of the French press 210 ; which is the same circumference as the majority of the inside of the French press 210 , or all of the area above the rounded bottom where the sides parallel one another—above this curve, the circumference of the coffee press remains equal. Without this cut to the length of the leading edge 150 and the graduated cut along the lowermost outside edge of the ramp, or the circumference of the ramp 130 , the lower portion of the ramp 130 would be too wide to reach and scrape the bottom plane or floor of the French press 210 where the bottommost coffee grinds reside.
  • FIG. 4 illustrates an expanded view of the lower portion of device 100 .
  • the leading edge 150 is coupled along the central axis of the ramp 130 to stem 110 at lower position 420 .
  • the ending edge 140 is coupled along the central axis of the ramp 130 to stem 110 at upper position 410 .
  • the vertical distance 430 between lower position 420 and higher position 410 is substantially the same or somewhat greater as the vertical height 330 of the curvature 340 a - 340 b of the bottom inner surface of the French press 210 .
  • the graduated radial cut between the length of the shorter leading edge 150 and the length of the longer ending edge 140 allows the lower leading edge 150 to reach and scrape the bottom of the French press 210 .
  • the graduated cutting and rounding of the corner of the leading edge 150 would not be necessary. Otherwise, the graduated cutting and rounding allows the leading edge 150 to scrape along the entire surface of the bottom thereby leaving no grinds or other particles inside of the French press 210 .
  • the shape of the ramp 130 is flat and circular as discussed.
  • the outside edges of the ramp 130 can be convex, concave, or a mixture of both in shape as long as the ramp 130 is capable of removing substantially all of the grinds from the bottom of the French press 210 .
  • the outside edges of the ramp 130 can have a railing (e.g., walls perpendicular to the floor of the ramp 130 ) akin to the walls of the French press 210 , as side support for the coffee grinds.
  • the outside edges of ramp 130 may be made of a malleable or pliable material, such as soft rubber or plastic which allows for a minimally wider diameter (than the inside diameter of the French press 210 ) thus affecting a thorough scraping of the walls of the French press 210 .
  • the stem 110 , the handle 120 , and ramp 130 can be made of a plastic, metal, alloy, ceramic, or other sturdy materials. If the selected material is a metal or an alloy, a metal, such as copper or aluminum, should be selected to minimize oxidation or rusting of the components. They can also be painted with rust-proof paint and easily labeled for advertising. All three components can be made of the same materials, or different materials can be used to fabricate the components.
  • the handle 120 , the ramp 130 , or both can be integrally formed into the stem 110 or removably attached to the stem 110 , particularly as aforementioned in the case of the stem 110 and the ramp 130 in order for the ramp 130 to be interchangeable to the various sizes of French presses 210 , according to the manufacturers' wishes. If the manufacturer chooses a screw-like device, then the clockwise motion of the handle would perfectly fit and corroborate the counter-clockwise screw attachment of the ramp 130 .
  • the device 100 is an exemplary device for implementing various aspects of the present invention.
  • the figures and examples above are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements.
  • certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention are described, and detailed descriptions of other portions of such known components are omitted so as not to obscure the present invention.
  • an embodiment showing a singular component should not necessarily be limited to other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Tea And Coffee (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

A press cleaning device and method are described for removing coffee grinds from a French or coffee press. The device includes a stem having a handle and a circular disk-shaped declining plane ramp disposed at different ends. The circumference of the ramp is substantially the same as the inner circumference of the press. The ramp includes a radial cut running diametrically from the center of the ramp toward the outer circumference. The cut is fabricated to provide a lower or leading edge paralleling the horizontal floor of the press and trailing the leading edge an upward slanted ramp that follows like a circular inclined plane to an upper or ending edge. When rotated, the lower edge, which parallels the floor of the coffee press while slicing and shoveling, transfers the grinds from the bottom of the press up the ramp whereupon the grinds are stacked and can be removed.

Description

    FIELD OF INVENTION
  • The present invention relates generally to cleaning a coffee press. More particularly, the present invention relates to a device and method for removing coffee grinds from a coffee press.
  • BACKGROUND OF THE INVENTION
  • As a coffee-brewing device popularized in France, a French press is often credited for producing a stronger, creamier coffee than produced by other brewing devices or techniques. Mostly considered as the premier method for brewing a high quality coffee beverage, usage of the French press generally contributes to a coffee having great flavor and consistency due, at least in part, to being able to control the extraction time and delivery of oils that are frequently trapped in the filters used by other brewing devices.
  • The French press may also be referred to as a press pot, coffee press, coffee plunger, or cafetière. Although some may discern a technical distinction amongst the aforementioned devices, as used in herein, the expressions “French press,” “press pot,” “coffee press,” “coffee plunger,” and “cafetière” shall be deemed to have the same meaning and will be used interchangeably. Typically, the French press includes a glass, plastic, or similarly rigid jug having a cylindrical shape. The French press is equipped with a lid and a plunger that fits tightly inside the jug. The plunger includes a fine wire or nylon mesh that serves as a filter. To brew coffee, coffee having a coarse grind is placed inside of the jug, and hot water is poured over the grinds. The coffee is allowed to steep for a few minutes, and then a plunger is depressed into the bottom to separate the grinds from the liquid. Afterwards, the coffee can be poured from a spout in the jug into a cup or other container for drinking while the grinds remain trapped underneath the filter at the bottom of the jug.
  • After partaking of the coffee, thoroughly removing and disposing of the coffee grinds from the bottom of the coffee press is difficult and time-consuming. A common technique for removing grinds is to fill the French press with water to make the grinds more liquid and less paste-like. The water is swirled inside the French press, and the contents are dumped into a sink. Discarding them into the sink generally creates a cumbersome mess; however the larger drawback to this technique is that the accumulation of grinds in the pipes often clogs the plumbing.
  • A common technique for cleaning the grinds from a French press involves using a large spoon and painstakingly scooping and scraping the grinds out of the French press. Yet, another technique is to knock the French press against a soft-edged garbage pail and hope the grinds will simply fall into the pail, this results most often in only partially removing the grinds with the remainder adhering to the sides of the cafetière. This latter technique is also problematic because, along with the grinds some liquid always remains at the bottom of the coffee press and when disposed inside a pail, the water content can leak though a porous trash bag or pail; additionally, this technique does not completely remove the grinds, since much of the grinds remain adhering to the sides or bottom of the French press. The various methods engaged in removing grinds, such as the spooning and dumping techniques waste generous amounts of time and effort, and rarely completely remove the grinds.
  • Accordingly, it is desirable to provide a device and method that can take the coffee grinds out of the bottom of a French press easily, neatly, quickly, efficiently, thoroughly, and effectively without damaging the plumbing or resulting in more of a mess.
  • BRIEF SUMMARY OF THE INVENTION
  • As described herein, the present invention relates to a device and method for removing coffee grinds and other particles from the bottom of a French press with a minimal amount of effort. A press cleaning device is configured to be positioned inside any size French press. The press cleaning device includes a stem (providing a central axis for rotating the device) having a handle disposed at a first end (the top) and a circular-shaped ramp or declining plane whose floor is flat disposed at a second end (the bottom); both ends are attached at their centers and perpendicularly to the stem.
  • The stem is a relatively thin tube having a height that is greater than the height of the French press. The stem can be fabricated to fit one of a plurality of configurations, including, but not limited to, circular, square, poly-sided, or the like.
  • The handle is coupled to the top of the stem and enables a user to rotate or twist the stem. The circular disk-shaped ramp is coupled at its center to the stem, and forms a curving, gradually descending plane beneath the stem. The circumference of the ramp is substantially the same as the circumference of the inside of the French press. In an embodiment, the circumference of the lowermost portion of the ramp is slightly smaller than the circumference of the upper portion of the ramp.
  • The ramp includes a cut from the outside edge of the ramp along the diameter of the ramp toward the middle where the ramp is coupled to the stem; the cut is similar to the radius of a circle. The cut provides a leading edge and an ending edge. The leading edge is fabricated to be lower than the ending edge and parallel to the bottom or floor of the French press so that from the lower, leading edge, a circular ramp wraps around in an incline to the upper, ending edge.
  • In an embodiment, the leading edge is slightly less in length than the remainder of the ramp and of the ending edge (whereas, the ending edge produces a circumference that is substantially the same as the inner circumference of the French press), this adjustment provides for the fact that coffee presses are molded so that the region where the vertical sides meets the bottom of the coffee press is an inward curve, resulting in the bottom being of lesser circumference than the remainder of the coffee press; this shorter and lower leading edge allows the device to reach the bottom.
  • Using the handle, the stem is rotated to cause the sharp leading edge to screw around and downward toward the bottom of the French press thereby slicing through the coffee grinds and other particles (e.g., tea is sometimes brewed in French presses) settled at the bottom of the French press. As the leading edge penetrates the grinds, the grinds are transferred up the ramp and efficiently compacted and stacked upon the ramp. During the stacking process, the sides of the French press function as walls and the ramp functions as a floor for the grinds as they are neatly stacked. The grinds readily adhere to each other and form the shape of the inside surface of the French press. Upon the leading edge's reaching the bottom—an indication that all of the grinds have been “shoveled” up, a palpable difference is felt in the exertion used (the overall exertion is minimal), whereupon the user lifts the handle of the device upward to remove the stacked grinds from the French press and the majority of the liquid drains to the bottom of the French press, leaving just enough moisture for the grinds to “glue” together. Since the circular ramp is substantially the same circumference as the cafetière, the ramp scrapes clean any grind along the sides of the French press during this upward motion, resulting in a clean French press.
  • The above described and many other features of the present invention will become apparent, as the present invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated herein and form part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the present invention and to enable a person skilled in the pertinent art to make and use the present invention. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the leftmost digit(s) of a reference number identifies the drawing in which the reference number first appears.
  • FIG. 1 illustrates an embodiment of a press cleaning device.
  • FIG. 2 illustrates an embodiment of a press cleaning device positioned within a French press.
  • FIG. 3 illustrates an embodiment of an expanded view of the lower portion and inside curvature of the French press of FIG. 2.
  • FIG. 4 illustrates an embodiment of an expanded view of the lower portion of the press cleaning device of FIG. 1.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In the following description of embodiments of the present invention, reference is made to the accompanying drawings that form a part hereof and in which is shown by way of illustration a number of specific embodiments in which the present invention can be practiced. It is to be understood that other embodiments can be utilized and structural changes can be made without departing from the scope of the present invention.
  • This specification discloses one or more embodiments that incorporate features of the present invention. The embodiment(s) described, and references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the relevant art(s) to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • A device and method are described herein for removing coffee grinds and other particles from the bottom of a French press thoroughly and with a minimal amount of effort. FIG. 1 and FIG. 2 illustrate an embodiment of a press cleaning device 100 that can be operatively positioned inside of a French press, such as French press 210, to remove coffee grinds and other particles from the inside bottom of the French press. The press cleaning device 100 includes a cylindrical stem 110 having a handle 120 disposed at a first end and a flat circular disk-shaped ramp 130 disposed at a second end.
  • The stem 110 provides a central axis for manipulating the device 100, as described herein. The stem 110 is a relatively thin tube having a vertical height that is slightly and comfortably greater than the height of the French press 210. Although the stem 110 is illustrated in FIG. 1 as having a tubular shape, various other configurations can be utilized. For example, a cross-sectional view of the various configurations for the stem 110 can be circular, oval, triangular, square, poly-sided, star-shaped, or the like.
  • The handle 120 is coupled to the stem 110 to enable a user to rotate or twist the stem 110. In FIG. 1, the handle 120 is illustrated as being perpendicular to the top of stem 110, but the handle 120 can be positioned at other angles or possess other configurations, for example a spherical shape, as long the handle 120 permits the user to easily grip and rotate the stem 110 on a central axis. In an embodiment, the handle 120 is coupled in the middle to the top of the stem 110 and enables the user to rotate the stem 110 in a clockwise motion. In other embodiments, the handle 120 is coupled to enable the user to rotate the stem 110 in a counter-clockwise motion. In another embodiment, a knob is included and adapted to be pushed at the handle end of the stem and results in the ramp 130 below rotating.
  • The center of the disk-shaped ramp 130 is perpendicularly coupled on its central axis to the stem 110, and forms a gradually descending curving plane or ramp beneath the stem 110. The ramp 130 is also positioned onto the stem 110 such that the leading lower edge 150 of the ramp 130 is parallel to the handle 120 (which parallels the floor of the French press 210). The circumference of the ramp 130 is substantially the same as the circumference of the inside of the French press 210. In another embodiment the outside edges of the ramp 130 can be made of a malleable or pliable material, such as soft rubber or plastic, which allows for a minimally wider diameter (than the inside diameter of the French press 210) thus affecting a thorough scraping of the walls of the French press 210. In the illustrated depictions, the ramp 130 is a rigid, solid floored or non-porous device; however in other embodiments, the ramp 130 could be a rigid porous screen-like material that allows the liquid to strain through but not the larger, coarse coffee grinds. Since French presses may vary in size or volume, the circumference of ramp 130 can also vary to match the inner circumference of the French press 210 that the device 100 is being used to clean. Therefore in an embodiment, the ramp 130 could be detachable from stem 110 so that differently sized ramps 130 can be attached and removed from device 100 and therefore used with differently sized French presses. In another embodiment, the device 100 is a single unit, with no detachable parts therefore requiring different devices at different circumferences for different sized presses.
  • The ramp 130 is formed or threaded around the stem 110 in a corkscrew manner. As such, the ramp 130 essentially begins as a circle that has been cut from the outside circumference of the ramp 130 along half the diameter of the ramp 130 toward the center where the ramp 130 is coupled on its central axis to the stem 110, this cut is equal to the radius of the inner circumference of the French press 210 and produces two edges. One edge of this cut is then engineered or manipulated from the inside (stem side) or center of the circle and along its entire length to become lower than the other cut (the upper or ending edge 140) and becomes the leading edge 150—whose entire edge parallels the floor of the French press 210 and the handle 120. As aforementioned, this cut also produces another edge known as the upper or ending edge 140. The leading edge 150 is also slightly less in length or radius than the final edge 140 to accommodate for the lesser circumference on the bottom of the French press 210 due to the curve where the side meets the bottom or floor of the cafetière, discussed in greater detail below with reference to FIG. 3 and FIG. 4.
  • The leading edge 150 is lower than the ending edge 140 and behind it the plane of the ramp 130 revolves gradually upward so that the circular disc-shape of the ramp 130 follows like an inclined ramp to the ending edge 140. In an embodiment, the ending edge 140 is positioned directly above the leading edge 150 with a small height difference between the two (as described in greater detail below with reference to FIG. 3 and FIG. 4). In another embodiment, the ramp 130 continues to thread around the stem 110 beyond the point where the leading edge 150 and the ending edge 140 are vertically aligned. For example, the ramp 130 can continue a full circle and a quarter or a full circle and a half In either case, grinds or other particles that are pushed over ending edge 140 fall and remain on the ramp 130 positioned below.
  • When the device 100 is rotated clockwise, the leading edge 150 screws around and downward toward the bottom or floor of the French press 210. Accordingly, the leading edge 150 is configured to penetrate or slice through any coffee grinds and other particles settled at the bottom of the French press 210. As the leading edge 150 continues to penetrate, the grinds are transferred up the ramp 130 and neatly compacted and stacked on the ramp 130. During the stacking process, the sides of the French press 210 function as retaining walls and the ramp 130 functions as a supporting floor for the grinds as they are stacked. The grinds readily adhere to each other and form the shape of the inside surface of the French press 210. The user can continue to turn the handle 120 of the device 100 until there is no resistance. It should be understood that a difference in pressure would be readily apparent when the ramp 130 scrapes or “shovels” the last of the grinds from the bottom of the inside of the French press 210. Upon reaching the bottom, the user can lift the handle 120 vertically or upward, and as the device 100 is pulled upward and out of the French press 210, any remaining liquid flows down and out of the grinds and remains in the French press 210. As discussed, the minimal moisture remaining within the grinds causes them to cement together forming a solid or rigid form. This adhesive property enables the molded grains to remain perfectly formed and stacked onto the ramp 130 as the device 100 is lifted out of the French press 210 and readily remain formed and stacked on the device outside the cafetière when transferring them to a rubbish container. In addition, as discussed, the ramp 130 being substantially the same circumference as the French press 210, scrapes clean the walls of the French press 210 leaving no grind residue along the sides of the cafetière.
  • The circular motion caused by rotating the handle 120, and concomitantly the ramp 130, contributes to the grinds piling compacted and formed onto the ramp 130 and quickly produces a neat and rigid, stack. Thus, the device 100 overcomes the drawbacks of conventional techniques for removing coffee grinds that are time consuming and results in significant residue and dregs. The device 100 with the grinds stacked and compacted can be tapped on the side of a garbage pail, and all the grinds readily slide off the ramp 130 and fall inside the pail with only a trace of moisture. An advantage of this device 100 is that it cleans all the grinds from a French press 210 easily and quickly with a minimal amount of effort, and permits the French press 210, itself, to be easily rinsed clean of the remaining coffee liquid without harm to the plumbing.
  • To remove all of the grinds from the inside of the French press 210, it is important for the leading edge 150 to reach and scrape the bottom of the French press 210. Therefore, the height difference between the leading edge 150 and the ending edge 140 should be set to enable the leading edge 150 which parallels the bottom surface or floor of the French press 210 to reach the bottom of the French press 210; coffee presses generally have a slightly rounded bottom edge where the inner wall of the French press meets the bottom as they are commonly molded glass (as shown in FIG. 2; which represents a difference in circumferences: the lesser circumference of the bottom or floor and the greater circumference of the majority upper and parallel sides of the French press container). The difference in height between the leading edge 150 and the ending edge 140 should, at a minimum, be equivalent to the height of the curving on the rounded bottom edge within the French press 210 commonly three-eighths to three-fourths of an inch, depending on the size of the French press 210. In another embodiment, the height can be greater, has long as it is more than the difference between these two circumferences. This can be further explained with reference to FIGS. 3 and 4.
  • FIG. 3 illustrates an expanded view of the lower portion of the French press 210 to emphasize the curvature 340 a-340 b of the inside bottom surface. The vertical sides of the French press 210 are molded so that the region where the vertical sides meet the horizontal bottom or floor of the French press 210 is an inward curve (i.e., curvature 340 a-340 b). Upper indicators 310 a-310 b specify an area immediately above the curvature 340 a-340 b, lower indicators 320 a-320 b specify area where the curvature 340 a-340 b meets the bottom of the French press 210, and the vertical height 330 of the curvature 340 a-340 b is measured from the bottom to the upper indicators 310 a-310 b. The horizontal distance between upper indicators 310 a-310 b defines a first diameter at a point immediately above the curvature 340 a-340 b. The horizontal distance between lower indicators 320 a-320 b defines a second diameter of the bottom of French press 210, which coincidentally is the area immediately below the curvature 340 a-340 b. Since the second diameter is smaller than the first diameter, the circumference for the bottom of the French press 210 is less than the circumference for the remainder of the coffee press.
  • Thus, the curvature 340 a-340 b of the inner bottom of the French press 210 also causes the bottom circumference (measured from lower indicators 320 a-320 b) to be slightly smaller than the inner circumference (measured from upper indicators 310 a-310 b) of the French press 210 immediately above the curvature 340 a-340 b. As such in an embodiment, the length of leading edge 150 has a bit cut off; therefore, its radius is less than the radius of the ending edge 140 and equivalent or less than the circumference of the bottom-most part of the French press 210, which as mentioned above is a lesser circumference than the remainder of the French press 210 due to the molded inward slanted curve (curvature 340 a-340) where the sides meet the floor. The outside corner of the length of leading edge 150 has the most cut-off. The amount cut-off reduces gradually as it continues up the ascending slant of the ramp 130 until it equals the larger circumference that is above the rounded bottom of the inside of the French press 210; which is the same circumference as the majority of the inside of the French press 210, or all of the area above the rounded bottom where the sides parallel one another—above this curve, the circumference of the coffee press remains equal. Without this cut to the length of the leading edge 150 and the graduated cut along the lowermost outside edge of the ramp, or the circumference of the ramp 130, the lower portion of the ramp 130 would be too wide to reach and scrape the bottom plane or floor of the French press 210 where the bottommost coffee grinds reside.
  • The aforementioned graduated cut to the length of the leading edge 150 and the longer ending edge 140 can be explained with reference to FIG. 4, which illustrates an expanded view of the lower portion of device 100. The leading edge 150 is coupled along the central axis of the ramp 130 to stem 110 at lower position 420. Similarly, the ending edge 140 is coupled along the central axis of the ramp 130 to stem 110 at upper position 410. The vertical distance 430 between lower position 420 and higher position 410 is substantially the same or somewhat greater as the vertical height 330 of the curvature 340 a-340 b of the bottom inner surface of the French press 210. Hence, as discussed above, the graduated radial cut between the length of the shorter leading edge 150 and the length of the longer ending edge 140 allows the lower leading edge 150 to reach and scrape the bottom of the French press 210.
  • For French presses that do not have cylindrical glass volumes with rounded edges, the graduated cutting and rounding of the corner of the leading edge 150 would not be necessary. Otherwise, the graduated cutting and rounding allows the leading edge 150 to scrape along the entire surface of the bottom thereby leaving no grinds or other particles inside of the French press 210.
  • In an embodiment, the shape of the ramp 130 is flat and circular as discussed. However in other embodiments, the outside edges of the ramp 130 can be convex, concave, or a mixture of both in shape as long as the ramp 130 is capable of removing substantially all of the grinds from the bottom of the French press 210. In an embodiment, the outside edges of the ramp 130 can have a railing (e.g., walls perpendicular to the floor of the ramp 130) akin to the walls of the French press 210, as side support for the coffee grinds. In another embodiment, the outside edges of ramp 130 may be made of a malleable or pliable material, such as soft rubber or plastic which allows for a minimally wider diameter (than the inside diameter of the French press 210) thus affecting a thorough scraping of the walls of the French press 210.
  • The stem 110, the handle 120, and ramp 130 can be made of a plastic, metal, alloy, ceramic, or other sturdy materials. If the selected material is a metal or an alloy, a metal, such as copper or aluminum, should be selected to minimize oxidation or rusting of the components. They can also be painted with rust-proof paint and easily labeled for advertising. All three components can be made of the same materials, or different materials can be used to fabricate the components. The handle 120, the ramp 130, or both can be integrally formed into the stem 110 or removably attached to the stem 110, particularly as aforementioned in the case of the stem 110 and the ramp 130 in order for the ramp 130 to be interchangeable to the various sizes of French presses 210, according to the manufacturers' wishes. If the manufacturer chooses a screw-like device, then the clockwise motion of the handle would perfectly fit and corroborate the counter-clockwise screw attachment of the ramp 130.
  • It should be understood that the device 100, as described herein, is an exemplary device for implementing various aspects of the present invention. Notably, the figures and examples above are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention are described, and detailed descriptions of other portions of such known components are omitted so as not to obscure the present invention. In the present specification, an embodiment showing a singular component should not necessarily be limited to other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one skilled in the relevant art(s). Moreover, it is not intended for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration. While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It would be apparent to one skilled in the relevant arks) that various changes in form and detail could be made therein without departing from the spirit and scope of the present invention. Thus, the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (13)

1.-13. (canceled)
14. A method for removing coffee grinds deposited within a coffee press, the method comprising:
inserting, into the coffee press, a press cleaning tool having a disk-shaped declining-plane ramp threaded about a base of the press cleaning tool to form a lower edge and an upper edge;
rotating the press cleaning tool along a central axis to enable the lower edge to penetrate downwardly into the coffee grinds to thereby cause the coffee grinds to traverse the ramp in an upward motion and cause the coffee grinds to stack upon the ramp, whereby an inner surface of the coffee press functions as a wall for molding the stacked grinds and the ramp functions as a supporting floor for the stacked grinds; and
lifting the press cleaning tool vertically to remove the stacked grinds from the coffee press.
15. The method of claim 14, further comprising rotating the press cleaning tool until the lower edge of the ramp parallels and scrapes the bottom of the inner surface of the coffee press to substantially remove and push along to an upper portion of the ramp all of the coffee grinds from the bottom.
16. A method for removing coffee grinds deposited within a coffee press, the method comprising:
inserting into the coffee press a press cleaning tool comprising:
a stem having a first end and a second end; and
a circular ramp coupled to the second end of the stem about a central axis of the stem, the ramp including an upper edge and a lower edge; and
rotating the press cleaning tool about the central axis.
17. The method of claim 16, wherein rotating the press cleaning tool comprises enabling the lower edge to penetrate downwardly into the coffee grinds to thereby cause the coffee grinds to traverse the ramp in an upward motion.
18. The method of claim 17, further comprising lifting the press cleaning tool vertically after rotating the press cleaning tool to remove the stacked grinds from the coffee press.
19. The method of claim 17, wherein rotating the press cleaning tool comprises scraping a surface of the coffee press with the lower edge.
20. The method of claim 16, wherein the lower edge has a length shorter than a length of the upper edge.
21. A coffee press kit comprising:
a coffee press configured for brewing coffee, the coffee press including a bottom inner surface and vertical sides walls extending from the bottom inner surface, the vertical side walls defining an inner circumference; and
a press cleaning tool insertable and rotatable within the coffee press and configured to remove coffee grinds deposited within the coffee press, the press cleaning tool including:
a stem having a first end and a second end; and
a circular ramp coupled to the second end of the stem about a central axis of the stem, the circular ramp including a circumference substantially the same as the inner circumference.
22. The kit of claim 21, wherein the ramp includes a lower edge configured to scrape the bottom inner surface of the coffee press.
23. The kit of claim 22, wherein the ramp further includes an upper edge having a length greater than a length of the lower edge.
24. The kit of claim 21, wherein the bottom inner surface has a circumference less than the inner circumference.
25. The kit of claim 21, wherein the stem has a length greater than a height of the coffee press.
US13/453,480 2008-06-24 2012-04-23 Device and Method for Cleaning a French or Coffee Press Abandoned US20120199160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/453,480 US20120199160A1 (en) 2008-06-24 2012-04-23 Device and Method for Cleaning a French or Coffee Press

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/145,160 US8074561B2 (en) 2008-06-24 2008-06-24 Device and method for cleaning a french or coffee press
US13/288,740 US8161869B2 (en) 2008-06-24 2011-11-03 Device and method for cleaning a french or coffee press
US13/453,480 US20120199160A1 (en) 2008-06-24 2012-04-23 Device and Method for Cleaning a French or Coffee Press

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/288,740 Continuation US8161869B2 (en) 2008-06-24 2011-11-03 Device and method for cleaning a french or coffee press

Publications (1)

Publication Number Publication Date
US20120199160A1 true US20120199160A1 (en) 2012-08-09

Family

ID=41429922

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/145,160 Expired - Fee Related US8074561B2 (en) 2008-06-24 2008-06-24 Device and method for cleaning a french or coffee press
US13/288,740 Expired - Fee Related US8161869B2 (en) 2008-06-24 2011-11-03 Device and method for cleaning a french or coffee press
US13/453,480 Abandoned US20120199160A1 (en) 2008-06-24 2012-04-23 Device and Method for Cleaning a French or Coffee Press

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/145,160 Expired - Fee Related US8074561B2 (en) 2008-06-24 2008-06-24 Device and method for cleaning a french or coffee press
US13/288,740 Expired - Fee Related US8161869B2 (en) 2008-06-24 2011-11-03 Device and method for cleaning a french or coffee press

Country Status (1)

Country Link
US (3) US8074561B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135635A1 (en) * 2014-11-15 2016-05-19 Michael Boniello Apparatus for infusing a product with an herb
USD761624S1 (en) 2014-08-05 2016-07-19 Espro, Inc. Infusing container
US9392900B2 (en) 2008-05-12 2016-07-19 Espro, Inc. Apparatus and method for extracting an infusion
USD795630S1 (en) 2015-08-19 2017-08-29 Bruce Constantine Beverage press
USD796244S1 (en) 2016-02-11 2017-09-05 Espro, Inc. Beverage press
US10264911B2 (en) 2014-08-07 2019-04-23 Espro, Inc. Press for extracting an infusion
US10398255B2 (en) 2006-02-13 2019-09-03 Espro Inc. Steaming pitcher methods and devices
US12137833B2 (en) 2021-01-07 2024-11-12 Dkk Enterprises Inc. Devices and methods for filtering a liquid

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074561B2 (en) 2008-06-24 2011-12-13 Pio Galbis Device and method for cleaning a french or coffee press
EP2248449A1 (en) * 2009-05-08 2010-11-10 Koninklijke Philips Electronics N.V. Kitchen appliance
CN103501664B (en) 2011-02-22 2017-07-04 特洛伊之海伦有限公司 With the French filtering pressure coffee pot for removing coffee grounds function
USD787876S1 (en) * 2016-04-08 2017-05-30 Lentrade, Inc. Pitcher
US10820739B2 (en) * 2016-10-24 2020-11-03 Toby Matthew Eisenberg French coffee press
GB201700077D0 (en) * 2017-01-04 2017-02-15 Partridge Joseph J A tool for removing compacted particle residue from a cylindrical container
US11278149B2 (en) * 2017-04-10 2022-03-22 Leonid Ulman Reusable brewing filter with ejection mechanism
CN107928481B (en) * 2017-10-27 2020-08-21 邹雯雯 Coffee cup with self-service syrup adding function
DE102018203252B4 (en) * 2018-03-05 2024-04-25 Ardorix e.K. Cleaning device, arrangement and procedure
USD1039311S1 (en) 2020-09-18 2024-08-20 Joshua John Gilliam French press
US20240326106A1 (en) * 2023-03-31 2024-10-03 Recycap Technologies, S.L. Extraction device and mechanisms, and use in recycling beverage capsules

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US111300A (en) * 1871-01-31 Improvement in well-augers
US161640A (en) * 1875-04-06 Improvement in coffee-pots
US297642A (en) * 1884-04-29 Sand-auger
US444710A (en) * 1891-01-13 Device for cleaning cuspidors
US455824A (en) * 1891-07-14 Mining-machine
US642262A (en) * 1898-04-18 1900-01-30 Mortimer Stuart Sarles Lifter and strainer.
US705983A (en) * 1902-03-13 1902-07-29 Carl K Volckening Bottle-washing brush.
US856160A (en) * 1906-08-31 1907-06-04 Otto Kerouse Cuspidor-cleaner.
US982566A (en) * 1910-04-30 1911-01-24 Barr Arthur C Cleaning device for carboys.
US1474049A (en) * 1919-07-09 1923-11-13 Arthur W Mccurdy Auger or bit
US1569787A (en) * 1925-03-28 1926-01-12 George A Robertson Sand-removing device
US1622900A (en) * 1925-08-25 1927-03-29 Becker John Bottle-washing device
US1984388A (en) * 1933-09-14 1934-12-18 Clarence H Wilkes Bread-boring apparatus
US2019372A (en) * 1933-03-25 1935-10-29 Thurley Benjamin Tool for removing sludge or the like
US2036549A (en) * 1935-07-02 1936-04-07 James W Smith Bottle closure
US2228067A (en) * 1939-06-22 1941-01-07 Driesch Frank Von Den Washing brush for glassware
US2265192A (en) * 1940-07-18 1941-12-09 Piron Francis Alphonce Brush
US2352326A (en) * 1942-10-29 1944-06-27 Charles W Kandle Earth drill
US2420260A (en) * 1945-03-22 1947-05-06 Anton O Myszkowski Fruit jar washer
US2583600A (en) * 1948-09-23 1952-01-29 Hazle V Schreiber Feed grinding and die expressing machine
US2608706A (en) * 1950-04-19 1952-09-02 George P Wakefield Canned food server
US2613062A (en) * 1950-12-20 1952-10-07 Carl M Harbert Earth drilling bit
US2729067A (en) * 1951-09-18 1956-01-03 Intrusion Prepakt Inc Method for forming piles
US2730469A (en) * 1949-12-13 1956-01-10 Walter M Harwedel Method of cleaning milking machine teat cups
US2802228A (en) * 1953-04-14 1957-08-13 George J Federighi Drinking glass burnishing and washing machine
US2810553A (en) * 1955-09-30 1957-10-22 Bigelow William Sand auger
US2912225A (en) * 1957-10-01 1959-11-10 Charles W Kandle Method and apparatus for drilling large diameter holes
US2981403A (en) * 1957-04-15 1961-04-25 Joy Mfg Co Conveying apparatus
US3005401A (en) * 1955-02-09 1961-10-24 French Oil Mill Machinery Expressing press
US3020823A (en) * 1959-04-06 1962-02-13 Musso Ferdinando Pasquale Piston and cylinder action coffee maker
US3066333A (en) * 1959-03-24 1962-12-04 Ges Fuer Industrielle Technik Mbh Washing machine
US3104989A (en) * 1956-06-28 1963-09-24 Kearney & Trecker Corp Machine tool for removing a mass of material from a container and method
US3120170A (en) * 1961-06-08 1964-02-04 Garte Mathew Coffee making device
US3339476A (en) * 1965-10-18 1967-09-05 Troya Michel R De Coffee maker
US3628602A (en) * 1970-07-13 1971-12-21 Manning S Inc Processing apparatus
US3657993A (en) * 1970-10-15 1972-04-25 Edward S Close Coffee brewer
US3664444A (en) * 1970-05-11 1972-05-23 Mobile Drilling Co Inc Air drilling method using controlled split stream
US3690388A (en) * 1970-07-20 1972-09-12 Raymond Int Inc Installation of sand drains
US3935318A (en) * 1974-10-12 1976-01-27 Sergio Mihailide Disposable apparatus for brewing a beverage such as coffee
US4117776A (en) * 1977-02-25 1978-10-03 The French Oil Mill Machinery Company Screw press apparatus
US4159883A (en) * 1976-07-22 1979-07-03 I.W.S. Nominee Company Limited Cleaning pad
US4317249A (en) * 1980-09-08 1982-03-02 Benson Industries Inc. Device for cleaning containers
US4643981A (en) * 1983-11-09 1987-02-17 Akzo N.V. Pressure filtration system
US4708489A (en) * 1984-06-04 1987-11-24 Wizards Ice Cream & Confectionery Shoppe, Ltd. Blending machine
US4731896A (en) * 1985-10-21 1988-03-22 Tour Odette De Adjustable toothbrush
US4909932A (en) * 1986-06-05 1990-03-20 Bertrand Monnet Device for filtration of liquids, including detachable cover and detachable closure
US4911187A (en) * 1989-01-19 1990-03-27 Castillo David D Dental pick brush apparatus
US4967855A (en) * 1988-10-12 1990-11-06 Hawera Probst Gmbh & Co. Drilling tool
USD318989S (en) * 1989-03-01 1991-08-13 Risner Daniel A Can scraper
US5092453A (en) * 1988-11-10 1992-03-03 Spirac Engineering Ab Helical conveyor
US5181459A (en) * 1991-03-07 1993-01-26 California Processing Machinery Fruit indent removal device
US5441752A (en) * 1993-12-10 1995-08-15 Sandin; Sonja A. Infusion bag device
US5478586A (en) * 1994-08-16 1995-12-26 Connor; Linda Coffee, tea or beverage maker
US5608938A (en) * 1996-02-08 1997-03-11 Baschenis; Bruno Bottle brush assembly
US5618570A (en) * 1995-09-25 1997-04-08 Banks; Stephen H. System for the preparation of coffee or the like
US5635233A (en) * 1995-01-09 1997-06-03 Levinson; Melvin L. Methods for preparing a coffee, tea and milk beverage
US5709003A (en) * 1996-05-08 1998-01-20 Batch; Charles W. Crank arm cleaning brush with scrub pad
US5806408A (en) * 1996-11-01 1998-09-15 Debacker; Johanna N. Beverage brewing device
US5887510A (en) * 1997-08-06 1999-03-30 Porter; Mark D. Device for making coffee
US5942143A (en) * 1997-11-12 1999-08-24 National Presto Industries, Inc. Microwave beverage maker apparatus and method
US5979299A (en) * 1995-05-09 1999-11-09 Hornsby; David J. Beverage infusion making apparatus
US6079316A (en) * 1999-03-15 2000-06-27 Barden; Elliot Insulating press-type coffee maker and accessories
US6119787A (en) * 1998-12-24 2000-09-19 Garcia; Jaime Auger planting tool
US6296068B1 (en) * 1998-06-19 2001-10-02 W. Richard Frederick Planting system
US6321861B1 (en) * 1999-06-15 2001-11-27 Henry S. Leichter Auger
US20010052353A1 (en) * 2000-09-08 2001-12-20 Brumlik John Francois Cleaning device and mehtod of use
US6368418B1 (en) * 2000-07-20 2002-04-09 William H. Rowe Pipeline cleaning tool and a method of cleaning pipelines
US6422133B1 (en) * 2000-06-05 2002-07-23 Frank A. Brady French press coffee maker with assembly to reduce contact of grounds with liquid coffee after termination of steeping period
US6626250B1 (en) * 2002-04-12 2003-09-30 Todd J. Ham Ice auger shroud system
US20040000431A1 (en) * 2002-06-27 2004-01-01 John Van Denham Hole boring apparatus
US20040011205A1 (en) * 2000-10-11 2004-01-22 O'loughlin Nick Plunger for brewing a drink
US20040089479A1 (en) * 2002-11-12 2004-05-13 Snyder Alan Lynn Auger cleaning device
US6797160B2 (en) * 2001-10-15 2004-09-28 I-Chung Huang Percolating steeper
US20050046211A1 (en) * 2003-08-29 2005-03-03 Ignite Design, Llc Coffee press
US6863520B1 (en) * 2003-07-01 2005-03-08 Craig A. Stiles Auger scoop
US6892416B2 (en) * 2000-12-12 2005-05-17 Sang Woong Lee Baby bottle brush
US20050199129A1 (en) * 2004-03-12 2005-09-15 Glucksman Dov Z. Infusion beverage brewing system
US20050210611A1 (en) * 2003-10-21 2005-09-29 Pelo Jeffrey M Espresso machine cleaning tool
US20050247544A1 (en) * 2004-03-12 2005-11-10 Emerson Electric Co. Auger brush
US7032505B2 (en) * 2002-03-27 2006-04-25 Meyer Intellectual Property Ltd. French press coffee maker with secondary filter
US7040218B1 (en) * 2003-10-15 2006-05-09 Biolchini Jr Robert F Stirring coffee press
US20060118481A1 (en) * 2003-11-20 2006-06-08 Trachtenbroit Lawrence M Mehods and apparatuses for filtering
US20070028779A1 (en) * 2005-08-08 2007-02-08 Anthony Pigliacampo Foldable beverage press plunger system
US7194951B1 (en) * 2005-01-13 2007-03-27 Planetary Design, Llc Beverage press mug with storage container
US20070137495A1 (en) * 2005-12-16 2007-06-21 Talbert Lewis M Coffee maker with grinder
US20070137494A1 (en) * 2005-12-15 2007-06-21 Robert Wilhite Beverage making devices and methods with an inner housing in place of a central rod plunger
US20070151461A1 (en) * 2005-12-12 2007-07-05 Edmark John T Beverage infusion making apparatus
US7279660B2 (en) * 2003-02-06 2007-10-09 Edgecraft Corporation Apparatus for brewing beverages
US7370383B1 (en) * 2006-05-26 2008-05-13 Chinowsky Wink Debra L Brush device
US7389720B2 (en) * 2003-12-30 2008-06-24 Haverstock Thomas B Coffee infusion press for stackable cups
US20080173138A1 (en) * 2006-08-15 2008-07-24 Dayton Douglas C Systems and methods of a vacuum cup bulb changer power tool system with interchangeable functional attachments
US20080189870A1 (en) * 2006-08-15 2008-08-14 Dayton Douglas C Systems and methods of a power tool system with interchangeable functional attachments
US20080250570A1 (en) * 2006-08-15 2008-10-16 Dayton Douglas C Systems and methods of a power tool system with interchangeable functional attachments powered by a direct rotational drive
US20090007802A1 (en) * 2007-07-02 2009-01-08 Isaac Taitler Method and device for multi-purpose applications using interchangeable heads

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074561B2 (en) 2008-06-24 2011-12-13 Pio Galbis Device and method for cleaning a french or coffee press

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US111300A (en) * 1871-01-31 Improvement in well-augers
US161640A (en) * 1875-04-06 Improvement in coffee-pots
US297642A (en) * 1884-04-29 Sand-auger
US444710A (en) * 1891-01-13 Device for cleaning cuspidors
US455824A (en) * 1891-07-14 Mining-machine
US642262A (en) * 1898-04-18 1900-01-30 Mortimer Stuart Sarles Lifter and strainer.
US705983A (en) * 1902-03-13 1902-07-29 Carl K Volckening Bottle-washing brush.
US856160A (en) * 1906-08-31 1907-06-04 Otto Kerouse Cuspidor-cleaner.
US982566A (en) * 1910-04-30 1911-01-24 Barr Arthur C Cleaning device for carboys.
US1474049A (en) * 1919-07-09 1923-11-13 Arthur W Mccurdy Auger or bit
US1569787A (en) * 1925-03-28 1926-01-12 George A Robertson Sand-removing device
US1622900A (en) * 1925-08-25 1927-03-29 Becker John Bottle-washing device
US2019372A (en) * 1933-03-25 1935-10-29 Thurley Benjamin Tool for removing sludge or the like
US1984388A (en) * 1933-09-14 1934-12-18 Clarence H Wilkes Bread-boring apparatus
US2036549A (en) * 1935-07-02 1936-04-07 James W Smith Bottle closure
US2228067A (en) * 1939-06-22 1941-01-07 Driesch Frank Von Den Washing brush for glassware
US2265192A (en) * 1940-07-18 1941-12-09 Piron Francis Alphonce Brush
US2352326A (en) * 1942-10-29 1944-06-27 Charles W Kandle Earth drill
US2420260A (en) * 1945-03-22 1947-05-06 Anton O Myszkowski Fruit jar washer
US2583600A (en) * 1948-09-23 1952-01-29 Hazle V Schreiber Feed grinding and die expressing machine
US2730469A (en) * 1949-12-13 1956-01-10 Walter M Harwedel Method of cleaning milking machine teat cups
US2608706A (en) * 1950-04-19 1952-09-02 George P Wakefield Canned food server
US2613062A (en) * 1950-12-20 1952-10-07 Carl M Harbert Earth drilling bit
US2729067A (en) * 1951-09-18 1956-01-03 Intrusion Prepakt Inc Method for forming piles
US2802228A (en) * 1953-04-14 1957-08-13 George J Federighi Drinking glass burnishing and washing machine
US3005401A (en) * 1955-02-09 1961-10-24 French Oil Mill Machinery Expressing press
US2810553A (en) * 1955-09-30 1957-10-22 Bigelow William Sand auger
US3104989A (en) * 1956-06-28 1963-09-24 Kearney & Trecker Corp Machine tool for removing a mass of material from a container and method
US2981403A (en) * 1957-04-15 1961-04-25 Joy Mfg Co Conveying apparatus
US2912225A (en) * 1957-10-01 1959-11-10 Charles W Kandle Method and apparatus for drilling large diameter holes
US3066333A (en) * 1959-03-24 1962-12-04 Ges Fuer Industrielle Technik Mbh Washing machine
US3020823A (en) * 1959-04-06 1962-02-13 Musso Ferdinando Pasquale Piston and cylinder action coffee maker
US3120170A (en) * 1961-06-08 1964-02-04 Garte Mathew Coffee making device
US3339476A (en) * 1965-10-18 1967-09-05 Troya Michel R De Coffee maker
US3664444A (en) * 1970-05-11 1972-05-23 Mobile Drilling Co Inc Air drilling method using controlled split stream
US3628602A (en) * 1970-07-13 1971-12-21 Manning S Inc Processing apparatus
US3690388A (en) * 1970-07-20 1972-09-12 Raymond Int Inc Installation of sand drains
US3657993A (en) * 1970-10-15 1972-04-25 Edward S Close Coffee brewer
US3935318A (en) * 1974-10-12 1976-01-27 Sergio Mihailide Disposable apparatus for brewing a beverage such as coffee
US4159883A (en) * 1976-07-22 1979-07-03 I.W.S. Nominee Company Limited Cleaning pad
US4117776A (en) * 1977-02-25 1978-10-03 The French Oil Mill Machinery Company Screw press apparatus
US4317249A (en) * 1980-09-08 1982-03-02 Benson Industries Inc. Device for cleaning containers
US4643981A (en) * 1983-11-09 1987-02-17 Akzo N.V. Pressure filtration system
US4708489A (en) * 1984-06-04 1987-11-24 Wizards Ice Cream & Confectionery Shoppe, Ltd. Blending machine
US4731896A (en) * 1985-10-21 1988-03-22 Tour Odette De Adjustable toothbrush
US4909932A (en) * 1986-06-05 1990-03-20 Bertrand Monnet Device for filtration of liquids, including detachable cover and detachable closure
US4967855A (en) * 1988-10-12 1990-11-06 Hawera Probst Gmbh & Co. Drilling tool
US5092453A (en) * 1988-11-10 1992-03-03 Spirac Engineering Ab Helical conveyor
US4911187A (en) * 1989-01-19 1990-03-27 Castillo David D Dental pick brush apparatus
USD318989S (en) * 1989-03-01 1991-08-13 Risner Daniel A Can scraper
US5181459A (en) * 1991-03-07 1993-01-26 California Processing Machinery Fruit indent removal device
US5441752A (en) * 1993-12-10 1995-08-15 Sandin; Sonja A. Infusion bag device
US5478586A (en) * 1994-08-16 1995-12-26 Connor; Linda Coffee, tea or beverage maker
US5635233A (en) * 1995-01-09 1997-06-03 Levinson; Melvin L. Methods for preparing a coffee, tea and milk beverage
US5979299A (en) * 1995-05-09 1999-11-09 Hornsby; David J. Beverage infusion making apparatus
US5618570A (en) * 1995-09-25 1997-04-08 Banks; Stephen H. System for the preparation of coffee or the like
US5608938A (en) * 1996-02-08 1997-03-11 Baschenis; Bruno Bottle brush assembly
US5709003A (en) * 1996-05-08 1998-01-20 Batch; Charles W. Crank arm cleaning brush with scrub pad
US5806408A (en) * 1996-11-01 1998-09-15 Debacker; Johanna N. Beverage brewing device
US5887510A (en) * 1997-08-06 1999-03-30 Porter; Mark D. Device for making coffee
US5942143A (en) * 1997-11-12 1999-08-24 National Presto Industries, Inc. Microwave beverage maker apparatus and method
US6296068B1 (en) * 1998-06-19 2001-10-02 W. Richard Frederick Planting system
US6119787A (en) * 1998-12-24 2000-09-19 Garcia; Jaime Auger planting tool
US6295920B1 (en) * 1999-03-15 2001-10-02 Elliot Barden Insulating press-type coffee maker and accessories
US6079316A (en) * 1999-03-15 2000-06-27 Barden; Elliot Insulating press-type coffee maker and accessories
US6321861B1 (en) * 1999-06-15 2001-11-27 Henry S. Leichter Auger
US6422133B1 (en) * 2000-06-05 2002-07-23 Frank A. Brady French press coffee maker with assembly to reduce contact of grounds with liquid coffee after termination of steeping period
US6368418B1 (en) * 2000-07-20 2002-04-09 William H. Rowe Pipeline cleaning tool and a method of cleaning pipelines
US20010052353A1 (en) * 2000-09-08 2001-12-20 Brumlik John Francois Cleaning device and mehtod of use
US6964223B2 (en) * 2000-10-11 2005-11-15 O'loughlin Nick Plunger for brewing a drink
US20040011205A1 (en) * 2000-10-11 2004-01-22 O'loughlin Nick Plunger for brewing a drink
US6892416B2 (en) * 2000-12-12 2005-05-17 Sang Woong Lee Baby bottle brush
US6797160B2 (en) * 2001-10-15 2004-09-28 I-Chung Huang Percolating steeper
US7032505B2 (en) * 2002-03-27 2006-04-25 Meyer Intellectual Property Ltd. French press coffee maker with secondary filter
US6626250B1 (en) * 2002-04-12 2003-09-30 Todd J. Ham Ice auger shroud system
US20040000431A1 (en) * 2002-06-27 2004-01-01 John Van Denham Hole boring apparatus
US20040089479A1 (en) * 2002-11-12 2004-05-13 Snyder Alan Lynn Auger cleaning device
US7279660B2 (en) * 2003-02-06 2007-10-09 Edgecraft Corporation Apparatus for brewing beverages
US6863520B1 (en) * 2003-07-01 2005-03-08 Craig A. Stiles Auger scoop
US20050046211A1 (en) * 2003-08-29 2005-03-03 Ignite Design, Llc Coffee press
US7040218B1 (en) * 2003-10-15 2006-05-09 Biolchini Jr Robert F Stirring coffee press
US20050210611A1 (en) * 2003-10-21 2005-09-29 Pelo Jeffrey M Espresso machine cleaning tool
US7594292B1 (en) * 2003-10-21 2009-09-29 Jeffrey Matthew Pelo Espresso machine cleaning tool
US20060118481A1 (en) * 2003-11-20 2006-06-08 Trachtenbroit Lawrence M Mehods and apparatuses for filtering
US20080245237A1 (en) * 2003-12-30 2008-10-09 Haverstock Thomas B Coffee infusion press for stackable cups
US7389720B2 (en) * 2003-12-30 2008-06-24 Haverstock Thomas B Coffee infusion press for stackable cups
US20050199129A1 (en) * 2004-03-12 2005-09-15 Glucksman Dov Z. Infusion beverage brewing system
US20050247544A1 (en) * 2004-03-12 2005-11-10 Emerson Electric Co. Auger brush
US7213507B2 (en) * 2004-03-12 2007-05-08 Meyer Intellectual Properties Limited Infusion beverage brewing system
US7194951B1 (en) * 2005-01-13 2007-03-27 Planetary Design, Llc Beverage press mug with storage container
US20070028779A1 (en) * 2005-08-08 2007-02-08 Anthony Pigliacampo Foldable beverage press plunger system
US20070151461A1 (en) * 2005-12-12 2007-07-05 Edmark John T Beverage infusion making apparatus
US20070137494A1 (en) * 2005-12-15 2007-06-21 Robert Wilhite Beverage making devices and methods with an inner housing in place of a central rod plunger
US20070137495A1 (en) * 2005-12-16 2007-06-21 Talbert Lewis M Coffee maker with grinder
US7370383B1 (en) * 2006-05-26 2008-05-13 Chinowsky Wink Debra L Brush device
US20080173138A1 (en) * 2006-08-15 2008-07-24 Dayton Douglas C Systems and methods of a vacuum cup bulb changer power tool system with interchangeable functional attachments
US20080189870A1 (en) * 2006-08-15 2008-08-14 Dayton Douglas C Systems and methods of a power tool system with interchangeable functional attachments
US20080250570A1 (en) * 2006-08-15 2008-10-16 Dayton Douglas C Systems and methods of a power tool system with interchangeable functional attachments powered by a direct rotational drive
US20090007802A1 (en) * 2007-07-02 2009-01-08 Isaac Taitler Method and device for multi-purpose applications using interchangeable heads

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398255B2 (en) 2006-02-13 2019-09-03 Espro Inc. Steaming pitcher methods and devices
US9392900B2 (en) 2008-05-12 2016-07-19 Espro, Inc. Apparatus and method for extracting an infusion
US9408490B2 (en) 2008-05-12 2016-08-09 Espro, Inc. Apparatus and method for extracting an infusion
US10172495B2 (en) 2008-05-12 2019-01-08 Espro, Inc. Devices and methods for extracting an infusion
US10368685B2 (en) 2008-05-12 2019-08-06 Espro Inc. Apparatus and method for extracting an infusion
USD761624S1 (en) 2014-08-05 2016-07-19 Espro, Inc. Infusing container
US10264911B2 (en) 2014-08-07 2019-04-23 Espro, Inc. Press for extracting an infusion
US20160135635A1 (en) * 2014-11-15 2016-05-19 Michael Boniello Apparatus for infusing a product with an herb
USD795630S1 (en) 2015-08-19 2017-08-29 Bruce Constantine Beverage press
USD796244S1 (en) 2016-02-11 2017-09-05 Espro, Inc. Beverage press
US12137833B2 (en) 2021-01-07 2024-11-12 Dkk Enterprises Inc. Devices and methods for filtering a liquid

Also Published As

Publication number Publication date
US8161869B2 (en) 2012-04-24
US20090314166A1 (en) 2009-12-24
US20120042904A1 (en) 2012-02-23
US8074561B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
US8161869B2 (en) Device and method for cleaning a french or coffee press
US8695485B2 (en) Apparatus and method for preparing pressed coffee
US11045036B2 (en) Beverage filtering system
US20100319549A1 (en) Brewing accessory
WO2005055787A1 (en) Methods and apparatuses for filtering
US9320383B2 (en) French press blender
US20150059592A1 (en) Coffee Press Apparatus
US20200281393A1 (en) Device for making coffee
US20140291236A1 (en) Multifunction Strainer and Bowl
US11234554B2 (en) Tool for removing compacted particle residue from a cylindrical container
US9700175B2 (en) Dispenser for particulate matter and method of use
AU2016354665B2 (en) Improved knock box
US20110014326A1 (en) Filterbag and method of brewing coffee, tea, and the like in a french press
CA2613472C (en) Container for receiving and retaining wet used coffee grounds
CN221450447U (en) Coffee powder cup
JP2006102428A (en) Coffee mill apparatus with dripper holding coffee filter
CN212117978U (en) Improved oil pot for kitchen
CN102266187A (en) Tea leaf cleaning tank
US20150129003A1 (en) Coffee Brewer Nozzle Cleaning Device
KR200147417Y1 (en) The lid of a kettle
US11627840B2 (en) Skimmer ladle
CN209814786U (en) Quantitative tea caddy
CN210540481U (en) Stainless steel tea making spoon
CN213308880U (en) Portable ceramic tea tray
US20200121116A1 (en) Filtering receptacle and method of using it

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION