US20110312567A1 - Loc device for electrochemiluminescent detection of target nucleic acid sequences using hybridization chamber array and negative control chamber without probes - Google Patents
Loc device for electrochemiluminescent detection of target nucleic acid sequences using hybridization chamber array and negative control chamber without probes Download PDFInfo
- Publication number
- US20110312567A1 US20110312567A1 US13/150,024 US201113150024A US2011312567A1 US 20110312567 A1 US20110312567 A1 US 20110312567A1 US 201113150024 A US201113150024 A US 201113150024A US 2011312567 A1 US2011312567 A1 US 2011312567A1
- Authority
- US
- United States
- Prior art keywords
- probes
- ecl
- loc device
- nucleic acid
- loc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/003—Valves for single use only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0036—Operating means specially adapted for microvalves operated by temperature variations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/02—Identification, exchange or storage of information
- B01L2300/023—Sending and receiving of information, e.g. using bluetooth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/02—Identification, exchange or storage of information
- B01L2300/024—Storing results with means integrated into the container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0636—Integrated biosensor, microarrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/10—Means to control humidity and/or other gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
- B01L2300/1827—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
- Y10T137/0329—Mixing of plural fluids of diverse characteristics or conditions
- Y10T137/0352—Controlled by pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0971—Speed responsive valve control
- Y10T137/1044—With other condition responsive valve control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2076—Utilizing diverse fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/218—Means to regulate or vary operation of device
- Y10T137/2202—By movable element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/10—Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
- Y10T436/107497—Preparation composition [e.g., lysing or precipitation, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/145555—Hetero-N
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/173845—Amine and quaternary ammonium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
- Y10T436/203332—Hydroxyl containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
Definitions
- the present invention relates to diagnostic devices that use microsystems technologies (MST).
- MST microsystems technologies
- the invention relates to microfluidic and biochemical processing and analysis for molecular diagnostics.
- molecular diagnostic tests have the potential to reduce the occurrence of ineffective health care services, enhance patient outcomes, improve disease management and individualize patient care.
- Many of the techniques in molecular diagnostics are based on the detection and identification of specific nucleic acids, both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), extracted and amplified from a biological specimen (such as blood or saliva).
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- the complementary nature of the nucleic acid bases allows short sequences of synthesized DNA (oligonucleotides) to bond (hybridize) to specific nucleic acid sequences for use in nucleic acid tests. If hybridization occurs, then the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease a person will contract in the future, determine the identity and virulence of an infectious pathogen, or determine the response a person will have to a drug.
- a nucleic acid based test has four distinct steps:
- sample types are used for genetic analysis, such as blood, urine, sputum and tissue samples.
- the diagnostic test determines the type of sample required as not all samples are representative of the disease process. These samples have a variety of constituents, but usually only one of these is of interest. For example, in blood, high concentrations of erythrocytes can inhibit the detection of a pathogenic organism. Therefore a purification and/or concentration step at the beginning of the nucleic acid test is often required.
- Blood is one of the more commonly sought sample types. It has three major constituents: leukocytes (white blood cells), erythrocytes (red blood cells) and thrombocytes (platelets).
- the thrombocytes facilitate clotting and remain active in vitro.
- the specimen is mixed with an agent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration.
- EDTA ethylenediaminetetraacetic acid
- Erythrocytes are usually removed from the sample in order to concentrate the target cells. In humans, erythrocytes account for approximately 99% of the cellular material but do not carry DNA as they have no nucleus.
- erythrocytes contain components such as haemoglobin that can interfere with the downstream nucleic acid amplification process (described below). Removal of erythrocytes can be achieved by differentially lysing the erythrocytes in a lysis solution, leaving remaining cellular material intact which can then be separated from the sample using centrifugation. This provides a concentration of the target cells from which the nucleic acids are extracted.
- extracting nucleic acids from target cells usually involves a cell lysis step followed by nucleic acid purification.
- the cell lysis step disrupts the cell and nuclear membranes, releasing the genetic material. This is often accomplished using a lysis detergent, such as sodium dodecyl sulfate, which also denatures the large amount of proteins present in the cells.
- the nucleic acids are then purified with an alcohol precipitation step, usually ice-cold ethanol or isopropanol, or via a solid phase purification step, typically on a silica matrix in a column, resin or on paramagnetic beads in the presence of high concentrations of a chaotropic salt, prior to washing and then elution in a low ionic strength buffer.
- An optional step prior to nucleic acid precipitation is the addition of a protease which digests the proteins in order to further purify the sample.
- lysis methods include mechanical lysis via ultrasonic vibration and thermal lysis where the sample is heated to 94° C. to disrupt cell membranes.
- the target DNA or RNA may be present in the extracted material in very small amounts, particularly if the target is of pathogenic origin. Nucleic acid amplification provides the ability to selectively amplify (that is, replicate) specific targets present in low concentrations to detectable levels.
- PCR polymerase chain reaction
- PCR is a powerful technique that amplifies a target DNA sequence against a background of complex DNA. If RNA is to be amplified (by PCR), it must be first transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Afterwards, the resulting cDNA is amplified by PCR.
- PCR is an exponential process that proceeds as long as the conditions for sustaining the reaction are acceptable.
- the components of the reaction are:
- pair of primers short single strands of DNA with around 10-30 nucleotides complementary to the regions flanking the target sequence
- DNA polymerase a thermostable enzyme that synthesizes DNA
- deoxyribonucleoside triphosphates (dNTPs)—provide the nucleotides that are incorporated into the newly synthesized DNA strand
- PCR typically involves placing these reactants in a small tube ( ⁇ 10-50 microlitres) containing the extracted nucleic acids.
- the tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time.
- the standard protocol for each thermal cycle involves a denaturation phase, an annealing phase, and an extension phase.
- the extension phase is sometimes referred to as the primer extension phase.
- two-step thermal protocols can be employed, in which the annealing and extension phases are combined.
- the denaturation phase typically involves raising the temperature of the reaction to 90-95° C. to denature the DNA strands; in the annealing phase, the temperature is lowered to ⁇ 50-60° C.
- the temperature is raised to the optimal DNA polymerase activity temperature of 60-72° C. for primer extension. This process is repeated cyclically around 20-40 times, the end result being the creation of millions of copies of the target sequence between the primers.
- Multiplex PCR uses multiple primer sets within a single PCR mixture to produce amplicons of varying sizes that are specific to different DNA sequences. By targeting multiple genes at once, additional information may be gained from a single test-run that otherwise would require several experiments. Optimization of multiplex PCR is more difficult though and requires selecting primers with similar annealing temperatures, and amplicons with similar lengths and base composition to ensure the amplification efficiency of each amplicon is equivalent.
- Linker-primed PCR also known as ligation adaptor PCR
- ligation adaptor PCR is a method used to enable nucleic acid amplification of essentially all DNA sequences in a complex DNA mixture without the need for target-specific primers.
- the method firstly involves digesting the target DNA population with a suitable restriction endonuclease (enzyme). Double-stranded oligonucleotide linkers (also called adaptors) with a suitable overhanging end are then ligated to the ends of target DNA fragments using a ligase enzyme. Nucleic acid amplification is subsequently performed using oligonucleotide primers which are specific for the linker sequences. In this way, all fragments of the DNA source which are flanked by linker oligonucleotides can be amplified.
- Direct PCR describes a system whereby PCR is performed directly on a sample without any, or with minimal, nucleic acid extraction. It has long been accepted that PCR reactions are inhibited by the presence of many components of unpurified biological samples, such as the haem component in blood. Traditionally, PCR has required extensive purification of the target nucleic acid prior to preparation of the reaction mixture. With appropriate changes to the chemistry and sample concentration, however, it is possible to perform PCR with minimal DNA purification, or direct PCR. Adjustments to the PCR chemistry for direct PCR include increased buffer strength, the use of polymerases which have high activity and processivity, and additives which chelate with potential polymerase inhibitors.
- Tandem PCR utilises two distinct rounds of nucleic acid amplification to increase the probability that the correct amplicon is amplified.
- One form of tandem PCR is nested PCR in which two pairs of PCR primers are used to amplify a single locus in separate rounds of nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence at regions external to the target nucleic acid sequence. The second pair of primers (nested primers) used in the second round of amplification bind within the first PCR product and produce a second PCR product containing the target nucleic acid, that will be shorter than the first one.
- Real-time PCR or quantitative PCR, is used to measure the quantity of a PCR product in real time.
- a fluorophore-containing probe or fluorescent dyes along with a set of standards in the reaction, it is possible to quantitate the starting amount of nucleic acid in the sample. This is particularly useful in molecular diagnostics where treatment options may differ depending on the pathogen load in the sample.
- Reverse-transcriptase PCR is used to amplify DNA from RNA.
- Reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), which is then amplified by PCR.
- cDNA complementary DNA
- RT-PCR is widely used in expression profiling, to determine the expression of a gene or to identify the sequence of an RNA transcript, including transcription start and termination sites. It is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus.
- Isothermal amplification is another form of nucleic acid amplification which does not rely on the thermal denaturation of the target DNA during the amplification reaction and hence does not require sophisticated machinery. Isothermal nucleic acid amplification methods can therefore be carried out in primitive sites or operated easily outside of a laboratory environment. A number of isothermal nucleic acid amplification methods have been described, including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification and Loop-Mediated Isothermal Amplification.
- Isothermal nucleic acid amplification methods do not rely on the continuing heat denaturation of the template DNA to produce single stranded molecules to serve as templates for further amplification, but instead rely on alternative methods such as enzymatic nicking of DNA molecules by specific restriction endonucleases, or the use of an enzyme to separate the DNA strands, at a constant temperature.
- Strand Displacement Amplification relies on the ability of certain restriction enzymes to nick the unmodified strand of hemi-modified DNA and the ability of a 5′-3′ exonuclease-deficient polymerase to extend and displace the downstream strand. Exponential nucleic acid amplification is then achieved by coupling sense and antisense reactions in which strand displacement from the sense reaction serves as a template for the antisense reaction.
- nickase enzymes which do not cut DNA in the traditional manner but produce a nick on one of the DNA strands, such as N. A1w1, N. BstNB1 and Mly1, are useful in this reaction.
- SDA has been improved by the use of a combination of a heat-stable restriction enzyme (Ava1) and heat-stable Exo-polymerase (Bst polymerase). This combination has been shown to increase amplification efficiency of the reaction from 10 8 fold amplification to 10 10 fold amplification so that it is possible using this technique to amplify unique single copy molecules.
- Ava1 heat-stable restriction enzyme
- Bst polymerase heat-stable Exo-polymerase
- TMA Transcription Mediated Amplification
- NASBA Nucleic Acid Sequence Based Amplification
- RNA polymerase uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase and optionally RNase H (if the reverse transcriptase does not have RNase activity).
- One primer contains a promoter sequence for RNA polymerase.
- this primer hybridizes to the target ribosomal RNA (rRNA) at a defined site.
- rRNA target ribosomal RNA
- Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3′ end of the promoter primer.
- RNA in the resulting RNA:DNA duplex is degraded by the RNase activity of the reverse transcriptase if present or the additional RNase H.
- a second primer binds to the DNA copy.
- a new strand of DNA is synthesized from the end of this primer by reverse transcriptase, creating a double-stranded DNA molecule.
- RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each of the newly synthesized RNA amplicons re-enters the process and serves as a template for a new round of replication.
- RPA Recombinase Polymerase Amplification
- Recombinase disassembly leaves the 3′ end of the oligonucleotide accessible to a strand displacing DNA polymerase, such as the large fragment of Bacillus subtilis Pol I (Bsu), and primer extension ensues. Exponential nucleic acid amplification is accomplished by the cyclic repetition of this process.
- HSA Helicase-dependent amplification
- a DNA helicase enzyme to generate single-stranded templates for primer hybridization and subsequent primer extension by a DNA polymerase.
- the helicase enzyme traverses along the target DNA, disrupting the hydrogen bonds linking the two strands which are then bound by single-stranded binding proteins. Exposure of the single-stranded target region by the helicase allows primers to anneal.
- the DNA polymerase then extends the 3′ ends of each primer using free deoxyribonucleoside triphosphates (dNTPs) to produce two DNA replicates. The two replicated dsDNA strands independently enter the next cycle of HDA, resulting in exponential nucleic acid amplification of the target sequence.
- dNTPs free deoxyribonucleoside triphosphates
- RCA Rolling Circle Amplification
- a DNA polymerase extends a primer continuously around a circular DNA template, generating a long DNA product that consists of many repeated copies of the circle.
- the polymerase generates many thousands of copies of the circular template, with the chain of copies tethered to the original target DNA.
- Ramification amplification is a variation of RCA and utilizes a closed circular probe (C-probe) or padlock probe and a DNA polymerase with a high processivity to exponentially amplify the C-probe under isothermal conditions.
- Loop-mediated isothermal amplification offers high selectivity and employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA.
- An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP.
- the following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for
- the amplified product After completion of the nucleic acid amplification, the amplified product must be analysed to determine whether the anticipated amplicon (the amplified quantity of target nucleic acids) was generated.
- the methods of analyzing the product range from simply determining the size of the amplicon through gel electrophoresis, to identifying the nucleotide composition of the amplicon using DNA hybridization.
- Gel electrophoresis is one of the simplest ways to check whether the nucleic acid amplification process generated the anticipated amplicon.
- Gel electrophoresis uses an electric field applied to a gel matrix to separate DNA fragments. The negatively charged DNA fragments will move through the matrix at different rates, determined largely by their size. After the electrophoresis is complete, the fragments in the gel can be stained to make them visible. Ethidium bromide is a commonly used stain which fluoresces under UV light.
- the size of the fragments is determined by comparison with a DNA size marker (a DNA ladder), which contains DNA fragments of known sizes, run on the gel alongside the amplicon. Because the oligonucleotide primers bind to specific sites flanking the target DNA, the size of the amplified product can be anticipated and detected as a band of known size on the gel. To be certain of the identity of the amplicon, or if several amplicons have been generated, DNA probe hybridization to the amplicon is commonly employed.
- a DNA size marker a DNA ladder
- DNA hybridization refers to the formation of double-stranded DNA by complementary base pairing.
- DNA hybridization for positive identification of a specific amplification product requires the use of a DNA probe around 20 nucleotides in length. If the probe has a sequence that is complementary to the amplicon (target) DNA sequence, hybridization will occur under favourable conditions of temperature, pH and ionic concentration. If hybridization occurs, then the gene or DNA sequence of interest was present in the original sample.
- Optical detection is the most common method to detect hybridization. Either the amplicons or the probes are labelled to emit light through fluorescence or electrochemiluminescence. These processes differ in the means of producing excited states of the light-producing moieties, but both enable covalent labelling of nucleotide strands.
- electrochemiluminescence ECL
- light is produced by luminophore molecules or complexes upon stimulation with an electric current.
- fluorescence it is illumination with excitation light which leads to emission.
- Fluorescence is detected using an illumination source which provides excitation light at a wavelength absorbed by the fluorescent molecule, and a detection unit.
- the detection unit comprises a photosensor (such as a photomultiplier tube or charge-coupled device (CCD) array) to detect the emitted signal, and a mechanism (such as a wavelength-selective filter) to prevent the excitation light from being included in the photosensor output.
- the fluorescent molecules emit Stokes-shifted light in response to the excitation light, and this emitted light is collected by the detection unit. Stokes shift is the frequency difference or wavelength difference between emitted light and absorbed excitation light.
- ECL emission is detected using a photosensor which is sensitive to the emission wavelength of the ECL species being employed.
- a photosensor which is sensitive to the emission wavelength of the ECL species being employed.
- transition metal-ligand complexes emit light at visible wavelengths, so conventional photodiodes and CCDs are employed as photosensors.
- An advantage of ECL is that, if ambient light is excluded, the ECL emission can be the only light present in the detection system, which improves sensitivity.
- Microarrays allow for hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are powerful tools for molecular diagnostics with the potential to screen for thousands of genetic diseases or detect the presence of numerous infectious pathogens in a single test.
- a microarray consists of many different DNA probes immobilized as spots on a substrate. The target DNA (amplicon) is first labelled with a fluorescent or luminescent molecule (either during or after nucleic acid amplification) and then applied to the array of probes. The microarray is incubated in a temperature controlled, humid environment for a number of hours or days while hybridization between the probe and amplicon takes place. Following incubation, the microarray must be washed in a series of buffers to remove unbound strands.
- the microarray surface is dried using a stream of air (often nitrogen).
- the stringency of the hybridization and washes is critical. Insufficient stringency can result in a high degree of nonspecific binding. Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
- Hybridization is recognized by detecting light emission from the labelled amplicons which have formed a hybrid with complementary probes.
- Fluorescence from microarrays is detected using a microarray scanner which is generally a computer controlled inverted scanning fluorescence confocal microscope which typically uses a laser for excitation of the fluorescent dye and a photosensor (such as a photomultiplier tube or CCD) to detect the emitted signal.
- the fluorescent molecules emit Stokes-shifted light (described above) which is collected by the detection unit.
- the emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transported to the detector.
- a confocal arrangement is commonly used to eliminate out-of-focus information by means of a confocal pinhole situated at an image plane. This allows only the in-focus portion of the light to be detected. Light from above and below the plane of focus of the object is prevented from entering the detector, thereby increasing the signal to noise ratio.
- the detected fluorescent photons are converted into electrical energy by the detector which is subsequently converted to a digital signal. This digital signal translates to a number representing the intensity of fluorescence from a given pixel. Each feature of the array is made up of one or more such pixels.
- the final result of a scan is an image of the array surface. The exact sequence and position of every probe on the microarray is known, and so the hybridized target sequences can be identified and analysed simultaneously.
- a point-of-care technology serving the physician's office, the hospital bedside or even consumer-based, at home, would offer many advantages including:
- LOC Lab-on-a-chip
- the present invention provides a lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device comprising:
- electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer;
- hybridization chambers containing the probes for detection of the targets, and a pair of the electrodes;
- At least one negative control chamber without the ECL probes at least one negative control chamber without the ECL probes.
- the LOC device also has a photosensor positioned adjacent the probes for sensing which of the probes generate the ECL photons in response to the electrical pulse.
- the LOC device also has a supporting substrate wherein the photosensor is a charge coupled device (CCD) array positioned between the probes and the supporting substrate.
- CCD charge coupled device
- the LOC device also has a supporting substrate wherein the photosensor is an array of photodiodes positioned on the supporting substrate in registration with the hybridization chambers.
- the array of photodiodes is less than 1600 microns from the probes.
- the LOC device also has CMOS circuitry on the supporting substrate, the array of photodiodes being a component of the CMOS circuitry wherein during use, the CMOS circuitry initiates an error signal in response to ECL emissions being detected from the negative control chamber.
- the LOC device also has at least one positive control chamber containing positive control probes that have the ECL luminophore but not the functional moiety for quenching photon emission.
- the LOC device also has:
- the CMOS circuitry is between the hybridization chambers and the supporting substrate, and the flow-path draws the fluid to each of the hybridization chambers by capillary action.
- the LOC device also has a lysis section wherein the fluid is a biological sample containing cells and the lysis section disrupts the cellular membranes to release any genetic material therein.
- the hybridization chambers each have a wall section that is optically transparent to the light emitted by the probes.
- the CMOS circuitry incorporates the photosensor wherein the wall section is positioned between the probes and the photosensor.
- the wall section is a layer incorporating silicon dioxide.
- the probes have a stem-and-loop structure with a loop portion containing the sequence complementary to the target nucleic acid sequence, the loop portion being positioned between the functional moiety for quenching photon emission from the ECL luminophore, and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional moiety.
- the CMOS circuitry is configured to provide an electrical pulse to the electrodes.
- the electrical pulse has a duration less than 0.69 seconds.
- the electrical pulse has a current of 0.1 nanoamperes to 69.0 nanoamperes.
- the electrodes have an anode and a cathode each having fingers configured such that the fingers of the anode are interdigitated with the fingers of the cathode.
- the anode and the cathode are separated by a dielectric gap between 0.4 microns and 2 microns wide.
- the LOC device also has a PCR section for amplifying the target nucleic acid sequences prior to detection by the probes.
- the LOC device also has a cap having reagent reservoirs for addition to the sample prior to detection of the target sequences, wherein the electrodes and the probes are between the cap and the CMOS circuitry.
- the hybridization array provides for analysis of the targets via hybridization, with the control probes improving the reliability of the analytical outcomes.
- the electrochemiluminescence-based assay target detection obviates any need, of the assay system, for an excitation light source, excitation optics, and optical filter elements, in turn, providing for a more compact and more inexpensive assay system.
- the absence of the requirement for the rejection of any excitation light also simplifies the detector circuitry, making the assay system even more inexpensive.
- FIG. 1 shows a test module and test module reader configured for fluorescence detection
- FIG. 2 is a schematic overview of the electronic components in the test module configured for fluorescence detection
- FIG. 3 is a schematic overview of the electronic components in the test module reader
- FIG. 4 is a schematic representation of the architecture of the LOC device
- FIG. 5 is a perspective of the LOC device
- FIG. 6 is a plan view of the LOC device with features and structures from all layers superimposed on each other;
- FIG. 7 is a plan view of the LOC device with the structures of the cap shown in isolation;
- FIG. 8 is a top perspective of the cap with internal channels and reservoirs shown in dotted line;
- FIG. 9 is an exploded top perspective of the cap with internal channels and reservoirs shown in dotted line;
- FIG. 10 is a bottom perspective of the cap showing the configuration of the top channels
- FIG. 11 is a plan view of the LOC device showing the structures of the CMOS+MST device in isolation;
- FIG. 12 is a schematic section view of the LOC device at the sample inlet
- FIG. 13 is an enlarged view of Inset AA shown in FIG. 6 ;
- FIG. 14 is an enlarged view of Inset AB shown in FIG. 6 ;
- FIG. 15 is an enlarged view of Inset AE shown in FIG. 13 ;
- FIG. 16 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 17 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 18 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 19 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 20 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 21 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE;
- FIG. 22 is schematic section view of the lysis reagent reservoir shown in FIG. 21 ;
- FIG. 23 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 24 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 25 is a partial perspective illustrating the laminar structure of the LOC device within Inset AI
- FIG. 26 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 27 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 28 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 29 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB;
- FIG. 30 is a schematic section view of the amplification mix reservoir and the polymerase reservoir
- FIG. 31 show the features of a boiling-initiated valve in isolation
- FIG. 32 is a schematic section view of the boiling-initiated valve taken through line 33 - 33 shown in FIG. 31 ;
- FIG. 33 is an enlarged view of Inset AF shown in FIG. 15 ;
- FIG. 34 is a schematic section view of the upstream end of the dialysis section taken through line 35 - 35 shown in FIG. 33 ;
- FIG. 35 is an enlarged view of Inset AC shown in FIG. 6 ;
- FIG. 36 is a further enlarged view within Inset AC showing the amplification section
- FIG. 37 is a further enlarged view within Inset AC showing the amplification section
- FIG. 38 is a further enlarged view within Inset AC showing the amplification section
- FIG. 39 is a further enlarged view within Inset AK shown in FIG. 38 ;
- FIG. 40 is a further enlarged view within Inset AC showing the amplification chamber
- FIG. 41 is a further enlarged view within Inset AC showing the amplification section
- FIG. 42 is a further enlarged view within Inset AC showing the amplification chamber
- FIG. 43 is a further enlarged view within Inset AL shown in FIG. 42 ;
- FIG. 44 is a further enlarged view within Inset AC showing the amplification section
- FIG. 45 is a further enlarged view within Inset AM shown in FIG. 44 ;
- FIG. 46 is a further enlarged view within Inset AC showing the amplification chamber
- FIG. 47 is a further enlarged view within Inset AN shown in FIG. 46 ;
- FIG. 48 is a further enlarged view within Inset AC showing the amplification chamber
- FIG. 49 is a further enlarged view within Inset AC showing the amplification chamber
- FIG. 50 is a further enlarged view within Inset AC showing the amplification section
- FIG. 51 is a schematic section view of the amplification section
- FIG. 52 is an enlarged plan view of the hybridization section
- FIG. 53 is a further enlarged plan view of two hybridization chambers in isolation
- FIG. 54 is schematic section view of a single hybridization chamber
- FIG. 55 is an enlarged view of the humidifier illustrated in Inset AG shown in FIG. 6 ;
- FIG. 56 is an enlarged view of Inset AD shown in FIG. 52 ;
- FIG. 57 is an exploded perspective view of the LOC device within Inset AD;
- FIG. 58 is an enlarged plan view of the humidity sensor shown in Inset AH of FIG. 6 ;
- FIG. 59 is a schematic section view of a leukocyte target dialysis section
- FIG. 60 is a schematic showing part of the photodiode array of the photo sensor.
- FIG. 61 is an enlarged view of the evaporator shown in Inset AP of FIG. 55 ;
- FIG. 62 is a diagram of linker-primed PCR
- FIG. 63 is a schematic representation of a test module with a lancet
- FIG. 64 is a diagrammatic representation of the architecture of LOC variant VII.
- FIG. 65 is a plan view of LOC variant VIII with features and structures from all layers superimposed on each other;
- FIG. 66 is an enlarged view of Inset CA shown in FIG. 65 ;
- FIG. 67 is a partial perspective illustrating the laminar structure of LOC variant VIII within Inset CA shown in FIG. 65 ;
- FIG. 68 is an enlarged view of Inset CE shown in FIG. 66 ;
- FIG. 69 is a diagrammatic representation of the architecture of LOC variant VIII.
- FIG. 70 is a schematic illustration of the architecture of LOC variant XIV.
- FIG. 71 is a schematic illustration of the architecture of LOC variant XLI
- FIG. 72 is a schematic illustration of the architecture of LOC variant XLII
- FIG. 73 is a schematic illustration of the architecture of LOC variant XLIII.
- FIG. 74 is a schematic illustration of the architecture of LOC variant XLIV.
- FIG. 75 is a schematic illustration of the architecture of LOC variant XLVII
- FIG. 76 is a diagrammatic representation of the architecture of LOC variant X
- FIG. 77 is a perspective view of LOC variant X
- FIG. 78 is a plan view of LOC variant X showing the structures of the CMOS+MST device in isolation;
- FIG. 79 is a perspective view of the underside of the cap with the reagent reservoirs shown in dotted line;
- FIG. 80 is a plan view showing only the features of the cap in isolation
- FIG. 81 is a plan view showing all the features superimposed on each other, and showing the location of Insets DA to DK;
- FIG. 82 is an enlarged view of Inset DA shown in FIG. 81 ;
- FIG. 83 is an enlarged view of Inset DB shown in FIG. 81 ;
- FIG. 84 is an enlarged view of Inset DC shown in FIG. 81 ;
- FIG. 85 is an enlarged view of Inset DD shown in FIG. 81 ;
- FIG. 86 is an enlarged view of Inset DE shown in FIG. 81 ;
- FIG. 87 is an enlarged view of Inset DF shown in FIG. 81 ;
- FIG. 88 is an enlarged view of Inset DG shown in FIG. 81 ;
- FIG. 89 is an enlarged view of Inset DH shown in FIG. 81 ;
- FIG. 90 is an enlarged view of Inset DJ shown in FIG. 81 ;
- FIG. 91 is an enlarged view of Inset DK shown in FIG. 81 ;
- FIG. 92 is an enlarged view of Inset DL shown in FIG. 81 ;
- FIG. 93 is a circuit diagram of the differential imager
- FIG. 94 schematically illustrates a CMOS-controlled flow rate sensor
- FIG. 95 illustrates the reactions occurring during an electrochemiluminescence (ECL) process
- FIG. 96 schematically illustrates three different anode configurations
- FIG. 97 is a schematic partial cross-section of the anode and cathode in the hybridization chamber
- FIG. 98 schematically illustrates an anode in a ring geometry around the peripheral edge of a photodiode
- FIG. 99 schematically illustrates an anode in a ring geometry within the peripheral edge of a photodiode
- FIG. 100 schematically illustrates an anode with a series of fingers to increase the length of its lateral edges
- FIG. 101 schematically illustrates the use of a transparent anode to maximise surface area coupling and ECL signal detection
- FIG. 102 schematically illustrates the use of an anode affixed to the roof of the hybridization chamber to maximise surface area coupling and ECL signal detection;
- FIG. 103 schematically illustrates an anode interdigitated with a cathode
- FIG. 104 shows a test module and test module reader configured for use with ECL detection
- FIG. 105 is a schematic overview of the electronic components in the test module configured for use with ECL detection
- FIG. 106 shows a test module and alternative test module readers
- FIG. 107 shows a test module and test module reader along with the hosting system housing various databases
- FIGS. 108A and 108B is a diagram illustrating binding of an aptamer to a protein to produce a detectable signal
- FIGS. 109A and 109B are diagrams illustrating binding of two aptamers to a protein to produce a detectable signal
- FIGS. 110A and 110B are diagrams illustrating binding of two antibodies to a protein to produce a detectable signal
- FIG. 111 is a diagrammatic representation of the architecture of LOC variant L with ECL detection
- FIG. 112 is a perspective view of LOC variant L
- FIG. 113 is a plan view of LOC variant L showing the structures of the CMOS+MST device in isolation;
- FIG. 114 is a perspective view of the underside of the cap of LOC variant L with the reagent reservoirs shown in dotted lines;
- FIG. 115 is a plan view of LOC variant L showing the features of the cap in isolation
- FIG. 116 is a plan view of LOC variant L showing all the features superimposed on each other and showing the locations of Insets GA to GL;
- FIG. 117 is an enlarged view of Inset GA shown in FIG. 116 ;
- FIG. 118 is an enlarged view of Inset GB shown in FIG. 116 ;
- FIG. 119 is an enlarged view of Inset GC shown in FIG. 116 ;
- FIG. 120 is an enlarged view of Inset GD shown in FIG. 116 ;
- FIG. 121 is an enlarged view of Inset GE shown in FIG. 116 ;
- FIG. 122 is an enlarged view of Inset GF shown in FIG. 116 ;
- FIG. 123 is an enlarged view of Inset GG shown in FIG. 116 ;
- FIG. 124 is an enlarged view of Inset GH shown in FIG. 116 ;
- FIG. 125 is an enlarged view of Inset GJ shown in FIG. 116 ;
- FIG. 126 is an enlarged view of Inset GK shown in FIG. 116 ;
- FIG. 127 is an enlarged view of Inset GL shown in FIG. 116 ;
- FIG. 128 is a diagrammatic representation of a LOC device with thermal insulation trench
- FIG. 129 is a diagram of an electrochemiluminescence resonance energy transfer probe in a closed configuration
- FIG. 130 is a diagram of an electrochemiluminescence resonance energy transfer probe in an open and hybridized configuration
- FIG. 131 is a diagram of a primer-linked, luminescent linear probe during the initial round of amplification
- FIG. 132 is a diagram of a primer-linked, luminescent linear probe during a subsequent amplification cycle
- FIGS. 133A to 133F diagrammatically illustrate thermal cycling of a luminescent primer-linked stem-and-loop probe
- FIG. 134 schematically illustrates a negative control luminescent probe in its stem-and-loop configuration
- FIG. 135 schematically illustrates the negative control luminescent probe of FIG. 134 in its open configuration
- FIG. 136 schematically illustrates a positive control luminescent probe in its stem-and-loop configuration
- FIG. 137 schematically illustrates the positive control luminescent probe of FIG. 136 in its open configuration
- FIG. 138 is an enlarged view of the hybridization chamber of LOC variant L
- FIG. 139 is an enlarged view of the hybridization chamber array of LOC variant L showing the distribution of calibration chambers
- the system has the following top level components:
- Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce.
- Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 104 ).
- Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 104 uses an electrochemiluminescence-based detection technique.
- the LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection (described in detail below).
- test modules 10 and 11 use a standard Micro-USB plug 14 for power, data and control, both have a printed circuit board (PCB) 57 , and both have external power supply capacitors 32 and an inductor 15 .
- the test modules 10 and 11 are both single-use only for mass production and distribution in sterile packaging ready for use.
- the outer casing 13 has a macroreceptacle 24 for receiving the biological sample and a removable sterile sealing tape 22 , preferably with a low tack adhesive, to cover the macroreceptacle prior to use.
- a membrane seal 408 with a membrane guard 410 forms part of the outer casing 13 to reduce dehumidification within the test module while providing pressure relief from small air pressure fluctuations. The membrane guard 410 protects the membrane seal 408 from damage.
- Test module reader 12 powers the test module 10 or 11 via Micro-USB port 16 .
- the test module reader 12 can adopt many different forms and a selection of these are described later.
- the version of the reader 12 shown in FIGS. 1 , 3 and 104 is a smart phone embodiment.
- a block diagram of this reader 12 is shown in FIG. 3 .
- Processor 42 runs application software from program storage 43 .
- the processor 42 also interfaces with the display screen 18 and user interface (UI) touch screen 17 and buttons 19 , a cellular radio 21 , wireless network connection 23 , and a satellite navigation system 25 .
- the cellular radio 21 and wireless network connection 23 are used for communications.
- Satellite navigation system 25 is used for updating epidemiological databases with location data.
- the location data can, alternatively, be entered manually via the touch screen 17 or buttons 19 .
- Data storage 27 holds genetic and diagnostic information, test results, patient information, assay and probe data for identifying each probe and its array position.
- Data storage 27 and program storage 43 may be shared in a common memory facility.
- Application software installed on the test module reader 12 provides analysis of results, along with additional test and diagnostic information.
- test module 10 (or test module 11 ) is inserted into the Micro-USB port 16 on the test module reader 12 .
- the sterile sealing tape 22 is peeled back and the biological sample (in a liquid form) is loaded into the sample macroreceptacle 24 .
- Pressing start button 20 initiates testing via the application software.
- the sample flows into the LOC device 30 and the on-board assay extracts, incubates, amplifies and hybridizes the sample nucleic acids (the target) with presynthesized hybridization-responsive oligonucleotide probes.
- test module 10 which uses fluorescence-based detection
- the probes are fluorescently labelled and the LED 26 housed in the casing 13 provides the necessary excitation light to induce fluorescence emission from the hybridized probes (see FIGS. 1 and 2 ).
- test module 11 which uses electrochemiluminescence (ECL) detection
- ECL electrochemiluminescence
- the LOC device 30 is loaded with ECL probes (discussed above) and the LED 26 is not necessary for generating the luminescent emission. Instead, electrodes 860 and 870 provide the excitation electrical current (see FIG. 105 ).
- the emission (fluorescent or luminescent) is detected using a photosensor 44 integrated into CMOS circuitry of each LOC device.
- the detected signal is amplified and converted to a digital output which is analyzed by the test module reader 12 .
- the reader displays the results.
- the data may be saved locally and/or uploaded to a network server containing patient records.
- the test module 10 or 11 is removed from the test module reader 12 and disposed of appropriately.
- FIGS. 1 , 3 and 104 show the test module reader 12 configured as a mobile phone/smart phone 28 .
- the test module reader is a laptop/notebook 101 , a dedicated reader 103 , an ebook reader 107 , a tablet computer 109 or desktop computer 105 for use in hospitals, private practices or laboratories (see FIG. 106 ).
- the reader can interface with a range of additional applications such as patient records, billing, online databases and multi-user environments. It can also be interfaced with a range of local or remote peripherals such as printers and patient smart cards.
- the data generated by the test module 10 can be used to update, via the reader 12 and network 125 , the epidemiological databases hosted on the hosting system for epidemiological data 111 , the genetic databases hosted on the hosting system for genetic data 113 , the electronic health records hosted on the hosting system for electronic health records (EHR) 115 , the electronic medical records hosted on the hosting system for electronic medical records (EMR) 121 , and the personal health records hosted on the hosting system for personal health records (PHR) 123 .
- EHR electronic health records hosted on the hosting system for electronic health records
- EMR electronic medical records hosted on the hosting system for electronic medical records
- PHR personal health records hosted on the hosting system for personal health records
- the epidemiological data hosted on the hosting system for epidemiological data 111 can be used to update, via network 125 and the reader 12 , the digital memory in the LOC 30 of the test module 10 .
- the reader 12 uses battery power in the mobile phone configuration.
- the mobile phone reader contains all test and diagnostic information preloaded. Data can also be loaded or updated via a number of wireless or contact interfaces to enable communications with peripheral devices, computers or online servers.
- a Micro-USB port 16 is provided for connection to a computer or mains power supply for battery recharge.
- FIG. 63 shows an embodiment of the test module 10 used for tests that only require a positive or negative result for a particular target, such as testing whether a person is infected with, for example, H1N1 Influenza A virus.
- a particular target such as testing whether a person is infected with, for example, H1N1 Influenza A virus.
- Only a purpose built USB power/indicator-only module 47 is adequate. No other reader or application software is necessary.
- An indicator 45 on the USB power/indicator-only module 47 signals positive or negative results. This configuration is well suited to mass screening.
- Additional items supplied with the system may include a test tube containing reagents for pre-treatment of certain samples, along with spatula and lancet for sample collection.
- FIG. 63 shows an embodiment of the test module incorporating a spring-loaded, retractable lancet 390 and lancet release button 392 for convenience.
- a satellite phone can be used in remote areas.
- FIGS. 2 and 105 are block diagrams of the electronic components in the test modules 10 and 11 , respectively.
- the CMOS circuitry integrated in the LOC device 30 has a USB device driver 36 , a controller 34 , a USB-compatible LED driver 29 , clock 33 , power conditioner 31 , RAM 38 and program and data flash memory 40 . These provide the control and memory for the entire test module 10 or 11 including the photosensor 44 , the temperature sensors 170 , the liquid sensors 174 , and the various heaters 152 , 154 , 182 , 234 , together with associated drivers 37 and 39 and registers 35 and 41 .
- the LOC devices 30 include bond-pads for making connections to these external components.
- the RAM 38 and the program and data flash memory 40 have the application software and the diagnostic and test information (Flash/Secure storage, e.g. via encryption) for over 1000 probes. In the case of test module 11 configured for ECL detection, there is no LED 26 (see FIGS. 104 and 105 ). Data is encrypted by the LOC device 30 for secure storage and secure communication with an external device.
- the LOC devices 30 are loaded with electrochemiluminescent probes and the hybridization chambers each have a pair of ECL excitation electrodes 860 and 870 .
- test modules 10 are manufactured in a number of test forms, ready for off-the-shelf use. The differences between the test forms lie in the on board assay of reagents and probes.
- infectious diseases rapidly identified with this system include:
- Pneumonia respiratory syncytial virus (RSV), adenovirus, metapneumovirus, Streptococcus pneumoniae, Staphylococcus aureus
- Tuberculosis Mycobacterium tuberculosis, bovis, africanum, canetti, and microti
- Typhoid Salmonella enterica serovar typhi
- HIV Human immunodeficiency virus
- HSV Herpes simplex virus
- CMV Cytomegalovirus
- Epstein-Ban virus (EBV)
- Meningitis Streptococcus pneumoniae and Neisseria meningitidis
- Anthrax Bacillus anthracis
- genetic disorders identified with this system include:
- a small selection of cancers identified by the diagnostic system include:
- the LOC device 30 is central to the diagnostic system. It rapidly performs the four major steps of a nucleic acid based molecular diagnostic assay, i.e. sample preparation, nucleic acid extraction, nucleic acid amplification, and detection, using a microfluidic platform.
- the LOC device also has alternative uses, and these are detailed later.
- test modules 10 and 11 can adopt many different configurations to detect different targets Likewise, the LOC device 30 has numerous different embodiments tailored to the target(s) of interest.
- One form of the LOC device 30 is LOC device 301 for fluorescent detection of target nucleic acid sequences in the pathogens of a whole blood sample. For the purposes of illustration, the structure and operation of LOC device 301 is now described in detail with reference to FIGS. 4 to 26 and 27 to 57 .
- FIG. 4 is a schematic representation of the architecture of the LOC device 301 .
- process stages shown in FIG. 4 are indicated with the reference numeral corresponding to the functional sections of the LOC device 301 that perform that process stage.
- the process stages associated with each of the major steps of a nucleic acid based molecular diagnostic assay are also indicated: sample input and preparation 288 , extraction 290 , incubation 291 , amplification 292 and detection 294 .
- sample input and preparation 288 extraction 290 , incubation 291 , amplification 292 and detection 294 .
- the various reservoirs, chambers, valves and other components of the LOC device 301 will be described in more detail later.
- FIG. 5 is a perspective view of the LOC device 301 . It is fabricated using high volume CMOS and MST (microsystems technology) manufacturing techniques. The laminar structure of the LOC device 301 is illustrated in the schematic (not to scale) partial section view of FIG. 12 .
- the LOC device 301 has a silicon substrate 84 which supports the CMOS+MST chip 48 , comprising CMOS circuitry 86 and an MST layer 87 , with a cap 46 overlaying the MST layer 87 .
- the term ‘MST layer’ is a reference to a collection of structures and layers that process the sample with various reagents.
- these structures and components are configured to define flow-paths with characteristic dimensions that will support capillary driven flow of liquids with physical characteristics similar to those of the sample during processing.
- the MST layer and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other fabrication methods can also produce structures and components dimensioned for capillary driven flows and processing very small volumes.
- the specific embodiments described in this specification show the MST layer as the structures and active components supported on the CMOS circuitry 86 , but excluding the features of the cap 46 . However, the skilled addressee will appreciate that the MST layer need not have underlying CMOS or indeed an overlying cap in order for it to process the sample.
- the overall dimensions of the LOC device shown in the following figures are 1760 ⁇ m ⁇ 5824 ⁇ m.
- LOC devices fabricated for different applications may have different dimensions.
- FIG. 6 shows the features of the MST layer 87 superimposed with the features of the cap.
- Insets AA to AD, AG and AH shown in FIG. 6 are enlarged in FIGS. 13 , 14 , 35 , 56 , 55 and 58 , respectively, and described in detail below for a comprehensive understanding of each structure within the LOC device 301 .
- FIGS. 7 to 10 show the features of the cap 46 in isolation while FIG. 11 shows the CMOS+MST device 48 structures in isolation.
- FIGS. 12 and 22 are sketches that diagrammatically show the laminar structure of the CMOS+MST device 48 , the cap 46 and the fluidic interaction between the two. The figures are not to scale for the purposes of illustration.
- FIG. 12 is a schematic section view through the sample inlet 68 and FIG. 22 is a schematic section through the reservoir 54 .
- the CMOS+MST device 48 has a silicon substrate 84 which supports the CMOS circuitry 86 that operates the active elements within the MST layer 87 above.
- a passivation layer 88 seals and protects the CMOS layer 86 from the fluid flows through the MST layer 87 .
- Cell transport occurs in the larger channels 94 fabricated in the cap 46 , while biochemical processes are carried out in the smaller MST channels 90 .
- Cell transport channels are sized so as to be able to transport cells in the sample to predetermined sites in the MST channels 90 .
- Transportation of cells with sizes greater than 20 microns for example, certain leukocytes
- MST channels particularly at locations in the LOC where transport of cells is not required, can be significantly smaller.
- cap channel 94 and MST channel 90 are generic references and particular MST channels 90 may also be referred to as (for example) heated microchannels or dialysis MST channels in light of their particular function.
- MST channels 90 are formed by etching through a MST channel layer 100 deposited on the passivation layer 88 and patterned with photoresist.
- the MST channels 90 are enclosed by a roof layer 66 which forms the top (with respect to the orientation shown in the figures) of the CMOS+MST device 48 .
- the cap channel layer 80 and the reservoir layer 78 are formed from a unitary piece of material.
- the piece of material may also be non-unitary. This piece of material is etched from both sides in order to form a cap channel layer 80 in which the cap channels 94 are etched and the reservoir layer 78 in which the reservoirs 54 , 56 , 58 , 60 and 62 are etched.
- the reservoirs and the cap channels are formed by a micromolding process. Both etching and micromolding techniques are used to produce channels with cross sectional areas transverse to the flow as large as 20,000 square microns, and as small as 8 square microns.
- the cross sectional area of the channel transverse to the flow there can be a range of appropriate choices for the cross sectional area of the channel transverse to the flow.
- a cross-sectional area of up to 20,000 square microns for example, a 200 micron wide channel in a 100 micron thick layer
- small quantities of liquid, or mixtures without large cells present are contained in the channel, a very small cross sectional area transverse to the flow is preferable.
- a lower seal 64 encloses the cap channels 94 and the upper seal layer 82 encloses the reservoirs 54 , 56 , 58 , 60 and 62 .
- the five reservoirs 54 , 56 , 58 , 60 and 62 are preloaded with assay-specific reagents.
- the reservoirs are preloaded with the following reagents, but other reagents can easily be substituted:
- reservoir 54 anticoagulant with option to include erythrocyte lysis buffer
- reservoir 60 amplification mix (dNTPs, primers, buffer) and
- the cap 46 and the CMOS+MST layers 48 are in fluid communication via corresponding openings in the lower seal 64 and the roof layer 66 . These openings are referred to as uptakes 96 and downtakes 92 depending on whether fluid is flowing from the MST channels 90 to the cap channels 94 or vice versa.
- the operation of the LOC device 301 is described below in a step-wise fashion with reference to analysing pathogenic DNA in a blood sample.
- other types of biological or non-biological fluid are also analysed using an appropriate set, or combination, of reagents, test protocols, LOC variants and detection systems.
- FIG. 4 there are five major steps involved in analysing a biological sample, comprising sample input and preparation 288 , nucleic acid extraction 290 , nucleic acid incubation 291 , nucleic acid amplification 292 and detection and analysis 294 .
- the sample input and preparation step 288 involves mixing the blood with an anticoagulant 116 and then separating pathogens from the leukocytes and erythrocytes with the pathogen dialysis section 70 .
- the blood sample enters the device via the sample inlet 68 .
- Capillary action draws the blood sample along the cap channel 94 to the reservoir 54 .
- Anticoagulant is released from the reservoir 54 as the sample blood flow opens its surface tension valve 118 (see FIGS. 15 and 22 ). The anticoagulant prevents the formation of clots which would block the flow.
- the anticoagulant 116 is drawn out of the reservoir 54 by capillary action and into the MST channel 90 via the downtake 92 .
- the downtake 92 has a capillary initiation feature (CIF) 102 to shape the geometry of the meniscus such that it does not anchor to the rim of the downtake 92 .
- Vent holes 122 in the upper seal 82 allows air to replace the anticoagulant 116 as it is drawn out of the reservoir 54 .
- the MST channel 90 shown in FIG. 22 is part of a surface tension valve 118 .
- the anticoagulant 116 fills the surface tension valve 118 and pins a meniscus 120 to the uptake 96 to a meniscus anchor 98 .
- the meniscus 120 remains pinned at the uptake 96 so the anticoagulant does not flow into the cap channel 94 .
- the meniscus 120 is removed and the anticoagulant is drawn into the flow.
- FIGS. 15 to 21 show Inset AE which is a portion of Inset AA shown in FIG. 13 .
- the surface tension valve 118 has three separate MST channels 90 extending between respective downtakes 92 and uptakes 96 .
- the number of MST channels 90 in a surface tension valve can be varied to change the flow rate of the reagent into the sample mixture.
- the flow rate out of the reservoir determines the concentration of the reagent in the sample flow.
- the surface tension valve for each of the reservoirs is configured to match the desired reagent concentration.
- the blood passes into a pathogen dialysis section 70 (see FIGS. 4 and 15 ) where target cells are concentrated from the sample using an array of apertures 164 sized according to a predetermined threshold. Cells smaller than the threshold pass through the apertures while larger cells do not pass through the apertures. Unwanted cells, which may be either the larger cells withheld by the array of apertures 164 or the smaller cells that pass through the apertures, are redirected to a waste unit 76 while the target cells continue as part of the assay.
- the pathogens from the whole blood sample are concentrated for microbial DNA analysis.
- the array of apertures is formed by a multitude of 3 micron diameter holes 164 fluidically connecting the input flow in the cap channel 94 to a target channel 74 .
- the 3 micron diameter apertures 164 and the dialysis uptake holes 168 for the target channel 74 are connected by a series of dialysis MST channels 204 (best shown in FIGS. 15 and 21 ).
- Pathogens are small enough to pass through the 3 micron diameter apertures 164 and fill the target channel 74 via the dialysis MST channels 204 .
- Cells larger than 3 microns, such as erythrocytes and leukocytes stay in the waste channel 72 in the cap 46 which leads to a waste reservoir 76 (see FIG. 7 ).
- aperture shapes, sizes and aspect ratios can be used to isolate specific pathogens or other target cells such as leukocytes for human DNA analysis. Greater detail on the dialysis section and dialysis variants is provided later.
- the flow is drawn through the target channel 74 to the surface tension valve 128 of the lysis reagent reservoir 56 .
- the surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74 .
- the flow rate from all seven of the MST channels 90 will be greater than the flow rate from the anticoagulant reservoir 54 where the surface tension valve 118 has three MST channels 90 (assuming the physical characteristics of the fluids are roughly equivalent).
- the proportion of lysis reagent in the sample mixture is greater than that of the anticoagulant.
- the lysis reagent and target cells mix by diffusion in the target channel 74 within the chemical lysis section 130 .
- a boiling-initiated valve 126 stops the flow until sufficient time has passed for diffusion and lysis to take place, releasing the genetic material from the target cells (see FIGS. 6 and 7 ).
- the structure and operation of the boiling-initiated valves are described in greater detail below with reference to FIGS. 31 and 32 .
- Other active valve types (as opposed to passive valves such as the surface tension valve 118 ) have also been developed by the Applicant which may be used here instead of the boiling-initiated valve. These alternative valve designs are also described later.
- the boiling-initiated valve 126 opens, the lysed cells flow into a mixing section 131 for pre-amplification restriction digestion and linker ligation.
- restriction enzymes, linkers and ligase are released from the reservoir 58 when the flow unpins the menisci at the surface tension valve 132 at the start of the mixing section 131 .
- the mixture flows the length of the mixing section 131 for diffusion mixing.
- At the end of the mixing section 131 is downtake 134 leading into the incubator inlet channel 133 of the incubation section 114 (see FIG. 13 ).
- the incubator inlet channel 133 feeds the mixture into a serpentine configuration of heated microchannels 210 which provides an incubation chamber for holding the sample during restriction digestion and ligation of the linkers (see FIGS. 13 and 14 ).
- FIGS. 23 , 24 , 25 , 26 , 27 , 28 and 29 show the layers of the LOC device 301 within Inset AB of FIG. 6 .
- Each figure shows the sequential addition of layers forming the structures of the CMOS+MST layer 48 and the cap 46 .
- Inset AB shows the end of the incubation section 114 and the start of the amplification section 112 .
- the flow fills the microchannels 210 of the incubation section 114 until reaching the boiling-initiated valve 106 where the flow stops while diffusion takes place.
- the microchannel 210 upstream of the boiling-initiated valve 106 becomes an incubation chamber containing the sample, restriction enzymes, ligase and linkers.
- the heaters 154 are then activated and held at constant temperature for a specified time for restriction digestion and linker ligation to occur.
- this incubation step 291 (see FIG. 4 ) is optional and only required for some nucleic acid amplification assay types. Furthermore, in some instances, it may be necessary to have a heating step at the end of the incubation period to spike the temperature above the incubation temperature. The temperature spike inactivates the restriction enzymes and ligase prior to entering the amplification section 112 . Inactivation of the restriction enzymes and ligase has particular relevance when isothermal nucleic acid amplification is being employed.
- the boiling-initiated valve 106 is activated (opened) and the flow resumes into the amplification section 112 .
- the mixture fills the serpentine configuration of heated microchannels 158 , which form one or more amplification chambers, until it reaches the boiling-initiated valve 108 .
- amplification mix dNTPs, primers, buffer
- polymerase is subsequently released from reservoir 62 into the intermediate MST channel 212 connecting the incubation and amplification sections ( 114 and 112 respectively).
- FIGS. 35 to 51 show the layers of the LOC device 301 within Inset AC of FIG. 6 . Each figure shows the sequential addition of layers forming the structures of the CMOS+MST device 48 and the cap 46 .
- Inset AC is at the end of the amplification section 112 and the start of the hybridization and detection section 52 .
- the incubated sample, amplification mix and polymerase flow through the microchannels 158 to the boiling-initiated valve 108 .
- the heaters 154 in the microchannels 158 are activated for thermal cycling or isothermal amplification.
- the amplification mix goes through a predetermined number of thermal cycles or a preset amplification time to amplify sufficient target DNA.
- the boiling-initiated valve 108 opens and flow resumes into the hybridization and detection section 52 .
- the operation of boiling-initiated valves is described in more detail later.
- the hybridization and detection section 52 has an array of hybridization chambers 110 .
- FIGS. 52 , 53 , 54 and 56 show the hybridization chamber array 110 and individual hybridization chambers 180 in detail.
- a diffusion barrier 175 which prevents diffusion of the target nucleic acid, probe strands and hybridized probes between the hybridization chambers 180 during hybridization so as to prevent erroneous hybridization detection results.
- the diffusion barriers 175 present a flow-path-length that is long enough to prevent the target sequences and probes diffusing out of one chamber and contaminating another chamber within the time taken for the probes and nucleic acids to hybridize and the signal to be detected, thus avoiding an erroneous result.
- the CMOS circuitry 86 derives a single result from the photodiodes 184 corresponding to the hybridization chambers 180 that contain identical probes. Anomalous results can be disregarded or weighted differently in the derivation of the single result.
- CMOS-controlled heaters 182 (described in more detail below). After the heater is activated, hybridization occurs between complementary target-probe sequences.
- the LED driver 29 in the CMOS circuitry 86 signals the LED 26 located in the test module 10 to illuminate. These probes only fluoresce when hybridization has occurred thereby avoiding washing and drying steps that are typically required to remove unbound strands. Hybridization forces the stem-and-loop structure of the FRET probes 186 to open, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as discussed in greater detail later.
- Fluorescence is detected by a photodiode 184 in the CMOS circuitry 86 underlying each hybridization chamber 180 (see hybridization chamber description below).
- the photodiodes 184 for all hybridization chambers and associated electronics collectively form the photosensor 44 (see FIG. 60 ).
- the photosensor may be an array of charge coupled devices (CCD array).
- the detected signal from the photodiodes 184 is amplified and converted to a digital output which is analyzed by the test module reader 12 . Further details of the detection method are described later.
- the LOC device 301 has many functional sections, including the reagent reservoirs 54 , 56 , 58 , 60 and 62 , the dialysis section 70 , lysis section 130 , incubation section 114 , and amplification section 112 , valve types, the humidifier and humidity sensor. In other embodiments of the LOC device, these functional sections can be omitted, additional functional sections can be added or the functional sections can be used for alternative purposes to those described above.
- the incubation section 114 can be used as the first amplification section 112 of a tandem amplification assay system, with the chemical lysis reagent reservoir 56 being used to add the first amplification mix of primers, dNTPs and buffer and reagent reservoir 58 being used for adding the reverse transcriptase and/or polymerase.
- a chemical lysis reagent can also be added to the reservoir 56 along with the amplification mix if chemical lysis of the sample is desired or, alternatively, thermal lysis can occur in the incubation section by heating the sample for a predetermined time.
- an additional reservoir can be incorporated immediately upstream of reservoir 58 for the mix of primers, dNTPs and buffer if there is a requirement for chemical lysis and a separation of this mix from the chemical lysis reagent is desired.
- a LOC device can be specifically fabricated to omit the reagent reservoir 58 and incubation section 114 , or the reservoir can simply not be loaded with reagents or the active valves, if present, not activated to dispense the reagents into the sample flow, and the incubation section then simply becomes a channel to transport the sample from the lysis section 130 to the amplification section 112 .
- the heaters are independently operable and therefore, where reactions are dependent on heat, such as thermal lysis, programming the heaters not to activate during this step ensures thermal lysis does not occur in LOC devices that do not require it.
- the dialysis section 70 can be located at the beginning of the fluidic system within the microfluidic device as shown in FIG. 4 or can be located anywhere else within the microfluidic device. For example, dialysis after the amplification phase 292 to remove cellular debris prior to the hybridization and detection step 294 may be beneficial in some circumstances. Alternatively, two or more dialysis sections can be incorporated at any location throughout the LOC device. Similarly, it is possible to incorporate additional amplification sections 112 to enable multiple targets to be amplified in parallel or in series prior to being detected in the hybridization chamber arrays 110 with specific nucleic acid probes.
- the dialysis section 70 is simply omitted from the sample input and preparation section 288 of the LOC design. In some cases, it is not necessary to omit the dialysis section 70 from the LOC device even if the analysis does not require dialysis. If there is no geometric hindrance to the assay by the existence of a dialysis section, a LOC with the dialysis section 70 in the sample input and preparation section can still be used without a loss of the required functionality.
- the detection section 294 may encompass proteomic chamber arrays which are identical to the hybridization chamber arrays but are loaded with probes designed to conjugate or hybridize with sample target proteins present in non-amplified sample instead of nucleic acid probes designed to hybridize to target nucleic acid sequences.
- the LOC devices fabricated for use in this diagnostic system are different combinations of functional sections selected in accordance with the particular LOC application.
- the vast majority of functional sections are common to many of the LOC devices and the design of additional LOC devices for new application is a matter of compiling an appropriate combination of functional sections from the extensive selection of functional sections used in the existing LOC devices.
- LOC variants can accept and analyze the nucleic acid or protein content of a variety of sample types in liquid form including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord blood, breast milk, sweat, pleural effusion, tear, pericardial fluid, peritoneal fluid, environmental water samples and drink samples.
- Amplicon obtained from macroscopic nucleic acid amplification can also be analysed using the LOC device; in this case, all the reagent reservoirs will be empty or configured not to release their contents, and the dialysis, lysis, incubation and amplification sections will be used solely to transport the sample from the sample inlet 68 to the hybridization chambers 180 for nucleic acid detection, as described above.
- a pre-processing step is required, for example semen may need to be liquefied and mucus may need to be pre-treated with an enzyme to reduce the viscosity prior to input into the LOC device.
- the sample is added to the macroreceptacle 24 of the test module 10 .
- the macroreceptacle 24 is a truncated cone which feeds into the inlet 68 of the LOC device 301 by capillary action. Here it flows into the 64 ⁇ m wide ⁇ 60 ⁇ m deep cap channel 94 where it is drawn towards the anticoagulant reservoir 54 , also by capillary action.
- This volume is easily less than 1,000,000,000 cubic microns, in the vast majority of cases less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns and in the case of the LOC device 301 shown in the drawings, less than 20,000,000 cubic microns.
- the pathogen dialysis section 70 is designed to concentrate pathogenic target cells from the sample.
- a plurality of apertures in the form of 3 micron diameter holes 164 in the roof layer 66 filter the target cells from the bulk of the sample.
- microbial pathogens pass through the holes into a series of dialysis MST channels 204 and flow back up into the target channel 74 via 16 ⁇ m dialysis uptake holes 168 (see FIGS. 33 and 34 ).
- the remainder of the sample (erythrocytes and so on) stay in the cap channel 94 .
- the cap channel 94 Downstream of the pathogen dialysis section 70 , the cap channel 94 becomes the waste channel 72 leading to the waste reservoir 76 .
- a foam insert or other porous element 49 within the outer casing 13 of the test module 10 is configured to be in fluid communication with the waste reservoir 76 (see FIG. 1 ).
- the pathogen dialysis section 70 functions entirely on capillary action of the fluid sample.
- the 3 micron diameter apertures 164 at the upstream end of the pathogen dialysis section 70 have capillary initiation features (CIFs) 166 (see FIG. 33 ) so that the fluid is drawn down into the dialysis MST channel 204 beneath.
- the first uptake hole 198 for the target channel 74 also has a CIF 202 (see FIG. 15 ) to avoid the flow simply pinning a meniscus across the dialysis uptake holes 168 .
- the small constituents dialysis section 682 schematically shown in FIG. 71 can have a similar structure to the pathogen dialysis section 70 .
- the small constituents dialysis section separates any small target cells or molecules from a sample by sizing (and, if necessary, shaping) apertures suitable for allowing the small target cells or molecules to pass into the target channel and continue for further analysis. Larger sized cells or molecules are removed to a waste reservoir 766 .
- the LOC device 30 (see FIGS. 1 and 104 ) is not limited to separating pathogens that are less than 3 ⁇ m in size, but can be used to separate cells or molecules of any size desired.
- the genetic material in the sample is released from the cells by a chemical lysis process.
- a lysis reagent from the lysis reservoir 56 mixes with the sample flow in the target channel 74 downstream of the surface tension valve 128 for the lysis reservoir 56 .
- some diagnostic assays are better suited to a thermal lysis process, or even a combination of chemical and thermal lysis of the target cells.
- the LOC device 301 accommodates this with the heated microchannels 210 of the incubation section 114 .
- the sample flow fills the incubation section 114 and stops at the boiling-initiated valve 106 .
- the incubation microchannels 210 heat the sample to a temperature at which the cellular membranes are disrupted.
- an enzymatic reaction in the chemical lysis section 130 is not necessary and the thermal lysis completely replaces the enzymatic reaction in the chemical lysis section 130 .
- the LOC device 301 has three boiling-initiated valves 126 , 106 and 108 . The location of these valves is shown in FIG. 6 .
- FIG. 31 is an enlarged plan view of the boiling-initiated valve 108 in isolation at the end of the heated microchannels 158 of the amplification section 112 .
- the sample flow 119 is drawn along the heated microchannels 158 by capillary action until it reaches the boiling-initiated valve 108 .
- the leading meniscus 120 of the sample flow pins at a meniscus anchor 98 at the valve inlet 146 .
- the geometry of the meniscus anchor 98 stops the advancing meniscus to arrest the capillary flow.
- the meniscus anchor 98 is an aperture provided by an uptake opening from the MST channel 90 to the cap channel 94 .
- Surface tension in the meniscus 120 keeps the valve closed.
- An annular heater 152 is at the periphery of the valve inlet 146 .
- the annular heater 152 is CMOS-controlled via the boiling-initiated valve heater contacts 153 .
- the CMOS circuitry 86 sends an electrical pulse to the valve heater contacts 153 .
- the annular heater 152 resistively heats until the liquid sample 119 boils. The boiling unpins the meniscus 120 from the valve inlet 146 and initiates wetting of the cap channel 94 . Once wetting the cap channel 94 begins, capillary flow resumes.
- the fluid sample 119 fills the cap channel 94 and flows through the valve downtake 150 to the valve outlet 148 where capillary driven flow continues along the amplification section exit channel 160 into the hybridization and detection section 52 .
- Liquid sensors 174 are placed before and after the valve for diagnostics.
- FIGS. 6 , 7 , 13 , 14 , 23 , 24 , 25 , 35 to 45 , 50 and 51 show the incubation section 114 and the amplification section 112 .
- the incubation section 114 has a single, heated incubation microchannel 210 etched in a serpentine pattern in the MST channel layer 100 from the downtake opening 134 to the boiling-initiated valve 106 (see FIGS. 13 and 14 ). Control over the temperature of the incubation section 114 enables enzymatic reactions to take place with greater efficiency.
- the amplification section 112 has a heated amplification microchannel 158 in a serpentine configuration leading from the boiling-initiated valve 106 to the boiling-initiated valve 108 (see FIGS. 6 and 14 ). These valves arrest the flow to retain the target cells in the heated incubation or amplification microchannels 210 or 158 while mixing, incubation and nucleic acid amplification takes place.
- the serpentine pattern of the microchannels also facilitates (to some extent) mixing of the target cells with reagents.
- each meander of the serpentine configuration of the heated incubation microchannel 210 and amplification microchannel 158 has three separately operable heaters 154 extending between their respective heater contacts 156 (see FIG. 14 ) which provides for the two-dimensional control of input heat flux density.
- the heaters 154 are supported on the roof layer 66 and embedded in the lower seal 64 .
- the heater material is TiAl but many other conductive metals would be suitable.
- the elongate heaters 154 are parallel with the longitudinal extent of each channel section that forms the wide meanders of the serpentine shape.
- each of the wide meanders can operate as separate PCR chambers via individual heater control.
- This volume is easily less than 400 nanoliters, in the vast majority of cases less than 170 nanoliters, typically less than 70 nanoliters and in the case of the LOC device 301 , between 2 nanoliters and 30 nanoliters.
- each channel section increases the heating rate of the amplification fluid mix. All the fluid is kept a relatively short distance from the heater 154 . Reducing the channel cross section (that is the amplification microchannel 158 cross section) to less than 100,000 square microns achieves appreciably higher heating rates than that provided by more ‘macro-scale’ equipment. Lithographic fabrication techniques allow the amplification microchannel 158 to have a cross sectional area transverse to the flow-path less than 16,000 square microns which gives substantially higher heating rates. Feature sizes on the order of 1 micron are readily achievable with lithographic techniques. If very little amplicon is needed (as is the case in the LOC device 301 ), the cross sectional area can be reduced to less than 2,500 square microns.
- the heater element in the amplification microchannel 158 heats the nucleic acid sequences at a rate more than 80 Kelvin (K) per second, in the vast majority of cases at a rate greater than 100 K per second.
- K Kelvin
- the heater element heats the nucleic acid sequences at a rate more than 1,000 K per second and in many cases, the heater element heats the nucleic acid sequences at a rate more than 10,000 K per second.
- the heater element heats the nucleic acid sequences at a rate more than 100,000 K per second, more than 1,000,000 K per second more than 10,000,000 K per second, more than 20,000,000 K per second, more than 40,000,000 K per second, more than 80,000,000 K per second and more than 160,000,000 K per second.
- a small cross-sectional area channel is also beneficial for diffusive mixing of any reagents with the sample fluid.
- diffusion of one liquid into the other is greatest near the interface between the two. Concentration decreases with distance from the interface.
- Using microchannels with relatively small cross sections transverse to the flow direction keeps both fluid flows close to the interface for more rapid diffusive mixing. Reducing the channel cross section to less than 100,000 square microns achieves appreciably higher mixing rates than that provided by more ‘macro-scale’ equipment. Lithographic fabrication techniques allows microchannels with a cross sectional area transverse to the flow-path less than 16000 square microns which gives significantly higher mixing rates.
- the cross sectional area can be reduced to less than 2500 square microns.
- a cross sectional area transverse to the flow of between 400 square microns and 1 square micron is adequate.
- each thermal cycle i.e. denaturing, annealing and primer extension
- target sequences up to 150 base pairs (bp) long base pairs (bp) long.
- the individual thermal cycle times are less than 11 seconds, and a large proportion are less than 4 seconds.
- LOC devices 30 with some of the most common diagnostic assays have thermal cycles time between 0.45 seconds to 1.5 seconds for target sequences up to 150 by long. Thermal cycling at this rate allows the test module to complete the nucleic acid amplification process in much less than 10 minutes; often less than 220 seconds.
- the amplification section For most assays, the amplification section generates sufficient amplicon in less than 80 seconds from the sample fluid entering the sample inlet. For a great many assays, sufficient amplicon is generated in 30 seconds.
- the amplicon Upon completion of a preset number of amplification cycles, the amplicon is fed into the hybridization and detection section 52 via the boiling-initiated valve 108 .
- FIGS. 52 , 53 , 54 , 56 and 57 show the hybridization chambers 180 in the hybridization chamber array 110 .
- the hybridization and detection section 52 has a 24 ⁇ 45 array 110 of hybridization chambers 180 , each with hybridization-responsive FRET probes 186 , heater element 182 and an integrated photodiode 184 .
- the photodiode 184 is incorporated for detection of fluorescence resulting from the hybridization of a target nucleic acid sequence or protein with the FRET probes 186 .
- Each photodiode 184 is independently controlled by the CMOS circuitry 86 . Any material between the FRET probes 186 and the photodiode 184 must be transparent to the emitted light.
- the wall section 97 between the probes 186 and the photodiode 184 is also optically transparent to the emitted light.
- the wall section 97 is a thin (approximately 0.5 micron) layer of silicon dioxide.
- a detectable amount of probe-target hybrid requires a quantity of probe, prior to hybridization, which is easily less than 270 picograms (corresponding to 900,000 cubic microns), in the vast majority of cases less than 60 picograms (corresponding to 200,000 cubic microns), typically less than 12 picograms (corresponding to 40,000 cubic microns) and in the case of the LOC device 301 shown in the accompanying figures, less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic microns).
- the hybridization section has more than 1,000 chambers in an area of 1,500 microns by 1,500 microns (i.e. less than 2,250 square microns per chamber). Smaller volumes also reduce the reaction times so that hybridization and detection is faster.
- An additional advantage of the small amount of probe required in each chamber is that only very small quantities of probe solution need to be spotted into each chamber during production of the LOC device. Embodiments of the LOC device according to the invention can be spotted using a probe solution volume of 1 picoliter or less.
- boiling-initiated valve 108 is activated and the amplicon flows along the flow-path 176 and into each of the hybridization chambers 180 (see FIGS. 52 and 56 ).
- An end-point liquid sensor 178 indicates when the hybridization chambers 180 are filled with amplicon and the heaters 182 can be activated.
- the LED 26 (see FIG. 2 ) is activated.
- the opening in each of the hybridization chambers 180 provides an optical window 136 for exposing the FRET probes 186 to the excitation radiation (see FIGS. 52 , 54 and 56 ).
- the LED 26 is illuminated for a sufficiently long time in order to induce a fluorescence signal from the probes with high intensity.
- the photodiode 184 is shorted.
- the photodiode 184 is enabled and fluorescence emission is detected in the absence of the excitation light.
- the incident light on the active area 185 of the photodiode 184 (see FIG. 54 ) is converted into a photocurrent which can then be measured using CMOS circuitry 86 .
- the hybridization chambers 180 are each loaded with probes for detecting a single target nucleic acid sequence.
- Each hybridization chambers 180 can be loaded with probes to detect over 1,000 different targets if desired. Alternatively, many or all the hybridization chambers can be loaded with the same probes to detect the same target nucleic acid repeatedly. Replicating the probes in this way throughout the hybridization chamber array 110 leads to increased confidence in the results obtained and the results can be combined by the photodiodes adjacent those hybridization chambers to provide a single result if desired.
- the person skilled in the art will recognise that it is possible to have from one to over 1,000 different probes on the hybridization chamber array 110 , depending on the assay specification.
- FIGS. 97 , 120 , 138 and 139 show the hybridization chambers 180 used in an ECL variant of the LOC device, LOC variant L 729 .
- a 24 ⁇ 45 array 110 of hybridization chambers 180 each with hybridization-responsive ECL probes 237 , is positioned in registration with a corresponding array of photodiodes 184 integrated into the CMOS.
- each photodiode 184 is incorporated for detection of ECL resulting from the hybridization of a target nucleic acid sequence or protein with an ECL probe 237 .
- Each photodiode 184 is independently controlled by the CMOS circuitry 86 .
- the transparent wall section 97 between the probes 186 and the photodiode 184 is transparent to the emitted light.
- a photodiode 184 closely adjacent each hybridization chamber 180 allows the amount of probe-target hybrids to be very small while still generating a detectable ECL signal (see FIG. 97 ).
- the small amounts permit small volume hybridization chambers.
- a detectable amount of probe-target hybrid requires a quantity of probe, prior to hybridization, which is easily less than 270 picograms (corresponding to a chamber volume of 900,000 cubic microns), in the vast majority of cases less than 60 picograms (corresponding to 200,000 cubic microns), typically less than 12 picograms (corresponding to 40,000 cubic microns) and in the case of the LOC device shown in the drawings less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic microns).
- the hybridization section has more than 1,000 chambers in an area of 1,500 microns by 1,500 microns (i.e. less than 2,250 square microns per chamber). Smaller volumes also reduce the reaction times so that hybridization and detection is faster.
- An additional advantage of the small amount of probe required in each chamber is that only very small quantities of probe solution need be spotted into each chamber during production of the LOC device. In the case of the LOC device shown in the drawings, the required amount of probe can be spotted using a solution volume of 1 picoliter or less.
- the boiling-initiated valve 108 is activated and the amplicon flows along the flow-path 176 and into each of the hybridization chambers 180 (see FIGS. 52 and 139 ).
- An end-point liquid sensor 178 indicates when the hybridization chambers 180 are filled with amplicon so that the heaters 182 can be activated.
- the photodiode 184 is enabled ready for collection of the ECL signal. Then the ECL excitation drivers 39 (see FIG. 105 ) activate the ECL electrodes 860 and 870 for a predetermined length of time. The photodiode 184 remains active for a short time after cessation of the ECL excitation current to maximize the signal-to-noise ratio. For example, if the photodiode 184 remains active for five times the decay lifetime of the luminescent emission, then the signal will have decayed to less than one percent of the initial value. The incident light on the photodiode 184 is converted into a photocurrent which can then be measured using CMOS circuitry 86 .
- LOC variant L 729 Some LOC variants, such as LOC variant L 729 , are configured to perform homogeneous protein assays on crude cell lysates within proteomic assay chamber arrays (see for example 124 . 1 to 124 . 3 of FIGS. 116 and 120 ) for the detection of host cell and/or pathogenic proteins.
- the proteomic assay chamber arrays 124 . 1 - 124 . 3 are manufactured and configured in exactly the same manner as the hybridization chamber arrays 110 (see FIGS. 52 , 53 , 54 and 56 ).
- Each proteomic assay chamber has a diffusion barrier 175 at the entrance to prevent diffusion of sample and reagents between chambers, thus avoiding an erroneous result (see FIGS.
- thermal energy is provided by CMOS-controlled heaters 182 in each chamber.
- an end-point liquid sensor 178 is used to indicate when the proteomic assay chambers are filled with sample so that the heaters 182 can be activated. After sufficient time has elapsed, the fluorescent or electrochemiluminescent signal generated following protein recognition is detected by the photosensor 44 .
- Inset AG of FIG. 6 indicates the position of the humidifier 196 .
- the humidifier prevents evaporation of the reagents and probes during operation of the LOC device 301 .
- a water reservoir 188 is fluidically connected to three evaporators 190 .
- the water reservoir 188 is filled with molecular biology-grade water and sealed during manufacturing.
- water is drawn into three downtakes 194 and along respective water supply channels 192 by capillary action to a set of three uptakes 193 at the evaporators 190 .
- the evaporators have annular shaped heaters 191 which encircle the uptakes 193 .
- the annular heaters 191 are connected to the CMOS circuitry 86 by the conductive columns 376 to the top metal layer 195 (see FIG. 37 ). Upon activation, the annular heaters 191 heat the water causing evaporation and humidifying the device surrounds.
- the position of the humidity sensor 232 is also shown in FIG. 6 .
- the humidity sensor has a capacitive comb structure.
- a lithographically etched first electrode 296 and a lithographically etched second electrode 298 face each other such that their teeth are interleaved.
- the opposed electrodes form a capacitor with a capacitance that can be monitored by the CMOS circuitry 86 .
- the humidity sensor 232 is adjacent the hybridization chamber array 110 where humidity measurement is most important to slow evaporation from the solution containing the exposed probes.
- Temperature and liquid sensors are incorporated throughout the LOC device 301 to provide feedback and diagnostics during device operation.
- nine temperature sensors 170 are distributed throughout the amplification section 112
- the incubation section 114 also has nine temperature sensors 170 .
- These sensors each use a 2 ⁇ 2 array of bipolar junction transistors (BJTs) to monitor the fluid temperature and provide feedback to the CMOS circuitry 86 .
- the CMOS circuitry 86 uses this to precisely control the thermal cycling during the nucleic acid amplification process and any heating during thermal lysis and incubation.
- the CMOS circuitry 86 uses the hybridization heaters 182 as temperature sensors (see FIG. 56 ).
- the electrical resistance of the hybridization heaters 182 is temperature dependent and the CMOS circuitry 86 uses this to derive a temperature reading for each of the hybridization chambers 180 .
- the LOC device 301 also has a number of MST channel liquid sensors 174 and cap channel liquid sensors 208 .
- FIG. 35 shows a line of MST channel liquid sensors 174 at one end of every other meander in the heated microchannel 158 .
- the MST channel liquid sensors 174 are a pair of electrodes formed by exposed areas of the top metal layer 195 in the CMOS structure 86 . Liquid closes the circuit between the electrodes to indicate its presence at the sensor's location.
- FIG. 25 shows an enlarged perspective of cap channel liquid sensors 208 .
- Opposing pairs of TiAl electrodes 218 and 220 are deposited on the roof layer 66 . Between the electrodes 218 and 220 is a gap 222 to hold the circuit open in the absence of liquid. The presence of liquid closes the circuit and the CMOS circuitry 86 uses this feedback to monitor the flow.
- test modules 10 are orientation independent. They do not need to be secured to a flat stable surface in order to operate. Capillary driven fluid flows and a lack of external plumbing into ancillary equipment allow the modules to be truly portable and simply plugged into a similarly portable hand held reader such as a mobile telephone. Having a gravitationally independent operation means the test modules are also accelerationally independent to all practical extents. They are resistant to shock and vibration and will operate on moving vehicles or while the mobile telephone is being carried around.
- FIG. 59 is a schematic section view of a dialysis section 328 designed to concentrate leukocytes from a blood sample for human DNA analysis. It will be appreciated that the structure is essentially the same as that of the pathogen target dialysis section 70 described above with the exception that apertures in the form of 7.5 micron diameter holes 165 restrict leukocytes from passing from the cap channel 94 to the dialysis MST channels 204 . In situations where the sample being analysed is a blood sample, and the presence of haemoglobin from the erythrocytes interferes with the subsequent reaction steps, addition of an erythrocyte lysis buffer along with the anticoagulant in the reservoir 54 (see FIG.
- a commonly used erythrocyte lysis buffer is 0.15M NH 4 CL, 10mM KHCO 3 , 0.1mM EDTA, pH 7.2-7.4, but a person skilled in the art will recognise that any buffer which efficiently lyses erythrocytes can be used.
- the cap channel 94 Downstream of the leukocyte dialysis section 328 , the cap channel 94 becomes the target channel 74 such that the leukocytes continue as part of the assay. Furthermore, in this case, the dialysis uptake holes 168 lead to a waste channel 72 so that all smaller cells and components in the sample are removed. It should be noted that this dialysis variant only reduces the concentration of the unwanted specimens in the target channel 74 .
- FIG. 72 schematically illustrates a large constituents dialysis section 686 which also separates any large target constituents from a sample.
- the apertures in this dialysis section are fabricated with a size and shape tailored to withhold the large target constituents of interest in the target channel for further analysis.
- most (but not all) smaller sized cells, organisms or molecules flow to a waste reservoir 768 .
- other embodiments of the LOC device are not limited to separating leukocytes that are larger than 7.5 ⁇ m in size, but can be used to separate cells, organisms or molecules of any size desired.
- LOC variant VIII 518 Described below is an embodiment of the LOC device referred to as LOC variant VIII 518 and shown in FIGS. 65 , 66 , 67 and 68 .
- This LOC device has a dialysis section that fills with the fluid sample without leaving air bubbles trapped in the channels.
- LOC variant VIII 518 also has an additional layer of material referred to as an interface layer 594 .
- the interface layer 594 is positioned between the cap channel layer 80 and the MST channel layer 100 of the CMOS+MST device 48 .
- the interface layer 594 allows a more complex fluidic interconnection between the reagent reservoirs and the MST layer 87 without increasing the size of the silicon substrate 84 .
- the bypass channel 600 is designed to introduce a time delay in the fluid sample flow from the interface waste channel 604 to the interface target channel 602 .
- This time delay allows the fluid sample to flow through the dialysis MST channel 204 to the dialysis uptake 168 where it pins a meniscus.
- CIF capillary initiation feature
- the interface target channel 602 still starts filling from the upstream end, but eventually the advancing meniscus reaches and passes over an uptake belonging to an MST channel that has not yet filled, leading into air entrapment at that point. Trapped air reduces the sample flow rate through the leukocyte dialysis section 328 .
- PCR requires extensive purification of the target DNA prior to preparation of the reaction mixture.
- this approach is called direct PCR.
- LOC devices where nucleic acid amplification is performed at a controlled, constant temperature, the approach is direct isothermal amplification.
- Direct nucleic acid amplification techniques have considerable advantages for use in LOC devices, particularly relating to simplification of the required fluidic design.
- Adjustments to the amplification chemistry for direct PCR or direct isothermal amplification include increased buffer strength, the use of polymerases which have high activity and processivity, and additives which chelate with potential polymerase inhibitors. Dilution of inhibitors present in the sample is also important.
- the LOC device designs incorporate two additional features.
- the first feature is reagent reservoirs (for example reservoir 58 in FIG. 8 ) which are appropriately dimensioned to supply a sufficient quantity of amplification reaction mix, or diluent, so that the final concentrations of sample components which might interfere with amplification chemistry are low enough to permit successful nucleic acid amplification.
- the desired dilution of non-cellular sample components is in the range of 5 ⁇ to 20 ⁇ .
- Different LOC structures for example the pathogen dialysis section 70 in FIG. 4 , are used when appropriate to ensure that the concentration of target nucleic acid sequences is maintained at a high enough level for amplification and detection. In this embodiment, further illustrated in FIG.
- a dialysis section which effectively concentrates pathogens small enough to be passed into the amplification section 292 is employed upstream of the sample extraction section 290 , and rejects larger cells to a waste receptacle 76 .
- a dialysis section is used to selectively deplete proteins and salts in blood plasma while retaining cells of interest.
- the second LOC structural feature which supports direct nucleic acid amplification is design of channel aspect ratios to adjust the mixing ratio between the sample and the amplification mix components.
- the length and cross-section of the sample and reagent channels are designed such that the sample channel, upstream of the location where mixing is initiated, constitutes a flow impedance 4 ⁇ -19 ⁇ higher than the flow impedance of the channels through which the reagent mixture flows. Control over flow impedances in microchannels is readily achieved through control over the design geometry. The flow impedance of a microchannel increases linearly with the channel length, for a constant cross-section.
- flow impedance in microchannels depends more strongly on the smallest cross-sectional dimension.
- the flow impedance of a microchannel with rectangular cross-section is inversely proportional to the cube of the smallest perpendicular dimension, when the aspect ratio is far from unity.
- RT-PCR Reverse-Transcriptase PCR
- RNA such as from RNA viruses or messenger RNA
- cDNA complementary DNA
- the reverse transcription reaction can be performed in the same chamber as the PCR (one-step RT-PCR) or it can be performed as a separate, initial reaction (two-step RT-PCR).
- a one-step RT-PCR can be performed simply by adding the reverse transcriptase to reagent reservoir 62 along with the polymerase and programming the heaters 154 to cycle firstly for the reverse transcription step and then progress onto the nucleic acid amplification step.
- a two-step RT-PCR could also be easily achieved by utilizing the reagent reservoir 58 to store and dispense the buffers, primers, dNTPs and reverse transcriptase and the incubation section 114 for the reverse transcription step followed by amplification in the normal way in the amplification section 112 .
- isothermal nucleic acid amplification is the preferred method of nucleic acid amplification, thus avoiding the need to repetitively cycle the reaction components through various temperature cycles but instead maintaining the amplification section at a constant temperature, typically around 37° C. to 41° C.
- a number of isothermal nucleic acid amplification methods have been described, including Strand Displacement Amplification (SDA), Transcription Mediated Amplification (TMA), Nucleic Acid Sequence Based Amplification (NASBA), Recombinase Polymerase Amplification (RPA), Helicase-Dependent isothermal DNA Amplification (HDA), Rolling Circle Amplification (RCA), Ramification Amplification (RAM) and Loop-mediated Isothermal Amplification (LAMP), and any of these, or other isothermal amplification methods, can be employed in particular embodiments of the LOC device described herein.
- SDA Strand Displacement Amplification
- TMA Transcription Mediated Amplification
- NASBA Nucleic Acid Sequence Based Amplification
- RPA Recombinase Polymerase Amplification
- HDA Helicase-Dependent isothermal DNA Amplification
- RCA Rolling Circle Amplification
- RAM Ramification Amplification
- LAMP Loop-mediated Isothermal Amplification
- the reagent reservoirs 60 and 62 adjoining the amplification section will be loaded with the appropriate reagents for the specified isothermal method instead of PCR amplification mix and polymerase.
- reagent reservoir 60 contains amplification buffer, primers and dNTPs and reagent reservoir 62 contains an appropriate nickase enzyme and Exo-DNA polymerase.
- reagent reservoir 60 contains the amplification buffer, primers, dNTPs and recombinase proteins, with reagent reservoir 62 containing a strand displacing DNA polymerase such as Bsu.
- reagent reservoir 60 contains amplification buffer, primers and dNTPs and reagent reservoir 62 contains an appropriate DNA polymerase and a helicase enzyme to unwind the double stranded DNA strand instead of using heat.
- reagent reservoir 62 contains an appropriate DNA polymerase and a helicase enzyme to unwind the double stranded DNA strand instead of using heat.
- the necessary reagents can be split between the two reagent reservoirs in any manner appropriate for the nucleic acid amplification process.
- reagent reservoir 60 is filled with amplification buffer
- primers and dNTPs are filled with RNA polymerase, reverse transcriptase and, optionally, RNase H.
- isothermal nucleic acid amplification it may be necessary to have an initial denaturation cycle to separate the double stranded DNA template, prior to maintaining the temperature for the isothermal nucleic acid amplification to proceed. This is readily achievable in all embodiments of the LOC device described herein, as the temperature of the mix in the amplification section 112 can be carefully controlled by the heaters 154 in the amplification microchannels 158 (see FIG. 14 ).
- Isothermal nucleic acid amplification is more tolerant of potential inhibitors in the sample and, as such, is generally suitable for use where direct nucleic acid amplification from the sample is desired. Therefore, isothermal nucleic acid amplification is sometimes useful in LOC variant XLIII 673 , LOC variant XLIV 674 and LOC variant XLVII 677 , amongst others, shown in FIGS. 73 , 74 and 75 , respectively.
- Direct isothermal amplification may also be combined with one or more pre-amplification dialysis steps 70 , 686 or 682 as shown in FIGS. 73 and 75 and/or a pre-hybridization dialysis step 682 as indicated in FIG.
- Isothermal nucleic acid amplification can also be performed in parallel amplification sections such as those schematically represented in FIGS. 64 , 69 and 70 , multiplexed and some methods of isothermal nucleic acid amplification, such as LAMP, are compatible with an initial reverse transcription step to amplify RNA.
- the LOC device can also incorporate CMOS-controlled flow rate sensors 740 , as schematically illustrated in FIG. 94 and in LOC Variant X 728 (see FIGS. 76 to 92 ).
- the sensors are used to determine the flow rate in two steps.
- the temperature of the serpentine heater element 814 is determined by applying a low current and measuring the voltage to determine the resistance of the serpentine heater element 814 , and therefore the temperature of the element 814 using the known relationship between resistance and the temperature of the heater element.
- minimal heat is being dissipated in the element 814 and the temperature of the liquid in the channel is equal to the calculated temperature of the element 814 .
- a higher current is applied to the serpentine heater element 814 such that the temperature of the element 814 increases and some heat is lost to the flowing liquid.
- the new resistance of the element 814 is determined and the increased temperature is again calculated by the CMOS circuitry 86 .
- the flow speed of the liquid is determined. From the known channel cross sectional geometry and the flow speed, the flow rate of the liquid in the channel is calculated.
- Some embodiments of the LOC device use a homogeneous protein detection assay to detect specific proteins within a crude cell lysate.
- Numerous homogeneous protein detection assays have been developed for use in these embodiments of the LOC device. Commonly, these assays utilize antibodies or aptamers to capture the target protein.
- an aptamer 141 which binds to a particular protein 142 is labelled with two different fluorophores or luminophores 143 and 144 which can function as a donor and an acceptor in a fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer (ERET) reaction (see FIGS. 108A and 108B ).
- FRET fluorescence resonance energy transfer
- ERET electrochemiluminescence resonance energy transfer
- Both donor 143 and acceptor 144 are linked to the same aptamer 141 , and the change in separation is caused by a change in conformation upon binding to the target protein 142 .
- an aptamer 141 in the absence of the target forms a conformation where the donor and acceptor are in close proximity (see FIG.
- the new conformation results in a larger separation between the donor and acceptor (see FIG. 108B ).
- the acceptor is a quencher and the donor is a luminophore
- the effect of binding to the target is an increase in light emission 250 or 862 (see FIG. 108B ).
- a second type of assay uses two antibodies 145 or two aptamers 141 that must independently bind to different, non-overlapping epitopes or regions of the target protein 142 (see FIGS. 109A , 109 B, 110 A and 110 B).
- These antibodies 145 or aptamers 141 are labelled with different fluorophores or luminophores 143 and 144 which can function as a donor and an acceptor in a fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer (ERET) reaction.
- FRET fluorescence resonance energy transfer
- ERET electrochemiluminescence resonance energy transfer
- the fluorophores or luminophores 143 and 144 form part of a pair of short complementary oligonucleotides 147 attached to the antibodies or aptamers via long, flexible linkers 149 (see FIGS.
- the complementary oligonucleotides 147 find each other and hybridize to one another (see FIGS. 109B and 110B ). This brings the donors and acceptors 143 and 144 in close proximity to one another resulting in efficient FRET 250 or ERET 862 that is used as a signal for target protein detection.
- fluorophores and luminophores are an important consideration when designing a homogeneous protein detection assay. Crude cell lysates are often turbid and may contain substances which autofluoresce. In such cases, the use of molecules with long-lasting fluorescence or electrochemiluminescence and donor-acceptor pairs 143 and 144 which are optimized to give maximal FRET 250 or ERET 862 is desired.
- One such pair is europium chelate and Cy5, which has previously been shown to significantly improve signal-to-background ratio in such a system when compared with other donor-acceptor pairs, by allowing the signal to be read after interfering background fluorescence, electrochemiluminescence or scattered light has decayed.
- Europium chelate and AlexaFluor 647 or terbium chelate and Fluorescein FRET or ERET pairs also work well.
- the sensitivity and specificity of this approach is similar to that of enzyme-linked immunosorbent assays (ELISAs), but no sample manipulation is required.
- one of the antibodies 145 or one of the aptamers 141 is attached to the base of the proteomic assay chamber 124 (see for example FIGS. 116 and 120 ) and the protein lysate is combined with the other antibody 145 or aptamer 141 during lysis within the chemical lysis section 130 to facilitate binding to the first antibody 145 or aptamer 141 prior to entering the proteomic assay chamber 124 .
- This increases the subsequent speed with which a detectable signal is generated as only one conjugation or hybridization event is required within the proteomic assay chamber.
- FIG. 54 shows the photodiode 184 integrated into the CMOS circuitry 86 of the LOC device 301 .
- the photodiode 184 is fabricated as part of the CMOS circuitry 86 without additional masks or steps. This is one significant advantage of a CMOS photodiode over a CCD, an alternate sensing technology which could be integrated on the same chip using non-standard processing steps, or fabricated on an adjacent chip.
- On-chip detection is low cost and reduces the size of the assay system.
- the shorter optical path length reduces noise from the surrounding environment for efficient collection of the fluorescence signal and eliminates the need for a conventional optical assembly of lenses and filters.
- Quantum efficiency of the photodiode 184 is the fraction of photons impinging on its active area 185 that are effectively converted to photo-electrons.
- the quantum efficiency is in the range of 0.3 to 0.5 for visible light, depending on process parameters such as the amount and absorption properties of the cover layers.
- the detection threshold of the photodiode 184 determines the smallest intensity of the fluorescence signal that can be detected.
- the detection threshold also determines the size of the photodiode 184 and hence the number of hybridization chambers 180 in the hybridization and detection section 52 (see FIG. 52 ).
- the size and number of chambers are technical parameters that are limited by the dimensions of the LOC device (in the case of the LOC device 301 , the dimensions are 1760 ⁇ m ⁇ 5824 ⁇ m) and the real estate available after other functional modules such as the pathogen dialysis section 70 and amplification section(s) 112 are incorporated.
- the photodiode 184 detects a minimum of 5 photons. However, to ensure reliable detection, the minimum can be set to 10 photons. Therefore with the quantum efficiency range being 0.3 to 0.5 (as discussed above), the fluorescence emission from the probes should be a minimum of 17 photons but 30 photons would incorporate a suitable margin of error for reliable detection.
- Electrochemiluminescence involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. Electrochemiluminescence differs from normal chemiluminescence in that formation of the excited species relies on oxidation or reduction of the luminophore or a coreactant at an electrode. Coreactants, in this context, are additional reagents added to the ECL solution which enhance the efficiency of ECL emission. In normal chemiluminescence, the excited species form purely through mixing of suitable reagents. The emitting atom or complex is traditionally referred to as a luminophore. In brief, ECL relies on generating an excited state of the luminophore, at which point a photon will be emitted. As with any such process, it is possible for an alternate path to be taken from the excited state which does not lead to the desired light emission (i.e. quenching).
- Embodiments of the test module that use ECL instead of fluorescence detection do not require an excitation LED. Electrodes are fabricated within the hybridization chambers to provide the electrical pulse for ECL generation and the photons are detected using the photosensor 44 . The duration and voltage of the electrical pulse are controlled; in some embodiments, control over the current is used as an alternative to controlling the voltage.
- the ruthenium complex, [Ru(bpy) 3 ] 2+ can also be used as a luminophore in an ECL reaction in the hybridization chambers, with TPrA (tri-n-propylamine (CH 3 CH 2 —CH 2 ) 3 N) as the coreactant.
- Coreactant ECL has the benefit that luminophores are not consumed after photon emission and the reagents are available for the process to repeat.
- the [Ru(bpy) 3 ] 2+ /TPrA ECL system provides good signal levels at physiologically relevant conditions of pH in aqueous solutions.
- Alternative coreactants which can produce equivalent or better results than TPrA with ruthenium complexes are N-butyldiethanolamine and 2-(dibutylamino)ethanol.
- FIG. 95 illustrates the reactions occurring during an ECL process in which [Ru(bpy) 3 ] 2+ is the luminophore 864 and TPrA is the coreactant 866 .
- ECL emission 862 in the [Ru(bpy) 3 ] 2+ /TPrA ECL system follows the oxidation of both Ru(bpy) 3 2+ and TPrA at the anode 860 .
- the reactions are as follows:
- the wavelength of the emitted light 862 is around 620 nm and the anode potential is around 1.1 V with respect to a Ag/AgCl reference electrode.
- the quencher is a functional moiety which is initially attached to the probe, but other embodiments are possible in which the quencher is a separate molecule free in solution.
- FIGS. 129 and 130 show the hybridization-responsive ECL probes 237 . These are often referred to as molecular beacons and are stem-and-loop probes, generated from a single strand of nucleic acid, that luminesce upon hybridization to complementary nucleic acids.
- FIG. 129 shows a single ECL probe 237 prior to hybridization with a target nucleic acid sequence 238 .
- the probe has a loop 240 , stem 242 , a luminophore 864 at the 5′ end, and a quencher 248 at the 3′ end.
- the loop 240 consists of a sequence complementary to the target nucleic acid sequence 238 . Complementary sequences on either side of the probe sequence anneal together to form the stem 242 .
- the probe In the absence of a complementary target sequence, the probe remains closed as shown in FIG. 129 .
- the stem 242 keeps the luminophore-quencher pair in close proximity to each other, such that significant resonant energy transfer can occur between them, substantially eliminating the ability of the luminophore to emit light after electrochemical excitation.
- FIG. 130 shows the ECL probe 237 in an open or hybridized configuration.
- the stem-and-loop structure is disrupted, the luminophore 864 and quencher 248 are spatially separated, thus restoring the ability of the luminophore 864 to emit light.
- the ECL emission 862 is optically detected as an indication that the probe has hybridized.
- the probes hybridize with very high specificity with complementary targets, since the stem helix of the probe is designed to be more stable than a probe-target helix with a single nucleotide that is not complementary. Since double-stranded DNA is relatively rigid, it is sterically impossible for the probe-target helix and the stem helix to coexist.
- Primer-linked stem-and-loop probes and primer-linked linear probes are an alternative to molecular beacons and can be used for real-time and quantitative nucleic acid amplification in the LOC device. Real-time amplification is performed directly in the hybridization chambers of the LOC device.
- the benefit of using primer-linked probes is that the probe element is physically linked to the primer, thus only requiring a single hybridization event to occur during the nucleic acid amplification rather than separate hybridizations of the primers and probes being required. This ensures that the reaction is effectively instantaneous and results in stronger signals, shorter reaction times and better discrimination than when using separate primers and probes.
- the probes (along with polymerase and the amplification mix) would be deposited into the hybridization chambers 180 during fabrication and there would be no need for an amplification section on the LOC device. Alternatively, the amplification section is left unused or used for other reactions.
- FIGS. 131 and 132 show a primer-linked linear ECL probe 693 during the initial round of nucleic acid amplification and in its hybridized configuration during subsequent rounds of nucleic acid amplification, respectively.
- the primer-linked linear ECL probe 693 has a double-stranded stem segment 242 .
- One of the strands incorporates the primer linked probe sequence 696 which is homologous to a region on the target nucleic acid 696 and is labelled on its 5′ end with luminophore 864 , and linked on its 3′ end to an oligonucleotide primer 700 via an amplification blocker 694 .
- the other strand of the stem 242 is labelled at its 3 end with a quencher molecule 248 .
- the probe can loop around and hybridize to the extended strand with the, now, complementary sequence 698 .
- the oligonucleotide primer 700 anneals to the target DNA 238 (see FIG. 131 ) and is then extended, forming a DNA strand containing both the probe sequence and the amplification product.
- the amplification blocker 694 prevents the polymerase from reading through and copying the probe region 696 .
- the extended oligonucleotide primer 700 /template hybrid is dissociated and so is the double stranded stem 242 of the primer-linked linear probe, thus releasing the quencher 248 .
- the primer linked probe sequence 696 of the primer-linked linear ECL probe curls around and hybridizes to the amplified complementary sequence 698 on the extended strand and light emission is detected indicating the presence of the target DNA.
- Non-extended primer-linked linear ECL probes retain their double-stranded stem and light emission remains quenched. This detection method is particularly well suited for fast detection systems as it relies on a single-molecule process.
- FIGS. 133A to 133F show the operation of a primer-linked stem-and-loop ECL probe 705 .
- the primer-linked stem-and-loop ECL probe 705 has a stem 242 of complementary double-stranded DNA and a loop 240 which incorporates the probe sequence.
- One of the stem strands 708 is labelled at its 5′ end with luminophore 864 .
- the other strand 710 is labelled with a 3′-end quencher 248 and carries both the amplification blocker 694 and oligonucleotide primer 700 .
- the initial denaturation phase see FIG.
- the strands of the target nucleic acid 238 separate, as does the stem 242 of the primer-linked stem-and-loop ECL probe 705 .
- the temperature cools for the annealing phase see FIG. 133C
- the oligonucleotide primer 700 on the primer-linked stem-and-loop ECL probe 705 hybridizes to the target nucleic acid sequence 238 .
- the complement 706 to the target nucleic acid sequence 238 is synthesized forming a DNA strand containing both the probe sequence 705 and the amplified product.
- the amplification blocker 694 prevents the polymerase from reading through and copying the probe region 705 .
- the probe sequence of the loop segment 240 of the primer-linked stem-and-loop probe (see FIG. 133F ) anneals to the complementary sequence 706 on the extended strand.
- This configuration leaves the luminophore 864 relatively remote from the quencher 248 , resulting in a significant increase in light emission.
- the hybridization chamber array 110 includes some hybridization chambers 180 with positive and negative ECL control probes used for assay quality control.
- FIGS. 134 and 135 schematically illustrate negative control ECL probes 786 without a luminophore
- FIGS. 136 and 137 are sketches of positive control ECL probes 787 without a quencher.
- the positive and negative control ECL probes have a stem-and-loop structure like the ECL probes described above. However, an ECL signal 862 (see FIG. 130 ) will always be emitted from positive control ECL probes 787 and no ECL signal 862 is ever emitted from negative control ECL probes 786 , regardless of whether the probes hybridize into an open configuration or remain closed.
- the negative control ECL probe 786 has no luminophore (and may or may not have a quencher 248 ). Hence, whether the target nucleic acid sequence 238 hybridizes with the probe as shown in FIG. 135 , or the probe remains in its stem 242 and loop 240 configuration as shown in FIG. 134 , the ECL signal is negligible. Alternatively, the negative control ECL probe could be designed so that it always remains quenched.
- the stem 242 of the probe molecule will re-hybridize to itself and the luminophore and quencher will remain in close proximity and no appreciable ECL signal will be detected.
- This negative control would account for any low level emission that may occur if the quenching is not complete.
- the positive control ECL probe 787 is constructed without a quencher as illustrated in FIGS. 136 and 137 . None quenches the ECL emission 862 from the luminophore 864 regardless of whether the positive control probe 787 hybridizes with the target nucleic acid sequence 238 .
- FIGS. 123 and 124 show another possibility for constructing a positive control chamber.
- the calibration chambers 382 which are sealed from the amplicon (or any flow containing target molecules) can be filled with the ECL luminophore solution such that a positive signal is always detected at the electrode
- control chambers can be negative control chambers because the lack of inlets prevents any targets from reaching the probes such that an ECL signal is never detected.
- FIG. 52 shows a possible distribution of the positive and negative control probes ( 378 and 380 respectively) throughout the hybridization chamber array 110 .
- positive and negative control ECL probes 786 and 787 would replace control fluorescent probes 378 and 380 , respectively.
- the control probes are placed in hybridization chambers 180 along a line extending diagonally across the hybridization chamber array 110 . However, the arrangement of the control probes within the array is arbitrary (as is the configuration of the hybridization chamber array 110 ).
- the non-uniformity of the electrical characteristic of the photodiode 184 response to any ambient light present at the sensor array, and light originating at other locations in the array, introduce background noise and offset into the output signal.
- This background is removed from each output signal by calibration chambers 382 in the hybridization chamber array 110 which either do not contain any probes, contain probes that have no ECL luminophore, or contain probes with a luminophore and quencher configured such that quenching is always expected to occur.
- the number and arrangement of the calibration chambers 382 throughout the hybridization chamber array is arbitrary. However, the calibration is more accurate if photodiodes 184 are calibrated by a calibration chamber 382 that is relatively proximate. Referring to FIG.
- the hybridization chamber array 110 has one calibration chamber 382 for every eight hybridization chambers 180 . That is, a calibration chamber 382 is positioned in the middle of every three by three square of hybridization chambers 180 . In this configuration, the hybridization chambers 180 are calibrated by a calibration chamber 382 that is immediately adjacent.
- FIG. 93 shows a differential imager circuit 788 used to substract the signal from the photodiode 184 corresponding to the calibration chamber 382 as a result of the applied electrical pulse, from the ECL signal from the surrounding hybridization chambers 180 .
- the differential imager circuit 788 samples the signal from the pixel 790 and a “dummy” pixel 792 . Signals arising from ambient light in the region of the chamber array are also subtracted.
- the signals from the pixel 790 are small (i.e. close to dark signal), and without a reference to a dark level it is hard to differentiate between the background and a very small signal.
- the “read_row” 794 and “read_row_d” 795 are activated and M 4 797 an MD 4 801 transistors are turned on.
- Switches 807 and 809 are closed such that the outputs from the pixel 790 and “dummy” pixel 792 are stored on pixel capacitor 803 and dummy pixel capacitor 805 respectively.
- switches 807 and 809 are deactivated.
- the “read_col” switch 811 and dummy “read_col” switch 813 are closed, and the switched capacitor amplifier 815 at the output amplifies the differential signal 817 .
- the normal metric of efficiency in ECL is the number of photons obtained per “Faradaic” electron, i.e. per electron which participates in the electrochemistry.
- the ECL efficiency is denoted ⁇ ECL :
- I is the intensity in photons per second
- i is the current in amperes
- F is Faraday's constant
- N A is Avogadro's constant
- Annihilation ECL in deoxygenated, aprotic solutions is simple enough to allow efficiency measurements, and the consensus value of(I) is ⁇ ECL is around 5%.
- Coreactant systems have been generally declared to be beyond meaningful direct measurements of efficiency. Instead, emission intensity is related by scaling to easily-prepared standard solutions such as Ru(bpy) 3 2+ , measured in the same format.
- the literature see for example J. K. Leland and M. J. Powell, J. Electrochem. Soc. , 137, 3127 (1990), and R. Pyati and M. M. Richter, Annu. Rep. Prog. Chem.
- the voltage at the working electrode for the Ru(bpy) 3 2+ /TPrA system is approximately +1.1 V (generally measured in the literature with respect to a reference Ag/AgCl electrode). Voltages this high shorten electrode lifetimes but this is not an issue for single-use devices such as the LOC device used in the present diagnostic system.
- the ideal voltage between the anode and cathode depends on the combination of solution components and electrode materials. Selecting the correct voltage can require compromising between the highest signal levels, reagent and electrode stability, and the activation of undesired side reactions such as electrolysis of the water in the chamber.
- the ECL emission is maximized at 2.1-2.2 V (depending on the coreactant choice). Emission intensities drop to ⁇ 75% of the peak values for voltages below 1.9 V and above 2.6 V, and to ⁇ 50% of the peak values for voltages below 1.7 V and above 2.8 V.
- a preferred anode-cathode voltage difference for ECL operation in such systems is therefore 1.7-2.8 V, with the range 1.9-2.6 V being particularly preferred. This allows maximization of the emission intensity as a function of voltage, while avoiding voltages at which significant gas evolution at the electrodes is observed.
- the wavelength of the emitted light 862 from ECL has an intensity peak at around 620 nm (measured in air or vacuum), and the emission spans a relatively broad wavelength range. Significant emission occurs at wavelengths from around 550 nm to 700 nm. Furthermore, the peak emission wavelength can vary by ⁇ 10% due to changes in the chemical environment around the active species.
- the LOC device embodiments described here which incorporate no wavelength-specific filters, have two advantages for capturing signals with such a broad and variable spectrum.
- the first advantage is sensitivity: any wavelength filter reduces light transmission, even within its pass band, so efficiency is improved by not including a filter.
- the second advantage is flexibility: adjustment of filter pass bands is not required after minor reagent changes, and the signals are less dependent on minor differences in non-target components of the input sample.
- ECL relies on the availability of luminophore (and coreactant) in solution.
- the excited species 868 are generated only in the solution 872 near the electrodes 860 and 870 .
- the parameter boundary layer depth in the models presented here, is the depth of the layer of solution 872 around the electrode 860 in which the excited species 868 are generated.
- reagents can adsorb onto the electrodes and may become unavailable to the ECL process.
- ECL is observed in experiments where conjugation to magnetic beads with diameters up to 4.5 ⁇ m is used to attract the luminophore 864 to the anode 860 .
- the intensity of the ECL emission 862 (see FIG. 130 ) is generally higher than the intensity of the emission 862 from steady-state activation of the electrodes. Accordingly, the activation signal to the electrodes 860 and 870 is pulse-width modulated (PWM) by the CMOS circuitry 86 (see FIG. 102 ).
- PWM pulse-width modulated
- the Ru complex is not consumed in the Ru(bpy) 3 2+ /TPrA ECL system, so the intensity of emission 862 does not reduce with successive reaction cycles.
- the lifetime of the rate-limiting step is approximately 0.2 milliseconds giving a total reaction recycling time of approximately 1 millisecond.
- Electrophoresis of the oligonucleotides can complicate the detection of probe-target hybrids, as DNA is highly negatively charged and attracted to the anode 860 .
- the time scale for this motion is typically short (in the order of milliseconds). Electrophoretic effects are strong even though the voltages are moderate ( ⁇ 1 V), because the separation between the anode 860 and cathode 870 is small.
- Electrophoresis enhances the ECL emission 862 in some embodiments of the LOC device and degrades the emission in others. This is addressed by increasing or decreasing the electrode spacing to get the associated increases or decreases in electrophoretic effect. Interdigitation of the anode 860 and the cathode 870 above the photodiode 184 represents the extreme case of minimizing this separation. Such an arrangement produces ECL, even in the absence of a coreactant 866 at carbon electrodes 860 and 870 .
- the current required to maintain an ECL voltage of ⁇ 2.2 V is determined as follows with reference to the ECL cell 874 schematically illustrated in FIG. 98 .
- the DC current through the chamber is determined by two resistances: the interface resistance R s between the electrodes 860 and 870 and the bulk of the solution, and the solution resistance R s which is derived from the bulk solution resistivity and conduction path geometry.
- the chamber resistance is dominated by interfacial resistances at the electrodes 860 and 870 , and R s can be neglected.
- the effect of the interfacial resistance is estimated by scaling measurements of macroscopic current flow through similar solutions for the electrode geometries in the LOC devices.
- the anode area was smaller than the cathode area, and was surrounded by a cathode with comparable area in a ring geometry. For an anode consisting of a circle 2 mm in diameter, the current measured was 1.1 mA, giving a current density of 350 A/m 2 .
- the electrode area is for the square ring geometry schematically illustrated in FIG. 98 .
- the anode is a ring with width 1 ⁇ m and thickness 1 ⁇ m.
- Heating of the chambers by ⁇ 20° C. can cause denaturation of most hybridization probes.
- this level of temperature stability single base mismatch-sensitive hybridization, using appropriately designed sequences, becomes feasible. This allows the detection of mutations and allelic differences at the level of single nucleotide polymorphisms.
- the DC current is applied to the electrodes 860 and 870 for 0.69 s, to limit the heating to 4° C.
- a current of ⁇ 69 nA passing through the chamber is far more than can be accommodated as Faradaic current by the ECL species at micromolar concentrations. Therefore, low-duty-cycle pulsing of the electrodes 860 and 870 to further reduce heating (to 1° C. or less) while maintaining sufficient ECL emission 862 , does not introduce complications associated with reagent depletion.
- the current is reduced to 0.1 nA which removes the need for pulsed activation of the electrodes. Even at currents as low as 0.1 nA, the ECL emission 862 is luminophore-limited.
- the immediate chemical precursors of ECL luminescence are generated within nanometres of the working electrode.
- light emission (the excited species 868 ) generally occurs within microns or less of that location.
- the volume immediately adjacent to the working electrode (anode 860 ) is visible to the corresponding photodiode 184 of the photosensor 44 .
- the electrodes 860 and 870 are directly adjacent the active surface area 185 of the corresponding photodiode 184 in the photosensor 44 .
- the anode 860 is shaped to increase the length of its lateral periphery ‘seen’ by the photodiode 184 . This aims to maximize the volume of excited species 868 that can be detected by the underlying photodiode 184 .
- FIG. 96 schematically illustrates three embodiments of the anode 860 .
- a comb structure anode 878 has the advantage that the parallel fingers 880 can be interdigitated with the fingers of a cathode 870 .
- the interdigitated configuration is shown in FIG. 103 , and in a partial view of a LOC layout in FIGS. 120 and 124 .
- the interdigitated configuration provides a uniform dielectric gap 876 (see FIG. 97 ) that is relatively narrow (1 to 2 microns) and the interdigitated comb structure is relatively simple for the lithographic fabrication process.
- a relatively narrow dielectric gap 876 between the electrodes 860 and 870 obviates the need for a coreactant in some solutions 872 , as the excited species 868 will diffuse between anode and cathode.
- the removal of the requirement for a coreactant removes the potential chemical impact of the coreactant on the various assay chemistries and provides a wider range of possible assay options.
- some embodiments of the anode 860 have a serpentine configuration 882 .
- the anode may have a more complex configuration 886 if necessary or desirable.
- it may have a crenulated section 888 , a branched structure 890 , or a combination of the two.
- Partial views of LOC designs incorporating a branched structure 890 are shown in FIGS. 138 and 139 .
- the more complicated configurations such as 886 provide a long length of lateral periphery, and are best suited to solution chemistries where a coreactant is employed since patterning a closely-spaced opposing cathode is more difficult.
- ECL cells involve a planar working electrode which is viewed externally.
- traditional microfabrication techniques for metal layers tend to lead to planar structures with metal thicknesses of approximately 1 micron.
- increasing the length of lateral periphery enhances the coupling between the ECL emission and the photodiode 184 .
- a second strategy to further increase the efficiency of collection of emitted light 862 (see FIG. 130 ) by the photodiode 184 is to increase the thickness of the anode 860 .
- This is shown schematically in FIG. 97 .
- the part of the participating volume 892 adjacent to the walls of the working electrode is the region most efficiently coupled to the photodiode 184 . Therefore, for a given width of working electrode 860 , the overall collection efficiency of the emitted light 862 can be improved by increasing the thickness of the electrodes. Further, since high current carrying capacity is not required, the width of the working electrode 860 is reduced as far as is practical.
- the thickness of the electrodes 860 and 870 can not increase without restrictions. Noting that the feature and separation sizes of the electrodes are likely to be of the order of 1 micron, and that liquid filling makes gaps which are wider than they are deep unfavourable, the optimum practical thickness for the electrodes is 0.25 micron to 2 microns.
- the spacing between the electrodes 860 and 870 is important for the quality of signals in LOC devices, particularly in embodiments where the electrodes are interdigitated.
- the anode 860 is a branched structure such as shown in FIG. 96 and FIG. 100
- the spacing between adjacent elements can also be important. ECL emission efficiency, and the collection efficiency of the emitted light, should both be maximised.
- ECL emission tends to favour electrode spacings on the order of one micron or less. Small spacings are particularly attractive when performing ECL in the absence of a coreactant.
- the fact that the spacing can be comparable to the wavelength of the emitted light 862 is of limited importance. Therefore, in many embodiments where the emitted light 862 (see FIG. 130 ) is measured at a location which does not require that the light have passed between the electrodes 860 and 870 , making the electrode spacing as small as practical is often the goal. In embodiments where the emitted light 862 must pass between the electrodes 860 and 870 , however, it becomes necessary to move beyond considering just the ECL emission process, and consider the wave properties of light.
- the wavelength of the emitted light 862 from ECL of Ru(bpy) 3 2+ is around 620 nm, and therefore 460 nm (0.46 microns) in water.
- the emitted light 862 must pass through a gap between elements of the metallic structures. If this gap is comparable to the wavelength of the light, diffraction generally reduces the intensity of propagating light which reaches the photodiode 184 .
- evanescent mode coupling can be harnessed to improve the strength of collected signals. Two measures are taken in the LOC devices to enhance the efficiency of coupling between the photodiode 184 and the emitted light 862 .
- the separation between metallic elements is not reduced below approximately the wavelength of the emitted light in water, i.e. approximately 0.4 microns.
- the distance from the gap between elements to the photodiode 184 is minimised. In the LOC device embodiments described here, this indicates that the total thickness of layers between the electrodes 860 and 870 and the photodiode 184 be one micron or less. In embodiments where multiple layers are present between the electrodes and the photodiode, arranging their thicknesses to be quarter-wave or three-quarter wave layers has the further benefit of suppressing reflection of the emitted light 862 .
- FIG. 97 is a schematic partial cross-section of the electrodes 860 and 870 in the hybridization chamber.
- the occluded region 894 above the anode 860 is ignored because its optical coupling to the photodiode 184 is negligible.
- a technique for determining whether a particular electrode configuration provides a foundation for the level of ECL emission 862 for the underlying photodiode 184 is set out below with reference to FIGS. 98 , 99 and 100 .
- FIG. 98 is a ring geometry in which the anode 860 is around the edge of photodiode 184 .
- the anode 860 is positioned within the periphery of the photodiode 184 .
- FIG. 100 shows a more complex configuration in which the anode 860 has a series of parallel fingers 880 to increase the length of its lateral edges.
- N lum V ECL C L N A
- ⁇ ECL the lifetime of the ECL process
- C L the luminophore concentration
- ⁇ p the pulse duration
- N A is Avogadro' s number.
- N phot The number of isotropically emitted photons N phot is:
- ⁇ ECL is the ECL efficiency, defined as the average number of photons emitted by the ECL reaction of a single luminophore.
- ⁇ 0 is the optical coupling efficiency (the number of photons absorbed by the photodiode 184 ) and ⁇ q is the photodiode quantum efficiency.
- the signal is therefore:
- ⁇ 0 is:
- ⁇ 0 (25% photons which are directed towards the photodiode 184 ) ⁇ (10% of photons which are not reflected)
- ⁇ 0 (50% photons which are directed towards the photodiode) ⁇ (10% of photons which are not reflected)
- ⁇ 0 5% for the configuration of FIG. 100 .
- the participating volume 892 depends on the electrode configuration, and details are presented in the corresponding sections.
- Electrode thickness i.e., 1 ⁇ m exposed edge height
- Electrode layer minimum 1 ⁇ m Process critical width and gap dimension
- Electrode interfacial 350 A/m 2 For ohmic heating current density Solution volume 0.5 ⁇ ⁇ m For ohmic heating resistivity Voltage difference 2.2 V applied (working ⁇ counter electrode)
- the anode 860 is a ring around the edge of the photodiode 184 .
- the participating volume 892 is:
- V ECL 4 ⁇ [(layer beside the electrode wall)+(quarter-cylinder above the electrode wall)]
- This signal is readily detectable by the underlying photodiode 184 of the LOC device photosensor 44 .
- parallel fingers 880 are added across the anode 860 . Only horizontal edges shown in figure contribute to the participating volume 892 , to avoid double-counting the perpendicular edges.
- the participating volume 892 is then:
- This signal is easily detectable in the photodiode 184 .
- This configuration shown in FIG. 101 and FIG. 102 is included as a limiting case of maximum surface area coupling.
- 90% or better coupling between the electrode surface area and the active surface area 185 of the photodiode 184 achieves a nearly optimal result, and even coupling of 50% of the photodiode active surface area 185 to the electrode surface area provides most of the benefit of the complete overlay configuration.
- Complete overlay can be achieved in two embodiments: first, as indicated schematically in FIG.
- the anode 860 is again parallel to and registered with the photodiode area, but the solution 872 fills a void between the anode 860 and the photodiode 184 .
- the anode is assumed to be a complete layer above the photodiode 184 , with half of the photons directed toward the photodiode 184 (absorption efficiency still 10%).
- the on-chip detection of hybridization avoids the needs for detection via confocal microscopy (see Background of the Invention). This departure from traditional detection techniques is a significant factor in the time and cost savings associated with this system.
- Traditional detection requires imaging optics which necessarily uses lenses or curved mirrors. By adopting non-imaging optics, the diagnostic system avoids the need for a complex and bulky optical train. Positioning the photodiode very close to the probes has the advantage of extremely high collection efficiency: when the thickness of the material between the probes and the photodiode is on the order of 1 micron, the angle of collection of emission light is up to 174°.
- This angle is calculated by considering light emitted from a probe at the centroid of the face of the hybridization chamber closest to the photodiode, which has a planar active surface parallel to that chamber face.
- the cone of emission angles within which light is able to be absorbed by the photodiode is defined as having the emitting probe at its vertex and the corner of the sensor on the perimeter of its planar face.
- the vertex angle of this cone is 170°; in the limiting case where the photodiode is expanded so that its area matches that of the 28 micron ⁇ 26.5 micron hybridization chamber, the vertex angle is 174°.
- a separation between the chamber face and the photodiode active surface of 1 micron or less is readily achievable.
- the selected photodetector has a detection threshold of 17 photons, and for values of d 0 greater than ten times the sensor size (i.e., essentially normal incidence) the proportion of photons not reflected at the sensor surface can be increased from 10% to 90%. Therefore, the minimum optical efficiency required is:
- the base area of the light-emitting region of the hybridization chamber 180 is 29 micron ⁇ 19.75 micron.
- the LOC device 301 described and illustrated above in full is just one of many possible LOC device designs. Variations of the LOC device that use different combinations of the various functional sections described above will now be described and/or shown as schematic flow-charts, from sample inlet to detection, to illustrate some of the combinations possible.
- the flow-charts have been divided, where appropriate, into sample input and preparation stage 288 , extraction stage 290 , incubation stage 291 , amplification stage 292 , pre-hybridization stage 293 and detection stage 294 .
- the accompanying full layouts are not shown for reasons of clarity and succinctness. Also in the interests of clarity, smaller functional units such as liquid sensors and temperature sensors are not shown but it will be appreciated that these have been incorporated into the appropriate locations in each of the following LOC device designs.
- FIGS. 111 to 127 show a LOC variant 729 with electrochemiluminescence (ECL) detection.
- This LOC device prepares 288 , extracts 290 , incubates 291 , amplifies 292 and detects 294 both human and pathogen nucleic acids, as well as human and pathogen protein detection.
- ECL is used in the hybridization chamber arrays and proteomic assay chamber arrays for target detection.
- a biological sample for example, whole blood
- the sample flows through the cap channel 94 to the anticoagulant surface tension valve 118 .
- the cap 46 is fabricated with an interface layer 594 positioned between the cap channel layer 80 and the MST channel layer 100 of the CMOS+MST device 48 (see FIG. 112 ).
- the interface layer 594 allows a more complex fluidic interconnection between the reagent reservoirs and the MST layer 87 without increasing the size of the silicon substrate 84 .
- FIG. 113 shows the MST layer 87 visible on the top surface of the CMOS+MST device 48 .
- FIG. 114 shows the cap channel layer 80 on the underside of the cap 46 .
- FIG. 115 superimposes the reservoirs, the cap channels 94 and the interface channels to illustrate the more sophisticated plumbing achieved with a cap 46 incorporating an interface layer 594 .
- the interface layer 594 requires the anticoagulant surface tension valve 118 to have two interface channels 596 and 598 .
- a reservoir-side interface channel 596 connects the reservoir outlet with the downtakes 92 and a sample-side interface channel 598 connects the uptakes 96 with the cap channel 94 .
- Anticoagulant from the reservoir 54 flows through the MST channels 90 via the reservoir-side interface channel 596 to pin a meniscus at the uptakes 96 .
- the sample flow along the cap channel 94 dips into the sample-side interface channel 598 to remove the meniscus so that the anticoagulant combines with the blood sample as it continues onto the leukocyte dialysis section 328 .
- the leukocyte dialysis section 328 incorporates a bypass channel 600 for filling the flow channel structures without trapped air bubbles (see FIGS. 117 and 126 ).
- the blood sample flows through cap channel 94 to the upstream end of the large constituents interface channel 730 .
- the large constituents interface channel 730 is in fluid communication with the dialysis MST channels 204 via apertures in the form of 7.5 micron diameter holes 165 (see FIG. 126 ).
- each of the dialysis MST channels 204 lead from the 7.5 micron diameter holes 165 to respective dialysis uptakes 168 .
- the dialysis uptake holes 168 are open to the small constituents interface channel 732 .
- the uptakes are configured to pin a meniscus rather than allow capillary driven flow to continue.
- the uptake belonging to the bypass channel 600 has a capillary initiation feature 202 configured to initiate capillary driven flow into the small constituents interface channel 732 . This ensures the flow begins at the upstream end of the small constituents interface channel 732 and sequentially unpins the menisci at the dialysis uptakes 168 as the flow progresses downstream.
- FIG. 121 shows the downstream end of the leukocyte dialysis section 328 .
- the large constituents interface channel 730 feeds into the large constituents cap channel 736 and the small constituents interface channel 732 feeds the small constituents cap channel 734 .
- the large constituents cap channel 736 feeds the leukocytes (and any other large constituents) into the chemical lysis section 130 . 1 via the lysis surface tension valve 128 . 1 where lysis reagent from reservoir 56 . 1 is added.
- the chemical lysis section 130 . 1 has a 3 micron filter downtake 738 at the outlet (see FIG. 117 ). The filter downtake ensures that no large constituents reach the lysis chamber exit boiling-initiated valve 206 .
- the boiling-initiated valve 206 opens the chemical lysis section 130 . 1 outlet and the sample flow is split into two streams. As best shown in FIG. 117 , one stream flows to the surface tension valve 132 . 1 for the first restriction enzyme, ligase and linker reservoir 58 . 1 and the other stream is drawn along a lysed leukocyte bypass channel 742 directly to the proteomic assay chamber array 124 . 1 in the hybridization and detection section 294 .
- the sample fills the proteomic assay chamber array 124 . 1 (see FIG. 119 ) containing probes for hybridization with target human proteins. Probe-target hybrids are detected with a photosensor 44 (see FIG. 111 ).
- the other stream flows into the leukocyte incubation section 114 . 1 together with restriction enzymes, ligase and linker primers from reservoir 58 . 1 .
- the incubator outlet valve 207 (also a boiling-initiated valve) opens and flow continues into the leukocyte DNA amplification section 112 . 1 .
- the amplification mix and polymerase in reservoirs 60 . 1 and 62 . 1 are added via surface tension valves 138 . 1 and 140 . 1 respectively.
- the boiling-initiated valve 108 opens for the amplicon to enter the hybridization chamber array 110 . 1 containing probes for human DNA targets. Probe-target hybrids are detected with the photosensor 44 .
- the erythrocytes and pathogens from the leukocyte dialysis section 328 are fed to the pathogen dialysis section 70 via the cap channel 734 (see FIGS. 117 and 127 ).
- This operates in the same manner as the leukocyte dialysis section 328 with the exception that the filter downtakes have 3 micron holes 164 instead of the 7.5 micron holes 165 used for leukocyte dialysis.
- the erythrocytes remain in the large constituents interface channel 730 while the pathogens diffuse to the small constituents interface channel 732 .
- FIG. 122 shows the downstream end of the pathogen dialysis section 70 .
- the erythrocytes flow into the large constituents cap channel 736 and the pathogens fill the small constituents cap channel 734 .
- ‘large constituents’ and ‘small constituents’ are used in a relative sense as the large constituents output of the pathogen dialysis section is part of the small constituents output of the leukocyte dialysis section.
- the constituents in the large constituents cap 736 or interface channels are simply larger than the constituents in the small constituents cap 734 or interface channels within that particular dialysis section.
- the erythrocytes in the large constituents cap channel 736 are directed to the surface tension valve 128 . 3 for the lysis reagent reservoir 56 . 3 .
- the lysis reagent combines with the erythrocytes as the sample fluid fills the chemical lysis section 130 . 3 .
- Boiling-initiated valve 206 at the outlet of the third chemical lysis section 130 . 3 retains the pathogens until lysis is complete.
- the boiling-initiated valve 206 opens, the erythrocyte DNA flows directly into the proteomic assay chamber array 124 . 3 for protein analysis and detection by the photosensor 44 (see FIG. 119 ).
- the pathogens in the small constituents cap channel 734 are directed to the surface tension valve 128 . 2 of the second lysis reagent reservoir 56 . 2 .
- the lysis reagent combines with the pathogens as the sample fluid fills the second chemical lysis section 130 . 2 .
- the boiling-initiated valve 206 opens the chemical lysis section 130 . 2 outlet and the sample flow is split into two streams. As best shown in FIGS. 116 and 118 , one stream flows to the surface tension valve 132 . 2 for the second restriction enzyme, ligase and linker reservoir 58 . 2 and the other stream is drawn along a bypass channel 744 directly to the hybridization and detection section 294 .
- the sample fills the proteomic assay chamber array 124 . 2 (see FIG. 119 ) containing probes for hybridization with target pathogen proteins or other biomolecules. Probe-target hybrids are detected with the photosensor 44 (see FIG. 111 ).
- the other stream flows into the pathogen incubation section 114 . 2 together with restriction enzymes, ligase and linker primers from reservoir 58 . 2 .
- the incubator exit valve 207 also a boiling-initiated valve
- the amplification mix and polymerase in reservoirs 60 . 2 and 62 . 2 are added via surface tension valves 138 . 2 and 140 . 2 respectively.
- the boiling-initiated valve 108 opens for the amplicon to flow into the second hybridization chamber array 110 . 2 containing probes for pathogenic DNA targets. Probe-target hybrids are detected with the photosensor 44 (see FIG. 119 ).
- the hybridization chamber arrays 110 . 1 and 110 . 2 and proteomic assay chamber arrays 124 . 1 to 124 . 3 have heater elements 182 made from strips of titanium nitride.
- the flow rate sensor 740 (see FIG. 125 ) is included in the pathogen incubation section 114 . 2 to determine the time delay.
- FIGS. 123 and 124 show the calibration chambers 382 . They are used to calibrate the photodiodes 184 to adjust for system noise and background levels. The photodiode's response and electrical noise characteristics can vary with location and due to thermal variations.
- the output signal from calibration chambers 382 which do not contain any probes, closely approximates the noise and background in the output signal from all the chambers. Subtracting the calibration signal from the output signals generated by the other hybridization chambers substantially removes the noise and leaves the signal generated by the electrochemiluminescence (if any).
- positive and negative control ECL probes 786 and 787 can be placed in some of the hybridization chambers 180 for assay quality control.
- a humidifier 196 composed of the water reservoir 188 and evaporators 190 , is located in the top left of the device.
- the position of the humidity sensor 232 is adjacent to the hybridization chamber array 110 where humidity measurement is most important to slow evaporation from the solution containing the exposed probes.
- leukocytes By combining the leukocyte and pathogen output dialysis sections, three output streams are produced (leukocytes, erythrocytes, and pathogens and other biomolecules) which are processed separately to enable higher sensitivity and parallel analysis.
- the output from each stream is lysed and separately directed to the proteomic assay chamber arrays for protein detection.
- the lysed leukocytes and pathogens are also separately directed to the incubation 114 and amplification 112 sections for amplification, followed by hybridization for nucleic acid detection.
- a trench 896 is etched into the back of the silicon substrate 84 .
- the purpose of the trench is to thermally insulate the amplification section 112 from the hybridization chamber array 110 .
- the hybridization array contains detection probes that can degrade at high temperatures.
- the trench when filled with air, has a thermal conductivity of the order of 6000 times less than that of the silicon substrate, thereby significantly reducing the heat flux into adjacent parts of the LOC device.
- This provides two main advantages: an increase in the heating efficiency in the amplification section 112 ; and a reduction in the undesirable temperature rise of the adjacent hybridization section 110 .
- Improved heating efficiency means less power is required to heat the amplification section 112 and the temperature reaches its desired end-point temperature faster and with better spatial uniformity within the amplification section.
- a reduction in the temperature rise in the hybridization section 110 allows for a wider range of probe chemistries and superior signal quality.
- the trench can be placed around any region on the LOC device to thermally insulate the components in that region.
- the width and depth of the trench 896 are variable to suit the specific application.
- the devices, systems and methods described here facilitate molecular diagnostic tests at low cost with high speed and at the point-of-care.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Temperature-Responsive Valves (AREA)
Abstract
A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device having electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, electrodes for receiving an electrical pulse to excite the ECL luminophores, hybridization chambers containing the probes for detection of the targets, and a pair of the electrodes, and, at least one negative control chamber without the ECL probes.
Description
- The present invention relates to diagnostic devices that use microsystems technologies (MST). In particular, the invention relates to microfluidic and biochemical processing and analysis for molecular diagnostics.
- The following applications have been filed by the Applicant which relate to the present application:
-
GBS001US GBS002US GBS003US GBS005US GBS006US GSR001US GSR002US GAS001US GAS002US GAS003US GAS004US GAS006US GAS007US GAS008US GAS009US GAS010US GAS012US GAS013US GAS014US GAS015US GAS016US GAS017US GAS018US GAS019US GAS020US GAS021US GAS022US GAS023US GAS024US GAS025US GAS026US GAS027US GAS028US GAS030US GAS031US GAS032US GAS033US GAS034US GAS035US GAS036US GAS037US GAS038US GAS039US GAS040US GAS041US GAS042US GAS043US GAS044US GAS045US GAS046US GAS047US GAS048US GAS049US GAS050US GAS054US GAS055US GAS056US GAS057US GAS058US GAS059US GAS060US GAS061US GAS062US GAS063US GAS065US GAS066US GAS067US GAS068US GAS069US GAS070US GAS080US GAS081US GAS082US GAS083US GAS084US GAS085US GAS086US GAS087US GAS088US GAS089US GAS090US GAS091US GAS092US GAS093US GAS094US GAS095US GAS096US GAS097US GAS098US GAS099US GAS100US GAS101US GAS102US GAS103US GAS104US GAS105US GAS106US GAS108US GAS109US GAS110US GAS111US GAS112US GAS113US GAS114US GAS115US GAS117US GAS118US GAS119US GAS120US GAS121US GAS122US GAS123US GAS124US GAS125US GAS126US GAS128US GAS129US GAS130US GAS131US GAS132US GAS133US GAS134US GAS135US GAS136US GAS137US GAS138US GAS139US GAS140US GAS141US GAS142US GAS143US GAS144US GAS146US GAS147US GRR001US GRR002US GRR003US GRR004US GRR005US GRR006US GRR007US GRR008US GRR009US GRR010US GVA001US GVA002US GVA004US GVA005US GVA006US GVA007US GVA008US GVA009US GVA010US GVA011US GVA012US GVA013US GVA014US GVA015US GVA016US GVA017US GVA018US GVA019US GVA020US GVA021US GVA022US GHU001US GHU002US GHU003US GHU004US GHU006US GHU007US GHU008US GWM001US GWM002US GDI001US GDI002US GDI003US GDI004US GDI005US GDI006US GDI007US GDI009US GDI010US GDI011US GDI013US GDI014US GDI015US GDI016US GDI017US GDI019US GDI023US GDI028US GDI030US GDI039US GDI040US GDI041US GPC001US GPC002US GPC003US GPC004US GPC005US GPC006US GPC007US GPC008US GPC009US GPC010US GPC011US GPC012US GPC014US GPC017US GPC018US GPC019US GPC023US GPC027US GPC028US GPC029US GPC030US GPC031US GPC033US GPC034US GPC035US GPC036US GPC037US GPC038US GPC039US GPC040US GPC041US GPC042US GPC043US GLY001US GLY002US GLY003US GLY004US GLY005US GLY006US GIN001US GIN002US GIN003US GIN004US GIN005US GIN006US GIN007US GIN008US GMI001US GMI002US GMI005US GMI008US GLE001US GLE002US GLE003US GLE004US GLE005US GLE006US GLE007US GLE008US GLE009US GLE010US GLE011US GLE012US GLE013US GLE014US GLA001US GGA001US GGA003US GRE001US GRE002US GRE003US GRE004US GRE005US GRE006US GRE007US GCF001US GCF002US GCF003US GCF004US GCF005US GCF006US GCF007US GCF008US GCF009US GCF010US GCF011US GCF012US GCF013US GCF014US GCF015US GCF016US GCF020US GCF021US GCF022US GCF023US GCF024US GCF025US GCF027US GCF028US GCF029US GCF030US GCF031US GCF032US GCF033US GCF034US GCF035US GCF036US GCF037US GSA001US GSA002US GSE001US GSE002US GSE003US GSE004US GDA001US GDA002US GDA003US GDA004US GDA005US GDA006US GDA007US GPK001US GMO001US GMV001US GMV002US GMV003US GMV004US GRD001US GRD002US GRD003US GRD004US GPD001US GPD003US GPD004US GPD005US GPD006US GPD007US GPD008US GPD009US GPD010US GPD011US GPD012US GPD013US GPD014US GPD015US GPD016US GPD017US GAL001US GPA001US GPA003US GPA004US GPA005US GSS001US GSL001US GCA001US GCA002US GCA003US - The disclosures of these co-pending applications are incorporated herein by reference. The above applications have been identified by their filing docket number, which will be substituted with the corresponding application number, once assigned.
- Molecular diagnostics has emerged as a field that offers the promise of early disease detection, potentially before symptoms have manifested. Molecular diagnostic testing is used to detect:
- Inherited disorders
- Acquired disorders
- Infectious diseases
- Genetic predisposition to health-related conditions.
- With high accuracy and fast turnaround times, molecular diagnostic tests have the potential to reduce the occurrence of ineffective health care services, enhance patient outcomes, improve disease management and individualize patient care. Many of the techniques in molecular diagnostics are based on the detection and identification of specific nucleic acids, both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), extracted and amplified from a biological specimen (such as blood or saliva). The complementary nature of the nucleic acid bases allows short sequences of synthesized DNA (oligonucleotides) to bond (hybridize) to specific nucleic acid sequences for use in nucleic acid tests. If hybridization occurs, then the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease a person will contract in the future, determine the identity and virulence of an infectious pathogen, or determine the response a person will have to a drug.
- A nucleic acid based test has four distinct steps:
- 1. Sample preparation
- 2. Nucleic acid extraction
- 3. Nucleic acid amplification (optional)
- 4. Detection
- Many sample types are used for genetic analysis, such as blood, urine, sputum and tissue samples. The diagnostic test determines the type of sample required as not all samples are representative of the disease process. These samples have a variety of constituents, but usually only one of these is of interest. For example, in blood, high concentrations of erythrocytes can inhibit the detection of a pathogenic organism. Therefore a purification and/or concentration step at the beginning of the nucleic acid test is often required.
- Blood is one of the more commonly sought sample types. It has three major constituents: leukocytes (white blood cells), erythrocytes (red blood cells) and thrombocytes (platelets). The thrombocytes facilitate clotting and remain active in vitro. To inhibit coagulation, the specimen is mixed with an agent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Erythrocytes are usually removed from the sample in order to concentrate the target cells. In humans, erythrocytes account for approximately 99% of the cellular material but do not carry DNA as they have no nucleus. Furthermore, erythrocytes contain components such as haemoglobin that can interfere with the downstream nucleic acid amplification process (described below). Removal of erythrocytes can be achieved by differentially lysing the erythrocytes in a lysis solution, leaving remaining cellular material intact which can then be separated from the sample using centrifugation. This provides a concentration of the target cells from which the nucleic acids are extracted.
- The exact protocol used to extract nucleic acids depends on the sample and the diagnostic assay to be performed. For example, the protocol for extracting viral RNA will vary considerably from the protocol to extract genomic DNA. However, extracting nucleic acids from target cells usually involves a cell lysis step followed by nucleic acid purification. The cell lysis step disrupts the cell and nuclear membranes, releasing the genetic material. This is often accomplished using a lysis detergent, such as sodium dodecyl sulfate, which also denatures the large amount of proteins present in the cells.
- The nucleic acids are then purified with an alcohol precipitation step, usually ice-cold ethanol or isopropanol, or via a solid phase purification step, typically on a silica matrix in a column, resin or on paramagnetic beads in the presence of high concentrations of a chaotropic salt, prior to washing and then elution in a low ionic strength buffer. An optional step prior to nucleic acid precipitation is the addition of a protease which digests the proteins in order to further purify the sample.
- Other lysis methods include mechanical lysis via ultrasonic vibration and thermal lysis where the sample is heated to 94° C. to disrupt cell membranes.
- The target DNA or RNA may be present in the extracted material in very small amounts, particularly if the target is of pathogenic origin. Nucleic acid amplification provides the ability to selectively amplify (that is, replicate) specific targets present in low concentrations to detectable levels.
- The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). PCR is well known in this field and comprehensive description of this type of reaction is provided in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008.
- PCR is a powerful technique that amplifies a target DNA sequence against a background of complex DNA. If RNA is to be amplified (by PCR), it must be first transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Afterwards, the resulting cDNA is amplified by PCR.
- PCR is an exponential process that proceeds as long as the conditions for sustaining the reaction are acceptable. The components of the reaction are:
- 1. pair of primers—short single strands of DNA with around 10-30 nucleotides complementary to the regions flanking the target sequence
- 2. DNA polymerase—a thermostable enzyme that synthesizes DNA
- 3. deoxyribonucleoside triphosphates (dNTPs)—provide the nucleotides that are incorporated into the newly synthesized DNA strand
- 4. buffer—to provide the optimal chemical environment for DNA synthesis
- PCR typically involves placing these reactants in a small tube (˜10-50 microlitres) containing the extracted nucleic acids. The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. The standard protocol for each thermal cycle involves a denaturation phase, an annealing phase, and an extension phase. The extension phase is sometimes referred to as the primer extension phase. In addition to such three-step protocols, two-step thermal protocols can be employed, in which the annealing and extension phases are combined. The denaturation phase typically involves raising the temperature of the reaction to 90-95° C. to denature the DNA strands; in the annealing phase, the temperature is lowered to ˜50-60° C. for the primers to anneal; and then in the extension phase the temperature is raised to the optimal DNA polymerase activity temperature of 60-72° C. for primer extension. This process is repeated cyclically around 20-40 times, the end result being the creation of millions of copies of the target sequence between the primers.
- There are a number of variants to the standard PCR protocol such as multiplex PCR, linker-primed PCR, direct PCR, tandem PCR, real-time PCR and reverse-transcriptase PCR, amongst others, which have been developed for molecular diagnostics.
- Multiplex PCR uses multiple primer sets within a single PCR mixture to produce amplicons of varying sizes that are specific to different DNA sequences. By targeting multiple genes at once, additional information may be gained from a single test-run that otherwise would require several experiments. Optimization of multiplex PCR is more difficult though and requires selecting primers with similar annealing temperatures, and amplicons with similar lengths and base composition to ensure the amplification efficiency of each amplicon is equivalent.
- Linker-primed PCR, also known as ligation adaptor PCR, is a method used to enable nucleic acid amplification of essentially all DNA sequences in a complex DNA mixture without the need for target-specific primers. The method firstly involves digesting the target DNA population with a suitable restriction endonuclease (enzyme). Double-stranded oligonucleotide linkers (also called adaptors) with a suitable overhanging end are then ligated to the ends of target DNA fragments using a ligase enzyme. Nucleic acid amplification is subsequently performed using oligonucleotide primers which are specific for the linker sequences. In this way, all fragments of the DNA source which are flanked by linker oligonucleotides can be amplified.
- Direct PCR describes a system whereby PCR is performed directly on a sample without any, or with minimal, nucleic acid extraction. It has long been accepted that PCR reactions are inhibited by the presence of many components of unpurified biological samples, such as the haem component in blood. Traditionally, PCR has required extensive purification of the target nucleic acid prior to preparation of the reaction mixture. With appropriate changes to the chemistry and sample concentration, however, it is possible to perform PCR with minimal DNA purification, or direct PCR. Adjustments to the PCR chemistry for direct PCR include increased buffer strength, the use of polymerases which have high activity and processivity, and additives which chelate with potential polymerase inhibitors.
- Tandem PCR utilises two distinct rounds of nucleic acid amplification to increase the probability that the correct amplicon is amplified. One form of tandem PCR is nested PCR in which two pairs of PCR primers are used to amplify a single locus in separate rounds of nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence at regions external to the target nucleic acid sequence. The second pair of primers (nested primers) used in the second round of amplification bind within the first PCR product and produce a second PCR product containing the target nucleic acid, that will be shorter than the first one. The logic behind this strategy is that if the wrong locus were amplified by mistake during the first round of nucleic acid amplification, the probability is very low that it would also be amplified a second time by a second pair of primers and thus ensures specificity.
- Real-time PCR, or quantitative PCR, is used to measure the quantity of a PCR product in real time. By using a fluorophore-containing probe or fluorescent dyes along with a set of standards in the reaction, it is possible to quantitate the starting amount of nucleic acid in the sample. This is particularly useful in molecular diagnostics where treatment options may differ depending on the pathogen load in the sample.
- Reverse-transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. Reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used in expression profiling, to determine the expression of a gene or to identify the sequence of an RNA transcript, including transcription start and termination sites. It is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus.
- Isothermal amplification is another form of nucleic acid amplification which does not rely on the thermal denaturation of the target DNA during the amplification reaction and hence does not require sophisticated machinery. Isothermal nucleic acid amplification methods can therefore be carried out in primitive sites or operated easily outside of a laboratory environment. A number of isothermal nucleic acid amplification methods have been described, including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification and Loop-Mediated Isothermal Amplification.
- Isothermal nucleic acid amplification methods do not rely on the continuing heat denaturation of the template DNA to produce single stranded molecules to serve as templates for further amplification, but instead rely on alternative methods such as enzymatic nicking of DNA molecules by specific restriction endonucleases, or the use of an enzyme to separate the DNA strands, at a constant temperature.
- Strand Displacement Amplification (SDA) relies on the ability of certain restriction enzymes to nick the unmodified strand of hemi-modified DNA and the ability of a 5′-3′ exonuclease-deficient polymerase to extend and displace the downstream strand. Exponential nucleic acid amplification is then achieved by coupling sense and antisense reactions in which strand displacement from the sense reaction serves as a template for the antisense reaction. The use of nickase enzymes which do not cut DNA in the traditional manner but produce a nick on one of the DNA strands, such as N. A1w1, N. BstNB1 and Mly1, are useful in this reaction. SDA has been improved by the use of a combination of a heat-stable restriction enzyme (Ava1) and heat-stable Exo-polymerase (Bst polymerase). This combination has been shown to increase amplification efficiency of the reaction from 108 fold amplification to 1010 fold amplification so that it is possible using this technique to amplify unique single copy molecules.
- Transcription Mediated Amplification (TMA) and Nucleic Acid Sequence Based Amplification (NASBA) use an RNA polymerase to copy RNA sequences but not corresponding genomic DNA. The technology uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase and optionally RNase H (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, this primer hybridizes to the target ribosomal RNA (rRNA) at a defined site. Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3′ end of the promoter primer. The RNA in the resulting RNA:DNA duplex is degraded by the RNase activity of the reverse transcriptase if present or the additional RNase H. Next, a second primer binds to the DNA copy. A new strand of DNA is synthesized from the end of this primer by reverse transcriptase, creating a double-stranded DNA molecule. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each of the newly synthesized RNA amplicons re-enters the process and serves as a template for a new round of replication.
- In Recombinase Polymerase Amplification (RPA), the isothermal amplification of specific DNA fragments is achieved by the binding of opposing oligonucleotide primers to template DNA and their extension by a DNA polymerase. Heat is not required to denature the double-stranded DNA (dsDNA) template. Instead, RPA employs recombinase-primer complexes to scan dsDNA and facilitate strand exchange at cognate sites. The resulting structures are stabilised by single-stranded DNA binding proteins interacting with the displaced template strand, thus preventing the ejection of the primer by branch migration. Recombinase disassembly leaves the 3′ end of the oligonucleotide accessible to a strand displacing DNA polymerase, such as the large fragment of Bacillus subtilis Pol I (Bsu), and primer extension ensues. Exponential nucleic acid amplification is accomplished by the cyclic repetition of this process.
- Helicase-dependent amplification (HDA) mimics the in vivo system in that it uses a DNA helicase enzyme to generate single-stranded templates for primer hybridization and subsequent primer extension by a DNA polymerase. In the first step of the HDA reaction, the helicase enzyme traverses along the target DNA, disrupting the hydrogen bonds linking the two strands which are then bound by single-stranded binding proteins. Exposure of the single-stranded target region by the helicase allows primers to anneal. The DNA polymerase then extends the 3′ ends of each primer using free deoxyribonucleoside triphosphates (dNTPs) to produce two DNA replicates. The two replicated dsDNA strands independently enter the next cycle of HDA, resulting in exponential nucleic acid amplification of the target sequence.
- Other DNA-based isothermal techniques include Rolling Circle Amplification (RCA) in which a DNA polymerase extends a primer continuously around a circular DNA template, generating a long DNA product that consists of many repeated copies of the circle. By the end of the reaction, the polymerase generates many thousands of copies of the circular template, with the chain of copies tethered to the original target DNA. This allows for spatial resolution of target and rapid nucleic acid amplification of the signal. Up to 1012 copies of template can be generated in 1 hour. Ramification amplification is a variation of RCA and utilizes a closed circular probe (C-probe) or padlock probe and a DNA polymerase with a high processivity to exponentially amplify the C-probe under isothermal conditions.
- Loop-mediated isothermal amplification (LAMP), offers high selectivity and employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for
- DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem-loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 109 copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand.
- After completion of the nucleic acid amplification, the amplified product must be analysed to determine whether the anticipated amplicon (the amplified quantity of target nucleic acids) was generated. The methods of analyzing the product range from simply determining the size of the amplicon through gel electrophoresis, to identifying the nucleotide composition of the amplicon using DNA hybridization.
- Gel electrophoresis is one of the simplest ways to check whether the nucleic acid amplification process generated the anticipated amplicon. Gel electrophoresis uses an electric field applied to a gel matrix to separate DNA fragments. The negatively charged DNA fragments will move through the matrix at different rates, determined largely by their size. After the electrophoresis is complete, the fragments in the gel can be stained to make them visible. Ethidium bromide is a commonly used stain which fluoresces under UV light.
- The size of the fragments is determined by comparison with a DNA size marker (a DNA ladder), which contains DNA fragments of known sizes, run on the gel alongside the amplicon. Because the oligonucleotide primers bind to specific sites flanking the target DNA, the size of the amplified product can be anticipated and detected as a band of known size on the gel. To be certain of the identity of the amplicon, or if several amplicons have been generated, DNA probe hybridization to the amplicon is commonly employed.
- DNA hybridization refers to the formation of double-stranded DNA by complementary base pairing. DNA hybridization for positive identification of a specific amplification product requires the use of a DNA probe around 20 nucleotides in length. If the probe has a sequence that is complementary to the amplicon (target) DNA sequence, hybridization will occur under favourable conditions of temperature, pH and ionic concentration. If hybridization occurs, then the gene or DNA sequence of interest was present in the original sample.
- Optical detection is the most common method to detect hybridization. Either the amplicons or the probes are labelled to emit light through fluorescence or electrochemiluminescence. These processes differ in the means of producing excited states of the light-producing moieties, but both enable covalent labelling of nucleotide strands. In electrochemiluminescence (ECL), light is produced by luminophore molecules or complexes upon stimulation with an electric current. In fluorescence, it is illumination with excitation light which leads to emission.
- Fluorescence is detected using an illumination source which provides excitation light at a wavelength absorbed by the fluorescent molecule, and a detection unit. The detection unit comprises a photosensor (such as a photomultiplier tube or charge-coupled device (CCD) array) to detect the emitted signal, and a mechanism (such as a wavelength-selective filter) to prevent the excitation light from being included in the photosensor output. The fluorescent molecules emit Stokes-shifted light in response to the excitation light, and this emitted light is collected by the detection unit. Stokes shift is the frequency difference or wavelength difference between emitted light and absorbed excitation light.
- ECL emission is detected using a photosensor which is sensitive to the emission wavelength of the ECL species being employed. For example, transition metal-ligand complexes emit light at visible wavelengths, so conventional photodiodes and CCDs are employed as photosensors. An advantage of ECL is that, if ambient light is excluded, the ECL emission can be the only light present in the detection system, which improves sensitivity.
- Microarrays allow for hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are powerful tools for molecular diagnostics with the potential to screen for thousands of genetic diseases or detect the presence of numerous infectious pathogens in a single test. A microarray consists of many different DNA probes immobilized as spots on a substrate. The target DNA (amplicon) is first labelled with a fluorescent or luminescent molecule (either during or after nucleic acid amplification) and then applied to the array of probes. The microarray is incubated in a temperature controlled, humid environment for a number of hours or days while hybridization between the probe and amplicon takes place. Following incubation, the microarray must be washed in a series of buffers to remove unbound strands. Once washed, the microarray surface is dried using a stream of air (often nitrogen). The stringency of the hybridization and washes is critical. Insufficient stringency can result in a high degree of nonspecific binding. Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity. Hybridization is recognized by detecting light emission from the labelled amplicons which have formed a hybrid with complementary probes.
- Fluorescence from microarrays is detected using a microarray scanner which is generally a computer controlled inverted scanning fluorescence confocal microscope which typically uses a laser for excitation of the fluorescent dye and a photosensor (such as a photomultiplier tube or CCD) to detect the emitted signal. The fluorescent molecules emit Stokes-shifted light (described above) which is collected by the detection unit.
- The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transported to the detector. In microarray scanners, a confocal arrangement is commonly used to eliminate out-of-focus information by means of a confocal pinhole situated at an image plane. This allows only the in-focus portion of the light to be detected. Light from above and below the plane of focus of the object is prevented from entering the detector, thereby increasing the signal to noise ratio. The detected fluorescent photons are converted into electrical energy by the detector which is subsequently converted to a digital signal. This digital signal translates to a number representing the intensity of fluorescence from a given pixel. Each feature of the array is made up of one or more such pixels. The final result of a scan is an image of the array surface. The exact sequence and position of every probe on the microarray is known, and so the hybridized target sequences can be identified and analysed simultaneously.
- More information regarding fluorescent probes can be found at: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The- Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html
- Point-of-Care Molecular diagnostics
- Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine. This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based on methods not involving nucleic acids. The widespread adaptation of molecular diagnostics testing to the clinical setting is intimately tied to the development of instrumentation that significantly reduces the cost, provides a rapid and automated assay from start (specimen processing) to finish (generating a result) and operates without major intervention by personnel.
- A point-of-care technology serving the physician's office, the hospital bedside or even consumer-based, at home, would offer many advantages including:
-
- rapid availability of results enabling immediate facilitation of treatment and improved quality of care.
- ability to obtain laboratory values from testing very small samples.
- reduced clinical workload.
- reduced laboratory workload and improved office efficiency by reducing administrative work.
- improved cost per patient through reduced length of stay of hospitalization, conclusion of outpatient consultation at the first visit, and reduced handling, storing and shipping of specimens.
- facilitation of clinical management decisions such as infection control and antibiotic use.
- Molecular diagnostic systems based on microfluidic technologies provide the means to automate and speed up molecular diagnostic assays. The quicker detection times are primarily due to the extremely low volumes involved, automation, and the low-overhead inbuilt cascading of the diagnostic process steps within a microfluidic device. Volumes in the nanoliter and microliter scale also reduce reagent consumption and cost. Lab-on-a-chip (LOC) devices are a common form of microfluidic device. LOC devices have MST structures within a MST layer for fluid processing integrated onto a single supporting substrate (usually silicon). Fabrication using the VLSI (very large scale integrated) lithographic techniques of the semiconductor industry keeps the unit cost of each LOC device very low. However, controlling fluid flow through the LOC device, adding reagents, controlling reaction conditions and so on necessitate bulky external plumbing and electronics. Connecting a LOC device to these external devices effectively restricts the use of LOC devices for molecular diagnostics to the laboratory setting. The cost of the external equipment and complexity of its operation precludes LOC-based molecular diagnostics as a practical option for point-of-care settings.
- In view of the above, there is a need for a molecular diagnostic system based on a LOC device for use at point-of-care.
- Accordingly, the present invention provides a lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device comprising:
- electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer;
- electrodes for receiving an electrical pulse to excite the ECL luminophores;
- hybridization chambers containing the probes for detection of the targets, and a pair of the electrodes; and,
- at least one negative control chamber without the ECL probes.
- Preferably, the LOC device also has a photosensor positioned adjacent the probes for sensing which of the probes generate the ECL photons in response to the electrical pulse.
- Preferably, the LOC device also has a supporting substrate wherein the photosensor is a charge coupled device (CCD) array positioned between the probes and the supporting substrate.
- Preferably, the LOC device also has a supporting substrate wherein the photosensor is an array of photodiodes positioned on the supporting substrate in registration with the hybridization chambers.
- Preferably, the array of photodiodes is less than 1600 microns from the probes.
- Preferably, the LOC device also has CMOS circuitry on the supporting substrate, the array of photodiodes being a component of the CMOS circuitry wherein during use, the CMOS circuitry initiates an error signal in response to ECL emissions being detected from the negative control chamber.
- Preferably, the LOC device also has at least one positive control chamber containing positive control probes that have the ECL luminophore but not the functional moiety for quenching photon emission.
- Preferably, the LOC device also has:
- a flow-path for fluid containing the targets; wherein,
- the CMOS circuitry is between the hybridization chambers and the supporting substrate, and the flow-path draws the fluid to each of the hybridization chambers by capillary action.
- Preferably, the LOC device also has a lysis section wherein the fluid is a biological sample containing cells and the lysis section disrupts the cellular membranes to release any genetic material therein.
- Preferably, the hybridization chambers each have a wall section that is optically transparent to the light emitted by the probes.
- Preferably, the CMOS circuitry incorporates the photosensor wherein the wall section is positioned between the probes and the photosensor.
- Preferably, the wall section is a layer incorporating silicon dioxide.
- Preferably, the probes have a stem-and-loop structure with a loop portion containing the sequence complementary to the target nucleic acid sequence, the loop portion being positioned between the functional moiety for quenching photon emission from the ECL luminophore, and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional moiety.
- Preferably, the CMOS circuitry is configured to provide an electrical pulse to the electrodes.
- Preferably, the electrical pulse has a duration less than 0.69 seconds.
- Preferably, the electrical pulse has a current of 0.1 nanoamperes to 69.0 nanoamperes.
- Preferably, the electrodes have an anode and a cathode each having fingers configured such that the fingers of the anode are interdigitated with the fingers of the cathode.
- Preferably, the anode and the cathode are separated by a dielectric gap between 0.4 microns and 2 microns wide.
- Preferably, the LOC device also has a PCR section for amplifying the target nucleic acid sequences prior to detection by the probes.
- Preferably, the LOC device also has a cap having reagent reservoirs for addition to the sample prior to detection of the target sequences, wherein the electrodes and the probes are between the cap and the CMOS circuitry.
- The hybridization array provides for analysis of the targets via hybridization, with the control probes improving the reliability of the analytical outcomes.
- The electrochemiluminescence-based assay target detection obviates any need, of the assay system, for an excitation light source, excitation optics, and optical filter elements, in turn, providing for a more compact and more inexpensive assay system. The absence of the requirement for the rejection of any excitation light also simplifies the detector circuitry, making the assay system even more inexpensive.
- Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
-
FIG. 1 shows a test module and test module reader configured for fluorescence detection; -
FIG. 2 is a schematic overview of the electronic components in the test module configured for fluorescence detection; -
FIG. 3 is a schematic overview of the electronic components in the test module reader; -
FIG. 4 is a schematic representation of the architecture of the LOC device; -
FIG. 5 is a perspective of the LOC device; -
FIG. 6 is a plan view of the LOC device with features and structures from all layers superimposed on each other; -
FIG. 7 is a plan view of the LOC device with the structures of the cap shown in isolation; -
FIG. 8 is a top perspective of the cap with internal channels and reservoirs shown in dotted line; -
FIG. 9 is an exploded top perspective of the cap with internal channels and reservoirs shown in dotted line; -
FIG. 10 is a bottom perspective of the cap showing the configuration of the top channels; -
FIG. 11 is a plan view of the LOC device showing the structures of the CMOS+MST device in isolation; -
FIG. 12 is a schematic section view of the LOC device at the sample inlet; -
FIG. 13 is an enlarged view of Inset AA shown inFIG. 6 ; -
FIG. 14 is an enlarged view of Inset AB shown inFIG. 6 ; -
FIG. 15 is an enlarged view of Inset AE shown inFIG. 13 ; -
FIG. 16 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 17 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 18 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 19 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 20 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 21 is a partial perspective illustrating the laminar structure of the LOC device within Inset AE; -
FIG. 22 is schematic section view of the lysis reagent reservoir shown inFIG. 21 ; -
FIG. 23 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 24 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 25 is a partial perspective illustrating the laminar structure of the LOC device within Inset AI; -
FIG. 26 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 27 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 28 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 29 is a partial perspective illustrating the laminar structure of the LOC device within Inset AB; -
FIG. 30 is a schematic section view of the amplification mix reservoir and the polymerase reservoir; -
FIG. 31 show the features of a boiling-initiated valve in isolation; -
FIG. 32 is a schematic section view of the boiling-initiated valve taken through line 33-33 shown inFIG. 31 ; -
FIG. 33 is an enlarged view of Inset AF shown inFIG. 15 ; -
FIG. 34 is a schematic section view of the upstream end of the dialysis section taken through line 35-35 shown inFIG. 33 ; -
FIG. 35 is an enlarged view of Inset AC shown inFIG. 6 ; -
FIG. 36 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 37 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 38 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 39 is a further enlarged view within Inset AK shown inFIG. 38 ; -
FIG. 40 is a further enlarged view within Inset AC showing the amplification chamber; -
FIG. 41 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 42 is a further enlarged view within Inset AC showing the amplification chamber; -
FIG. 43 is a further enlarged view within Inset AL shown inFIG. 42 ; -
FIG. 44 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 45 is a further enlarged view within Inset AM shown inFIG. 44 ; -
FIG. 46 is a further enlarged view within Inset AC showing the amplification chamber; -
FIG. 47 is a further enlarged view within Inset AN shown inFIG. 46 ; -
FIG. 48 is a further enlarged view within Inset AC showing the amplification chamber; -
FIG. 49 is a further enlarged view within Inset AC showing the amplification chamber; -
FIG. 50 is a further enlarged view within Inset AC showing the amplification section; -
FIG. 51 is a schematic section view of the amplification section; -
FIG. 52 is an enlarged plan view of the hybridization section; -
FIG. 53 is a further enlarged plan view of two hybridization chambers in isolation; -
FIG. 54 is schematic section view of a single hybridization chamber; -
FIG. 55 is an enlarged view of the humidifier illustrated in Inset AG shown inFIG. 6 ; -
FIG. 56 is an enlarged view of Inset AD shown inFIG. 52 ; -
FIG. 57 is an exploded perspective view of the LOC device within Inset AD; -
FIG. 58 is an enlarged plan view of the humidity sensor shown in Inset AH ofFIG. 6 ; -
FIG. 59 is a schematic section view of a leukocyte target dialysis section; -
FIG. 60 is a schematic showing part of the photodiode array of the photo sensor; -
FIG. 61 is an enlarged view of the evaporator shown in Inset AP ofFIG. 55 ; -
FIG. 62 is a diagram of linker-primed PCR; -
FIG. 63 is a schematic representation of a test module with a lancet; -
FIG. 64 is a diagrammatic representation of the architecture of LOC variant VII; -
FIG. 65 is a plan view of LOC variant VIII with features and structures from all layers superimposed on each other; -
FIG. 66 is an enlarged view of Inset CA shown inFIG. 65 ; -
FIG. 67 is a partial perspective illustrating the laminar structure of LOC variant VIII within Inset CA shown inFIG. 65 ; -
FIG. 68 is an enlarged view of Inset CE shown inFIG. 66 ; -
FIG. 69 is a diagrammatic representation of the architecture of LOC variant VIII; -
FIG. 70 is a schematic illustration of the architecture of LOC variant XIV; -
FIG. 71 is a schematic illustration of the architecture of LOC variant XLI; -
FIG. 72 is a schematic illustration of the architecture of LOC variant XLII; -
FIG. 73 is a schematic illustration of the architecture of LOC variant XLIII; -
FIG. 74 is a schematic illustration of the architecture of LOC variant XLIV; -
FIG. 75 is a schematic illustration of the architecture of LOC variant XLVII; -
FIG. 76 is a diagrammatic representation of the architecture of LOC variant X; -
FIG. 77 is a perspective view of LOC variant X; -
FIG. 78 is a plan view of LOC variant X showing the structures of the CMOS+MST device in isolation; -
FIG. 79 is a perspective view of the underside of the cap with the reagent reservoirs shown in dotted line; -
FIG. 80 is a plan view showing only the features of the cap in isolation; -
FIG. 81 is a plan view showing all the features superimposed on each other, and showing the location of Insets DA to DK; -
FIG. 82 is an enlarged view of Inset DA shown inFIG. 81 ; -
FIG. 83 is an enlarged view of Inset DB shown inFIG. 81 ; -
FIG. 84 is an enlarged view of Inset DC shown inFIG. 81 ; -
FIG. 85 is an enlarged view of Inset DD shown inFIG. 81 ; -
FIG. 86 is an enlarged view of Inset DE shown inFIG. 81 ; -
FIG. 87 is an enlarged view of Inset DF shown inFIG. 81 ; -
FIG. 88 is an enlarged view of Inset DG shown inFIG. 81 ; -
FIG. 89 is an enlarged view of Inset DH shown inFIG. 81 ; -
FIG. 90 is an enlarged view of Inset DJ shown inFIG. 81 ; -
FIG. 91 is an enlarged view of Inset DK shown inFIG. 81 ; -
FIG. 92 is an enlarged view of Inset DL shown inFIG. 81 ; -
FIG. 93 is a circuit diagram of the differential imager; -
FIG. 94 schematically illustrates a CMOS-controlled flow rate sensor; -
FIG. 95 illustrates the reactions occurring during an electrochemiluminescence (ECL) process; -
FIG. 96 schematically illustrates three different anode configurations; -
FIG. 97 is a schematic partial cross-section of the anode and cathode in the hybridization chamber; -
FIG. 98 schematically illustrates an anode in a ring geometry around the peripheral edge of a photodiode; -
FIG. 99 schematically illustrates an anode in a ring geometry within the peripheral edge of a photodiode; -
FIG. 100 schematically illustrates an anode with a series of fingers to increase the length of its lateral edges; -
FIG. 101 schematically illustrates the use of a transparent anode to maximise surface area coupling and ECL signal detection; -
FIG. 102 schematically illustrates the use of an anode affixed to the roof of the hybridization chamber to maximise surface area coupling and ECL signal detection; -
FIG. 103 schematically illustrates an anode interdigitated with a cathode; -
FIG. 104 shows a test module and test module reader configured for use with ECL detection; -
FIG. 105 is a schematic overview of the electronic components in the test module configured for use with ECL detection; -
FIG. 106 shows a test module and alternative test module readers; -
FIG. 107 shows a test module and test module reader along with the hosting system housing various databases; -
FIGS. 108A and 108B is a diagram illustrating binding of an aptamer to a protein to produce a detectable signal; -
FIGS. 109A and 109B are diagrams illustrating binding of two aptamers to a protein to produce a detectable signal; -
FIGS. 110A and 110B are diagrams illustrating binding of two antibodies to a protein to produce a detectable signal; -
FIG. 111 is a diagrammatic representation of the architecture of LOC variant L with ECL detection; -
FIG. 112 is a perspective view of LOC variant L; -
FIG. 113 is a plan view of LOC variant L showing the structures of the CMOS+MST device in isolation; -
FIG. 114 is a perspective view of the underside of the cap of LOC variant L with the reagent reservoirs shown in dotted lines; -
FIG. 115 is a plan view of LOC variant L showing the features of the cap in isolation; -
FIG. 116 is a plan view of LOC variant L showing all the features superimposed on each other and showing the locations of Insets GA to GL; -
FIG. 117 is an enlarged view of Inset GA shown inFIG. 116 ; -
FIG. 118 is an enlarged view of Inset GB shown inFIG. 116 ; -
FIG. 119 is an enlarged view of Inset GC shown inFIG. 116 ; -
FIG. 120 is an enlarged view of Inset GD shown inFIG. 116 ; -
FIG. 121 is an enlarged view of Inset GE shown inFIG. 116 ; -
FIG. 122 is an enlarged view of Inset GF shown inFIG. 116 ; -
FIG. 123 is an enlarged view of Inset GG shown inFIG. 116 ; -
FIG. 124 is an enlarged view of Inset GH shown inFIG. 116 ; -
FIG. 125 is an enlarged view of Inset GJ shown inFIG. 116 ; -
FIG. 126 is an enlarged view of Inset GK shown inFIG. 116 ; -
FIG. 127 is an enlarged view of Inset GL shown inFIG. 116 ; -
FIG. 128 is a diagrammatic representation of a LOC device with thermal insulation trench; -
FIG. 129 is a diagram of an electrochemiluminescence resonance energy transfer probe in a closed configuration; -
FIG. 130 is a diagram of an electrochemiluminescence resonance energy transfer probe in an open and hybridized configuration; -
FIG. 131 is a diagram of a primer-linked, luminescent linear probe during the initial round of amplification; -
FIG. 132 is a diagram of a primer-linked, luminescent linear probe during a subsequent amplification cycle; -
FIGS. 133A to 133F diagrammatically illustrate thermal cycling of a luminescent primer-linked stem-and-loop probe; -
FIG. 134 schematically illustrates a negative control luminescent probe in its stem-and-loop configuration; -
FIG. 135 schematically illustrates the negative control luminescent probe ofFIG. 134 in its open configuration; -
FIG. 136 schematically illustrates a positive control luminescent probe in its stem-and-loop configuration; -
FIG. 137 schematically illustrates the positive control luminescent probe ofFIG. 136 in its open configuration; -
FIG. 138 is an enlarged view of the hybridization chamber of LOC variant L; -
FIG. 139 is an enlarged view of the hybridization chamber array of LOC variant L showing the distribution of calibration chambers; - This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.
- Referring to
FIGS. 1 , 2, 3, 104 and 105, the system has the following top level components: -
Test modules Test modules device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (seeFIGS. 1 and 104 ).Test module 10 schematically shown inFIG. 1 uses a fluorescence-based detection technique to identify target molecules, whiletest module 11 inFIG. 104 uses an electrochemiluminescence-based detection technique. TheLOC device 30 has an integratedphotosensor 44 for fluorescence or electrochemiluminescence detection (described in detail below). Bothtest modules Micro-USB plug 14 for power, data and control, both have a printed circuit board (PCB) 57, and both have externalpower supply capacitors 32 and aninductor 15. Thetest modules outer casing 13 has amacroreceptacle 24 for receiving the biological sample and a removablesterile sealing tape 22, preferably with a low tack adhesive, to cover the macroreceptacle prior to use. Amembrane seal 408 with amembrane guard 410 forms part of theouter casing 13 to reduce dehumidification within the test module while providing pressure relief from small air pressure fluctuations. Themembrane guard 410 protects themembrane seal 408 from damage. -
Test module reader 12 powers thetest module Micro-USB port 16. Thetest module reader 12 can adopt many different forms and a selection of these are described later. The version of thereader 12 shown inFIGS. 1 , 3 and 104 is a smart phone embodiment. A block diagram of thisreader 12 is shown inFIG. 3 . Processor 42 runs application software fromprogram storage 43. The processor 42 also interfaces with thedisplay screen 18 and user interface (UI)touch screen 17 andbuttons 19, acellular radio 21,wireless network connection 23, and asatellite navigation system 25. Thecellular radio 21 andwireless network connection 23 are used for communications.Satellite navigation system 25 is used for updating epidemiological databases with location data. The location data can, alternatively, be entered manually via thetouch screen 17 orbuttons 19.Data storage 27 holds genetic and diagnostic information, test results, patient information, assay and probe data for identifying each probe and its array position.Data storage 27 andprogram storage 43 may be shared in a common memory facility. Application software installed on thetest module reader 12 provides analysis of results, along with additional test and diagnostic information. - To conduct a diagnostic test, the test module 10 (or test module 11) is inserted into the
Micro-USB port 16 on thetest module reader 12. Thesterile sealing tape 22 is peeled back and the biological sample (in a liquid form) is loaded into thesample macroreceptacle 24. Pressingstart button 20 initiates testing via the application software. The sample flows into theLOC device 30 and the on-board assay extracts, incubates, amplifies and hybridizes the sample nucleic acids (the target) with presynthesized hybridization-responsive oligonucleotide probes. In the case of test module 10 (which uses fluorescence-based detection), the probes are fluorescently labelled and theLED 26 housed in thecasing 13 provides the necessary excitation light to induce fluorescence emission from the hybridized probes (seeFIGS. 1 and 2 ). In test module 11 (which uses electrochemiluminescence (ECL) detection), theLOC device 30 is loaded with ECL probes (discussed above) and theLED 26 is not necessary for generating the luminescent emission. Instead,electrodes FIG. 105 ). The emission (fluorescent or luminescent) is detected using aphotosensor 44 integrated into CMOS circuitry of each LOC device. The detected signal is amplified and converted to a digital output which is analyzed by thetest module reader 12. The reader then displays the results. - The data may be saved locally and/or uploaded to a network server containing patient records. The
test module test module reader 12 and disposed of appropriately. -
FIGS. 1 , 3 and 104 show thetest module reader 12 configured as a mobile phone/smart phone 28. In other forms, the test module reader is a laptop/notebook 101, adedicated reader 103, anebook reader 107, atablet computer 109 ordesktop computer 105 for use in hospitals, private practices or laboratories (seeFIG. 106 ). The reader can interface with a range of additional applications such as patient records, billing, online databases and multi-user environments. It can also be interfaced with a range of local or remote peripherals such as printers and patient smart cards. - Referring to
FIG. 107 , the data generated by thetest module 10 can be used to update, via thereader 12 andnetwork 125, the epidemiological databases hosted on the hosting system forepidemiological data 111, the genetic databases hosted on the hosting system forgenetic data 113, the electronic health records hosted on the hosting system for electronic health records (EHR) 115, the electronic medical records hosted on the hosting system for electronic medical records (EMR) 121, and the personal health records hosted on the hosting system for personal health records (PHR) 123. Conversely, the epidemiological data hosted on the hosting system forepidemiological data 111, the genetic data hosted on the hosting system forgenetic data 113, the electronic health records hosted on the hosting system for electronic health records (EHR) 115, the electronic medical records hosted on the hosting system for electronic medical records (EMR) 121, and the personal health records hosted on the hosting system for personal health records (PHR) 123, can be used to update, vianetwork 125 and thereader 12, the digital memory in theLOC 30 of thetest module 10. - Referring back to
FIGS. 1 , 2, 104 and 105 thereader 12 uses battery power in the mobile phone configuration. The mobile phone reader contains all test and diagnostic information preloaded. Data can also be loaded or updated via a number of wireless or contact interfaces to enable communications with peripheral devices, computers or online servers. AMicro-USB port 16 is provided for connection to a computer or mains power supply for battery recharge. -
FIG. 63 shows an embodiment of thetest module 10 used for tests that only require a positive or negative result for a particular target, such as testing whether a person is infected with, for example, H1N1 Influenza A virus. Only a purpose built USB power/indicator-onlymodule 47 is adequate. No other reader or application software is necessary. Anindicator 45 on the USB power/indicator-onlymodule 47 signals positive or negative results. This configuration is well suited to mass screening. - Additional items supplied with the system may include a test tube containing reagents for pre-treatment of certain samples, along with spatula and lancet for sample collection.
FIG. 63 shows an embodiment of the test module incorporating a spring-loaded,retractable lancet 390 andlancet release button 392 for convenience. A satellite phone can be used in remote areas. -
FIGS. 2 and 105 are block diagrams of the electronic components in thetest modules LOC device 30 has aUSB device driver 36, acontroller 34, a USB-compatible LED driver 29,clock 33,power conditioner 31,RAM 38 and program anddata flash memory 40. These provide the control and memory for theentire test module photosensor 44, thetemperature sensors 170, theliquid sensors 174, and thevarious heaters drivers power supply capacitors 32 and theMicro-USB plug 14 are external to theLOC device 30. TheLOC devices 30 include bond-pads for making connections to these external components. TheRAM 38 and the program anddata flash memory 40 have the application software and the diagnostic and test information (Flash/Secure storage, e.g. via encryption) for over 1000 probes. In the case oftest module 11 configured for ECL detection, there is no LED 26 (seeFIGS. 104 and 105 ). Data is encrypted by theLOC device 30 for secure storage and secure communication with an external device. TheLOC devices 30 are loaded with electrochemiluminescent probes and the hybridization chambers each have a pair ofECL excitation electrodes - Many types of
test modules 10 are manufactured in a number of test forms, ready for off-the-shelf use. The differences between the test forms lie in the on board assay of reagents and probes. - Some examples of infectious diseases rapidly identified with this system include:
- Influenza—Influenza virus A, B, C, Isavirus, Thogotovirus
- Pneumonia—respiratory syncytial virus (RSV), adenovirus, metapneumovirus, Streptococcus pneumoniae, Staphylococcus aureus
- Tuberculosis—Mycobacterium tuberculosis, bovis, africanum, canetti, and microti
- Plasmodium falciparum, Toxoplasma gondii and other protozoan parasites
- Typhoid—Salmonella enterica serovar typhi
- Ebola virus
- Human immunodeficiency virus (HIV)
- Dengue Fever—Flavivirus
- Hepatitis (A through E)
- Hospital acquired infections—for example Clostridium difficile, Vancomycin resistant Enterococcus, and Methicillin resistant Staphylococcus aureus
- Herpes simplex virus (HSV)
- Cytomegalovirus (CMV)
- Epstein-Ban virus (EBV)
- Encephalitis—Japanese Encephalitis virus, Chandipura virus
- Whooping cough—Bordetella pertussis
- Measles—paramyxovirus
- Meningitis—Streptococcus pneumoniae and Neisseria meningitidis
- Anthrax—Bacillus anthracis
- Some examples of genetic disorders identified with this system include:
- Cystic fibrosis
- Haemophilia
- Sickle cell disease
- Tay-Sachs disease
- Haemochromatosis
- Cerebral arteriopathy
- Crohn's disease
- Polycistic kidney disease
- Congential heart disease
- Rett syndrome
- A small selection of cancers identified by the diagnostic system include:
- Ovarian
- Colon carcinoma
- Multiple endocrine neoplasia
- Retinoblastoma
- Turcot syndrome
- The above lists are not exhaustive and the diagnostic system can be configured to detect a much greater variety of diseases and conditions using nucleic acid and proteomic analysis.
- The
LOC device 30 is central to the diagnostic system. It rapidly performs the four major steps of a nucleic acid based molecular diagnostic assay, i.e. sample preparation, nucleic acid extraction, nucleic acid amplification, and detection, using a microfluidic platform. The LOC device also has alternative uses, and these are detailed later. As discussed above,test modules LOC device 30 has numerous different embodiments tailored to the target(s) of interest. One form of theLOC device 30 isLOC device 301 for fluorescent detection of target nucleic acid sequences in the pathogens of a whole blood sample. For the purposes of illustration, the structure and operation ofLOC device 301 is now described in detail with reference toFIGS. 4 to 26 and 27 to 57. -
FIG. 4 is a schematic representation of the architecture of theLOC device 301. For convenience, process stages shown inFIG. 4 are indicated with the reference numeral corresponding to the functional sections of theLOC device 301 that perform that process stage. The process stages associated with each of the major steps of a nucleic acid based molecular diagnostic assay are also indicated: sample input andpreparation 288,extraction 290,incubation 291,amplification 292 anddetection 294. The various reservoirs, chambers, valves and other components of theLOC device 301 will be described in more detail later. -
FIG. 5 is a perspective view of theLOC device 301. It is fabricated using high volume CMOS and MST (microsystems technology) manufacturing techniques. The laminar structure of theLOC device 301 is illustrated in the schematic (not to scale) partial section view ofFIG. 12 . TheLOC device 301 has asilicon substrate 84 which supports the CMOS+MST chip 48, comprisingCMOS circuitry 86 and anMST layer 87, with acap 46 overlaying theMST layer 87. For the purposes of this patent specification, the term ‘MST layer’ is a reference to a collection of structures and layers that process the sample with various reagents. Accordingly, these structures and components are configured to define flow-paths with characteristic dimensions that will support capillary driven flow of liquids with physical characteristics similar to those of the sample during processing. In light of this, the MST layer and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other fabrication methods can also produce structures and components dimensioned for capillary driven flows and processing very small volumes. The specific embodiments described in this specification show the MST layer as the structures and active components supported on theCMOS circuitry 86, but excluding the features of thecap 46. However, the skilled addressee will appreciate that the MST layer need not have underlying CMOS or indeed an overlying cap in order for it to process the sample. - The overall dimensions of the LOC device shown in the following figures are 1760 μm×5824 μm. Of course, LOC devices fabricated for different applications may have different dimensions.
-
FIG. 6 shows the features of theMST layer 87 superimposed with the features of the cap. Insets AA to AD, AG and AH shown inFIG. 6 are enlarged inFIGS. 13 , 14, 35, 56, 55 and 58, respectively, and described in detail below for a comprehensive understanding of each structure within theLOC device 301.FIGS. 7 to 10 show the features of thecap 46 in isolation whileFIG. 11 shows the CMOS+MST device 48 structures in isolation. -
FIGS. 12 and 22 are sketches that diagrammatically show the laminar structure of the CMOS+MST device 48, thecap 46 and the fluidic interaction between the two. The figures are not to scale for the purposes of illustration.FIG. 12 is a schematic section view through thesample inlet 68 andFIG. 22 is a schematic section through thereservoir 54. As best shown inFIG. 12 , the CMOS+MST device 48 has asilicon substrate 84 which supports theCMOS circuitry 86 that operates the active elements within theMST layer 87 above. Apassivation layer 88 seals and protects theCMOS layer 86 from the fluid flows through theMST layer 87. - Fluid flows through both the
cap channels 94 and the MST channels 90 (see for exampleFIGS. 7 and 16 ) in thecap layer 46 andMST channel layer 100, respectively. Cell transport occurs in thelarger channels 94 fabricated in thecap 46, while biochemical processes are carried out in thesmaller MST channels 90. Cell transport channels are sized so as to be able to transport cells in the sample to predetermined sites in theMST channels 90. Transportation of cells with sizes greater than 20 microns (for example, certain leukocytes) requires channel dimensions greater than 20 microns, and therefore a cross sectional area transverse to the flow of greater than 400 square microns. MST channels, particularly at locations in the LOC where transport of cells is not required, can be significantly smaller. - It will be appreciated that
cap channel 94 andMST channel 90 are generic references andparticular MST channels 90 may also be referred to as (for example) heated microchannels or dialysis MST channels in light of their particular function.MST channels 90 are formed by etching through aMST channel layer 100 deposited on thepassivation layer 88 and patterned with photoresist. TheMST channels 90 are enclosed by aroof layer 66 which forms the top (with respect to the orientation shown in the figures) of the CMOS+MST device 48. - Despite sometimes being shown as separate layers, the
cap channel layer 80 and thereservoir layer 78 are formed from a unitary piece of material. Of course, the piece of material may also be non-unitary. This piece of material is etched from both sides in order to form acap channel layer 80 in which thecap channels 94 are etched and thereservoir layer 78 in which thereservoirs - At different locations in the LOC device, there can be a range of appropriate choices for the cross sectional area of the channel transverse to the flow. Where large quantities of sample, or samples with large constituents, are contained in the channel, a cross-sectional area of up to 20,000 square microns (for example, a 200 micron wide channel in a 100 micron thick layer) is suitable. Where small quantities of liquid, or mixtures without large cells present, are contained in the channel, a very small cross sectional area transverse to the flow is preferable.
- A
lower seal 64 encloses thecap channels 94 and theupper seal layer 82 encloses thereservoirs - The five
reservoirs - reservoir 54: anticoagulant with option to include erythrocyte lysis buffer
- reservoir 56: lysis reagent
- reservoir 58: restriction enzymes, ligase and linkers (for linker-primed PCR (see
FIG. 62 , extracted from T. Stachan et al.,Human Molecular Genetics 2, Garland Science, NY and London, 1999)) - reservoir 60: amplification mix (dNTPs, primers, buffer) and
- reservoir 62: DNA polymerase.
- The
cap 46 and the CMOS+MST layers 48 are in fluid communication via corresponding openings in thelower seal 64 and theroof layer 66. These openings are referred to asuptakes 96 anddowntakes 92 depending on whether fluid is flowing from theMST channels 90 to thecap channels 94 or vice versa. - The operation of the
LOC device 301 is described below in a step-wise fashion with reference to analysing pathogenic DNA in a blood sample. Of course, other types of biological or non-biological fluid are also analysed using an appropriate set, or combination, of reagents, test protocols, LOC variants and detection systems. Referring back toFIG. 4 , there are five major steps involved in analysing a biological sample, comprising sample input andpreparation 288,nucleic acid extraction 290,nucleic acid incubation 291,nucleic acid amplification 292 and detection andanalysis 294. - The sample input and
preparation step 288 involves mixing the blood with an anticoagulant 116 and then separating pathogens from the leukocytes and erythrocytes with thepathogen dialysis section 70. As best shown inFIGS. 7 and 12 , the blood sample enters the device via thesample inlet 68. Capillary action draws the blood sample along thecap channel 94 to thereservoir 54. Anticoagulant is released from thereservoir 54 as the sample blood flow opens its surface tension valve 118 (seeFIGS. 15 and 22 ). The anticoagulant prevents the formation of clots which would block the flow. - As best shown in
FIG. 22 , the anticoagulant 116 is drawn out of thereservoir 54 by capillary action and into theMST channel 90 via thedowntake 92. Thedowntake 92 has a capillary initiation feature (CIF) 102 to shape the geometry of the meniscus such that it does not anchor to the rim of thedowntake 92. Vent holes 122 in theupper seal 82 allows air to replace the anticoagulant 116 as it is drawn out of thereservoir 54. - The
MST channel 90 shown inFIG. 22 is part of asurface tension valve 118. The anticoagulant 116 fills thesurface tension valve 118 and pins ameniscus 120 to theuptake 96 to ameniscus anchor 98. Prior to use, themeniscus 120 remains pinned at theuptake 96 so the anticoagulant does not flow into thecap channel 94. When the blood flows through thecap channel 94 to theuptake 96, themeniscus 120 is removed and the anticoagulant is drawn into the flow. -
FIGS. 15 to 21 show Inset AE which is a portion of Inset AA shown inFIG. 13 . As shown inFIGS. 15 , 16 and 17, thesurface tension valve 118 has threeseparate MST channels 90 extending between respective downtakes 92 anduptakes 96. The number ofMST channels 90 in a surface tension valve can be varied to change the flow rate of the reagent into the sample mixture. As the sample mixture and the reagents mix together by diffusion, the flow rate out of the reservoir determines the concentration of the reagent in the sample flow. Hence, the surface tension valve for each of the reservoirs is configured to match the desired reagent concentration. - The blood passes into a pathogen dialysis section 70 (see
FIGS. 4 and 15 ) where target cells are concentrated from the sample using an array ofapertures 164 sized according to a predetermined threshold. Cells smaller than the threshold pass through the apertures while larger cells do not pass through the apertures. Unwanted cells, which may be either the larger cells withheld by the array ofapertures 164 or the smaller cells that pass through the apertures, are redirected to awaste unit 76 while the target cells continue as part of the assay. - In the
pathogen dialysis section 70 described here, the pathogens from the whole blood sample are concentrated for microbial DNA analysis. The array of apertures is formed by a multitude of 3micron diameter holes 164 fluidically connecting the input flow in thecap channel 94 to atarget channel 74. The 3micron diameter apertures 164 and the dialysis uptake holes 168 for thetarget channel 74 are connected by a series of dialysis MST channels 204 (best shown inFIGS. 15 and 21 ). Pathogens are small enough to pass through the 3micron diameter apertures 164 and fill thetarget channel 74 via thedialysis MST channels 204. Cells larger than 3 microns, such as erythrocytes and leukocytes, stay in thewaste channel 72 in thecap 46 which leads to a waste reservoir 76 (seeFIG. 7 ). - Other aperture shapes, sizes and aspect ratios can be used to isolate specific pathogens or other target cells such as leukocytes for human DNA analysis. Greater detail on the dialysis section and dialysis variants is provided later.
- Referring again to
FIGS. 6 and 7 , the flow is drawn through thetarget channel 74 to thesurface tension valve 128 of thelysis reagent reservoir 56. Thesurface tension valve 128 has sevenMST channels 90 extending between thelysis reagent reservoir 56 and thetarget channel 74. When the menisci are unpinned by the sample flow, the flow rate from all seven of theMST channels 90 will be greater than the flow rate from theanticoagulant reservoir 54 where thesurface tension valve 118 has three MST channels 90 (assuming the physical characteristics of the fluids are roughly equivalent). Hence the proportion of lysis reagent in the sample mixture is greater than that of the anticoagulant. - The lysis reagent and target cells mix by diffusion in the
target channel 74 within thechemical lysis section 130. A boiling-initiatedvalve 126 stops the flow until sufficient time has passed for diffusion and lysis to take place, releasing the genetic material from the target cells (seeFIGS. 6 and 7 ). The structure and operation of the boiling-initiated valves are described in greater detail below with reference toFIGS. 31 and 32 . Other active valve types (as opposed to passive valves such as the surface tension valve 118) have also been developed by the Applicant which may be used here instead of the boiling-initiated valve. These alternative valve designs are also described later. - When the boiling-initiated
valve 126 opens, the lysed cells flow into amixing section 131 for pre-amplification restriction digestion and linker ligation. - Referring to
FIG. 13 , restriction enzymes, linkers and ligase are released from thereservoir 58 when the flow unpins the menisci at thesurface tension valve 132 at the start of themixing section 131. The mixture flows the length of themixing section 131 for diffusion mixing. At the end of themixing section 131 is downtake 134 leading into theincubator inlet channel 133 of the incubation section 114 (seeFIG. 13 ). Theincubator inlet channel 133 feeds the mixture into a serpentine configuration ofheated microchannels 210 which provides an incubation chamber for holding the sample during restriction digestion and ligation of the linkers (seeFIGS. 13 and 14 ). -
FIGS. 23 , 24, 25, 26, 27, 28 and 29 show the layers of theLOC device 301 within Inset AB ofFIG. 6 . Each figure shows the sequential addition of layers forming the structures of the CMOS+MST layer 48 and thecap 46. Inset AB shows the end of theincubation section 114 and the start of theamplification section 112. As best shown inFIGS. 14 and 23 , the flow fills themicrochannels 210 of theincubation section 114 until reaching the boiling-initiatedvalve 106 where the flow stops while diffusion takes place. As discussed above, themicrochannel 210 upstream of the boiling-initiatedvalve 106 becomes an incubation chamber containing the sample, restriction enzymes, ligase and linkers. Theheaters 154 are then activated and held at constant temperature for a specified time for restriction digestion and linker ligation to occur. - The skilled worker will appreciate that this incubation step 291 (see
FIG. 4 ) is optional and only required for some nucleic acid amplification assay types. Furthermore, in some instances, it may be necessary to have a heating step at the end of the incubation period to spike the temperature above the incubation temperature. The temperature spike inactivates the restriction enzymes and ligase prior to entering theamplification section 112. Inactivation of the restriction enzymes and ligase has particular relevance when isothermal nucleic acid amplification is being employed. - Following incubation, the boiling-initiated
valve 106 is activated (opened) and the flow resumes into theamplification section 112. Referring toFIGS. 31 and 32 , the mixture fills the serpentine configuration ofheated microchannels 158, which form one or more amplification chambers, until it reaches the boiling-initiatedvalve 108. As best shown in the schematic section view ofFIG. 30 , amplification mix (dNTPs, primers, buffer) is released fromreservoir 60 and polymerase is subsequently released fromreservoir 62 into theintermediate MST channel 212 connecting the incubation and amplification sections (114 and 112 respectively). -
FIGS. 35 to 51 show the layers of theLOC device 301 within Inset AC ofFIG. 6 . Each figure shows the sequential addition of layers forming the structures of the CMOS+MST device 48 and thecap 46. Inset AC is at the end of theamplification section 112 and the start of the hybridization anddetection section 52. The incubated sample, amplification mix and polymerase flow through themicrochannels 158 to the boiling-initiatedvalve 108. After sufficient time for diffusion mixing, theheaters 154 in themicrochannels 158 are activated for thermal cycling or isothermal amplification. The amplification mix goes through a predetermined number of thermal cycles or a preset amplification time to amplify sufficient target DNA. After the nucleic acid amplification process, the boiling-initiatedvalve 108 opens and flow resumes into the hybridization anddetection section 52. The operation of boiling-initiated valves is described in more detail later. - As shown in
FIG. 52 , the hybridization anddetection section 52 has an array ofhybridization chambers 110.FIGS. 52 , 53, 54 and 56 show thehybridization chamber array 110 andindividual hybridization chambers 180 in detail. At the entrance to thehybridization chamber 180 is adiffusion barrier 175 which prevents diffusion of the target nucleic acid, probe strands and hybridized probes between thehybridization chambers 180 during hybridization so as to prevent erroneous hybridization detection results. Thediffusion barriers 175 present a flow-path-length that is long enough to prevent the target sequences and probes diffusing out of one chamber and contaminating another chamber within the time taken for the probes and nucleic acids to hybridize and the signal to be detected, thus avoiding an erroneous result. - Another mechanism to prevent erroneous readings is to have identical probes in a number of the hybridization chambers. The
CMOS circuitry 86 derives a single result from thephotodiodes 184 corresponding to thehybridization chambers 180 that contain identical probes. Anomalous results can be disregarded or weighted differently in the derivation of the single result. - The thermal energy required for hybridization is provided by CMOS-controlled heaters 182 (described in more detail below). After the heater is activated, hybridization occurs between complementary target-probe sequences. The
LED driver 29 in theCMOS circuitry 86 signals theLED 26 located in thetest module 10 to illuminate. These probes only fluoresce when hybridization has occurred thereby avoiding washing and drying steps that are typically required to remove unbound strands. Hybridization forces the stem-and-loop structure of the FRET probes 186 to open, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as discussed in greater detail later. Fluorescence is detected by aphotodiode 184 in theCMOS circuitry 86 underlying each hybridization chamber 180 (see hybridization chamber description below). Thephotodiodes 184 for all hybridization chambers and associated electronics collectively form the photosensor 44 (seeFIG. 60 ). In other embodiments, the photosensor may be an array of charge coupled devices (CCD array). The detected signal from thephotodiodes 184 is amplified and converted to a digital output which is analyzed by thetest module reader 12. Further details of the detection method are described later. - The
LOC device 301 has many functional sections, including thereagent reservoirs dialysis section 70,lysis section 130,incubation section 114, andamplification section 112, valve types, the humidifier and humidity sensor. In other embodiments of the LOC device, these functional sections can be omitted, additional functional sections can be added or the functional sections can be used for alternative purposes to those described above. - For example, the
incubation section 114 can be used as thefirst amplification section 112 of a tandem amplification assay system, with the chemicallysis reagent reservoir 56 being used to add the first amplification mix of primers, dNTPs and buffer andreagent reservoir 58 being used for adding the reverse transcriptase and/or polymerase. A chemical lysis reagent can also be added to thereservoir 56 along with the amplification mix if chemical lysis of the sample is desired or, alternatively, thermal lysis can occur in the incubation section by heating the sample for a predetermined time. In some embodiments, an additional reservoir can be incorporated immediately upstream ofreservoir 58 for the mix of primers, dNTPs and buffer if there is a requirement for chemical lysis and a separation of this mix from the chemical lysis reagent is desired. - In some circumstances it may be desirable to omit a step, such as the
incubation step 291. In this case, a LOC device can be specifically fabricated to omit thereagent reservoir 58 andincubation section 114, or the reservoir can simply not be loaded with reagents or the active valves, if present, not activated to dispense the reagents into the sample flow, and the incubation section then simply becomes a channel to transport the sample from thelysis section 130 to theamplification section 112. The heaters are independently operable and therefore, where reactions are dependent on heat, such as thermal lysis, programming the heaters not to activate during this step ensures thermal lysis does not occur in LOC devices that do not require it. Thedialysis section 70 can be located at the beginning of the fluidic system within the microfluidic device as shown inFIG. 4 or can be located anywhere else within the microfluidic device. For example, dialysis after theamplification phase 292 to remove cellular debris prior to the hybridization anddetection step 294 may be beneficial in some circumstances. Alternatively, two or more dialysis sections can be incorporated at any location throughout the LOC device. Similarly, it is possible to incorporateadditional amplification sections 112 to enable multiple targets to be amplified in parallel or in series prior to being detected in thehybridization chamber arrays 110 with specific nucleic acid probes. For analysis of samples like whole blood, in which dialysis is not required, thedialysis section 70 is simply omitted from the sample input andpreparation section 288 of the LOC design. In some cases, it is not necessary to omit thedialysis section 70 from the LOC device even if the analysis does not require dialysis. If there is no geometric hindrance to the assay by the existence of a dialysis section, a LOC with thedialysis section 70 in the sample input and preparation section can still be used without a loss of the required functionality. - Furthermore, the
detection section 294 may encompass proteomic chamber arrays which are identical to the hybridization chamber arrays but are loaded with probes designed to conjugate or hybridize with sample target proteins present in non-amplified sample instead of nucleic acid probes designed to hybridize to target nucleic acid sequences. - It will be appreciated that the LOC devices fabricated for use in this diagnostic system are different combinations of functional sections selected in accordance with the particular LOC application. The vast majority of functional sections are common to many of the LOC devices and the design of additional LOC devices for new application is a matter of compiling an appropriate combination of functional sections from the extensive selection of functional sections used in the existing LOC devices.
- Only a small number of the LOC devices are shown in this description and some more are shown schematically to illustrate the design flexibility of the LOC devices fabricated for this system. The person skilled in the art will readily recognise that the LOC devices shown in this description are not an exhaustive list and many additional LOC designs are a matter of compiling the appropriate combination of functional sections.
- LOC variants can accept and analyze the nucleic acid or protein content of a variety of sample types in liquid form including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord blood, breast milk, sweat, pleural effusion, tear, pericardial fluid, peritoneal fluid, environmental water samples and drink samples. Amplicon obtained from macroscopic nucleic acid amplification can also be analysed using the LOC device; in this case, all the reagent reservoirs will be empty or configured not to release their contents, and the dialysis, lysis, incubation and amplification sections will be used solely to transport the sample from the
sample inlet 68 to thehybridization chambers 180 for nucleic acid detection, as described above. - For some sample types, a pre-processing step is required, for example semen may need to be liquefied and mucus may need to be pre-treated with an enzyme to reduce the viscosity prior to input into the LOC device.
- Referring to
FIGS. 1 and 12 , the sample is added to themacroreceptacle 24 of thetest module 10. Themacroreceptacle 24 is a truncated cone which feeds into theinlet 68 of theLOC device 301 by capillary action. Here it flows into the 64 μm wide×60 μmdeep cap channel 94 where it is drawn towards theanticoagulant reservoir 54, also by capillary action. - The small volumes of reagents required by the assay systems using microfluidic devices, such as
LOC device 301, permit the reagent reservoirs to contain all reagents necessary for the biochemical processing with each of the reagent reservoirs having a small volume. This volume is easily less than 1,000,000,000 cubic microns, in the vast majority of cases less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns and in the case of theLOC device 301 shown in the drawings, less than 20,000,000 cubic microns. - Referring to
FIGS. 15 to 21 , 33 and 34, thepathogen dialysis section 70 is designed to concentrate pathogenic target cells from the sample. As previously described, a plurality of apertures in the form of 3 micron diameter holes 164 in theroof layer 66 filter the target cells from the bulk of the sample. As the sample flows past the 3micron diameter apertures 164, microbial pathogens pass through the holes into a series of dialysis MSTchannels 204 and flow back up into thetarget channel 74 via 16 μm dialysis uptake holes 168 (seeFIGS. 33 and 34 ). The remainder of the sample (erythrocytes and so on) stay in thecap channel 94. Downstream of thepathogen dialysis section 70, thecap channel 94 becomes thewaste channel 72 leading to thewaste reservoir 76. For biological samples of the type that generate a substantial amount of waste, a foam insert or otherporous element 49 within theouter casing 13 of thetest module 10 is configured to be in fluid communication with the waste reservoir 76 (seeFIG. 1 ). Thepathogen dialysis section 70 functions entirely on capillary action of the fluid sample. The 3micron diameter apertures 164 at the upstream end of thepathogen dialysis section 70 have capillary initiation features (CIFs) 166 (seeFIG. 33 ) so that the fluid is drawn down into thedialysis MST channel 204 beneath. Thefirst uptake hole 198 for thetarget channel 74 also has a CIF 202 (seeFIG. 15 ) to avoid the flow simply pinning a meniscus across the dialysis uptake holes 168. - The small
constituents dialysis section 682 schematically shown inFIG. 71 can have a similar structure to thepathogen dialysis section 70. The small constituents dialysis section separates any small target cells or molecules from a sample by sizing (and, if necessary, shaping) apertures suitable for allowing the small target cells or molecules to pass into the target channel and continue for further analysis. Larger sized cells or molecules are removed to awaste reservoir 766. Thus, the LOC device 30 (seeFIGS. 1 and 104 ) is not limited to separating pathogens that are less than 3 μm in size, but can be used to separate cells or molecules of any size desired. - Referring back to
FIGS. 7 , 11 and 13, the genetic material in the sample is released from the cells by a chemical lysis process. As described above, a lysis reagent from thelysis reservoir 56 mixes with the sample flow in thetarget channel 74 downstream of thesurface tension valve 128 for thelysis reservoir 56. However, some diagnostic assays are better suited to a thermal lysis process, or even a combination of chemical and thermal lysis of the target cells. TheLOC device 301 accommodates this with theheated microchannels 210 of theincubation section 114. The sample flow fills theincubation section 114 and stops at the boiling-initiatedvalve 106. The incubation microchannels 210 heat the sample to a temperature at which the cellular membranes are disrupted. - In some thermal lysis applications, an enzymatic reaction in the
chemical lysis section 130 is not necessary and the thermal lysis completely replaces the enzymatic reaction in thechemical lysis section 130. - As discussed above, the
LOC device 301 has three boiling-initiatedvalves FIG. 6 .FIG. 31 is an enlarged plan view of the boiling-initiatedvalve 108 in isolation at the end of theheated microchannels 158 of theamplification section 112. - The
sample flow 119 is drawn along theheated microchannels 158 by capillary action until it reaches the boiling-initiatedvalve 108. The leadingmeniscus 120 of the sample flow pins at ameniscus anchor 98 at thevalve inlet 146. The geometry of themeniscus anchor 98 stops the advancing meniscus to arrest the capillary flow. As shown inFIGS. 31 and 32 , themeniscus anchor 98 is an aperture provided by an uptake opening from theMST channel 90 to thecap channel 94. Surface tension in themeniscus 120 keeps the valve closed. Anannular heater 152 is at the periphery of thevalve inlet 146. Theannular heater 152 is CMOS-controlled via the boiling-initiatedvalve heater contacts 153. - To open the valve, the
CMOS circuitry 86 sends an electrical pulse to thevalve heater contacts 153. Theannular heater 152 resistively heats until theliquid sample 119 boils. The boiling unpins themeniscus 120 from thevalve inlet 146 and initiates wetting of thecap channel 94. Once wetting thecap channel 94 begins, capillary flow resumes. Thefluid sample 119 fills thecap channel 94 and flows through the valve downtake 150 to thevalve outlet 148 where capillary driven flow continues along the amplificationsection exit channel 160 into the hybridization anddetection section 52.Liquid sensors 174 are placed before and after the valve for diagnostics. - It will be appreciated that once the boiling-initiated valves are opened, they cannot be re-closed. However, as the
LOC device 301 and thetest module 10 are single-use devices, re-closing the valves is unnecessary. -
FIGS. 6 , 7, 13, 14, 23, 24, 25, 35 to 45, 50 and 51 show theincubation section 114 and theamplification section 112. Theincubation section 114 has a single,heated incubation microchannel 210 etched in a serpentine pattern in theMST channel layer 100 from the downtake opening 134 to the boiling-initiated valve 106 (seeFIGS. 13 and 14 ). Control over the temperature of theincubation section 114 enables enzymatic reactions to take place with greater efficiency. Similarly, theamplification section 112 has aheated amplification microchannel 158 in a serpentine configuration leading from the boiling-initiatedvalve 106 to the boiling-initiated valve 108 (seeFIGS. 6 and 14 ). These valves arrest the flow to retain the target cells in the heated incubation oramplification microchannels - In the
incubation section 114 and theamplification section 112, the sample cells and the reagents are heated by theheaters 154 controlled by theCMOS circuitry 86 using pulse width modulation (PWM). Each meander of the serpentine configuration of theheated incubation microchannel 210 andamplification microchannel 158 has three separatelyoperable heaters 154 extending between their respective heater contacts 156 (seeFIG. 14 ) which provides for the two-dimensional control of input heat flux density. As best shown inFIG. 51 , theheaters 154 are supported on theroof layer 66 and embedded in thelower seal 64. The heater material is TiAl but many other conductive metals would be suitable. Theelongate heaters 154 are parallel with the longitudinal extent of each channel section that forms the wide meanders of the serpentine shape. In theamplification section 112, each of the wide meanders can operate as separate PCR chambers via individual heater control. - The small volumes of amplicon required by the assay systems using microfluidic devices, such as
LOC device 301, permit low amplification mixture volumes for amplification inamplification section 112. This volume is easily less than 400 nanoliters, in the vast majority of cases less than 170 nanoliters, typically less than 70 nanoliters and in the case of theLOC device 301, between 2 nanoliters and 30 nanoliters. - The small cross section of each channel section increases the heating rate of the amplification fluid mix. All the fluid is kept a relatively short distance from the
heater 154. Reducing the channel cross section (that is theamplification microchannel 158 cross section) to less than 100,000 square microns achieves appreciably higher heating rates than that provided by more ‘macro-scale’ equipment. Lithographic fabrication techniques allow theamplification microchannel 158 to have a cross sectional area transverse to the flow-path less than 16,000 square microns which gives substantially higher heating rates. Feature sizes on the order of 1 micron are readily achievable with lithographic techniques. If very little amplicon is needed (as is the case in the LOC device 301), the cross sectional area can be reduced to less than 2,500 square microns. For diagnostic assays with 1,000 to 2,000 probes on the LOC device, and a requirement of ‘sample-in, answer out’ in less than 1 minute, a cross sectional area transverse to the flow of between 400 square microns and 1 square micron is adequate. - The heater element in the
amplification microchannel 158 heats the nucleic acid sequences at a rate more than 80 Kelvin (K) per second, in the vast majority of cases at a rate greater than 100 K per second. Typically, the heater element heats the nucleic acid sequences at a rate more than 1,000 K per second and in many cases, the heater element heats the nucleic acid sequences at a rate more than 10,000 K per second. Commonly, based on the demands of the assay system, the heater element heats the nucleic acid sequences at a rate more than 100,000 K per second, more than 1,000,000 K per second more than 10,000,000 K per second, more than 20,000,000 K per second, more than 40,000,000 K per second, more than 80,000,000 K per second and more than 160,000,000 K per second. - A small cross-sectional area channel is also beneficial for diffusive mixing of any reagents with the sample fluid. Before diffusive mixing is complete, diffusion of one liquid into the other is greatest near the interface between the two. Concentration decreases with distance from the interface. Using microchannels with relatively small cross sections transverse to the flow direction, keeps both fluid flows close to the interface for more rapid diffusive mixing. Reducing the channel cross section to less than 100,000 square microns achieves appreciably higher mixing rates than that provided by more ‘macro-scale’ equipment. Lithographic fabrication techniques allows microchannels with a cross sectional area transverse to the flow-path less than 16000 square microns which gives significantly higher mixing rates. If small volumes are needed (as is the case in the LOC device 301), the cross sectional area can be reduced to less than 2500 square microns. For diagnostic assays with 1000 to 2000 probes on the LOC device, and a requirement of ‘sample-in, answer out’ in less than 1 minute, a cross sectional area transverse to the flow of between 400 square microns and 1 square micron is adequate.
- Keeping the sample mixture proximate to the heaters, and using very small fluid volumes allows rapid thermal cycling during the nucleic acid amplification process. Each thermal cycle (i.e. denaturing, annealing and primer extension) is completed in less than 30 seconds for target sequences up to 150 base pairs (bp) long. In the vast majority of diagnostic assays, the individual thermal cycle times are less than 11 seconds, and a large proportion are less than 4 seconds.
LOC devices 30 with some of the most common diagnostic assays have thermal cycles time between 0.45 seconds to 1.5 seconds for target sequences up to 150 by long. Thermal cycling at this rate allows the test module to complete the nucleic acid amplification process in much less than 10 minutes; often less than 220 seconds. For most assays, the amplification section generates sufficient amplicon in less than 80 seconds from the sample fluid entering the sample inlet. For a great many assays, sufficient amplicon is generated in 30 seconds. Upon completion of a preset number of amplification cycles, the amplicon is fed into the hybridization anddetection section 52 via the boiling-initiatedvalve 108. -
FIGS. 52 , 53, 54, 56 and 57 show thehybridization chambers 180 in thehybridization chamber array 110. The hybridization anddetection section 52 has a 24×45array 110 ofhybridization chambers 180, each with hybridization-responsive FRET probes 186,heater element 182 and anintegrated photodiode 184. Thephotodiode 184 is incorporated for detection of fluorescence resulting from the hybridization of a target nucleic acid sequence or protein with the FRET probes 186. Eachphotodiode 184 is independently controlled by theCMOS circuitry 86. Any material between the FRET probes 186 and thephotodiode 184 must be transparent to the emitted light. Accordingly, thewall section 97 between theprobes 186 and thephotodiode 184 is also optically transparent to the emitted light. In theLOC device 301, thewall section 97 is a thin (approximately 0.5 micron) layer of silicon dioxide. - Incorporation of a
photodiode 184 directly beneath eachhybridization chamber 180 allows the volume of probe-target hybrids to be very small while still generating a detectable fluorescence signal (seeFIG. 54 ). The small amounts permit small volume hybridization chambers. A detectable amount of probe-target hybrid requires a quantity of probe, prior to hybridization, which is easily less than 270 picograms (corresponding to 900,000 cubic microns), in the vast majority of cases less than 60 picograms (corresponding to 200,000 cubic microns), typically less than 12 picograms (corresponding to 40,000 cubic microns) and in the case of theLOC device 301 shown in the accompanying figures, less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybridization chambers allows a higher density of chambers and therefore more probes on the LOC device. InLOC device 301, the hybridization section has more than 1,000 chambers in an area of 1,500 microns by 1,500 microns (i.e. less than 2,250 square microns per chamber). Smaller volumes also reduce the reaction times so that hybridization and detection is faster. An additional advantage of the small amount of probe required in each chamber is that only very small quantities of probe solution need to be spotted into each chamber during production of the LOC device. Embodiments of the LOC device according to the invention can be spotted using a probe solution volume of 1 picoliter or less. - After nucleic acid amplification, boiling-initiated
valve 108 is activated and the amplicon flows along the flow-path 176 and into each of the hybridization chambers 180 (seeFIGS. 52 and 56 ). An end-point liquid sensor 178 indicates when thehybridization chambers 180 are filled with amplicon and theheaters 182 can be activated. - After sufficient hybridization time, the LED 26 (see
FIG. 2 ) is activated. The opening in each of thehybridization chambers 180 provides anoptical window 136 for exposing the FRET probes 186 to the excitation radiation (seeFIGS. 52 , 54 and 56). TheLED 26 is illuminated for a sufficiently long time in order to induce a fluorescence signal from the probes with high intensity. During excitation, thephotodiode 184 is shorted. After a pre-programmed delay 300 (seeFIG. 2 ), thephotodiode 184 is enabled and fluorescence emission is detected in the absence of the excitation light. The incident light on theactive area 185 of the photodiode 184 (seeFIG. 54 ) is converted into a photocurrent which can then be measured usingCMOS circuitry 86. - The
hybridization chambers 180 are each loaded with probes for detecting a single target nucleic acid sequence. Eachhybridization chambers 180 can be loaded with probes to detect over 1,000 different targets if desired. Alternatively, many or all the hybridization chambers can be loaded with the same probes to detect the same target nucleic acid repeatedly. Replicating the probes in this way throughout thehybridization chamber array 110 leads to increased confidence in the results obtained and the results can be combined by the photodiodes adjacent those hybridization chambers to provide a single result if desired. The person skilled in the art will recognise that it is possible to have from one to over 1,000 different probes on thehybridization chamber array 110, depending on the assay specification. - Hybridization Chambers with electrochemiluminescence Detection
-
FIGS. 97 , 120, 138 and 139 show thehybridization chambers 180 used in an ECL variant of the LOC device,LOC variant L 729. In this embodiment of the LOC device, a 24×45array 110 ofhybridization chambers 180, each with hybridization-responsive ECL probes 237, is positioned in registration with a corresponding array ofphotodiodes 184 integrated into the CMOS. In a similar fashion to the LOC devices configured for fluorescence detection, eachphotodiode 184 is incorporated for detection of ECL resulting from the hybridization of a target nucleic acid sequence or protein with anECL probe 237. Eachphotodiode 184 is independently controlled by theCMOS circuitry 86. Again, thetransparent wall section 97 between theprobes 186 and thephotodiode 184 is transparent to the emitted light. - A
photodiode 184 closely adjacent eachhybridization chamber 180 allows the amount of probe-target hybrids to be very small while still generating a detectable ECL signal (seeFIG. 97 ). The small amounts permit small volume hybridization chambers. A detectable amount of probe-target hybrid requires a quantity of probe, prior to hybridization, which is easily less than 270 picograms (corresponding to a chamber volume of 900,000 cubic microns), in the vast majority of cases less than 60 picograms (corresponding to 200,000 cubic microns), typically less than 12 picograms (corresponding to 40,000 cubic microns) and in the case of the LOC device shown in the drawings less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybridization chambers allows a higher density of chambers and therefore more probes on the LOC device. In the LOC device shown, the hybridization section has more than 1,000 chambers in an area of 1,500 microns by 1,500 microns (i.e. less than 2,250 square microns per chamber). Smaller volumes also reduce the reaction times so that hybridization and detection is faster. An additional advantage of the small amount of probe required in each chamber is that only very small quantities of probe solution need be spotted into each chamber during production of the LOC device. In the case of the LOC device shown in the drawings, the required amount of probe can be spotted using a solution volume of 1 picoliter or less. - After nucleic acid amplification, the boiling-initiated
valve 108 is activated and the amplicon flows along the flow-path 176 and into each of the hybridization chambers 180 (seeFIGS. 52 and 139 ). An end-point liquid sensor 178 indicates when thehybridization chambers 180 are filled with amplicon so that theheaters 182 can be activated. - After sufficient hybridization time, the
photodiode 184 is enabled ready for collection of the ECL signal. Then the ECL excitation drivers 39 (seeFIG. 105 ) activate theECL electrodes photodiode 184 remains active for a short time after cessation of the ECL excitation current to maximize the signal-to-noise ratio. For example, if thephotodiode 184 remains active for five times the decay lifetime of the luminescent emission, then the signal will have decayed to less than one percent of the initial value. The incident light on thephotodiode 184 is converted into a photocurrent which can then be measured usingCMOS circuitry 86. - Some LOC variants, such as
LOC variant L 729, are configured to perform homogeneous protein assays on crude cell lysates within proteomic assay chamber arrays (see for example 124.1 to 124.3 ofFIGS. 116 and 120 ) for the detection of host cell and/or pathogenic proteins. The proteomic assay chamber arrays 124.1-124.3 are manufactured and configured in exactly the same manner as the hybridization chamber arrays 110 (seeFIGS. 52 , 53, 54 and 56). Each proteomic assay chamber has adiffusion barrier 175 at the entrance to prevent diffusion of sample and reagents between chambers, thus avoiding an erroneous result (seeFIGS. 84 and 85 , which are insets DC and DD ofFIG. 81 ). Where required for protein hybridization or conjugation, thermal energy is provided by CMOS-controlledheaters 182 in each chamber. In some embodiments, an end-point liquid sensor 178 is used to indicate when the proteomic assay chambers are filled with sample so that theheaters 182 can be activated. After sufficient time has elapsed, the fluorescent or electrochemiluminescent signal generated following protein recognition is detected by thephotosensor 44. - Inset AG of
FIG. 6 indicates the position of thehumidifier 196. The humidifier prevents evaporation of the reagents and probes during operation of theLOC device 301. As best shown in the enlarged view ofFIG. 55 , awater reservoir 188 is fluidically connected to threeevaporators 190. Thewater reservoir 188 is filled with molecular biology-grade water and sealed during manufacturing. As best shown inFIGS. 55 and 61 , water is drawn into threedowntakes 194 and along respectivewater supply channels 192 by capillary action to a set of threeuptakes 193 at theevaporators 190. A meniscus pins at eachuptake 193 to retain the water. The evaporators have annular shaped heaters 191 which encircle theuptakes 193. The annular heaters 191 are connected to theCMOS circuitry 86 by theconductive columns 376 to the top metal layer 195 (seeFIG. 37 ). Upon activation, the annular heaters 191 heat the water causing evaporation and humidifying the device surrounds. - The position of the
humidity sensor 232 is also shown inFIG. 6 . However, as best shown in the enlarged view of Inset AH inFIG. 58 , the humidity sensor has a capacitive comb structure. A lithographically etchedfirst electrode 296 and a lithographically etchedsecond electrode 298 face each other such that their teeth are interleaved. The opposed electrodes form a capacitor with a capacitance that can be monitored by theCMOS circuitry 86. As the humidity increases, the permittivity of the air gap between the electrodes increases, so that the capacitance also increases. Thehumidity sensor 232 is adjacent thehybridization chamber array 110 where humidity measurement is most important to slow evaporation from the solution containing the exposed probes. - Temperature and liquid sensors are incorporated throughout the
LOC device 301 to provide feedback and diagnostics during device operation. Referring toFIG. 35 , ninetemperature sensors 170 are distributed throughout theamplification section 112 Likewise, theincubation section 114 also has ninetemperature sensors 170. These sensors each use a 2×2 array of bipolar junction transistors (BJTs) to monitor the fluid temperature and provide feedback to theCMOS circuitry 86. TheCMOS circuitry 86 uses this to precisely control the thermal cycling during the nucleic acid amplification process and any heating during thermal lysis and incubation. - In the
hybridization chambers 180, theCMOS circuitry 86 uses thehybridization heaters 182 as temperature sensors (seeFIG. 56 ). The electrical resistance of thehybridization heaters 182 is temperature dependent and theCMOS circuitry 86 uses this to derive a temperature reading for each of thehybridization chambers 180. - The
LOC device 301 also has a number of MSTchannel liquid sensors 174 and capchannel liquid sensors 208.FIG. 35 shows a line of MSTchannel liquid sensors 174 at one end of every other meander in theheated microchannel 158. As best shown inFIG. 37 , the MSTchannel liquid sensors 174 are a pair of electrodes formed by exposed areas of thetop metal layer 195 in theCMOS structure 86. Liquid closes the circuit between the electrodes to indicate its presence at the sensor's location. -
FIG. 25 shows an enlarged perspective of capchannel liquid sensors 208. Opposing pairs ofTiAl electrodes 218 and 220 are deposited on theroof layer 66. Between theelectrodes 218 and 220 is agap 222 to hold the circuit open in the absence of liquid. The presence of liquid closes the circuit and theCMOS circuitry 86 uses this feedback to monitor the flow. - The
test modules 10 are orientation independent. They do not need to be secured to a flat stable surface in order to operate. Capillary driven fluid flows and a lack of external plumbing into ancillary equipment allow the modules to be truly portable and simply plugged into a similarly portable hand held reader such as a mobile telephone. Having a gravitationally independent operation means the test modules are also accelerationally independent to all practical extents. They are resistant to shock and vibration and will operate on moving vehicles or while the mobile telephone is being carried around. - The dialysis design described above in the
LOC device 301 targets pathogens.FIG. 59 is a schematic section view of adialysis section 328 designed to concentrate leukocytes from a blood sample for human DNA analysis. It will be appreciated that the structure is essentially the same as that of the pathogentarget dialysis section 70 described above with the exception that apertures in the form of 7.5 micron diameter holes 165 restrict leukocytes from passing from thecap channel 94 to thedialysis MST channels 204. In situations where the sample being analysed is a blood sample, and the presence of haemoglobin from the erythrocytes interferes with the subsequent reaction steps, addition of an erythrocyte lysis buffer along with the anticoagulant in the reservoir 54 (seeFIG. 22 ), will ensure that the majority of the lysed erythrocytes (and hence haemoglobin) will be removed from the sample during this dialysis step. A commonly used erythrocyte lysis buffer is 0.15M NH4CL, 10mM KHCO3, 0.1mM EDTA, pH 7.2-7.4, but a person skilled in the art will recognise that any buffer which efficiently lyses erythrocytes can be used. - Downstream of the
leukocyte dialysis section 328, thecap channel 94 becomes thetarget channel 74 such that the leukocytes continue as part of the assay. Furthermore, in this case, the dialysis uptake holes 168 lead to awaste channel 72 so that all smaller cells and components in the sample are removed. It should be noted that this dialysis variant only reduces the concentration of the unwanted specimens in thetarget channel 74. -
FIG. 72 schematically illustrates a largeconstituents dialysis section 686 which also separates any large target constituents from a sample. The apertures in this dialysis section are fabricated with a size and shape tailored to withhold the large target constituents of interest in the target channel for further analysis. As with the leukocyte dialysis section described above, most (but not all) smaller sized cells, organisms or molecules flow to awaste reservoir 768. Thus, other embodiments of the LOC device are not limited to separating leukocytes that are larger than 7.5 μm in size, but can be used to separate cells, organisms or molecules of any size desired. - Dialysis Section with Flow Channel to Prevent Trapped Air Bubbles
- Described below is an embodiment of the LOC device referred to as
LOC variant VIII 518 and shown inFIGS. 65 , 66, 67 and 68. This LOC device has a dialysis section that fills with the fluid sample without leaving air bubbles trapped in the channels. LOC variant VIII 518 also has an additional layer of material referred to as aninterface layer 594. Theinterface layer 594 is positioned between thecap channel layer 80 and theMST channel layer 100 of the CMOS+MST device 48. Theinterface layer 594 allows a more complex fluidic interconnection between the reagent reservoirs and theMST layer 87 without increasing the size of thesilicon substrate 84. - Referring to
FIG. 66 , thebypass channel 600 is designed to introduce a time delay in the fluid sample flow from theinterface waste channel 604 to theinterface target channel 602. This time delay allows the fluid sample to flow through thedialysis MST channel 204 to thedialysis uptake 168 where it pins a meniscus. With a capillary initiation feature (CIF) 202 at the uptake from thebypass channel 600 to theinterface target channel 602, the sample fluid fills theinterface target channel 602 from a point upstream of all thedialysis uptakes 168 from thedialysis MST channels 204. - Without the
bypass channel 600, theinterface target channel 602 still starts filling from the upstream end, but eventually the advancing meniscus reaches and passes over an uptake belonging to an MST channel that has not yet filled, leading into air entrapment at that point. Trapped air reduces the sample flow rate through theleukocyte dialysis section 328. - Traditionally, PCR requires extensive purification of the target DNA prior to preparation of the reaction mixture. However, with appropriate changes to the chemistry and sample concentration, it is possible to perform nucleic acid amplification with minimal DNA purification, or direct amplification. When the nucleic acid amplification process is PCR, this approach is called direct PCR. In LOC devices where nucleic acid amplification is performed at a controlled, constant temperature, the approach is direct isothermal amplification. Direct nucleic acid amplification techniques have considerable advantages for use in LOC devices, particularly relating to simplification of the required fluidic design. Adjustments to the amplification chemistry for direct PCR or direct isothermal amplification include increased buffer strength, the use of polymerases which have high activity and processivity, and additives which chelate with potential polymerase inhibitors. Dilution of inhibitors present in the sample is also important.
- To take advantage of direct nucleic acid amplification techniques, the LOC device designs incorporate two additional features. The first feature is reagent reservoirs (for
example reservoir 58 inFIG. 8 ) which are appropriately dimensioned to supply a sufficient quantity of amplification reaction mix, or diluent, so that the final concentrations of sample components which might interfere with amplification chemistry are low enough to permit successful nucleic acid amplification. The desired dilution of non-cellular sample components is in the range of 5× to 20×. Different LOC structures, for example thepathogen dialysis section 70 inFIG. 4 , are used when appropriate to ensure that the concentration of target nucleic acid sequences is maintained at a high enough level for amplification and detection. In this embodiment, further illustrated inFIG. 6 , a dialysis section which effectively concentrates pathogens small enough to be passed into theamplification section 292 is employed upstream of thesample extraction section 290, and rejects larger cells to awaste receptacle 76. In another embodiment, a dialysis section is used to selectively deplete proteins and salts in blood plasma while retaining cells of interest. - The second LOC structural feature which supports direct nucleic acid amplification is design of channel aspect ratios to adjust the mixing ratio between the sample and the amplification mix components. For example, to ensure dilution of inhibitors associated with the sample in the preferred 5×-20× range through a single mixing step, the length and cross-section of the sample and reagent channels are designed such that the sample channel, upstream of the location where mixing is initiated, constitutes a
flow impedance 4×-19× higher than the flow impedance of the channels through which the reagent mixture flows. Control over flow impedances in microchannels is readily achieved through control over the design geometry. The flow impedance of a microchannel increases linearly with the channel length, for a constant cross-section. Importantly for mixing designs, flow impedance in microchannels depends more strongly on the smallest cross-sectional dimension. For example, the flow impedance of a microchannel with rectangular cross-section is inversely proportional to the cube of the smallest perpendicular dimension, when the aspect ratio is far from unity. - Where the sample nucleic acid species being analysed or extracted is RNA, such as from RNA viruses or messenger RNA, it is first necessary to reverse transcribe the RNA into complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction can be performed in the same chamber as the PCR (one-step RT-PCR) or it can be performed as a separate, initial reaction (two-step RT-PCR). In the LOC variants described herein, a one-step RT-PCR can be performed simply by adding the reverse transcriptase to
reagent reservoir 62 along with the polymerase and programming theheaters 154 to cycle firstly for the reverse transcription step and then progress onto the nucleic acid amplification step. A two-step RT-PCR could also be easily achieved by utilizing thereagent reservoir 58 to store and dispense the buffers, primers, dNTPs and reverse transcriptase and theincubation section 114 for the reverse transcription step followed by amplification in the normal way in theamplification section 112. - For some applications, isothermal nucleic acid amplification is the preferred method of nucleic acid amplification, thus avoiding the need to repetitively cycle the reaction components through various temperature cycles but instead maintaining the amplification section at a constant temperature, typically around 37° C. to 41° C. A number of isothermal nucleic acid amplification methods have been described, including Strand Displacement Amplification (SDA), Transcription Mediated Amplification (TMA), Nucleic Acid Sequence Based Amplification (NASBA), Recombinase Polymerase Amplification (RPA), Helicase-Dependent isothermal DNA Amplification (HDA), Rolling Circle Amplification (RCA), Ramification Amplification (RAM) and Loop-mediated Isothermal Amplification (LAMP), and any of these, or other isothermal amplification methods, can be employed in particular embodiments of the LOC device described herein.
- In order to perform isothermal nucleic acid amplification, the
reagent reservoirs reagent reservoir 60 contains amplification buffer, primers and dNTPs andreagent reservoir 62 contains an appropriate nickase enzyme and Exo-DNA polymerase. For RPA,reagent reservoir 60 contains the amplification buffer, primers, dNTPs and recombinase proteins, withreagent reservoir 62 containing a strand displacing DNA polymerase such as Bsu. Similarly, for HDA,reagent reservoir 60 contains amplification buffer, primers and dNTPs andreagent reservoir 62 contains an appropriate DNA polymerase and a helicase enzyme to unwind the double stranded DNA strand instead of using heat. The skilled person will appreciate that the necessary reagents can be split between the two reagent reservoirs in any manner appropriate for the nucleic acid amplification process. - For amplification of viral nucleic acids from RNA viruses such as HIV or hepatitis C virus, NASBA or TMA is appropriate as it is unnecessary to first transcribe the RNA to cDNA. In this example,
reagent reservoir 60 is filled with amplification buffer, primers and dNTPs andreagent reservoir 62 is filled with RNA polymerase, reverse transcriptase and, optionally, RNase H. - For some forms of isothermal nucleic acid amplification it may be necessary to have an initial denaturation cycle to separate the double stranded DNA template, prior to maintaining the temperature for the isothermal nucleic acid amplification to proceed. This is readily achievable in all embodiments of the LOC device described herein, as the temperature of the mix in the
amplification section 112 can be carefully controlled by theheaters 154 in the amplification microchannels 158 (seeFIG. 14 ). - Isothermal nucleic acid amplification is more tolerant of potential inhibitors in the sample and, as such, is generally suitable for use where direct nucleic acid amplification from the sample is desired. Therefore, isothermal nucleic acid amplification is sometimes useful in
LOC variant XLIII 673,LOC variant XLIV 674 andLOC variant XLVII 677, amongst others, shown inFIGS. 73 , 74 and 75, respectively. Direct isothermal amplification may also be combined with one or more pre-amplification dialysis steps 70, 686 or 682 as shown inFIGS. 73 and 75 and/or apre-hybridization dialysis step 682 as indicated inFIG. 74 to help partially concentrate the target cells in the sample before nucleic acid amplification or remove unwanted cellular debris prior to the sample entering thehybridization chamber array 110, respectively. The person skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybridization dialysis can be used. - Isothermal nucleic acid amplification can also be performed in parallel amplification sections such as those schematically represented in
FIGS. 64 , 69 and 70, multiplexed and some methods of isothermal nucleic acid amplification, such as LAMP, are compatible with an initial reverse transcription step to amplify RNA. - In addition to temperature and liquid sensors, the LOC device can also incorporate CMOS-controlled
flow rate sensors 740, as schematically illustrated inFIG. 94 and in LOC Variant X 728 (seeFIGS. 76 to 92 ). The sensors are used to determine the flow rate in two steps. In the first step, the temperature of theserpentine heater element 814 is determined by applying a low current and measuring the voltage to determine the resistance of theserpentine heater element 814, and therefore the temperature of theelement 814 using the known relationship between resistance and the temperature of the heater element. At this stage, minimal heat is being dissipated in theelement 814 and the temperature of the liquid in the channel is equal to the calculated temperature of theelement 814. In the second step, a higher current is applied to theserpentine heater element 814 such that the temperature of theelement 814 increases and some heat is lost to the flowing liquid. By again measuring the voltage across theelement 814 while the higher current is being applied, the new resistance of theelement 814 is determined and the increased temperature is again calculated by theCMOS circuitry 86. Using the new temperature of theserpentine heater element 814 and the known temperature of sample liquid calculated in the first step, the flow speed of the liquid is determined. From the known channel cross sectional geometry and the flow speed, the flow rate of the liquid in the channel is calculated. - Some embodiments of the LOC device use a homogeneous protein detection assay to detect specific proteins within a crude cell lysate. Numerous homogeneous protein detection assays have been developed for use in these embodiments of the LOC device. Commonly, these assays utilize antibodies or aptamers to capture the target protein.
- In one type of assay, an
aptamer 141 which binds to aparticular protein 142 is labelled with two different fluorophores orluminophores FIGS. 108A and 108B ). Bothdonor 143 andacceptor 144 are linked to thesame aptamer 141, and the change in separation is caused by a change in conformation upon binding to thetarget protein 142. For example, anaptamer 141 in the absence of the target forms a conformation where the donor and acceptor are in close proximity (seeFIG. 108A ); upon binding to the target, the new conformation results in a larger separation between the donor and acceptor (seeFIG. 108B ). When the acceptor is a quencher and the donor is a luminophore, the effect of binding to the target is an increase inlight emission 250 or 862 (seeFIG. 108B ). - A second type of assay uses two
antibodies 145 or twoaptamers 141 that must independently bind to different, non-overlapping epitopes or regions of the target protein 142 (seeFIGS. 109A , 109B, 110A and 110B). Theseantibodies 145 oraptamers 141 are labelled with different fluorophores orluminophores luminophores complementary oligonucleotides 147 attached to the antibodies or aptamers via long, flexible linkers 149 (seeFIGS. 109A and 110A ). Once theantibodies 145 oraptamers 141 bind to thetarget protein 142, thecomplementary oligonucleotides 147 find each other and hybridize to one another (seeFIGS. 109B and 110B ). This brings the donors andacceptors efficient FRET 250 or ERET 862 that is used as a signal for target protein detection. - To ensure there is no, or very little, background signal as a result of the
oligonucleotides 147 attached to the twoantibodies 145 oraptamers 141 hybridizing to one another in the absence of their binding to theprotein 142, it is necessary to carefully choose the length and sequence of thecomplementary oligonucleotides 147 so that the dissociation constant (kd) for the duplex is relatively high (˜5 μM). Thus when free antibodies or aptamers labelled with these oligonucleotides are mixed at nanomolar concentrations, well below that of their kd, the likelihood of duplex formation and aFRET 250 or ERET 862 signal being generated is negligible. However, when bothantibodies 145 or bothaptamers 141 bind to thetarget protein 142, the local concentration of theoligonucleotides 147 will be much higher than their kd resulting in almost complete hybridization and generation of adetectable FRET 250 or ERET 862 signal. - The choice of fluorophores and luminophores is an important consideration when designing a homogeneous protein detection assay. Crude cell lysates are often turbid and may contain substances which autofluoresce. In such cases, the use of molecules with long-lasting fluorescence or electrochemiluminescence and donor-acceptor pairs 143 and 144 which are optimized to give
maximal FRET 250 orERET 862 is desired. One such pair is europium chelate and Cy5, which has previously been shown to significantly improve signal-to-background ratio in such a system when compared with other donor-acceptor pairs, by allowing the signal to be read after interfering background fluorescence, electrochemiluminescence or scattered light has decayed. Europium chelate and AlexaFluor 647 or terbium chelate and Fluorescein FRET or ERET pairs also work well. The sensitivity and specificity of this approach is similar to that of enzyme-linked immunosorbent assays (ELISAs), but no sample manipulation is required. - In some embodiments of the LOC device, one of the
antibodies 145 or one of theaptamers 141 is attached to the base of the proteomic assay chamber 124 (see for exampleFIGS. 116 and 120 ) and the protein lysate is combined with theother antibody 145 oraptamer 141 during lysis within thechemical lysis section 130 to facilitate binding to thefirst antibody 145 oraptamer 141 prior to entering the proteomic assay chamber 124. This increases the subsequent speed with which a detectable signal is generated as only one conjugation or hybridization event is required within the proteomic assay chamber. -
FIG. 54 shows thephotodiode 184 integrated into theCMOS circuitry 86 of theLOC device 301. Thephotodiode 184 is fabricated as part of theCMOS circuitry 86 without additional masks or steps. This is one significant advantage of a CMOS photodiode over a CCD, an alternate sensing technology which could be integrated on the same chip using non-standard processing steps, or fabricated on an adjacent chip. On-chip detection is low cost and reduces the size of the assay system. The shorter optical path length reduces noise from the surrounding environment for efficient collection of the fluorescence signal and eliminates the need for a conventional optical assembly of lenses and filters. - Quantum efficiency of the
photodiode 184 is the fraction of photons impinging on itsactive area 185 that are effectively converted to photo-electrons. For standard silicon processes, the quantum efficiency is in the range of 0.3 to 0.5 for visible light, depending on process parameters such as the amount and absorption properties of the cover layers. - The detection threshold of the
photodiode 184 determines the smallest intensity of the fluorescence signal that can be detected. The detection threshold also determines the size of thephotodiode 184 and hence the number ofhybridization chambers 180 in the hybridization and detection section 52 (seeFIG. 52 ). The size and number of chambers are technical parameters that are limited by the dimensions of the LOC device (in the case of theLOC device 301, the dimensions are 1760 ×m×5824 μm) and the real estate available after other functional modules such as thepathogen dialysis section 70 and amplification section(s) 112 are incorporated. - For standard silicon processes, the
photodiode 184 detects a minimum of 5 photons. However, to ensure reliable detection, the minimum can be set to 10 photons. Therefore with the quantum efficiency range being 0.3 to 0.5 (as discussed above), the fluorescence emission from the probes should be a minimum of 17 photons but 30 photons would incorporate a suitable margin of error for reliable detection. - Electrochemiluminescence (ECL) involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. Electrochemiluminescence differs from normal chemiluminescence in that formation of the excited species relies on oxidation or reduction of the luminophore or a coreactant at an electrode. Coreactants, in this context, are additional reagents added to the ECL solution which enhance the efficiency of ECL emission. In normal chemiluminescence, the excited species form purely through mixing of suitable reagents. The emitting atom or complex is traditionally referred to as a luminophore. In brief, ECL relies on generating an excited state of the luminophore, at which point a photon will be emitted. As with any such process, it is possible for an alternate path to be taken from the excited state which does not lead to the desired light emission (i.e. quenching).
- Embodiments of the test module that use ECL instead of fluorescence detection do not require an excitation LED. Electrodes are fabricated within the hybridization chambers to provide the electrical pulse for ECL generation and the photons are detected using the
photosensor 44. The duration and voltage of the electrical pulse are controlled; in some embodiments, control over the current is used as an alternative to controlling the voltage. - The ruthenium complex, [Ru(bpy)3]2+, described previously for use as a fluorescent reporter in the probes, can also be used as a luminophore in an ECL reaction in the hybridization chambers, with TPrA (tri-n-propylamine (CH3CH2—CH2)3N) as the coreactant. Coreactant ECL has the benefit that luminophores are not consumed after photon emission and the reagents are available for the process to repeat. Furthermore, the [Ru(bpy)3]2+/TPrA ECL system provides good signal levels at physiologically relevant conditions of pH in aqueous solutions. Alternative coreactants which can produce equivalent or better results than TPrA with ruthenium complexes are N-butyldiethanolamine and 2-(dibutylamino)ethanol.
-
FIG. 95 illustrates the reactions occurring during an ECL process in which [Ru(bpy)3]2+ is theluminophore 864 and TPrA is thecoreactant 866.ECL emission 862 in the [Ru(bpy)3]2+/TPrA ECL system follows the oxidation of both Ru(bpy)3 2+ and TPrA at theanode 860. The reactions are as follows: -
Ru(bpy)3 2+−e−→Ru(bpy)3 3+ (1) -
TPrA−e−[TPrA•]+→TPrA•+H+ (2) -
Ru(bpy)3 3++TPrA•→Ru(bpy)3 •2++products (3) -
Ru(bpy)3 •2+→Ru(bpy)3 2++hv (4) - The wavelength of the emitted
light 862 is around 620 nm and the anode potential is around 1.1 V with respect to a Ag/AgCl reference electrode. For the [Ru(bpy)3]2+/TPrA ECL system, either the Black Hole Quencher,BHQ 2, or Iowa Black RQ described previously, would be a suitable quencher. In the embodiments described here, the quencher is a functional moiety which is initially attached to the probe, but other embodiments are possible in which the quencher is a separate molecule free in solution. -
FIGS. 129 and 130 show the hybridization-responsive ECL probes 237. These are often referred to as molecular beacons and are stem-and-loop probes, generated from a single strand of nucleic acid, that luminesce upon hybridization to complementary nucleic acids.FIG. 129 shows asingle ECL probe 237 prior to hybridization with a targetnucleic acid sequence 238. The probe has aloop 240,stem 242, aluminophore 864 at the 5′ end, and aquencher 248 at the 3′ end. Theloop 240 consists of a sequence complementary to the targetnucleic acid sequence 238. Complementary sequences on either side of the probe sequence anneal together to form thestem 242. - In the absence of a complementary target sequence, the probe remains closed as shown in
FIG. 129 . Thestem 242 keeps the luminophore-quencher pair in close proximity to each other, such that significant resonant energy transfer can occur between them, substantially eliminating the ability of the luminophore to emit light after electrochemical excitation. -
FIG. 130 shows theECL probe 237 in an open or hybridized configuration. Upon hybridization to a complementary targetnucleic acid sequence 238, the stem-and-loop structure is disrupted, theluminophore 864 andquencher 248 are spatially separated, thus restoring the ability of theluminophore 864 to emit light. TheECL emission 862 is optically detected as an indication that the probe has hybridized. - The probes hybridize with very high specificity with complementary targets, since the stem helix of the probe is designed to be more stable than a probe-target helix with a single nucleotide that is not complementary. Since double-stranded DNA is relatively rigid, it is sterically impossible for the probe-target helix and the stem helix to coexist.
- Primer-linked stem-and-loop probes and primer-linked linear probes, otherwise known as scorpion probes, are an alternative to molecular beacons and can be used for real-time and quantitative nucleic acid amplification in the LOC device. Real-time amplification is performed directly in the hybridization chambers of the LOC device. The benefit of using primer-linked probes is that the probe element is physically linked to the primer, thus only requiring a single hybridization event to occur during the nucleic acid amplification rather than separate hybridizations of the primers and probes being required. This ensures that the reaction is effectively instantaneous and results in stronger signals, shorter reaction times and better discrimination than when using separate primers and probes. The probes (along with polymerase and the amplification mix) would be deposited into the
hybridization chambers 180 during fabrication and there would be no need for an amplification section on the LOC device. Alternatively, the amplification section is left unused or used for other reactions. -
FIGS. 131 and 132 show a primer-linkedlinear ECL probe 693 during the initial round of nucleic acid amplification and in its hybridized configuration during subsequent rounds of nucleic acid amplification, respectively. Referring toFIG. 131 , the primer-linkedlinear ECL probe 693 has a double-strandedstem segment 242. One of the strands incorporates the primer linkedprobe sequence 696 which is homologous to a region on the targetnucleic acid 696 and is labelled on its 5′ end withluminophore 864, and linked on its 3′ end to anoligonucleotide primer 700 via anamplification blocker 694. The other strand of thestem 242 is labelled at its 3 end with aquencher molecule 248. After the initial round of nucleic acid amplification has completed, the probe can loop around and hybridize to the extended strand with the, now,complementary sequence 698. During the initial round of nucleic acid amplification, theoligonucleotide primer 700 anneals to the target DNA 238 (seeFIG. 131 ) and is then extended, forming a DNA strand containing both the probe sequence and the amplification product. Theamplification blocker 694 prevents the polymerase from reading through and copying theprobe region 696. Upon subsequent denaturation, theextended oligonucleotide primer 700/template hybrid is dissociated and so is the double strandedstem 242 of the primer-linked linear probe, thus releasing thequencher 248. Once the temperature decreases for the annealing and extension steps, the primer linkedprobe sequence 696 of the primer-linked linear ECL probe curls around and hybridizes to the amplifiedcomplementary sequence 698 on the extended strand and light emission is detected indicating the presence of the target DNA. Non-extended primer-linked linear ECL probes retain their double-stranded stem and light emission remains quenched. This detection method is particularly well suited for fast detection systems as it relies on a single-molecule process. -
FIGS. 133A to 133F show the operation of a primer-linked stem-and-loop ECL probe 705. Referring toFIG. 133A , the primer-linked stem-and-loop ECL probe 705 has astem 242 of complementary double-stranded DNA and aloop 240 which incorporates the probe sequence. One of thestem strands 708 is labelled at its 5′ end withluminophore 864. Theother strand 710 is labelled with a 3′-end quencher 248 and carries both theamplification blocker 694 andoligonucleotide primer 700. During the initial denaturation phase (seeFIG. 133B ), the strands of the targetnucleic acid 238 separate, as does the stem 242 of the primer-linked stem-and-loop ECL probe 705. When the temperature cools for the annealing phase (seeFIG. 133C ), theoligonucleotide primer 700 on the primer-linked stem-and-loop ECL probe 705 hybridizes to the targetnucleic acid sequence 238. During extension (seeFIG. 133D ), thecomplement 706 to the targetnucleic acid sequence 238 is synthesized forming a DNA strand containing both theprobe sequence 705 and the amplified product. Theamplification blocker 694 prevents the polymerase from reading through and copying theprobe region 705. When the probe next anneals, following denaturation (seeFIG. 133E ), the probe sequence of theloop segment 240 of the primer-linked stem-and-loop probe (seeFIG. 133F ) anneals to thecomplementary sequence 706 on the extended strand. This configuration leaves theluminophore 864 relatively remote from thequencher 248, resulting in a significant increase in light emission. - The
hybridization chamber array 110 includes somehybridization chambers 180 with positive and negative ECL control probes used for assay quality control.FIGS. 134 and 135 schematically illustrate negative control ECL probes 786 without a luminophore, andFIGS. 136 and 137 are sketches of positive control ECL probes 787 without a quencher. The positive and negative control ECL probes have a stem-and-loop structure like the ECL probes described above. However, an ECL signal 862 (seeFIG. 130 ) will always be emitted from positive control ECL probes 787 and no ECL signal 862 is ever emitted from negative control ECL probes 786, regardless of whether the probes hybridize into an open configuration or remain closed. - Referring to
FIGS. 134 and 135 , the negativecontrol ECL probe 786 has no luminophore (and may or may not have a quencher 248). Hence, whether the targetnucleic acid sequence 238 hybridizes with the probe as shown inFIG. 135 , or the probe remains in itsstem 242 andloop 240 configuration as shown inFIG. 134 , the ECL signal is negligible. Alternatively, the negative control ECL probe could be designed so that it always remains quenched. For example, by having an artificial probe (loop)sequence 240 that will not hybridize to any nucleic acid sequence within the sample under investigation, thestem 242 of the probe molecule will re-hybridize to itself and the luminophore and quencher will remain in close proximity and no appreciable ECL signal will be detected. This negative control would account for any low level emission that may occur if the quenching is not complete. - Conversely, the positive
control ECL probe 787 is constructed without a quencher as illustrated inFIGS. 136 and 137 . Nothing quenches theECL emission 862 from theluminophore 864 regardless of whether thepositive control probe 787 hybridizes with the targetnucleic acid sequence 238. -
FIGS. 123 and 124 show another possibility for constructing a positive control chamber. In this case, thecalibration chambers 382 which are sealed from the amplicon (or any flow containing target molecules) can be filled with the ECL luminophore solution such that a positive signal is always detected at the electrode - Similarly, the control chambers can be negative control chambers because the lack of inlets prevents any targets from reaching the probes such that an ECL signal is never detected.
-
FIG. 52 shows a possible distribution of the positive and negative control probes (378 and 380 respectively) throughout thehybridization chamber array 110. For ECL, positive and negative control ECL probes 786 and 787 would replace controlfluorescent probes hybridization chambers 180 along a line extending diagonally across thehybridization chamber array 110. However, the arrangement of the control probes within the array is arbitrary (as is the configuration of the hybridization chamber array 110). - The non-uniformity of the electrical characteristic of the
photodiode 184, response to any ambient light present at the sensor array, and light originating at other locations in the array, introduce background noise and offset into the output signal. This background is removed from each output signal bycalibration chambers 382 in thehybridization chamber array 110 which either do not contain any probes, contain probes that have no ECL luminophore, or contain probes with a luminophore and quencher configured such that quenching is always expected to occur. The number and arrangement of thecalibration chambers 382 throughout the hybridization chamber array is arbitrary. However, the calibration is more accurate ifphotodiodes 184 are calibrated by acalibration chamber 382 that is relatively proximate. Referring toFIG. 139 , thehybridization chamber array 110 has onecalibration chamber 382 for every eighthybridization chambers 180. That is, acalibration chamber 382 is positioned in the middle of every three by three square ofhybridization chambers 180. In this configuration, thehybridization chambers 180 are calibrated by acalibration chamber 382 that is immediately adjacent. -
FIG. 93 shows adifferential imager circuit 788 used to substract the signal from thephotodiode 184 corresponding to thecalibration chamber 382 as a result of the applied electrical pulse, from the ECL signal from the surroundinghybridization chambers 180. Thedifferential imager circuit 788 samples the signal from thepixel 790 and a “dummy”pixel 792. Signals arising from ambient light in the region of the chamber array are also subtracted. The signals from thepixel 790 are small (i.e. close to dark signal), and without a reference to a dark level it is hard to differentiate between the background and a very small signal. - During use, the “read_row” 794 and “read_row_d” 795 are activated and
M4 797 anMD4 801 transistors are turned on.Switches pixel 790 and “dummy”pixel 792 are stored onpixel capacitor 803 anddummy pixel capacitor 805 respectively. After the pixel signals have been stored, switches 807 and 809 are deactivated. Then the “read_col”switch 811 and dummy “read_col”switch 813 are closed, and the switchedcapacitor amplifier 815 at the output amplifies thedifferential signal 817. - The normal metric of efficiency in ECL is the number of photons obtained per “Faradaic” electron, i.e. per electron which participates in the electrochemistry. The ECL efficiency is denoted φECL:
-
- where I is the intensity in photons per second, i is the current in amperes, F is Faraday's constant, and NA is Avogadro's constant.
- Annihilation ECL in deoxygenated, aprotic solutions (e.g. nitrogen-flushed acetonitrile solutions) is simple enough to allow efficiency measurements, and the consensus value of(I) is φECL is around 5%. Coreactant systems, however, have been generally declared to be beyond meaningful direct measurements of efficiency. Instead, emission intensity is related by scaling to easily-prepared standard solutions such as Ru(bpy)3 2+, measured in the same format. The literature (see for example J. K. Leland and M. J. Powell, J. Electrochem. Soc. , 137, 3127 (1990), and R. Pyati and M. M. Richter, Annu. Rep. Prog. Chem. C, 103, 12-78 (2007)) indicates that (without enhancers such as surfactants), the efficiency of Ru(bpy)3 2+ ECL with TPrA coreactants peaks at levels comparable to the 5% seen for annihilation ECL in acetonitrile (e.g. 2% efficiency; see I. Rubinstein & A. J. Bard, J. Am. Chem. Soc. , 103 512-516 (1981)).
- The voltage at the working electrode for the Ru(bpy)3 2+/TPrA system is approximately +1.1 V (generally measured in the literature with respect to a reference Ag/AgCl electrode). Voltages this high shorten electrode lifetimes but this is not an issue for single-use devices such as the LOC device used in the present diagnostic system.
- The ideal voltage between the anode and cathode depends on the combination of solution components and electrode materials. Selecting the correct voltage can require compromising between the highest signal levels, reagent and electrode stability, and the activation of undesired side reactions such as electrolysis of the water in the chamber. In tests on buffered aqueous Ru(bpy)3]2+/coreactant solution and platinum electrodes, the ECL emission is maximized at 2.1-2.2 V (depending on the coreactant choice). Emission intensities drop to <75% of the peak values for voltages below 1.9 V and above 2.6 V, and to <50% of the peak values for voltages below 1.7 V and above 2.8 V. A preferred anode-cathode voltage difference for ECL operation in such systems is therefore 1.7-2.8 V, with the range 1.9-2.6 V being particularly preferred. This allows maximization of the emission intensity as a function of voltage, while avoiding voltages at which significant gas evolution at the electrodes is observed.
- The wavelength of the emitted light 862 from ECL has an intensity peak at around 620 nm (measured in air or vacuum), and the emission spans a relatively broad wavelength range. Significant emission occurs at wavelengths from around 550 nm to 700 nm. Furthermore, the peak emission wavelength can vary by ˜10% due to changes in the chemical environment around the active species. The LOC device embodiments described here, which incorporate no wavelength-specific filters, have two advantages for capturing signals with such a broad and variable spectrum. The first advantage is sensitivity: any wavelength filter reduces light transmission, even within its pass band, so efficiency is improved by not including a filter. The second advantage is flexibility: adjustment of filter pass bands is not required after minor reagent changes, and the signals are less dependent on minor differences in non-target components of the input sample.
- ECL relies on the availability of luminophore (and coreactant) in solution. However, as illustrated in
FIG. 97 , theexcited species 868 are generated only in thesolution 872 near theelectrodes solution 872 around theelectrode 860 in which theexcited species 868 are generated. - This is a simplification, since solution dynamics can drive the available concentration upward or downward:
- Increased availability: diffusion and electrophoretic effects will allow exchange with more of the solution.
- Decreased availability: reagents can adsorb onto the electrodes and may become unavailable to the ECL process.
- For a boundary layer depth value of 0.5 μm, the following observations are made:
- ECL is observed in experiments where conjugation to magnetic beads with diameters up to 4.5 μm is used to attract the
luminophore 864 to theanode 860. - Ru(bpy)3 2+/
TPrA ECL emission 862 as a function of electrode spacing, for interdigitated electrode arrays, was found to be maximised at a 0.8 μm electrode spacing. The requirement for acoreactant 866 inaqueous solutions 872 can be lifted when electrode spacings are ˜2 μm. This indicates that theexcited species 868 diffuse multiple microns, which implies diffusive exchange on a similar scale for the species in the ground state. - During pulsed activation of the
electrodes FIG. 130 ) is generally higher than the intensity of theemission 862 from steady-state activation of the electrodes. Accordingly, the activation signal to theelectrodes FIG. 102 ). - The Ru complex is not consumed in the Ru(bpy)3 2+/TPrA ECL system, so the intensity of
emission 862 does not reduce with successive reaction cycles. The lifetime of the rate-limiting step is approximately 0.2 milliseconds giving a total reaction recycling time of approximately 1 millisecond. - Given the complexity of the solutions in the hybridization chamber, a large number of phenomena take place when the ECL voltage is turned on. Electrophoresis of macromolecules, ohmic conduction, and capacitive effects from small ion migration occur simultaneously.
- Electrophoresis of the oligonucleotides (probes and amplicon) can complicate the detection of probe-target hybrids, as DNA is highly negatively charged and attracted to the
anode 860. The time scale for this motion is typically short (in the order of milliseconds). Electrophoretic effects are strong even though the voltages are moderate (˜1 V), because the separation between theanode 860 andcathode 870 is small. - Electrophoresis enhances the
ECL emission 862 in some embodiments of the LOC device and degrades the emission in others. This is addressed by increasing or decreasing the electrode spacing to get the associated increases or decreases in electrophoretic effect. Interdigitation of theanode 860 and thecathode 870 above thephotodiode 184 represents the extreme case of minimizing this separation. Such an arrangement produces ECL, even in the absence of acoreactant 866 atcarbon electrodes - The current required to maintain an ECL voltage of ˜2.2 V, is determined as follows with reference to the
ECL cell 874 schematically illustrated inFIG. 98 . - The DC current through the chamber is determined by two resistances: the interface resistance Rs between the
electrodes electrodes - The effect of the interfacial resistance is estimated by scaling measurements of macroscopic current flow through similar solutions for the electrode geometries in the LOC devices.
- Macroscopic measurements of current density through a similar solution, at platinum electrodes, were taken. Consistent with the worst-case (high current) approach being taken, overall ionic strength and ECL reactant concentrations in the test solution were higher than those used in the LOC devices. The anode area was smaller than the cathode area, and was surrounded by a cathode with comparable area in a ring geometry. For an anode consisting of a
circle 2 mm in diameter, the current measured was 1.1 mA, giving a current density of 350 A/m2. - In the heating model, the electrode area is for the square ring geometry schematically illustrated in
FIG. 98 . The anode is a ring withwidth 1 μm andthickness 1 μm. The surface area is 196 square microns, and therefore the calculated current I=69 nA. - The heating (power=V2/R) was modelled for the worst case in which all the heat goes into raising the temperature of the water in the chamber. This leads to heating of chamber contents at 5.8° C./s, at a voltage difference of 2.2 V, if no allowance for heat removal by the bulk of the LOC device is made.
- Heating of the chambers by ˜20° C. can cause denaturation of most hybridization probes. For highly specific probes intended for mutation detection, it is preferable to further restrict heating to 4° C. or less. With this level of temperature stability, single base mismatch-sensitive hybridization, using appropriately designed sequences, becomes feasible. This allows the detection of mutations and allelic differences at the level of single nucleotide polymorphisms. Hence the DC current is applied to the
electrodes - A current of ˜69 nA passing through the chamber is far more than can be accommodated as Faradaic current by the ECL species at micromolar concentrations. Therefore, low-duty-cycle pulsing of the
electrodes sufficient ECL emission 862, does not introduce complications associated with reagent depletion. In other embodiments, the current is reduced to 0.1 nA which removes the need for pulsed activation of the electrodes. Even at currents as low as 0.1 nA, theECL emission 862 is luminophore-limited. - The immediate chemical precursors of ECL luminescence are generated within nanometres of the working electrode. Referring again to
FIG. 97 , light emission (the excited species 868) generally occurs within microns or less of that location. Hence the volume immediately adjacent to the working electrode (anode 860) is visible to thecorresponding photodiode 184 of thephotosensor 44. Accordingly, theelectrodes active surface area 185 of thecorresponding photodiode 184 in thephotosensor 44. Furthermore, theanode 860 is shaped to increase the length of its lateral periphery ‘seen’ by thephotodiode 184. This aims to maximize the volume ofexcited species 868 that can be detected by theunderlying photodiode 184. -
FIG. 96 schematically illustrates three embodiments of theanode 860. Acomb structure anode 878 has the advantage that theparallel fingers 880 can be interdigitated with the fingers of acathode 870. The interdigitated configuration is shown inFIG. 103 , and in a partial view of a LOC layout inFIGS. 120 and 124 . The interdigitated configuration provides a uniform dielectric gap 876 (seeFIG. 97 ) that is relatively narrow (1 to 2 microns) and the interdigitated comb structure is relatively simple for the lithographic fabrication process. As discussed above, a relatively narrowdielectric gap 876 between theelectrodes solutions 872, as theexcited species 868 will diffuse between anode and cathode. The removal of the requirement for a coreactant removes the potential chemical impact of the coreactant on the various assay chemistries and provides a wider range of possible assay options. - Referring again to
FIG. 96 , some embodiments of theanode 860 have aserpentine configuration 882. To achieve high periphery length while maintaining tolerance against fabrication errors, it is convenient to form wide, rectangular meanders 884. - The anode may have a more
complex configuration 886 if necessary or desirable. For example, it may have acrenulated section 888, abranched structure 890, or a combination of the two. Partial views of LOC designs incorporating abranched structure 890 are shown inFIGS. 138 and 139 . The more complicated configurations such as 886 provide a long length of lateral periphery, and are best suited to solution chemistries where a coreactant is employed since patterning a closely-spaced opposing cathode is more difficult. - Generally, ECL cells involve a planar working electrode which is viewed externally. Also, traditional microfabrication techniques for metal layers tend to lead to planar structures with metal thicknesses of approximately 1 micron. As has been indicated earlier, and shown schematically in
FIGS. 96 , 99 and 100, increasing the length of lateral periphery enhances the coupling between the ECL emission and thephotodiode 184. - A second strategy to further increase the efficiency of collection of emitted light 862 (see
FIG. 130 ) by thephotodiode 184 is to increase the thickness of theanode 860. This is shown schematically inFIG. 97 . The part of the participatingvolume 892 adjacent to the walls of the working electrode is the region most efficiently coupled to thephotodiode 184. Therefore, for a given width of workingelectrode 860, the overall collection efficiency of the emitted light 862 can be improved by increasing the thickness of the electrodes. Further, since high current carrying capacity is not required, the width of the workingelectrode 860 is reduced as far as is practical. The thickness of theelectrodes - The spacing between the
electrodes anode 860 is a branched structure such as shown inFIG. 96 andFIG. 100 , the spacing between adjacent elements can also be important. ECL emission efficiency, and the collection efficiency of the emitted light, should both be maximised. - Generation of ECL emission tends to favour electrode spacings on the order of one micron or less. Small spacings are particularly attractive when performing ECL in the absence of a coreactant. The fact that the spacing can be comparable to the wavelength of the emitted
light 862 is of limited importance. Therefore, in many embodiments where the emitted light 862 (seeFIG. 130 ) is measured at a location which does not require that the light have passed between theelectrodes electrodes - The wavelength of the emitted light 862 from ECL of Ru(bpy)3 2+ is around 620 nm, and therefore 460 nm (0.46 microns) in water. In embodiments where the
photodiode 184 and the ECLexcited species 868 are on different sides of the electrode structure, and the electrode structure is metallic, the emitted light 862 must pass through a gap between elements of the metallic structures. If this gap is comparable to the wavelength of the light, diffraction generally reduces the intensity of propagating light which reaches thephotodiode 184. In cases where the emittedlight 862 is incident on the gap at large angles, however, evanescent mode coupling can be harnessed to improve the strength of collected signals. Two measures are taken in the LOC devices to enhance the efficiency of coupling between thephotodiode 184 and the emittedlight 862. - First, the separation between metallic elements is not reduced below approximately the wavelength of the emitted light in water, i.e. approximately 0.4 microns. When combined with other observations regarding small separations between interdigitated electrodes, this indicates an optimal range for the electrode spacing of 0.4 to 2 microns.
- Second, the distance from the gap between elements to the
photodiode 184 is minimised. In the LOC device embodiments described here, this indicates that the total thickness of layers between theelectrodes photodiode 184 be one micron or less. In embodiments where multiple layers are present between the electrodes and the photodiode, arranging their thicknesses to be quarter-wave or three-quarter wave layers has the further benefit of suppressing reflection of the emittedlight 862. -
FIG. 97 is a schematic partial cross-section of theelectrodes anode 860 occupied by theexcited species 868, is sometimes referred to as the participatingvolume 892. Theoccluded region 894 above theanode 860 is ignored because its optical coupling to thephotodiode 184 is negligible. - A technique for determining whether a particular electrode configuration provides a foundation for the level of
ECL emission 862 for theunderlying photodiode 184 is set out below with reference toFIGS. 98 , 99 and 100. -
FIG. 98 is a ring geometry in which theanode 860 is around the edge ofphotodiode 184. InFIG. 99 , theanode 860 is positioned within the periphery of thephotodiode 184.FIG. 100 shows a more complex configuration in which theanode 860 has a series ofparallel fingers 880 to increase the length of its lateral edges. - For all of the above configurations, the model calculations are as follows. For a participating
volume 892 of solution VECL, the total effective number of emitters Nem is: -
N em =N lim·τp/τECL =V ECL C L N A·τp/τECL (6) - where the participating number of luminophores Nlum=VECLCLNA, τECL is the lifetime of the ECL process, CL is the luminophore concentration, τp is the pulse duration, and NA is Avogadro' s number.
- The number of isotropically emitted photons Nphot is:
-
Nphot=φECLNem (7) - where φECL is the ECL efficiency, defined as the average number of photons emitted by the ECL reaction of a single luminophore.
- The signal count of electrons, S, from the photodiode is then
-
S=Nphot·φ0φq, (8) - where φ0 is the optical coupling efficiency (the number of photons absorbed by the photodiode 184) and φq is the photodiode quantum efficiency. The signal is therefore:
-
- For
FIGS. 98 and 99 electrode configurations, φ0 is: -
φ0=(25% photons which are directed towards the photodiode 184)×(10% of photons which are not reflected) - i.e., φ0=2.5% for configurations shown in
FIGS. 98 and 99 - For the electrode configuration of
FIG. 100 , 50% of photons are emitted in a direction pointing towards thephotodiode 184, but the absorption efficiency as a function of angle is unchanged, so -
φ0=(50% photons which are directed towards the photodiode)×(10% of photons which are not reflected) - i.e., φ0=5% for the configuration of
FIG. 100 . - The participating
volume 892 depends on the electrode configuration, and details are presented in the corresponding sections. - The input parameters for the calculations are listed in the following:
-
TABLE 5 Input Parameters Parameter Value Comment Luminophore concen- 2.89 μM Probe concentration tration CL calculated previously ECL recycling period 1 ms Combined lifetimes of (lifetime) τECL reaction steps for luminophore. Boundary layer 0.5 μm Effective volume (including depth D diffusion and electro- phoresis) of solution participating in ECL Duration of current 0.69 s Chosen to limit ohmic application τp heating to 4° C. (as described previously) Chamber X dimension 28 μm Chamber Y dimension 28 μm Chamber height Z 8 μm Photodiode X dimension 16 μm Photodiode Y dimension 16 μm Electrode thickness (i.e., 1 μm exposed edge height) Electrode layer minimum 1 μm Process critical width and gap dimension Electrode interfacial 350 A/m2 For ohmic heating current density Solution volume 0.5 Ω · m For ohmic heating resistivity Voltage difference 2.2 V applied (working − counter electrode) - Referring to
FIG. 98 , theanode 860 is a ring around the edge of thephotodiode 184. In this configuration, the participatingvolume 892 is: -
V ECL=4×[(layer beside the electrode wall)+(quarter-cylinder above the electrode wall)] - Calculation Results:
- Photons generated from a 0.5 μm boundary layer: 3.1×105
- Electron counts in photodiode: 2.3×103
- This signal is readily detectable by the
underlying photodiode 184 of theLOC device photosensor 44. - Referring to
FIG. 100 ,parallel fingers 880 are added across theanode 860. Only horizontal edges shown in figure contribute to the participatingvolume 892, to avoid double-counting the perpendicular edges. The participatingvolume 892 is then: -
i VECL=(8×2)×[(layer beside the electrode wall)+(quarter-cylinder above the electrode wall)] - Calculation Results for
FIG. 100 Configuration: - Photons generated from a 0.5 μm boundary layer: 1.1×106
- Electron counts in photodiode 184: 8.0×103
- This signal is easily detectable in the
photodiode 184. - This configuration shown in
FIG. 101 andFIG. 102 is included as a limiting case of maximum surface area coupling. In practice, 90% or better coupling between the electrode surface area and theactive surface area 185 of thephotodiode 184 achieves a nearly optimal result, and even coupling of 50% of the photodiodeactive surface area 185 to the electrode surface area provides most of the benefit of the complete overlay configuration. Complete overlay can be achieved in two embodiments: first, as indicated schematically inFIG. 101 , by employing atransparent anode 860, in a plane parallel with that of thephotodiode 184 and with an area matched to that of the photodiode, and arranging the anode in immediate proximity to thephotodiode 184, such that emitted light 862 passes through the anode and onto the photodiode. In a second embodiment shown schematically inFIG. 102 , theanode 860 is again parallel to and registered with the photodiode area, but thesolution 872 fills a void between theanode 860 and thephotodiode 184. For signal modelling of a complete overlay configuration, the anode is assumed to be a complete layer above thephotodiode 184, with half of the photons directed toward the photodiode 184 (absorption efficiency still 10%). - Photons generated from a 0.5 μm boundary layer: 7.7×105
- Electron counts in photodiode: 1.2×104
- It is possible to improve the signal and assay beyond the above models by using surfactants and probe immobilization at the anode.
- The on-chip detection of hybridization avoids the needs for detection via confocal microscopy (see Background of the Invention). This departure from traditional detection techniques is a significant factor in the time and cost savings associated with this system. Traditional detection requires imaging optics which necessarily uses lenses or curved mirrors. By adopting non-imaging optics, the diagnostic system avoids the need for a complex and bulky optical train. Positioning the photodiode very close to the probes has the advantage of extremely high collection efficiency: when the thickness of the material between the probes and the photodiode is on the order of 1 micron, the angle of collection of emission light is up to 174°. This angle is calculated by considering light emitted from a probe at the centroid of the face of the hybridization chamber closest to the photodiode, which has a planar active surface parallel to that chamber face. The cone of emission angles within which light is able to be absorbed by the photodiode is defined as having the emitting probe at its vertex and the corner of the sensor on the perimeter of its planar face. For a 16 micron×16 micron sensor, the vertex angle of this cone is 170°; in the limiting case where the photodiode is expanded so that its area matches that of the 28 micron×26.5 micron hybridization chamber, the vertex angle is 174°. A separation between the chamber face and the photodiode active surface of 1 micron or less is readily achievable.
- Employing a non-imaging optics scheme does require the
photodiode 184 to be very close to the hybridization chamber in order to collect sufficient photons of fluorescence emission. The maximum spacing between the photodiode and probes is determined as follows. - Utilizing a ruthenium chelate luminophore and the electrode configuration of
FIG. 100 , we calculated 27,000 photons being absorbed by our 16 micron×16 micron sensor from the respective hybridization chamber, to generate 8000 electrons assuming a sensor quantum efficiency of 30%. In performing this calculation we assumed that the light-collecting region of our hybridization chamber has a base area which is the same as our sensor area, one quarter of the total number of the hybridization photons is angled so as to reach the sensor, and a conservative 10% estimate for the proportion of photons which do not scatter away from the sensor-dielectric interface. That is, the light gathering efficiency of the optical system is φ0=0.025. - More accurately we can write φ0=[(base area of the light-collecting region of the hybridization chamber)/(photodetector area)][Ω/4π][10% absorbed], where Ω=solid angle subtended by the photodetector at a representative point on the base of the hybridization chamber. For a right square pyramid geometry:
-
Ω=4 arcsin(a 2/(4d0 2 +a 2)), where d0=distance between the chamber and the photodiode, a is the photodiode dimension. - Each hybridization chamber releases 1.1×106 photons. The selected photodetector has a detection threshold of 17 photons, and for values of d0 greater than ten times the sensor size (i.e., essentially normal incidence) the proportion of photons not reflected at the sensor surface can be increased from 10% to 90%. Therefore, the minimum optical efficiency required is:
-
φ0=17/(1.1×106×0.9)=1.72×10−5 - The base area of the light-emitting region of the
hybridization chamber 180 is 29 micron×19.75 micron. - Solving for d0, we will get the maximum limiting distance between the bottom of our hybridization chamber and our photodetector to be d0=1600 microns. In this limit, the collection cone angle as defined above is only 0.8°. It should be noted this analysis ignores the negligible effect of refraction.
- The
LOC device 301 described and illustrated above in full is just one of many possible LOC device designs. Variations of the LOC device that use different combinations of the various functional sections described above will now be described and/or shown as schematic flow-charts, from sample inlet to detection, to illustrate some of the combinations possible. The flow-charts have been divided, where appropriate, into sample input andpreparation stage 288,extraction stage 290,incubation stage 291,amplification stage 292,pre-hybridization stage 293 anddetection stage 294. For all the LOC variants that are briefly described or shown only in schematic form, the accompanying full layouts are not shown for reasons of clarity and succinctness. Also in the interests of clarity, smaller functional units such as liquid sensors and temperature sensors are not shown but it will be appreciated that these have been incorporated into the appropriate locations in each of the following LOC device designs. - LOC Device with ECL Detection
-
FIGS. 111 to 127 show aLOC variant 729 with electrochemiluminescence (ECL) detection. This LOC device prepares 288,extracts 290, incubates 291, amplifies 292 and detects 294 both human and pathogen nucleic acids, as well as human and pathogen protein detection. ECL is used in the hybridization chamber arrays and proteomic assay chamber arrays for target detection. - As best shown in
FIG. 117 , a biological sample (for example, whole blood) is added to thesample inlet 68. The sample flows through thecap channel 94 to the anticoagulantsurface tension valve 118. Thecap 46 is fabricated with aninterface layer 594 positioned between thecap channel layer 80 and theMST channel layer 100 of the CMOS+MST device 48 (seeFIG. 112 ). Theinterface layer 594 allows a more complex fluidic interconnection between the reagent reservoirs and theMST layer 87 without increasing the size of thesilicon substrate 84. -
FIG. 113 shows theMST layer 87 visible on the top surface of the CMOS+MST device 48.FIG. 114 shows thecap channel layer 80 on the underside of thecap 46.FIG. 115 superimposes the reservoirs, thecap channels 94 and the interface channels to illustrate the more sophisticated plumbing achieved with acap 46 incorporating aninterface layer 594. - As best shown in
FIG. 117 , theinterface layer 594 requires the anticoagulantsurface tension valve 118 to have twointerface channels side interface channel 596 connects the reservoir outlet with the downtakes 92 and a sample-side interface channel 598 connects theuptakes 96 with thecap channel 94. - Anticoagulant from the
reservoir 54 flows through theMST channels 90 via the reservoir-side interface channel 596 to pin a meniscus at theuptakes 96. The sample flow along thecap channel 94 dips into the sample-side interface channel 598 to remove the meniscus so that the anticoagulant combines with the blood sample as it continues onto theleukocyte dialysis section 328. - The
leukocyte dialysis section 328 incorporates abypass channel 600 for filling the flow channel structures without trapped air bubbles (seeFIGS. 117 and 126 ). The blood sample flows throughcap channel 94 to the upstream end of the largeconstituents interface channel 730. The largeconstituents interface channel 730 is in fluid communication with thedialysis MST channels 204 via apertures in the form of 7.5 micron diameter holes 165 (seeFIG. 126 ). - Referring to
FIG. 126 , each of thedialysis MST channels 204 lead from the 7.5 micron diameter holes 165 torespective dialysis uptakes 168. The dialysis uptake holes 168 are open to the smallconstituents interface channel 732. However the uptakes are configured to pin a meniscus rather than allow capillary driven flow to continue. The uptake belonging to thebypass channel 600 has acapillary initiation feature 202 configured to initiate capillary driven flow into the smallconstituents interface channel 732. This ensures the flow begins at the upstream end of the smallconstituents interface channel 732 and sequentially unpins the menisci at thedialysis uptakes 168 as the flow progresses downstream. -
FIG. 121 shows the downstream end of theleukocyte dialysis section 328. The largeconstituents interface channel 730 feeds into the largeconstituents cap channel 736 and the smallconstituents interface channel 732 feeds the smallconstituents cap channel 734. As best shown inFIG. 115 , the largeconstituents cap channel 736 feeds the leukocytes (and any other large constituents) into the chemical lysis section 130.1 via the lysis surface tension valve 128.1 where lysis reagent from reservoir 56.1 is added. The chemical lysis section 130.1 has a 3micron filter downtake 738 at the outlet (seeFIG. 117 ). The filter downtake ensures that no large constituents reach the lysis chamber exit boiling-initiatedvalve 206. After sufficient time, the boiling-initiatedvalve 206 opens the chemical lysis section 130.1 outlet and the sample flow is split into two streams. As best shown inFIG. 117 , one stream flows to the surface tension valve 132.1 for the first restriction enzyme, ligase and linker reservoir 58.1 and the other stream is drawn along a lysedleukocyte bypass channel 742 directly to the proteomic assay chamber array 124.1 in the hybridization anddetection section 294. Here the sample fills the proteomic assay chamber array 124.1 (seeFIG. 119 ) containing probes for hybridization with target human proteins. Probe-target hybrids are detected with a photosensor 44 (seeFIG. 111 ). The other stream flows into the leukocyte incubation section 114.1 together with restriction enzymes, ligase and linker primers from reservoir 58.1. - Referring to
FIG. 118 , after restriction enzyme digestion and linker ligation, the incubator outlet valve 207 (also a boiling-initiated valve) opens and flow continues into the leukocyte DNA amplification section 112.1. The amplification mix and polymerase in reservoirs 60.1 and 62.1 are added via surface tension valves 138.1 and 140.1 respectively. Referring toFIG. 119 , after thermal cycling, the boiling-initiatedvalve 108 opens for the amplicon to enter the hybridization chamber array 110.1 containing probes for human DNA targets. Probe-target hybrids are detected with thephotosensor 44. - The erythrocytes and pathogens from the
leukocyte dialysis section 328 are fed to thepathogen dialysis section 70 via the cap channel 734 (seeFIGS. 117 and 127 ). This operates in the same manner as theleukocyte dialysis section 328 with the exception that the filter downtakes have 3 micron holes 164 instead of the 7.5 micron holes 165 used for leukocyte dialysis. The erythrocytes remain in the largeconstituents interface channel 730 while the pathogens diffuse to the smallconstituents interface channel 732. -
FIG. 122 shows the downstream end of thepathogen dialysis section 70. The erythrocytes flow into the largeconstituents cap channel 736 and the pathogens fill the smallconstituents cap channel 734. It will be appreciated that ‘large constituents’ and ‘small constituents’ are used in a relative sense as the large constituents output of the pathogen dialysis section is part of the small constituents output of the leukocyte dialysis section. The constituents in the large constituents cap 736 or interface channels are simply larger than the constituents in the small constituents cap 734 or interface channels within that particular dialysis section. As best shown inFIGS. 115 and 116 , the erythrocytes in the largeconstituents cap channel 736 are directed to the surface tension valve 128.3 for the lysis reagent reservoir 56.3. The lysis reagent combines with the erythrocytes as the sample fluid fills the chemical lysis section 130.3. - Boiling-initiated
valve 206 at the outlet of the third chemical lysis section 130.3 retains the pathogens until lysis is complete. When the boiling-initiatedvalve 206 opens, the erythrocyte DNA flows directly into the proteomic assay chamber array 124.3 for protein analysis and detection by the photosensor 44 (seeFIG. 119 ). - The pathogens in the small
constituents cap channel 734 are directed to the surface tension valve 128.2 of the second lysis reagent reservoir 56.2. The lysis reagent combines with the pathogens as the sample fluid fills the second chemical lysis section 130.2. After sufficient time, the boiling-initiatedvalve 206 opens the chemical lysis section 130.2 outlet and the sample flow is split into two streams. As best shown inFIGS. 116 and 118 , one stream flows to the surface tension valve 132.2 for the second restriction enzyme, ligase and linker reservoir 58.2 and the other stream is drawn along abypass channel 744 directly to the hybridization anddetection section 294. Here the sample fills the proteomic assay chamber array 124.2 (seeFIG. 119 ) containing probes for hybridization with target pathogen proteins or other biomolecules. Probe-target hybrids are detected with the photosensor 44 (seeFIG. 111 ). - The other stream flows into the pathogen incubation section 114.2 together with restriction enzymes, ligase and linker primers from reservoir 58.2. After restriction digestion and linker ligation, the incubator exit valve 207 (also a boiling-initiated valve) opens and flow continues into the pathogenic DNA amplification section 112.2 (see
FIG. 118 ). As the chamber fills, the amplification mix and polymerase in reservoirs 60.2 and 62.2 are added via surface tension valves 138.2 and 140.2 respectively. After thermal cycling, the boiling-initiatedvalve 108 opens for the amplicon to flow into the second hybridization chamber array 110.2 containing probes for pathogenic DNA targets. Probe-target hybrids are detected with the photosensor 44 (seeFIG. 119 ). - Referring to
FIG. 120 , the hybridization chamber arrays 110.1 and 110.2 and proteomic assay chamber arrays 124.1 to 124.3 haveheater elements 182 made from strips of titanium nitride. There are end-point liquid sensors 178 that detect when the flow has reached the end of the hybridization chamber array or proteomic assay chamber array and theheaters 182 are then activated after a time delay. The flow rate sensor 740 (seeFIG. 125 ) is included in the pathogen incubation section 114.2 to determine the time delay. -
FIGS. 123 and 124 show thecalibration chambers 382. They are used to calibrate thephotodiodes 184 to adjust for system noise and background levels. The photodiode's response and electrical noise characteristics can vary with location and due to thermal variations. The output signal fromcalibration chambers 382, which do not contain any probes, closely approximates the noise and background in the output signal from all the chambers. Subtracting the calibration signal from the output signals generated by the other hybridization chambers substantially removes the noise and leaves the signal generated by the electrochemiluminescence (if any). Also, positive and negative control ECL probes 786 and 787 can be placed in some of thehybridization chambers 180 for assay quality control. - Referring to
FIG. 116 , ahumidifier 196, composed of thewater reservoir 188 andevaporators 190, is located in the top left of the device. The position of thehumidity sensor 232 is adjacent to thehybridization chamber array 110 where humidity measurement is most important to slow evaporation from the solution containing the exposed probes. - By combining the leukocyte and pathogen output dialysis sections, three output streams are produced (leukocytes, erythrocytes, and pathogens and other biomolecules) which are processed separately to enable higher sensitivity and parallel analysis. The output from each stream is lysed and separately directed to the proteomic assay chamber arrays for protein detection. The lysed leukocytes and pathogens are also separately directed to the
incubation 114 andamplification 112 sections for amplification, followed by hybridization for nucleic acid detection. - LOC Device with Thermal Insulation Trench
- As best depicted in
FIG. 128 , atrench 896 is etched into the back of thesilicon substrate 84. The purpose of the trench is to thermally insulate theamplification section 112 from thehybridization chamber array 110. The hybridization array contains detection probes that can degrade at high temperatures. The trench, when filled with air, has a thermal conductivity of the order of 6000 times less than that of the silicon substrate, thereby significantly reducing the heat flux into adjacent parts of the LOC device. - This provides two main advantages: an increase in the heating efficiency in the
amplification section 112; and a reduction in the undesirable temperature rise of theadjacent hybridization section 110. Improved heating efficiency means less power is required to heat theamplification section 112 and the temperature reaches its desired end-point temperature faster and with better spatial uniformity within the amplification section. A reduction in the temperature rise in thehybridization section 110 allows for a wider range of probe chemistries and superior signal quality. - The trench can be placed around any region on the LOC device to thermally insulate the components in that region. The width and depth of the
trench 896 are variable to suit the specific application. - The devices, systems and methods described here facilitate molecular diagnostic tests at low cost with high speed and at the point-of-care.
- The system and its components described above are purely illustrative and the skilled worker in this field will readily recognize many variations and modifications which do not depart from the spirit and scope of the broad inventive concept.
Claims (20)
1. A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device comprising:
electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer;
electrodes for receiving an electrical pulse to excite the ECL luminophores;
hybridization chambers containing the probes for detection of the targets, and a pair of the electrodes; and,
at least one negative control chamber without the ECL probes.
2. The LOC device according to claim 1 further comprising a photosensor positioned adjacent the probes for sensing which of the probes generate the ECL photons in response to the electrical pulse.
3. The LOC device according to claim 2 further comprising a supporting substrate wherein the photosensor is a charge coupled device (CCD) array positioned between the probes and the supporting substrate.
4. The LOC device according to claim 2 further comprising a supporting substrate wherein the photosensor is an array of photodiodes positioned on the supporting substrate in registration with the hybridization chambers.
5. The LOC device according to claim 4 wherein the array of photodiodes is less than 1600 microns from the probes.
6. The LOC device according to claim 4 further comprising CMOS circuitry on the supporting substrate, the array of photodiodes being a component of the CMOS circuitry wherein during use, the CMOS circuitry initiates an error signal in response to ECL emissions being detected from the negative control chamber.
7. The LOC device according to claim 1 further comprising at least one positive control chamber containing positive control probes that have the ECL luminophore but not the functional moiety for quenching photon emission.
8. The LOC device according to claim 5 further comprising:
a flow-path for fluid containing the targets; wherein,
the CMOS circuitry is between the hybridization chambers and the supporting substrate, and the flow-path draws the fluid to each of the hybridization chambers by capillary action.
9. The LOC device according to claim 8 further comprising a lysis section wherein the fluid is a biological sample containing cells and the lysis section disrupts the cellular membranes to release any genetic material therein.
10. The LOC device according to claim 9 wherein the hybridization chambers each have a wall section that is optically transparent to the light emitted by the probes.
11. The LOC device according to claim 10 wherein the CMOS circuitry incorporates the photosensor wherein the wall section is positioned between the probes and the photosensor.
12. The LOC device according to claim 10 wherein the wall section is a layer incorporating silicon dioxide.
13. The LOC device according to claim 5 wherein the probes have a stem-and-loop structure with a loop portion containing the sequence complementary to the target nucleic acid sequence, the loop portion being positioned between the functional moiety for quenching photon emission from the ECL luminophore, and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional moiety.
14. The LOC device according to claim 13 wherein the CMOS circuitry is configured to provide an electrical pulse to the electrodes.
15. The LOC device according to claim 14 wherein the electrical pulse has a duration less than 0.69 seconds.
16. The LOC device according to claim 12 wherein the electrical pulse has a current of 0.1 nanoamperes to 69.0 nanoamperes.
17. The LOC device according to claim 14 wherein the electrodes have an anode and a cathode each having fingers configured such that the fingers of the anode are interdigitated with the fingers of the cathode.
18. The LOC device according to claim 17 wherein the anode and the cathode are separated by a dielectric gap between 0.4 microns and 2 microns wide.
19. The LOC device according to claim 10 further comprising a PCR section for amplifying the target nucleic acid sequences prior to detection by the probes.
20. The LOC device according to claim 5 further comprising a cap having reagent reservoirs for addition to the sample prior to detection of the target sequences, wherein the electrodes and the probes are between the cap and the CMOS circuitry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/150,024 US20110312567A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences using hybridization chamber array and negative control chamber without probes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35601810P | 2010-06-17 | 2010-06-17 | |
US201161437686P | 2011-01-30 | 2011-01-30 | |
US13/150,024 US20110312567A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences using hybridization chamber array and negative control chamber without probes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110312567A1 true US20110312567A1 (en) | 2011-12-22 |
Family
ID=45327470
Family Applications (355)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/150,047 Abandoned US20110312710A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
US13/150,193 Abandoned US20110312789A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with flash memory |
US13/150,004 Abandoned US20110312694A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with delay-triggered photodetection of fluorescent probe-target hybrid |
US13/150,225 Abandoned US20110312801A1 (en) | 2010-06-17 | 2011-06-01 | Test module with lanthanide metal-ligand complex fluorophore |
US13/149,932 Abandoned US20110312642A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of nucleic acid targets with electrochemiluminescent probes |
US13/149,906 Abandoned US20110312631A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
US13/150,066 Abandoned US20110312576A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for multi-stage amplification of nucleic acid sequences |
US13/150,100 Abandoned US20110312078A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting target nucleic acid sequences in mitochondrial dna |
US13/150,135 Expired - Fee Related US8383064B2 (en) | 2010-06-17 | 2011-06-01 | Genetic test module with low oligonucleotide probe mass and reagent volumes |
US13/150,037 Abandoned US20110312704A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr amplification using low pcr mixture volume |
US13/150,086 Abandoned US20110312738A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with liquid sensor |
US13/149,984 Abandoned US20110312682A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for amplifying and detecting target nucleic acid sequences using electrochemiluminescent resonant energy transfer, stem-and-loop probes with covalently attached primers |
US13/150,267 Abandoned US20110312836A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for electrochemiluminescent detection of target sequences |
US13/150,016 Abandoned US20110312562A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and parallel nucleic acid amplification |
US13/150,116 Abandoned US20110312760A1 (en) | 2010-06-17 | 2011-06-01 | Reagent microvial with authentication integrated circuit |
US13/150,123 Abandoned US20110312765A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with low oligonucleotide probe mass and low reagent volume |
US13/149,936 Abandoned US20110312646A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for separating constituents of intermediate size from larger and smaller constituents in a biological sample |
US13/150,084 Abandoned US20110312737A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for electrochemiluminescent detection of targets |
US13/150,226 Abandoned US20110312620A1 (en) | 2010-06-17 | 2011-06-01 | System for variable microarray spotting and genetic analysis |
US13/150,063 Abandoned US20110312724A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with incubation, nucleic acid amplification and prehybridization filtering |
US13/149,899 Abandoned US20110312546A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification |
US13/150,232 Abandoned US20110312621A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for dispensing reagents and loading oligonucleotide spotting devices |
US13/150,148 Abandoned US20110312843A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device for complete assay spotting of locs |
US13/150,119 Abandoned US20110312763A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with in-loc storage of all required reagents |
US13/150,003 Abandoned US20110312693A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with feedback controlled pcr section |
US13/150,127 Abandoned US20120053088A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for biochemical processing and analysis |
US13/149,937 Abandoned US20110312647A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled hybridization chambers |
US13/149,907 Abandoned US20110312632A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section and diffusion mixer |
US13/150,270 Abandoned US20110312839A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for electrochemiluminescent detection of target sequences with working electrode in contact with photosensor |
US13/150,264 Abandoned US20110312833A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences using transparent electrodes |
US13/149,933 Abandoned US20110312643A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of hybridization of nucleic acid targets |
US13/150,191 Abandoned US20110312606A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with digital memory |
US13/149,992 Abandoned US20110312557A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and parallel nucleic acid amplification |
US13/150,189 Abandoned US20110312618A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with high spotting rate |
US13/150,131 Expired - Fee Related US8354074B2 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume reagent reservoir |
US13/150,260 Abandoned US20110312830A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with electrochemiluminescent probes having a functional moiety for quenching photon emissions configured to change proximity to a luminophore upon forming a probe-target hybrid |
US13/149,957 Abandoned US20110312662A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for removing cell debris from a biological sample |
US13/150,132 Expired - Fee Related US8394339B2 (en) | 2010-06-17 | 2011-06-01 | LOC device with on-chip semiconductor controlled incubation section |
US13/150,112 Abandoned US20110312756A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low reagent volumes |
US13/150,255 Abandoned US20110312825A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection with electrode pairs having complementary and mutually interdigitated finger formations |
US13/149,956 Abandoned US20110312661A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with array of chambers and corresponding diffusion barriers for electrochemiluminescent detection of targets |
US13/150,140 Abandoned US20110311393A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal bend actuated pressure pulse valve |
US13/150,177 Abandoned US20110312602A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal bend actuated surface tension valve |
US13/150,161 Abandoned US20110312776A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating reporters |
US13/149,971 Abandoned US20110312674A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral photosensor for electrochemiluminescence based detection of targets |
US13/150,134 Abandoned US20110312770A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with nucleic acid amplification using primers covalently attached to linear probes |
US13/149,892 Abandoned US20110312623A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
US13/150,095 Abandoned US20110312743A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of target nucleic acid sequences using electrodes configured for electrochemiluminescence of luminophores without a coreactant |
US13/150,150 Abandoned US20110312773A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with fault-tolerant multiple valve assembly |
US13/150,271 Abandoned US20110312840A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sample inlet, electrochemiluminescent probes and integrated photosensor for detection of target sequences |
US13/150,067 Abandoned US20110312727A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel nucleic acid amplification functionality |
US13/149,922 Abandoned US20110312074A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with sample receptacle |
US13/150,036 Abandoned US20110312571A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and parallel nucleic acid amplification |
US13/150,240 Abandoned US20110312812A1 (en) | 2010-06-17 | 2011-06-01 | Genetic test module with feedback-controlled humidifier |
US13/149,952 Abandoned US20110312657A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a mobile telephone |
US13/149,966 Abandoned US20110312670A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with an ebook reader |
US13/150,064 Expired - Fee Related US8398940B2 (en) | 2010-06-17 | 2011-06-01 | USB-interfaceable portable test module for electrochemiluminescent detection of targets |
US13/149,958 Abandoned US20110312663A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with time delayed detection of fluorescence from hybridized probes |
US13/150,040 Abandoned US20110312705A1 (en) | 2010-06-17 | 2011-06-01 | Test module for pcr amplification using low pcr mixture volume |
US13/150,087 Abandoned US20110312615A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with parallel nucleic acid amplification section |
US13/150,197 Abandoned US20110312792A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates epidemiological databases |
US13/150,021 Abandoned US20110312565A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using hybridization chamber array and negative control chamber containing probes without electrochemiluminescent reporter |
US13/150,027 Abandoned US20110312568A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
US13/149,943 Abandoned US20110312076A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
US13/150,058 Abandoned US20110312720A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis and nucleic acid amplification |
US13/149,967 Abandoned US20110312554A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis device, loc and interconnecting cap |
US13/149,962 Abandoned US20110312666A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with triggered photodetection of fluorescing probe-target hybrid |
US13/149,908 Abandoned US20110312548A1 (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
US13/149,986 Abandoned US20110312537A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for amplifying and detecting target nucleic acid sequences using electrochemiluminescent resonant energy transfer, linear probes with covalently attached primers |
US13/150,091 Abandoned US20110312584A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module with driver for excitation of electrochemiluminescent luminophores |
US13/150,001 Abandoned US20110312691A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes including positive and negative control probes |
US13/150,072 Abandoned US20110312580A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with nucleic acid amplification section and thermal insulation trench |
US13/150,029 Abandoned US20110312570A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting target nucleic acid sequences with probes having long fluorescence lifetime fluorophores |
US13/150,105 Abandoned US20110312750A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with total reagent storage |
US13/149,910 Abandoned US20110312549A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with multi-layer dialysis section |
US13/149,965 Abandoned US20110312669A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with electrochemiluminescent probes and photosensor with large angle of collection for probe emittted light |
US13/150,061 Expired - Fee Related US8388910B2 (en) | 2010-06-17 | 2011-06-01 | Portable test module for excitation of electrochemiluminescent probes |
US13/149,969 Abandoned US20110312672A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic assembly with test module and detachable indicator module |
US13/150,144 Abandoned US20110312592A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubation chamber between supporting substrate and heater |
US13/150,118 Abandoned US20110312762A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with fluorescence resonance energy transfer (fret) probes |
US13/150,101 Abandoned US20110312747A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for biochemical processing and analysis |
US13/150,156 Abandoned US20110312617A1 (en) | 2010-06-17 | 2011-06-01 | Monolithic microsystems technology device for oligonucleotide spotting |
US13/150,136 Abandoned US20110312771A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pwm controlled incubation section |
US13/149,954 Abandoned US20110312659A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with hybridization chambers and corresponding diffusion barriers |
US13/150,020 Abandoned US20110312564A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
US13/150,077 Abandoned US20110312732A1 (en) | 2010-06-17 | 2011-06-01 | Test module using lanthanide metal-ligand complex, electrochemiluminescent luminophores |
US13/149,972 Abandoned US20110312675A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device with flow-channel structure for capillary-driven fluidic propulsion without trapped air bubbles |
US13/149,999 Abandoned US20110312689A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sensor-triggered photodetection of fluorescent probe-target hybrid |
US13/150,230 Abandoned US20110312804A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with aperture with geometry to promote unpinned flow-through of fluid |
US13/150,142 Abandoned US20110312591A1 (en) | 2010-06-17 | 2011-06-01 | Loc with low-volume hybridization chamber and reagent reservoir for genetic analysis |
US13/149,976 Abandoned US20110312068A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device for separating nucleated cells in a biological sample from other constituents |
US13/150,000 Abandoned US20110312690A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section having two-dimensional control of input heat flux density |
US13/149,934 Abandoned US20110312644A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
US13/150,216 Abandoned US20110312608A1 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume hybridization chamber and low-volume reagent reservoir |
US13/149,890 Abandoned US20110312622A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume hybridization chambers for electrochemiluminescent detection of target sequences |
US13/150,151 Abandoned US20110312595A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with mixing section |
US13/150,223 Abandoned US20110312611A1 (en) | 2010-06-17 | 2011-06-01 | Test module with transition metal-ligand complex fluorophore |
US13/149,951 Abandoned US20110312656A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr and probe hybridization |
US13/149,950 Abandoned US20110312655A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr, probe hybridization and electrochemiluminescent detection of probe-target hybrids |
US13/150,149 Abandoned US20110312594A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization probes including positive and negative control probes |
US13/150,199 Abandoned US20110312851A1 (en) | 2010-06-17 | 2011-06-01 | Device for high density spotting of oligonucleotides |
US13/150,057 Expired - Fee Related US8383065B2 (en) | 2010-06-17 | 2011-06-01 | Test module with integral photosensor for electrochemiluminescent detection of hybridization |
US13/150,012 Abandoned US20110312696A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and nucleic acid amplification |
US13/149,975 Abandoned US20110312677A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of targets with electrochemiluminescent resonant energy transfer probes |
US13/149,891 Abandoned US20110312841A1 (en) | 2010-06-17 | 2011-06-01 | Fabrication system for lab-on-a-chip (loc) devices with differing application specific functionality |
US13/150,257 Abandoned US20110312827A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for detection of target sequences with electrochemiluminescent luminophore and functional moiety for quenching photon emissions |
US13/150,038 Abandoned US20110312540A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescent probes and calibration probes lacking a luminophore |
US13/150,246 Abandoned US20110312817A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with humidity sensor |
US13/150,248 Abandoned US20110312819A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescence of a luminophore in the presence of an electrochemical coreactant |
US13/149,991 Abandoned US20110312556A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with trigger photodiode in each hybridization chamber |
US13/150,055 Abandoned US20110312717A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, incubation and nucleic acid amplification |
US13/149,968 Abandoned US20110312671A1 (en) | 2010-06-17 | 2011-06-01 | Single use microfluidic device with photosensor for electrochemiluminescent detection of targets |
US13/150,241 Abandoned US20110312813A1 (en) | 2010-06-17 | 2011-06-01 | Single-use genetic test module |
US13/150,053 Expired - Fee Related US8394340B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low mass electrochemiluminescent probe spots |
US13/150,269 Abandoned US20110312838A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with electrochemiluminescent probes and integrated photosensor for detection of target molecules |
US13/149,898 Expired - Fee Related US8349277B2 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
US13/150,192 Abandoned US20110312607A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration photosensor output subtracted in a differential circuit from the output of hybridization photosensors |
US13/150,186 Abandoned US20110312849A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for ejecting low volume droplets |
US13/150,069 Abandoned US20110312578A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for non-specific nucleic acid amplification prior to specific amplification of particular sequences |
US13/150,182 Abandoned US20110312604A1 (en) | 2010-06-17 | 2011-06-01 | Loc having on-chip electronics for use in a test module to control module communications |
US13/150,224 Abandoned US20110312855A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for high density spotting of oligonucleotides |
US13/149,959 Abandoned US20110312664A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a dedicated reader |
US13/150,120 Abandoned US20110311418A1 (en) | 2010-06-17 | 2011-06-01 | Microvial with digital memory for storage of reagent specification data |
US13/149,904 Abandoned US20110312630A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
US13/150,052 Abandoned US20110312574A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and parallel nucleic acid amplification |
US13/150,187 Abandoned US20110312605A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral controller |
US13/150,104 Abandoned US20110312749A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal lysis section |
US13/149,909 Abandoned US20110312633A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section |
US13/150,006 Abandoned US20110312538A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes for detecting targets in a fluid and a positive control probe for detecting a nucleic acid sequence known to be present |
US13/150,174 Abandoned US20110312783A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control comprising empty chambers |
US13/150,181 Abandoned US20110312786A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration chamber containing probe designed to be noncomplementary to nucleic acid sequences in the amplicon |
US13/150,092 Abandoned US20110312585A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with parallel dna and rna amplification section |
US13/150,078 Abandoned US20110312526A1 (en) | 2010-06-17 | 2011-06-01 | Method of analysing the nucleic acid content of a blood sample |
US13/150,188 Abandoned US20110312542A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration chamber containing chamber with a blocked inlet spotted with reporter |
US13/150,206 Abandoned US20110312796A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates medical databases |
US13/149,985 Abandoned US20110312683A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with tablet computer |
US13/149,894 Pending US20110312624A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles |
US13/150,122 Abandoned US20110312587A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with primer-linked stem-and-loop probes |
US13/150,017 Abandoned US20110312563A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences in a fluid using hybridization chamber array and negative control chamber containing electrochemiluminescent probe designed to be non-complementary to any sequence in the fluid |
US13/150,195 Abandoned US20110312790A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low-volume hybridization chamber |
US13/150,256 Abandoned US20110312826A1 (en) | 2010-06-17 | 2011-06-01 | Test module with laser for excitation of oligonucleoutide probes |
US13/150,083 Abandoned US20110312736A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow rate sensor |
US13/150,251 Abandoned US20110312822A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for electrochemiluminescent detection of target nucleic acid sequences |
US13/149,996 Abandoned US20110312688A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr chamber between supporting substrate and heater |
US13/150,124 Abandoned US20110312766A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with feedback controlled incubation section |
US13/150,239 Abandoned US20110312811A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences with electrodes profiled for greater peripheral edge length |
US13/150,162 Abandoned US20110312598A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by outlet valve numbers |
US13/150,183 Abandoned US20110312848A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for wafer-scale spotting of locs |
US13/149,997 Abandoned US20110312558A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and tandem nucleic acid amplification |
US13/150,107 Abandoned US20110312586A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for chemically and thermally lysing cells |
US13/150,178 Abandoned US20110312784A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting targets with probes, detection photodiodes and a calibration photodiode |
US13/150,002 Abandoned US20110312692A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and nucleic acid amplification |
US13/150,039 Abandoned US20110312572A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and nucleic acid amplification |
US13/150,205 Abandoned US20110311407A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic boiling-initiated valve |
US13/149,924 Abandoned US20110312551A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
US13/150,099 Abandoned US20110312746A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with chemical lysis section |
US13/150,082 Abandoned US20110312735A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with nucleic acid amplification section |
US13/149,948 Abandoned US20110312654A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
US13/149,981 Abandoned US20110312680A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, linear probes |
US13/149,983 Abandoned US20110312681A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for removing erythrocytes from blood |
US13/150,050 Expired - Fee Related US8398939B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low-volume hybridization chambers for electrochemiluminescent detection of target nucleic acid sequences in a fluid |
US13/150,221 Abandoned US20120004145A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for wafer-scale spotting of locs |
US13/149,917 Abandoned US20110312637A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating pathogens from a biological sample |
US13/150,076 Abandoned US20110312581A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with nucleic acid amplification chamber heater bonded to chamber interior |
US13/150,044 Abandoned US20110312573A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and parallel nucleic acid amplification |
US13/150,167 Abandoned US20110312599A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with a pcr section with single activation, outlet valve |
US13/149,918 Abandoned US20110312638A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
US13/150,228 Abandoned US20110312802A1 (en) | 2010-06-17 | 2011-06-01 | Test module with probes suspended in fluid |
US13/149,942 Abandoned US20110312650A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with optically transparent hybridization chambers for electrochemiluminescent detection of targets |
US13/150,035 Abandoned US20110312703A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for rapid pcr amplification |
US13/150,218 Abandoned US20110312609A1 (en) | 2010-06-17 | 2011-06-01 | Test module for orientation-independent operation |
US13/149,974 Abandoned US20110312067A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device for separating pathogens from a biological sample |
US13/150,014 Abandoned US20110312561A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with photodiodes with controllable shunts to detect fluorescing hybridized probes |
US13/150,019 Abandoned US20110312698A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section having short thermal cycle times |
US13/149,931 Abandoned US20110312641A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sample inlet and probe hybridization section |
US13/150,235 Abandoned US20110312807A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with a membrane seal to prevent dehumidification of the mixture |
US13/150,046 Abandoned US20110312709A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescent probes and calibration probes with detection photosensors and calibration photosensors |
US13/149,946 Abandoned US20110312652A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume electrochemiluminescence-based probe spots |
US13/149,995 Abandoned US20110312687A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with low volume hybridization chambers and reagent reservoirs for genetic analysis using electrochemiluminescent target detection |
US13/150,194 Abandoned US20110312850A1 (en) | 2010-06-17 | 2011-06-01 | Biochemical deposition device with high deposition rate |
US13/150,200 Abandoned US20110312793A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low mass of probes |
US13/150,068 Abandoned US20110312577A1 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume hybridization chambers and reagent reservoir for electrochemiluminescent detection of target nucleic acid sequences |
US13/149,895 Abandoned US20110312625A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
US13/150,025 Abandoned US20110312700A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pwm controlled pcr heater |
US13/149,973 Abandoned US20110312676A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral driver for excitation of electrochemiluminescent luminophores |
US13/150,051 Abandoned US20110312714A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for amplification of nucleic acids using dna polymerases of thermophiles |
US13/149,978 Abandoned US20110312678A1 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having dialysis device, loc and interconnecting cap |
US13/150,031 Abandoned US20110312070A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr chamber for high rate of temperature change |
US13/149,953 Abandoned US20110312658A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for concentrating nucleated cells in a biological sample |
US13/149,927 Abandoned US20110312075A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel incubation and parallel dna and rna amplification functionality |
US13/150,085 Abandoned US20110312582A1 (en) | 2010-06-17 | 2011-06-01 | Test module with nucleic acid amplification section |
US13/149,947 Abandoned US20110312653A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume hybridization chambers |
US13/150,252 Abandoned US20110312823A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and mirrors for simultaneous excitation of oligonucleoutide probes |
US13/150,139 Abandoned US20110312590A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with elongate incubation chamber |
US13/150,204 Abandoned US20110312795A1 (en) | 2010-06-17 | 2011-06-01 | Diagnostic test module with a loc with integral photosensor and excitation led for detection of hybridization assay results |
US13/150,157 Abandoned US20110312597A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating probes with no quenchers |
US13/150,009 Abandoned US20110312560A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and tandem nucleic acid amplification |
US13/149,989 Abandoned US20110312684A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and nucleic acid amplification |
US13/150,106 Abandoned US20110312751A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of mitochondrial dna via fluorescence modulated by hybridization |
US13/150,081 Abandoned US20110312527A1 (en) | 2010-06-17 | 2011-06-01 | Method of analysing the nucleic acid content of biological fluid |
US13/150,048 Abandoned US20110312711A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with controllable shunts peripheral to integrated photodiodes |
US13/150,115 Abandoned US20110312759A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with reagent reservoir |
US13/150,233 Abandoned US20110312806A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with humidifier |
US13/150,060 Abandoned US20110312721A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, incubation, and nucleic acid amplification |
US13/149,961 Abandoned US20110312665A1 (en) | 2010-06-17 | 2011-06-01 | Loc with dialysis section for removing insoluble sample constituents from a nucleic acid mixture |
US13/150,126 Abandoned US20110312541A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with primer-linked linear probes |
US13/149,944 Abandoned US20110312651A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low mass probe spots |
US13/149,964 Abandoned US20110312668A1 (en) | 2010-06-17 | 2011-06-01 | Loc with dialysis section for retaining insoluble sample constituents after amplification and passing soluble constituents to a detection section |
US13/150,258 Abandoned US20110312828A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection using electrode pairs optically coupled to photodiode |
US13/150,154 Abandoned US20110312596A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface tension valve at reagent reservoir outlet |
US13/150,164 Abandoned US20110312846A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with fluidics on both sides of supporting substrate |
US13/150,243 Abandoned US20110312814A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module with excitation source |
US13/150,059 Abandoned US20110312575A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using a nicking enzyme and a dna polymerase |
US13/150,165 Abandoned US20110312778A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control chambers incorporating probes designed to be noncomplementary to nucleic acid sequences in the amplicon |
US13/150,229 Abandoned US20110312803A1 (en) | 2010-06-17 | 2011-06-01 | System for variable loading of reagents into microfluidic device for genetic analysis |
US13/150,184 Expired - Fee Related US8425845B2 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with hybridization array with calibration chamber containing probe that lacks a reporter |
US13/149,930 Abandoned US20110312552A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
US13/150,079 Abandoned US20110312733A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with nucleic acid amplification section |
US13/150,155 Abandoned US20110312774A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for diffusive mixing in small cross sectional area microchannel |
US13/150,190 Abandoned US20110312788A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal boiling-initiated valve |
US13/150,080 Abandoned US20110312734A1 (en) | 2010-06-17 | 2011-06-01 | Test module with suspended electrochemiluminescent probes |
US13/150,227 Abandoned US20110309276A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal boiling-initiated valve |
US13/150,209 Abandoned US20110309275A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly |
US13/150,049 Abandoned US20110312712A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for pcr amplification of nucleic acids from whole blood |
US13/150,214 Abandoned US20110311413A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with liquid detector sensor feedback |
US13/150,219 Abandoned US20110311414A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal bend-actuator pressure pulse valve |
US13/150,033 Abandoned US20110312077A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences in a fluid with calibration chamber containing probes designed to be non-complementary with any nucleic acid sequences in the fluid |
US13/150,170 Abandoned US20110312781A1 (en) | 2010-06-17 | 2011-06-01 | Loc with digital memory to store genetic data updates |
US13/150,143 Abandoned US20110312842A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device |
US13/149,970 Abandoned US20110312673A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device with multi-layer structure |
US13/150,201 Expired - Fee Related US8398938B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic thermal bend actuated pressure pulse valve |
US13/150,237 Abandoned US20110312809A1 (en) | 2010-06-17 | 2011-06-01 | Test module with humidifier |
US13/150,168 Abandoned US20110312779A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for operation under external microprocessor control |
US13/150,172 Abandoned US20110312782A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with digital memory |
US13/150,018 Abandoned US20110312697A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled pcr section |
US13/149,914 Abandoned US20110312636A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating leukocytes from blood |
US13/150,175 Abandoned US20110312601A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with digital memory for secure storage of data |
US13/149,939 Abandoned US20110312648A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
US13/150,159 Abandoned US20110312775A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with digital memory |
US13/150,110 Abandoned US20110312754A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of mitochondrial dna via electrochemiluminescence modulated hybridization |
US13/150,207 Abandoned US20110312797A1 (en) | 2010-06-17 | 2011-06-01 | Portable test module for fluorescence excitation of probe nucleic acid sequences |
US13/150,141 Abandoned US20110312082A1 (en) | 2010-06-17 | 2011-06-01 | Dispensing apparatus for wafer-scale dispensing of reagents |
US13/150,071 Abandoned US20110312728A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with non-imaging optics |
US13/150,238 Abandoned US20110312810A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for detection of hybridization of targets with oligonucleotide probes |
US13/150,272 Abandoned US20110308945A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with thick electrodes for electrochemiluminescent detection of target sequences |
US13/150,022 Abandoned US20110312699A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with on-chip semiconductor controlled pcr section |
US13/150,180 Abandoned US20110312785A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device for spotting fixed array of locs |
US13/149,912 Abandoned US20110312635A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure for capillary-driven fluidic propulsion without trapped air bubbles |
US13/150,196 Abandoned US20110312791A1 (en) | 2010-06-17 | 2011-06-01 | Test module with fault-tolerant multiple valve assembly |
US13/149,960 Abandoned US20110312553A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with non-imaging optics for electrochemiluminescent detection of targets |
US13/150,074 Abandoned US20110312730A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel dna and rna amplification functionality |
US13/149,941 Abandoned US20110312649A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with optically transparent hybridization chambers |
US13/150,176 Abandoned US20110312847A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device with stored oligonucleotide specification data |
US13/150,179 Abandoned US20110312603A1 (en) | 2010-06-17 | 2011-06-01 | Test module with loc having on-chip electronics for module control |
US13/150,125 Abandoned US20110312069A1 (en) | 2010-06-17 | 2011-06-01 | Microvial with digital memory for storage of oligonucleotide specification data |
US13/150,093 Abandoned US20110312741A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for analysis of mitochondrial dna |
US13/150,213 Abandoned US20110312800A1 (en) | 2010-06-17 | 2011-06-01 | Test module for gravity-independent operation |
US13/149,893 Abandoned US20110312545A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
US13/149,902 Abandoned US20110312629A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
US13/150,075 Abandoned US20110312731A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with large angle of collection of emission light |
US13/150,268 Abandoned US20110312837A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis and electrochemiluminescent detection of target sequences |
US13/150,220 Abandoned US20110312610A1 (en) | 2010-06-17 | 2011-06-01 | Test module with long fluorescence lifetime probes |
US13/150,173 Abandoned US20110312600A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal bend actuated pressure pulse valve |
US13/150,247 Abandoned US20110312818A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and lens for simultaneous excitation of oligonucleoutide probes |
US13/150,070 Abandoned US20110312579A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel incubation and parallel nucleic acid amplification functionality |
US13/149,921 Abandoned US20110312550A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
US13/150,024 Abandoned US20110312567A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences using hybridization chamber array and negative control chamber without probes |
US13/150,249 Abandoned US20110312820A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and prisms for simultaneous excitation of oligonucleoutide probes |
US13/149,925 Abandoned US20120052562A1 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having laminar structure and sample receptacle |
US13/149,979 Abandoned US20110312555A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes |
US13/149,993 Abandoned US20110312686A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with elongate pcr chambers |
US13/150,113 Abandoned US20110312757A1 (en) | 2010-06-17 | 2011-06-01 | Reagent microvial with digital memory |
US13/150,098 Abandoned US20110312745A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with photosensor |
US13/150,152 Abandoned US20110312844A1 (en) | 2010-06-17 | 2011-06-01 | Biochemical deposition device |
US13/150,023 Abandoned US20110312566A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and parallel nucleic acid amplification |
US13/149,929 Abandoned US20110311411A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic thermal bend actuated surface tension valve |
US13/150,054 Abandoned US20110312716A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using an isothermal reaction |
US13/149,955 Abandoned US20110312660A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a laptop computer |
US13/149,903 Abandoned US20110312547A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
US13/150,138 Abandoned US20110312772A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with pcr amplification using linker primers |
US13/149,913 Abandoned US20110312071A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with large channels for cell transport and small channels suitable for biochemical processes |
US13/149,920 Abandoned US20110312639A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating leukocytes and pathogens from blood |
US13/149,911 Abandoned US20110312634A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with laminar structure |
US13/150,263 Abandoned US20110312832A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of target sequences with electrochemiluminescent probes in hybridization chambers |
US13/150,169 Abandoned US20110312780A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control chambers incorporating probes with no reporters |
US13/150,231 Abandoned US20110312805A1 (en) | 2010-06-17 | 2011-06-01 | Test module with time delayed detection of fluorescence from hybridized probe |
US13/150,073 Abandoned US20110312729A1 (en) | 2010-06-17 | 2011-06-01 | Test module using transition metal-ligand complex, electrochemiluminescent luminophores |
US13/150,128 Abandoned US20110312767A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubation section having temperature feedback |
US13/150,236 Abandoned US20110312808A1 (en) | 2010-06-17 | 2011-06-01 | Test module with controlled exposure of fluorophores to excitation light source |
US13/150,261 Abandoned US20110312612A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences with probes between a working electrode and a photosensor |
US13/150,042 Abandoned US20110312707A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for pcr amplification of nucleic acids |
US13/150,244 Abandoned US20110312815A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with humidity sensor |
US13/150,163 Abandoned US20110312777A1 (en) | 2010-06-17 | 2011-06-01 | Test module with digital memory |
US13/150,265 Abandoned US20110312834A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection using a ruthenium organic complex |
US13/150,094 Abandoned US20110312742A1 (en) | 2010-06-17 | 2011-06-01 | Single-use microfluidic device |
US13/150,065 Abandoned US20110312726A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with controllable shunts inside integrated photodiodes |
US13/150,158 Abandoned US20110311395A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with active valve at reagent reservoir outlet |
US13/150,028 Abandoned US20110312569A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with small cross sectional area microchannel |
US13/150,097 Abandoned US20110312744A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for amplifying mitochondrial dna in a biological sample |
US13/150,202 Abandoned US20110312794A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates epidemiological databases with location data |
US13/150,032 Abandoned US20110312702A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and nucleic acid amplification |
US13/150,147 Abandoned US20110312593A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubator having two-dimensional control of input heat flux |
US13/150,211 Abandoned US20110312799A1 (en) | 2010-06-17 | 2011-06-01 | Usb-interfaceable portable test module for detection of hybridized probes |
US13/150,262 Abandoned US20110312831A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequence with electrochemiluminescent metalorganic complex |
US13/150,210 Abandoned US20110312798A1 (en) | 2010-06-17 | 2011-06-01 | Test module with inbuilt lancet |
US13/149,928 Abandoned US20110312640A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with photosensor |
US13/150,030 Abandoned US20110312701A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences with calibrated photodetection of probes in hybridization array |
US13/150,114 Abandoned US20110312758A1 (en) | 2010-06-17 | 2011-06-01 | Test module with thermal lysis section |
US13/150,259 Abandoned US20110312829A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis and electrochemiluminescent detection of target sequences |
US13/150,250 Abandoned US20110312821A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with waste storage |
US13/150,185 Abandoned US20110312787A1 (en) | 2010-06-17 | 2011-06-01 | Loc having usb device driver for use in a test module to control usb connection |
US13/150,222 Abandoned US20110311415A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal bend-actuator surface tension valve |
US13/150,096 Abandoned US20110312616A1 (en) | 2010-06-17 | 2011-06-01 | Test module with parallel dna and rna amplification sections |
US13/150,203 Abandoned US20110312619A1 (en) | 2010-06-17 | 2011-06-01 | Device for high-density deposition of biochemicals |
US13/149,963 Abandoned US20110312667A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a desktop computer |
US13/150,266 Abandoned US20110312835A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with electrochemiluminescent probes and integrated photosensor for detection of target sequences |
US13/150,041 Abandoned US20110312706A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with hybridization chambers containing probes for electrochemiluminescent detection of target nucleic acid sequences in a fluid and calibration chamber containing probes sealed from the fluid |
US13/149,935 Abandoned US20110312645A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled hybridization chambers for electrochemiluminescent detection of targets |
US13/150,208 Abandoned US20110312852A1 (en) | 2010-06-17 | 2011-06-01 | Robotic system for loading oligonucleotides into spotting devices |
US13/150,056 Abandoned US20110312718A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using recombinase polymerase amplification |
US13/150,217 Abandoned US20110312854A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for spotting arrays of locs |
US13/150,242 Abandoned US20110308313A1 (en) | 2010-06-17 | 2011-06-01 | Humidity sensor |
US13/150,117 Abandoned US20110312761A1 (en) | 2010-06-17 | 2011-06-01 | Test module for chemically and thermally lysing cells |
US13/150,111 Abandoned US20110312755A1 (en) | 2010-06-17 | 2011-06-01 | Test module with chemical lysis section |
US13/150,160 Abandoned US20110312845A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with laminar structure |
US13/149,919 Abandoned US20110312073A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module incorporating surface micro-machined chips and interconnecting cap |
US13/150,153 Abandoned US20120028842A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating probes that hybridize for any amplicon |
US13/150,062 Abandoned US20110312723A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using nucleic acid sequence based amplification |
US13/150,121 Abandoned US20110312764A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubator |
US13/149,916 Abandoned US20110312072A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface micro-machined chips and interconnecting cap |
US13/150,007 Abandoned US20110312559A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and parallel nucleic acid amplification |
US13/150,090 Abandoned US20110312583A1 (en) | 2010-06-17 | 2011-06-01 | Test module with parallel nucleic acid amplification sections |
US13/150,008 Abandoned US20110312539A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes for detecting targets in a fluid and a positive control probe without a quencher for luminophore emissions |
US13/150,234 Abandoned US20110312856A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for dispensing reagents, loading oligonucleotide spotting devices and spotting oligonucleotide probes |
US13/150,253 Abandoned US20110312824A1 (en) | 2010-06-17 | 2011-06-01 | Test module with waste storage incorporating porous element |
US13/150,045 Abandoned US20110312708A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for isothermal amplification of nucleic acids |
US13/150,102 Abandoned US20110312748A1 (en) | 2010-06-17 | 2011-06-01 | Loc with integral photosensor for detection of hybridization assay results |
US13/150,011 Abandoned US20110312695A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with hybridization chamber array with positive control chamber containing electrochemiluminescent reporter |
US13/150,137 Abandoned US20110312081A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus for array of microfluidic devices |
US13/150,212 Abandoned US20110312853A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot |
US13/150,109 Abandoned US20110312753A1 (en) | 2010-06-17 | 2011-06-01 | Loc with integral led driver for excitation led |
US13/150,089 Abandoned US20110312740A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with capillary meniscus marching velocity sensor |
US13/150,146 Abandoned US20110311394A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal bend actuated surface tension valve |
US13/149,900 Abandoned US20110312628A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with mst layer and overlying cap |
US13/150,245 Abandoned US20110312816A1 (en) | 2010-06-17 | 2011-06-01 | Test module with led for simultaneous excitation of oligonucleoutide probes |
US13/150,130 Abandoned US20110312768A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with pcr amplification using primers covalently attached to stem-and-loop probes |
US13/149,897 Abandoned US20110312626A1 (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
US13/149,990 Abandoned US20110312685A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pcr using adaptor primers and target detection using electrochemiluminescent resonant energy transfer probes |
US13/150,133 Abandoned US20110311409A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus with automatic collection and storage of reagent data |
US13/150,129 Abandoned US20110311408A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus |
US13/150,166 Abandoned US20110312079A1 (en) | 2010-06-17 | 2011-06-01 | Loc with digital memory to store epidemiological updates |
US13/150,108 Abandoned US20110312752A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume reagent reservoir |
US13/149,980 Abandoned US20110312679A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface-micromachined dialysis section |
US13/150,088 Abandoned US20110312739A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for pcr amplification of targets and electrochemiluminescent detection of targets |
US13/685,105 Abandoned US20130079254A1 (en) | 2010-06-17 | 2012-11-26 | Microfluidic dialysis device |
Family Applications Before (266)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/150,047 Abandoned US20110312710A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
US13/150,193 Abandoned US20110312789A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with flash memory |
US13/150,004 Abandoned US20110312694A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with delay-triggered photodetection of fluorescent probe-target hybrid |
US13/150,225 Abandoned US20110312801A1 (en) | 2010-06-17 | 2011-06-01 | Test module with lanthanide metal-ligand complex fluorophore |
US13/149,932 Abandoned US20110312642A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of nucleic acid targets with electrochemiluminescent probes |
US13/149,906 Abandoned US20110312631A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
US13/150,066 Abandoned US20110312576A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for multi-stage amplification of nucleic acid sequences |
US13/150,100 Abandoned US20110312078A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting target nucleic acid sequences in mitochondrial dna |
US13/150,135 Expired - Fee Related US8383064B2 (en) | 2010-06-17 | 2011-06-01 | Genetic test module with low oligonucleotide probe mass and reagent volumes |
US13/150,037 Abandoned US20110312704A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr amplification using low pcr mixture volume |
US13/150,086 Abandoned US20110312738A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with liquid sensor |
US13/149,984 Abandoned US20110312682A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for amplifying and detecting target nucleic acid sequences using electrochemiluminescent resonant energy transfer, stem-and-loop probes with covalently attached primers |
US13/150,267 Abandoned US20110312836A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for electrochemiluminescent detection of target sequences |
US13/150,016 Abandoned US20110312562A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and parallel nucleic acid amplification |
US13/150,116 Abandoned US20110312760A1 (en) | 2010-06-17 | 2011-06-01 | Reagent microvial with authentication integrated circuit |
US13/150,123 Abandoned US20110312765A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with low oligonucleotide probe mass and low reagent volume |
US13/149,936 Abandoned US20110312646A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for separating constituents of intermediate size from larger and smaller constituents in a biological sample |
US13/150,084 Abandoned US20110312737A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for electrochemiluminescent detection of targets |
US13/150,226 Abandoned US20110312620A1 (en) | 2010-06-17 | 2011-06-01 | System for variable microarray spotting and genetic analysis |
US13/150,063 Abandoned US20110312724A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with incubation, nucleic acid amplification and prehybridization filtering |
US13/149,899 Abandoned US20110312546A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification |
US13/150,232 Abandoned US20110312621A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for dispensing reagents and loading oligonucleotide spotting devices |
US13/150,148 Abandoned US20110312843A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device for complete assay spotting of locs |
US13/150,119 Abandoned US20110312763A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with in-loc storage of all required reagents |
US13/150,003 Abandoned US20110312693A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with feedback controlled pcr section |
US13/150,127 Abandoned US20120053088A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for biochemical processing and analysis |
US13/149,937 Abandoned US20110312647A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled hybridization chambers |
US13/149,907 Abandoned US20110312632A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section and diffusion mixer |
US13/150,270 Abandoned US20110312839A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for electrochemiluminescent detection of target sequences with working electrode in contact with photosensor |
US13/150,264 Abandoned US20110312833A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences using transparent electrodes |
US13/149,933 Abandoned US20110312643A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of hybridization of nucleic acid targets |
US13/150,191 Abandoned US20110312606A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with digital memory |
US13/149,992 Abandoned US20110312557A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and parallel nucleic acid amplification |
US13/150,189 Abandoned US20110312618A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with high spotting rate |
US13/150,131 Expired - Fee Related US8354074B2 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume reagent reservoir |
US13/150,260 Abandoned US20110312830A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with electrochemiluminescent probes having a functional moiety for quenching photon emissions configured to change proximity to a luminophore upon forming a probe-target hybrid |
US13/149,957 Abandoned US20110312662A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for removing cell debris from a biological sample |
US13/150,132 Expired - Fee Related US8394339B2 (en) | 2010-06-17 | 2011-06-01 | LOC device with on-chip semiconductor controlled incubation section |
US13/150,112 Abandoned US20110312756A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low reagent volumes |
US13/150,255 Abandoned US20110312825A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection with electrode pairs having complementary and mutually interdigitated finger formations |
US13/149,956 Abandoned US20110312661A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with array of chambers and corresponding diffusion barriers for electrochemiluminescent detection of targets |
US13/150,140 Abandoned US20110311393A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal bend actuated pressure pulse valve |
US13/150,177 Abandoned US20110312602A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal bend actuated surface tension valve |
US13/150,161 Abandoned US20110312776A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating reporters |
US13/149,971 Abandoned US20110312674A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral photosensor for electrochemiluminescence based detection of targets |
US13/150,134 Abandoned US20110312770A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with nucleic acid amplification using primers covalently attached to linear probes |
US13/149,892 Abandoned US20110312623A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
US13/150,095 Abandoned US20110312743A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of target nucleic acid sequences using electrodes configured for electrochemiluminescence of luminophores without a coreactant |
US13/150,150 Abandoned US20110312773A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with fault-tolerant multiple valve assembly |
US13/150,271 Abandoned US20110312840A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sample inlet, electrochemiluminescent probes and integrated photosensor for detection of target sequences |
US13/150,067 Abandoned US20110312727A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel nucleic acid amplification functionality |
US13/149,922 Abandoned US20110312074A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with sample receptacle |
US13/150,036 Abandoned US20110312571A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and parallel nucleic acid amplification |
US13/150,240 Abandoned US20110312812A1 (en) | 2010-06-17 | 2011-06-01 | Genetic test module with feedback-controlled humidifier |
US13/149,952 Abandoned US20110312657A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a mobile telephone |
US13/149,966 Abandoned US20110312670A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with an ebook reader |
US13/150,064 Expired - Fee Related US8398940B2 (en) | 2010-06-17 | 2011-06-01 | USB-interfaceable portable test module for electrochemiluminescent detection of targets |
US13/149,958 Abandoned US20110312663A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with time delayed detection of fluorescence from hybridized probes |
US13/150,040 Abandoned US20110312705A1 (en) | 2010-06-17 | 2011-06-01 | Test module for pcr amplification using low pcr mixture volume |
US13/150,087 Abandoned US20110312615A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with parallel nucleic acid amplification section |
US13/150,197 Abandoned US20110312792A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates epidemiological databases |
US13/150,021 Abandoned US20110312565A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using hybridization chamber array and negative control chamber containing probes without electrochemiluminescent reporter |
US13/150,027 Abandoned US20110312568A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
US13/149,943 Abandoned US20110312076A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
US13/150,058 Abandoned US20110312720A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis and nucleic acid amplification |
US13/149,967 Abandoned US20110312554A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis device, loc and interconnecting cap |
US13/149,962 Abandoned US20110312666A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with triggered photodetection of fluorescing probe-target hybrid |
US13/149,908 Abandoned US20110312548A1 (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
US13/149,986 Abandoned US20110312537A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for amplifying and detecting target nucleic acid sequences using electrochemiluminescent resonant energy transfer, linear probes with covalently attached primers |
US13/150,091 Abandoned US20110312584A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module with driver for excitation of electrochemiluminescent luminophores |
US13/150,001 Abandoned US20110312691A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes including positive and negative control probes |
US13/150,072 Abandoned US20110312580A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with nucleic acid amplification section and thermal insulation trench |
US13/150,029 Abandoned US20110312570A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting target nucleic acid sequences with probes having long fluorescence lifetime fluorophores |
US13/150,105 Abandoned US20110312750A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with total reagent storage |
US13/149,910 Abandoned US20110312549A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with multi-layer dialysis section |
US13/149,965 Abandoned US20110312669A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with electrochemiluminescent probes and photosensor with large angle of collection for probe emittted light |
US13/150,061 Expired - Fee Related US8388910B2 (en) | 2010-06-17 | 2011-06-01 | Portable test module for excitation of electrochemiluminescent probes |
US13/149,969 Abandoned US20110312672A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic assembly with test module and detachable indicator module |
US13/150,144 Abandoned US20110312592A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubation chamber between supporting substrate and heater |
US13/150,118 Abandoned US20110312762A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with fluorescence resonance energy transfer (fret) probes |
US13/150,101 Abandoned US20110312747A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for biochemical processing and analysis |
US13/150,156 Abandoned US20110312617A1 (en) | 2010-06-17 | 2011-06-01 | Monolithic microsystems technology device for oligonucleotide spotting |
US13/150,136 Abandoned US20110312771A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pwm controlled incubation section |
US13/149,954 Abandoned US20110312659A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with hybridization chambers and corresponding diffusion barriers |
US13/150,020 Abandoned US20110312564A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
US13/150,077 Abandoned US20110312732A1 (en) | 2010-06-17 | 2011-06-01 | Test module using lanthanide metal-ligand complex, electrochemiluminescent luminophores |
US13/149,972 Abandoned US20110312675A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device with flow-channel structure for capillary-driven fluidic propulsion without trapped air bubbles |
US13/149,999 Abandoned US20110312689A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sensor-triggered photodetection of fluorescent probe-target hybrid |
US13/150,230 Abandoned US20110312804A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with aperture with geometry to promote unpinned flow-through of fluid |
US13/150,142 Abandoned US20110312591A1 (en) | 2010-06-17 | 2011-06-01 | Loc with low-volume hybridization chamber and reagent reservoir for genetic analysis |
US13/149,976 Abandoned US20110312068A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device for separating nucleated cells in a biological sample from other constituents |
US13/150,000 Abandoned US20110312690A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section having two-dimensional control of input heat flux density |
US13/149,934 Abandoned US20110312644A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
US13/150,216 Abandoned US20110312608A1 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume hybridization chamber and low-volume reagent reservoir |
US13/149,890 Abandoned US20110312622A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume hybridization chambers for electrochemiluminescent detection of target sequences |
US13/150,151 Abandoned US20110312595A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with mixing section |
US13/150,223 Abandoned US20110312611A1 (en) | 2010-06-17 | 2011-06-01 | Test module with transition metal-ligand complex fluorophore |
US13/149,951 Abandoned US20110312656A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr and probe hybridization |
US13/149,950 Abandoned US20110312655A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for pcr, probe hybridization and electrochemiluminescent detection of probe-target hybrids |
US13/150,149 Abandoned US20110312594A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization probes including positive and negative control probes |
US13/150,199 Abandoned US20110312851A1 (en) | 2010-06-17 | 2011-06-01 | Device for high density spotting of oligonucleotides |
US13/150,057 Expired - Fee Related US8383065B2 (en) | 2010-06-17 | 2011-06-01 | Test module with integral photosensor for electrochemiluminescent detection of hybridization |
US13/150,012 Abandoned US20110312696A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and nucleic acid amplification |
US13/149,975 Abandoned US20110312677A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of targets with electrochemiluminescent resonant energy transfer probes |
US13/149,891 Abandoned US20110312841A1 (en) | 2010-06-17 | 2011-06-01 | Fabrication system for lab-on-a-chip (loc) devices with differing application specific functionality |
US13/150,257 Abandoned US20110312827A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for detection of target sequences with electrochemiluminescent luminophore and functional moiety for quenching photon emissions |
US13/150,038 Abandoned US20110312540A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescent probes and calibration probes lacking a luminophore |
US13/150,246 Abandoned US20110312817A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with humidity sensor |
US13/150,248 Abandoned US20110312819A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescence of a luminophore in the presence of an electrochemical coreactant |
US13/149,991 Abandoned US20110312556A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with trigger photodiode in each hybridization chamber |
US13/150,055 Abandoned US20110312717A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, incubation and nucleic acid amplification |
US13/149,968 Abandoned US20110312671A1 (en) | 2010-06-17 | 2011-06-01 | Single use microfluidic device with photosensor for electrochemiluminescent detection of targets |
US13/150,241 Abandoned US20110312813A1 (en) | 2010-06-17 | 2011-06-01 | Single-use genetic test module |
US13/150,053 Expired - Fee Related US8394340B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low mass electrochemiluminescent probe spots |
US13/150,269 Abandoned US20110312838A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with electrochemiluminescent probes and integrated photosensor for detection of target molecules |
US13/149,898 Expired - Fee Related US8349277B2 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
US13/150,192 Abandoned US20110312607A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration photosensor output subtracted in a differential circuit from the output of hybridization photosensors |
US13/150,186 Abandoned US20110312849A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for ejecting low volume droplets |
US13/150,069 Abandoned US20110312578A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for non-specific nucleic acid amplification prior to specific amplification of particular sequences |
US13/150,182 Abandoned US20110312604A1 (en) | 2010-06-17 | 2011-06-01 | Loc having on-chip electronics for use in a test module to control module communications |
US13/150,224 Abandoned US20110312855A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for high density spotting of oligonucleotides |
US13/149,959 Abandoned US20110312664A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a dedicated reader |
US13/150,120 Abandoned US20110311418A1 (en) | 2010-06-17 | 2011-06-01 | Microvial with digital memory for storage of reagent specification data |
US13/149,904 Abandoned US20110312630A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
US13/150,052 Abandoned US20110312574A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and parallel nucleic acid amplification |
US13/150,187 Abandoned US20110312605A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral controller |
US13/150,104 Abandoned US20110312749A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal lysis section |
US13/149,909 Abandoned US20110312633A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section |
US13/150,006 Abandoned US20110312538A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes for detecting targets in a fluid and a positive control probe for detecting a nucleic acid sequence known to be present |
US13/150,174 Abandoned US20110312783A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control comprising empty chambers |
US13/150,181 Abandoned US20110312786A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration chamber containing probe designed to be noncomplementary to nucleic acid sequences in the amplicon |
US13/150,092 Abandoned US20110312585A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with parallel dna and rna amplification section |
US13/150,078 Abandoned US20110312526A1 (en) | 2010-06-17 | 2011-06-01 | Method of analysing the nucleic acid content of a blood sample |
US13/150,188 Abandoned US20110312542A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with calibration chamber containing chamber with a blocked inlet spotted with reporter |
US13/150,206 Abandoned US20110312796A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates medical databases |
US13/149,985 Abandoned US20110312683A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with tablet computer |
US13/149,894 Pending US20110312624A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles |
US13/150,122 Abandoned US20110312587A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with primer-linked stem-and-loop probes |
US13/150,017 Abandoned US20110312563A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences in a fluid using hybridization chamber array and negative control chamber containing electrochemiluminescent probe designed to be non-complementary to any sequence in the fluid |
US13/150,195 Abandoned US20110312790A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low-volume hybridization chamber |
US13/150,256 Abandoned US20110312826A1 (en) | 2010-06-17 | 2011-06-01 | Test module with laser for excitation of oligonucleoutide probes |
US13/150,083 Abandoned US20110312736A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow rate sensor |
US13/150,251 Abandoned US20110312822A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device for electrochemiluminescent detection of target nucleic acid sequences |
US13/149,996 Abandoned US20110312688A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr chamber between supporting substrate and heater |
US13/150,124 Abandoned US20110312766A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with feedback controlled incubation section |
US13/150,239 Abandoned US20110312811A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences with electrodes profiled for greater peripheral edge length |
US13/150,162 Abandoned US20110312598A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by outlet valve numbers |
US13/150,183 Abandoned US20110312848A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for wafer-scale spotting of locs |
US13/149,997 Abandoned US20110312558A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and tandem nucleic acid amplification |
US13/150,107 Abandoned US20110312586A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for chemically and thermally lysing cells |
US13/150,178 Abandoned US20110312784A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detecting targets with probes, detection photodiodes and a calibration photodiode |
US13/150,002 Abandoned US20110312692A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and nucleic acid amplification |
US13/150,039 Abandoned US20110312572A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and nucleic acid amplification |
US13/150,205 Abandoned US20110311407A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic boiling-initiated valve |
US13/149,924 Abandoned US20110312551A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
US13/150,099 Abandoned US20110312746A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with chemical lysis section |
US13/150,082 Abandoned US20110312735A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with nucleic acid amplification section |
US13/149,948 Abandoned US20110312654A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
US13/149,981 Abandoned US20110312680A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, linear probes |
US13/149,983 Abandoned US20110312681A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for removing erythrocytes from blood |
US13/150,050 Expired - Fee Related US8398939B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low-volume hybridization chambers for electrochemiluminescent detection of target nucleic acid sequences in a fluid |
US13/150,221 Abandoned US20120004145A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for wafer-scale spotting of locs |
US13/149,917 Abandoned US20110312637A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating pathogens from a biological sample |
US13/150,076 Abandoned US20110312581A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with nucleic acid amplification chamber heater bonded to chamber interior |
US13/150,044 Abandoned US20110312573A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with chemical lysis, incubation and parallel nucleic acid amplification |
US13/150,167 Abandoned US20110312599A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with a pcr section with single activation, outlet valve |
US13/149,918 Abandoned US20110312638A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
US13/150,228 Abandoned US20110312802A1 (en) | 2010-06-17 | 2011-06-01 | Test module with probes suspended in fluid |
US13/149,942 Abandoned US20110312650A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with optically transparent hybridization chambers for electrochemiluminescent detection of targets |
US13/150,035 Abandoned US20110312703A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for rapid pcr amplification |
US13/150,218 Abandoned US20110312609A1 (en) | 2010-06-17 | 2011-06-01 | Test module for orientation-independent operation |
US13/149,974 Abandoned US20110312067A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device for separating pathogens from a biological sample |
US13/150,014 Abandoned US20110312561A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with photodiodes with controllable shunts to detect fluorescing hybridized probes |
US13/150,019 Abandoned US20110312698A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr section having short thermal cycle times |
US13/149,931 Abandoned US20110312641A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with sample inlet and probe hybridization section |
US13/150,235 Abandoned US20110312807A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with a membrane seal to prevent dehumidification of the mixture |
US13/150,046 Abandoned US20110312709A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequences using electrochemiluminescent probes and calibration probes with detection photosensors and calibration photosensors |
US13/149,946 Abandoned US20110312652A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume electrochemiluminescence-based probe spots |
US13/149,995 Abandoned US20110312687A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with low volume hybridization chambers and reagent reservoirs for genetic analysis using electrochemiluminescent target detection |
US13/150,194 Abandoned US20110312850A1 (en) | 2010-06-17 | 2011-06-01 | Biochemical deposition device with high deposition rate |
US13/150,200 Abandoned US20110312793A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with low mass of probes |
US13/150,068 Abandoned US20110312577A1 (en) | 2010-06-17 | 2011-06-01 | Test module with low-volume hybridization chambers and reagent reservoir for electrochemiluminescent detection of target nucleic acid sequences |
US13/149,895 Abandoned US20110312625A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
US13/150,025 Abandoned US20110312700A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pwm controlled pcr heater |
US13/149,973 Abandoned US20110312676A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with integral driver for excitation of electrochemiluminescent luminophores |
US13/150,051 Abandoned US20110312714A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for amplification of nucleic acids using dna polymerases of thermophiles |
US13/149,978 Abandoned US20110312678A1 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having dialysis device, loc and interconnecting cap |
US13/150,031 Abandoned US20110312070A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with pcr chamber for high rate of temperature change |
US13/149,953 Abandoned US20110312658A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for concentrating nucleated cells in a biological sample |
US13/149,927 Abandoned US20110312075A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel incubation and parallel dna and rna amplification functionality |
US13/150,085 Abandoned US20110312582A1 (en) | 2010-06-17 | 2011-06-01 | Test module with nucleic acid amplification section |
US13/149,947 Abandoned US20110312653A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume hybridization chambers |
US13/150,252 Abandoned US20110312823A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and mirrors for simultaneous excitation of oligonucleoutide probes |
US13/150,139 Abandoned US20110312590A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with elongate incubation chamber |
US13/150,204 Abandoned US20110312795A1 (en) | 2010-06-17 | 2011-06-01 | Diagnostic test module with a loc with integral photosensor and excitation led for detection of hybridization assay results |
US13/150,157 Abandoned US20110312597A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating probes with no quenchers |
US13/150,009 Abandoned US20110312560A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and tandem nucleic acid amplification |
US13/149,989 Abandoned US20110312684A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, lysis and nucleic acid amplification |
US13/150,106 Abandoned US20110312751A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of mitochondrial dna via fluorescence modulated by hybridization |
US13/150,081 Abandoned US20110312527A1 (en) | 2010-06-17 | 2011-06-01 | Method of analysing the nucleic acid content of biological fluid |
US13/150,048 Abandoned US20110312711A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with controllable shunts peripheral to integrated photodiodes |
US13/150,115 Abandoned US20110312759A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with reagent reservoir |
US13/150,233 Abandoned US20110312806A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with humidifier |
US13/150,060 Abandoned US20110312721A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, incubation, and nucleic acid amplification |
US13/149,961 Abandoned US20110312665A1 (en) | 2010-06-17 | 2011-06-01 | Loc with dialysis section for removing insoluble sample constituents from a nucleic acid mixture |
US13/150,126 Abandoned US20110312541A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with primer-linked linear probes |
US13/149,944 Abandoned US20110312651A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low mass probe spots |
US13/149,964 Abandoned US20110312668A1 (en) | 2010-06-17 | 2011-06-01 | Loc with dialysis section for retaining insoluble sample constituents after amplification and passing soluble constituents to a detection section |
US13/150,258 Abandoned US20110312828A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection using electrode pairs optically coupled to photodiode |
US13/150,154 Abandoned US20110312596A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface tension valve at reagent reservoir outlet |
US13/150,164 Abandoned US20110312846A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with fluidics on both sides of supporting substrate |
US13/150,243 Abandoned US20110312814A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module with excitation source |
US13/150,059 Abandoned US20110312575A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using a nicking enzyme and a dna polymerase |
US13/150,165 Abandoned US20110312778A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control chambers incorporating probes designed to be noncomplementary to nucleic acid sequences in the amplicon |
US13/150,229 Abandoned US20110312803A1 (en) | 2010-06-17 | 2011-06-01 | System for variable loading of reagents into microfluidic device for genetic analysis |
US13/150,184 Expired - Fee Related US8425845B2 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with hybridization array with calibration chamber containing probe that lacks a reporter |
US13/149,930 Abandoned US20110312552A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
US13/150,079 Abandoned US20110312733A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with nucleic acid amplification section |
US13/150,155 Abandoned US20110312774A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for diffusive mixing in small cross sectional area microchannel |
US13/150,190 Abandoned US20110312788A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal boiling-initiated valve |
US13/150,080 Abandoned US20110312734A1 (en) | 2010-06-17 | 2011-06-01 | Test module with suspended electrochemiluminescent probes |
US13/150,227 Abandoned US20110309276A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal boiling-initiated valve |
US13/150,209 Abandoned US20110309275A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly |
US13/150,049 Abandoned US20110312712A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for pcr amplification of nucleic acids from whole blood |
US13/150,214 Abandoned US20110311413A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with liquid detector sensor feedback |
US13/150,219 Abandoned US20110311414A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal bend-actuator pressure pulse valve |
US13/150,033 Abandoned US20110312077A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences in a fluid with calibration chamber containing probes designed to be non-complementary with any nucleic acid sequences in the fluid |
US13/150,170 Abandoned US20110312781A1 (en) | 2010-06-17 | 2011-06-01 | Loc with digital memory to store genetic data updates |
US13/150,143 Abandoned US20110312842A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device |
US13/149,970 Abandoned US20110312673A1 (en) | 2010-06-17 | 2011-06-01 | Dialysis device with multi-layer structure |
US13/150,201 Expired - Fee Related US8398938B2 (en) | 2010-06-17 | 2011-06-01 | Microfluidic thermal bend actuated pressure pulse valve |
US13/150,237 Abandoned US20110312809A1 (en) | 2010-06-17 | 2011-06-01 | Test module with humidifier |
US13/150,168 Abandoned US20110312779A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device for operation under external microprocessor control |
US13/150,172 Abandoned US20110312782A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with digital memory |
US13/150,018 Abandoned US20110312697A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled pcr section |
US13/149,914 Abandoned US20110312636A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating leukocytes from blood |
US13/150,175 Abandoned US20110312601A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with digital memory for secure storage of data |
US13/149,939 Abandoned US20110312648A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
US13/150,159 Abandoned US20110312775A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with digital memory |
US13/150,110 Abandoned US20110312754A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for detection of mitochondrial dna via electrochemiluminescence modulated hybridization |
US13/150,207 Abandoned US20110312797A1 (en) | 2010-06-17 | 2011-06-01 | Portable test module for fluorescence excitation of probe nucleic acid sequences |
US13/150,141 Abandoned US20110312082A1 (en) | 2010-06-17 | 2011-06-01 | Dispensing apparatus for wafer-scale dispensing of reagents |
US13/150,071 Abandoned US20110312728A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with non-imaging optics |
US13/150,238 Abandoned US20110312810A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for detection of hybridization of targets with oligonucleotide probes |
US13/150,272 Abandoned US20110308945A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with thick electrodes for electrochemiluminescent detection of target sequences |
US13/150,022 Abandoned US20110312699A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with on-chip semiconductor controlled pcr section |
US13/150,180 Abandoned US20110312785A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device for spotting fixed array of locs |
US13/149,912 Abandoned US20110312635A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure for capillary-driven fluidic propulsion without trapped air bubbles |
US13/150,196 Abandoned US20110312791A1 (en) | 2010-06-17 | 2011-06-01 | Test module with fault-tolerant multiple valve assembly |
US13/149,960 Abandoned US20110312553A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with non-imaging optics for electrochemiluminescent detection of targets |
US13/150,074 Abandoned US20110312730A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel dna and rna amplification functionality |
US13/149,941 Abandoned US20110312649A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with optically transparent hybridization chambers |
US13/150,176 Abandoned US20110312847A1 (en) | 2010-06-17 | 2011-06-01 | Spotting device with stored oligonucleotide specification data |
US13/150,179 Abandoned US20110312603A1 (en) | 2010-06-17 | 2011-06-01 | Test module with loc having on-chip electronics for module control |
US13/150,125 Abandoned US20110312069A1 (en) | 2010-06-17 | 2011-06-01 | Microvial with digital memory for storage of oligonucleotide specification data |
US13/150,093 Abandoned US20110312741A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for analysis of mitochondrial dna |
US13/150,213 Abandoned US20110312800A1 (en) | 2010-06-17 | 2011-06-01 | Test module for gravity-independent operation |
US13/149,893 Abandoned US20110312545A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
US13/149,902 Abandoned US20110312629A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
US13/150,075 Abandoned US20110312731A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with large angle of collection of emission light |
US13/150,268 Abandoned US20110312837A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis and electrochemiluminescent detection of target sequences |
US13/150,220 Abandoned US20110312610A1 (en) | 2010-06-17 | 2011-06-01 | Test module with long fluorescence lifetime probes |
US13/150,173 Abandoned US20110312600A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with thermal bend actuated pressure pulse valve |
US13/150,247 Abandoned US20110312818A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and lens for simultaneous excitation of oligonucleoutide probes |
US13/150,070 Abandoned US20110312579A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with parallel incubation and parallel nucleic acid amplification functionality |
US13/149,921 Abandoned US20110312550A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
Family Applications After (88)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/150,249 Abandoned US20110312820A1 (en) | 2010-06-17 | 2011-06-01 | Test module with excitation light and prisms for simultaneous excitation of oligonucleoutide probes |
US13/149,925 Abandoned US20120052562A1 (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having laminar structure and sample receptacle |
US13/149,979 Abandoned US20110312555A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes |
US13/149,993 Abandoned US20110312686A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with elongate pcr chambers |
US13/150,113 Abandoned US20110312757A1 (en) | 2010-06-17 | 2011-06-01 | Reagent microvial with digital memory |
US13/150,098 Abandoned US20110312745A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with photosensor |
US13/150,152 Abandoned US20110312844A1 (en) | 2010-06-17 | 2011-06-01 | Biochemical deposition device |
US13/150,023 Abandoned US20110312566A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis, incubation and parallel nucleic acid amplification |
US13/149,929 Abandoned US20110311411A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic thermal bend actuated surface tension valve |
US13/150,054 Abandoned US20110312716A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using an isothermal reaction |
US13/149,955 Abandoned US20110312660A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a laptop computer |
US13/149,903 Abandoned US20110312547A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
US13/150,138 Abandoned US20110312772A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with pcr amplification using linker primers |
US13/149,913 Abandoned US20110312071A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with large channels for cell transport and small channels suitable for biochemical processes |
US13/149,920 Abandoned US20110312639A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with dialysis section for separating leukocytes and pathogens from blood |
US13/149,911 Abandoned US20110312634A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with laminar structure |
US13/150,263 Abandoned US20110312832A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detection of target sequences with electrochemiluminescent probes in hybridization chambers |
US13/150,169 Abandoned US20110312780A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with negative control chambers incorporating probes with no reporters |
US13/150,231 Abandoned US20110312805A1 (en) | 2010-06-17 | 2011-06-01 | Test module with time delayed detection of fluorescence from hybridized probe |
US13/150,073 Abandoned US20110312729A1 (en) | 2010-06-17 | 2011-06-01 | Test module using transition metal-ligand complex, electrochemiluminescent luminophores |
US13/150,128 Abandoned US20110312767A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubation section having temperature feedback |
US13/150,236 Abandoned US20110312808A1 (en) | 2010-06-17 | 2011-06-01 | Test module with controlled exposure of fluorophores to excitation light source |
US13/150,261 Abandoned US20110312612A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target sequences with probes between a working electrode and a photosensor |
US13/150,042 Abandoned US20110312707A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for pcr amplification of nucleic acids |
US13/150,244 Abandoned US20110312815A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with humidity sensor |
US13/150,163 Abandoned US20110312777A1 (en) | 2010-06-17 | 2011-06-01 | Test module with digital memory |
US13/150,265 Abandoned US20110312834A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection using a ruthenium organic complex |
US13/150,094 Abandoned US20110312742A1 (en) | 2010-06-17 | 2011-06-01 | Single-use microfluidic device |
US13/150,065 Abandoned US20110312726A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with controllable shunts inside integrated photodiodes |
US13/150,158 Abandoned US20110311395A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with active valve at reagent reservoir outlet |
US13/150,028 Abandoned US20110312569A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with small cross sectional area microchannel |
US13/150,097 Abandoned US20110312744A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for amplifying mitochondrial dna in a biological sample |
US13/150,202 Abandoned US20110312794A1 (en) | 2010-06-17 | 2011-06-01 | Test module that updates epidemiological databases with location data |
US13/150,032 Abandoned US20110312702A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis with dialysis, chemical lysis and nucleic acid amplification |
US13/150,147 Abandoned US20110312593A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubator having two-dimensional control of input heat flux |
US13/150,211 Abandoned US20110312799A1 (en) | 2010-06-17 | 2011-06-01 | Usb-interfaceable portable test module for detection of hybridized probes |
US13/150,262 Abandoned US20110312831A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for detecting target nucleic acid sequence with electrochemiluminescent metalorganic complex |
US13/150,210 Abandoned US20110312798A1 (en) | 2010-06-17 | 2011-06-01 | Test module with inbuilt lancet |
US13/149,928 Abandoned US20110312640A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with photosensor |
US13/150,030 Abandoned US20110312701A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for electrochemiluminescent detection of target nucleic acid sequences with calibrated photodetection of probes in hybridization array |
US13/150,114 Abandoned US20110312758A1 (en) | 2010-06-17 | 2011-06-01 | Test module with thermal lysis section |
US13/150,259 Abandoned US20110312829A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for genetic analysis and electrochemiluminescent detection of target sequences |
US13/150,250 Abandoned US20110312821A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with waste storage |
US13/150,185 Abandoned US20110312787A1 (en) | 2010-06-17 | 2011-06-01 | Loc having usb device driver for use in a test module to control usb connection |
US13/150,222 Abandoned US20110311415A1 (en) | 2010-06-17 | 2011-06-01 | Fault-tolerant multiple valve assembly with thermal bend-actuator surface tension valve |
US13/150,096 Abandoned US20110312616A1 (en) | 2010-06-17 | 2011-06-01 | Test module with parallel dna and rna amplification sections |
US13/150,203 Abandoned US20110312619A1 (en) | 2010-06-17 | 2011-06-01 | Device for high-density deposition of biochemicals |
US13/149,963 Abandoned US20110312667A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module for interfacing with a desktop computer |
US13/150,266 Abandoned US20110312835A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc device with electrochemiluminescent probes and integrated photosensor for detection of target sequences |
US13/150,041 Abandoned US20110312706A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with hybridization chambers containing probes for electrochemiluminescent detection of target nucleic acid sequences in a fluid and calibration chamber containing probes sealed from the fluid |
US13/149,935 Abandoned US20110312645A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with temperature feedback controlled hybridization chambers for electrochemiluminescent detection of targets |
US13/150,208 Abandoned US20110312852A1 (en) | 2010-06-17 | 2011-06-01 | Robotic system for loading oligonucleotides into spotting devices |
US13/150,056 Abandoned US20110312718A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using recombinase polymerase amplification |
US13/150,217 Abandoned US20110312854A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot for spotting arrays of locs |
US13/150,242 Abandoned US20110308313A1 (en) | 2010-06-17 | 2011-06-01 | Humidity sensor |
US13/150,117 Abandoned US20110312761A1 (en) | 2010-06-17 | 2011-06-01 | Test module for chemically and thermally lysing cells |
US13/150,111 Abandoned US20110312755A1 (en) | 2010-06-17 | 2011-06-01 | Test module with chemical lysis section |
US13/150,160 Abandoned US20110312845A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting device with laminar structure |
US13/149,919 Abandoned US20110312073A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module incorporating surface micro-machined chips and interconnecting cap |
US13/150,153 Abandoned US20120028842A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc with hybridization array with positive control chambers incorporating probes that hybridize for any amplicon |
US13/150,062 Abandoned US20110312723A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for nucleic acid amplification using nucleic acid sequence based amplification |
US13/150,121 Abandoned US20110312764A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with incubator |
US13/149,916 Abandoned US20110312072A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface micro-machined chips and interconnecting cap |
US13/150,007 Abandoned US20110312559A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pathogen detection with dialysis, thermal lysis and parallel nucleic acid amplification |
US13/150,090 Abandoned US20110312583A1 (en) | 2010-06-17 | 2011-06-01 | Test module with parallel nucleic acid amplification sections |
US13/150,008 Abandoned US20110312539A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with electrochemiluminescent probes for detecting targets in a fluid and a positive control probe without a quencher for luminophore emissions |
US13/150,234 Abandoned US20110312856A1 (en) | 2010-06-17 | 2011-06-01 | Apparatus for dispensing reagents, loading oligonucleotide spotting devices and spotting oligonucleotide probes |
US13/150,253 Abandoned US20110312824A1 (en) | 2010-06-17 | 2011-06-01 | Test module with waste storage incorporating porous element |
US13/150,045 Abandoned US20110312708A1 (en) | 2010-06-17 | 2011-06-01 | Genetic analysis loc for isothermal amplification of nucleic acids |
US13/150,102 Abandoned US20110312748A1 (en) | 2010-06-17 | 2011-06-01 | Loc with integral photosensor for detection of hybridization assay results |
US13/150,011 Abandoned US20110312695A1 (en) | 2010-06-17 | 2011-06-01 | Loc device with hybridization chamber array with positive control chamber containing electrochemiluminescent reporter |
US13/150,137 Abandoned US20110312081A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus for array of microfluidic devices |
US13/150,212 Abandoned US20110312853A1 (en) | 2010-06-17 | 2011-06-01 | Oligonucleotide spotting robot |
US13/150,109 Abandoned US20110312753A1 (en) | 2010-06-17 | 2011-06-01 | Loc with integral led driver for excitation led |
US13/150,089 Abandoned US20110312740A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with capillary meniscus marching velocity sensor |
US13/150,146 Abandoned US20110311394A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with thermal bend actuated surface tension valve |
US13/149,900 Abandoned US20110312628A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with mst layer and overlying cap |
US13/150,245 Abandoned US20110312816A1 (en) | 2010-06-17 | 2011-06-01 | Test module with led for simultaneous excitation of oligonucleoutide probes |
US13/150,130 Abandoned US20110312768A1 (en) | 2010-06-17 | 2011-06-01 | Loc for detection of hybridization of nucleic acid sequences with pcr amplification using primers covalently attached to stem-and-loop probes |
US13/149,897 Abandoned US20110312626A1 (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
US13/149,990 Abandoned US20110312685A1 (en) | 2010-06-17 | 2011-06-01 | Loc device for pcr using adaptor primers and target detection using electrochemiluminescent resonant energy transfer probes |
US13/150,133 Abandoned US20110311409A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus with automatic collection and storage of reagent data |
US13/150,129 Abandoned US20110311408A1 (en) | 2010-06-17 | 2011-06-01 | Reagent dispensing apparatus |
US13/150,166 Abandoned US20110312079A1 (en) | 2010-06-17 | 2011-06-01 | Loc with digital memory to store epidemiological updates |
US13/150,108 Abandoned US20110312752A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with low-volume reagent reservoir |
US13/149,980 Abandoned US20110312679A1 (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with surface-micromachined dialysis section |
US13/150,088 Abandoned US20110312739A1 (en) | 2010-06-17 | 2011-06-01 | Single-use test module for pcr amplification of targets and electrochemiluminescent detection of targets |
US13/685,105 Abandoned US20130079254A1 (en) | 2010-06-17 | 2012-11-26 | Microfluidic dialysis device |
Country Status (3)
Country | Link |
---|---|
US (355) | US20110312710A1 (en) |
TW (1) | TW201213798A (en) |
WO (23) | WO2011156847A1 (en) |
Families Citing this family (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790028B1 (en) * | 2005-09-28 | 2010-09-07 | The Charles Stark Draper Laboratory, Inc. | Systems, methods, and devices relating to a cellularized nephron unit |
EP2016415B1 (en) | 2006-04-21 | 2013-08-14 | Nanobiosym, Inc. | Single-molecule platform for drug discovery: methods for drug discovery, including discovery of anticancer and antiviral agents |
US11001881B2 (en) | 2006-08-24 | 2021-05-11 | California Institute Of Technology | Methods for detecting analytes |
WO2008014485A2 (en) | 2006-07-28 | 2008-01-31 | California Institute Of Technology | Multiplex q-pcr arrays |
US11525156B2 (en) | 2006-07-28 | 2022-12-13 | California Institute Of Technology | Multiplex Q-PCR arrays |
US11560588B2 (en) | 2006-08-24 | 2023-01-24 | California Institute Of Technology | Multiplex Q-PCR arrays |
US8498695B2 (en) | 2006-12-22 | 2013-07-30 | Novadaq Technologies Inc. | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
US7993292B2 (en) * | 2007-05-22 | 2011-08-09 | Bellacure, Inc. | Orthotic apparatus and method of operation |
US9598737B2 (en) * | 2012-05-09 | 2017-03-21 | Longhorn Vaccines And Diagnostics, Llc | Next generation genomic sequencing methods |
US8406860B2 (en) | 2008-01-25 | 2013-03-26 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US8707452B1 (en) * | 2008-04-14 | 2014-04-22 | Avaya Inc. | Secure data management device |
EP2927350A1 (en) * | 2014-04-02 | 2015-10-07 | Beatrice Sala | Electrochemical cell for the electrolysis of water in steam or liquid form, manufacturing method and uses |
US8304185B2 (en) * | 2009-07-17 | 2012-11-06 | Canon U.S. Life Sciences, Inc. | Methods and systems for DNA isolation on a microfluidic device |
US20110065101A1 (en) | 2009-06-04 | 2011-03-17 | Lockheed Martin Corporation | Multiple-sample microfluidic chip for DNA analysis |
EP2493597B1 (en) * | 2009-10-29 | 2017-03-29 | The Charles Stark Draper Laboratory, Inc. | Microfluidic device for blood dialysis |
KR20130028929A (en) * | 2010-04-28 | 2013-03-20 | 파나소닉 주식회사 | Chemical sensor |
US20110312710A1 (en) * | 2010-06-17 | 2011-12-22 | Geneasys Pty Ltd | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
WO2012018535A2 (en) | 2010-07-26 | 2012-02-09 | Wellness Indicators, Inc. | Wellness panel |
US20120045786A1 (en) * | 2010-08-19 | 2012-02-23 | Stith Curtis W | Opto-fluidic microscope diagnostic system |
US20120044339A1 (en) * | 2010-08-19 | 2012-02-23 | Stith Curtis W | Opto-fluidic microscope system with evaluation chambers |
AU2011293269B2 (en) * | 2010-08-27 | 2015-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Microscopy imaging device with advanced imaging properties |
US8801275B2 (en) * | 2010-09-23 | 2014-08-12 | Bayer Healthcare Llc | System and apparatus for determining ambient temperatures for a fluid analyte system |
MX2013004184A (en) | 2010-10-15 | 2013-07-29 | Lockheed Corp | Micro fluidic optic design. |
JP5963767B2 (en) | 2010-12-09 | 2016-08-03 | ゾール メディカル コーポレイションZOLL Medical Corporation | Electrode assembly |
FR2968532B1 (en) * | 2010-12-14 | 2013-04-26 | Commissariat Energie Atomique | DEVICE AND METHOD FOR DETERMINING AN EXCRETION RATE OF A BODILY FLUID BY AN INDIVIDUAL OR ANIMAL |
CN102564576B (en) * | 2010-12-17 | 2013-11-06 | 鸿富锦精密工业(深圳)有限公司 | Light intensity testing device |
US9068566B2 (en) * | 2011-01-21 | 2015-06-30 | Biodot, Inc. | Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube |
US8794050B2 (en) | 2011-01-27 | 2014-08-05 | Nanoscopia (Cayman), Inc. | Fluid sample analysis systems |
US9469871B2 (en) | 2011-04-14 | 2016-10-18 | Corporos Inc. | Methods and apparatus for point-of-care nucleic acid amplification and detection |
TWI441940B (en) * | 2011-06-09 | 2014-06-21 | Shih Hua Technology Ltd | Method for making pattern conductive element |
CA2839435C (en) | 2011-06-15 | 2021-05-11 | The Charles Stark Draper Laboratory, Inc. | Systems, methods, and devices relating to a biomimetic cellularized nephron unit |
ITTO20110567A1 (en) * | 2011-06-28 | 2012-12-29 | St Microelectronics Srl | CARTRIDGE FOR BIOCHEMICAL ANALYSIS, BIOCHEMICAL ANALYSIS SYSTEM AND METHOD TO PERFORM A BIOCHEMICAL PROCESS |
TW201301141A (en) * | 2011-06-29 | 2013-01-01 | Walton Advanced Eng Inc | Storage device having graphs and recognition system thereof |
US8717556B2 (en) | 2011-07-27 | 2014-05-06 | Aptina Imaging Corporation | Microfluidic systems with chemical pumps |
JP6013335B2 (en) * | 2011-08-11 | 2016-10-25 | オリンパス株式会社 | Target particle counting method |
EP2752655A4 (en) | 2011-08-30 | 2015-06-17 | Olympus Corp | Method for detecting target particles |
US8988684B1 (en) | 2011-09-08 | 2015-03-24 | Lawrence Livermore National Security, Llc | System and method for measuring fluorescence of a sample |
US9372135B1 (en) | 2011-09-08 | 2016-06-21 | Lawrence Livermore National Security, Llc | Fluidics platform and method for sample preparation |
WO2013040058A1 (en) * | 2011-09-12 | 2013-03-21 | Jian Guo | Imaging fluorescence or luminescence lifetime |
USD753311S1 (en) | 2011-10-12 | 2016-04-05 | Alere Switzerland Gmbh | Isothermal nucleic acid amplification meter |
GB201119032D0 (en) | 2011-11-03 | 2011-12-14 | Isis Innovation | Multisomes: encapsulated droplet networks |
US9689029B2 (en) | 2011-12-02 | 2017-06-27 | Caliper Life Sciences, Inc. | Systems and methods for sampling of amplification products |
CA2896713A1 (en) * | 2011-12-28 | 2013-07-04 | Ricardo Mancebo | Reagents and methods for autoligation chain reaction |
US20130211289A1 (en) | 2012-01-25 | 2013-08-15 | Tasso, Inc. | Handheld Device for Drawing, Collecting, and Analyzing Bodily Fluid |
EP2818850B1 (en) | 2012-02-22 | 2016-08-03 | Olympus Corporation | Method for detecting a target particle |
TWI484154B (en) * | 2012-02-24 | 2015-05-11 | Optical detecting apparatus and operating method thereof | |
WO2013140890A1 (en) | 2012-03-21 | 2013-09-26 | オリンパス株式会社 | Method for detecting target nucleic acid molecule |
US9150907B2 (en) | 2012-04-27 | 2015-10-06 | General Electric Company | Microfluidic flow cell assemblies and method of use |
US9354159B2 (en) | 2012-05-02 | 2016-05-31 | Nanoscopia (Cayman), Inc. | Opto-fluidic system with coated fluid channels |
US9258536B2 (en) * | 2012-05-03 | 2016-02-09 | Semiconductor Components Industries, Llc | Imaging systems with plasmonic color filters |
US9625465B2 (en) | 2012-05-15 | 2017-04-18 | Defined Diagnostics, Llc | Clinical diagnostic systems |
US9213043B2 (en) | 2012-05-15 | 2015-12-15 | Wellstat Diagnostics, Llc | Clinical diagnostic system including instrument and cartridge |
US9081001B2 (en) | 2012-05-15 | 2015-07-14 | Wellstat Diagnostics, Llc | Diagnostic systems and instruments |
CN102649931A (en) * | 2012-05-28 | 2012-08-29 | 上海理工大学 | Preparation method for microarray biochip |
KR20130136623A (en) * | 2012-06-05 | 2013-12-13 | 인제대학교 산학협력단 | Apparatus for detecting liquid electric conductivity |
US10278585B2 (en) | 2012-06-21 | 2019-05-07 | Novadaq Technologies ULC | Quantification and analysis of angiography and perfusion |
JP6312670B2 (en) | 2012-07-23 | 2018-04-18 | タッソ インコーポレイテッド | Methods, systems, and apparatus for open microfluidic channels |
US20140200167A1 (en) | 2012-08-01 | 2014-07-17 | Nanomdx, Inc. | Functionally integrated device for multiplex genetic identification |
US9310300B2 (en) * | 2012-08-03 | 2016-04-12 | Ingeneron Incorporated | Compact portable apparatus for optical assay |
US20140073013A1 (en) * | 2012-08-07 | 2014-03-13 | California Institute Of Technology | Ultrafast thermal cycler |
US20140046600A1 (en) * | 2012-08-07 | 2014-02-13 | Netanel Avner | Sim card based medical testing and data transmission system |
US9580679B2 (en) * | 2012-09-21 | 2017-02-28 | California Institute Of Technology | Methods and devices for sample lysis |
US9518914B2 (en) * | 2012-09-24 | 2016-12-13 | Brigham And Women's Hospital, Inc. | Portal and method for management of dialysis therapy |
DE102012109317A1 (en) * | 2012-10-01 | 2014-04-03 | Astrium Gmbh | Device for carrying out a biochemical analysis, in particular in space |
US9804149B2 (en) * | 2012-10-10 | 2017-10-31 | Bio-Rad Laboratories, Inc. | Patient-based results display |
GB201219201D0 (en) | 2012-10-25 | 2012-12-12 | Isis Innovation | Hydrogel network |
US9885655B2 (en) | 2012-11-13 | 2018-02-06 | Viavi Solutions Inc. | Spectrometer with a relay lightpipe |
JPWO2014077029A1 (en) * | 2012-11-13 | 2017-01-05 | 株式会社村田製作所 | Droplet quantification method and measuring apparatus |
TWI609172B (en) * | 2012-11-13 | 2017-12-21 | 唯亞威方案公司 | Portable spectrometer |
CN103852105A (en) * | 2012-12-04 | 2014-06-11 | 昆山平成电子科技有限公司 | Multi-functional tester |
KR102449271B1 (en) * | 2012-12-07 | 2022-09-29 | 옥스포드 유니버시티 이노베이션 리미티드 | Droplet assembly by 3D printing |
US9239328B2 (en) | 2012-12-17 | 2016-01-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Systems and methods for an integrated bio-entity manipulation and processing semiconductor device |
US9495332B2 (en) * | 2012-12-21 | 2016-11-15 | International Business Machines Corporation | Detection and repositioning of pop-up dialogs |
NZ708504A (en) * | 2012-12-27 | 2017-12-22 | Medi-Physics Inc | Dual-filter dual-integrity test assembly |
GB201301178D0 (en) | 2013-01-23 | 2013-03-06 | Dynamic Biosensors Gmbh | Method for sequencing a template nucleic acid immobilized on a substrate |
US9999393B2 (en) | 2013-01-29 | 2018-06-19 | Zoll Medical Corporation | Delivery of electrode gel using CPR puck |
US8880196B2 (en) | 2013-03-04 | 2014-11-04 | Zoll Medical Corporation | Flexible therapy electrode |
SG11201507586PA (en) | 2013-03-12 | 2015-10-29 | Univ Michigan | Microfluidic device for immunoblotting |
EP2972130A4 (en) * | 2013-03-14 | 2016-12-07 | The Alfred E Mann Found For Scient Res | Microfluidic flow rate sensor |
CN107831324B (en) | 2013-03-15 | 2021-11-19 | 雅培制药有限公司 | Automated diagnostic analyzer with rear accessible track system and related methods |
US10933417B2 (en) | 2013-03-15 | 2021-03-02 | Nanobiosym, Inc. | Systems and methods for mobile device analysis of nucleic acids and proteins |
EP2969218A2 (en) * | 2013-03-15 | 2016-01-20 | Nanobiosym, Inc. | Systems and methods for mobile device analysis of nucleic acids and proteins |
JP6351703B2 (en) | 2013-03-15 | 2018-07-04 | アボット・ラボラトリーズAbbott Laboratories | Automatic diagnostic analyzer with vertically arranged carousel and related methods |
GB201304797D0 (en) * | 2013-03-15 | 2013-05-01 | Diagnostics For The Real World Ltd | Apparatus and method for automated sample preparation and adaptor for use in the apparatus |
EP2972402B1 (en) | 2013-03-15 | 2023-12-20 | Abbott Laboratories | Diagnostic analyzers with pretreatment carousels and related methods |
KR101483493B1 (en) * | 2013-03-22 | 2015-01-19 | 나노바이오시스 주식회사 | PCR device for detecting food-borne bacteria, and and method for detecting food-borne bacteria using the same |
US20140323819A1 (en) * | 2013-04-29 | 2014-10-30 | Elwha LLC, a limited liability company of the State of Delaware | Multi-parameter test units for initial indication of medical symptoms |
US9766261B2 (en) * | 2013-05-29 | 2017-09-19 | Bio-Rad Laboratories, Inc. | Low cost optical high speed discrete measurement system |
GB2516669B (en) * | 2013-07-29 | 2015-09-09 | Atlas Genetics Ltd | A method for processing a liquid sample in a fluidic cartridge |
US9347962B2 (en) | 2013-08-05 | 2016-05-24 | Nanoscopia (Cayman), Inc. | Handheld diagnostic system with chip-scale microscope and automated image capture mechanism |
EP3039163A4 (en) | 2013-08-26 | 2017-03-29 | Diagenetix, Inc. | Hardware and mobile software for operation of portable instruments for nucleic acid amplification |
JP2016534839A (en) | 2013-09-16 | 2016-11-10 | ジョンソン・アンド・ジョンソン・イノベーション・エルエルシーJohnson & Johnson Innovation LLC | Microfluidic organ assist device incorporating boundary layer separation |
ITMI20131541A1 (en) * | 2013-09-19 | 2015-03-20 | Eugenio Iannone | DIAGNOSIS DEVICE, PARTICULARLY OF THE LAB-ON-CHIP TYPE. |
WO2015048009A1 (en) | 2013-09-27 | 2015-04-02 | Arizona Board Of Regents On Behale Of Arizona State University | System and method for laser lysis |
US9604214B2 (en) * | 2013-10-01 | 2017-03-28 | Owl biomedical, Inc. | Cell sorting system using microfabricated components |
DK3066219T3 (en) * | 2013-11-08 | 2019-03-11 | Ionis Pharmaceuticals Inc | METHODS FOR DETECTING OIGONUCLEOTIDES |
US9059337B1 (en) * | 2013-12-24 | 2015-06-16 | Christie Digital Systems Usa, Inc. | Method, system and apparatus for dynamically monitoring and calibrating display tiles |
US10260111B1 (en) | 2014-01-20 | 2019-04-16 | Brett Eric Etchebarne | Method of detecting sepsis-related microorganisms and detecting antibiotic-resistant sepsis-related microorganisms in a fluid sample |
US20180135108A1 (en) * | 2014-01-20 | 2018-05-17 | Board Of Trustees Of Michigan State University | Method for detecting bacterial and fungal pathogens |
WO2015123603A1 (en) * | 2014-02-14 | 2015-08-20 | Beth Israel Deaconess Medical Center, Inc. | Electrical impedance myography |
JP6427202B2 (en) * | 2014-02-28 | 2018-11-21 | ビーディービーシー サイエンシーズ コーポレイション | System for organizational operation |
SG11201607582RA (en) | 2014-03-07 | 2016-10-28 | Univ California | Devices for integrating analyte extraction, concentration and detection |
WO2015138343A1 (en) | 2014-03-10 | 2015-09-17 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
US10767219B2 (en) | 2014-03-11 | 2020-09-08 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making and using same |
RU2688080C2 (en) * | 2014-03-12 | 2019-05-17 | Басф Се | Improved soot catalytic filter |
US8820538B1 (en) * | 2014-03-17 | 2014-09-02 | Namocell LLC | Method and apparatus for particle sorting |
US10318878B2 (en) | 2014-03-19 | 2019-06-11 | Numenta, Inc. | Temporal processing scheme and sensorimotor information processing |
GB2524730A (en) * | 2014-03-30 | 2015-10-07 | Robert Faulkner | Predicting application user behaviour and interests in real-time using predictive analytics as a service |
WO2015160863A1 (en) * | 2014-04-14 | 2015-10-22 | Sri International | Portable nucleic acid analysis systemand high-performance microfluidic electroactive polymer actuators |
BR112016022867A2 (en) * | 2014-04-25 | 2018-07-03 | Hewlett Packard Development Co | diagnostic cassette. |
CN104668002B (en) * | 2014-05-22 | 2016-03-16 | Imec非营利协会 | Compact fluid analysis device and manufacture method thereof |
EP3167045A4 (en) * | 2014-07-11 | 2018-01-17 | Advanced Theranostics Inc. | Point of care polymerase chain reaction device for disease detection |
JP2016023994A (en) * | 2014-07-17 | 2016-02-08 | セイコーエプソン株式会社 | Electronic component conveyance device and electronic component inspection device |
CN113440134A (en) | 2014-08-01 | 2021-09-28 | 塔索公司 | Devices, systems, and methods for gravity-enhanced microfluidic collection, handling, and delivery of liquids |
US9506908B2 (en) | 2014-10-06 | 2016-11-29 | Alveo Technologies, Inc. | System for detection of analytes |
US10627358B2 (en) | 2014-10-06 | 2020-04-21 | Alveo Technologies, Inc. | Method for detection of analytes |
US10196678B2 (en) | 2014-10-06 | 2019-02-05 | ALVEO Technologies Inc. | System and method for detection of nucleic acids |
US10352899B2 (en) | 2014-10-06 | 2019-07-16 | ALVEO Technologies Inc. | System and method for detection of silver |
US9921182B2 (en) | 2014-10-06 | 2018-03-20 | ALVEO Technologies Inc. | System and method for detection of mercury |
WO2016062788A1 (en) | 2014-10-24 | 2016-04-28 | Ait Austrian Institute Of Technology Gmbh | Microfluidic chip for biological analysis |
US10022718B2 (en) * | 2014-10-24 | 2018-07-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Microfluidic device and array disk |
CN104374903B (en) * | 2014-11-08 | 2016-07-06 | 东莞博识生物科技有限公司 | A kind of in-vitro diagnosis test card |
AU2015373998A1 (en) | 2014-12-31 | 2017-06-29 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
WO2016121886A1 (en) * | 2015-01-28 | 2016-08-04 | 株式会社ダナフォーム | Analysis device, analysis chip, analysis kit, and analysis method using same |
EP3234549B1 (en) | 2015-01-30 | 2024-05-22 | Hewlett-Packard Development Company, L.P. | Diagnostic chip and method |
DE102015001998B3 (en) * | 2015-02-20 | 2016-02-04 | Friz Biochem Gesellschaft Für Bioanalytik Mbh | Microfluidic cartridge for the detection of biomolecules |
US10279352B2 (en) | 2015-03-18 | 2019-05-07 | Optolane Technologies Inc. | PCR module, PCR system having the same, and method of inspecting using the same |
US9708647B2 (en) * | 2015-03-23 | 2017-07-18 | Insilixa, Inc. | Multiplexed analysis of nucleic acid hybridization thermodynamics using integrated arrays |
CA2979864A1 (en) * | 2015-03-23 | 2016-09-29 | Wellmetris, Llc | Smartphone enabled urinalysis device, software, and test platform |
WO2016175848A1 (en) * | 2015-04-30 | 2016-11-03 | Hewlett-Packard Development Company, L.P. | Drop ejection based flow sensor calibration |
EP3233498B1 (en) * | 2015-04-30 | 2019-06-26 | Hewlett-Packard Development Company, L.P. | Microfluidic flow sensor |
WO2016188738A1 (en) * | 2015-05-26 | 2016-12-01 | F. Hoffmann-La Roche Ag | Point of care testing poct system |
CN104833747B (en) * | 2015-05-06 | 2016-08-24 | 华东理工大学 | A kind of preparative hplc UV-detector using deep ultraviolet LED light source |
EP3300516B1 (en) | 2015-05-20 | 2024-05-01 | University of Maryland, College Park | Generation and trapping of aqueous droplets in a microfluidic chip with an air continuous phase |
KR102693068B1 (en) | 2015-09-04 | 2024-08-07 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | Methods and devices for collection, extraction, concentration and detection of clinical analytes |
US9499861B1 (en) | 2015-09-10 | 2016-11-22 | Insilixa, Inc. | Methods and systems for multiplex quantitative nucleic acid amplification |
US9735305B2 (en) | 2015-09-21 | 2017-08-15 | International Business Machines Corporation | Monolithically integrated fluorescence on-chip sensor |
WO2017059094A2 (en) * | 2015-09-29 | 2017-04-06 | Adi Mashiach | System and method for detection of disease in bodily fluids |
AU2016330037B2 (en) | 2015-10-01 | 2019-12-19 | Dnanudge Limited | Method, apparatus and system for securely transferring biological information |
WO2017066405A1 (en) * | 2015-10-16 | 2017-04-20 | Opko Diagnostics, Llc | Articles and methods for preparing a surface for obtaining a patient sample |
US10356334B2 (en) | 2015-11-13 | 2019-07-16 | Novadaq Technologies ULC | Systems and methods for illumination and imaging of a target |
WO2017087703A1 (en) * | 2015-11-17 | 2017-05-26 | Nanoscopia (Cayman), Inc. | Sample processing and smearing apparatus and methods |
WO2017090427A1 (en) * | 2015-11-26 | 2017-06-01 | 富士フイルム株式会社 | Solution deposition device and solution deposition method |
CA3009328C (en) | 2015-12-21 | 2024-03-05 | Tasso, Inc. | Devices, systems and methods for actuation and retraction in fluid collection |
US11214823B2 (en) * | 2015-12-22 | 2022-01-04 | Canon U.S.A., Inc. | Sample-to-answer system for microorganism detection featuring target enrichment, amplification and detection |
WO2017117666A1 (en) | 2016-01-08 | 2017-07-13 | Advanced Theranostics Inc. | Fully integrated, stand-alone, point-of-care device to detect target nucleic acids |
JP1565699S (en) * | 2016-01-12 | 2016-12-19 | ||
US10436773B2 (en) * | 2016-01-18 | 2019-10-08 | Jana Care, Inc. | Mobile device based multi-analyte testing analyzer for use in medical diagnostic monitoring and screening |
CA3009419A1 (en) | 2016-01-26 | 2017-08-03 | Novadaq Technologies ULC | Configurable platform |
US9643181B1 (en) | 2016-02-08 | 2017-05-09 | International Business Machines Corporation | Integrated microfluidics system |
JP6274233B2 (en) * | 2016-02-23 | 2018-02-07 | 住友ベークライト株式会社 | Clip cartridge system |
WO2017155858A1 (en) | 2016-03-07 | 2017-09-14 | Insilixa, Inc. | Nucleic acid sequence identification using solid-phase cyclic single base extension |
CN105675371B (en) * | 2016-03-29 | 2018-09-25 | 广东江门生物技术开发中心有限公司 | A kind of Multifunctional inspection sample extraction separator |
WO2017181069A1 (en) * | 2016-04-15 | 2017-10-19 | University Of Maryland, College Park | Integrated thermoplastic chip for rapid pcr and hrma |
US10987674B2 (en) | 2016-04-22 | 2021-04-27 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
WO2017197040A1 (en) | 2016-05-11 | 2017-11-16 | Click Diagnostics, Inc. | Devices and methods for nucleic acid extraction |
CN107400628B (en) * | 2016-05-19 | 2021-03-02 | 深圳市华因康高通量生物技术研究院 | Sequencing reaction cell, sequencing reaction clamp and sequencing reaction equipment |
CN106018389A (en) * | 2016-05-20 | 2016-10-12 | 华南师范大学 | Handheld POCT (Point of Care Testing) bipolar electrode-electrochemical light emitting device and application thereof |
KR102592388B1 (en) | 2016-06-09 | 2023-10-20 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | A single platform for biomarker enrichment and signal amplification for use in paper-based immunoassays, and for extraction, concentration and amplification of DNA. |
EP3469420A4 (en) | 2016-06-14 | 2020-02-12 | Novadaq Technologies ULC | Methods and systems for adaptive imaging for low light signal enhancement in medical visualization |
JP6729027B2 (en) * | 2016-06-15 | 2020-07-22 | ウシオ電機株式会社 | Micro channel chip |
MX2018015889A (en) | 2016-06-29 | 2019-05-27 | Click Diagnostics Inc | Devices and methods for the detection of molecules using a flow cell. |
CN106026006B (en) * | 2016-06-30 | 2019-07-16 | 成绎半导体技术(上海)有限公司 | A kind of USB Type-C interface female intelligent measurement and protection circuit |
EP3478417A4 (en) * | 2016-06-30 | 2020-01-15 | Click Diagnostics, Inc. | Devices and methods for nucleic acid extraction |
JP6632487B2 (en) * | 2016-07-13 | 2020-01-22 | キヤノン株式会社 | Continuum robot, method of correcting kinematics, and control method of continuum robot |
US11008214B2 (en) * | 2016-07-22 | 2021-05-18 | Hewlett-Packard Development Company, L.P. | Substrate assembly and related methods |
US10889854B2 (en) * | 2016-08-08 | 2021-01-12 | Universiti Brunei Darussalam | System and method for immobilization free electrochemiluminescence DNA detection using a luminophore dye for multi-species detection |
CN106323353B (en) * | 2016-08-12 | 2019-02-12 | Oppo广东移动通信有限公司 | A kind of calibration method of proximity sensor, device and terminal |
WO2018039139A1 (en) | 2016-08-22 | 2018-03-01 | The Regents Of The University Of California | Hydrogel platform for aqueous two-phase concentration of a target to enhance its detection |
JP7146743B2 (en) | 2016-09-23 | 2022-10-04 | アルヴェオ テクノロジーズ インコーポレイテッド | Methods and compositions for detecting analytes |
JP7453664B2 (en) * | 2016-10-11 | 2024-03-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Integrated Molecular Diagnostic System (iMDx) and Methods for Dengue Fever |
WO2018080993A1 (en) | 2016-10-24 | 2018-05-03 | The Trustees Of The University Of Pennsylvania | Ultra-high throughput detection of fluorescent droplets using time domain encoded optofluidics |
WO2018078999A1 (en) * | 2016-10-27 | 2018-05-03 | シャープ株式会社 | Fluorescent testing system, dielectrophoresis device, and molecular testing method |
ES2979182T3 (en) | 2016-11-16 | 2024-09-24 | Catalog Tech Inc | Nucleic acid-based data storage |
US10650312B2 (en) | 2016-11-16 | 2020-05-12 | Catalog Technologies, Inc. | Nucleic acid-based data storage |
PL235210B1 (en) | 2016-12-21 | 2020-06-15 | Genomtec Spolka Akcyjna | Method for detection of genetic material in a biological specimen the device for the execution of this method |
GB201704754D0 (en) * | 2017-01-05 | 2017-05-10 | Illumina Inc | Kinetic exclusion amplification of nucleic acid libraries |
US11786899B2 (en) | 2017-02-02 | 2023-10-17 | University Of Maryland, College Park | Trap arrays for robust microfluidic sample digitization |
CN110475613A (en) * | 2017-02-06 | 2019-11-19 | Efa-全部取向工程公司 | Portable digital diagnostic device |
US11140305B2 (en) | 2017-02-10 | 2021-10-05 | Stryker European Operations Limited | Open-field handheld fluorescence imaging systems and methods |
US11209427B2 (en) | 2017-03-27 | 2021-12-28 | The Regents Of The University Of California | Semi-quantitative lateral-flow immunoassay for the detection of CSF leaks |
CN106895908B (en) * | 2017-03-29 | 2018-10-16 | 中国汽车技术研究中心 | Device is checked during high stability laser positioning luminosity probe |
USD849265S1 (en) * | 2017-04-21 | 2019-05-21 | Precision Nanosystems Inc | Microfluidic chip |
WO2019013825A1 (en) * | 2017-07-14 | 2019-01-17 | Hewlett-Packard Development Company, L.P. | Microfluidic valve |
US11590495B2 (en) | 2017-07-28 | 2023-02-28 | Hewlett-Packard Development Company, L.P. | Ionic species interrogation and sensing |
JP2019024453A (en) * | 2017-08-02 | 2019-02-21 | 株式会社リコー | Rna concentration quantitative method, rna concentration quantitative device, and rna concentration quantitative apparatus |
CN208016344U (en) * | 2017-08-30 | 2018-10-30 | 苏州宝时得电动工具有限公司 | Automatic running device |
US11327090B2 (en) | 2017-09-27 | 2022-05-10 | Hewlett-Packard Development Company, L.P. | Reuse of dispensers during alignment procedures |
US11402400B2 (en) | 2017-10-13 | 2022-08-02 | Hewlett-Packard Development Company, L.P. | Partition liquid into samples |
KR20200079264A (en) | 2017-11-09 | 2020-07-02 | 비스비 메디컬, 인코포레이티드 | Portable molecular diagnostic device and method for target virus detection |
US11383236B2 (en) * | 2017-11-10 | 2022-07-12 | Christopher Walker | Polymerase chain reaction using a microfluidic chip fabricated with printed circuit board techniques |
CN107967380B (en) * | 2017-11-15 | 2021-09-07 | 晶晨半导体(上海)股份有限公司 | Layout design method of printed circuit board |
US10854251B2 (en) * | 2017-12-15 | 2020-12-01 | Google Llc | Physical identifiers for authenticating an identity of a semiconductor component |
CN108221844B (en) * | 2017-12-31 | 2023-01-10 | 浙江大学 | Dynamic response test device for near-sea foundation pit under effect of simulated tidal load |
US20200360929A1 (en) * | 2018-01-29 | 2020-11-19 | The Texas A&M University System | Integrated Modular On-Chip Droplet Microfluidic Screening Platform |
CN108195728A (en) * | 2018-02-01 | 2018-06-22 | 山东诺方电子科技有限公司 | A kind of control system and its control method based on multinuclear particulate matter sensors technology |
CN111970961A (en) * | 2018-03-02 | 2020-11-20 | 泰利福医疗公司 | Infection detection system and method |
AU2019236289A1 (en) | 2018-03-16 | 2020-10-08 | Catalog Technologies, Inc. | Chemical methods for nucleic acid-based data storage |
JP2021524229A (en) | 2018-05-16 | 2021-09-13 | カタログ テクノロジーズ, インコーポレイテッド | Compositions and Methods for Nucleic Acid-Based Data Storage |
US20210170408A1 (en) * | 2018-06-11 | 2021-06-10 | Hewlett-Packard Development Company, L.P. | Microfluidic valves |
US10307755B1 (en) * | 2018-07-19 | 2019-06-04 | Bioceryx Inc. | Apparatuses and methods for sample-specific self-configuration |
US10883914B2 (en) | 2018-08-07 | 2021-01-05 | Blaire Biomedical, LLC | Flow cytometry systems including an optical analysis box for interfacing with an imaging device |
CN110819522B (en) * | 2018-08-13 | 2023-09-22 | 上海新微技术研发中心有限公司 | Digital PCR system and digital PCR liquid drop forming method |
AU2019338531A1 (en) * | 2018-09-14 | 2021-04-15 | William Marsh Rice University | Apparatus and methods for multiplexed amplification and detection of DNA using convectional heating and label-free microarray |
EP4278983A3 (en) | 2018-09-14 | 2023-12-20 | Tasso, Inc. | Bodily fluid collection device |
WO2020072030A1 (en) * | 2018-10-01 | 2020-04-09 | Hewlett-Packard Development Company, L.P. | Microscopy systems |
WO2020072028A1 (en) * | 2018-10-01 | 2020-04-09 | Hewlett-Packard Development Company, L.P. | Particle sorting using microfluidic ejectors |
CN112752964A (en) * | 2018-10-01 | 2021-05-04 | 惠普发展公司,有限责任合伙企业 | Bulk particle sorting |
JP6795019B2 (en) * | 2018-10-04 | 2020-12-02 | カシオ計算機株式会社 | Case and watch |
US11946902B2 (en) * | 2018-10-11 | 2024-04-02 | Hewlett-Packard Development Company, L.P. | Dielectrophoresis separator cross-over frequency measurement systems |
US10760936B2 (en) * | 2018-11-02 | 2020-09-01 | Nanya Technology Corporation | Semiconductor device and method of sensing a change in a level of a liquid therein |
FR3088534A1 (en) * | 2018-11-16 | 2020-05-22 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | DEVICE FOR PREPARING A CALIBRATED VOLUME OF BLOOD PLASMA |
US20210354126A1 (en) * | 2018-12-07 | 2021-11-18 | Ultima Genomics, Inc. | Implementing barriers for controlled environments during sample processing and detection |
US20210292819A1 (en) * | 2018-12-13 | 2021-09-23 | Hewlett-Packard Development Company, L.P. | Multiplex nucleic acid detection |
WO2020132008A1 (en) * | 2018-12-20 | 2020-06-25 | Alveo Technologies, Inc. | Handheld impedance-based diagnostic test system for detecting analytes |
CN113286657B (en) * | 2019-01-17 | 2023-04-04 | 美国西门子医学诊断股份有限公司 | Flow cell using peltier module as prime mover for polymerase chain reaction |
EP3880841B1 (en) | 2019-02-22 | 2023-05-31 | Hewlett-Packard Development Company, L.P. | Nucleic acid detection |
US11118223B2 (en) | 2019-03-14 | 2021-09-14 | Ultima Genomics, Inc. | Methods, devices, and systems for analyte detection and analysis |
EP3937780A4 (en) | 2019-03-14 | 2022-12-07 | InSilixa, Inc. | Methods and systems for time-gated fluorescent-based detection |
CN110180811A (en) * | 2019-05-07 | 2019-08-30 | 王海山 | A kind of chip detecting equipment that the clarity with dehumidification function is high |
CA3139819A1 (en) | 2019-05-09 | 2020-11-12 | Catalog Technologies, Inc. | Data structures and operations for searching, computing, and indexing in dna-based data storage |
WO2020246963A1 (en) * | 2019-06-04 | 2020-12-10 | Hewlett-Packard Development Company, L.P. | Integrated microfluidic ejector chips |
EP3941624A4 (en) * | 2019-07-24 | 2022-04-06 | Hewlett-Packard Development Company, L.P. | Device with microfluidic channels |
EP3769840A1 (en) * | 2019-07-26 | 2021-01-27 | LEX Diagnostics Ltd | Systems and modules for nucleic acid amplification testing |
GB201911386D0 (en) * | 2019-08-09 | 2019-09-25 | Stratec Se | Calibration tool for planar chip applications |
CN110333272A (en) * | 2019-08-21 | 2019-10-15 | 业成科技(成都)有限公司 | Humidity sensor and its manufacturing method |
WO2021046506A1 (en) * | 2019-09-06 | 2021-03-11 | Teleflex Medical Incorporated | Infection detection systems and methods including intermediate filtering and metering |
WO2021046504A1 (en) * | 2019-09-06 | 2021-03-11 | Teleflex Medical Incorporated | Infection detection systems and methods including a sample processor having integrated sample filter and meter |
EP4041310A4 (en) | 2019-10-10 | 2024-05-15 | 1859, Inc. | Methods and systems for microfluidic screening |
US11535842B2 (en) | 2019-10-11 | 2022-12-27 | Catalog Technologies, Inc. | Nucleic acid security and authentication |
USD954573S1 (en) * | 2019-11-06 | 2022-06-14 | Fluxergy, Llc | Test card |
US11352675B2 (en) | 2020-01-03 | 2022-06-07 | Visby Medical, Inc. | Devices and methods for antibiotic susceptability testing |
US11136543B1 (en) | 2020-02-11 | 2021-10-05 | Edward R. Flynn | Magnetic cell incubation device |
US11536732B2 (en) | 2020-03-13 | 2022-12-27 | Jana Care, Inc. | Devices, systems, and methods for measuring biomarkers in biological fluids |
KR20210128632A (en) * | 2020-04-17 | 2021-10-27 | 커넥타젠(주) | Apparatus for Detecting Potable Isothermal Amplification |
TWI749529B (en) * | 2020-04-20 | 2021-12-11 | 關鍵禾芯科技股份有限公司 | Ribonucleic acid test panel and ribonucleic acid test device |
CN111534430B (en) * | 2020-04-28 | 2023-12-29 | 港岫科技(上海)有限公司 | Ribonucleic acid detection panel and ribonucleic acid detection device |
BR112022021086A2 (en) * | 2020-04-30 | 2022-12-13 | Stab Vida Investig E Servicos Em Ciencias Biologicas Lda | INTEGRATED SYSTEM FOR THE DETECTION AND IDENTIFICATION OF SPECIFIC SEQUENCES OF NUCLEIC ACIDS AND METHOD OF USE OF THE INTEGRATED SYSTEM |
EP4150622B1 (en) | 2020-05-11 | 2024-09-25 | Catalog Technologies, Inc. | Programs and functions in dna-based data storage |
US20210354127A1 (en) * | 2020-05-13 | 2021-11-18 | Keycore Technology Corp. | Ribonucleic acid test panel and ribonucleic acid test device |
US20210379578A1 (en) * | 2020-06-04 | 2021-12-09 | Illumina, Inc. | Apparatus with a sensor having an active surface |
US11654436B2 (en) | 2020-08-11 | 2023-05-23 | Seagate Technology Llc | Microwave heating device for lab on a chip |
JP2022058244A (en) * | 2020-09-30 | 2022-04-11 | 富佳生技股▲ふん▼有限公司 | Nucleic acid detection box and nucleic acid detection device |
TWI781660B (en) * | 2020-09-30 | 2022-10-21 | 富佳生技股份有限公司 | Nucleic acid detection disc and nucleic acid detection device |
CN112255397B (en) * | 2020-10-16 | 2022-06-07 | 吉林大学 | Kit for detecting Listeria monocytogenes, Vibrio parahaemolyticus and Salmonella typhimurium and preparation method thereof |
CN112275335B (en) * | 2020-10-16 | 2022-06-28 | 吉林大学 | Self-suction valve separation type chip, preparation method and detection method of Listeria monocytogenes |
GB2600103B (en) * | 2020-10-19 | 2024-01-10 | Quantumdx Group Ltd | Integrated thermal conditioning and PCR in a molecular POC diagnostic system |
EP3992613A1 (en) * | 2020-10-28 | 2022-05-04 | Koninklijke Philips N.V. | Sputum analysis method and system |
WO2022099087A1 (en) * | 2020-11-05 | 2022-05-12 | President And Fellows Of Harvard College | An airborne pathogen diagnostic platform |
CN112553054A (en) * | 2020-12-10 | 2021-03-26 | 上海艾众生物科技有限公司 | Cell separation apparatus for bioreactor |
TR202021833A2 (en) * | 2020-12-26 | 2021-10-21 | Bilkent Holding A S | DISPOSABLE PATHOGEN DETECTION CHIP AND A RELATED PRODUCTION METHOD |
CN112858085B (en) * | 2021-01-19 | 2021-11-02 | 竹简云(天津)生物科技有限公司 | Food drug solubility detection and analysis device |
WO2022177558A1 (en) * | 2021-02-17 | 2022-08-25 | Hewlett-Packard Development Company, L.P. | Microfluidic nucleic acid amplification |
US11891671B1 (en) * | 2021-03-24 | 2024-02-06 | A9.Com, Inc. | Virus detection system |
KR102423154B1 (en) * | 2021-04-13 | 2022-07-20 | 주식회사 시큐어메드 | Conductive plastic diagnostic device and manufacturing method thereof |
DE102021110607A1 (en) * | 2021-04-26 | 2022-10-27 | Semikron Elektronik Gmbh & Co. Kg | Device with functional component and plastic housing element and method for verifying the authenticity of such a device |
US20240226876A1 (en) * | 2021-04-26 | 2024-07-11 | The Regents Of The University Of California | Testing devices |
CN113340332B (en) * | 2021-05-27 | 2022-07-12 | 西安交通大学 | Photoelectric sensor calibration device and method |
US11630428B2 (en) * | 2021-08-06 | 2023-04-18 | Trimble Inc. | Real-time analysis of vibration samples for operating environment classification and anomaly detection |
KR102702216B1 (en) * | 2021-10-06 | 2024-09-02 | 경희대학교 산학협력단 | Diagnostic microfluidic chip, system and IoT-based genetic analysis system including the same |
TWI797820B (en) * | 2021-11-08 | 2023-04-01 | 財團法人工業技術研究院 | Pcr rapid detection device and method thereof |
CN114308162B (en) * | 2021-12-31 | 2023-05-05 | 北京百奥纳芯生物科技有限公司 | Device for assisting combination and fixation of gene chip probe and substrate |
IT202200002222A1 (en) | 2022-02-08 | 2023-08-08 | Univ Degli Studi Magna Graecia Di Catanzaro | Static and dynamic cellular media screening platform |
GB202204431D0 (en) * | 2022-03-29 | 2022-05-11 | Enzyre Bv | A sensor for testing biomakers in nano litre volumes of plasma based on luminescence |
WO2024006245A1 (en) * | 2022-07-01 | 2024-01-04 | Owl biomedical, Inc. | Illumination and imaging system in tdi-based continuous line scanning microscopy |
GB2621159A (en) * | 2022-08-04 | 2024-02-07 | Wobble Genomics Ltd | Methods of preparing processed nucleic acid samples and detecting nucleic acids and devices therefor |
TWI831393B (en) * | 2022-09-27 | 2024-02-01 | 國立臺灣大學 | Pcr detection device and system |
LU103082B1 (en) | 2023-03-01 | 2024-09-02 | Stratec Se | Calibration and monitoring tool for thermocycler |
CN116188510B (en) * | 2023-04-25 | 2023-07-07 | 安徽皖欣环境科技有限公司 | Enterprise emission data acquisition system based on multiple sensors |
CN116854551B (en) * | 2023-06-29 | 2024-03-29 | 武汉大学 | Solid working medium for improving laser micro-propulsion performance and preparation method and application thereof |
CN117630321A (en) * | 2023-12-20 | 2024-03-01 | 江西江南精密科技有限公司 | Copper production surface defect detection equipment with turn-over function |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142318A1 (en) * | 2001-03-30 | 2002-10-03 | Cattell Herbert F. | Chemical array reading |
US20040149582A1 (en) * | 1996-07-09 | 2004-08-05 | Nanogen, Inc. | Addressable biologic electrode array |
US20050033525A1 (en) * | 2002-05-21 | 2005-02-10 | Corson John F. | Method and system for computing and applying a user-defined, global, multi-channel background correction to a feature-based data set obtained from reading a microarray |
US20050208539A1 (en) * | 2003-12-31 | 2005-09-22 | Vann Charles S | Quantitative amplification and detection of small numbers of target polynucleotides |
US20090317917A1 (en) * | 2001-07-18 | 2009-12-24 | Holger Klapproth | Biosensor and Method for Detecting Analytes |
Family Cites Families (273)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283560A (en) * | 1962-12-24 | 1966-11-08 | Du Pont | Differential thermal analysis apparatus |
DE3110879A1 (en) * | 1981-03-20 | 1982-09-30 | Philips Patentverwaltung Gmbh, 2000 Hamburg | ELECTROCHEMOLUMINESCENT CELL |
US4407290A (en) * | 1981-04-01 | 1983-10-04 | Biox Technology, Inc. | Blood constituent measuring device and method |
US5187990A (en) * | 1984-02-16 | 1993-02-23 | Rainin Instrument Co., Inc. | Method for dispensing liquids with a pipette with compensation for air pressure and surface tension |
US5075447A (en) * | 1984-09-17 | 1991-12-24 | Hoffmann-La Roche Inc. | Ruthenium complexes useful as carriers for immunologically active materials |
US4713347A (en) * | 1985-01-14 | 1987-12-15 | Sensor Diagnostics, Inc. | Measurement of ligand/anti-ligand interactions using bulk conductance |
US5038852A (en) * | 1986-02-25 | 1991-08-13 | Cetus Corporation | Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps |
US4929426A (en) * | 1987-11-02 | 1990-05-29 | Biologix, Inc. | Portable blood chemistry measuring apparatus |
DE4113033A1 (en) * | 1991-04-20 | 1992-10-22 | Fraunhofer Ges Forschung | INTEGRATED CONDUCTIVITY MEASURING DEVICE |
US5498392A (en) * | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5726026A (en) * | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5304487A (en) * | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US6315953B1 (en) * | 1993-11-01 | 2001-11-13 | Nanogen, Inc. | Devices for molecular biological analysis and diagnostics including waveguides |
US6071699A (en) * | 1996-06-07 | 2000-06-06 | California Institute Of Technology | Nucleic acid mediated electron transfer |
US6015880A (en) * | 1994-03-16 | 2000-01-18 | California Institute Of Technology | Method and substrate for performing multiple sequential reactions on a matrix |
US5700695A (en) | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5610635A (en) * | 1994-08-09 | 1997-03-11 | Encad, Inc. | Printer ink cartridge with memory storage capacity |
US6635226B1 (en) * | 1994-10-19 | 2003-10-21 | Agilent Technologies, Inc. | Microanalytical device and use thereof for conducting chemical processes |
JPH08122247A (en) * | 1994-10-24 | 1996-05-17 | Hitachi Ltd | Analyzer |
US5527710A (en) * | 1994-12-02 | 1996-06-18 | Igen, Inc. | Rate measurements of biomolecular reactions using electrochemiluminescence |
US6673533B1 (en) * | 1995-03-10 | 2004-01-06 | Meso Scale Technologies, Llc. | Multi-array multi-specific electrochemiluminescence testing |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US20020022261A1 (en) * | 1995-06-29 | 2002-02-21 | Anderson Rolfe C. | Miniaturized genetic analysis systems and methods |
US5856174A (en) * | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5633724A (en) * | 1995-08-29 | 1997-05-27 | Hewlett-Packard Company | Evanescent scanning of biochemical array |
US6130098A (en) * | 1995-09-15 | 2000-10-10 | The Regents Of The University Of Michigan | Moving microdroplets |
US6114122A (en) * | 1996-03-26 | 2000-09-05 | Affymetrix, Inc. | Fluidics station with a mounting system and method of using |
US5707589A (en) * | 1996-04-12 | 1998-01-13 | Merlin Instrument Company | Funnel-shaped sample-vial septum with membrane covered diffusion-barrier section |
US5798502A (en) * | 1996-05-10 | 1998-08-25 | Oak Frequency | Temperature controlled substrate for VLSI construction having minimal parasitic feedback |
FR2750999B1 (en) * | 1996-07-10 | 1998-11-20 | Appligene Oncor | THERMOSTABLE DNA POLYMERASE OF ARCHAEBACTERIA OF THE GENUS PYROCOCCUS SP |
US6136212A (en) * | 1996-08-12 | 2000-10-24 | The Regents Of The University Of Michigan | Polymer-based micromachining for microfluidic devices |
EP0946749A1 (en) * | 1996-11-20 | 1999-10-06 | The Regents Of The University Of Michigan | Microfabricated isothermal nucleic acid amplification devices and methods |
US6071251A (en) * | 1996-12-06 | 2000-06-06 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US6529446B1 (en) * | 1996-12-20 | 2003-03-04 | Telaric L.L.C. | Interactive medication container |
WO1998041531A2 (en) * | 1997-03-20 | 1998-09-24 | University Of Washington | Solvent for biopolymer synthesis, solvent microdroplets and methods of use |
US7314711B2 (en) * | 1997-05-23 | 2008-01-01 | Bioveris Corporation | Assays employing electrochemiluminescent labels and electrochemiluminescence quenchers |
US7160687B1 (en) * | 1997-05-29 | 2007-01-09 | Cellomics, Inc. | Miniaturized cell array methods and apparatus for cell-based screening |
AUPO793797A0 (en) * | 1997-07-15 | 1997-08-07 | Silverbrook Research Pty Ltd | A method of manufacture of an image creation apparatus (IJM03) |
US7328975B2 (en) * | 1997-07-15 | 2008-02-12 | Silverbrook Research Pty Ltd | Injet printhead with thermal bend arm exposed to ink flow |
US5965410A (en) * | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
EP1179585B1 (en) * | 1997-12-24 | 2008-07-09 | Cepheid | Device and method for lysis |
US6287776B1 (en) * | 1998-02-02 | 2001-09-11 | Signature Bioscience, Inc. | Method for detecting and classifying nucleic acid hybridization |
US6184040B1 (en) * | 1998-02-12 | 2001-02-06 | Polaroid Corporation | Diagnostic assay system and method |
US6200531B1 (en) * | 1998-05-11 | 2001-03-13 | Igen International, Inc. | Apparatus for carrying out electrochemiluminescence test measurements |
US20050244954A1 (en) * | 1998-06-23 | 2005-11-03 | Blackburn Gary F | Binding acceleration techniques for the detection of analytes |
US6761816B1 (en) * | 1998-06-23 | 2004-07-13 | Clinical Micro Systems, Inc. | Printed circuit boards with monolayers and capture ligands |
US6494614B1 (en) * | 1998-07-27 | 2002-12-17 | Battelle Memorial Institute | Laminated microchannel devices, mixing units and method of making same |
US5936730A (en) * | 1998-09-08 | 1999-08-10 | Motorola, Inc. | Bio-molecule analyzer with detector array and filter device |
US6116717A (en) * | 1998-09-15 | 2000-09-12 | Lexmark International, Inc. | Method and apparatus for customized control of a print cartridge |
US6203683B1 (en) * | 1998-11-09 | 2001-03-20 | Princeton University | Electrodynamically focused thermal cycling device |
US6638760B1 (en) * | 1998-11-25 | 2003-10-28 | Pe Corporation (Ny) | Method and apparatus for flow-through hybridization |
US6887693B2 (en) * | 1998-12-24 | 2005-05-03 | Cepheid | Device and method for lysing cells, spores, or microorganisms |
US20040053290A1 (en) * | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
US20020177135A1 (en) * | 1999-07-27 | 2002-11-28 | Doung Hau H. | Devices and methods for biochip multiplexing |
US6453431B1 (en) * | 1999-07-01 | 2002-09-17 | International Business Machines Corporation | System technique for detecting soft errors in statically coupled CMOS logic |
US7078167B2 (en) * | 1999-09-17 | 2006-07-18 | Agilent Technologies, Inc. | Arrays having background features and methods for using the same |
US6699384B1 (en) * | 1999-09-21 | 2004-03-02 | Battelle Memorial Institute | Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids |
US6743399B1 (en) * | 1999-10-08 | 2004-06-01 | Micronics, Inc. | Pumpless microfluidics |
US6576460B1 (en) * | 1999-10-28 | 2003-06-10 | Cornell Research Foundation, Inc. | Filtration-detection device and method of use |
US6553844B2 (en) * | 1999-10-29 | 2003-04-29 | Metasensors, Inc. | Property-independent volumetric flowmeter and sonic velocimeter |
US6867851B2 (en) * | 1999-11-04 | 2005-03-15 | Regents Of The University Of Minnesota | Scanning of biological samples |
US6875619B2 (en) * | 1999-11-12 | 2005-04-05 | Motorola, Inc. | Microfluidic devices comprising biochannels |
US20010039014A1 (en) * | 2000-01-11 | 2001-11-08 | Maxygen, Inc. | Integrated systems and methods for diversity generation and screening |
AU2001233200A1 (en) * | 2000-01-31 | 2001-08-07 | Board Of Regents, The University Of Texas System | Portable sensor array system |
JP3871846B2 (en) * | 2000-03-10 | 2007-01-24 | 日立ソフトウエアエンジニアリング株式会社 | Hybridization reaction detection method and detection apparatus |
US7867763B2 (en) * | 2004-01-25 | 2011-01-11 | Fluidigm Corporation | Integrated chip carriers with thermocycler interfaces and methods of using the same |
CH695166A5 (en) * | 2000-04-25 | 2005-12-30 | Sensirion Ag | Method and apparatus for measuring the flow of a liquid. |
AU6152301A (en) * | 2000-05-12 | 2001-11-26 | Caliper Techn Corp | Detection of nucleic acid hybridization by fluorescence polarization |
JP2004502926A (en) * | 2000-05-24 | 2004-01-29 | マイクロニックス、インコーポレーテッド | Microfluidic device that produces a concentration gradient |
US8071051B2 (en) * | 2004-05-14 | 2011-12-06 | Honeywell International Inc. | Portable sample analyzer cartridge |
US7351376B1 (en) * | 2000-06-05 | 2008-04-01 | California Institute Of Technology | Integrated active flux microfluidic devices and methods |
CA2410879A1 (en) * | 2000-06-07 | 2001-12-13 | Baylor College Of Medicine | Novel compositions and methods for array-based nucleic acid hybridization |
CA2311622A1 (en) * | 2000-06-15 | 2001-12-15 | Moussa Hoummady | Sub-nanoliter liquid drop dispensing system and method therefor |
KR100481305B1 (en) * | 2000-07-21 | 2005-04-07 | 박용덕 | Apparatus for controling a door using a mobile communications system |
FR2812306B1 (en) * | 2000-07-28 | 2005-01-14 | Gabriel Festoc | POLYMERSIS CHAIN AMPLIFICATION SYSTEM OF TARGET NUCLEIC SEQUENCES |
NL1016298C2 (en) * | 2000-09-29 | 2002-04-03 | Sgt Exploitatie Bv | Vial, method for using a vial for analysis on a sample, as well as a system for performing the method according to the invention using a vial according to the invention. |
WO2002028509A2 (en) * | 2000-10-06 | 2002-04-11 | Protasis Corporation | Fluid separation conduit cartridge |
US6827095B2 (en) * | 2000-10-12 | 2004-12-07 | Nanostream, Inc. | Modular microfluidic systems |
CN1294262C (en) * | 2000-10-31 | 2007-01-10 | 日立化学研究中心 | Method for collecting and using nuclear mRNA |
US7378280B2 (en) * | 2000-11-16 | 2008-05-27 | California Institute Of Technology | Apparatus and methods for conducting assays and high throughput screening |
US20020094528A1 (en) * | 2000-11-29 | 2002-07-18 | Salafsky Joshua S. | Method and apparatus using a surface-selective nonlinear optical technique for detection of probe-target interations |
US6382254B1 (en) * | 2000-12-12 | 2002-05-07 | Eastman Kodak Company | Microfluidic valve and method for controlling the flow of a liquid |
US7157232B2 (en) * | 2000-12-13 | 2007-01-02 | The Regents Of The University Of California | Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change |
US20020160363A1 (en) * | 2001-01-31 | 2002-10-31 | Mcdevitt John T. | Magnetic-based placement and retention of sensor elements in a sensor array |
CA2437558A1 (en) * | 2001-01-31 | 2002-08-08 | The Board Of Regents Of The University Of Texas System | Method and apparatus for the confinement of materials in a micromachined chemical sensor array |
US6386219B1 (en) * | 2001-02-01 | 2002-05-14 | Agilent Technologies, Inc. | Fluid handling system and method of manufacture |
WO2002065821A2 (en) * | 2001-02-15 | 2002-08-22 | Caliper Technologies Corp. | Methods and systems for enhanced delivery of electrical currents to fluidic systems |
US20020165675A1 (en) * | 2001-03-03 | 2002-11-07 | Golovlev Valeri V. | Method and microelectronic device for multi-site molecule detection |
CA2439766C (en) * | 2001-03-15 | 2008-12-09 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Nebulizer having cooling chamber |
DE10114540A1 (en) * | 2001-03-21 | 2002-10-02 | Francotyp Postalia Ag | Consumption module for an electronic device |
US7323140B2 (en) * | 2001-03-28 | 2008-01-29 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
GB0110501D0 (en) * | 2001-04-30 | 2001-06-20 | Secr Defence Brit | Amplification process |
WO2002089972A1 (en) * | 2001-05-03 | 2002-11-14 | Commissariat A L'energie Atomique | Microfluidic device for analyzing nucleic acids and/or proteins, methods of preparation and uses thereof |
US6573734B2 (en) * | 2001-05-08 | 2003-06-03 | The Board Of Trustees Of The University Of Illinois | Integrated thin film liquid conductivity sensor |
US20050009101A1 (en) * | 2001-05-17 | 2005-01-13 | Motorola, Inc. | Microfluidic devices comprising biochannels |
US7214300B2 (en) * | 2001-06-04 | 2007-05-08 | Epocal Inc. | Integrated electrokinetic devices and methods of manufacture |
WO2002099410A1 (en) * | 2001-06-04 | 2002-12-12 | Aclara Biosciences, Inc. | Sensor device and method for indicating oxygen consumption |
US20030015425A1 (en) * | 2001-06-20 | 2003-01-23 | Coventor Inc. | Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system |
US20030186222A1 (en) | 2001-06-27 | 2003-10-02 | Paul John H. | Rapid detection of enteroviruses in environmental samples by NASBA |
US20030032172A1 (en) * | 2001-07-06 | 2003-02-13 | The Regents Of The University Of California | Automated nucleic acid assay system |
FR2827199B1 (en) * | 2001-07-10 | 2004-07-09 | Centre Nat Rech Scient | PROCESS AND MACHINE FOR THE EX SITU MANUFACTURE OF LOW AND MEDIUM INTEGRATION BIOPE NETWORKS |
WO2003093168A2 (en) * | 2001-07-26 | 2003-11-13 | Motorola, Inc. | System and methods for mixing within a microfluidic device |
US6726820B1 (en) * | 2001-09-19 | 2004-04-27 | Applera Corporation | Method of separating biomolecule-containing samples with a microdevice with integrated memory |
US6995841B2 (en) * | 2001-08-28 | 2006-02-07 | Rice University | Pulsed-multiline excitation for color-blind fluorescence detection |
US7075162B2 (en) * | 2001-08-30 | 2006-07-11 | Fluidigm Corporation | Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes |
DE10145701A1 (en) * | 2001-09-17 | 2003-04-10 | Infineon Technologies Ag | Fluorescence biosensor chip and fluorescence biosensor chip arrangement |
US6969843B1 (en) * | 2001-10-19 | 2005-11-29 | Beach James M | Light standard for microscopy |
AU2002366046A1 (en) | 2001-10-19 | 2003-06-10 | Proligo Llc | Nucleic acid probes and methods to detect and/or quantify nucleic acid analytes |
US20030175947A1 (en) * | 2001-11-05 | 2003-09-18 | Liu Robin Hui | Enhanced mixing in microfluidic devices |
US6622746B2 (en) * | 2001-12-12 | 2003-09-23 | Eastman Kodak Company | Microfluidic system for controlled fluid mixing and delivery |
US20030148391A1 (en) * | 2002-01-24 | 2003-08-07 | Salafsky Joshua S. | Method using a nonlinear optical technique for detection of interactions involving a conformational change |
US8114349B2 (en) * | 2002-01-28 | 2012-02-14 | Qiagen Sciences, Llc | Bio-analysis cartridge tracking and protection mechanism |
US7318902B2 (en) * | 2002-02-04 | 2008-01-15 | Colorado School Of Mines | Laminar flow-based separations of colloidal and cellular particles |
US20060164533A1 (en) * | 2002-08-27 | 2006-07-27 | E-Phocus, Inc | Electronic image sensor |
US20040109793A1 (en) * | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
US7195986B1 (en) * | 2002-03-08 | 2007-03-27 | Caliper Life Sciences, Inc. | Microfluidic device with controlled substrate conductivity |
JP3722367B2 (en) * | 2002-03-19 | 2005-11-30 | ソニー株式会社 | Manufacturing method of solid-state imaging device |
US6639313B1 (en) | 2002-03-20 | 2003-10-28 | Analog Devices, Inc. | Hermetic seals for large optical packages and the like |
US7312085B2 (en) * | 2002-04-01 | 2007-12-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US7156484B2 (en) * | 2002-04-12 | 2007-01-02 | Silverbrook Research Pty Ltd | Inkjet printhead with CMOS drive circuitry close to ink supply passage |
US7157274B2 (en) * | 2002-06-24 | 2007-01-02 | Cytonome, Inc. | Method and apparatus for sorting particles |
US6877528B2 (en) * | 2002-04-17 | 2005-04-12 | Cytonome, Inc. | Microfluidic system including a bubble valve for regulating fluid flow through a microchannel |
US7229838B2 (en) * | 2002-07-08 | 2007-06-12 | Innovative Micro Technology | MEMS actuator and method of manufacture for MEMS particle sorting device |
US7214348B2 (en) | 2002-07-26 | 2007-05-08 | Applera Corporation | Microfluidic size-exclusion devices, systems, and methods |
US20040018635A1 (en) * | 2002-07-26 | 2004-01-29 | Peck Bill J. | Fabricating arrays with drop velocity control |
US6777662B2 (en) * | 2002-07-30 | 2004-08-17 | Freescale Semiconductor, Inc. | System, circuit and method providing a dynamic range pixel cell with blooming protection |
US7118676B2 (en) * | 2003-09-04 | 2006-10-10 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
US20040197845A1 (en) * | 2002-08-30 | 2004-10-07 | Arjang Hassibi | Methods and apparatus for pathogen detection, identification and/or quantification |
US7743928B2 (en) * | 2002-09-07 | 2010-06-29 | Timothy Crowley | Integrated apparatus and methods for treating liquids |
US7595883B1 (en) * | 2002-09-16 | 2009-09-29 | The Board Of Trustees Of The Leland Stanford Junior University | Biological analysis arrangement and approach therefor |
ITTO20020808A1 (en) * | 2002-09-17 | 2004-03-18 | St Microelectronics Srl | INTEGRATED DNA ANALYSIS DEVICE. |
WO2004027379A2 (en) * | 2002-09-20 | 2004-04-01 | Novus Molecular, Inc. | Methods and devices for active bioassay |
AU2003277030A1 (en) * | 2002-09-26 | 2004-04-19 | Vanderbilt University | Method for screening molecular interactions |
US7635762B2 (en) * | 2002-10-21 | 2009-12-22 | Biosearch Technologies, Inc. | Luminescent metal ion complexes |
TWI324684B (en) * | 2002-10-25 | 2010-05-11 | Nat Univ Tsing Hua | Micro-array system for micro amount reaction |
US7932098B2 (en) * | 2002-10-31 | 2011-04-26 | Hewlett-Packard Development Company, L.P. | Microfluidic system utilizing thin-film layers to route fluid |
US20040086872A1 (en) * | 2002-10-31 | 2004-05-06 | Childers Winthrop D. | Microfluidic system for analysis of nucleic acids |
US7264723B2 (en) * | 2002-11-01 | 2007-09-04 | Sandia Corporation | Dialysis on microchips using thin porous polymer membranes |
EP1419818B1 (en) * | 2002-11-14 | 2013-10-30 | Boehringer Ingelheim microParts GmbH | Device for sequential transport of liquids by capillary forces |
US6755509B2 (en) * | 2002-11-23 | 2004-06-29 | Silverbrook Research Pty Ltd | Thermal ink jet printhead with suspended beam heater |
JP3624950B2 (en) * | 2002-11-26 | 2005-03-02 | セイコーエプソン株式会社 | ink cartridge |
US20040115794A1 (en) | 2002-12-12 | 2004-06-17 | Affymetrix, Inc. | Methods for detecting transcriptional factor binding sites |
EP1570090A4 (en) * | 2002-12-12 | 2008-01-23 | Novartis Vaccines & Diagnostic | A biological sample storage device and method for biological sample contamination testing |
US20050042639A1 (en) * | 2002-12-20 | 2005-02-24 | Caliper Life Sciences, Inc. | Single molecule amplification and detection of DNA length |
CA3122193A1 (en) * | 2002-12-26 | 2004-07-22 | Meso Scale Technologies, Llc. | Assay cartridges and methods of using the same |
US20040188648A1 (en) * | 2003-01-15 | 2004-09-30 | California Institute Of Technology | Integrated surface-machined micro flow controller method and apparatus |
KR20050118668A (en) * | 2003-01-21 | 2005-12-19 | 마이크로닉스 인코포레이티드. | Method and system for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing |
US20060210984A1 (en) * | 2003-03-03 | 2006-09-21 | Jeremy Lambert | Use of nucleic acid mimics for internal reference and calibration in a flow cell microarray binding assay |
SE0300823D0 (en) * | 2003-03-23 | 2003-03-23 | Gyros Ab | Preloaded Microscale Devices |
US6986649B2 (en) * | 2003-04-09 | 2006-01-17 | Motorola, Inc. | Micropump with integrated pressure sensor |
US7435381B2 (en) * | 2003-05-29 | 2008-10-14 | Siemens Healthcare Diagnostics Inc. | Packaging of microfluidic devices |
US7309467B2 (en) * | 2003-06-24 | 2007-12-18 | Hewlett-Packard Development Company, L.P. | Fluidic MEMS device |
WO2005003395A1 (en) * | 2003-07-02 | 2005-01-13 | Caliper Life Sciences, Inc. | Method for amplifying and detecting nucleic acids in microfluidic devices under continuous and non-continuous flow conditions |
US20050019951A1 (en) * | 2003-07-14 | 2005-01-27 | Gjerde Douglas T. | Method and device for extracting an analyte |
GB0321158D0 (en) * | 2003-09-10 | 2003-10-08 | Central Research Lab Ltd | Apparatus and method for handling cells,embryos or oocytes |
WO2005028629A2 (en) * | 2003-09-19 | 2005-03-31 | Applera Corporation | Whole genome expression analysis system |
US8277760B2 (en) * | 2003-09-19 | 2012-10-02 | Applied Biosystems, Llc | High density plate filler |
US7811443B2 (en) * | 2003-10-16 | 2010-10-12 | The Regents Of The University Of California | Microfluidic dynamic vapor control system |
NL1024578C2 (en) * | 2003-10-21 | 2005-04-22 | Univ Delft Tech | Device for carrying out a reaction. |
US7444005B2 (en) * | 2003-11-04 | 2008-10-28 | Becton, Dickinson And Company | Apparatus and method for using optical mouse engine to determine speed, direction, position of scanned device and to obtain quantitative or qualitative data from same |
US20050095602A1 (en) * | 2003-11-04 | 2005-05-05 | West Jason A. | Microfluidic integrated microarrays for biological detection |
US20050239104A1 (en) * | 2003-11-04 | 2005-10-27 | Ferea Tracy L | Microarray controls |
US7695952B2 (en) * | 2003-11-07 | 2010-04-13 | Nanosphere, Inc. | Disposable sample processing module for detecting nucleic acids |
US7526944B2 (en) * | 2004-01-07 | 2009-05-05 | Ashok Sabata | Remote monitoring of pipelines using wireless sensor network |
US7448734B2 (en) * | 2004-01-21 | 2008-11-11 | Silverbrook Research Pty Ltd | Inkjet printer cartridge with pagewidth printhead |
US20050176135A1 (en) * | 2004-02-06 | 2005-08-11 | Brian Jones | Cassette for isolation, amplification and identification of DNA or protein and method of use |
US20060094046A1 (en) * | 2004-02-11 | 2006-05-04 | Arie Abo | Compositions and methods relating to angiogenesis and tumorigenesis |
US7461560B2 (en) * | 2005-03-28 | 2008-12-09 | Microstrain, Inc. | Strain gauge with moisture barrier and self-testing circuit |
US7796266B2 (en) * | 2004-04-30 | 2010-09-14 | Kimberly-Clark Worldwide, Inc. | Optical detection system using electromagnetic radiation to detect presence or quantity of analyte |
US9101302B2 (en) * | 2004-05-03 | 2015-08-11 | Abbott Diabetes Care Inc. | Analyte test device |
JP4683538B2 (en) * | 2004-05-06 | 2011-05-18 | セイコーインスツル株式会社 | Analysis system and analysis method including microchip for analysis |
US7694694B2 (en) * | 2004-05-10 | 2010-04-13 | The Aerospace Corporation | Phase-change valve apparatuses |
TWI291025B (en) * | 2004-06-29 | 2007-12-11 | Univ Nat Cheng Kung | An integral micro-dialysis electrophoresis chip having on-line labeling function and the analysis method thereof |
US7134319B2 (en) * | 2004-08-12 | 2006-11-14 | Honeywell International Inc. | Acoustic wave sensor with reduced condensation and recovery time |
WO2006089342A1 (en) * | 2004-10-18 | 2006-08-31 | Macquarie University | Fluorescence detection |
EP1814666A2 (en) * | 2004-11-16 | 2007-08-08 | Koninklijke Philips Electronics N.V. | Microfluidic device |
US7785868B2 (en) * | 2004-12-02 | 2010-08-31 | Microfluidic Systems, Inc. | Apparatus to automatically lyse a sample |
JP4455306B2 (en) * | 2004-12-13 | 2010-04-21 | キヤノン株式会社 | Biochemical treatment method |
US20060153745A1 (en) * | 2005-01-11 | 2006-07-13 | Applera Corporation | Fluid processing device for oligonucleotide synthesis and analysis |
EP1849012A2 (en) * | 2005-01-28 | 2007-10-31 | Parker-Hannifin Corporation | Sampling probe, gripper and interface for laboratory sample management systems |
US20080199362A1 (en) * | 2005-02-15 | 2008-08-21 | Agency For Science, Technology And Research | Microfluidics Package and Method of Fabricating the Same |
WO2006090144A1 (en) * | 2005-02-25 | 2006-08-31 | Inverness Medical Switzerland Gmbh | Fluidic gating device |
EP1887363A4 (en) * | 2005-04-01 | 2012-08-22 | Konica Minolta Med & Graphic | Micro overall analysis system, inspection chip, and inspection method |
JP5141976B2 (en) * | 2005-04-25 | 2013-02-13 | 株式会社アルバック | Integrated printhead assembly |
GB0508983D0 (en) * | 2005-05-03 | 2005-06-08 | Oxford Gene Tech Ip Ltd | Cell analyser |
US7738086B2 (en) * | 2005-05-09 | 2010-06-15 | The Trustees Of Columbia University In The City Of New York | Active CMOS biosensor chip for fluorescent-based detection |
WO2006122312A2 (en) * | 2005-05-11 | 2006-11-16 | The Trustees Of The University Of Pennsylvania | Methods of testing using a microfluidic cassette |
EP1885646A1 (en) * | 2005-05-12 | 2008-02-13 | STMicroelectronics S.r.l. | Microfluidic device with integrated micropump, in particular biochemical microreactor, and manufacturing method thereof |
US8377377B2 (en) * | 2005-05-24 | 2013-02-19 | Lee H. Angros | In situ heat induced antigen recovery and staining apparatus and method |
EP1893278A2 (en) * | 2005-06-03 | 2008-03-05 | Trans-Dermal Patents Company, LLC | Agent delivery system |
WO2007002579A2 (en) * | 2005-06-23 | 2007-01-04 | Bioveris Corporation | Assay cartridges and methods for point of care instruments |
US8288151B2 (en) * | 2005-06-29 | 2012-10-16 | Canon Kabushiki Kaisha | Biochemical reaction cassette |
US8361410B2 (en) * | 2005-07-01 | 2013-01-29 | Honeywell International Inc. | Flow metered analyzer |
KR100672690B1 (en) * | 2005-08-03 | 2007-01-22 | 동부일렉트로닉스 주식회사 | Method for manufacturing of cmos image sensor |
US7731910B2 (en) * | 2005-08-05 | 2010-06-08 | Hewlett-Packard Development Company, L.P. | Microfluidic mixing assembly |
WO2007033385A2 (en) * | 2005-09-13 | 2007-03-22 | Fluidigm Corporation | Microfluidic assay devices and methods |
US20070081920A1 (en) * | 2005-10-12 | 2007-04-12 | Murphy R S | Semi-disposable optoelectronic rapid diagnostic test system |
EP1934610B1 (en) * | 2005-10-12 | 2010-01-27 | Allergan, Inc. | Assays of molecular or subcellular interactivity using depolarization after resonance energy transfer (daret) |
US8372340B2 (en) * | 2005-10-19 | 2013-02-12 | Luminex Corporation | Apparatus and methods for integrated sample preparation, reaction and detection |
US20070116607A1 (en) * | 2005-11-23 | 2007-05-24 | Pharmacom Microlelectronics, Inc. | Microsystems that integrate three-dimensional microarray and multi-layer microfluidics for combinatorial detection of bioagent at single molecule level |
US20080241935A1 (en) * | 2007-03-27 | 2008-10-02 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Methods for pathogen detection |
US20080103746A1 (en) * | 2005-11-30 | 2008-05-01 | Searete Llc, A Limited Liability Corporation | Systems and methods for pathogen detection and response |
US8951779B2 (en) * | 2005-12-21 | 2015-02-10 | Samsung Electronics Co., Ltd. | Bio memory disc and bio memory disc drive apparatus, and assay method using the same |
JP2009521684A (en) * | 2005-12-22 | 2009-06-04 | ハネウェル・インターナショナル・インコーポレーテッド | Portable sample analyzer cartridge |
EP1966366A4 (en) * | 2005-12-29 | 2011-06-15 | I Stat Corp | Molecular diagnostics amplification system and methods |
EP1987344A1 (en) * | 2006-02-06 | 2008-11-05 | STMicroelectronics S.r.l. | Nucleic acid analysis chip integrating a waveguide and optical apparatus for the inspection of nucleic acid probes |
US7815868B1 (en) | 2006-02-28 | 2010-10-19 | Fluidigm Corporation | Microfluidic reaction apparatus for high throughput screening |
JP4770530B2 (en) * | 2006-03-13 | 2011-09-14 | 株式会社デンソー | Capacitive humidity sensor |
JP5254949B2 (en) * | 2006-03-15 | 2013-08-07 | マイクロニクス, インコーポレイテッド | Integrated nucleic acid assay |
US20100120132A1 (en) * | 2006-03-31 | 2010-05-13 | Intel Corporation | Bioassays by direct optical detection of nanoparticles |
US8232091B2 (en) * | 2006-05-17 | 2012-07-31 | California Institute Of Technology | Thermal cycling system |
US20070280857A1 (en) * | 2006-06-02 | 2007-12-06 | Applera Corporation | Devices and Methods for Positioning Dried Reagent In Microfluidic Devices |
US8637436B2 (en) * | 2006-08-24 | 2014-01-28 | California Institute Of Technology | Integrated semiconductor bioarray |
JP2009540290A (en) * | 2006-06-08 | 2009-11-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Microelectronic sensor device for DNA detection |
WO2007148358A1 (en) * | 2006-06-23 | 2007-12-27 | Stmicroelectronics S.R.L. | Assembly of a microfluidic device for analysis of biological material |
US7629124B2 (en) * | 2006-06-30 | 2009-12-08 | Canon U.S. Life Sciences, Inc. | Real-time PCR in micro-channels |
WO2008014485A2 (en) | 2006-07-28 | 2008-01-31 | California Institute Of Technology | Multiplex q-pcr arrays |
US7633606B2 (en) * | 2006-08-24 | 2009-12-15 | Microfluidic Systems, Inc. | Integrated airborne substance collection and detection system |
US8173071B2 (en) * | 2006-08-29 | 2012-05-08 | International Business Machines Corporation | Micro-fluidic test apparatus and method |
US8187541B2 (en) * | 2006-09-18 | 2012-05-29 | California Institute Of Technology | Apparatus for detecting target molecules and related methods |
WO2008147382A1 (en) * | 2006-09-27 | 2008-12-04 | Micronics, Inc. | Integrated microfluidic assay devices and methods |
US8765076B2 (en) * | 2006-11-14 | 2014-07-01 | Handylab, Inc. | Microfluidic valve and method of making same |
US20090186034A1 (en) * | 2006-12-19 | 2009-07-23 | Genetech, Inc. | Gene expression markers for inflammatory bowel disease |
EP2125219B1 (en) * | 2007-01-19 | 2016-08-10 | Fluidigm Corporation | High precision microfluidic devices and methods |
WO2008089449A2 (en) * | 2007-01-19 | 2008-07-24 | Biodot, Inc. | Systems and methods for high speed array printing and hybridization |
US7622783B2 (en) * | 2007-02-14 | 2009-11-24 | Innovative Micro Technology | MEMS thermal actuator and method of manufacture |
WO2008113112A1 (en) * | 2007-03-16 | 2008-09-25 | Cleveland Biosensors Pty Ltd | Stop structure for microfluidic device |
US20100086991A1 (en) * | 2007-03-23 | 2010-04-08 | Koninklijke Philips Electronics N.V. | Integrated microfluidic device with reduced peak power consumption |
GB2447698A (en) * | 2007-03-23 | 2008-09-24 | Univ Exeter | Fabrication of photonic biosensor arrays |
US20090227005A1 (en) * | 2007-03-27 | 2009-09-10 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Methods for pathogen detection |
EP1977830A1 (en) * | 2007-03-30 | 2008-10-08 | Roche Diagnostics GmbH | Micro-fluidic temperature driven valve |
AU2008236612B2 (en) * | 2007-04-04 | 2014-09-04 | Ande Corporation | Methods for rapid multiplexed amplification of target nucleic acids |
WO2009014792A2 (en) * | 2007-05-11 | 2009-01-29 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Electrical detection using confined fluids |
WO2009011971A2 (en) * | 2007-05-18 | 2009-01-22 | The Govt. Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health And Human Services, Centers For Disease Control And Prevention | Primers and probes for the detection of streptococcus pneumoniae |
WO2009017627A1 (en) * | 2007-07-30 | 2009-02-05 | Gn Biosystems Incorporated | Apparatus and method for conducting high-throughput micro-volume experiments |
WO2009015689A1 (en) * | 2007-07-31 | 2009-02-05 | Telefonaktiebolaget Lm Ericsson (Publ) | All optical batcher banyan switch, batcher switch, banyan switch and contention manager |
US20090042737A1 (en) * | 2007-08-09 | 2009-02-12 | Katz Andrew S | Methods and Devices for Correlated, Multi-Parameter Single Cell Measurements and Recovery of Remnant Biological Material |
CN101801491A (en) * | 2007-09-13 | 2010-08-11 | 阿尔利克斯公司 | Methods and apparatuses for sorting objects in forensic DNA analysis and medical diagnostics |
US20090107907A1 (en) * | 2007-10-24 | 2009-04-30 | University Of Alaska Fairbanks | Droplet-based digital microdialysis |
KR20110073381A (en) * | 2007-11-22 | 2011-06-29 | 삼성전자주식회사 | Thin film valve device and its controlling apparatus |
US8396701B2 (en) * | 2007-12-04 | 2013-03-12 | Lester F. Ludwig | Software systems for development, control, programming, simulation, and emulation of fixed and reconfigurable lab-on-a-chip devices |
EP2072133A1 (en) * | 2007-12-20 | 2009-06-24 | Koninklijke Philips Electronics N.V. | Multi-compartment device with magnetic particles |
KR101435522B1 (en) * | 2008-01-23 | 2014-09-02 | 삼성전자 주식회사 | Biochip |
DE102008009185A1 (en) * | 2008-02-15 | 2009-09-24 | Siemens Aktiengesellschaft | Apparatus and method for detecting liquids or substances from liquids and use of the apparatus |
EP2263299A2 (en) * | 2008-03-28 | 2010-12-22 | Koninklijke Philips Electronics N.V. | Microfluidic device and method |
ATE485101T1 (en) * | 2008-06-02 | 2010-11-15 | Boehringer Ingelheim Micropart | MICROFLUIDIC FILM STRUCTURE FOR DOSING LIQUIDS |
US7887756B2 (en) * | 2008-06-20 | 2011-02-15 | Silverbrook Research Pty Ltd | Microfluidic system comprising mechanically-actuated microfluidic pinch valve |
US9724695B2 (en) * | 2008-06-23 | 2017-08-08 | Canon U.S. Life Sciences, Inc. | Systems and methods for amplifying nucleic acids |
EP2138587A1 (en) * | 2008-06-23 | 2009-12-30 | Koninklijke Philips Electronics N.V. | Amplification of nucleic acids using temperature zones |
WO2009158451A1 (en) * | 2008-06-25 | 2009-12-30 | Real-Time Genomics, Llc | Method and apparatus for melting curve analysis of nucleic acids in microarray format |
US8133451B2 (en) * | 2008-08-28 | 2012-03-13 | Microfluidic Systems, Inc. | Sample preparation apparatus |
US20100056394A1 (en) * | 2008-09-04 | 2010-03-04 | Chung Yuan Christian University | Mini Bio-Reactor |
CN102150038B (en) * | 2008-09-11 | 2014-03-19 | Nxp股份有限公司 | Sensor with combined in-plane and parallel-plane configuration |
US20100075340A1 (en) * | 2008-09-22 | 2010-03-25 | Mehdi Javanmard | Electrical Detection Of Biomarkers Using Bioactivated Microfluidic Channels |
US9156010B2 (en) * | 2008-09-23 | 2015-10-13 | Bio-Rad Laboratories, Inc. | Droplet-based assay system |
JP2010076380A (en) * | 2008-09-29 | 2010-04-08 | Seiko Epson Corp | Liquid container |
US20100089135A1 (en) * | 2008-10-10 | 2010-04-15 | Nxp B.V. | Device and method for measuring sensor chips |
CA2740113C (en) * | 2008-10-10 | 2019-12-24 | The Governing Council Of The University Of Toronto | Hybrid digital and channel microfluidic devices and methods of use thereof |
BRPI0915278A2 (en) * | 2008-11-13 | 2019-09-24 | Koninl Philips Electronics Nv | microfluidic system and method for filling a capillary channel |
US8169006B2 (en) * | 2008-11-29 | 2012-05-01 | Electronics And Telecommunications Research Institute | Bio-sensor chip for detecting target material |
EP2194381B1 (en) * | 2008-12-03 | 2015-12-02 | Roche Diagnostics GmbH | Testing element with combined control and calibration zone |
US7964474B2 (en) * | 2008-12-31 | 2011-06-21 | Stmicroelectronics, Inc. | Use of field oxidation to simplify chamber fabrication in microfluidic devices |
WO2010088288A2 (en) * | 2009-01-28 | 2010-08-05 | Fluidigm Corporation | Determination of copy number differences by amplification |
US8637301B2 (en) * | 2009-03-02 | 2014-01-28 | The Johns Hopkins University | Microfluidic solution for high-throughput, droplet-based single molecule analysis with low reagent consumption |
AU2010256429B2 (en) * | 2009-06-05 | 2015-09-17 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
US9376713B2 (en) * | 2009-09-23 | 2016-06-28 | The Board Of Trustees Of The University Of Illinois | Label free detection of nucleic acid amplification |
WO2011050173A1 (en) * | 2009-10-21 | 2011-04-28 | Brandeis University | Methods, kits and reaction mixtures for analyzing single-stranded nucleic acid sequences |
ES2588703T3 (en) * | 2009-12-07 | 2016-11-04 | Meso Scale Technologies, Llc. | A test cartridge |
US8500979B2 (en) * | 2009-12-31 | 2013-08-06 | Intel Corporation | Nanogap chemical and biochemical sensors |
EP2539719B1 (en) * | 2010-02-23 | 2019-12-25 | Rheonix, Inc. | Self-contained biological assay apparatus, methods, and applications |
US9188585B2 (en) * | 2010-05-13 | 2015-11-17 | Robert Bosch Gmbh | Device and method for indirect modulation of detection environment |
US20110312710A1 (en) * | 2010-06-17 | 2011-12-22 | Geneasys Pty Ltd | Loc device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and nucleic acid amplification |
KR20120063162A (en) * | 2010-12-07 | 2012-06-15 | 삼성전자주식회사 | Gene analysis apparatus and method of analyzing gene using the same |
-
2011
- 2011-06-01 US US13/150,047 patent/US20110312710A1/en not_active Abandoned
- 2011-06-01 US US13/150,193 patent/US20110312789A1/en not_active Abandoned
- 2011-06-01 US US13/150,004 patent/US20110312694A1/en not_active Abandoned
- 2011-06-01 US US13/150,225 patent/US20110312801A1/en not_active Abandoned
- 2011-06-01 US US13/149,932 patent/US20110312642A1/en not_active Abandoned
- 2011-06-01 US US13/149,906 patent/US20110312631A1/en not_active Abandoned
- 2011-06-01 US US13/150,066 patent/US20110312576A1/en not_active Abandoned
- 2011-06-01 US US13/150,100 patent/US20110312078A1/en not_active Abandoned
- 2011-06-01 US US13/150,135 patent/US8383064B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,037 patent/US20110312704A1/en not_active Abandoned
- 2011-06-01 US US13/150,086 patent/US20110312738A1/en not_active Abandoned
- 2011-06-01 US US13/149,984 patent/US20110312682A1/en not_active Abandoned
- 2011-06-01 US US13/150,267 patent/US20110312836A1/en not_active Abandoned
- 2011-06-01 US US13/150,016 patent/US20110312562A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000670 patent/WO2011156847A1/en active Application Filing
- 2011-06-01 US US13/150,116 patent/US20110312760A1/en not_active Abandoned
- 2011-06-01 US US13/150,123 patent/US20110312765A1/en not_active Abandoned
- 2011-06-01 US US13/149,936 patent/US20110312646A1/en not_active Abandoned
- 2011-06-01 US US13/150,084 patent/US20110312737A1/en not_active Abandoned
- 2011-06-01 US US13/150,226 patent/US20110312620A1/en not_active Abandoned
- 2011-06-01 US US13/150,063 patent/US20110312724A1/en not_active Abandoned
- 2011-06-01 US US13/149,899 patent/US20110312546A1/en not_active Abandoned
- 2011-06-01 US US13/150,232 patent/US20110312621A1/en not_active Abandoned
- 2011-06-01 US US13/150,148 patent/US20110312843A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000678 patent/WO2011156855A1/en active Application Filing
- 2011-06-01 US US13/150,119 patent/US20110312763A1/en not_active Abandoned
- 2011-06-01 US US13/150,003 patent/US20110312693A1/en not_active Abandoned
- 2011-06-01 US US13/150,127 patent/US20120053088A1/en not_active Abandoned
- 2011-06-01 US US13/149,937 patent/US20110312647A1/en not_active Abandoned
- 2011-06-01 US US13/149,907 patent/US20110312632A1/en not_active Abandoned
- 2011-06-01 US US13/150,270 patent/US20110312839A1/en not_active Abandoned
- 2011-06-01 US US13/150,264 patent/US20110312833A1/en not_active Abandoned
- 2011-06-01 US US13/149,933 patent/US20110312643A1/en not_active Abandoned
- 2011-06-01 US US13/150,191 patent/US20110312606A1/en not_active Abandoned
- 2011-06-01 US US13/149,992 patent/US20110312557A1/en not_active Abandoned
- 2011-06-01 US US13/150,189 patent/US20110312618A1/en not_active Abandoned
- 2011-06-01 US US13/150,131 patent/US8354074B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,260 patent/US20110312830A1/en not_active Abandoned
- 2011-06-01 US US13/149,957 patent/US20110312662A1/en not_active Abandoned
- 2011-06-01 US US13/150,132 patent/US8394339B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,112 patent/US20110312756A1/en not_active Abandoned
- 2011-06-01 US US13/150,255 patent/US20110312825A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000668 patent/WO2011156845A1/en active Application Filing
- 2011-06-01 US US13/149,956 patent/US20110312661A1/en not_active Abandoned
- 2011-06-01 US US13/150,140 patent/US20110311393A1/en not_active Abandoned
- 2011-06-01 US US13/150,177 patent/US20110312602A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000665 patent/WO2011156842A1/en active Application Filing
- 2011-06-01 WO PCT/AU2011/000671 patent/WO2011156848A1/en active Application Filing
- 2011-06-01 US US13/150,161 patent/US20110312776A1/en not_active Abandoned
- 2011-06-01 US US13/149,971 patent/US20110312674A1/en not_active Abandoned
- 2011-06-01 US US13/150,134 patent/US20110312770A1/en not_active Abandoned
- 2011-06-01 US US13/149,892 patent/US20110312623A1/en not_active Abandoned
- 2011-06-01 US US13/150,095 patent/US20110312743A1/en not_active Abandoned
- 2011-06-01 US US13/150,150 patent/US20110312773A1/en not_active Abandoned
- 2011-06-01 US US13/150,271 patent/US20110312840A1/en not_active Abandoned
- 2011-06-01 US US13/150,067 patent/US20110312727A1/en not_active Abandoned
- 2011-06-01 US US13/149,922 patent/US20110312074A1/en not_active Abandoned
- 2011-06-01 US US13/150,036 patent/US20110312571A1/en not_active Abandoned
- 2011-06-01 US US13/150,240 patent/US20110312812A1/en not_active Abandoned
- 2011-06-01 US US13/149,952 patent/US20110312657A1/en not_active Abandoned
- 2011-06-01 US US13/149,966 patent/US20110312670A1/en not_active Abandoned
- 2011-06-01 US US13/150,064 patent/US8398940B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/149,958 patent/US20110312663A1/en not_active Abandoned
- 2011-06-01 US US13/150,040 patent/US20110312705A1/en not_active Abandoned
- 2011-06-01 US US13/150,087 patent/US20110312615A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000680 patent/WO2011156857A1/en active Application Filing
- 2011-06-01 US US13/150,197 patent/US20110312792A1/en not_active Abandoned
- 2011-06-01 US US13/150,021 patent/US20110312565A1/en not_active Abandoned
- 2011-06-01 US US13/150,027 patent/US20110312568A1/en not_active Abandoned
- 2011-06-01 US US13/149,943 patent/US20110312076A1/en not_active Abandoned
- 2011-06-01 US US13/150,058 patent/US20110312720A1/en not_active Abandoned
- 2011-06-01 US US13/149,967 patent/US20110312554A1/en not_active Abandoned
- 2011-06-01 US US13/149,962 patent/US20110312666A1/en not_active Abandoned
- 2011-06-01 US US13/149,908 patent/US20110312548A1/en not_active Abandoned
- 2011-06-01 US US13/149,986 patent/US20110312537A1/en not_active Abandoned
- 2011-06-01 US US13/150,091 patent/US20110312584A1/en not_active Abandoned
- 2011-06-01 US US13/150,001 patent/US20110312691A1/en not_active Abandoned
- 2011-06-01 US US13/150,072 patent/US20110312580A1/en not_active Abandoned
- 2011-06-01 US US13/150,029 patent/US20110312570A1/en not_active Abandoned
- 2011-06-01 US US13/150,105 patent/US20110312750A1/en not_active Abandoned
- 2011-06-01 US US13/149,910 patent/US20110312549A1/en not_active Abandoned
- 2011-06-01 US US13/149,965 patent/US20110312669A1/en not_active Abandoned
- 2011-06-01 US US13/150,061 patent/US8388910B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/149,969 patent/US20110312672A1/en not_active Abandoned
- 2011-06-01 US US13/150,144 patent/US20110312592A1/en not_active Abandoned
- 2011-06-01 US US13/150,118 patent/US20110312762A1/en not_active Abandoned
- 2011-06-01 US US13/150,101 patent/US20110312747A1/en not_active Abandoned
- 2011-06-01 US US13/150,156 patent/US20110312617A1/en not_active Abandoned
- 2011-06-01 US US13/150,136 patent/US20110312771A1/en not_active Abandoned
- 2011-06-01 US US13/149,954 patent/US20110312659A1/en not_active Abandoned
- 2011-06-01 US US13/150,020 patent/US20110312564A1/en not_active Abandoned
- 2011-06-01 US US13/150,077 patent/US20110312732A1/en not_active Abandoned
- 2011-06-01 US US13/149,972 patent/US20110312675A1/en not_active Abandoned
- 2011-06-01 US US13/149,999 patent/US20110312689A1/en not_active Abandoned
- 2011-06-01 US US13/150,230 patent/US20110312804A1/en not_active Abandoned
- 2011-06-01 US US13/150,142 patent/US20110312591A1/en not_active Abandoned
- 2011-06-01 US US13/149,976 patent/US20110312068A1/en not_active Abandoned
- 2011-06-01 US US13/150,000 patent/US20110312690A1/en not_active Abandoned
- 2011-06-01 US US13/149,934 patent/US20110312644A1/en not_active Abandoned
- 2011-06-01 US US13/150,216 patent/US20110312608A1/en not_active Abandoned
- 2011-06-01 US US13/149,890 patent/US20110312622A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000662 patent/WO2011156839A1/en active Application Filing
- 2011-06-01 US US13/150,151 patent/US20110312595A1/en not_active Abandoned
- 2011-06-01 US US13/150,223 patent/US20110312611A1/en not_active Abandoned
- 2011-06-01 US US13/149,951 patent/US20110312656A1/en not_active Abandoned
- 2011-06-01 US US13/149,950 patent/US20110312655A1/en not_active Abandoned
- 2011-06-01 US US13/150,149 patent/US20110312594A1/en not_active Abandoned
- 2011-06-01 US US13/150,199 patent/US20110312851A1/en not_active Abandoned
- 2011-06-01 US US13/150,057 patent/US8383065B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,012 patent/US20110312696A1/en not_active Abandoned
- 2011-06-01 US US13/149,975 patent/US20110312677A1/en not_active Abandoned
- 2011-06-01 US US13/149,891 patent/US20110312841A1/en not_active Abandoned
- 2011-06-01 US US13/150,257 patent/US20110312827A1/en not_active Abandoned
- 2011-06-01 US US13/150,038 patent/US20110312540A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000667 patent/WO2011156844A1/en active Application Filing
- 2011-06-01 US US13/150,246 patent/US20110312817A1/en not_active Abandoned
- 2011-06-01 US US13/150,248 patent/US20110312819A1/en not_active Abandoned
- 2011-06-01 US US13/149,991 patent/US20110312556A1/en not_active Abandoned
- 2011-06-01 US US13/150,055 patent/US20110312717A1/en not_active Abandoned
- 2011-06-01 US US13/149,968 patent/US20110312671A1/en not_active Abandoned
- 2011-06-01 US US13/150,241 patent/US20110312813A1/en not_active Abandoned
- 2011-06-01 US US13/150,053 patent/US8394340B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,269 patent/US20110312838A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000672 patent/WO2011156849A1/en active Application Filing
- 2011-06-01 US US13/149,898 patent/US8349277B2/en not_active Expired - Fee Related
- 2011-06-01 WO PCT/AU2011/000669 patent/WO2011156846A1/en active Application Filing
- 2011-06-01 US US13/150,192 patent/US20110312607A1/en not_active Abandoned
- 2011-06-01 US US13/150,186 patent/US20110312849A1/en not_active Abandoned
- 2011-06-01 US US13/150,069 patent/US20110312578A1/en not_active Abandoned
- 2011-06-01 US US13/150,182 patent/US20110312604A1/en not_active Abandoned
- 2011-06-01 US US13/150,224 patent/US20110312855A1/en not_active Abandoned
- 2011-06-01 US US13/149,959 patent/US20110312664A1/en not_active Abandoned
- 2011-06-01 US US13/150,120 patent/US20110311418A1/en not_active Abandoned
- 2011-06-01 US US13/149,904 patent/US20110312630A1/en not_active Abandoned
- 2011-06-01 US US13/150,052 patent/US20110312574A1/en not_active Abandoned
- 2011-06-01 US US13/150,187 patent/US20110312605A1/en not_active Abandoned
- 2011-06-01 US US13/150,104 patent/US20110312749A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000663 patent/WO2011156840A1/en active Application Filing
- 2011-06-01 US US13/149,909 patent/US20110312633A1/en not_active Abandoned
- 2011-06-01 US US13/150,006 patent/US20110312538A1/en not_active Abandoned
- 2011-06-01 US US13/150,174 patent/US20110312783A1/en not_active Abandoned
- 2011-06-01 US US13/150,181 patent/US20110312786A1/en not_active Abandoned
- 2011-06-01 US US13/150,092 patent/US20110312585A1/en not_active Abandoned
- 2011-06-01 US US13/150,078 patent/US20110312526A1/en not_active Abandoned
- 2011-06-01 US US13/150,188 patent/US20110312542A1/en not_active Abandoned
- 2011-06-01 US US13/150,206 patent/US20110312796A1/en not_active Abandoned
- 2011-06-01 US US13/149,985 patent/US20110312683A1/en not_active Abandoned
- 2011-06-01 US US13/149,894 patent/US20110312624A1/en active Pending
- 2011-06-01 US US13/150,122 patent/US20110312587A1/en not_active Abandoned
- 2011-06-01 US US13/150,017 patent/US20110312563A1/en not_active Abandoned
- 2011-06-01 US US13/150,195 patent/US20110312790A1/en not_active Abandoned
- 2011-06-01 US US13/150,256 patent/US20110312826A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000666 patent/WO2011156843A1/en active Application Filing
- 2011-06-01 US US13/150,083 patent/US20110312736A1/en not_active Abandoned
- 2011-06-01 US US13/150,251 patent/US20110312822A1/en not_active Abandoned
- 2011-06-01 US US13/149,996 patent/US20110312688A1/en not_active Abandoned
- 2011-06-01 US US13/150,124 patent/US20110312766A1/en not_active Abandoned
- 2011-06-01 US US13/150,239 patent/US20110312811A1/en not_active Abandoned
- 2011-06-01 US US13/150,162 patent/US20110312598A1/en not_active Abandoned
- 2011-06-01 US US13/150,183 patent/US20110312848A1/en not_active Abandoned
- 2011-06-01 US US13/149,997 patent/US20110312558A1/en not_active Abandoned
- 2011-06-01 US US13/150,107 patent/US20110312586A1/en not_active Abandoned
- 2011-06-01 US US13/150,178 patent/US20110312784A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000660 patent/WO2011156837A1/en active Application Filing
- 2011-06-01 US US13/150,002 patent/US20110312692A1/en not_active Abandoned
- 2011-06-01 US US13/150,039 patent/US20110312572A1/en not_active Abandoned
- 2011-06-01 US US13/150,205 patent/US20110311407A1/en not_active Abandoned
- 2011-06-01 US US13/149,924 patent/US20110312551A1/en not_active Abandoned
- 2011-06-01 US US13/150,099 patent/US20110312746A1/en not_active Abandoned
- 2011-06-01 US US13/150,082 patent/US20110312735A1/en not_active Abandoned
- 2011-06-01 US US13/149,948 patent/US20110312654A1/en not_active Abandoned
- 2011-06-01 US US13/149,981 patent/US20110312680A1/en not_active Abandoned
- 2011-06-01 US US13/149,983 patent/US20110312681A1/en not_active Abandoned
- 2011-06-01 US US13/150,050 patent/US8398939B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,221 patent/US20120004145A1/en not_active Abandoned
- 2011-06-01 US US13/149,917 patent/US20110312637A1/en not_active Abandoned
- 2011-06-01 US US13/150,076 patent/US20110312581A1/en not_active Abandoned
- 2011-06-01 US US13/150,044 patent/US20110312573A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000673 patent/WO2011156850A1/en active Application Filing
- 2011-06-01 US US13/150,167 patent/US20110312599A1/en not_active Abandoned
- 2011-06-01 US US13/149,918 patent/US20110312638A1/en not_active Abandoned
- 2011-06-01 US US13/150,228 patent/US20110312802A1/en not_active Abandoned
- 2011-06-01 US US13/149,942 patent/US20110312650A1/en not_active Abandoned
- 2011-06-01 US US13/150,035 patent/US20110312703A1/en not_active Abandoned
- 2011-06-01 US US13/150,218 patent/US20110312609A1/en not_active Abandoned
- 2011-06-01 US US13/149,974 patent/US20110312067A1/en not_active Abandoned
- 2011-06-01 US US13/150,014 patent/US20110312561A1/en not_active Abandoned
- 2011-06-01 US US13/150,019 patent/US20110312698A1/en not_active Abandoned
- 2011-06-01 US US13/149,931 patent/US20110312641A1/en not_active Abandoned
- 2011-06-01 US US13/150,235 patent/US20110312807A1/en not_active Abandoned
- 2011-06-01 US US13/150,046 patent/US20110312709A1/en not_active Abandoned
- 2011-06-01 US US13/149,946 patent/US20110312652A1/en not_active Abandoned
- 2011-06-01 US US13/149,995 patent/US20110312687A1/en not_active Abandoned
- 2011-06-01 US US13/150,194 patent/US20110312850A1/en not_active Abandoned
- 2011-06-01 US US13/150,200 patent/US20110312793A1/en not_active Abandoned
- 2011-06-01 US US13/150,068 patent/US20110312577A1/en not_active Abandoned
- 2011-06-01 US US13/149,895 patent/US20110312625A1/en not_active Abandoned
- 2011-06-01 US US13/150,025 patent/US20110312700A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000674 patent/WO2011156851A1/en active Application Filing
- 2011-06-01 US US13/149,973 patent/US20110312676A1/en not_active Abandoned
- 2011-06-01 US US13/150,051 patent/US20110312714A1/en not_active Abandoned
- 2011-06-01 US US13/149,978 patent/US20110312678A1/en not_active Abandoned
- 2011-06-01 US US13/150,031 patent/US20110312070A1/en not_active Abandoned
- 2011-06-01 US US13/149,953 patent/US20110312658A1/en not_active Abandoned
- 2011-06-01 US US13/149,927 patent/US20110312075A1/en not_active Abandoned
- 2011-06-01 US US13/150,085 patent/US20110312582A1/en not_active Abandoned
- 2011-06-01 US US13/149,947 patent/US20110312653A1/en not_active Abandoned
- 2011-06-01 US US13/150,252 patent/US20110312823A1/en not_active Abandoned
- 2011-06-01 US US13/150,139 patent/US20110312590A1/en not_active Abandoned
- 2011-06-01 US US13/150,204 patent/US20110312795A1/en not_active Abandoned
- 2011-06-01 US US13/150,157 patent/US20110312597A1/en not_active Abandoned
- 2011-06-01 US US13/150,009 patent/US20110312560A1/en not_active Abandoned
- 2011-06-01 US US13/149,989 patent/US20110312684A1/en not_active Abandoned
- 2011-06-01 US US13/150,106 patent/US20110312751A1/en not_active Abandoned
- 2011-06-01 US US13/150,081 patent/US20110312527A1/en not_active Abandoned
- 2011-06-01 US US13/150,048 patent/US20110312711A1/en not_active Abandoned
- 2011-06-01 US US13/150,115 patent/US20110312759A1/en not_active Abandoned
- 2011-06-01 US US13/150,233 patent/US20110312806A1/en not_active Abandoned
- 2011-06-01 US US13/150,060 patent/US20110312721A1/en not_active Abandoned
- 2011-06-01 US US13/149,961 patent/US20110312665A1/en not_active Abandoned
- 2011-06-01 US US13/150,126 patent/US20110312541A1/en not_active Abandoned
- 2011-06-01 US US13/149,944 patent/US20110312651A1/en not_active Abandoned
- 2011-06-01 US US13/149,964 patent/US20110312668A1/en not_active Abandoned
- 2011-06-01 US US13/150,258 patent/US20110312828A1/en not_active Abandoned
- 2011-06-01 US US13/150,154 patent/US20110312596A1/en not_active Abandoned
- 2011-06-01 US US13/150,164 patent/US20110312846A1/en not_active Abandoned
- 2011-06-01 US US13/150,243 patent/US20110312814A1/en not_active Abandoned
- 2011-06-01 US US13/150,059 patent/US20110312575A1/en not_active Abandoned
- 2011-06-01 US US13/150,165 patent/US20110312778A1/en not_active Abandoned
- 2011-06-01 US US13/150,229 patent/US20110312803A1/en not_active Abandoned
- 2011-06-01 US US13/150,184 patent/US8425845B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/149,930 patent/US20110312552A1/en not_active Abandoned
- 2011-06-01 US US13/150,079 patent/US20110312733A1/en not_active Abandoned
- 2011-06-01 US US13/150,155 patent/US20110312774A1/en not_active Abandoned
- 2011-06-01 US US13/150,190 patent/US20110312788A1/en not_active Abandoned
- 2011-06-01 US US13/150,080 patent/US20110312734A1/en not_active Abandoned
- 2011-06-01 US US13/150,227 patent/US20110309276A1/en not_active Abandoned
- 2011-06-01 US US13/150,209 patent/US20110309275A1/en not_active Abandoned
- 2011-06-01 US US13/150,049 patent/US20110312712A1/en not_active Abandoned
- 2011-06-01 US US13/150,214 patent/US20110311413A1/en not_active Abandoned
- 2011-06-01 US US13/150,219 patent/US20110311414A1/en not_active Abandoned
- 2011-06-01 US US13/150,033 patent/US20110312077A1/en not_active Abandoned
- 2011-06-01 US US13/150,170 patent/US20110312781A1/en not_active Abandoned
- 2011-06-01 US US13/150,143 patent/US20110312842A1/en not_active Abandoned
- 2011-06-01 US US13/149,970 patent/US20110312673A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000675 patent/WO2011156852A1/en active Application Filing
- 2011-06-01 US US13/150,201 patent/US8398938B2/en not_active Expired - Fee Related
- 2011-06-01 US US13/150,237 patent/US20110312809A1/en not_active Abandoned
- 2011-06-01 US US13/150,168 patent/US20110312779A1/en not_active Abandoned
- 2011-06-01 US US13/150,172 patent/US20110312782A1/en not_active Abandoned
- 2011-06-01 US US13/150,018 patent/US20110312697A1/en not_active Abandoned
- 2011-06-01 US US13/149,914 patent/US20110312636A1/en not_active Abandoned
- 2011-06-01 US US13/150,175 patent/US20110312601A1/en not_active Abandoned
- 2011-06-01 US US13/149,939 patent/US20110312648A1/en not_active Abandoned
- 2011-06-01 US US13/150,159 patent/US20110312775A1/en not_active Abandoned
- 2011-06-01 US US13/150,110 patent/US20110312754A1/en not_active Abandoned
- 2011-06-01 US US13/150,207 patent/US20110312797A1/en not_active Abandoned
- 2011-06-01 US US13/150,141 patent/US20110312082A1/en not_active Abandoned
- 2011-06-01 US US13/150,071 patent/US20110312728A1/en not_active Abandoned
- 2011-06-01 US US13/150,238 patent/US20110312810A1/en not_active Abandoned
- 2011-06-01 US US13/150,272 patent/US20110308945A1/en not_active Abandoned
- 2011-06-01 US US13/150,022 patent/US20110312699A1/en not_active Abandoned
- 2011-06-01 US US13/150,180 patent/US20110312785A1/en not_active Abandoned
- 2011-06-01 US US13/149,912 patent/US20110312635A1/en not_active Abandoned
- 2011-06-01 US US13/150,196 patent/US20110312791A1/en not_active Abandoned
- 2011-06-01 US US13/149,960 patent/US20110312553A1/en not_active Abandoned
- 2011-06-01 US US13/150,074 patent/US20110312730A1/en not_active Abandoned
- 2011-06-01 US US13/149,941 patent/US20110312649A1/en not_active Abandoned
- 2011-06-01 TW TW100119255A patent/TW201213798A/en unknown
- 2011-06-01 US US13/150,176 patent/US20110312847A1/en not_active Abandoned
- 2011-06-01 US US13/150,179 patent/US20110312603A1/en not_active Abandoned
- 2011-06-01 US US13/150,125 patent/US20110312069A1/en not_active Abandoned
- 2011-06-01 US US13/150,093 patent/US20110312741A1/en not_active Abandoned
- 2011-06-01 US US13/150,213 patent/US20110312800A1/en not_active Abandoned
- 2011-06-01 US US13/149,893 patent/US20110312545A1/en not_active Abandoned
- 2011-06-01 US US13/149,902 patent/US20110312629A1/en not_active Abandoned
- 2011-06-01 US US13/150,075 patent/US20110312731A1/en not_active Abandoned
- 2011-06-01 US US13/150,268 patent/US20110312837A1/en not_active Abandoned
- 2011-06-01 US US13/150,220 patent/US20110312610A1/en not_active Abandoned
- 2011-06-01 US US13/150,173 patent/US20110312600A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000658 patent/WO2011156835A1/en active Application Filing
- 2011-06-01 US US13/150,247 patent/US20110312818A1/en not_active Abandoned
- 2011-06-01 US US13/150,070 patent/US20110312579A1/en not_active Abandoned
- 2011-06-01 US US13/149,921 patent/US20110312550A1/en not_active Abandoned
- 2011-06-01 US US13/150,024 patent/US20110312567A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000664 patent/WO2011156841A1/en active Application Filing
- 2011-06-01 US US13/150,249 patent/US20110312820A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000677 patent/WO2011156854A1/en active Application Filing
- 2011-06-01 US US13/149,925 patent/US20120052562A1/en not_active Abandoned
- 2011-06-01 US US13/149,979 patent/US20110312555A1/en not_active Abandoned
- 2011-06-01 US US13/149,993 patent/US20110312686A1/en not_active Abandoned
- 2011-06-01 US US13/150,113 patent/US20110312757A1/en not_active Abandoned
- 2011-06-01 US US13/150,098 patent/US20110312745A1/en not_active Abandoned
- 2011-06-01 US US13/150,152 patent/US20110312844A1/en not_active Abandoned
- 2011-06-01 US US13/150,023 patent/US20110312566A1/en not_active Abandoned
- 2011-06-01 US US13/149,929 patent/US20110311411A1/en not_active Abandoned
- 2011-06-01 US US13/150,054 patent/US20110312716A1/en not_active Abandoned
- 2011-06-01 US US13/149,955 patent/US20110312660A1/en not_active Abandoned
- 2011-06-01 US US13/149,903 patent/US20110312547A1/en not_active Abandoned
- 2011-06-01 US US13/150,138 patent/US20110312772A1/en not_active Abandoned
- 2011-06-01 US US13/149,913 patent/US20110312071A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000679 patent/WO2011156856A1/en active Application Filing
- 2011-06-01 US US13/149,920 patent/US20110312639A1/en not_active Abandoned
- 2011-06-01 US US13/149,911 patent/US20110312634A1/en not_active Abandoned
- 2011-06-01 US US13/150,263 patent/US20110312832A1/en not_active Abandoned
- 2011-06-01 US US13/150,169 patent/US20110312780A1/en not_active Abandoned
- 2011-06-01 US US13/150,231 patent/US20110312805A1/en not_active Abandoned
- 2011-06-01 US US13/150,073 patent/US20110312729A1/en not_active Abandoned
- 2011-06-01 US US13/150,128 patent/US20110312767A1/en not_active Abandoned
- 2011-06-01 US US13/150,236 patent/US20110312808A1/en not_active Abandoned
- 2011-06-01 US US13/150,261 patent/US20110312612A1/en not_active Abandoned
- 2011-06-01 US US13/150,042 patent/US20110312707A1/en not_active Abandoned
- 2011-06-01 US US13/150,244 patent/US20110312815A1/en not_active Abandoned
- 2011-06-01 US US13/150,163 patent/US20110312777A1/en not_active Abandoned
- 2011-06-01 US US13/150,265 patent/US20110312834A1/en not_active Abandoned
- 2011-06-01 US US13/150,094 patent/US20110312742A1/en not_active Abandoned
- 2011-06-01 US US13/150,065 patent/US20110312726A1/en not_active Abandoned
- 2011-06-01 US US13/150,158 patent/US20110311395A1/en not_active Abandoned
- 2011-06-01 US US13/150,028 patent/US20110312569A1/en not_active Abandoned
- 2011-06-01 US US13/150,097 patent/US20110312744A1/en not_active Abandoned
- 2011-06-01 US US13/150,202 patent/US20110312794A1/en not_active Abandoned
- 2011-06-01 US US13/150,032 patent/US20110312702A1/en not_active Abandoned
- 2011-06-01 US US13/150,147 patent/US20110312593A1/en not_active Abandoned
- 2011-06-01 US US13/150,211 patent/US20110312799A1/en not_active Abandoned
- 2011-06-01 US US13/150,262 patent/US20110312831A1/en not_active Abandoned
- 2011-06-01 US US13/150,210 patent/US20110312798A1/en not_active Abandoned
- 2011-06-01 US US13/149,928 patent/US20110312640A1/en not_active Abandoned
- 2011-06-01 US US13/150,030 patent/US20110312701A1/en not_active Abandoned
- 2011-06-01 US US13/150,114 patent/US20110312758A1/en not_active Abandoned
- 2011-06-01 US US13/150,259 patent/US20110312829A1/en not_active Abandoned
- 2011-06-01 US US13/150,250 patent/US20110312821A1/en not_active Abandoned
- 2011-06-01 US US13/150,185 patent/US20110312787A1/en not_active Abandoned
- 2011-06-01 US US13/150,222 patent/US20110311415A1/en not_active Abandoned
- 2011-06-01 US US13/150,096 patent/US20110312616A1/en not_active Abandoned
- 2011-06-01 US US13/150,203 patent/US20110312619A1/en not_active Abandoned
- 2011-06-01 US US13/149,963 patent/US20110312667A1/en not_active Abandoned
- 2011-06-01 US US13/150,266 patent/US20110312835A1/en not_active Abandoned
- 2011-06-01 US US13/150,041 patent/US20110312706A1/en not_active Abandoned
- 2011-06-01 US US13/149,935 patent/US20110312645A1/en not_active Abandoned
- 2011-06-01 US US13/150,208 patent/US20110312852A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000661 patent/WO2011156838A1/en active Application Filing
- 2011-06-01 US US13/150,056 patent/US20110312718A1/en not_active Abandoned
- 2011-06-01 US US13/150,217 patent/US20110312854A1/en not_active Abandoned
- 2011-06-01 US US13/150,242 patent/US20110308313A1/en not_active Abandoned
- 2011-06-01 US US13/150,117 patent/US20110312761A1/en not_active Abandoned
- 2011-06-01 US US13/150,111 patent/US20110312755A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000676 patent/WO2011156853A1/en active Application Filing
- 2011-06-01 US US13/150,160 patent/US20110312845A1/en not_active Abandoned
- 2011-06-01 US US13/149,919 patent/US20110312073A1/en not_active Abandoned
- 2011-06-01 US US13/150,153 patent/US20120028842A1/en not_active Abandoned
- 2011-06-01 US US13/150,062 patent/US20110312723A1/en not_active Abandoned
- 2011-06-01 US US13/150,121 patent/US20110312764A1/en not_active Abandoned
- 2011-06-01 US US13/149,916 patent/US20110312072A1/en not_active Abandoned
- 2011-06-01 US US13/150,007 patent/US20110312559A1/en not_active Abandoned
- 2011-06-01 US US13/150,090 patent/US20110312583A1/en not_active Abandoned
- 2011-06-01 WO PCT/AU2011/000659 patent/WO2011156836A1/en active Application Filing
- 2011-06-01 US US13/150,008 patent/US20110312539A1/en not_active Abandoned
- 2011-06-01 US US13/150,234 patent/US20110312856A1/en not_active Abandoned
- 2011-06-01 US US13/150,253 patent/US20110312824A1/en not_active Abandoned
- 2011-06-01 US US13/150,045 patent/US20110312708A1/en not_active Abandoned
- 2011-06-01 US US13/150,102 patent/US20110312748A1/en not_active Abandoned
- 2011-06-01 US US13/150,011 patent/US20110312695A1/en not_active Abandoned
- 2011-06-01 US US13/150,137 patent/US20110312081A1/en not_active Abandoned
- 2011-06-01 US US13/150,212 patent/US20110312853A1/en not_active Abandoned
- 2011-06-01 US US13/150,109 patent/US20110312753A1/en not_active Abandoned
- 2011-06-01 US US13/150,089 patent/US20110312740A1/en not_active Abandoned
- 2011-06-01 US US13/150,146 patent/US20110311394A1/en not_active Abandoned
- 2011-06-01 US US13/149,900 patent/US20110312628A1/en not_active Abandoned
- 2011-06-01 US US13/150,245 patent/US20110312816A1/en not_active Abandoned
- 2011-06-01 US US13/150,130 patent/US20110312768A1/en not_active Abandoned
- 2011-06-01 US US13/149,897 patent/US20110312626A1/en not_active Abandoned
- 2011-06-01 US US13/149,990 patent/US20110312685A1/en not_active Abandoned
- 2011-06-01 US US13/150,133 patent/US20110311409A1/en not_active Abandoned
- 2011-06-01 US US13/150,129 patent/US20110311408A1/en not_active Abandoned
- 2011-06-01 US US13/150,166 patent/US20110312079A1/en not_active Abandoned
- 2011-06-01 US US13/150,108 patent/US20110312752A1/en not_active Abandoned
- 2011-06-01 US US13/149,980 patent/US20110312679A1/en not_active Abandoned
- 2011-06-01 US US13/150,088 patent/US20110312739A1/en not_active Abandoned
-
2012
- 2012-11-26 US US13/685,105 patent/US20130079254A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040149582A1 (en) * | 1996-07-09 | 2004-08-05 | Nanogen, Inc. | Addressable biologic electrode array |
US20020142318A1 (en) * | 2001-03-30 | 2002-10-03 | Cattell Herbert F. | Chemical array reading |
US20090317917A1 (en) * | 2001-07-18 | 2009-12-24 | Holger Klapproth | Biosensor and Method for Detecting Analytes |
US20050033525A1 (en) * | 2002-05-21 | 2005-02-10 | Corson John F. | Method and system for computing and applying a user-defined, global, multi-channel background correction to a feature-based data set obtained from reading a microarray |
US20050208539A1 (en) * | 2003-12-31 | 2005-09-22 | Vann Charles S | Quantitative amplification and detection of small numbers of target polynucleotides |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8394340B2 (en) | Microfluidic test module with low mass electrochemiluminescent probe spots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENEASYS PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOINI, ALIREZA;AZIMI, MEHDI;SILVERBROOK, KIA;REEL/FRAME:026500/0531 Effective date: 20110524 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |