US20110200614A1 - Anthrax specific antibodies - Google Patents
Anthrax specific antibodies Download PDFInfo
- Publication number
- US20110200614A1 US20110200614A1 US12/619,489 US61948909A US2011200614A1 US 20110200614 A1 US20110200614 A1 US 20110200614A1 US 61948909 A US61948909 A US 61948909A US 2011200614 A1 US2011200614 A1 US 2011200614A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- anthracis
- species
- spores
- bacillus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000193738 Bacillus anthracis Species 0.000 title claims abstract description 115
- 108091007433 antigens Proteins 0.000 claims abstract description 63
- 102000036639 antigens Human genes 0.000 claims abstract description 63
- 239000000427 antigen Substances 0.000 claims abstract description 62
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 27
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 22
- 241000193388 Bacillus thuringiensis Species 0.000 claims abstract description 20
- 229960005486 vaccine Drugs 0.000 claims abstract description 7
- 239000003814 drug Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 102000018697 Membrane Proteins Human genes 0.000 claims abstract description 4
- 108010052285 Membrane Proteins Proteins 0.000 claims abstract description 4
- 239000002344 surface layer Substances 0.000 claims abstract description 3
- 241000193755 Bacillus cereus Species 0.000 claims abstract 9
- 210000004027 cell Anatomy 0.000 claims description 50
- 241000894007 species Species 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 36
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 35
- 238000002360 preparation method Methods 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 16
- 210000004408 hybridoma Anatomy 0.000 claims description 16
- 241000699670 Mus sp. Species 0.000 claims description 11
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 11
- 238000009007 Diagnostic Kit Methods 0.000 claims description 9
- 208000015181 infectious disease Diseases 0.000 claims description 8
- 239000011324 bead Substances 0.000 claims description 6
- 230000003053 immunization Effects 0.000 claims description 6
- 241000283690 Bos taurus Species 0.000 claims description 5
- 241000283707 Capra Species 0.000 claims description 5
- 241000283086 Equidae Species 0.000 claims description 5
- 241001494479 Pecora Species 0.000 claims description 5
- 241000700159 Rattus Species 0.000 claims description 5
- 210000000628 antibody-producing cell Anatomy 0.000 claims description 5
- 238000003556 assay Methods 0.000 claims description 5
- 241000287828 Gallus gallus Species 0.000 claims description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 claims description 4
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 claims description 4
- 241000288906 Primates Species 0.000 claims description 4
- 241000282887 Suidae Species 0.000 claims description 4
- 235000013330 chicken meat Nutrition 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 241000700198 Cavia Species 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 230000001900 immune effect Effects 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 238000002493 microarray Methods 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 3
- 241001529936 Murinae Species 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 claims 1
- 230000001717 pathogenic effect Effects 0.000 abstract description 6
- 238000002560 therapeutic procedure Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 abstract description 4
- 229940065181 bacillus anthracis Drugs 0.000 abstract description 3
- 101150113410 eag gene Proteins 0.000 abstract description 3
- 238000002965 ELISA Methods 0.000 description 17
- 230000004927 fusion Effects 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 9
- 239000000872 buffer Substances 0.000 description 8
- 240000001817 Cereus hexagonus Species 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000006957 competitive inhibition Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 101710194807 Protective antigen Proteins 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 238000000734 protein sequencing Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000304886 Bacilli Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 208000022338 anthrax infection Diseases 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- -1 cya for EF Proteins 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 235000020183 skimmed milk Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HKJKONMZMPUGHJ-UHFFFAOYSA-N 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 HKJKONMZMPUGHJ-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 206010058873 Anthrax sepsis Diseases 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 241000699662 Cricetomys gambianus Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101000867232 Escherichia coli Heat-stable enterotoxin II Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 208000015220 Febrile disease Diseases 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- 206010056343 Mediastinal haemorrhage Diseases 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000034809 Product contamination Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001648 edemagenic effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000013221 hemorrhagic mediastinitis Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1267—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
- C07K16/1278—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Bacillus (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/975—Kit
Definitions
- This invention relates to antibodies to anthrax, and, in particular, to Bacillus species-specific antibodies that bind to the EA1 antigen of the S-layer, and to methods for making and using these antibodies.
- the invention further relates to kits that contain Bacillus species-specific antibodies for the rapid detection and identification of individual Bacillus species.
- the invention further relates to isolated EA1 antigen and compositions that contain the EA1 antigen for use as pharmaceuticals.
- Anthrax is a world wide disease of sheep, cattle, horses and other mammals caused by the spore-forming, saprophytic bacterium, Bacillus anthracis . Soil, the most common location of anthrax spores, typically becomes contaminated from the carcasses of infected animals that have died. Spores from the decaying carcasses are deposited in the soil, in the water and on vegetation. Like most types of spores, anthrax spores are very resistant to environmental changes such as extremes of heat and cold, and severe desiccation. Consequently, undisturbed spores can remain viable for decades.
- Infection usually begins by entry of spores through injured skin or mucous membranes. Spores germinate at the site of entry and proliferate. Although not generally considered a respiratory pathogen, anthrax spores can initiate infection through the lungs.
- Woolsorter's Disease a rare from of anthrax, is caused by the inhalation of large quantities of anthrax spores from the dust of wool, hair or hides. Deep, concentrated inhalation results in the germination of spores in lung tissue and tracheobronchial lymph nodes. Unchecked, this disease is almost always fatal with symptoms which include the production of hemorrhagic mediastinitis, pneumonia, meningitis and sepsis. In anthrax sepsis, the number of organisms in the blood can exceed ten million per milliliter prior to death.
- Active immunity to anthrax can be induced in susceptible animals by vaccination with live attenuated bacilli, with spore suspensions, or with protective antigens from culture filtrates. Immunity is often incomplete and not long lasting so that the preferred treatment of choice is a course of antibiotics. If started early, antibiotic therapy has a high success rate.
- anthrax As an acute, febrile disease of virtually all warm-blooded animals, including man, anthrax has been used in biological weapons. Terrorists have included dry spores in letters to target specific individuals for harassment. Biological weapons of mass destruction have been developed that contain large quantities of anthrax spores for release over enemy territory. Once released, spores contaminate a wide geographical area, infecting nearly all susceptible mammals. Due to the spore's resistance to heat and dry conditions, contaminated land can remain a danger for years. In view of the serious threat posed by the disease, effective diagnostic tools are needed to assist in prevention and control of natural and man-made outbreaks.
- FIG. 1 Amino Acid sequence of mature EA1 protein (SEQ ID NO. 1).
- FIG. 2 Competitive inhibition assays of anthrax-specific antibodies.
- the present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new compositions and methods for the detection and identification of anthrax.
- Antibodies are specifically reactive against spores of B. anthracis , and preferably not specifically reactive against B. cereus or B. thuringiensis .
- Antibodies may be of any isotype, such as IgA, IgD, IgE, IgG, IgM, or of any sub-type. Further, the invention also includes reactive fragments of these antibodies such as Fab or Fv fragments, or other antigenically active portions thereof.
- Antibodies may be directed to antigen on the surface of anthrax such as, for example, the EA1 antigen and, preferably, SEQ ID NO. 1, and fragments of this antigen or polypeptide.
- Anthrax-specific antibodies may be isolated and purified, polyclonal or monoclonal, or created by recombinant engineering techniques and include, for example, humanized antibodies.
- Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to spores of one species of Bacillus such as, for example, B. anthracis. B. cereus or B. Thuringiensis .
- the method comprises immunizing a host with a preparation of Bacillus spores of on species, followed by boosting the host with spores of another species of the same genus, preferably an antigenically similar species. This boost, preferably at about seven days prior to fusion, stimulates clones that share specificity between the species of interest and the near neighbor so that, at the time of fusion, these clones will have diminished capacity to be fused.
- a second boost is administered to the host via, for example, an intravenous route (or intra peritoneal, subcutaneous, etc.), with the preparation of spores of interest from the target species.
- This second boost preferably at about three days prior to fusion, stimulates clones that haven't already been stimulated by the antigenically similar boost such that the species-specific clones will be maximally susceptible to being fused.
- Antibody-producing cells are fused with immortalized cells and the anthrax specific hybridomas selected.
- Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies.
- Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies.
- These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
- kits which incorporate Bacillus species-specific antibodies, and preferably anthrax-specific antibodies.
- Kits further contain a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
- a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
- Another embodiment of the invention is directed to recombinant or isolated EA1 antigen from B. anthracis for use as a therapeutic.
- Recombinant or affinity purified EA1 antigen when, for example, combined with a pharmaceutically acceptable carrier, can be used as a therapy against the disease in a vaccine.
- therapeutically effective doses of isolated or purified antibodies to the EA1 antigen, and active portions thereof may also be effective in prophylaxis or treatment.
- the present invention comprises methods for the creation and use of antibodies that are specifically reactive against species of Bacillus such as, for example, B. anthracis, B. thuringiensis and B. Cereus .
- the invention further includes kits for the detection of individual Bacillus species such as B. anthracis and compositions that can be incorporated into vaccines and therapies to prevent or control disease.
- One embodiment of the invention is directed to species-specific antibodies to species of Bacillus such as, for example, antibodies that are specifically reactive against B. anthracis, B. thuringiensis or B. cereus .
- These antibodies may be monoclonal or polyclonal, recombinant or purified from natural sources, and be of any isotype such as IgA, IgD, IgE, IgG, or IgM, or any sub-type (e.g. IgG1, IgG2a, IgG2b).
- Purified antibodies may be obtained from infected animals and affinity purified, HPLC purified, or purified using other procedures known to those of ordinary skill in the art.
- Recombinant antibodies may be made from the genetic elements which encode anthrax-specific antibodies.
- the invention includes reactive portions of any of these antibodies of the invention (e.g. Fab and Fv fragments), which may be used in isolation, in combination or in construction of recombinant antibodies such as, for example, humanized antibodies.
- anthrax-specific antibodies are directed against the EM antigen, SEQ ID NO. 1, or antigenic parts of this antigen, such as a polypeptide having amino acids 181-833 of the EA1 protein.
- Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to one species of Bacillus .
- This method preferably comprises first immunizing a host animal with a preparation of the species of interest such as, for example, B. anthracis, B. cereus or B. thuringiensis , which are all antigenically similar. Preparations may comprise spores, vegetative cells or combinations thereof.
- the host animal may be any animal suitable for the production of monoclonal antibodies such as, preferably, mice. Preferably about seven days prior to fusion, administering an intravenous boost using a preparation from another species of the same genus as the species used during the immunization.
- this species are of an antigenically similar, but not identical, species.
- B. anthracis or B. thuringiensis may be used as the antigenically similar source.
- B. cereus or B. thuringiensis may be used as the antigenically similar source. This stimulates clones that share specificity between the species of interest and the near neighbor species. However, by the time of fusion about seven days later, these clones will have diminished capacity to be fused.
- boosts via, for example, an intravenous route (intra peritoneal, subcutaneous, etc.), with a preparation of the species of interest.
- This stimulates clones that haven't already been stimulated by the antigenically similar boost, the specific clones.
- These species-specific clones should be maximally susceptible to being fused three days later.
- the number of cross-reacting clones should be greatly reduced or eliminated in the fusion products and a species-specific monoclonal antibody should be favored.
- Additional or fewer boosts may be performed and at various times to maximize generation of anthrax-specific hybridomas, as may be determined by one of ordinary skill in the art.
- Antibody-producing cells are selected and fused with non-antibody producing cells such as, for example, immortalized cell lines.
- non-antibody producing cells such as, for example, immortalized cell lines.
- fusion partners are typically transformed mouse cells such as myeloma cells of the mouse. After fusion, fused cells are segregated into individual cultures and propagated, and hybridoma lines which express anthrax-specific monoclonal antibodies are selected. Further, using these same methods and procedures, spore-specific and vegetative-specific epitopes can be identified and antibodies created.
- These cell lines can be maintain in culture or cryopreserved using techniques well known to those of ordinary skill in the art.
- This general method can be used to select for species-specific antigens (and antibodies) between any two antigenically similar species whether they be spores, vegetative cells, viruses, phage, fungi, animal or plant cells, or any other types of microorganism.
- Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies of the invention.
- These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
- the Bacillus species is anthrax and the hybridoma expresses anthrax-specific antibodies to aid in the detection of anthrax.
- Another embodiment of the invention is directed to a diagnostic kit for the detection of individual species of Bacillus , such as, for example, anthrax.
- Anthrax as well as non-pathogenic species of Bacillus , can be detected from, for example, spores and vegetative cells on nearly any material.
- spores on any surface can be collected using conventional procedures (e.g. swipes, vacuums, washings) and tested.
- Samples can also be taken from patients or the environment.
- Biological samples include, for example, liquids such as blood, plasma, urine, bile, cerebrospinal fluid, lymph fluid, amniotic fluid or peritoneal fluid. Tissues may also be tested and samples obtained from organs, skin, hair, fingernails or nearly any area of the body.
- Detection kits comprise anthrax-specific antibodies or antibody fragments and a suitable detection system.
- the antibody or antibody fragment may be a whole antibody such as an IgG or an antibody fragment such as Fab or Fv fragment, or a minimum antigen-binding fragment.
- Detection kits may comprise solid supports for Bacillus or anthrax-specific antibodies, antigen or label, as appropriate.
- Suitable labels include, for example, radioactive labels, electromagnetic labels, electric field labels, fluorescent labels, enzyme labels, chemiluminescent labels, colored labels, and, preferably, visually perceptible labels.
- Detection systems may involve labeling the antibodies with a detectable label or a labeled secondary antibody that recognizes and binds to antigen-antibody complexes formed between, for example, anthrax spores and anthrax-specific antibodies of the invention.
- the detectable label is visually detectable such as an enzyme, fluorescent chemical, luminescent chemical or chromatic chemical, which would facilitate determination of test results for the user or practitioner.
- the detection system is a colloidal particle based lateral flow detection system.
- detection systems include carbon based lateral flow system, a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
- Diagnostic kits may further comprise agents to increase stability, shelf-life, inhibit or prevent product contamination and increase detection speed.
- Useful stabilizing agents include water, saline, alcohol, detergents, glycols including polyethylene glycol, oils, starches, sugars and polysaccharides, salts, glycerol, stabilizers, emulsifiers and combinations thereof.
- Useful antibacterial agents include antibiotics, bacterial-static and bacterial-toxic chemicals. Agents to optimize speed of detection may increase reaction speed such as salts and buffers. Using these procedures and components, kits can be created for the detection of anthrax. In addition, kits mat also be created for the detection on non-pathogenic strains of Bacillus . Such kits are useful as training tools and as controls in the detection of anthrax.
- Another embodiment of the invention is directed to an antigen comprising an EA1 antigen (corresponding to eag gene) of the S-layer (surface layer) of B. anthracis ( FIG. 1 ).
- EA1 antigen corresponding to eag gene
- This antigen is found in both spore and vegetative cell preparations of anthrax and can be isolated and purified, for example, using affinity chromatography.
- the corresponding gene can also be cloned and sequenced.
- this protein may be used as a therapeutic pharmaceutical or vaccine to prevent infection.
- Another embodiment of the invention is directed to a therapeutic vaccine against B. anthracis comprising the EA1 antigen and/or monoclonal or polyclonal antibodies to the EA1 antigen (i.e. anti-EA 1-antibodies), and a pharmaceutically acceptable carrier.
- the entire protein (antibody or antigen), or an active portion thereof, can be used to vaccinate susceptible individuals to prevent or treat an infection.
- Antibodies provide passive immunity, most useful as treatment after exposure, and antigens provide active immunity for long term protection and prophylaxis.
- antigens stimulate the immune system to create a cellular and/or antibody response in the individual vaccinated.
- Another embodiment of the invention is directed to a method for vaccinating against B.
- anthracis comprising administering the EA1 antigen or anti-EA1 antibody to a patient.
- the invention also includes therapeutic agents comprising antibodies to the EA1 protein and to methods for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of antibodies to the EA1 antigen to a patient.
- mice were immunized subcutaneously with B. anthracis spores prepared from the Sterne vaccine strain at three to four week intervals for up to five months. The first immunization was with 200 ug antigen in Freund's complete adjuvant. Subsequent boosts were with 100 ug antigen in Freund's incomplete adjuvant. Seven days prior to the fusion, mice were injected intravenously (iv) with 5 ug B. thuringiensis spores, of the Al Hakam and HD-571 strains (obtained from Los Alamos National Laboratories) combined into one antigen preparation. Seventy-two hours prior to the fusion, mice were immunized iv with 5 ug B. anthracis spores in PBS. Mouse sera was tested by direct ELISA after the third boost, and periodically after that to test antibody titers to B. anthracis spores.
- Hybridoma cells were developed to B. anthracis spores by fusion of nonsecreting myeloma cells (SP2/0) with antibody-producing B-lymphocytes from the spleens of mice immunized with B. anthracis spores, in the presence of polyethylene glycol (PEG), according to standard hybridoma procedures. Cells were combined in a ratio of 3:1 (spleen:myeloma), and fused with PEG. Fused cells were plated, and cultured in 96-well cell culture grade plates.
- SP2/0 nonsecreting myeloma cells
- PEG polyethylene glycol
- HAT media Iscove's Modified Dulbecco's Media (IMDM) with HAT supplement containing hypoxanthine, aminopterin, and thymidine].
- IMDM Iscove's Modified Dulbecco's Media
- HAT supplement containing hypoxanthine, aminopterin, and thymidine.
- HCF Hybridoma Cloning Factor
- ELISA plates were coated with B. anthracis spore and vegetative preparation antigens as positive antigen, and bovine serum albumin (BSA) as negative antigen, diluted to an optimized concentration in PBS. Plates were incubated 18-24 hours at 4° C. Plates were washed four times with PBS. Cell supernatants were added to both positive and negative coated antigen wells, undiluted. Mouse sera from the immunized mice was added to plate at a dilution of 1:200, and serially diluted to an endpoint. This was included as a positive control. Plates were incubated at 37° C. for one hour. Plates were washed four times with PBS.
- BSA bovine serum albumin
- HRP Horseradish peroxidase conjugated goat anti mouse IgG+M+A
- thuringiensis ATCC 33680, HD571, Al Hakam, and commercial insecticide preparation from Dipel Dust
- B. globigii and B. licheniformis ATCC 25972
- these monoclonal antibodies were negative when tested against a selected number of other bacteria ( Francisella tularensis and Yersinia pestis ), purified proteins (ovalbumin and S. aureus enterotoxin B), and environmental components (red clay, gravel, and mulch) (Table 2, 3 and 4).
- an antigen capture ELISA was performed. Plates were coated with rabbit anti-anthrax IgG antibody as positive capture, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for cross-reactivity analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Monoclonal antibodies (Mabs) were added to the plate at optimized concentrations, as detector antibodies.
- Plates were incubated for one hour at 37° C., and washed four times with PBS. Anti-species conjugate was added to the plate. Plates were incubated for one hour at 37° C., and washed four times with PBS. Substrate solution was added to the plate, and incubated for 30 minutes at 37° C. Plates were read at 280 nm for optical density readings.
- An affinity column was made using the anthrax-specific monoclonal antibody AX-EA1-G1 complexed to the Immunopure Protein G IgG Orientation Kit (Pierce; Rockford, Ill.), according to manufacture's protocol.
- An anthrax spore antigen preparation was affinity purified over the column using the manufacturer's protocol.
- sample buffer 62.5 mM Tris-HCl pH 6.8, 2% SDS, 25% glycerol, 0.01% Bromophenol blue
- the electroblotting procedure was performed according to the protocol posted on the Michigan State web site (http://gaea.bch.msu.edu/mssef/blotting.html) by the method of Matsudaira (J Biol Chem, 1987, 262:100035). Briefly, a 0.2 um PVDF membrane (Sequi-Blot PVDF Membrane for Protein Sequencing; Bio-Rad) was wet with methanol, soaked in CAPS/methanol buffer, electroblotted in a Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad) at 50 V for one hour, according to manufacturer's instructions, in CAPS/methanol buffer.
- the blotted PVDF membrane was stained with 0.2% Amido Black in 40% methanol for 40 seconds and destained in dH 2 O. Two bands, of approximate molecular weight of 97 kD (“Band 1”) and 62 kD (“Band 2”), were visualized.
- Monoclonal antibody AX-EA1-G1 was used to affinity purify the specific B. anthracis antigen that the antibody was detecting.
- the affinity-purified antigen(s) was separated on by SDS-PAGE and electroblotted onto a PVDF membrane. Two bands were visualized after staining at approximate molecular weights of 97 kD (Band 1) and 62 kD (Band 2); the membrane was sent to the Biotechnology Center of Utah State University for protein sequencing.
- the amino acid sequence was determined to be:
- a competitive inhibition assay was performed. ELISA plates were coated with rabbit anti-anthrax IgG as positive capture antibody, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for inhibition analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Three separate monoclonal antibodies were used in the competition at the detector antibody step.
- Each combination was prepared in a micro-tube rack, and then added to the plate at the same time. Plates were incubated for one hour at 37° C., and washed four times with PBS. Conjugated streptavidin was added to the plates and incubated for one hour at 37° C. Plates were washed and substrate solution added. Plates were incubated for 30 minutes, and read for optical density at 280 nm.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The present invention is directed to diagnostic tools and therapies using antibodies to Bacillus anthracis. Specifically, the present invention is directed to a B. anthracis-specific monoclonal antibody that binds to the EA1 antigen (corresponding to the eag gene) of the S-layer (surface layer) of spores. This monoclonal antibody may be used in a variety of applications, including to specifically detect and diagnose B. anthracis. Preferably, antibodies are monoclonal and bind to a surface protein, such as EA1 protein, on the spores of B. anthracis, and not to spores of either B. cereus or B. thuringiensis. Antibodies can be incorporated into detection kits using, for example, colloidal particle based lateral flow detection system. Such detection kits can distinguish anthrax spores from non-pathogenic varieties of spores. In addition, the invention is directed to B. anthracis EA1 antigen and pharmaceuticals such as vaccines that can be used as therapeutics and to develop improved antibodies and detection methods.
Description
- This application claims priority to U.S. Provisional patent application No. 60/200,505, entitled “Anthrax Specific Antibodies,” filed Apr. 28, 2000.
- 1. Field of the Invention
- This invention relates to antibodies to anthrax, and, in particular, to Bacillus species-specific antibodies that bind to the EA1 antigen of the S-layer, and to methods for making and using these antibodies. The invention further relates to kits that contain Bacillus species-specific antibodies for the rapid detection and identification of individual Bacillus species. The invention further relates to isolated EA1 antigen and compositions that contain the EA1 antigen for use as pharmaceuticals.
- 2. Description of the Background
- Anthrax is a world wide disease of sheep, cattle, horses and other mammals caused by the spore-forming, saprophytic bacterium, Bacillus anthracis. Soil, the most common location of anthrax spores, typically becomes contaminated from the carcasses of infected animals that have died. Spores from the decaying carcasses are deposited in the soil, in the water and on vegetation. Like most types of spores, anthrax spores are very resistant to environmental changes such as extremes of heat and cold, and severe desiccation. Consequently, undisturbed spores can remain viable for decades.
- Infection usually begins by entry of spores through injured skin or mucous membranes. Spores germinate at the site of entry and proliferate. Although not generally considered a respiratory pathogen, anthrax spores can initiate infection through the lungs. For example, Woolsorter's Disease, a rare from of anthrax, is caused by the inhalation of large quantities of anthrax spores from the dust of wool, hair or hides. Deep, concentrated inhalation results in the germination of spores in lung tissue and tracheobronchial lymph nodes. Unchecked, this disease is almost always fatal with symptoms which include the production of hemorrhagic mediastinitis, pneumonia, meningitis and sepsis. In anthrax sepsis, the number of organisms in the blood can exceed ten million per milliliter prior to death.
- Most animals are susceptible to anthrax, but resistance is not uncommon (e.g. rat). In resistant animals, organisms proliferate for a few hours while also generating a massive accumulation of leukocytes. In these animals, dying organisms remain confined to capsules which gradually disintegrate and disappear. In susceptible animals, organisms germinate and rapidly proliferate at the site of entry. The most common portal of entry in animals is the mouth and the gastrointestinal tract. Spores within contaminated soil find easy access when ingested with spiny or other irritating vegetation. In humans, scratches of the skin and other injuries are the most likely routes of infection. Germination and growth of the vegetative organisms results in formation of a gelatinous edema and congestion with a generation of large amounts of proteinaceous fluid containing leukocytes. Bacilli spread via lymphatics to the bloodstream and multiply freely in blood and tissues shortly before death of the animal. In the plasma of animals dying from anthrax, a toxic factor has been identified. This factor kills mice upon inoculation and is specifically neutralized by anthrax antiserum.
- Two factors are believed to be responsible for the toxic effect of anthrax infection; an edematogenic factor (EF) and a lethal factor (LF). These in combination with a membrane binding factor or protective antigen (PA), may have the capacity to confer active protection against disease (PNAS 79:3162-66, 1982). The genes which encode these protein factors (pag for PA, cya for EF, and lef for LF) have been cloned and sequenced (see Gene 69:287-300, 1988; Gene 71:293-98, 1988; and Gene 81:45-54, 1989). A recombinant strain of B. anthracis has been produced which is unable to produce LE or EF (U.S. Pat. No. 5,840,312). This strain has been used to create immunogenic compositions against anthrax infection.
- Active immunity to anthrax can be induced in susceptible animals by vaccination with live attenuated bacilli, with spore suspensions, or with protective antigens from culture filtrates. Immunity is often incomplete and not long lasting so that the preferred treatment of choice is a course of antibiotics. If started early, antibiotic therapy has a high success rate.
- As an acute, febrile disease of virtually all warm-blooded animals, including man, anthrax has been used in biological weapons. Terrorists have included dry spores in letters to target specific individuals for harassment. Biological weapons of mass destruction have been developed that contain large quantities of anthrax spores for release over enemy territory. Once released, spores contaminate a wide geographical area, infecting nearly all susceptible mammals. Due to the spore's resistance to heat and dry conditions, contaminated land can remain a danger for years. In view of the serious threat posed by the disease, effective diagnostic tools are needed to assist in prevention and control of natural and man-made outbreaks.
-
FIG. 1 Amino Acid sequence of mature EA1 protein (SEQ ID NO. 1). -
FIG. 2 Competitive inhibition assays of anthrax-specific antibodies. - The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new compositions and methods for the detection and identification of anthrax.
- One embodiment of the invention is directed to antibodies that are specifically reactive against spores of B. anthracis, and preferably not specifically reactive against B. cereus or B. thuringiensis. Antibodies may be of any isotype, such as IgA, IgD, IgE, IgG, IgM, or of any sub-type. Further, the invention also includes reactive fragments of these antibodies such as Fab or Fv fragments, or other antigenically active portions thereof. Antibodies may be directed to antigen on the surface of anthrax such as, for example, the EA1 antigen and, preferably, SEQ ID NO. 1, and fragments of this antigen or polypeptide. Anthrax-specific antibodies may be isolated and purified, polyclonal or monoclonal, or created by recombinant engineering techniques and include, for example, humanized antibodies.
- Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to spores of one species of Bacillus such as, for example, B. anthracis. B. cereus or B. Thuringiensis. Preferably the method comprises immunizing a host with a preparation of Bacillus spores of on species, followed by boosting the host with spores of another species of the same genus, preferably an antigenically similar species. This boost, preferably at about seven days prior to fusion, stimulates clones that share specificity between the species of interest and the near neighbor so that, at the time of fusion, these clones will have diminished capacity to be fused. A second boost is administered to the host via, for example, an intravenous route (or intra peritoneal, subcutaneous, etc.), with the preparation of spores of interest from the target species. This second boost, preferably at about three days prior to fusion, stimulates clones that haven't already been stimulated by the antigenically similar boost such that the species-specific clones will be maximally susceptible to being fused. Antibody-producing cells are fused with immortalized cells and the anthrax specific hybridomas selected.
- Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies. These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
- Another embodiment of the invention is directed to diagnostic kits which incorporate Bacillus species-specific antibodies, and preferably anthrax-specific antibodies. Kits further contain a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
- Another embodiment of the invention is directed to recombinant or isolated EA1 antigen from B. anthracis for use as a therapeutic. Recombinant or affinity purified EA1 antigen when, for example, combined with a pharmaceutically acceptable carrier, can be used as a therapy against the disease in a vaccine. Further, therapeutically effective doses of isolated or purified antibodies to the EA1 antigen, and active portions thereof, may also be effective in prophylaxis or treatment.
- Other embodiments and advantages of the invention are set forth in part in the description which follows, and in part, will be obvious from this description, or may be learned from the practice of the invention.
- As embodied and broadly described herein, the present invention comprises methods for the creation and use of antibodies that are specifically reactive against species of Bacillus such as, for example, B. anthracis, B. thuringiensis and B. Cereus. The invention further includes kits for the detection of individual Bacillus species such as B. anthracis and compositions that can be incorporated into vaccines and therapies to prevent or control disease.
- Conventional methods for the detection of pathogenic infection by B. anthracis are slow and often subject to interpretation. These shortcoming can be directly attributed to an inability to distinguish pathogenic B. anthracis from closely-related, non-pathogenic species.
- It has been discovered that identifiable epitopes exist that are unique to species of Bacillus such as, for example, B. anthracis. This surprising discovery was made by creating a species-specific antibody to anthrax, utilizing a procedure to maximize unique or distinguishing immunological features. One distinguishing feature of anthrax was found to be a surface protein, specifically the EA1 antigen, which is found in preparations of both spores and vegetative cells. By making the EA1 antigen of B. anthracis a preferred target for immunological detection, new diagnostic tools, therapies and treatments are available.
- One embodiment of the invention is directed to species-specific antibodies to species of Bacillus such as, for example, antibodies that are specifically reactive against B. anthracis, B. thuringiensis or B. cereus. These antibodies may be monoclonal or polyclonal, recombinant or purified from natural sources, and be of any isotype such as IgA, IgD, IgE, IgG, or IgM, or any sub-type (e.g. IgG1, IgG2a, IgG2b). Purified antibodies may be obtained from infected animals and affinity purified, HPLC purified, or purified using other procedures known to those of ordinary skill in the art. Recombinant antibodies may be made from the genetic elements which encode anthrax-specific antibodies. These genetic elements can be expressed in a variety of systems, and large quantities of antibody, or active portions of antibodies, manufactured. Further, the invention includes reactive portions of any of these antibodies of the invention (e.g. Fab and Fv fragments), which may be used in isolation, in combination or in construction of recombinant antibodies such as, for example, humanized antibodies. Preferably, anthrax-specific antibodies are directed against the EM antigen, SEQ ID NO. 1, or antigenic parts of this antigen, such as a polypeptide having amino acids 181-833 of the EA1 protein.
- Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to one species of Bacillus. This method preferably comprises first immunizing a host animal with a preparation of the species of interest such as, for example, B. anthracis, B. cereus or B. thuringiensis, which are all antigenically similar. Preparations may comprise spores, vegetative cells or combinations thereof. The host animal may be any animal suitable for the production of monoclonal antibodies such as, preferably, mice. Preferably about seven days prior to fusion, administering an intravenous boost using a preparation from another species of the same genus as the species used during the immunization. Preferably, this species are of an antigenically similar, but not identical, species. For example, when selecting for antibodies specific to B. cereus, either B. anthracis or B. thuringiensis may be used as the antigenically similar source. When selecting for antibodies specific to B. anthracis, either B. cereus or B. thuringiensis may be used as the antigenically similar source. This stimulates clones that share specificity between the species of interest and the near neighbor species. However, by the time of fusion about seven days later, these clones will have diminished capacity to be fused. Next, and preferably about three days prior to fusion, administering another boost via, for example, an intravenous route (intra peritoneal, subcutaneous, etc.), with a preparation of the species of interest. This stimulates clones that haven't already been stimulated by the antigenically similar boost, the specific clones. These species-specific clones should be maximally susceptible to being fused three days later. Thus, the number of cross-reacting clones should be greatly reduced or eliminated in the fusion products and a species-specific monoclonal antibody should be favored. Additional or fewer boosts may be performed and at various times to maximize generation of anthrax-specific hybridomas, as may be determined by one of ordinary skill in the art.
- Antibody-producing cells are selected and fused with non-antibody producing cells such as, for example, immortalized cell lines. These fusion partners are typically transformed mouse cells such as myeloma cells of the mouse. After fusion, fused cells are segregated into individual cultures and propagated, and hybridoma lines which express anthrax-specific monoclonal antibodies are selected. Further, using these same methods and procedures, spore-specific and vegetative-specific epitopes can be identified and antibodies created. These cell lines can be maintain in culture or cryopreserved using techniques well known to those of ordinary skill in the art. This general method can be used to select for species-specific antigens (and antibodies) between any two antigenically similar species whether they be spores, vegetative cells, viruses, phage, fungi, animal or plant cells, or any other types of microorganism.
- Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies of the invention. These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep. Preferably, the Bacillus species is anthrax and the hybridoma expresses anthrax-specific antibodies to aid in the detection of anthrax.
- Another embodiment of the invention is directed to a diagnostic kit for the detection of individual species of Bacillus, such as, for example, anthrax. Anthrax, as well as non-pathogenic species of Bacillus, can be detected from, for example, spores and vegetative cells on nearly any material. For example, spores on any surface can be collected using conventional procedures (e.g. swipes, vacuums, washings) and tested. Samples can also be taken from patients or the environment. Biological samples include, for example, liquids such as blood, plasma, urine, bile, cerebrospinal fluid, lymph fluid, amniotic fluid or peritoneal fluid. Tissues may also be tested and samples obtained from organs, skin, hair, fingernails or nearly any area of the body. Environmental samples include, for example, samples collected from rivers and streams, salt or fresh water bodies, soil or rock, or samples of biomass. Detection kits comprise anthrax-specific antibodies or antibody fragments and a suitable detection system. The antibody or antibody fragment may be a whole antibody such as an IgG or an antibody fragment such as Fab or Fv fragment, or a minimum antigen-binding fragment. Detection kits may comprise solid supports for Bacillus or anthrax-specific antibodies, antigen or label, as appropriate. Suitable labels include, for example, radioactive labels, electromagnetic labels, electric field labels, fluorescent labels, enzyme labels, chemiluminescent labels, colored labels, and, preferably, visually perceptible labels. Detection systems may involve labeling the antibodies with a detectable label or a labeled secondary antibody that recognizes and binds to antigen-antibody complexes formed between, for example, anthrax spores and anthrax-specific antibodies of the invention. Preferably, the detectable label is visually detectable such as an enzyme, fluorescent chemical, luminescent chemical or chromatic chemical, which would facilitate determination of test results for the user or practitioner. Preferably the detection system is a colloidal particle based lateral flow detection system. Other detection systems include carbon based lateral flow system, a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
- Diagnostic kits may further comprise agents to increase stability, shelf-life, inhibit or prevent product contamination and increase detection speed. Useful stabilizing agents include water, saline, alcohol, detergents, glycols including polyethylene glycol, oils, starches, sugars and polysaccharides, salts, glycerol, stabilizers, emulsifiers and combinations thereof. Useful antibacterial agents include antibiotics, bacterial-static and bacterial-toxic chemicals. Agents to optimize speed of detection may increase reaction speed such as salts and buffers. Using these procedures and components, kits can be created for the detection of anthrax. In addition, kits mat also be created for the detection on non-pathogenic strains of Bacillus. Such kits are useful as training tools and as controls in the detection of anthrax.
- Another embodiment of the invention is directed to an antigen comprising an EA1 antigen (corresponding to eag gene) of the S-layer (surface layer) of B. anthracis (
FIG. 1 ). This antigen is found in both spore and vegetative cell preparations of anthrax and can be isolated and purified, for example, using affinity chromatography. The corresponding gene can also be cloned and sequenced. As a unique antigenic marker for pathogenic anthrax, this protein may be used as a therapeutic pharmaceutical or vaccine to prevent infection. - Another embodiment of the invention is directed to a therapeutic vaccine against B. anthracis comprising the EA1 antigen and/or monoclonal or polyclonal antibodies to the EA1 antigen (i.e. anti-EA 1-antibodies), and a pharmaceutically acceptable carrier. The entire protein (antibody or antigen), or an active portion thereof, can be used to vaccinate susceptible individuals to prevent or treat an infection. Antibodies provide passive immunity, most useful as treatment after exposure, and antigens provide active immunity for long term protection and prophylaxis. Preferably, antigens stimulate the immune system to create a cellular and/or antibody response in the individual vaccinated. Another embodiment of the invention is directed to a method for vaccinating against B. anthracis comprising administering the EA1 antigen or anti-EA1 antibody to a patient. The invention also includes therapeutic agents comprising antibodies to the EA1 protein and to methods for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of antibodies to the EA1 antigen to a patient.
- The following examples illustrate embodiments of the invention, but should not be view as limiting the scope of the invention.
- Balb/c mice were immunized subcutaneously with B. anthracis spores prepared from the Sterne vaccine strain at three to four week intervals for up to five months. The first immunization was with 200 ug antigen in Freund's complete adjuvant. Subsequent boosts were with 100 ug antigen in Freund's incomplete adjuvant. Seven days prior to the fusion, mice were injected intravenously (iv) with 5 ug B. thuringiensis spores, of the Al Hakam and HD-571 strains (obtained from Los Alamos National Laboratories) combined into one antigen preparation. Seventy-two hours prior to the fusion, mice were immunized iv with 5 ug B. anthracis spores in PBS. Mouse sera was tested by direct ELISA after the third boost, and periodically after that to test antibody titers to B. anthracis spores.
- Fusions
- Hybridoma cells were developed to B. anthracis spores by fusion of nonsecreting myeloma cells (SP2/0) with antibody-producing B-lymphocytes from the spleens of mice immunized with B. anthracis spores, in the presence of polyethylene glycol (PEG), according to standard hybridoma procedures. Cells were combined in a ratio of 3:1 (spleen:myeloma), and fused with PEG. Fused cells were plated, and cultured in 96-well cell culture grade plates. Fused cells were then selected by addition of HAT media [Iscove's Modified Dulbecco's Media (IMDM) with HAT supplement containing hypoxanthine, aminopterin, and thymidine]. These HAT supplements select for the fused hybridoma cells, and eliminate unfused or self-fused myeloma cells. Once clones appeared in the wells (usually 7-10 days after fusion), the culture supernatants were screened by ELISA for antibodies to B. anthracis spores. Positive antibody producing cells were subcloned by serial dilution, and plated at a cell concentration of three cells per well, and then further at one cell per three wells in a 96-well culture plate. This was performed with ten percent ORIGIN® Hybridoma Cloning Factor (HCF) in IMDM. Between each cloning step, culture supernatants were screened by ELISA for antibody production. Finalized clones were screened for isotype, and cryopreserved in liquid nitrogen. Two fusions were performed resulting in the generation of numerous monoclonal antibodies to Bacillus anthracis (Table 1).
- ELISA Screening
- Cell supernatants were screened by direct ELISA. ELISA plates were coated with B. anthracis spore and vegetative preparation antigens as positive antigen, and bovine serum albumin (BSA) as negative antigen, diluted to an optimized concentration in PBS. Plates were incubated 18-24 hours at 4° C. Plates were washed four times with PBS. Cell supernatants were added to both positive and negative coated antigen wells, undiluted. Mouse sera from the immunized mice was added to plate at a dilution of 1:200, and serially diluted to an endpoint. This was included as a positive control. Plates were incubated at 37° C. for one hour. Plates were washed four times with PBS. Horseradish peroxidase (HRP) conjugated goat anti mouse IgG+M+A (KPL) was added to all wells, and incubated at 37° C. for one hour. Plates were washed four times with PBS. Substrate was added to plates and incubated at 37° C. for 30 minutes. Plates were read for optical density at 280 nm, and evaluated for positive results. Cells producing the highest optical density readings, i.e., above 1.000 OD, were subcloned. After each subcloning, cell supernatants were screened for positive antibody. Finalized clones were tested for isotype using monoclonal antibody-based mouse Ig isotyping kit (catalog #04017K; BD PharMingen). Three monoclonal antibodies (termed AX-EA1-G1, 8G4, and 9F5) were selected for their ability to uniquely detect B. anthracis and not cross-react with other closely related Bacillus species. Monoclonal antibody AX-EA1-G1 was deposited with the ATCC and accorded accession number PTA-2632, on Oct. 26, 2000. The selection of these monoclonal antibodies was based on their strong reactivity against B. anthracis antigens and their negative reactivity against the closely related strains of B. thuringiensis (ATCC 33680, HD571, Al Hakam, and commercial insecticide preparation from Dipel Dust), B. globigii and B. licheniformis (ATCC 25972) (Table 2, 3 and 4). In addition, these monoclonal antibodies were negative when tested against a selected number of other bacteria (Francisella tularensis and Yersinia pestis), purified proteins (ovalbumin and S. aureus enterotoxin B), and environmental components (red clay, gravel, and mulch) (Table 2, 3 and 4).
- Specificity Testing
- To test for cross-reactivity, an antigen capture ELISA was performed. Plates were coated with rabbit anti-anthrax IgG antibody as positive capture, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for cross-reactivity analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Monoclonal antibodies (Mabs) were added to the plate at optimized concentrations, as detector antibodies. Plates were incubated for one hour at 37° C., and washed four times with PBS. Anti-species conjugate was added to the plate. Plates were incubated for one hour at 37° C., and washed four times with PBS. Substrate solution was added to the plate, and incubated for 30 minutes at 37° C. Plates were read at 280 nm for optical density readings.
- Identification and Affinity Purification of B. anthracis Antigen An affinity column was made using the anthrax-specific monoclonal antibody AX-EA1-G1 complexed to the Immunopure Protein G IgG Orientation Kit (Pierce; Rockford, Ill.), according to manufacture's protocol. An anthrax spore antigen preparation was affinity purified over the column using the manufacturer's protocol.
- SDS PAGE and Electroblotting
- Affinity-purified anthrax antigens under went electrophoresis by SDS-PAGE on a 4-15% Tris-HCl polyacrylamide Ready Gel Precast Gel in a Mini-Protean 3 Electrophoresis Cell (Bio-Rad; Hercules, Calif.). Specifically, affinity-purified anthrax antigens (5.7 ug total), along with tubes containing molecular weight markers, were diluted in sample buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS, 25% glycerol, 0.01% Bromophenol blue), boiled for 2.5 minutes, loaded onto the 4-15% gel and under went electrophoresis at 200V for 30 minutes.
- The electroblotting procedure was performed according to the protocol posted on the Michigan State web site (http://gaea.bch.msu.edu/mssef/blotting.html) by the method of Matsudaira (J Biol Chem, 1987, 262:100035). Briefly, a 0.2 um PVDF membrane (Sequi-Blot PVDF Membrane for Protein Sequencing; Bio-Rad) was wet with methanol, soaked in CAPS/methanol buffer, electroblotted in a Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad) at 50 V for one hour, according to manufacturer's instructions, in CAPS/methanol buffer.
- The blotted PVDF membrane was stained with 0.2% Amido Black in 40% methanol for 40 seconds and destained in dH2O. Two bands, of approximate molecular weight of 97 kD (“
Band 1”) and 62 kD (“Band 2”), were visualized. - Protein Sequencing
- Monoclonal antibody AX-EA1-G1 was used to affinity purify the specific B. anthracis antigen that the antibody was detecting. The affinity-purified antigen(s) was separated on by SDS-PAGE and electroblotted onto a PVDF membrane. Two bands were visualized after staining at approximate molecular weights of 97 kD (Band 1) and 62 kD (Band 2); the membrane was sent to the Biotechnology Center of Utah State University for protein sequencing. The amino acid sequence was determined to be:
-
Band 1: A G K Z F P Z V P A G H (SEQ ID NO 2) Band 1: D Z K Z N A Q A Y V T D (SEQ ID NO 3) (Z = uncertain amino acid) - Using both of these amino acid sequences, a tblastn protein search of the Unfinished Microbial Genomes TIGR database of B. anthracis sequences was performed. An exact match was observed with the definitive amino acid sequences for Contig 1819. A BLAST search of GenBank using the nucleotide sequence of contig 1819 resulted in complete homology to the eag gene that codes for the EA1 protein of the B. anthracis S-layer. The amino acid position corresponding to the sequence of
Bands FIG. 1 . Since the AX-EA1-G1 monoclonal antibody bound to both bands, it can be concluded that the epitope to which AX-EA1-G1 binds is located somewhere within amino acids 181-833. - Competitive Inhibition Analysis
- To determine whether the monoclonal antibodies produced to B. anthracis compete for the same epitope(s), a competitive inhibition assay was performed. ELISA plates were coated with rabbit anti-anthrax IgG as positive capture antibody, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for inhibition analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Three separate monoclonal antibodies were used in the competition at the detector antibody step. One Mab, labeled with biotin, was held constant while the other Mabs were unlabeled and combined separately at different concentrations, with the biotin labeled Mab. Each combination was prepared in a micro-tube rack, and then added to the plate at the same time. Plates were incubated for one hour at 37° C., and washed four times with PBS. Conjugated streptavidin was added to the plates and incubated for one hour at 37° C. Plates were washed and substrate solution added. Plates were incubated for 30 minutes, and read for optical density at 280 nm.
- Having determined that the monoclonal antibody AX-EA1-G1 reacts with the EA1 protein of B. anthracis, the other two monoclonal antibodies, 8G4 and 9F5, were tested against affinity-purified antigen and shown to also react with the EA1 antigen (Table 1). Therefore, all three monoclonal antibodies were shown to bind to the same EA1 protein. However, competitive inhibition analysis revealed that while 8G4 and 9F5 effectively compete for binding to the same epitope on the EA1 protein as each other, AX-EA1-G1 does not compete with the binding of 8G4 and 9F5 and therefore binds to a different epitope on the EA1 protein (
FIG. 2 ). - Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. and foreign patents and patent applications and U.S. Provisional patent No. 60/200,505, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.
-
TABLE 1 Relative Scoring of ELISA Data Based on 0-3 Scale* Antibody Form Isotype Sp1** Sp3 SpG1 SpG3 V1 V + M 1-9F6 (AX-EA1-G1) Purified IgG1 P/M 3 3 3 (+) 2 3 7-8G4-1D7 Purified IgG1 2 3 3 (+) 3 3 (+) 3 7-3C3-2C2 Purified IgG1 P/M 3 2 1 2 3 7-1D4-1G7 Purified IgG1 1 3 2 3 3 3 7-6B6-1C9 Purified IgG1 0 1 2 1 3 3 7-1E10-1B5 Purified IgG1 0 1 2 1 3 2 7-9F5-2B11 Purified IgG1 1 3 3 (+) 3 3 3 7-9C2-1C11 Purified IgG1 1 3 2 3 3 3 7-5E4-1C10 Purified IgG1 1 3 2 1 2 3 7-8D3-1E6 Cell sup IgG1 0 1 0 0 1 P/M 7-2B11-1B10 Cell sup IgG1 1 3 2 2 3 3 7-7E10-1D8 Cell sup IgG1 0 P/M P/M P/M 2 1 7-9E8-1B11 Cell sup IgG1 2 (+) 3 3 3 3 3 7-10E8 Cell sup IgG1 1 3 3 (+) 3 2 3 7-1G7-1A6 Cell sup IgG1 1 3 3 1 2 3 7-8D7 Cell sup IgG1 1 3 2 2 2 3 B. thuringeneisis*** Affinity @100 ug/ml Antibody Form Isotype M C1 C2 (EA1) Al Hakam HD571 1-9F6 (AX-EA1-G1) Purified IgG1 3 0 1 3 0 0 7-8G4-1D7 Purified IgG1 3 0 2 3 0 0 7-3C3-2C2 Purified IgG1 3 1 1 2 0 0 7-1D4-1G7 Purified IgG1 3 1 2 2 0 0 7-6B6-1C9 Purified IgG1 2 0 2 3 0 0 7-1E10-1B5 Purified IgG1 2 0 2 3 0 0 7-9F5-2B11 Purified IgG1 3 1 2 3 0 0 7-9C2-1C11 Purified IgG1 3 1 2 2 0 0 7-5E4-1C10 Purified IgG1 3 1 1 2 0 0 7-8D3-1E6 Cell sup IgG1 P/M 0 1 P/M 0 0 7-2B11-1B10 Cell sup IgG1 3 P/M 2 2 0 0 7-7E10-1D8 Cell sup IgG1 P/M 0 1 1 0 0 7-9E8-1B11 Cell sup IgG1 3 1 2 3 0 0 7-10E8 Cell sup IgG1 3 1 2 3 0 0 7-1G7-1A6 Cell sup IgG1 3 1 1 2 0 0 7-8D7 Cell sup IgG1 3 1 2 3 0 0 B-Rabbit anti-anthrax (polyclonal) 3 (OD = 3 (OD = 1.542) 2.188) *0 = negative result; 1-3 = positive result with 3 being the highest titers **Key to antigen preparations on following page. ***Near neighbor of B. anthracis P/M = Plus/Minus (+) = Highest Titer in group Key to Antigen Preparations Evaluated in Table 1 Sp1 Standard washed spore prepared from plates (Prepare according to procedure from Lot 260400-01, with washes in PBS) Sp3 fresh spore culture prepared from plates (Wash off spores with dH2O and test by ELISA fresh) SpG1 Standard washed spore prepared from modified G (Prepare according to procedure from Lot 210400-01, with washes in PBS) SpG3 Fresh spore culture prepared from modified G (Test straight from modified G media, once in spore state) VI Vegetative cells grown on TSA plates, washed off plates in PBS; 2x centrifuge, resuspend pellet in PBS, freeze V + M Vegetative cells in culture media and tested fresh by ELISA; freeze remainder M Supernatant without vegetative cells C1 Control 1 - frozen prep lot 260400-01 C2 Control 2 - frozen prep lot 210400-01 Affinity (EA1)AX-EA1-G1 affinity-purified antigen corresponding to EA1 protein Denotes Frozen samples -
TABLE 2 Specificity Testing Performance for Anthrax Capture ELISA with Capture Ab: Rabbit anti Anthrax/Detector Ab: AX-EA1-G1 Mab Positive Controls: Positive Control Antigen Conc 50 ug/ml not tested 40 ug/ml 0 889 1.00E+05 1 586 25 ug/ml not tested 20 ug/ml 0 809 5 00E+04 1.278 12.5 ug/ml not tested 10 ug/ml 0.394 2.50E+04 0.666 6.25 ug/ml 2 810 5 ug/ml 0 214 1.25E+04 0 312 3.13 ug/ml 2 924 2.5 ug/ml 0 088 6 25E+03 0 177 1.56 ug/ml 2 982 Blank 0 000 3 13E+03 0 093 *Bacillus thuringensis: 40 ug/ml 0 000 0.026 0 000 0.013 0 000 20 ug/ml 0 011 0 000 0.007 0 057 0.005 10 ug/ml 0 018 0.005 0 072 0 008 0.014 5 ug/ml 0 000 0 015 0.005 0.000 0 017 2.5 ug/ml 0.000 0 000 0.004 0.000 0.000 Blank 0 000 0 000 0.082 0 000 0.065 Other Bacillus species: B. licheniformis Antigen Antigen 50 ug/ml 0 000 0 000 2N 0 001 25 ug/ml 0 000 0 003 4N 0.000 12.5 ug/ml 0 004 0 000 8N 0 001 6.25 ug/ml 0 000 0 005 16N 0.000 3.13 ug/ml not tested not tested 32N 0 002 1.56 ug/ml not tested not tested Blank 0.000 Other Bacteria: 50 ug/ml 0 007 0.002 25 ug/ml 0.012 0 004 12.5 ug/ml 0 008 0 004 6.25 ug/ml 0 004 0 001 3.13 ug/ml 0.004 0 003 1.56 ug/ml 0 004 0 003 Other Proteins and Toxins: Antigen Conc 50 ug/ml 0.004 0.000 25 ug/ml 0.002 0.000 12.5 ug/ml 0.006 0.000 6 25 ug/ ml 0 001 0 001 3 13 ug/ml 0.002 0.002 1 56 ug/ ml 0 002 0 000 Misc. Antigen Dilution Red Clay Grey 2N 0.000 0 002 0.002 4N 0 004 0 007 0.001 8N 0 003 0 004 0 002 16N 0 001 0 001 0 002 32N 0.004 0.002 0.001 64N 0 003 0 001 0 000 *Nearest neighbor of B. anthracis **Prepared by adding 0 5 g to 3 ml ELISA buffer; vortex and let settle 15 min before addition to plate Red highlighted optical density readings are positive results indicates data missing or illegible when filed -
TABLE 3 Specificity Testing Performance for Anthrax Capture ELISA with Capture Ab: Rabbit anti Anthrax/Detector Ab: 8G4 Mab Positive Controls: Antigen Conc 50 ug/ml 2 763 2 803 2 645 25 ug/ml 2 781 2 705 2 658 12.5 ug/ml 2 786 2 686 2.519 6.25 ug/ml 2 729 2 663 2 561 3.13 ug/ml 2 718 2 655 2 570 1.56 ug/ml not tested not tested 2 767 *Bacillus thuringensis: 40 ug/ml 0 001 0 002 0 020 0 027 0 024 20 ug/ml 0 022 0 000 0 011 0 040 0 011 10 ug/ml 0 104 0.018 0.017 0.025 0.000 5 ug/ml 0.001 0 000 0.017 0.000 0.033 2.5 ug/ml 0 000 0 012 0.002 0 000 0.003 Blank 0 011 0 008 0 010 0 005 0 017 Other Bacillus species: 50 ug/ml 0.000 not tested 2N 0.001 25 ug/ml 0 000 not tested 4N 0.004 12.5 ug/ml 0 012 not tested 8N 0 001 6.25 ug/ml 0 000 not tested 16N 0 002 3.13 ug/ml 0 076 not tested 32N 0 004 1.56 ug/ml 0 041 not tested Blank 0 002 Other Bacteria: Y. Pestis Antigen Conc 50 ug/ml 0 000 0 000 25 ug/ml 0 000 0 000 12.5 ug/ml 0 000 0.000 6.25 ug/ml 0.000 0.000 3.13 ug/ml 0 000 0 000 1.56 ug/ml 0 013 0 000 Other Proteins and Toxins: Antigen Conc 50 ug/ml 0.000 0 000 25 ug/ml 0.002 0.000 12.5 ug/ml 0.102 0 005 6.25 ug/ml 0.040 0 000 3.13 ug/ml 0.111 0.004 1.56 ug/ml 0.081 0 003 Misc. Antigen Dilution Red Clay Grey 2N 0 000 0 000 0 000 4N 0.000 0 038 0.013 8N hot well 0 008 0.012 16N 0.019 0 000 0.028 32N 0 000 0.049 0.000 64N 0 000 0 000 0.002 *Nearest neighbor of B anthracis **Prepared by adding 0.5 g to 3 ml ELISA buffer, vortex and let settle 15 mm before addition to plate Red highlighted optical density readings are positive results indicates data missing or illegible when filed -
TABLE 4 Specificity Testing Performance for Anthrax Capture ELISA with Capture Ab: Rabbit anti Anthrax/Detector Ab: 9F5 Mab Positive Controls: 50 ug/ml 2.885 2.927 2.284 25 ug/ml 2.835 2.795 2.226 12.5 ug/ml 2.891 2.807 1.834 6.25 ug/ml 2.721 2.801 1.821 3.13 ug/ml 2.700 2.772 1.885 1.56 ug/ml 0.000 0.009 1.539 *Bacillus thuringensis: 50 ug/ml 0.116 0.003 0.001 100 ug/ml 0.073 0.049 25 ug/ml 0.086 0.000 0.000 20 ug/ml 0.029 0.029 12.5 ug/ml 0.049 0.002 0.001 4 ug/ml 0.004 0.007 6.25 ug/ml 0.064 0.000 0.000 Blank 0.000 0.001 3.13 ug/ml 0.033 0.000 0.000 1.56 ug/ml 0.045 0.000 0.001 Other Bacillus species: 50 ug/ml 0.000 not tested 2N 0.000 25 ug/ml 0.000 not tested 4N 0.000 12.5 ug/ml 0.000 not tested 8N 0.002 6.25 ug/ml 0.000 not tested 16N 0.003 3.13 ug/ml 0.014 not tested 32N 0.000 1.56 ug/ml 0.081 not tested Blank 0.000 Other Other Bacteria: Proteins and Toxins: 50 ug/ml 0.000 0.000 50 ug/ml 0.029 0.000 25 ug/ml 0.000 0.042 25 ug/ml 0.000 0.000 12.5 ug/ml 0.048 0.002 12.5 ug/ml 0.043 0.000 6.25 ug/ml 0.000 0.000 6.25 ug/ml 0.000 0.009 3.13 ug/ml 0.032 0.000 3.13 ug/ml 0.030 0.013 1.56 ug/ml 0.000 0.000 1.56 ug/ml 0.008 0.000 Misc. 2N 0.047 0.104 0.011 4N 0.000 0.000 0.000 8N hot well 0.000 0.009 16N 0.012 0.000 0.006 32N 0.026 0.000 0.001 64N 0.079 0.000 0.000 *Nearest neighbor of B anthracis **Prepared by adding 0.5 g to 3 ml ELISA buffer: vortox and let settle 15 min before addition to plate Red highlighted optical density readings are positive results indicates data missing or illegible when filed
Claims (43)
1. A monoclonal antibody which is specifically reactive against B. anthracis.
2. The antibody of claim 1 which is non-reactive against B. cereus or B. thuringiensis.
3. The antibody of claim 1 which is an IgA, IgD, IgE, IgG or IgM.
4. The antibody of claim 1 which is reactive against a surface protein of B. anthracis.
5. The antibody of claim 4 wherein the surface protein is an EA1 protein.
6. The antibody of claim 1 which binds to SEQ ID NO. 1.
7. The antibody of claim 1 which is specifically reactive against B. anthracis spores.
8. The antibody of claim 1 which is specifically reactive against B. anthracis vegetative cells.
9. A hybridoma that produces the antibody of claim 1 .
10. The hybridoma of claim 9 which is derived from an animal selected from the group consisting of cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
11. A hybridoma deposited with ATCC and accorded accession number PTA-2632.
12. Antibody isolated from the hybridoma of claim 11 .
13. An isolated antibody, or reactive portion thereof, directed to the EA1 protein of B. anthracis.
14. The antibody or reactive portion thereof of claim 13 which is a murine antibody; a rabbit antibody; a rat antibody; a genetically engineered antibody; a recombinant antibody; a humanized antibody; a polyclonal antibody or an affinity-purified antibody.
15. The antibody or reactive portion thereof of claim 13 which is an Fab or Fv fragment.
16. A diagnostic kit comprising an antibody that is specifically reactive against spores or vegetative cells of B. anthracis, B. thuringiensis or B. cereus.
17. The diagnostic kit of claim 16 which incorporates a colloidal particle based lateral flow detection system.
18. The diagnostic kit of claim 16 which incorporates a detection system selected from the group consisting of a carbon based lateral flow system; a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
19. A diagnostic kit comprising an antibody that is specifically reactive against spores of B. anthracis and not B. thuringiensis, and incorporates a colloidal particle based lateral flow detection system.
20. A diagnostic kit comprising an antibody that is specifically reactive against spores of B. thuringiensis and not B. anthracis, and incorporates a colloidal particle based lateral flow detection system.
21. A method for producing a species-specific monoclonal antibody to one species of Bacillus comprising:
immunizing a host with a preparation of said one species of Bacillus;
boosting said host with another preparation of an antigenically similar, but not identical, species of Bacillus;
boosting said host with said preparation of said one species;
fusing antibody-producing cells from the host with immortalized cells; and
selecting a hybridoma that produces the species-specific monoclonal antibody to said one species of Bacillus.
22. The method of claim 21 wherein the one species of Bacillus is B. cereus, B. thuringiensis or B. anthracis.
23. The method of claim 21 wherein the other antigenically similar species of Bacillus is B. cereus, B. thuringiensis, B. anthracis or combinations thereof.
24. The method of claim 21 wherein the one species of Bacillus is B. anthracis and the other antigenically similar species of Bacillus is B. cereus or B. thuringiensis.
25. The method of claim 21 wherein the one species of Bacillus is B. thuringiensis and the other antigenically similar species of Bacillus is B. cereus or B. anthracis.
26. The method of claim 21 wherein the preparation of said one species comprises spores, vegetative cells or combinations thereof.
27. The method of claim 21 wherein the preparation of said other antigenically similar species comprises spores, vegetative cells or combinations thereof.
28. The method of claim 21 wherein the species-specific monoclonal antibody is selected from the group consisting of IgA, IgE, IgG, IgM and associated sub-types.
29. The method of claim 21 wherein the host is selected from the group consisting of mice, rats, horses, cattle, chickens, sheep, goats, pigs and primates.
30. The method of claim 21 wherein boosting with the antigenically similar species is performed about seven days prior to fusing.
31. The method of claim 21 wherein boosting with B. anthracis is performed about three days prior to fusing.
32. A species-specific monoclonal antibody to spores of B. anthracis made by the method of claim 21 .
33. A diagnostic kit comprising the antibody of claim 32 .
34. A hybridoma that expresses the antibody of claim 32 .
35. An antibody which is specifically reactive against B. thuringiensis and non-reactive against B. cereus or B. anthracis.
36. An antibody which is specifically reactive against B. cereus and non-reactive against B. anthracis or B. thuringiensis.
37. An isolated or recombinant antigen, or antigenically active portions thereof, comprising an EA1 protein of the surface layer of B. anthracis.
38. A pharmaceutical composition comprising the antigen, or active portions hereof, of claim 37 and a pharmaceutically acceptable carrier.
39. A method of using the antigen, or active portions thereof, of claim 37 as the target for an immunological detection system for B. anthracis.
40. A vaccine against B. anthracis comprising a therapeutically effective amount of the antigen, or active portions thereof, of claim 37 .
41. A method for vaccinating against B. anthracis comprising administering the therapeutically effective amount of the vaccine of claim 40 to a patient.
42. A therapeutic agent comprising antibodies to the EA1 protein.
43. A method for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of the therapeutic agent of claim 42 to a patient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/619,489 US20110200614A1 (en) | 2000-04-28 | 2009-11-16 | Anthrax specific antibodies |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20050500P | 2000-04-28 | 2000-04-28 | |
US09/844,281 US7618783B2 (en) | 2000-04-28 | 2001-04-30 | Anthrax specific antibodies |
US12/619,489 US20110200614A1 (en) | 2000-04-28 | 2009-11-16 | Anthrax specific antibodies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/844,281 Continuation US7618783B2 (en) | 2000-04-28 | 2001-04-30 | Anthrax specific antibodies |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110200614A1 true US20110200614A1 (en) | 2011-08-18 |
Family
ID=22742002
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/844,281 Expired - Fee Related US7618783B2 (en) | 2000-04-28 | 2001-04-30 | Anthrax specific antibodies |
US12/619,489 Abandoned US20110200614A1 (en) | 2000-04-28 | 2009-11-16 | Anthrax specific antibodies |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/844,281 Expired - Fee Related US7618783B2 (en) | 2000-04-28 | 2001-04-30 | Anthrax specific antibodies |
Country Status (7)
Country | Link |
---|---|
US (2) | US7618783B2 (en) |
EP (1) | EP1280828B1 (en) |
AT (1) | ATE339449T1 (en) |
AU (1) | AU2001259204A1 (en) |
CA (1) | CA2420287A1 (en) |
DE (1) | DE60123036T2 (en) |
WO (1) | WO2001083561A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016533185A (en) * | 2013-07-22 | 2016-10-27 | サンディア コーポレイション | Method and apparatus for amplifying and detecting a target |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI253471B (en) * | 2001-01-31 | 2006-04-21 | Food Industry Res & Dev Inst | Method for rapid identification of bacillus cereus |
EP1390729A4 (en) * | 2001-05-03 | 2007-07-04 | Immunetics Inc | Systems and methods for detection of analytes in biological fluids |
US7262019B2 (en) * | 2001-05-03 | 2007-08-28 | Immunetics, Inc. | System and methods for detection of Bacillus anthracis related analytes in biological fluids |
DE60222008T2 (en) | 2001-11-30 | 2008-05-15 | California Institute Of Technology, Pasadena | IMPROVED METHOD FOR THE QUANTITATIVE DETERMINATION OF BACTERIAL ENDOSPORES USING THE LANTHANID DIPICOLINATE LUMINESCENCE |
GB0129776D0 (en) * | 2001-12-13 | 2002-01-30 | Sec Dep For Environment Food & | Assay device and method |
US6927068B2 (en) * | 2002-01-30 | 2005-08-09 | The United States Of America As Represented By The Secretary Of The Navy | Rapid and non-invasive method to evaluate immunization status of a patient |
EP1478912A4 (en) | 2002-02-01 | 2007-03-21 | California Inst Of Techn | Methods and apparatus for assays of bacterial spores |
US7175992B2 (en) * | 2002-04-10 | 2007-02-13 | Response Biomedical Corporation | Sensitive immunochromatographic assay |
AU2003218584B2 (en) * | 2002-04-10 | 2006-04-27 | Response Biomedical Corporation | Sensitive immunochromatographic assay |
US7601351B1 (en) | 2002-06-26 | 2009-10-13 | Human Genome Sciences, Inc. | Antibodies against protective antigen |
US7563615B2 (en) | 2005-04-15 | 2009-07-21 | California Institute Of Technology | Apparatus and method for automated monitoring of airborne bacterial spores |
US7608419B2 (en) | 2003-11-13 | 2009-10-27 | California Institute Of Technology | Method and apparatus for detecting and quantifying bacterial spores on a surface |
US7611862B2 (en) | 2004-11-12 | 2009-11-03 | California Institute Of Technology | Method and apparatus for detecting and quantifying bacterial spores on a surface |
CA2517198C (en) * | 2003-03-21 | 2016-06-21 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Determining a concentration of a substance in a sample using a usable portion of a sigmoid curve |
CA2526398C (en) * | 2003-05-21 | 2014-07-15 | Medarex, Inc. | Human monoclonal antibodies against bacillus anthracis protective antigen |
DE602005018347D1 (en) * | 2004-05-12 | 2010-01-28 | Tetracore Inc | SPORTS-SPECIFIC ANTIBODIES |
US7928204B2 (en) * | 2004-05-12 | 2011-04-19 | Tetracore, Inc. | Spore specific antigen |
US20060115908A1 (en) * | 2004-11-30 | 2006-06-01 | Tetracore, Inc. | Multiplexed analyses of contaminant-laden gas in a particle impact collector |
EP1904521B1 (en) | 2005-07-08 | 2013-08-21 | Universidad Nacional Autonoma De Mexico Instituto | Novel bacterial proteins with pesticidal activity |
GB0514319D0 (en) * | 2005-07-13 | 2006-06-14 | Secr Defence | Antibodies for anthrax |
CA2651962A1 (en) * | 2006-05-12 | 2007-12-21 | Oklahoma Medical Research Foundation | Anthrax compositions and methods of use and production |
ATE527339T1 (en) | 2006-06-30 | 2011-10-15 | Univ Georgia | ANTHRAX CARBOHYDRATES AND SYNTHESIS AND USES THEREOF |
US8420607B2 (en) * | 2006-06-30 | 2013-04-16 | University Of Georgia Research Foundation, Inc. | Anthrax carbohydrates, synthesis and uses thereof |
CA2677977C (en) * | 2007-02-26 | 2015-03-31 | Response Biomedical Corporation | Comparative multiple analyte assay |
US7935345B2 (en) | 2007-05-21 | 2011-05-03 | Children's Hospital & Research Center At Oakland | Monoclonal antibodies that specifically bind to and neutralize bacillus anthracis toxin, compositions, and methods of use |
US8343495B2 (en) * | 2009-01-10 | 2013-01-01 | Auburn University | Equine antibodies against Bacillus anthracis for passive immunization and treatment |
CN105092853A (en) * | 2014-05-06 | 2015-11-25 | 中国检验检疫科学研究院 | Liquid chip for detecting various Bt proteins and detection method |
CN105203766B (en) * | 2015-09-29 | 2017-01-11 | 河南省科学院生物研究所有限责任公司 | Preparation method for pathogenic yersinia enterocolitica test strips |
CN110498854B (en) * | 2019-09-28 | 2021-01-29 | 中国人民解放军陆军军医大学 | Antibody for resisting staphylococcus aureus enterotoxin B and application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8426470D0 (en) * | 1984-10-19 | 1984-11-28 | Technology Licence Co Ltd | Monoclonal antibodies |
US5840312A (en) | 1991-05-02 | 1998-11-24 | Institut Pasteur | Recombinant Bacillus anthracis strains unable to produce the lethal factor protein or edema factor protein |
US5895922A (en) | 1996-03-19 | 1999-04-20 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Fluorescent biological particle detection system |
US6913756B1 (en) * | 1998-04-29 | 2005-07-05 | The Uab Research Foundation | Monoclonal antibodies specific for anthrax and peptides derived from the antibodies thereof |
AU4562599A (en) * | 1998-06-12 | 1999-12-30 | New Horizons Diagnostics, Inc. | Colloidal colorimetric flow through and lateral flow assays utilizing soluble submicron particles |
AU5287701A (en) * | 2000-01-06 | 2001-07-16 | Biosite Diagnostics Incorporated | Assays for detection of bacillus anthracis |
-
2001
- 2001-04-30 EP EP01932697A patent/EP1280828B1/en not_active Expired - Lifetime
- 2001-04-30 US US09/844,281 patent/US7618783B2/en not_active Expired - Fee Related
- 2001-04-30 CA CA002420287A patent/CA2420287A1/en not_active Abandoned
- 2001-04-30 DE DE60123036T patent/DE60123036T2/en not_active Expired - Lifetime
- 2001-04-30 AT AT01932697T patent/ATE339449T1/en not_active IP Right Cessation
- 2001-04-30 WO PCT/US2001/013648 patent/WO2001083561A2/en active IP Right Grant
- 2001-04-30 AU AU2001259204A patent/AU2001259204A1/en not_active Abandoned
-
2009
- 2009-11-16 US US12/619,489 patent/US20110200614A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016533185A (en) * | 2013-07-22 | 2016-10-27 | サンディア コーポレイション | Method and apparatus for amplifying and detecting a target |
Also Published As
Publication number | Publication date |
---|---|
US7618783B2 (en) | 2009-11-17 |
EP1280828B1 (en) | 2006-09-13 |
CA2420287A1 (en) | 2001-11-08 |
US20020082386A1 (en) | 2002-06-27 |
WO2001083561A3 (en) | 2002-05-30 |
EP1280828A2 (en) | 2003-02-05 |
DE60123036T2 (en) | 2007-04-05 |
AU2001259204A1 (en) | 2001-11-12 |
WO2001083561A2 (en) | 2001-11-08 |
DE60123036D1 (en) | 2006-10-26 |
ATE339449T1 (en) | 2006-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7618783B2 (en) | Anthrax specific antibodies | |
Donohue-Rolfe et al. | Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross-reactive monoclonal antibodies | |
US7879330B2 (en) | Antibodies against type A botulinum neurotoxin | |
CN103917559B (en) | Clostridium difficile antibody | |
US20170183396A1 (en) | Ebola monoclonal antibodies | |
KR101259239B1 (en) | Antibody directed against pcrv | |
Miner et al. | Characterization of murine monoclonal antibodies to Escherichia coli J5 | |
Kennedy et al. | Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge | |
JP3747057B2 (en) | Bacterial stress protein | |
WO2016173559A1 (en) | Preparation and use of murine monoclonal antibody against gi.1 norovirus | |
CN114349853B (en) | Anti-H1N 1 influenza virus hemagglutinin protein neutralizing monoclonal antibody ZJU11-01 and application thereof | |
JPH05304990A (en) | Monoclonal antibody to mycoplasma pneumoniae | |
EP0909272A1 (en) | Helicobacter pylori adhesin binding group antigen | |
WO1998006432A1 (en) | Outer membrane protein b1 of moraxella catarrhalis | |
CN115698058A (en) | Monoclonal antibody against SARS-CoV-2 spike protein | |
KR20100139096A (en) | Compositions, methods and kits | |
CA2545714C (en) | Neutralizing human antibodies to anthrax toxin generated by recall technology | |
KR20070085236A (en) | Binding member towards pneumolysin | |
CN109957014B (en) | Preparation and application of anti-norovirus GII.3 murine monoclonal antibody | |
Usuwanthim et al. | Murine monoclonal antibodies neutral-izing the cytotoxic activity of diphtheria toxin | |
US9513287B1 (en) | High affinity monoclonal antibodies for detection of shiga toxin 2 | |
US9310368B1 (en) | High affinity monoclonal antibodies for detection of Shiga toxin 2 (STX2) | |
US7718779B2 (en) | Prophylactic and therapeutic monoclonal antibodies | |
AU708879B2 (en) | Means for detection of bacteria of the species Taylorella equigenitalis and their biological applications | |
EP0450573A2 (en) | Antibodies for the treatment and diagnosis of Pseudomonas aeruginosa infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |