Nothing Special   »   [go: up one dir, main page]

US20110200614A1 - Anthrax specific antibodies - Google Patents

Anthrax specific antibodies Download PDF

Info

Publication number
US20110200614A1
US20110200614A1 US12/619,489 US61948909A US2011200614A1 US 20110200614 A1 US20110200614 A1 US 20110200614A1 US 61948909 A US61948909 A US 61948909A US 2011200614 A1 US2011200614 A1 US 2011200614A1
Authority
US
United States
Prior art keywords
antibody
anthracis
species
spores
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/619,489
Inventor
Beverly Lynn Mangold
Jennifer Lynn Aldrich
Thomas W. O'Brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/619,489 priority Critical patent/US20110200614A1/en
Publication of US20110200614A1 publication Critical patent/US20110200614A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1278Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Bacillus (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • This invention relates to antibodies to anthrax, and, in particular, to Bacillus species-specific antibodies that bind to the EA1 antigen of the S-layer, and to methods for making and using these antibodies.
  • the invention further relates to kits that contain Bacillus species-specific antibodies for the rapid detection and identification of individual Bacillus species.
  • the invention further relates to isolated EA1 antigen and compositions that contain the EA1 antigen for use as pharmaceuticals.
  • Anthrax is a world wide disease of sheep, cattle, horses and other mammals caused by the spore-forming, saprophytic bacterium, Bacillus anthracis . Soil, the most common location of anthrax spores, typically becomes contaminated from the carcasses of infected animals that have died. Spores from the decaying carcasses are deposited in the soil, in the water and on vegetation. Like most types of spores, anthrax spores are very resistant to environmental changes such as extremes of heat and cold, and severe desiccation. Consequently, undisturbed spores can remain viable for decades.
  • Infection usually begins by entry of spores through injured skin or mucous membranes. Spores germinate at the site of entry and proliferate. Although not generally considered a respiratory pathogen, anthrax spores can initiate infection through the lungs.
  • Woolsorter's Disease a rare from of anthrax, is caused by the inhalation of large quantities of anthrax spores from the dust of wool, hair or hides. Deep, concentrated inhalation results in the germination of spores in lung tissue and tracheobronchial lymph nodes. Unchecked, this disease is almost always fatal with symptoms which include the production of hemorrhagic mediastinitis, pneumonia, meningitis and sepsis. In anthrax sepsis, the number of organisms in the blood can exceed ten million per milliliter prior to death.
  • Active immunity to anthrax can be induced in susceptible animals by vaccination with live attenuated bacilli, with spore suspensions, or with protective antigens from culture filtrates. Immunity is often incomplete and not long lasting so that the preferred treatment of choice is a course of antibiotics. If started early, antibiotic therapy has a high success rate.
  • anthrax As an acute, febrile disease of virtually all warm-blooded animals, including man, anthrax has been used in biological weapons. Terrorists have included dry spores in letters to target specific individuals for harassment. Biological weapons of mass destruction have been developed that contain large quantities of anthrax spores for release over enemy territory. Once released, spores contaminate a wide geographical area, infecting nearly all susceptible mammals. Due to the spore's resistance to heat and dry conditions, contaminated land can remain a danger for years. In view of the serious threat posed by the disease, effective diagnostic tools are needed to assist in prevention and control of natural and man-made outbreaks.
  • FIG. 1 Amino Acid sequence of mature EA1 protein (SEQ ID NO. 1).
  • FIG. 2 Competitive inhibition assays of anthrax-specific antibodies.
  • the present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new compositions and methods for the detection and identification of anthrax.
  • Antibodies are specifically reactive against spores of B. anthracis , and preferably not specifically reactive against B. cereus or B. thuringiensis .
  • Antibodies may be of any isotype, such as IgA, IgD, IgE, IgG, IgM, or of any sub-type. Further, the invention also includes reactive fragments of these antibodies such as Fab or Fv fragments, or other antigenically active portions thereof.
  • Antibodies may be directed to antigen on the surface of anthrax such as, for example, the EA1 antigen and, preferably, SEQ ID NO. 1, and fragments of this antigen or polypeptide.
  • Anthrax-specific antibodies may be isolated and purified, polyclonal or monoclonal, or created by recombinant engineering techniques and include, for example, humanized antibodies.
  • Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to spores of one species of Bacillus such as, for example, B. anthracis. B. cereus or B. Thuringiensis .
  • the method comprises immunizing a host with a preparation of Bacillus spores of on species, followed by boosting the host with spores of another species of the same genus, preferably an antigenically similar species. This boost, preferably at about seven days prior to fusion, stimulates clones that share specificity between the species of interest and the near neighbor so that, at the time of fusion, these clones will have diminished capacity to be fused.
  • a second boost is administered to the host via, for example, an intravenous route (or intra peritoneal, subcutaneous, etc.), with the preparation of spores of interest from the target species.
  • This second boost preferably at about three days prior to fusion, stimulates clones that haven't already been stimulated by the antigenically similar boost such that the species-specific clones will be maximally susceptible to being fused.
  • Antibody-producing cells are fused with immortalized cells and the anthrax specific hybridomas selected.
  • Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies.
  • Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies.
  • These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
  • kits which incorporate Bacillus species-specific antibodies, and preferably anthrax-specific antibodies.
  • Kits further contain a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
  • a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
  • Another embodiment of the invention is directed to recombinant or isolated EA1 antigen from B. anthracis for use as a therapeutic.
  • Recombinant or affinity purified EA1 antigen when, for example, combined with a pharmaceutically acceptable carrier, can be used as a therapy against the disease in a vaccine.
  • therapeutically effective doses of isolated or purified antibodies to the EA1 antigen, and active portions thereof may also be effective in prophylaxis or treatment.
  • the present invention comprises methods for the creation and use of antibodies that are specifically reactive against species of Bacillus such as, for example, B. anthracis, B. thuringiensis and B. Cereus .
  • the invention further includes kits for the detection of individual Bacillus species such as B. anthracis and compositions that can be incorporated into vaccines and therapies to prevent or control disease.
  • One embodiment of the invention is directed to species-specific antibodies to species of Bacillus such as, for example, antibodies that are specifically reactive against B. anthracis, B. thuringiensis or B. cereus .
  • These antibodies may be monoclonal or polyclonal, recombinant or purified from natural sources, and be of any isotype such as IgA, IgD, IgE, IgG, or IgM, or any sub-type (e.g. IgG1, IgG2a, IgG2b).
  • Purified antibodies may be obtained from infected animals and affinity purified, HPLC purified, or purified using other procedures known to those of ordinary skill in the art.
  • Recombinant antibodies may be made from the genetic elements which encode anthrax-specific antibodies.
  • the invention includes reactive portions of any of these antibodies of the invention (e.g. Fab and Fv fragments), which may be used in isolation, in combination or in construction of recombinant antibodies such as, for example, humanized antibodies.
  • anthrax-specific antibodies are directed against the EM antigen, SEQ ID NO. 1, or antigenic parts of this antigen, such as a polypeptide having amino acids 181-833 of the EA1 protein.
  • Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to one species of Bacillus .
  • This method preferably comprises first immunizing a host animal with a preparation of the species of interest such as, for example, B. anthracis, B. cereus or B. thuringiensis , which are all antigenically similar. Preparations may comprise spores, vegetative cells or combinations thereof.
  • the host animal may be any animal suitable for the production of monoclonal antibodies such as, preferably, mice. Preferably about seven days prior to fusion, administering an intravenous boost using a preparation from another species of the same genus as the species used during the immunization.
  • this species are of an antigenically similar, but not identical, species.
  • B. anthracis or B. thuringiensis may be used as the antigenically similar source.
  • B. cereus or B. thuringiensis may be used as the antigenically similar source. This stimulates clones that share specificity between the species of interest and the near neighbor species. However, by the time of fusion about seven days later, these clones will have diminished capacity to be fused.
  • boosts via, for example, an intravenous route (intra peritoneal, subcutaneous, etc.), with a preparation of the species of interest.
  • This stimulates clones that haven't already been stimulated by the antigenically similar boost, the specific clones.
  • These species-specific clones should be maximally susceptible to being fused three days later.
  • the number of cross-reacting clones should be greatly reduced or eliminated in the fusion products and a species-specific monoclonal antibody should be favored.
  • Additional or fewer boosts may be performed and at various times to maximize generation of anthrax-specific hybridomas, as may be determined by one of ordinary skill in the art.
  • Antibody-producing cells are selected and fused with non-antibody producing cells such as, for example, immortalized cell lines.
  • non-antibody producing cells such as, for example, immortalized cell lines.
  • fusion partners are typically transformed mouse cells such as myeloma cells of the mouse. After fusion, fused cells are segregated into individual cultures and propagated, and hybridoma lines which express anthrax-specific monoclonal antibodies are selected. Further, using these same methods and procedures, spore-specific and vegetative-specific epitopes can be identified and antibodies created.
  • These cell lines can be maintain in culture or cryopreserved using techniques well known to those of ordinary skill in the art.
  • This general method can be used to select for species-specific antigens (and antibodies) between any two antigenically similar species whether they be spores, vegetative cells, viruses, phage, fungi, animal or plant cells, or any other types of microorganism.
  • Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies of the invention.
  • These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
  • the Bacillus species is anthrax and the hybridoma expresses anthrax-specific antibodies to aid in the detection of anthrax.
  • Another embodiment of the invention is directed to a diagnostic kit for the detection of individual species of Bacillus , such as, for example, anthrax.
  • Anthrax as well as non-pathogenic species of Bacillus , can be detected from, for example, spores and vegetative cells on nearly any material.
  • spores on any surface can be collected using conventional procedures (e.g. swipes, vacuums, washings) and tested.
  • Samples can also be taken from patients or the environment.
  • Biological samples include, for example, liquids such as blood, plasma, urine, bile, cerebrospinal fluid, lymph fluid, amniotic fluid or peritoneal fluid. Tissues may also be tested and samples obtained from organs, skin, hair, fingernails or nearly any area of the body.
  • Detection kits comprise anthrax-specific antibodies or antibody fragments and a suitable detection system.
  • the antibody or antibody fragment may be a whole antibody such as an IgG or an antibody fragment such as Fab or Fv fragment, or a minimum antigen-binding fragment.
  • Detection kits may comprise solid supports for Bacillus or anthrax-specific antibodies, antigen or label, as appropriate.
  • Suitable labels include, for example, radioactive labels, electromagnetic labels, electric field labels, fluorescent labels, enzyme labels, chemiluminescent labels, colored labels, and, preferably, visually perceptible labels.
  • Detection systems may involve labeling the antibodies with a detectable label or a labeled secondary antibody that recognizes and binds to antigen-antibody complexes formed between, for example, anthrax spores and anthrax-specific antibodies of the invention.
  • the detectable label is visually detectable such as an enzyme, fluorescent chemical, luminescent chemical or chromatic chemical, which would facilitate determination of test results for the user or practitioner.
  • the detection system is a colloidal particle based lateral flow detection system.
  • detection systems include carbon based lateral flow system, a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
  • Diagnostic kits may further comprise agents to increase stability, shelf-life, inhibit or prevent product contamination and increase detection speed.
  • Useful stabilizing agents include water, saline, alcohol, detergents, glycols including polyethylene glycol, oils, starches, sugars and polysaccharides, salts, glycerol, stabilizers, emulsifiers and combinations thereof.
  • Useful antibacterial agents include antibiotics, bacterial-static and bacterial-toxic chemicals. Agents to optimize speed of detection may increase reaction speed such as salts and buffers. Using these procedures and components, kits can be created for the detection of anthrax. In addition, kits mat also be created for the detection on non-pathogenic strains of Bacillus . Such kits are useful as training tools and as controls in the detection of anthrax.
  • Another embodiment of the invention is directed to an antigen comprising an EA1 antigen (corresponding to eag gene) of the S-layer (surface layer) of B. anthracis ( FIG. 1 ).
  • EA1 antigen corresponding to eag gene
  • This antigen is found in both spore and vegetative cell preparations of anthrax and can be isolated and purified, for example, using affinity chromatography.
  • the corresponding gene can also be cloned and sequenced.
  • this protein may be used as a therapeutic pharmaceutical or vaccine to prevent infection.
  • Another embodiment of the invention is directed to a therapeutic vaccine against B. anthracis comprising the EA1 antigen and/or monoclonal or polyclonal antibodies to the EA1 antigen (i.e. anti-EA 1-antibodies), and a pharmaceutically acceptable carrier.
  • the entire protein (antibody or antigen), or an active portion thereof, can be used to vaccinate susceptible individuals to prevent or treat an infection.
  • Antibodies provide passive immunity, most useful as treatment after exposure, and antigens provide active immunity for long term protection and prophylaxis.
  • antigens stimulate the immune system to create a cellular and/or antibody response in the individual vaccinated.
  • Another embodiment of the invention is directed to a method for vaccinating against B.
  • anthracis comprising administering the EA1 antigen or anti-EA1 antibody to a patient.
  • the invention also includes therapeutic agents comprising antibodies to the EA1 protein and to methods for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of antibodies to the EA1 antigen to a patient.
  • mice were immunized subcutaneously with B. anthracis spores prepared from the Sterne vaccine strain at three to four week intervals for up to five months. The first immunization was with 200 ug antigen in Freund's complete adjuvant. Subsequent boosts were with 100 ug antigen in Freund's incomplete adjuvant. Seven days prior to the fusion, mice were injected intravenously (iv) with 5 ug B. thuringiensis spores, of the Al Hakam and HD-571 strains (obtained from Los Alamos National Laboratories) combined into one antigen preparation. Seventy-two hours prior to the fusion, mice were immunized iv with 5 ug B. anthracis spores in PBS. Mouse sera was tested by direct ELISA after the third boost, and periodically after that to test antibody titers to B. anthracis spores.
  • Hybridoma cells were developed to B. anthracis spores by fusion of nonsecreting myeloma cells (SP2/0) with antibody-producing B-lymphocytes from the spleens of mice immunized with B. anthracis spores, in the presence of polyethylene glycol (PEG), according to standard hybridoma procedures. Cells were combined in a ratio of 3:1 (spleen:myeloma), and fused with PEG. Fused cells were plated, and cultured in 96-well cell culture grade plates.
  • SP2/0 nonsecreting myeloma cells
  • PEG polyethylene glycol
  • HAT media Iscove's Modified Dulbecco's Media (IMDM) with HAT supplement containing hypoxanthine, aminopterin, and thymidine].
  • IMDM Iscove's Modified Dulbecco's Media
  • HAT supplement containing hypoxanthine, aminopterin, and thymidine.
  • HCF Hybridoma Cloning Factor
  • ELISA plates were coated with B. anthracis spore and vegetative preparation antigens as positive antigen, and bovine serum albumin (BSA) as negative antigen, diluted to an optimized concentration in PBS. Plates were incubated 18-24 hours at 4° C. Plates were washed four times with PBS. Cell supernatants were added to both positive and negative coated antigen wells, undiluted. Mouse sera from the immunized mice was added to plate at a dilution of 1:200, and serially diluted to an endpoint. This was included as a positive control. Plates were incubated at 37° C. for one hour. Plates were washed four times with PBS.
  • BSA bovine serum albumin
  • HRP Horseradish peroxidase conjugated goat anti mouse IgG+M+A
  • thuringiensis ATCC 33680, HD571, Al Hakam, and commercial insecticide preparation from Dipel Dust
  • B. globigii and B. licheniformis ATCC 25972
  • these monoclonal antibodies were negative when tested against a selected number of other bacteria ( Francisella tularensis and Yersinia pestis ), purified proteins (ovalbumin and S. aureus enterotoxin B), and environmental components (red clay, gravel, and mulch) (Table 2, 3 and 4).
  • an antigen capture ELISA was performed. Plates were coated with rabbit anti-anthrax IgG antibody as positive capture, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for cross-reactivity analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Monoclonal antibodies (Mabs) were added to the plate at optimized concentrations, as detector antibodies.
  • Plates were incubated for one hour at 37° C., and washed four times with PBS. Anti-species conjugate was added to the plate. Plates were incubated for one hour at 37° C., and washed four times with PBS. Substrate solution was added to the plate, and incubated for 30 minutes at 37° C. Plates were read at 280 nm for optical density readings.
  • An affinity column was made using the anthrax-specific monoclonal antibody AX-EA1-G1 complexed to the Immunopure Protein G IgG Orientation Kit (Pierce; Rockford, Ill.), according to manufacture's protocol.
  • An anthrax spore antigen preparation was affinity purified over the column using the manufacturer's protocol.
  • sample buffer 62.5 mM Tris-HCl pH 6.8, 2% SDS, 25% glycerol, 0.01% Bromophenol blue
  • the electroblotting procedure was performed according to the protocol posted on the Michigan State web site (http://gaea.bch.msu.edu/mssef/blotting.html) by the method of Matsudaira (J Biol Chem, 1987, 262:100035). Briefly, a 0.2 um PVDF membrane (Sequi-Blot PVDF Membrane for Protein Sequencing; Bio-Rad) was wet with methanol, soaked in CAPS/methanol buffer, electroblotted in a Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad) at 50 V for one hour, according to manufacturer's instructions, in CAPS/methanol buffer.
  • the blotted PVDF membrane was stained with 0.2% Amido Black in 40% methanol for 40 seconds and destained in dH 2 O. Two bands, of approximate molecular weight of 97 kD (“Band 1”) and 62 kD (“Band 2”), were visualized.
  • Monoclonal antibody AX-EA1-G1 was used to affinity purify the specific B. anthracis antigen that the antibody was detecting.
  • the affinity-purified antigen(s) was separated on by SDS-PAGE and electroblotted onto a PVDF membrane. Two bands were visualized after staining at approximate molecular weights of 97 kD (Band 1) and 62 kD (Band 2); the membrane was sent to the Biotechnology Center of Utah State University for protein sequencing.
  • the amino acid sequence was determined to be:
  • a competitive inhibition assay was performed. ELISA plates were coated with rabbit anti-anthrax IgG as positive capture antibody, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for inhibition analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Three separate monoclonal antibodies were used in the competition at the detector antibody step.
  • Each combination was prepared in a micro-tube rack, and then added to the plate at the same time. Plates were incubated for one hour at 37° C., and washed four times with PBS. Conjugated streptavidin was added to the plates and incubated for one hour at 37° C. Plates were washed and substrate solution added. Plates were incubated for 30 minutes, and read for optical density at 280 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention is directed to diagnostic tools and therapies using antibodies to Bacillus anthracis. Specifically, the present invention is directed to a B. anthracis-specific monoclonal antibody that binds to the EA1 antigen (corresponding to the eag gene) of the S-layer (surface layer) of spores. This monoclonal antibody may be used in a variety of applications, including to specifically detect and diagnose B. anthracis. Preferably, antibodies are monoclonal and bind to a surface protein, such as EA1 protein, on the spores of B. anthracis, and not to spores of either B. cereus or B. thuringiensis. Antibodies can be incorporated into detection kits using, for example, colloidal particle based lateral flow detection system. Such detection kits can distinguish anthrax spores from non-pathogenic varieties of spores. In addition, the invention is directed to B. anthracis EA1 antigen and pharmaceuticals such as vaccines that can be used as therapeutics and to develop improved antibodies and detection methods.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional patent application No. 60/200,505, entitled “Anthrax Specific Antibodies,” filed Apr. 28, 2000.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to antibodies to anthrax, and, in particular, to Bacillus species-specific antibodies that bind to the EA1 antigen of the S-layer, and to methods for making and using these antibodies. The invention further relates to kits that contain Bacillus species-specific antibodies for the rapid detection and identification of individual Bacillus species. The invention further relates to isolated EA1 antigen and compositions that contain the EA1 antigen for use as pharmaceuticals.
  • 2. Description of the Background
  • Anthrax is a world wide disease of sheep, cattle, horses and other mammals caused by the spore-forming, saprophytic bacterium, Bacillus anthracis. Soil, the most common location of anthrax spores, typically becomes contaminated from the carcasses of infected animals that have died. Spores from the decaying carcasses are deposited in the soil, in the water and on vegetation. Like most types of spores, anthrax spores are very resistant to environmental changes such as extremes of heat and cold, and severe desiccation. Consequently, undisturbed spores can remain viable for decades.
  • Infection usually begins by entry of spores through injured skin or mucous membranes. Spores germinate at the site of entry and proliferate. Although not generally considered a respiratory pathogen, anthrax spores can initiate infection through the lungs. For example, Woolsorter's Disease, a rare from of anthrax, is caused by the inhalation of large quantities of anthrax spores from the dust of wool, hair or hides. Deep, concentrated inhalation results in the germination of spores in lung tissue and tracheobronchial lymph nodes. Unchecked, this disease is almost always fatal with symptoms which include the production of hemorrhagic mediastinitis, pneumonia, meningitis and sepsis. In anthrax sepsis, the number of organisms in the blood can exceed ten million per milliliter prior to death.
  • Most animals are susceptible to anthrax, but resistance is not uncommon (e.g. rat). In resistant animals, organisms proliferate for a few hours while also generating a massive accumulation of leukocytes. In these animals, dying organisms remain confined to capsules which gradually disintegrate and disappear. In susceptible animals, organisms germinate and rapidly proliferate at the site of entry. The most common portal of entry in animals is the mouth and the gastrointestinal tract. Spores within contaminated soil find easy access when ingested with spiny or other irritating vegetation. In humans, scratches of the skin and other injuries are the most likely routes of infection. Germination and growth of the vegetative organisms results in formation of a gelatinous edema and congestion with a generation of large amounts of proteinaceous fluid containing leukocytes. Bacilli spread via lymphatics to the bloodstream and multiply freely in blood and tissues shortly before death of the animal. In the plasma of animals dying from anthrax, a toxic factor has been identified. This factor kills mice upon inoculation and is specifically neutralized by anthrax antiserum.
  • Two factors are believed to be responsible for the toxic effect of anthrax infection; an edematogenic factor (EF) and a lethal factor (LF). These in combination with a membrane binding factor or protective antigen (PA), may have the capacity to confer active protection against disease (PNAS 79:3162-66, 1982). The genes which encode these protein factors (pag for PA, cya for EF, and lef for LF) have been cloned and sequenced (see Gene 69:287-300, 1988; Gene 71:293-98, 1988; and Gene 81:45-54, 1989). A recombinant strain of B. anthracis has been produced which is unable to produce LE or EF (U.S. Pat. No. 5,840,312). This strain has been used to create immunogenic compositions against anthrax infection.
  • Active immunity to anthrax can be induced in susceptible animals by vaccination with live attenuated bacilli, with spore suspensions, or with protective antigens from culture filtrates. Immunity is often incomplete and not long lasting so that the preferred treatment of choice is a course of antibiotics. If started early, antibiotic therapy has a high success rate.
  • As an acute, febrile disease of virtually all warm-blooded animals, including man, anthrax has been used in biological weapons. Terrorists have included dry spores in letters to target specific individuals for harassment. Biological weapons of mass destruction have been developed that contain large quantities of anthrax spores for release over enemy territory. Once released, spores contaminate a wide geographical area, infecting nearly all susceptible mammals. Due to the spore's resistance to heat and dry conditions, contaminated land can remain a danger for years. In view of the serious threat posed by the disease, effective diagnostic tools are needed to assist in prevention and control of natural and man-made outbreaks.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 Amino Acid sequence of mature EA1 protein (SEQ ID NO. 1).
  • FIG. 2 Competitive inhibition assays of anthrax-specific antibodies.
  • SUMMARY OF THE INVENTION
  • The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new compositions and methods for the detection and identification of anthrax.
  • One embodiment of the invention is directed to antibodies that are specifically reactive against spores of B. anthracis, and preferably not specifically reactive against B. cereus or B. thuringiensis. Antibodies may be of any isotype, such as IgA, IgD, IgE, IgG, IgM, or of any sub-type. Further, the invention also includes reactive fragments of these antibodies such as Fab or Fv fragments, or other antigenically active portions thereof. Antibodies may be directed to antigen on the surface of anthrax such as, for example, the EA1 antigen and, preferably, SEQ ID NO. 1, and fragments of this antigen or polypeptide. Anthrax-specific antibodies may be isolated and purified, polyclonal or monoclonal, or created by recombinant engineering techniques and include, for example, humanized antibodies.
  • Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to spores of one species of Bacillus such as, for example, B. anthracis. B. cereus or B. Thuringiensis. Preferably the method comprises immunizing a host with a preparation of Bacillus spores of on species, followed by boosting the host with spores of another species of the same genus, preferably an antigenically similar species. This boost, preferably at about seven days prior to fusion, stimulates clones that share specificity between the species of interest and the near neighbor so that, at the time of fusion, these clones will have diminished capacity to be fused. A second boost is administered to the host via, for example, an intravenous route (or intra peritoneal, subcutaneous, etc.), with the preparation of spores of interest from the target species. This second boost, preferably at about three days prior to fusion, stimulates clones that haven't already been stimulated by the antigenically similar boost such that the species-specific clones will be maximally susceptible to being fused. Antibody-producing cells are fused with immortalized cells and the anthrax specific hybridomas selected.
  • Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies such as anthrax-specific antibodies. These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
  • Another embodiment of the invention is directed to diagnostic kits which incorporate Bacillus species-specific antibodies, and preferably anthrax-specific antibodies. Kits further contain a detection system such as, for example, a colloidal particle-based lateral flow system, a carbon-based lateral flow system, a fluorescent-based assay system, a chemiluminescent system, an up-converting phosphors system, a refractive index-based detection system, magnetic bead or latex bead systems, or a micro array system.
  • Another embodiment of the invention is directed to recombinant or isolated EA1 antigen from B. anthracis for use as a therapeutic. Recombinant or affinity purified EA1 antigen when, for example, combined with a pharmaceutically acceptable carrier, can be used as a therapy against the disease in a vaccine. Further, therapeutically effective doses of isolated or purified antibodies to the EA1 antigen, and active portions thereof, may also be effective in prophylaxis or treatment.
  • Other embodiments and advantages of the invention are set forth in part in the description which follows, and in part, will be obvious from this description, or may be learned from the practice of the invention.
  • DESCRIPTION OF THE INVENTION
  • As embodied and broadly described herein, the present invention comprises methods for the creation and use of antibodies that are specifically reactive against species of Bacillus such as, for example, B. anthracis, B. thuringiensis and B. Cereus. The invention further includes kits for the detection of individual Bacillus species such as B. anthracis and compositions that can be incorporated into vaccines and therapies to prevent or control disease.
  • Conventional methods for the detection of pathogenic infection by B. anthracis are slow and often subject to interpretation. These shortcoming can be directly attributed to an inability to distinguish pathogenic B. anthracis from closely-related, non-pathogenic species.
  • It has been discovered that identifiable epitopes exist that are unique to species of Bacillus such as, for example, B. anthracis. This surprising discovery was made by creating a species-specific antibody to anthrax, utilizing a procedure to maximize unique or distinguishing immunological features. One distinguishing feature of anthrax was found to be a surface protein, specifically the EA1 antigen, which is found in preparations of both spores and vegetative cells. By making the EA1 antigen of B. anthracis a preferred target for immunological detection, new diagnostic tools, therapies and treatments are available.
  • One embodiment of the invention is directed to species-specific antibodies to species of Bacillus such as, for example, antibodies that are specifically reactive against B. anthracis, B. thuringiensis or B. cereus. These antibodies may be monoclonal or polyclonal, recombinant or purified from natural sources, and be of any isotype such as IgA, IgD, IgE, IgG, or IgM, or any sub-type (e.g. IgG1, IgG2a, IgG2b). Purified antibodies may be obtained from infected animals and affinity purified, HPLC purified, or purified using other procedures known to those of ordinary skill in the art. Recombinant antibodies may be made from the genetic elements which encode anthrax-specific antibodies. These genetic elements can be expressed in a variety of systems, and large quantities of antibody, or active portions of antibodies, manufactured. Further, the invention includes reactive portions of any of these antibodies of the invention (e.g. Fab and Fv fragments), which may be used in isolation, in combination or in construction of recombinant antibodies such as, for example, humanized antibodies. Preferably, anthrax-specific antibodies are directed against the EM antigen, SEQ ID NO. 1, or antigenic parts of this antigen, such as a polypeptide having amino acids 181-833 of the EA1 protein.
  • Another embodiment of the invention is directed to a method of producing a species-specific monoclonal antibody to one species of Bacillus. This method preferably comprises first immunizing a host animal with a preparation of the species of interest such as, for example, B. anthracis, B. cereus or B. thuringiensis, which are all antigenically similar. Preparations may comprise spores, vegetative cells or combinations thereof. The host animal may be any animal suitable for the production of monoclonal antibodies such as, preferably, mice. Preferably about seven days prior to fusion, administering an intravenous boost using a preparation from another species of the same genus as the species used during the immunization. Preferably, this species are of an antigenically similar, but not identical, species. For example, when selecting for antibodies specific to B. cereus, either B. anthracis or B. thuringiensis may be used as the antigenically similar source. When selecting for antibodies specific to B. anthracis, either B. cereus or B. thuringiensis may be used as the antigenically similar source. This stimulates clones that share specificity between the species of interest and the near neighbor species. However, by the time of fusion about seven days later, these clones will have diminished capacity to be fused. Next, and preferably about three days prior to fusion, administering another boost via, for example, an intravenous route (intra peritoneal, subcutaneous, etc.), with a preparation of the species of interest. This stimulates clones that haven't already been stimulated by the antigenically similar boost, the specific clones. These species-specific clones should be maximally susceptible to being fused three days later. Thus, the number of cross-reacting clones should be greatly reduced or eliminated in the fusion products and a species-specific monoclonal antibody should be favored. Additional or fewer boosts may be performed and at various times to maximize generation of anthrax-specific hybridomas, as may be determined by one of ordinary skill in the art.
  • Antibody-producing cells are selected and fused with non-antibody producing cells such as, for example, immortalized cell lines. These fusion partners are typically transformed mouse cells such as myeloma cells of the mouse. After fusion, fused cells are segregated into individual cultures and propagated, and hybridoma lines which express anthrax-specific monoclonal antibodies are selected. Further, using these same methods and procedures, spore-specific and vegetative-specific epitopes can be identified and antibodies created. These cell lines can be maintain in culture or cryopreserved using techniques well known to those of ordinary skill in the art. This general method can be used to select for species-specific antigens (and antibodies) between any two antigenically similar species whether they be spores, vegetative cells, viruses, phage, fungi, animal or plant cells, or any other types of microorganism.
  • Another embodiment of the invention is directed to hybridomas that express Bacillus species-specific monoclonal antibodies of the invention. These cell lines may be derived from nearly any mammal as well as other species such as, for example, cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep. Preferably, the Bacillus species is anthrax and the hybridoma expresses anthrax-specific antibodies to aid in the detection of anthrax.
  • Another embodiment of the invention is directed to a diagnostic kit for the detection of individual species of Bacillus, such as, for example, anthrax. Anthrax, as well as non-pathogenic species of Bacillus, can be detected from, for example, spores and vegetative cells on nearly any material. For example, spores on any surface can be collected using conventional procedures (e.g. swipes, vacuums, washings) and tested. Samples can also be taken from patients or the environment. Biological samples include, for example, liquids such as blood, plasma, urine, bile, cerebrospinal fluid, lymph fluid, amniotic fluid or peritoneal fluid. Tissues may also be tested and samples obtained from organs, skin, hair, fingernails or nearly any area of the body. Environmental samples include, for example, samples collected from rivers and streams, salt or fresh water bodies, soil or rock, or samples of biomass. Detection kits comprise anthrax-specific antibodies or antibody fragments and a suitable detection system. The antibody or antibody fragment may be a whole antibody such as an IgG or an antibody fragment such as Fab or Fv fragment, or a minimum antigen-binding fragment. Detection kits may comprise solid supports for Bacillus or anthrax-specific antibodies, antigen or label, as appropriate. Suitable labels include, for example, radioactive labels, electromagnetic labels, electric field labels, fluorescent labels, enzyme labels, chemiluminescent labels, colored labels, and, preferably, visually perceptible labels. Detection systems may involve labeling the antibodies with a detectable label or a labeled secondary antibody that recognizes and binds to antigen-antibody complexes formed between, for example, anthrax spores and anthrax-specific antibodies of the invention. Preferably, the detectable label is visually detectable such as an enzyme, fluorescent chemical, luminescent chemical or chromatic chemical, which would facilitate determination of test results for the user or practitioner. Preferably the detection system is a colloidal particle based lateral flow detection system. Other detection systems include carbon based lateral flow system, a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
  • Diagnostic kits may further comprise agents to increase stability, shelf-life, inhibit or prevent product contamination and increase detection speed. Useful stabilizing agents include water, saline, alcohol, detergents, glycols including polyethylene glycol, oils, starches, sugars and polysaccharides, salts, glycerol, stabilizers, emulsifiers and combinations thereof. Useful antibacterial agents include antibiotics, bacterial-static and bacterial-toxic chemicals. Agents to optimize speed of detection may increase reaction speed such as salts and buffers. Using these procedures and components, kits can be created for the detection of anthrax. In addition, kits mat also be created for the detection on non-pathogenic strains of Bacillus. Such kits are useful as training tools and as controls in the detection of anthrax.
  • Another embodiment of the invention is directed to an antigen comprising an EA1 antigen (corresponding to eag gene) of the S-layer (surface layer) of B. anthracis (FIG. 1). This antigen is found in both spore and vegetative cell preparations of anthrax and can be isolated and purified, for example, using affinity chromatography. The corresponding gene can also be cloned and sequenced. As a unique antigenic marker for pathogenic anthrax, this protein may be used as a therapeutic pharmaceutical or vaccine to prevent infection.
  • Another embodiment of the invention is directed to a therapeutic vaccine against B. anthracis comprising the EA1 antigen and/or monoclonal or polyclonal antibodies to the EA1 antigen (i.e. anti-EA 1-antibodies), and a pharmaceutically acceptable carrier. The entire protein (antibody or antigen), or an active portion thereof, can be used to vaccinate susceptible individuals to prevent or treat an infection. Antibodies provide passive immunity, most useful as treatment after exposure, and antigens provide active immunity for long term protection and prophylaxis. Preferably, antigens stimulate the immune system to create a cellular and/or antibody response in the individual vaccinated. Another embodiment of the invention is directed to a method for vaccinating against B. anthracis comprising administering the EA1 antigen or anti-EA1 antibody to a patient. The invention also includes therapeutic agents comprising antibodies to the EA1 protein and to methods for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of antibodies to the EA1 antigen to a patient.
  • The following examples illustrate embodiments of the invention, but should not be view as limiting the scope of the invention.
  • Examples Immunizations
  • Balb/c mice were immunized subcutaneously with B. anthracis spores prepared from the Sterne vaccine strain at three to four week intervals for up to five months. The first immunization was with 200 ug antigen in Freund's complete adjuvant. Subsequent boosts were with 100 ug antigen in Freund's incomplete adjuvant. Seven days prior to the fusion, mice were injected intravenously (iv) with 5 ug B. thuringiensis spores, of the Al Hakam and HD-571 strains (obtained from Los Alamos National Laboratories) combined into one antigen preparation. Seventy-two hours prior to the fusion, mice were immunized iv with 5 ug B. anthracis spores in PBS. Mouse sera was tested by direct ELISA after the third boost, and periodically after that to test antibody titers to B. anthracis spores.
  • Fusions
  • Hybridoma cells were developed to B. anthracis spores by fusion of nonsecreting myeloma cells (SP2/0) with antibody-producing B-lymphocytes from the spleens of mice immunized with B. anthracis spores, in the presence of polyethylene glycol (PEG), according to standard hybridoma procedures. Cells were combined in a ratio of 3:1 (spleen:myeloma), and fused with PEG. Fused cells were plated, and cultured in 96-well cell culture grade plates. Fused cells were then selected by addition of HAT media [Iscove's Modified Dulbecco's Media (IMDM) with HAT supplement containing hypoxanthine, aminopterin, and thymidine]. These HAT supplements select for the fused hybridoma cells, and eliminate unfused or self-fused myeloma cells. Once clones appeared in the wells (usually 7-10 days after fusion), the culture supernatants were screened by ELISA for antibodies to B. anthracis spores. Positive antibody producing cells were subcloned by serial dilution, and plated at a cell concentration of three cells per well, and then further at one cell per three wells in a 96-well culture plate. This was performed with ten percent ORIGIN® Hybridoma Cloning Factor (HCF) in IMDM. Between each cloning step, culture supernatants were screened by ELISA for antibody production. Finalized clones were screened for isotype, and cryopreserved in liquid nitrogen. Two fusions were performed resulting in the generation of numerous monoclonal antibodies to Bacillus anthracis (Table 1).
  • ELISA Screening
  • Cell supernatants were screened by direct ELISA. ELISA plates were coated with B. anthracis spore and vegetative preparation antigens as positive antigen, and bovine serum albumin (BSA) as negative antigen, diluted to an optimized concentration in PBS. Plates were incubated 18-24 hours at 4° C. Plates were washed four times with PBS. Cell supernatants were added to both positive and negative coated antigen wells, undiluted. Mouse sera from the immunized mice was added to plate at a dilution of 1:200, and serially diluted to an endpoint. This was included as a positive control. Plates were incubated at 37° C. for one hour. Plates were washed four times with PBS. Horseradish peroxidase (HRP) conjugated goat anti mouse IgG+M+A (KPL) was added to all wells, and incubated at 37° C. for one hour. Plates were washed four times with PBS. Substrate was added to plates and incubated at 37° C. for 30 minutes. Plates were read for optical density at 280 nm, and evaluated for positive results. Cells producing the highest optical density readings, i.e., above 1.000 OD, were subcloned. After each subcloning, cell supernatants were screened for positive antibody. Finalized clones were tested for isotype using monoclonal antibody-based mouse Ig isotyping kit (catalog #04017K; BD PharMingen). Three monoclonal antibodies (termed AX-EA1-G1, 8G4, and 9F5) were selected for their ability to uniquely detect B. anthracis and not cross-react with other closely related Bacillus species. Monoclonal antibody AX-EA1-G1 was deposited with the ATCC and accorded accession number PTA-2632, on Oct. 26, 2000. The selection of these monoclonal antibodies was based on their strong reactivity against B. anthracis antigens and their negative reactivity against the closely related strains of B. thuringiensis (ATCC 33680, HD571, Al Hakam, and commercial insecticide preparation from Dipel Dust), B. globigii and B. licheniformis (ATCC 25972) (Table 2, 3 and 4). In addition, these monoclonal antibodies were negative when tested against a selected number of other bacteria (Francisella tularensis and Yersinia pestis), purified proteins (ovalbumin and S. aureus enterotoxin B), and environmental components (red clay, gravel, and mulch) (Table 2, 3 and 4).
  • Specificity Testing
  • To test for cross-reactivity, an antigen capture ELISA was performed. Plates were coated with rabbit anti-anthrax IgG antibody as positive capture, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for cross-reactivity analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Monoclonal antibodies (Mabs) were added to the plate at optimized concentrations, as detector antibodies. Plates were incubated for one hour at 37° C., and washed four times with PBS. Anti-species conjugate was added to the plate. Plates were incubated for one hour at 37° C., and washed four times with PBS. Substrate solution was added to the plate, and incubated for 30 minutes at 37° C. Plates were read at 280 nm for optical density readings.
  • Identification and Affinity Purification of B. anthracis Antigen An affinity column was made using the anthrax-specific monoclonal antibody AX-EA1-G1 complexed to the Immunopure Protein G IgG Orientation Kit (Pierce; Rockford, Ill.), according to manufacture's protocol. An anthrax spore antigen preparation was affinity purified over the column using the manufacturer's protocol.
  • SDS PAGE and Electroblotting
  • Affinity-purified anthrax antigens under went electrophoresis by SDS-PAGE on a 4-15% Tris-HCl polyacrylamide Ready Gel Precast Gel in a Mini-Protean 3 Electrophoresis Cell (Bio-Rad; Hercules, Calif.). Specifically, affinity-purified anthrax antigens (5.7 ug total), along with tubes containing molecular weight markers, were diluted in sample buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS, 25% glycerol, 0.01% Bromophenol blue), boiled for 2.5 minutes, loaded onto the 4-15% gel and under went electrophoresis at 200V for 30 minutes.
  • The electroblotting procedure was performed according to the protocol posted on the Michigan State web site (http://gaea.bch.msu.edu/mssef/blotting.html) by the method of Matsudaira (J Biol Chem, 1987, 262:100035). Briefly, a 0.2 um PVDF membrane (Sequi-Blot PVDF Membrane for Protein Sequencing; Bio-Rad) was wet with methanol, soaked in CAPS/methanol buffer, electroblotted in a Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad) at 50 V for one hour, according to manufacturer's instructions, in CAPS/methanol buffer.
  • The blotted PVDF membrane was stained with 0.2% Amido Black in 40% methanol for 40 seconds and destained in dH2O. Two bands, of approximate molecular weight of 97 kD (“Band 1”) and 62 kD (“Band 2”), were visualized.
  • Protein Sequencing
  • Monoclonal antibody AX-EA1-G1 was used to affinity purify the specific B. anthracis antigen that the antibody was detecting. The affinity-purified antigen(s) was separated on by SDS-PAGE and electroblotted onto a PVDF membrane. Two bands were visualized after staining at approximate molecular weights of 97 kD (Band 1) and 62 kD (Band 2); the membrane was sent to the Biotechnology Center of Utah State University for protein sequencing. The amino acid sequence was determined to be:
  • Band 1:
    A G K Z F P Z V P A G H (SEQ ID NO 2)
    Band 1:
    D Z K Z N A Q A Y V T D (SEQ ID NO 3)
    (Z = uncertain amino acid)
  • Using both of these amino acid sequences, a tblastn protein search of the Unfinished Microbial Genomes TIGR database of B. anthracis sequences was performed. An exact match was observed with the definitive amino acid sequences for Contig 1819. A BLAST search of GenBank using the nucleotide sequence of contig 1819 resulted in complete homology to the eag gene that codes for the EA1 protein of the B. anthracis S-layer. The amino acid position corresponding to the sequence of Bands 1 and 2 are illustrated in FIG. 1. Since the AX-EA1-G1 monoclonal antibody bound to both bands, it can be concluded that the epitope to which AX-EA1-G1 binds is located somewhere within amino acids 181-833.
  • Competitive Inhibition Analysis
  • To determine whether the monoclonal antibodies produced to B. anthracis compete for the same epitope(s), a competitive inhibition assay was performed. ELISA plates were coated with rabbit anti-anthrax IgG as positive capture antibody, and normal rabbit IgG as negative capture antibody. Plates were incubated overnight at 4° C. Plates were washed four times with PBS and then blocked with dry skim milk buffer. Plates were incubated for one hour at 37° C., and washed four times with PBS. Antigens were added to both positive and negative antibody coated wells at concentrations determined for inhibition analysis. Plates were incubated for one hour at 37° C., and washed four times with PBS. Three separate monoclonal antibodies were used in the competition at the detector antibody step. One Mab, labeled with biotin, was held constant while the other Mabs were unlabeled and combined separately at different concentrations, with the biotin labeled Mab. Each combination was prepared in a micro-tube rack, and then added to the plate at the same time. Plates were incubated for one hour at 37° C., and washed four times with PBS. Conjugated streptavidin was added to the plates and incubated for one hour at 37° C. Plates were washed and substrate solution added. Plates were incubated for 30 minutes, and read for optical density at 280 nm.
  • Having determined that the monoclonal antibody AX-EA1-G1 reacts with the EA1 protein of B. anthracis, the other two monoclonal antibodies, 8G4 and 9F5, were tested against affinity-purified antigen and shown to also react with the EA1 antigen (Table 1). Therefore, all three monoclonal antibodies were shown to bind to the same EA1 protein. However, competitive inhibition analysis revealed that while 8G4 and 9F5 effectively compete for binding to the same epitope on the EA1 protein as each other, AX-EA1-G1 does not compete with the binding of 8G4 and 9F5 and therefore binds to a different epitope on the EA1 protein (FIG. 2).
  • Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. and foreign patents and patent applications and U.S. Provisional patent No. 60/200,505, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.
  • TABLE 1
    Relative Scoring of ELISA Data Based on 0-3 Scale*
    Antibody Form Isotype Sp1** Sp3 SpG1 SpG3 V1 V + M
    1-9F6 (AX-EA1-G1) Purified IgG1 P/M 3 3 3 (+) 2 3
    7-8G4-1D7 Purified IgG1 2 3 3 (+) 3 3 (+) 3
    7-3C3-2C2 Purified IgG1 P/M 3 2 1 2 3
    7-1D4-1G7 Purified IgG1 1 3 2 3 3 3
    7-6B6-1C9 Purified IgG1 0 1 2 1 3 3
    7-1E10-1B5 Purified IgG1 0 1 2 1 3 2
    7-9F5-2B11 Purified IgG1 1 3 3 (+) 3 3 3
    7-9C2-1C11 Purified IgG1 1 3 2 3 3 3
    7-5E4-1C10 Purified IgG1 1 3 2 1 2 3
    7-8D3-1E6 Cell sup IgG1 0 1 0 0 1 P/M
    7-2B11-1B10 Cell sup IgG1 1 3 2 2 3 3
    7-7E10-1D8 Cell sup IgG1 0 P/M P/M P/M 2 1
    7-9E8-1B11 Cell sup IgG1 2 (+) 3 3 3 3 3
    7-10E8 Cell sup IgG1 1 3 3 (+) 3 2 3
    7-1G7-1A6 Cell sup IgG1 1 3 3 1 2 3
    7-8D7 Cell sup IgG1 1 3 2 2 2 3
    B. thuringeneisis***
    Affinity @100 ug/ml
    Antibody Form Isotype M C1 C2 (EA1) Al Hakam HD571
    1-9F6 (AX-EA1-G1) Purified IgG1 3 0 1 3 0 0
    7-8G4-1D7 Purified IgG1 3 0 2 3 0 0
    7-3C3-2C2 Purified IgG1 3 1 1 2 0 0
    7-1D4-1G7 Purified IgG1 3 1 2 2 0 0
    7-6B6-1C9 Purified IgG1 2 0 2 3 0 0
    7-1E10-1B5 Purified IgG1 2 0 2 3 0 0
    7-9F5-2B11 Purified IgG1 3 1 2 3 0 0
    7-9C2-1C11 Purified IgG1 3 1 2 2 0 0
    7-5E4-1C10 Purified IgG1 3 1 1 2 0 0
    7-8D3-1E6 Cell sup IgG1 P/M 0 1 P/M 0 0
    7-2B11-1B10 Cell sup IgG1 3 P/M 2 2 0 0
    7-7E10-1D8 Cell sup IgG1 P/M 0 1 1 0 0
    7-9E8-1B11 Cell sup IgG1 3 1 2 3 0 0
    7-10E8 Cell sup IgG1 3 1 2 3 0 0
    7-1G7-1A6 Cell sup IgG1 3 1 1 2 0 0
    7-8D7 Cell sup IgG1 3 1 2 3 0 0
    B-Rabbit anti-anthrax (polyclonal) 3 (OD = 3 (OD =
    1.542) 2.188)
    *0 = negative result; 1-3 = positive result with 3 being the highest titers
    **Key to antigen preparations on following page.
    ***Near neighbor of B. anthracis
    P/M = Plus/Minus
    (+) = Highest Titer in group
    Key to Antigen Preparations Evaluated in Table 1
    Sp1 Standard washed spore prepared from plates (Prepare according to procedure from
    Lot 260400-01, with washes in PBS)
    Sp3 fresh spore culture prepared from plates (Wash off spores with dH2O and test by
    ELISA fresh)
    SpG1 Standard washed spore prepared from modified G (Prepare according to procedure
    from Lot 210400-01, with washes in PBS)
    SpG3 Fresh spore culture prepared from modified G (Test straight from modified G media,
    once in spore state)
    VI Vegetative cells grown on TSA plates, washed off plates in PBS; 2x centrifuge,
    resuspend pellet in PBS, freeze
    V + M Vegetative cells in culture media and tested fresh by ELISA; freeze remainder
    M Supernatant without vegetative cells
    C1 Control 1 - frozen prep lot 260400-01
    C2 Control 2 - frozen prep lot 210400-01
    Affinity (EA1)AX-EA1-G1 affinity-purified antigen corresponding to EA1 protein
    Denotes Frozen samples
  • TABLE 2
    Specificity Testing Performance for Anthrax Capture ELISA with
    Capture Ab: Rabbit anti Anthrax/Detector Ab: AX-EA1-G1 Mab
    Positive Controls:
    Figure US20110200614A1-20110818-P00899
    Positive Control
    Antigen Conc
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml not tested 40 ug/ml 0 889 1.00E+05 1 586
      25 ug/ml not tested 20 ug/ml 0 809 5 00E+04 1.278
    12.5 ug/ml not tested 10 ug/ml 0.394 2.50E+04 0.666
    6.25 ug/ml 2 810  5 ug/ml 0 214 1.25E+04 0 312
    3.13 ug/ml 2 924 2.5 ug/ml  0 088 6 25E+03 0 177
    1.56 ug/ml 2 982 Blank 0 000 3 13E+03 0 093
    *Bacillus thuringensis:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    40 ug/ml 0 000 0.026 0 000 0.013 0 000
    20 ug/ml 0 011 0 000 0.007 0 057 0.005
    10 ug/ml 0 018 0.005 0 072 0 008 0.014
     5 ug/ml 0 000 0 015 0.005 0.000 0 017
    2.5 ug/ml  0.000 0 000 0.004 0.000 0.000
    Blank 0 000 0 000 0.082 0 000 0.065
    Other Bacillus species:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    B. licheniformis
    Antigen
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Antigen
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0 000 0 000 2N 0 001
      25 ug/ml 0 000 0 003 4N 0.000
    12.5 ug/ml 0 004 0 000 8N 0 001
    6.25 ug/ml 0 000 0 005 16N  0.000
    3.13 ug/ml not tested not tested 32N  0 002
    1.56 ug/ml not tested not tested Blank 0.000
    Other Bacteria:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0 007 0.002
      25 ug/ml 0.012 0 004
    12.5 ug/ml 0 008 0 004
    6.25 ug/ml 0 004 0 001
    3.13 ug/ml 0.004 0 003
    1.56 ug/ml 0 004 0 003
    Other Proteins and Toxins:
    Figure US20110200614A1-20110818-P00899
    Antigen Conc
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.004 0.000
      25 ug/ml 0.002 0.000
    12.5 ug/ml 0.006 0.000
    6 25 ug/ml 0 001 0 001
    3 13 ug/ml 0.002 0.002
    1 56 ug/ml 0 002 0 000
    Misc.
    Antigen
    Dilution Red Clay Grey
    Figure US20110200614A1-20110818-P00899
     2N 0.000 0 002 0.002
    4N 0 004 0 007 0.001
    8N 0 003 0 004 0 002
    16N 0 001 0 001 0 002
    32N 0.004 0.002 0.001
    64N 0 003 0 001 0 000
    *Nearest neighbor of B. anthracis
    **Prepared by adding 0 5 g to 3 ml ELISA buffer; vortex and let settle 15 min before addition to plate
    Red highlighted optical density readings are positive results
    Figure US20110200614A1-20110818-P00899
    indicates data missing or illegible when filed
  • TABLE 3
    Specificity Testing Performance for Anthrax Capture ELISA
    with Capture Ab: Rabbit anti Anthrax/Detector Ab: 8G4 Mab
    Positive Controls:
    Figure US20110200614A1-20110818-P00899
    Antigen Conc
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 2 763 2 803 2 645
      25 ug/ml 2 781 2 705 2 658
    12.5 ug/ml 2 786 2 686 2.519
    6.25 ug/ml 2 729 2 663 2 561
    3.13 ug/ml 2 718 2 655 2 570
    1.56 ug/ml not tested not tested 2 767
    *Bacillus thuringensis:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    40 ug/ml 0 001 0 002 0 020 0 027 0 024
    20 ug/ml 0 022 0 000 0 011 0 040 0 011
    10 ug/ml 0 104 0.018 0.017 0.025 0.000
     5 ug/ml 0.001 0 000 0.017 0.000 0.033
    2.5 ug/ml  0 000 0 012 0.002 0 000 0.003
    Blank 0 011 0 008 0 010 0 005 0 017
    Other Bacillus species:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.000 not tested 2N 0.001
      25 ug/ml 0 000 not tested 4N 0.004
    12.5 ug/ml 0 012 not tested 8N 0 001
    6.25 ug/ml 0 000 not tested 16N  0 002
    3.13 ug/ml 0 076 not tested 32N  0 004
    1.56 ug/ml 0 041 not tested Blank 0 002
    Other Bacteria:
    Figure US20110200614A1-20110818-P00899
    Y. Pestis
    Figure US20110200614A1-20110818-P00899
    Antigen Conc
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0 000 0 000
      25 ug/ml 0 000 0 000
    12.5 ug/ml 0 000 0.000
    6.25 ug/ml 0.000 0.000
    3.13 ug/ml 0 000 0 000
    1.56 ug/ml 0 013 0 000
    Other Proteins and Toxins:
    Figure US20110200614A1-20110818-P00899
    Antigen Conc
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.000 0 000
      25 ug/ml 0.002 0.000
    12.5 ug/ml 0.102 0 005
    6.25 ug/ml 0.040 0 000
    3.13 ug/ml 0.111 0.004
    1.56 ug/ml 0.081 0 003
    Misc.
    Antigen
    Dilution Red Clay Grey
    Figure US20110200614A1-20110818-P00899
    2N 0 000 0 000 0 000
     4N 0.000 0 038 0.013
     8N hot well 0 008 0.012
    16N 0.019 0 000 0.028
    32N 0 000 0.049 0.000
    64N 0 000 0 000 0.002
    *Nearest neighbor of B anthracis
    **Prepared by adding 0.5 g to 3 ml ELISA buffer, vortex and let settle 15 mm before addition to plate
    Red highlighted optical density readings are positive results
    Figure US20110200614A1-20110818-P00899
    indicates data missing or illegible when filed
  • TABLE 4
    Specificity Testing Performance for Anthrax Capture ELISA with
    Capture Ab: Rabbit anti Anthrax/Detector Ab: 9F5 Mab
    Positive Controls:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 2.885 2.927 2.284
      25 ug/ml 2.835 2.795 2.226
    12.5 ug/ml 2.891 2.807 1.834
    6.25 ug/ml 2.721 2.801 1.821
    3.13 ug/ml 2.700 2.772 1.885
    1.56 ug/ml 0.000 0.009 1.539
    *Bacillus thuringensis:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.116 0.003 0.001 100 ug/ml 0.073 0.049
      25 ug/ml 0.086 0.000 0.000  20 ug/ml 0.029 0.029
    12.5 ug/ml 0.049 0.002 0.001  4 ug/ml 0.004 0.007
    6.25 ug/ml 0.064 0.000 0.000 Blank 0.000 0.001
    3.13 ug/ml 0.033 0.000 0.000
    1.56 ug/ml 0.045 0.000 0.001
    Other Bacillus species:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.000 not tested  2N 0.000
      25 ug/ml 0.000 not tested  4N 0.000
    12.5 ug/ml 0.000 not tested  8N 0.002
    6.25 ug/ml 0.000 not tested 16N 0.003
    3.13 ug/ml 0.014 not tested 32N 0.000
    1.56 ug/ml 0.081 not tested Blank 0.000
    Other
    Other Bacteria: Proteins and Toxins:
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
      50 ug/ml 0.000 0.000   50 ug/ml 0.029 0.000
      25 ug/ml 0.000 0.042   25 ug/ml 0.000 0.000
    12.5 ug/ml 0.048 0.002 12.5 ug/ml 0.043 0.000
    6.25 ug/ml 0.000 0.000 6.25 ug/ml 0.000 0.009
    3.13 ug/ml 0.032 0.000 3.13 ug/ml 0.030 0.013
    1.56 ug/ml 0.000 0.000 1.56 ug/ml 0.008 0.000
    Misc.
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
    Figure US20110200614A1-20110818-P00899
     2N 0.047 0.104 0.011
     4N 0.000 0.000 0.000
     8N hot well 0.000 0.009
    16N 0.012 0.000 0.006
    32N 0.026 0.000 0.001
    64N 0.079 0.000 0.000
    *Nearest neighbor of B anthracis
    **Prepared by adding 0.5 g to 3 ml ELISA buffer: vortox and let settle 15 min before addition to plate
    Red highlighted optical density readings are positive results
    Figure US20110200614A1-20110818-P00899
    indicates data missing or illegible when filed

Claims (43)

1. A monoclonal antibody which is specifically reactive against B. anthracis.
2. The antibody of claim 1 which is non-reactive against B. cereus or B. thuringiensis.
3. The antibody of claim 1 which is an IgA, IgD, IgE, IgG or IgM.
4. The antibody of claim 1 which is reactive against a surface protein of B. anthracis.
5. The antibody of claim 4 wherein the surface protein is an EA1 protein.
6. The antibody of claim 1 which binds to SEQ ID NO. 1.
7. The antibody of claim 1 which is specifically reactive against B. anthracis spores.
8. The antibody of claim 1 which is specifically reactive against B. anthracis vegetative cells.
9. A hybridoma that produces the antibody of claim 1.
10. The hybridoma of claim 9 which is derived from an animal selected from the group consisting of cattle, chickens, goats, guinea pigs, horses, mice, pigs, primates, rabbits, rats and sheep.
11. A hybridoma deposited with ATCC and accorded accession number PTA-2632.
12. Antibody isolated from the hybridoma of claim 11.
13. An isolated antibody, or reactive portion thereof, directed to the EA1 protein of B. anthracis.
14. The antibody or reactive portion thereof of claim 13 which is a murine antibody; a rabbit antibody; a rat antibody; a genetically engineered antibody; a recombinant antibody; a humanized antibody; a polyclonal antibody or an affinity-purified antibody.
15. The antibody or reactive portion thereof of claim 13 which is an Fab or Fv fragment.
16. A diagnostic kit comprising an antibody that is specifically reactive against spores or vegetative cells of B. anthracis, B. thuringiensis or B. cereus.
17. The diagnostic kit of claim 16 which incorporates a colloidal particle based lateral flow detection system.
18. The diagnostic kit of claim 16 which incorporates a detection system selected from the group consisting of a carbon based lateral flow system; a fluorescent based assay system, a chemiluminescent system, an up converting phosphors system, a refractive indexed based detection system, a magnetic bead or latex bead system, and a micro array system.
19. A diagnostic kit comprising an antibody that is specifically reactive against spores of B. anthracis and not B. thuringiensis, and incorporates a colloidal particle based lateral flow detection system.
20. A diagnostic kit comprising an antibody that is specifically reactive against spores of B. thuringiensis and not B. anthracis, and incorporates a colloidal particle based lateral flow detection system.
21. A method for producing a species-specific monoclonal antibody to one species of Bacillus comprising:
immunizing a host with a preparation of said one species of Bacillus;
boosting said host with another preparation of an antigenically similar, but not identical, species of Bacillus;
boosting said host with said preparation of said one species;
fusing antibody-producing cells from the host with immortalized cells; and
selecting a hybridoma that produces the species-specific monoclonal antibody to said one species of Bacillus.
22. The method of claim 21 wherein the one species of Bacillus is B. cereus, B. thuringiensis or B. anthracis.
23. The method of claim 21 wherein the other antigenically similar species of Bacillus is B. cereus, B. thuringiensis, B. anthracis or combinations thereof.
24. The method of claim 21 wherein the one species of Bacillus is B. anthracis and the other antigenically similar species of Bacillus is B. cereus or B. thuringiensis.
25. The method of claim 21 wherein the one species of Bacillus is B. thuringiensis and the other antigenically similar species of Bacillus is B. cereus or B. anthracis.
26. The method of claim 21 wherein the preparation of said one species comprises spores, vegetative cells or combinations thereof.
27. The method of claim 21 wherein the preparation of said other antigenically similar species comprises spores, vegetative cells or combinations thereof.
28. The method of claim 21 wherein the species-specific monoclonal antibody is selected from the group consisting of IgA, IgE, IgG, IgM and associated sub-types.
29. The method of claim 21 wherein the host is selected from the group consisting of mice, rats, horses, cattle, chickens, sheep, goats, pigs and primates.
30. The method of claim 21 wherein boosting with the antigenically similar species is performed about seven days prior to fusing.
31. The method of claim 21 wherein boosting with B. anthracis is performed about three days prior to fusing.
32. A species-specific monoclonal antibody to spores of B. anthracis made by the method of claim 21.
33. A diagnostic kit comprising the antibody of claim 32.
34. A hybridoma that expresses the antibody of claim 32.
35. An antibody which is specifically reactive against B. thuringiensis and non-reactive against B. cereus or B. anthracis.
36. An antibody which is specifically reactive against B. cereus and non-reactive against B. anthracis or B. thuringiensis.
37. An isolated or recombinant antigen, or antigenically active portions thereof, comprising an EA1 protein of the surface layer of B. anthracis.
38. A pharmaceutical composition comprising the antigen, or active portions hereof, of claim 37 and a pharmaceutically acceptable carrier.
39. A method of using the antigen, or active portions thereof, of claim 37 as the target for an immunological detection system for B. anthracis.
40. A vaccine against B. anthracis comprising a therapeutically effective amount of the antigen, or active portions thereof, of claim 37.
41. A method for vaccinating against B. anthracis comprising administering the therapeutically effective amount of the vaccine of claim 40 to a patient.
42. A therapeutic agent comprising antibodies to the EA1 protein.
43. A method for treating, preventing or controlling B. anthracis infection comprising administering an effective amount of the therapeutic agent of claim 42 to a patient.
US12/619,489 2000-04-28 2009-11-16 Anthrax specific antibodies Abandoned US20110200614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/619,489 US20110200614A1 (en) 2000-04-28 2009-11-16 Anthrax specific antibodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20050500P 2000-04-28 2000-04-28
US09/844,281 US7618783B2 (en) 2000-04-28 2001-04-30 Anthrax specific antibodies
US12/619,489 US20110200614A1 (en) 2000-04-28 2009-11-16 Anthrax specific antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/844,281 Continuation US7618783B2 (en) 2000-04-28 2001-04-30 Anthrax specific antibodies

Publications (1)

Publication Number Publication Date
US20110200614A1 true US20110200614A1 (en) 2011-08-18

Family

ID=22742002

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/844,281 Expired - Fee Related US7618783B2 (en) 2000-04-28 2001-04-30 Anthrax specific antibodies
US12/619,489 Abandoned US20110200614A1 (en) 2000-04-28 2009-11-16 Anthrax specific antibodies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/844,281 Expired - Fee Related US7618783B2 (en) 2000-04-28 2001-04-30 Anthrax specific antibodies

Country Status (7)

Country Link
US (2) US7618783B2 (en)
EP (1) EP1280828B1 (en)
AT (1) ATE339449T1 (en)
AU (1) AU2001259204A1 (en)
CA (1) CA2420287A1 (en)
DE (1) DE60123036T2 (en)
WO (1) WO2001083561A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533185A (en) * 2013-07-22 2016-10-27 サンディア コーポレイション Method and apparatus for amplifying and detecting a target

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI253471B (en) * 2001-01-31 2006-04-21 Food Industry Res & Dev Inst Method for rapid identification of bacillus cereus
EP1390729A4 (en) * 2001-05-03 2007-07-04 Immunetics Inc Systems and methods for detection of analytes in biological fluids
US7262019B2 (en) * 2001-05-03 2007-08-28 Immunetics, Inc. System and methods for detection of Bacillus anthracis related analytes in biological fluids
DE60222008T2 (en) 2001-11-30 2008-05-15 California Institute Of Technology, Pasadena IMPROVED METHOD FOR THE QUANTITATIVE DETERMINATION OF BACTERIAL ENDOSPORES USING THE LANTHANID DIPICOLINATE LUMINESCENCE
GB0129776D0 (en) * 2001-12-13 2002-01-30 Sec Dep For Environment Food & Assay device and method
US6927068B2 (en) * 2002-01-30 2005-08-09 The United States Of America As Represented By The Secretary Of The Navy Rapid and non-invasive method to evaluate immunization status of a patient
EP1478912A4 (en) 2002-02-01 2007-03-21 California Inst Of Techn Methods and apparatus for assays of bacterial spores
US7175992B2 (en) * 2002-04-10 2007-02-13 Response Biomedical Corporation Sensitive immunochromatographic assay
AU2003218584B2 (en) * 2002-04-10 2006-04-27 Response Biomedical Corporation Sensitive immunochromatographic assay
US7601351B1 (en) 2002-06-26 2009-10-13 Human Genome Sciences, Inc. Antibodies against protective antigen
US7563615B2 (en) 2005-04-15 2009-07-21 California Institute Of Technology Apparatus and method for automated monitoring of airborne bacterial spores
US7608419B2 (en) 2003-11-13 2009-10-27 California Institute Of Technology Method and apparatus for detecting and quantifying bacterial spores on a surface
US7611862B2 (en) 2004-11-12 2009-11-03 California Institute Of Technology Method and apparatus for detecting and quantifying bacterial spores on a surface
CA2517198C (en) * 2003-03-21 2016-06-21 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Determining a concentration of a substance in a sample using a usable portion of a sigmoid curve
CA2526398C (en) * 2003-05-21 2014-07-15 Medarex, Inc. Human monoclonal antibodies against bacillus anthracis protective antigen
DE602005018347D1 (en) * 2004-05-12 2010-01-28 Tetracore Inc SPORTS-SPECIFIC ANTIBODIES
US7928204B2 (en) * 2004-05-12 2011-04-19 Tetracore, Inc. Spore specific antigen
US20060115908A1 (en) * 2004-11-30 2006-06-01 Tetracore, Inc. Multiplexed analyses of contaminant-laden gas in a particle impact collector
EP1904521B1 (en) 2005-07-08 2013-08-21 Universidad Nacional Autonoma De Mexico Instituto Novel bacterial proteins with pesticidal activity
GB0514319D0 (en) * 2005-07-13 2006-06-14 Secr Defence Antibodies for anthrax
CA2651962A1 (en) * 2006-05-12 2007-12-21 Oklahoma Medical Research Foundation Anthrax compositions and methods of use and production
ATE527339T1 (en) 2006-06-30 2011-10-15 Univ Georgia ANTHRAX CARBOHYDRATES AND SYNTHESIS AND USES THEREOF
US8420607B2 (en) * 2006-06-30 2013-04-16 University Of Georgia Research Foundation, Inc. Anthrax carbohydrates, synthesis and uses thereof
CA2677977C (en) * 2007-02-26 2015-03-31 Response Biomedical Corporation Comparative multiple analyte assay
US7935345B2 (en) 2007-05-21 2011-05-03 Children's Hospital & Research Center At Oakland Monoclonal antibodies that specifically bind to and neutralize bacillus anthracis toxin, compositions, and methods of use
US8343495B2 (en) * 2009-01-10 2013-01-01 Auburn University Equine antibodies against Bacillus anthracis for passive immunization and treatment
CN105092853A (en) * 2014-05-06 2015-11-25 中国检验检疫科学研究院 Liquid chip for detecting various Bt proteins and detection method
CN105203766B (en) * 2015-09-29 2017-01-11 河南省科学院生物研究所有限责任公司 Preparation method for pathogenic yersinia enterocolitica test strips
CN110498854B (en) * 2019-09-28 2021-01-29 中国人民解放军陆军军医大学 Antibody for resisting staphylococcus aureus enterotoxin B and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8426470D0 (en) * 1984-10-19 1984-11-28 Technology Licence Co Ltd Monoclonal antibodies
US5840312A (en) 1991-05-02 1998-11-24 Institut Pasteur Recombinant Bacillus anthracis strains unable to produce the lethal factor protein or edema factor protein
US5895922A (en) 1996-03-19 1999-04-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Fluorescent biological particle detection system
US6913756B1 (en) * 1998-04-29 2005-07-05 The Uab Research Foundation Monoclonal antibodies specific for anthrax and peptides derived from the antibodies thereof
AU4562599A (en) * 1998-06-12 1999-12-30 New Horizons Diagnostics, Inc. Colloidal colorimetric flow through and lateral flow assays utilizing soluble submicron particles
AU5287701A (en) * 2000-01-06 2001-07-16 Biosite Diagnostics Incorporated Assays for detection of bacillus anthracis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533185A (en) * 2013-07-22 2016-10-27 サンディア コーポレイション Method and apparatus for amplifying and detecting a target

Also Published As

Publication number Publication date
US7618783B2 (en) 2009-11-17
EP1280828B1 (en) 2006-09-13
CA2420287A1 (en) 2001-11-08
US20020082386A1 (en) 2002-06-27
WO2001083561A3 (en) 2002-05-30
EP1280828A2 (en) 2003-02-05
DE60123036T2 (en) 2007-04-05
AU2001259204A1 (en) 2001-11-12
WO2001083561A2 (en) 2001-11-08
DE60123036D1 (en) 2006-10-26
ATE339449T1 (en) 2006-10-15

Similar Documents

Publication Publication Date Title
US7618783B2 (en) Anthrax specific antibodies
Donohue-Rolfe et al. Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross-reactive monoclonal antibodies
US7879330B2 (en) Antibodies against type A botulinum neurotoxin
CN103917559B (en) Clostridium difficile antibody
US20170183396A1 (en) Ebola monoclonal antibodies
KR101259239B1 (en) Antibody directed against pcrv
Miner et al. Characterization of murine monoclonal antibodies to Escherichia coli J5
Kennedy et al. Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge
JP3747057B2 (en) Bacterial stress protein
WO2016173559A1 (en) Preparation and use of murine monoclonal antibody against gi.1 norovirus
CN114349853B (en) Anti-H1N 1 influenza virus hemagglutinin protein neutralizing monoclonal antibody ZJU11-01 and application thereof
JPH05304990A (en) Monoclonal antibody to mycoplasma pneumoniae
EP0909272A1 (en) Helicobacter pylori adhesin binding group antigen
WO1998006432A1 (en) Outer membrane protein b1 of moraxella catarrhalis
CN115698058A (en) Monoclonal antibody against SARS-CoV-2 spike protein
KR20100139096A (en) Compositions, methods and kits
CA2545714C (en) Neutralizing human antibodies to anthrax toxin generated by recall technology
KR20070085236A (en) Binding member towards pneumolysin
CN109957014B (en) Preparation and application of anti-norovirus GII.3 murine monoclonal antibody
Usuwanthim et al. Murine monoclonal antibodies neutral-izing the cytotoxic activity of diphtheria toxin
US9513287B1 (en) High affinity monoclonal antibodies for detection of shiga toxin 2
US9310368B1 (en) High affinity monoclonal antibodies for detection of Shiga toxin 2 (STX2)
US7718779B2 (en) Prophylactic and therapeutic monoclonal antibodies
AU708879B2 (en) Means for detection of bacteria of the species Taylorella equigenitalis and their biological applications
EP0450573A2 (en) Antibodies for the treatment and diagnosis of Pseudomonas aeruginosa infections

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION