US20110189913A1 - Woven mat fabric with fused layers - Google Patents
Woven mat fabric with fused layers Download PDFInfo
- Publication number
- US20110189913A1 US20110189913A1 US13/083,661 US201113083661A US2011189913A1 US 20110189913 A1 US20110189913 A1 US 20110189913A1 US 201113083661 A US201113083661 A US 201113083661A US 2011189913 A1 US2011189913 A1 US 2011189913A1
- Authority
- US
- United States
- Prior art keywords
- woven mat
- warp
- mat fabric
- weft
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 48
- 239000010410 layer Substances 0.000 claims abstract description 71
- 239000002344 surface layer Substances 0.000 claims abstract description 40
- 239000012792 core layer Substances 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229920000642 polymer Polymers 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 48
- -1 polypropylene Polymers 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- 229920000098 polyolefin Polymers 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- 239000002131 composite material Substances 0.000 description 26
- 238000010276 construction Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229920000561 Twaron Polymers 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 5
- 239000002655 kraft paper Substances 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229920000508 Vectran Polymers 0.000 description 4
- 239000004979 Vectran Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920002577 polybenzoxazole Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004762 twaron Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0035—Protective fabrics
- D03D1/0052—Antiballistic fabrics
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/208—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
- D03D15/217—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/44—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
- D03D15/46—Flat yarns, e.g. tapes or films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
- B32B2571/02—Protective equipment defensive, e.g. armour plates or anti-ballistic clothing
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/02—Cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/022—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/062—Load-responsive characteristics stiff, shape retention
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/04—Floor or wall coverings; Carpets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249941—Fiber is on the surface of a polymeric matrix having no embedded portion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3033—Including a strip or ribbon
- Y10T442/3041—Woven fabric comprises strips or ribbons only
Definitions
- FIG. 1 illustrates schematically a cross-section of the multilayer film
- FIG. 2 illustrates schematically a fabric woven from drawn strips of the multilayer film
- FIG. 3 illustrates schematically a process for forming a fabric woven from drawn strips of the multilayer film
- FIG. 1 depicts an exemplary construction of multilayer polymeric film 10 made up of a core layer 12 disposed between surface layers 14 , 14 ′.
- the film 10 may be formed by any conventional means of extruding such multilayer polymeric films.
- the film 10 may be formed by blown film or cast film extrusion.
- the core layer 12 of the film 10 is preferably made up of a molecularly-oriented thermoplastic polymer.
- the core layer 12 is compatibly bonded to each of surface layers 14 , 14 ′ between their contiguous surfaces. It is further contemplated that the surface layers 14 , 14 ′ have a softening temperature, or melting temperature, lower than that of the core layer 12 .
- the core layer 12 is a polyolefin polymer such as polypropylene, polyethylene. According to one potentially preferred practice, the core layer 12 may be polypropylene or polyethylene.
- the core layer 12 may account for about 50-99 wt.
- the core layer 12 and surface layers 14 , 14 ′ being made up of the same class of materials to provide an advantage with regard to recycling, as the core layer 12 may include production scrap.
- the material of surface layers 14 , 14 ′ is preferably a copolymer of propylene and ethylene or an ⁇ -olefin. Particularly advantageous results have been achieved by using a random copolymer of propylene-ethylene. It may be preferred to use said copolymer with an ethylene content of about 1-25 mol. %, and a propylene content of about 75-99 mol. %. It may be further preferred to use said copolymer with a ratio of about 95 mol. % propylene to about 5 mol. % ethylene.
- a polyolefin preferably a polypropylene homopolymer or polypropylene copolymer, prepared with a metallocene catalyst, may be used for the surface layers 14 , 14 ′.
- materials such as (poly-4-methyl-1-pentene) (PMP) and polyethylene may be useful as a blend with such copolymers in the surface layers 14 , 14 ′.
- the surface layer material should be selected such that the softening point of the surface layer 14 , 14 ′ is at least about 10° C. lower than that of the core layer 12 , and preferably between about 15-40° C. lower. The upper limit of this difference is not thought to be critical, and the difference in softening points is typically less than 70° C.
- the film 10 may be cut into a multiplicity of longitudinal strips of a desired width by slitting the film 10 in a direction transverse to the layered orientation of core layer 12 and surface layers 14 , 14 ′.
- the strips of film 10 are then drawn in order to increase the orientation of the core layer 10 so as to provide increased strength and stiffness to the material.
- the resulting strips are in the range of about 1.5 to about 5 millimeters wide.
- one tape film material that may be particularly useful is believed to be marketed under the trade designation PURE by Lankhorst/Indutech having a place of business in Sneek, The Netherlands.
- FIG. 2 illustrates a mat fabric 20 woven from strips of the film 10 .
- the mat fabric 20 may be utilized to form a multilayered composite structure.
- the mat fabric 20 preferably includes a multiplicity of warp strips 24 of film 10 running in the warp direction of the mat fabric 20 .
- the warp strips 24 are interwoven with fill strips 26 of selected material running in the fill direction in transverse relation to the warp strips 24 .
- the fill strips 26 are interwoven with the warp strips 24 such that a given fill strip extends in a predefined crossing pattern above and below the warp strips 24 .
- the fill strips 26 and the warp strips 24 are formed into a so called plain weave wherein each fill strip 26 passes over a warp strip and thereafter passes under the adjacent warp strip in a repeating manner across the full width of the mat fabric 20 .
- any number of other weave constructions as will be well known to those of skill in the art may likewise be utilized.
- the fill strips 26 may pass over two or more adjacent warp strips 24 before transferring to a position below one or more adjacent warp strips thereby forming a so-called twill weave.
- the mat may utilize other interwoven constructions including other weave constructions, knit constructions, multiaxial constructions, weft insertion, weft inserted warp knit constructions and the like if desired.
- interwoven is meant to include any construction incorporating interengaging formation strips.
- the formation of mat fabric 20 as described may be understood through reference to the simplified schematic in FIG. 3 .
- the warp strips 24 of film 10 may be unwound from a beam 34 and separated into two or more sheets 36 , 38 for processing.
- the sheet 36 may be made up of the even numbered warp strips while the sheet 38 may be made up of odd numbered warp strips across the width of the beam.
- the sheets 36 , 38 are threaded through an arrangement of harnesses 40 , 42 which may be moved relative to one another to alternate the relative position of the sheets 36 , 38 , thereby adjusting the shed or spacing between the sheets.
- the fill strips 26 are inserted through the shed between the sheets 36 , 38 while the sheets 36 , 38 are in spaced relation to one another.
- multiple fill strips 26 may be inserted through the shed so as to be side by side in the same orientation relative to the sheets 36 , 38 .
- the harnesses 40 , 42 may be adjusted so as to reverse the relative position of the sheets 36 , 38 .
- Such reversal opens a new shed through which single or multiple fill strips 26 may be inserted before the process is repeated.
- the formation process as described substantially emulates standard weaving processes as are well known to those of skill in the art.
- the processes in the figures are illustrated as single continuous processing lines, that individual steps or combinations of steps may be carried out at different locations if desired.
- the warp strips 24 and the fill strips 26 will preferably be heated, under pressure, to a temperature above the softening point of surface layers 14 , 14 ′ and below that of the core layer 12 . In so doing, the surface layers 14 , 14 ′ will melt while the core layer 12 will remain substantially solid and highly oriented. As the mat fabric 20 then cools, the surface layers 14 , 14 ′ will fuse together, thereby forming a solid matrix through which is woven the highly oriented, stiff structure of the core layer 12 . The overall structure may thereafter be subjected to three-dimensional molding under heat and pressure at temperatures above the softening point of the surface layers 14 , 14 ′ so as to yield complex shapes.
- layers of mat fabric 20 may be stacked in layered relation prior to the application of heat and pressure in order to form a multilayered woven composite structure.
- the layers of mat fabric 20 may be formed from a single sheet of fabric that is repeatedly folded over itself, or from several discrete overlaid sheets.
- a multilayered woven composite may be formed by reheating several previously fused layers of the woven mat fabric. Any of these methods may be employed to form a woven composite with any desired thickness or number of layers.
- Consolidation of multiple layers is preferably carried out at suitable temperature and pressure conditions to facilitate both interface bonding fusion and partial migration of the melted surface layer material between the layers.
- Heated batch or platen presses may be used for multi-layer consolidation. However, it is contemplated that any other suitable press may likewise be used to provide appropriate combinations of temperature and pressure. According to a potentially preferred practice, heating is carried out at a temperature of about 130-160° C. and a pressure of about 0.5-70 bar. When exposed to such an elevated temperature and pressure, the surface layers 14 , 14 ′ will melt while the core layer 12 will remain substantially solid. Upon cooling, the surface layers 14 , 14 ′ will fuse thereby forming a matrix through which the stiff core layers 12 are distributed.
- a composite structure formed from the woven fabric 20 as described will exhibit excellent mechanical strength characteristics in both the planar and normal directions at a low weight. This favorable combination of high strength and low weight makes such a composite suitable for variety of uses. Moreover, such structures are highly adaptable to forced three-dimensional molding procedures at temperatures above the softening point of the surface layers 14 , 14 ′.
- the fill (weft) strips and/or the warp strips of the multilayer polymeric film may be partially or completely replaced by elements of different composition and physical property chosen to impart certain characteristics to the fabric and/or composite.
- the replacement elements are of a material with a softening point at least 10° C. different than the surface layer(s) of the majority warp and/or weft elements.
- the replacement elements have a higher softening point than the surface layer(s) of the warp and weft elements, and in other embodiments, the replacement elements have a lower softening temperature.
- the replacement elements are of a material with a softening point at least 20° C.
- Another high tenacity yarn is a Polyarylate (liquid crystal polymer) available as Vectran® from Kuraray Co., Ltd.
- the chemical structure is below:
- the inserted material may be tape form or standard cylindrical form or any other weaveable material.
- the material can have a smooth or a textured surface.
- any or all of the material can undergo flame retardant (FR) chemical treatment by means well known to those of skill in the art in order to impart flame retardant characteristics uniformly throughout the mat fabric or to discrete zones within the mat fabric.
- the flame retardant yarns might include those that are non-combustible such as glass, aramid, partially oxidized acrylonitrile, carbon fiber, ceramics and the like. They could also be yarns that are coated, impregnated, or have the following chemical groups incorporated into the structure of the fiber. These FR chemical groups include halogens, antimony, melamine, and phosphorous.
- the material used is non-olefin.
- a composite was formed from 3 layers of Kraft paper (B staged phenolic saturated Kraft paper) and 3 layers of fabric mat woven with mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) in both the warp and weft directions. No cotton yarns were used.
- the layers were consolidated by placing in a platen press at 285° F. and applying pressure of 450 psi. After 4 minutes, the composite was cooled to 200° F. Subsequently, the pressure was released and the composite was removed from the press.
- Control example 2 was formed of mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) as described in the specification in both the warp and weft directions constructed on a Dornier rapier loom.
- the woven material was constructed using 11 epi ⁇ 15 ppi.
- the tape elements had a linear weight of 1020 denier (or 1133 dtex). With this construction, the areal weight becomes and 0.024 lb/ft 2 . 10 layers were consolidated as described below.
- Twaron®, Zylon®, and Vectran® multifilament yarns were inserted in the filling direction respectively.
- the woven material was made on the same loom and from the same warp as the 100% tape element samples.
- the multifilament yarns were inserted in an alternating pattern along with the tape elements. In this way, every other filling yarn was tape yarn with multifilament yarns in between.
- the specific yarns used were 1500 denier Twaron® with 11 ppi (0.024 lb/ft 2 ), 1000 denier Zylon® with 15 ppi (0.024 lb/ft 2 ), and 1500 denier Vectran® with 12 ppi (0.024 lb/ft 2 ).
- the woven material of these 3 materials was designed to have the same areal weight (or areal density) as control example 2, which was 0.024 lb/ft 2 .
- Performance testing was carried out using Ball Burst test (ASTM D6797) as a guideline.
- the test implement was a spherical steel ball with a diameter of 0.6′′ (15.2 mm) and was driven at an incident rate of 20 in/min (508 mm/min). Circular samples of 4′′ (102 mm) diameter were rigidly clamped with an unclamped area of diameter 2′′ (51 mm). Load and displacement were recorded for each sample with results summarized in the following table.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Botany (AREA)
- Woven Fabrics (AREA)
- Laminated Bodies (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
A woven mat fabric with fused layers containing a plurality of woven layers, where each woven layer contains a plurality of warp elements interwoven with a plurality of weft elements. The warp and weft elements contain polymeric strips which have a core layer disposed in layered relation with at least one surface layer. The core layer contains a first strain oriented polymer composition and having a first softening point and the surface layer contains a second polymer composition having a softening point lower than the first softening point. The weft and warp elements within each layer are fused to one another, but the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers.
Description
- This application is a continuation of co-pending application Ser. No. 11/518,964, filed on Sep. 11, 2006, which claims priority to U.S. Provisional Patent Application Ser. No. 60/720,824, filed on Sep. 27, 2005. Both of these documents are incorporated in their entirety herein.
- This invention relates to a woven mat fabric with fused layers comprising a plurality of woven layers, where each woven layer contains a plurality of fusible warp elements interwoven with a plurality of fusible weft elements. The weft and warp elements within each layer are fused to one another, but the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers. Methods of forming the interwoven composite are also provided.
- It has been proposed to form tape structures from polypropylene film coated with a layer of propylene copolymer including ethylene units such that the coating has a lower softening point than the core. Such tape structures are disclosed, for example, in U.S. Pat. No. 5,578,370 the teachings of which are hereby incorporated by reference in their entirety. U.S. Patent Application 2004/0242103A1 (incorporated by reference) has also proposed to form monoaxially drawn tape structures characterized by substantial draw ratios and incorporating a central layer of a polyolefin with one or two covering layers of a polyolefin from the same class as the central layer. The DSC melting point of the outer layers is lower than that of the central layer to facilitate heat bonding. Such drawn tape elements may be interwoven so as to form a mat structure which is then subjected to heat thereby fusing the tape elements in place. Multiple layers of such interwoven mat structures may be combined to form moldable structures of substantial thickness that may be shaped into three-dimensional configurations.
- While the moldable mat structures of the prior art are highly useful for a number of end uses, the past constructions are generally not susceptible to strong bonding to underlying substrates such as adhesives, foams, rubbers and the like. In some applications it may be desirable to bond such structures to underlying substrate structures. Accordingly, the need exists to provide a system that facilitates bonding to such substrates while nonetheless maintaining the desirable features of moldability provided by prior mat structures. There also exists a need for a moldable mat structure with increased physical properties, such as strength.
- The present invention provides advantages and/or alternatives over the prior art by providing a woven mat fabric with fused layers comprising a plurality of woven layers, where each woven layer contains a plurality of warp elements interwoven with a plurality of weft elements. The warp and weft elements contain polymeric strips which have a core layer disposed in layered relation with at least one surface layer. The core layer contains a first strain oriented polymer composition and having a first softening point and the surface layer contains a second polymer composition having a softening point lower than the first softening point. The weft and warp elements within each layer are fused to one another, but the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers.
- The accompanying drawings which are incorporated in and which constitute a part of this specification illustrate several exemplary constructions and procedures in accordance with the present invention and, together with the general description of the invention given above and the detailed description set forth below, serve to explain the principles of the invention wherein:
-
FIG. 1 illustrates schematically a cross-section of the multilayer film; -
FIG. 2 illustrates schematically a fabric woven from drawn strips of the multilayer film; -
FIG. 3 illustrates schematically a process for forming a fabric woven from drawn strips of the multilayer film; and -
FIG. 4 illustrates an arrangement of fabric layers arranged in stacked relation for heated compression molding. - Exemplary embodiments of the present invention will now be described by reference to the accompanying drawings, in which, to the extent possible, like reference numerals are used to designate like components in the various views. Turning now to the drawings,
FIG. 1 depicts an exemplary construction of multilayerpolymeric film 10 made up of acore layer 12 disposed betweensurface layers core layer 10 being adjacent tosurface layer 14. Thefilm 10 may be formed by any conventional means of extruding such multilayer polymeric films. By way of example, and not limitation, thefilm 10 may be formed by blown film or cast film extrusion. Thefilm 10 is then cut into a multiplicity of longitudinal strips of a desired width by slitting thefilm 10 to yield tapes having cross-sections in the thickness dimension as shown inFIG. 1 . The strips offilm 10 are then drawn in order to increase the orientation of thecore layer 10 so as to provide increased strength and stiffness of the material. - It is contemplated that the
core layer 12 of thefilm 10 is preferably made up of a molecularly-oriented thermoplastic polymer. Thecore layer 12 is compatibly bonded to each ofsurface layers surface layers core layer 12. By way of example only, it is contemplated that thecore layer 12 is a polyolefin polymer such as polypropylene, polyethylene. According to one potentially preferred practice, thecore layer 12 may be polypropylene or polyethylene. Thecore layer 12 may account for about 50-99 wt. of thefilm 10, while thesurface layers film 10. Thecore layer 12 andsurface layers core layer 12 may include production scrap. - In an embodiment with a
core layer 12 of polypropylene, the material ofsurface layers surface layers surface layers surface layer core layer 12, and preferably between about 15-40° C. lower. The upper limit of this difference is not thought to be critical, and the difference in softening points is typically less than 70° C. - As mentioned above, the
film 10 may be cut into a multiplicity of longitudinal strips of a desired width by slitting thefilm 10 in a direction transverse to the layered orientation ofcore layer 12 andsurface layers film 10 are then drawn in order to increase the orientation of thecore layer 10 so as to provide increased strength and stiffness to the material. After the drawing process is complete, the resulting strips are in the range of about 1.5 to about 5 millimeters wide. - By way of example only, and not limitation, one tape film material that may be particularly useful is believed to be marketed under the trade designation PURE by Lankhorst/Indutech having a place of business in Sneek, The Netherlands.
-
FIG. 2 illustrates amat fabric 20 woven from strips of thefilm 10. As will be appreciated, themat fabric 20 may be utilized to form a multilayered composite structure. As illustrated, themat fabric 20 preferably includes a multiplicity ofwarp strips 24 offilm 10 running in the warp direction of themat fabric 20. The warp strips 24 are interwoven withfill strips 26 of selected material running in the fill direction in transverse relation to the warp strips 24. As shown, the fill strips 26 are interwoven with the warp strips 24 such that a given fill strip extends in a predefined crossing pattern above and below the warp strips 24. In the illustrated arrangement, the fill strips 26 and the warp strips 24 are formed into a so called plain weave wherein each fillstrip 26 passes over a warp strip and thereafter passes under the adjacent warp strip in a repeating manner across the full width of themat fabric 20. However, it is also contemplated that any number of other weave constructions as will be well known to those of skill in the art may likewise be utilized. By way of example only, and not limitation, it is contemplated that the fill strips 26 may pass over two or more adjacent warp strips 24 before transferring to a position below one or more adjacent warp strips thereby forming a so-called twill weave. It is likewise contemplated that the mat may utilize other interwoven constructions including other weave constructions, knit constructions, multiaxial constructions, weft insertion, weft inserted warp knit constructions and the like if desired. Thus, the term “interwoven” is meant to include any construction incorporating interengaging formation strips. - By way of example only, the formation of
mat fabric 20 as described may be understood through reference to the simplified schematic inFIG. 3 . As illustrated, in the formation process the warp strips 24 offilm 10 may be unwound from abeam 34 and separated into two ormore sheets sheet 36 may be made up of the even numbered warp strips while thesheet 38 may be made up of odd numbered warp strips across the width of the beam. As illustrated, thesheets harnesses sheets sheets sheets sheets harnesses sheets - In order to securely fuse the warp strips 24 to the fill strips 26 while maintaining the interwoven spatial relation between them, it is contemplated that the warp strips 24 and the fill strips 26 will preferably be heated, under pressure, to a temperature above the softening point of surface layers 14, 14′ and below that of the
core layer 12. In so doing, the surface layers 14, 14′ will melt while thecore layer 12 will remain substantially solid and highly oriented. As themat fabric 20 then cools, the surface layers 14, 14′ will fuse together, thereby forming a solid matrix through which is woven the highly oriented, stiff structure of thecore layer 12. The overall structure may thereafter be subjected to three-dimensional molding under heat and pressure at temperatures above the softening point of the surface layers 14, 14′ so as to yield complex shapes. - As illustrated in
FIG. 4 , according to one contemplated practice, several layers ofmat fabric 20 may be stacked in layered relation prior to the application of heat and pressure in order to form a multilayered woven composite structure. The layers ofmat fabric 20 may be formed from a single sheet of fabric that is repeatedly folded over itself, or from several discrete overlaid sheets. Alternatively, a multilayered woven composite may be formed by reheating several previously fused layers of the woven mat fabric. Any of these methods may be employed to form a woven composite with any desired thickness or number of layers. - Consolidation of multiple layers is preferably carried out at suitable temperature and pressure conditions to facilitate both interface bonding fusion and partial migration of the melted surface layer material between the layers. Heated batch or platen presses may be used for multi-layer consolidation. However, it is contemplated that any other suitable press may likewise be used to provide appropriate combinations of temperature and pressure. According to a potentially preferred practice, heating is carried out at a temperature of about 130-160° C. and a pressure of about 0.5-70 bar. When exposed to such an elevated temperature and pressure, the surface layers 14, 14′ will melt while the
core layer 12 will remain substantially solid. Upon cooling, the surface layers 14, 14′ will fuse thereby forming a matrix through which the stiff core layers 12 are distributed. According to a potentially preferred practice, cooling is carried out under pressure to a temperature less than about 115° C. It is contemplated that maintaining pressure during the cooling step tends to inhibit shrinkage. Without wishing to be limited to a specific theory, it is believed that higher pressures may facilitate polymer flow at lower temperatures. Thus, at the higher end of the pressure range, (greater than about 20 bar) the processing temperature may be about 90-135° C. Moreover, the need for cooling under pressure may be reduced or eliminated when these lower pressures are utilized. - Due at least in part to the biaxial orientation of the interwoven, highly oriented core layers 12, which are securely held within a matrix of the fused surface layers 14, 14′, a composite structure formed from the woven
fabric 20 as described will exhibit excellent mechanical strength characteristics in both the planar and normal directions at a low weight. This favorable combination of high strength and low weight makes such a composite suitable for variety of uses. Moreover, such structures are highly adaptable to forced three-dimensional molding procedures at temperatures above the softening point of the surface layers 14, 14′. - According to one contemplated practice, the fill (weft) strips and/or the warp strips of the multilayer polymeric film may be partially or completely replaced by elements of different composition and physical property chosen to impart certain characteristics to the fabric and/or composite. In one embodiment, the replacement elements are of a material with a softening point at least 10° C. different than the surface layer(s) of the majority warp and/or weft elements. In some embodiments, the replacement elements have a higher softening point than the surface layer(s) of the warp and weft elements, and in other embodiments, the replacement elements have a lower softening temperature. Preferably, the replacement elements are of a material with a softening point at least 20° C. different than the surface layer(s) of the majority warp and/or weft elements. In another embodiment, the replacement elements comprise a material with a different chemical composition than the core and/or surface of the warp and/or weft elements. Having a different chemical composition, in this application, means that materials having a different molecular composition or having the same chemicals at different ratios or concentrations. In another embodiment, the replacement elements are non-olefin. In another embodiment, the inserted material may be tape elements, monofilament fiber, or multifilament yarns. By way of example, and not limitation, at least some portion of the weft and/or warp elements of different composition have a different composition elements may be cotton, polyester, nylon, or blends thereof. As a further non-limiting example, some or all of the weft elements may be an anti-ballistic multifilament yarns such as KEVLAR® or the like. Other nonlimiting examples of anti-ballistic yarns include high tenacity yarns exhibiting greater than 10 grams, more preferably 18 grams, per denier for specific strength, or “tenacity”. One high tenacity yarn is an aramid yarn available as Kevlar® from E. I. du Pont de Nemours and Company or Twaron® from Teijin Twaron. The chemical structure is below:
- Another high tenacity yarn is a PBO yarn [poly(p-phenylene-2,6-benzobisoxazole)] available as Zylon® from Toyobo Co., Ltd. The chemical structure is below:
- Another high tenacity yarn is a Polyarylate (liquid crystal polymer) available as Vectran® from Kuraray Co., Ltd. The chemical structure is below:
- The replacement elements in one embodiment are weft elements replacing some or all of the fusible mono-axially drawn tape elements which may be implemented in a manufacturing setup easily. In another embodiment, the fusible mono-axially drawn tape elements warp elements are replaced by inserted elements. In a third embodiment, the replacement elements replace some of the fusible mono-axially drawn tape elements in both the warp and weft directions. This allows for flexibility of the physical properties of the final composite structure. Preferably, the inserted or replacement material in the warp and/or weft direction is less than 50% by weight of the composite. For the composite to have structural integrity, at least some of the fusible mono-axially drawn tape elements must cross over one another to be able to fuse together.
- The inserted material may be tape form or standard cylindrical form or any other weaveable material. The material can have a smooth or a textured surface. Furthermore, any or all of the material can undergo flame retardant (FR) chemical treatment by means well known to those of skill in the art in order to impart flame retardant characteristics uniformly throughout the mat fabric or to discrete zones within the mat fabric. The flame retardant yarns might include those that are non-combustible such as glass, aramid, partially oxidized acrylonitrile, carbon fiber, ceramics and the like. They could also be yarns that are coated, impregnated, or have the following chemical groups incorporated into the structure of the fiber. These FR chemical groups include halogens, antimony, melamine, and phosphorous. In one embodiment, the material used is non-olefin.
- The selection of inserted material may be used to control properties of the finished construction. These properties can be uniformly distributed throughout the construction by utilizing the appropriate weft element exclusively. Alternatively, discrete zones of the desired characteristic can be achieved by utilizing the appropriate weft element in a particular area of
mat fabric 20 and then changing the nature of the weft element. By way of example and not limitation, according to one contemplated practice, several layers ofmat fabric 20 may be stacked in layered relation prior to the application of heat and pressure in order to form a multilayered composite structure. The layers offabric 20 may be formed from a single sheet of fabric that is repeatedly folded over itself. As can be readily appreciated, if the single sheet contains discrete areas in which different weft elements have been employed, then the multilayered woven composite will also contain discrete zones of differing characteristics depending upon the weft elements. Alternatively, the layers offabric 20 may be formed from several discrete overlaid sheets. As will be readily apparent, the various layers of mat fabric may contain the same or different weft elements. Furthermore, a multilayered woven composite may be formed by heating, under pressure, several woven composites previously formed from single or multiple layers ofmat fabric 20. In one embodiment, 10 or more layers are fused together to form an anti-ballistics panel. Any of these methods may be employed to form a woven composite with any desired thickness or number of layers. Furthermore, the predetermined selection of the material may be used to control properties of the final structure. - As a non-limiting example, it is highly desirable in many different applications to increase the adhesive properties of the composite structure in order to facilitate bonding between the composite and another material or adhesive. One potential way to accomplish this enhanced bonding is by replacing the fill strips in one or more of the outermost fabric mat structures with non-olefin materials such as cotton, polyester, nylon and blends thereof. As can be readily appreciated, after heating under pressure, this will result in a multilayered woven composite in which the materials with enhanced bonding capabilities are concentrated in the outermost zones (outer surface) of the composite, thus facilitating bonding to other materials such as polyurethane foams as one non-limiting example.
- The invention may be further understood by reference to the following non-limiting examples.
- A tie layer was formed by weaving a multiplicity of fusible mono-axially drawn tape elements as previously described having dimensions of 2.2 mm wide and 65 microns thick in the warp direction with alternating picks of the mono-axially drawn tape elements having a denier of 1020 and cotton 2/1 yarn in a twill weave. This tie layer was stacked between 3 layers of Kraft paper (B staged phenolic saturated Kraft paper) and 2 layers of mats woven with the fusible mono-axially drawn tape elements in both the warp and weft. The layers were consolidated by placing in a platen press at 285° F. and applying pressure of 450 psi. After 4 minutes, the composite was cooled to 200° F. Subsequently, the pressure was released and the composite removed from the press.
- A composite was formed from 3 layers of Kraft paper (B staged phenolic saturated Kraft paper) and 3 layers of fabric mat woven with mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) in both the warp and weft directions. No cotton yarns were used. The layers were consolidated by placing in a platen press at 285° F. and applying pressure of 450 psi. After 4 minutes, the composite was cooled to 200° F. Subsequently, the pressure was released and the composite was removed from the press.
- Peel strength data of the composites produced in accordance with the above examples are delineated in Table 1. Samples were tested using a 1″×6″ sample peeled at 90 degrees (ASTM D5170). The average peel force required to separate the consolidated sheets containing mono-axially drawn tape elements from the Kraft paper is reported.
-
SAMPLE Average Peel (pounds force) Control example 1 0.00 Example 1 - Warp direction 0.27 Example 1 - Weft direction 0.25 - Control example 2 was formed of mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) as described in the specification in both the warp and weft directions constructed on a Dornier rapier loom. The woven material was constructed using 11 epi×15 ppi. The tape elements had a linear weight of 1020 denier (or 1133 dtex). With this construction, the areal weight becomes and 0.024 lb/ft2. 10 layers were consolidated as described below.
- In examples 2, 3, and 4, Twaron®, Zylon®, and Vectran® multifilament yarns were inserted in the filling direction respectively. The woven material was made on the same loom and from the same warp as the 100% tape element samples. The multifilament yarns were inserted in an alternating pattern along with the tape elements. In this way, every other filling yarn was tape yarn with multifilament yarns in between. The specific yarns used were 1500 denier Twaron® with 11 ppi (0.024 lb/ft2), 1000 denier Zylon® with 15 ppi (0.024 lb/ft2), and 1500 denier Vectran® with 12 ppi (0.024 lb/ft2). The woven material of these 3 materials was designed to have the same areal weight (or areal density) as control example 2, which was 0.024 lb/ft2.
- The procedure for consolidating the woven fabrics of control examples 2 and examples 2-4 for use in the ball burst tests was as follows:
-
- 1. Pre-heat the hot press to 300° F.
- 2. Assemble 10 layers of woven material with warp directions aligned with each layer
- 3. Place sample between plates and film
- a) 2 steel plates
- b) 2 sheets of Kapton® film
- 4. Insert unconsolidated panel between platens
- 5. Pressurize for 10 minutes at 300 psi
- a) Maintain pressure during entire test
- 6. Turn off heat
- 7. Turn on water cooling
- a) Maintain pressure during cooling
- 8. Turn off water when temperature <180° F.
- Performance testing was carried out using Ball Burst test (ASTM D6797) as a guideline. The test implement was a spherical steel ball with a diameter of 0.6″ (15.2 mm) and was driven at an incident rate of 20 in/min (508 mm/min). Circular samples of 4″ (102 mm) diameter were rigidly clamped with an unclamped area of diameter 2″ (51 mm). Load and displacement were recorded for each sample with results summarized in the following table.
-
Weave Peak Load Energy-to- Material (epi × ppi) (lb) Break (lb-in) Control Example 2 11 × 15 1358 308 Example 2 11 × 11 1872 576 Example 3 11 × 15 1903 587 Example 4 11 × 12 2261 752
These test results showed that the samples containing Twaron®, Zylon®, and Vectran® (Examples 2-4) had greater ball burst physical properties than the 100% tape element samples. - While the present invention has been illustrated and described in relation to certain potentially preferred embodiments and practices, it is to be understood that the illustrated and described embodiments and practices are illustrative only and that the present invention is in no event to be limited thereto. Rather, it is fully contemplated that modifications and variations to the present invention will no doubt occur to those of skill in the art upon reading the above description and/or through practice of the invention. It is therefore intended that the present invention shall extend to all such modifications and variations as may incorporate the broad aspects of the present invention within the full spirit and scope of the following claims and all equivalents thereto.
Claims (18)
1. A woven mat fabric with fused layers comprising a plurality of woven layers, each woven layer comprising:
a plurality of warp elements comprising polymeric strips extending in a first direction, wherein said strips comprise a core layer disposed in layered relation with at least one surface layer, the core layer comprising a first strain oriented polymer composition and having a first softening point, the surface layer comprising a second polymer composition having a softening point lower than the first softening point; and
a plurality of weft elements extending transverse to the first direction in interwoven relation to the warp elements, wherein the plurality of weft elements comprise polymeric strips comprising a core layer disposed in layered relation with at least one surface layer, the core layer comprising a first strain oriented polymer composition and having a first softening point, the surface layer comprising a second polymer composition having a softening point lower than the first softening point,
wherein the weft and warp elements within each layer are fused to one another, and wherein the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers.
2. The woven mat fabric with fused layers of claim 1 , wherein at least a portion of the weft elements comprise a material having a softening point at least 10° C. different than the softening point of the at least one surface layer.
3. The woven mat fabric with fused layers of claim 1 , wherein at least a portion of the weft elements comprise a material having a chemical composition different the surface layer of the polymeric strips.
4. The woven mat fabric with fused layers of claim 3 , wherein the material is selected from the group consisting of polyolefin tapes, monofilament fibers, and multifilament yarns.
5. The woven mat fabric with fused layers of claim 3 , wherein the material comprises cotton yarns.
6. The woven mat fabric with fused layers of claim 3 , wherein the material comprises anti-ballistic multifilament yarns.
7. The woven mat fabric with fused layers of claim 3 , wherein the tenacity of the material is greater than 10 grams per denier.
8. The woven mat fabric with fused layers of claim 3 , wherein the material comprises a nonolefin material.
9. The woven mat fabric with fused layers of claim 1 , wherein at least a portion of the warp elements comprise a material having a softening point at least 10° C. different than the softening point of the at least one surface layer.
10. The woven mat fabric with fused layers of claim 1 , wherein at least a portion of the warp elements comprise a material having a chemical composition different the surface layer of the polymeric strips.
11. The woven mat fabric with fused layers of claim 10 , wherein the material is selected from the group consisting of polyolefin tapes, monofilament fibers, and multifilament yarns.
12. The woven mat fabric with fused layers of claim 10 , wherein the material comprises cotton yarns.
13. The woven mat fabric with fused layers of claim 10 , wherein the material comprises anti-ballistic multifilament yarns.
14. The woven mat fabric with fused layers of claim 10 , wherein the tenacity of the material is greater than 10 grams per denier.
15. The woven mat fabric with fused layers of claim 10 , wherein the material comprises a nonolefin material.
16. The woven mat fabric with fused layers of claim 1 , wherein the warp and weft elements comprise tapes, wherein the tapes comprise a core layer surrounded by a first surface layer and a second surface layer.
17. The woven mat fabric with fused layers of claim 1 , wherein the warp and weft elements comprise a polyolefin.
18. The woven mat fabric with fused layers of claim 17 , wherein the warp and weft elements comprise a core layer comprising polypropylene and at least one surface layer comprising a propylene copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/083,661 US20110189913A1 (en) | 2005-09-27 | 2011-04-11 | Woven mat fabric with fused layers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72082405P | 2005-09-27 | 2005-09-27 | |
US11/518,964 US20070071960A1 (en) | 2005-09-27 | 2006-09-11 | Moldable fabric with variable constituents |
US13/083,661 US20110189913A1 (en) | 2005-09-27 | 2011-04-11 | Woven mat fabric with fused layers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/518,964 Continuation US20070071960A1 (en) | 2005-09-27 | 2006-09-11 | Moldable fabric with variable constituents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110189913A1 true US20110189913A1 (en) | 2011-08-04 |
Family
ID=37894397
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/518,964 Abandoned US20070071960A1 (en) | 2005-09-27 | 2006-09-11 | Moldable fabric with variable constituents |
US13/083,661 Abandoned US20110189913A1 (en) | 2005-09-27 | 2011-04-11 | Woven mat fabric with fused layers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/518,964 Abandoned US20070071960A1 (en) | 2005-09-27 | 2006-09-11 | Moldable fabric with variable constituents |
Country Status (6)
Country | Link |
---|---|
US (2) | US20070071960A1 (en) |
EP (1) | EP1941089B1 (en) |
CN (1) | CN101273163B (en) |
AT (1) | ATE552367T1 (en) |
IL (1) | IL189325A (en) |
WO (1) | WO2007038137A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140030483A1 (en) * | 2012-07-24 | 2014-01-30 | Warwick Mills Inc. | Multi-layer chemical and biological protection fabric for mobile shelters |
JP2014189921A (en) * | 2013-03-27 | 2014-10-06 | Fukui Prefecture | Conductive woven fabric and method for manufacturing the same, and separator for fuel cell using the same |
US11135756B1 (en) * | 2017-06-15 | 2021-10-05 | Howell B. Eleazer | Composite useful for molded articles |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071960A1 (en) * | 2005-09-27 | 2007-03-29 | Eleazer Howell B | Moldable fabric with variable constituents |
FR2899088B1 (en) * | 2006-03-31 | 2008-06-27 | Mauna Kea Technologies Soc Par | "FIBROUS FLUORESCENCE MICROSCOPY BASED ON METHYLENE BLUE." |
US20080124513A1 (en) * | 2006-09-11 | 2008-05-29 | Eleazer Howell B | Moldable fabric with unidirectional tape yarns |
US20090017322A1 (en) * | 2007-07-11 | 2009-01-15 | Hayes Heather J | Three dimensional molded thermoplastic article |
EP2205784A4 (en) * | 2007-11-05 | 2010-12-01 | Ibco Srl | Antislip sheet material having tapes and monofilaments |
US8236711B1 (en) * | 2008-06-12 | 2012-08-07 | Milliken & Company | Flexible spike and knife resistant composite |
US20090311930A1 (en) * | 2008-06-12 | 2009-12-17 | Yunzhang Wang | Flexible knife resistant composite |
US7958812B2 (en) * | 2008-11-10 | 2011-06-14 | Milliken & Company | Flexible spike and ballistic resistant panel |
US8293353B2 (en) | 2008-11-25 | 2012-10-23 | Milliken & Company | Energy absorbing panel |
CA2744806A1 (en) | 2009-01-27 | 2010-08-05 | Milliken & Company | Consolidated fibrous structure |
US7960024B2 (en) * | 2009-01-27 | 2011-06-14 | Milliken & Company | Multi-layered fiber |
US8029633B2 (en) * | 2009-01-27 | 2011-10-04 | Milliken & Company | Method of forming a consolidated fibrous structure |
US8147957B2 (en) * | 2009-01-27 | 2012-04-03 | Milliken & Company | Consolidated fibrous structure |
US8114507B2 (en) * | 2009-01-27 | 2012-02-14 | Milliken & Company | Multi-layered fiber |
US8119549B2 (en) * | 2009-01-27 | 2012-02-21 | Milliken & Company | Consolidated fibrous structure |
US8211268B1 (en) | 2009-03-20 | 2012-07-03 | Milliken & Company | Tie layer compositions for fiber reinforced thermoplastic—thermoset structural element |
GB2492644B (en) * | 2011-07-04 | 2018-12-05 | Don & Low Ltd | Improved polymer fabrics |
US20140250555A1 (en) * | 2013-03-05 | 2014-09-11 | Richard A. Carlson | Ballistic material with structural stays |
EP2994306B1 (en) | 2013-05-06 | 2018-01-10 | Milliken & Company | Fiber reinforced structural element |
US10442142B1 (en) | 2017-06-15 | 2019-10-15 | Milliken & Company | Vehicle containing a stiff composite |
US11432605B1 (en) | 2017-06-15 | 2022-09-06 | Milliken & Company | Protective garment containing a stiff composite |
US10696243B1 (en) | 2017-06-15 | 2020-06-30 | Milliken & Company | Vehicle components containing composites |
US11280590B1 (en) | 2017-06-15 | 2022-03-22 | Milliken & Company | Protective garment containing a composite |
US10344904B2 (en) | 2017-08-09 | 2019-07-09 | Milliken Infrastructure Solutions, Llc | Strengthened polyethylene tubular member |
US20190049056A1 (en) * | 2017-08-09 | 2019-02-14 | Milliken Infrastructure Solutions, Llc | Method for strengthening a polyethylene tubular member |
EP3665005A1 (en) * | 2017-08-09 | 2020-06-17 | Csc Operating Company, LLC. | Strengthened polyethylene tubular member |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3627605A (en) * | 1969-11-24 | 1971-12-14 | Burlington Industries Inc | Method for making bonded fabric |
US4309487A (en) * | 1968-08-23 | 1982-01-05 | Phillips Petroleum Co. | Laminated armor |
US4316933A (en) * | 1979-05-02 | 1982-02-23 | Fraser Ian E B | Tape for use as the warp and weft of woven fabrics particularly useful for packaging |
US4407885A (en) * | 1981-01-28 | 1983-10-04 | General Electric Company | Composite article |
US4426415A (en) * | 1981-12-11 | 1984-01-17 | V&L Manufacturing Company, Inc. | Tufted carpeting, especially artificial turf, with tufts stitched through multiple layers of pre-woven backing material of differing gauge |
US4705706A (en) * | 1986-09-16 | 1987-11-10 | Avco Synthetic Turf Production Distribution, Inc. | Tufted carpeting having stitches thermally bonded to backing |
US4980227A (en) * | 1987-06-03 | 1990-12-25 | Diatex Co., Ltd. | Netlike sheet and method for producing multilayer yarn for producing the same |
US5124195A (en) * | 1990-01-10 | 1992-06-23 | Allied-Signal Inc. | Flexible coated fibrous webs |
US5437905A (en) * | 1994-05-17 | 1995-08-01 | Park; Andrew D. | Ballistic laminate structure in sheet form |
US5529826A (en) * | 1994-02-15 | 1996-06-25 | Tailor; Dilip K. | Fabric-faced thermoplastic composite panel |
US5578370A (en) * | 1990-02-02 | 1996-11-26 | Don & Low (Holdings) Limited | Molecularly interspersed thermoplastic composite mat |
US5643390A (en) * | 1995-05-04 | 1997-07-01 | The University Of Delaware | Bonding techniques for high performance thermoplastic compositions |
US5840637A (en) * | 1996-09-17 | 1998-11-24 | Albany International Corporation | Yarns of covered high modulus material and fabrics formed therefrom |
US5861202A (en) * | 1994-12-16 | 1999-01-19 | Nippon Petrochemicals Co., Ltd. | Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst |
US5879492A (en) * | 1998-04-17 | 1999-03-09 | Northrop Grumman Corporation | Z-peel sheets |
US5925434A (en) * | 1997-06-12 | 1999-07-20 | Bp Amoco Corporation | Tuftable backing and carpet construction |
US5935651A (en) * | 1994-05-11 | 1999-08-10 | Raytheon Ti Systems, Inc. | High strength, high modulus continuous polymeric material for durable, impact resistant applications |
US5935678A (en) * | 1994-05-17 | 1999-08-10 | Park; Andrew D. | Ballistic laminate structure in sheet form |
US5962101A (en) * | 1997-04-29 | 1999-10-05 | Donald A. Irwin, Sr. | Dimensionally stable tufted carpet |
JP2000045147A (en) * | 1998-07-28 | 2000-02-15 | Boo & Arrow:Kk | Reinforced woven fabric |
US6054086A (en) * | 1995-03-24 | 2000-04-25 | Nippon Petrochemicals Co., Ltd. | Process of making high-strength yarns |
US6147018A (en) * | 1998-09-29 | 2000-11-14 | E. I. Du Pont De Nemours And Company | Hybrid protective composite |
US6156679A (en) * | 1996-12-25 | 2000-12-05 | Chisso Corporation | Heat-fusible composite fiber and non-woven fabric produced from the same |
US6238768B1 (en) * | 1996-06-24 | 2001-05-29 | Dsm N.V. | Antiballistic shaped part |
US6312638B1 (en) * | 1996-10-04 | 2001-11-06 | Btg International | Process of making a compacted polyolefin article |
US6328923B1 (en) * | 1996-10-04 | 2001-12-11 | Btg International Limited | Process of making a compacted polyolefin article |
US6475592B1 (en) * | 1997-04-29 | 2002-11-05 | Darwin Enterprises, Inc. | Carpet backing that provides dimensional stability |
US6509105B2 (en) * | 1988-12-07 | 2003-01-21 | Laminating Technologies, Inc. | Method of making a composite of paper and plastic film and composites |
US20030175475A1 (en) * | 2002-03-13 | 2003-09-18 | Higgins Kenneth B. | Textile constructions, components or materials and related methods |
US20030175474A1 (en) * | 2002-03-13 | 2003-09-18 | Higgins Kenneth B. | Textile constructions with stabilized primary backings and related methods |
US6645610B1 (en) * | 1998-04-20 | 2003-11-11 | Northrop Grumann | Cured composite material formed utilizing Z-peel sheets |
US20030224143A1 (en) * | 2002-02-14 | 2003-12-04 | Ianniello Peter J. | Fuzzy woven layers, geocomposite laminates incorporating them, and related methods |
US6740386B2 (en) * | 2001-05-02 | 2004-05-25 | Burlington Industries, Inc. | Tufted covering for floors and/or walls |
US6824863B1 (en) * | 1999-09-30 | 2004-11-30 | Sumitomo Chemical Company, Limited | Fiber reinforced polypropylene-based composite material |
US20040242103A1 (en) * | 2001-07-19 | 2004-12-02 | Joachim Loos | Polyolefin film, tape or yarn |
US20050003727A1 (en) * | 2003-07-01 | 2005-01-06 | Chiou Minshon J. | Flexible spike/ballistic penetration-resistant articles |
US6897170B2 (en) * | 1998-12-11 | 2005-05-24 | Propex Fabrics, Inc. | Tuftable fabric with balanced construction |
US6949280B2 (en) * | 1999-03-20 | 2005-09-27 | Survival, Incorporated | Method for forming or securing unidirectionally-oriented fiber strands in sheet form, such as for use in a ballistic-resistant panel |
US20060151104A1 (en) * | 2002-09-27 | 2006-07-13 | Jacobs Johannes A J | Method for reinforcing an article |
US7160599B2 (en) * | 2004-04-19 | 2007-01-09 | Owens Corning Fiberglas Technology, Inc. | Recyclable tufted carpet with improved stability and durability |
US20070070164A1 (en) * | 2005-09-27 | 2007-03-29 | Eleazer Howell B | Moldable fibrous construction incorporating non-woven layers |
US20070071960A1 (en) * | 2005-09-27 | 2007-03-29 | Eleazer Howell B | Moldable fabric with variable constituents |
US20070122588A1 (en) * | 2005-11-25 | 2007-05-31 | Advanced Glazing Technologies Limited (Agtl) | Glazing unit with transparent filler |
US7294384B2 (en) * | 2005-09-27 | 2007-11-13 | Milliken & Company | Moldable construction incorporating bonding interface |
US7294383B2 (en) * | 2005-09-27 | 2007-11-13 | Milliken & Company | Moldable construction incorporation non-olefin bonding interface |
US7892379B2 (en) * | 2006-09-11 | 2011-02-22 | Milliken & Company | Moldable fabric with unidirectional tape yarns |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840870A (en) * | 1971-09-25 | 1973-06-15 | ||
EP0344318A4 (en) * | 1987-11-30 | 1990-05-14 | Hagihara Ind | Nonwoven fabric and apparatus for manufacturing same. |
JPH07300763A (en) * | 1994-04-22 | 1995-11-14 | Nippon Petrochem Co Ltd | Nonwoven or woven fabric made of polypropylene |
WO1998012371A1 (en) * | 1996-09-18 | 1998-03-26 | Albany International Corp. | Yarns of covered high modulus material and fabrics formed therefrom |
IT1291580B1 (en) * | 1997-04-16 | 1999-01-11 | Coatex S R L | TEXTILE MATERIAL AS A SUPPORT FOR COAGULATION AND PRODUCT OBTAINED THROUGH THE COAGULATION OF RESINS ON THIS SUPPORT |
-
2006
- 2006-09-11 US US11/518,964 patent/US20070071960A1/en not_active Abandoned
- 2006-09-19 AT AT06815029T patent/ATE552367T1/en active
- 2006-09-19 CN CN2006800358301A patent/CN101273163B/en not_active Expired - Fee Related
- 2006-09-19 EP EP20060815029 patent/EP1941089B1/en not_active Not-in-force
- 2006-09-19 WO PCT/US2006/036650 patent/WO2007038137A1/en active Application Filing
-
2008
- 2008-02-06 IL IL18932508A patent/IL189325A/en active IP Right Grant
-
2011
- 2011-04-11 US US13/083,661 patent/US20110189913A1/en not_active Abandoned
Patent Citations (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4309487A (en) * | 1968-08-23 | 1982-01-05 | Phillips Petroleum Co. | Laminated armor |
US3627605A (en) * | 1969-11-24 | 1971-12-14 | Burlington Industries Inc | Method for making bonded fabric |
US4316933A (en) * | 1979-05-02 | 1982-02-23 | Fraser Ian E B | Tape for use as the warp and weft of woven fabrics particularly useful for packaging |
US4407885A (en) * | 1981-01-28 | 1983-10-04 | General Electric Company | Composite article |
US4426415A (en) * | 1981-12-11 | 1984-01-17 | V&L Manufacturing Company, Inc. | Tufted carpeting, especially artificial turf, with tufts stitched through multiple layers of pre-woven backing material of differing gauge |
US4705706A (en) * | 1986-09-16 | 1987-11-10 | Avco Synthetic Turf Production Distribution, Inc. | Tufted carpeting having stitches thermally bonded to backing |
US4980227A (en) * | 1987-06-03 | 1990-12-25 | Diatex Co., Ltd. | Netlike sheet and method for producing multilayer yarn for producing the same |
US6509105B2 (en) * | 1988-12-07 | 2003-01-21 | Laminating Technologies, Inc. | Method of making a composite of paper and plastic film and composites |
US5124195A (en) * | 1990-01-10 | 1992-06-23 | Allied-Signal Inc. | Flexible coated fibrous webs |
US5578370A (en) * | 1990-02-02 | 1996-11-26 | Don & Low (Holdings) Limited | Molecularly interspersed thermoplastic composite mat |
US5529826A (en) * | 1994-02-15 | 1996-06-25 | Tailor; Dilip K. | Fabric-faced thermoplastic composite panel |
US5935651A (en) * | 1994-05-11 | 1999-08-10 | Raytheon Ti Systems, Inc. | High strength, high modulus continuous polymeric material for durable, impact resistant applications |
US6083583A (en) * | 1994-05-11 | 2000-07-04 | Raytheon Company | High strength, high modulus continuous polymeric material for impact resistant applications |
US5437905A (en) * | 1994-05-17 | 1995-08-01 | Park; Andrew D. | Ballistic laminate structure in sheet form |
US5635288A (en) * | 1994-05-17 | 1997-06-03 | Park; Andrew D. | Ballistic resistant composite for hard-armor application |
US5443883A (en) * | 1994-05-17 | 1995-08-22 | Park; Andrew D. | Ballistic panel |
US5547536A (en) * | 1994-05-17 | 1996-08-20 | Park; Andrew D. | Method for fabricating a ballistic laminate structure |
US5443882A (en) * | 1994-05-17 | 1995-08-22 | Park; Andrew D. | Armored garment |
US5935678A (en) * | 1994-05-17 | 1999-08-10 | Park; Andrew D. | Ballistic laminate structure in sheet form |
US5861202A (en) * | 1994-12-16 | 1999-01-19 | Nippon Petrochemicals Co., Ltd. | Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst |
US6127293A (en) * | 1994-12-16 | 2000-10-03 | Nippon Petrochemicals Co., Ltd. | Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst |
US6054086A (en) * | 1995-03-24 | 2000-04-25 | Nippon Petrochemicals Co., Ltd. | Process of making high-strength yarns |
US5643390A (en) * | 1995-05-04 | 1997-07-01 | The University Of Delaware | Bonding techniques for high performance thermoplastic compositions |
US6238768B1 (en) * | 1996-06-24 | 2001-05-29 | Dsm N.V. | Antiballistic shaped part |
US5840637A (en) * | 1996-09-17 | 1998-11-24 | Albany International Corporation | Yarns of covered high modulus material and fabrics formed therefrom |
US5888915A (en) * | 1996-09-17 | 1999-03-30 | Albany International Corp. | Paper machine clothings constructed of interconnected bicomponent fibers |
US6458727B1 (en) * | 1996-10-04 | 2002-10-01 | University Of Leeds Innovative Limited | Olefin polymers |
US6312638B1 (en) * | 1996-10-04 | 2001-11-06 | Btg International | Process of making a compacted polyolefin article |
US6328923B1 (en) * | 1996-10-04 | 2001-12-11 | Btg International Limited | Process of making a compacted polyolefin article |
US6156679A (en) * | 1996-12-25 | 2000-12-05 | Chisso Corporation | Heat-fusible composite fiber and non-woven fabric produced from the same |
US5962101A (en) * | 1997-04-29 | 1999-10-05 | Donald A. Irwin, Sr. | Dimensionally stable tufted carpet |
US6475592B1 (en) * | 1997-04-29 | 2002-11-05 | Darwin Enterprises, Inc. | Carpet backing that provides dimensional stability |
US6479125B1 (en) * | 1997-04-29 | 2002-11-12 | Darwin Enterprises, Inc. | Backing for tufted carpet that imparts dimensional stability |
US5925434A (en) * | 1997-06-12 | 1999-07-20 | Bp Amoco Corporation | Tuftable backing and carpet construction |
US5879492A (en) * | 1998-04-17 | 1999-03-09 | Northrop Grumman Corporation | Z-peel sheets |
US6645610B1 (en) * | 1998-04-20 | 2003-11-11 | Northrop Grumann | Cured composite material formed utilizing Z-peel sheets |
JP2000045147A (en) * | 1998-07-28 | 2000-02-15 | Boo & Arrow:Kk | Reinforced woven fabric |
US6147018A (en) * | 1998-09-29 | 2000-11-14 | E. I. Du Pont De Nemours And Company | Hybrid protective composite |
US6897170B2 (en) * | 1998-12-11 | 2005-05-24 | Propex Fabrics, Inc. | Tuftable fabric with balanced construction |
US6949280B2 (en) * | 1999-03-20 | 2005-09-27 | Survival, Incorporated | Method for forming or securing unidirectionally-oriented fiber strands in sheet form, such as for use in a ballistic-resistant panel |
US6824863B1 (en) * | 1999-09-30 | 2004-11-30 | Sumitomo Chemical Company, Limited | Fiber reinforced polypropylene-based composite material |
US6740386B2 (en) * | 2001-05-02 | 2004-05-25 | Burlington Industries, Inc. | Tufted covering for floors and/or walls |
US20040242103A1 (en) * | 2001-07-19 | 2004-12-02 | Joachim Loos | Polyolefin film, tape or yarn |
US20030224143A1 (en) * | 2002-02-14 | 2003-12-04 | Ianniello Peter J. | Fuzzy woven layers, geocomposite laminates incorporating them, and related methods |
US6866912B2 (en) * | 2002-03-13 | 2005-03-15 | Milliken & Company | Textile constructions with stabilized primary backings and related methods |
US20030175474A1 (en) * | 2002-03-13 | 2003-09-18 | Higgins Kenneth B. | Textile constructions with stabilized primary backings and related methods |
US20030175475A1 (en) * | 2002-03-13 | 2003-09-18 | Higgins Kenneth B. | Textile constructions, components or materials and related methods |
US20060151104A1 (en) * | 2002-09-27 | 2006-07-13 | Jacobs Johannes A J | Method for reinforcing an article |
US20050003727A1 (en) * | 2003-07-01 | 2005-01-06 | Chiou Minshon J. | Flexible spike/ballistic penetration-resistant articles |
US7160599B2 (en) * | 2004-04-19 | 2007-01-09 | Owens Corning Fiberglas Technology, Inc. | Recyclable tufted carpet with improved stability and durability |
US20070070164A1 (en) * | 2005-09-27 | 2007-03-29 | Eleazer Howell B | Moldable fibrous construction incorporating non-woven layers |
US20070071960A1 (en) * | 2005-09-27 | 2007-03-29 | Eleazer Howell B | Moldable fabric with variable constituents |
US7294384B2 (en) * | 2005-09-27 | 2007-11-13 | Milliken & Company | Moldable construction incorporating bonding interface |
US7294383B2 (en) * | 2005-09-27 | 2007-11-13 | Milliken & Company | Moldable construction incorporation non-olefin bonding interface |
US7300691B2 (en) * | 2005-09-27 | 2007-11-27 | Milliken & Company | Moldable construction incorporating non-olefin bonding interface |
US7378359B2 (en) * | 2005-09-27 | 2008-05-27 | Eleazer Howell B | Moldable fibrous construction incorporating non-woven layers |
US20070122588A1 (en) * | 2005-11-25 | 2007-05-31 | Advanced Glazing Technologies Limited (Agtl) | Glazing unit with transparent filler |
US7892379B2 (en) * | 2006-09-11 | 2011-02-22 | Milliken & Company | Moldable fabric with unidirectional tape yarns |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140030483A1 (en) * | 2012-07-24 | 2014-01-30 | Warwick Mills Inc. | Multi-layer chemical and biological protection fabric for mobile shelters |
US9616257B2 (en) * | 2012-07-24 | 2017-04-11 | Warwick Mills Inc. | Multi-layer chemical and biological protection fabric for mobile shelters |
JP2014189921A (en) * | 2013-03-27 | 2014-10-06 | Fukui Prefecture | Conductive woven fabric and method for manufacturing the same, and separator for fuel cell using the same |
US11135756B1 (en) * | 2017-06-15 | 2021-10-05 | Howell B. Eleazer | Composite useful for molded articles |
Also Published As
Publication number | Publication date |
---|---|
EP1941089B1 (en) | 2012-04-04 |
IL189325A0 (en) | 2008-06-05 |
CN101273163A (en) | 2008-09-24 |
IL189325A (en) | 2013-04-30 |
WO2007038137A1 (en) | 2007-04-05 |
CN101273163B (en) | 2012-06-06 |
ATE552367T1 (en) | 2012-04-15 |
EP1941089A1 (en) | 2008-07-09 |
US20070071960A1 (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1941089B1 (en) | Moldable fabric with variable constituents | |
US10703069B2 (en) | Stab and ballistic resistant articles and the process of making | |
US7892379B2 (en) | Moldable fabric with unidirectional tape yarns | |
US11053617B2 (en) | Ballistic resistant thermoplastic sheet, process of making and its applications | |
CA2604023C (en) | Method of manufacturing a laminate of polymeric tapes as well as a laminate and the use thereof | |
US7378359B2 (en) | Moldable fibrous construction incorporating non-woven layers | |
US8349112B2 (en) | Process for producing fabrics comprising unidirectionally arranged polymeric tapes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |