US20110137228A1 - Use of Green Porphyrins to Treat Neovasculature in the Eye - Google Patents
Use of Green Porphyrins to Treat Neovasculature in the Eye Download PDFInfo
- Publication number
- US20110137228A1 US20110137228A1 US12/849,581 US84958110A US2011137228A1 US 20110137228 A1 US20110137228 A1 US 20110137228A1 US 84958110 A US84958110 A US 84958110A US 2011137228 A1 US2011137228 A1 US 2011137228A1
- Authority
- US
- United States
- Prior art keywords
- green porphyrin
- alkyl
- neovasculature
- formula shown
- green
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000004032 porphyrins Chemical class 0.000 title claims abstract description 82
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 208000002780 macular degeneration Diseases 0.000 claims abstract description 11
- 206010064930 age-related macular degeneration Diseases 0.000 claims abstract description 10
- 238000011282 treatment Methods 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 36
- 210000003161 choroid Anatomy 0.000 claims description 32
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 18
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 125000004181 carboxyalkyl group Chemical group 0.000 claims description 12
- 150000002148 esters Chemical class 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000004391 aryl sulfonyl group Chemical group 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- -1 acyl hydrazone Chemical class 0.000 claims 3
- 238000002428 photodynamic therapy Methods 0.000 abstract description 46
- 239000000906 photoactive agent Substances 0.000 abstract 1
- 239000000975 dye Substances 0.000 description 45
- 210000001519 tissue Anatomy 0.000 description 43
- 230000006378 damage Effects 0.000 description 38
- 238000002347 injection Methods 0.000 description 36
- 239000007924 injection Substances 0.000 description 36
- 210000001525 retina Anatomy 0.000 description 33
- 230000003902 lesion Effects 0.000 description 22
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 21
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 17
- 230000001427 coherent effect Effects 0.000 description 12
- 238000013534 fluorescein angiography Methods 0.000 description 12
- 210000001210 retinal vessel Anatomy 0.000 description 12
- 241000282693 Cercopithecidae Species 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 210000004379 membrane Anatomy 0.000 description 11
- 230000002962 histologic effect Effects 0.000 description 10
- 108091008695 photoreceptors Proteins 0.000 description 9
- 210000002889 endothelial cell Anatomy 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000002502 liposome Substances 0.000 description 7
- 230000002207 retinal effect Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 206010029113 Neovascularisation Diseases 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- 238000010253 intravenous injection Methods 0.000 description 6
- 238000001493 electron microscopy Methods 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 230000002087 whitening effect Effects 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 208000037111 Retinal Hemorrhage Diseases 0.000 description 4
- 206010057430 Retinal injury Diseases 0.000 description 4
- 238000002583 angiography Methods 0.000 description 4
- 230000003118 histopathologic effect Effects 0.000 description 4
- 230000002488 pyknotic effect Effects 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 3
- 108090001030 Lipoproteins Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 206010038848 Retinal detachment Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000004393 visual impairment Effects 0.000 description 3
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 2
- UPXRTVAIJMUAQR-UHFFFAOYSA-N 4-(9h-fluoren-9-ylmethoxycarbonylamino)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound C1C(C(O)=O)N(C(=O)OC(C)(C)C)CC1NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 UPXRTVAIJMUAQR-UHFFFAOYSA-N 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 241000282567 Macaca fascicularis Species 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000001775 bruch membrane Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229960004184 ketamine hydrochloride Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000000649 photocoagulation Effects 0.000 description 2
- 230000002165 photosensitisation Effects 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000005089 vacuolized cytoplasm Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- UZFPOOOQHWICKY-UHFFFAOYSA-N 3-[13-[1-[1-[8,12-bis(2-carboxyethyl)-17-(1-hydroxyethyl)-3,7,13,18-tetramethyl-21,24-dihydroporphyrin-2-yl]ethoxy]ethyl]-18-(2-carboxyethyl)-8-(1-hydroxyethyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(=C(C)C(C=C4N5)=N3)CCC(O)=O)=N2)C)=C(C)C(C(C)O)=C1C=C5C(C)=C4C(C)OC(C)C1=C(N2)C=C(N3)C(C)=C(C(O)C)C3=CC(C(C)=C3CCC(O)=O)=NC3=CC(C(CCC(O)=O)=C3C)=NC3=CC2=C1C UZFPOOOQHWICKY-UHFFFAOYSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical class CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000000853 LDL receptors Human genes 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 206010025421 Macule Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- KCLANYCVBBTKTO-UHFFFAOYSA-N Proparacaine Chemical compound CCCOC1=CC=C(C(=O)OCCN(CC)CC)C=C1N KCLANYCVBBTKTO-UHFFFAOYSA-N 0.000 description 1
- 206010055666 Retinal neovascularisation Diseases 0.000 description 1
- 206010039729 Scotoma Diseases 0.000 description 1
- 208000036038 Subretinal fibrosis Diseases 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 206010053648 Vascular occlusion Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- NJDNXYGOVLYJHP-UHFFFAOYSA-L disodium;2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=CC(=O)C=C2OC2=CC([O-])=CC=C21 NJDNXYGOVLYJHP-UHFFFAOYSA-L 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000004023 fresh frozen plasma Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000009525 mild injury Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 229940105631 nembutal Drugs 0.000 description 1
- 201000003142 neovascular glaucoma Diseases 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229940109328 photofrin Drugs 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229960004293 porfimer sodium Drugs 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 229960003981 proparacaine Drugs 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000004264 retinal detachment Effects 0.000 description 1
- 230000004233 retinal vasculature Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 210000003752 saphenous vein Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000002691 topical anesthesia Methods 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/409—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/555—Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
- A61K49/0036—Porphyrins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0063—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
- A61K49/0069—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
- A61K49/0076—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
- A61K49/0084—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion liposome, i.e. bilayered vesicular structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1275—Lipoproteins; Chylomicrons; Artificial HDL, LDL, VLDL, protein-free species thereof; Precursors thereof
Definitions
- the invention is in the field of photodynamic therapy, specifically related to ocular conditions. More particularly, the invention concerns the use of green porphyrins in photodynamic therapeutic treatment of conditions characterized by unwanted neovasculature in the eye.
- Choroidal neovascularization leads to hemorrhage and fibrosis, with resultant visual loss in a number of eye diseases, including macular degeneration, ocular histoplasmosis syndrome, myopia, and inflammatory diseases.
- Age-related macular degeneration is the leading cause of new blindness in the elderly, and choroidal neovascularization is responsible for 80% of the severe visual loss in patients with this diseases.
- AMD Age-related macular degeneration
- choroidal neovascularization is responsible for 80% of the severe visual loss in patients with this diseases.
- the natural history of the disease is eventual quiescence and regression of the neovascularization process, this usually occurs at the cost of sub-retinal fibrosis and vision loss.
- Developing strategies have sought more selective closure of the blood vessels to preserve the overlying neurosensory retina.
- One such strategy is photodynamic therapy, which relies on low intensity light exposure of photosensitized tissues to produce photochemical effects.
- Photosensitizing dyes are preferentially retained in tumors and neovascular tissue, which allows for selective treatment of the pathologic tissue.
- PDT may be used to cause vascular occlusion in tumors by damaging endothelial cells, as well as a direct cytotoxic effect on tumor cells.
- Photodynamic therapy of conditions in the eye characterized by neovascularization has been attempted over the past several decades using the conventional porphyrin derivatives such as hematoporphyrin derivative and Photofrin porfimer sodium. Problems have been encountered in this context due to interference from eye pigments. In addition, phthalocyanine has been used in photodynamic treatment.
- a newer photosensitizer a member of the group designated “green porphyrins”, is in the class of compounds called benzoporphyrin derivatives (BPD).
- BPD benzoporphyrin derivatives
- This photosensitizer has also been tested to some extent in connection with ocular conditions.
- Schmidt, U. et al. described experiments using BPD coupled with low density lipoprotein (LDL) for the treatment of Greene melanoma (a nonpigmented tumor) implanted into rabbit eyes and achieved necrosis in this context (IOVS (1992) 33:1253 Abstract 2802).
- LDL low density lipoprotein
- This abstract also describes the success of LDL-BPD in achieving thrombosis in a corneal neovascularization model.
- the corneal tissue is distinct from that of the retina and choroid.
- the green porphyrins offer advantages in their selectivity for neovasculature.
- the present applicants have further determined that coupling of the green porphyrins to a carrier such as LDL or as contained in a liposomal formulation provides an advantageous delivery method for the drug to the desired ocular location.
- the invention is directed to diagnosis and treatment of certain conditions of the eye using photodynamic methods and employing green porphyrins as the photoactive compounds.
- the green porphyrins of the invention are described in U.S. Pat. Nos. 4,883,790; 4,920,143; 5,095,030; and 5,171,749, the entire contents of which are incorporated herein by reference. These materials offer advantages of selectivity and effectiveness when employed in protocols directed to the destruction of unwanted ocular neovasculature, especially in the choroid.
- the invention is directed to a method to treat conditions of the eye characterized by unwanted neovasculature, which method comprises administering to a subject in need of such treatment an amount of a liposomal formulation of green porphyrin that will localize in said neovasculature; and irradiating the neovasculature with light absorbed by the green porphyrin.
- the invention is directed to a method to treat conditions of the choroid characterized by unwanted neovascularization, such as AMD, which method comprises administering to a subject in need of such treatment an amount of a green porphyrin that will localize in the neovascularized choroid; and irradiating the choroid with light absorbed by the green porphyrin.
- the invention is directed to a method to treat age-related macular degeneration (AMD) which method comprises administering to a subject in need of such treatment an amount of green porphyrin that will localize in the choroid and irradiating the choroid with light absorbed by the green porphyrin.
- AMD age-related macular degeneration
- FIG. 1 shows preferred forms of the green porphyrins useful in the methods of the invention.
- the green porphyrin is of a formula shown in FIG. 1 or a mixture thereof.
- each of R 1 and R 2 is independently selected from the group consisting of carbalkoxyl (2-6C), alkyl (1-6C), arylsulfonyl (6-10C), cyano and —CONR 5 CO wherein R 5 is aryl (8-10C) or alkyl (1-6C); each R 3 is independently carboxyl, carboxyalkyl (2-6C) or a salt, amide, ester or acylhydrazone thereof or is alkyl (1-6C); R 4 is CH ⁇ CH 2 or —CH(OR 4′ )CH3 wherein R 4′ is H, or alkyl (1-6C) optionally substituted with a hydrophilic substituent. Especially preferred also are green porphyrins of the formula shown in FIG. 1-3 or 1 - 4 or mixtures thereof.
- each of R 1 and R 2 is independently carbalkoxyl (2-6C); one R 3 is carboxyalkyl (2-6C) and the other R 3 is an ester of a carboxyalkyl (2-6C) substituent; and R 4 is —CH ⁇ CH 2 or —CH(OH)CH 3 .
- green porphyrin is of the formula shown in FIG. 1-3 and wherein R 1 and R 2 are methoxycarbonyl; one R 3 is —CH 2 CH 2 COOCH 3 and the other R 3 is CH 2 CH 2 COOH; and R 4 is CH ⁇ CH 2 ; i.e., BPD-MA.
- the green porphyrin is formulated into a delivery system that delivers high concentrations to the target tissue.
- Such formulations may include coupling to a specific binding ligand which may bind to a specific surface component of the neovasculature or by formulation with a carrier that delivers higher concentrations to the target tissue.
- the green porphyrin is prepared as a liposomal formulation.
- Liposomal formulations are believed to deliver the green porphyrin selectively to the low-density lipoprotein component of plasma which, in turn acts as a carrier to deliver the active ingredient more effectively to the neovasculature.
- Increased numbers of LDL receptors have been shown to be associated with neovascularization, and by increasing the partitioning of the green porphyrin into the lipoprotein phase of the blood, it appears to be delivered more efficiently to the neovasculature.
- Green porphyrins, and in particular BPD-MA strongly interact with such lipoproteins.
- LDL itself can be used as a carrier, but LDL is considerably more expensive and less practical than a liposomal formulation.
- LDL, or preferably liposomes are thus preferred carriers for the green porphyrins since green porphyrins strongly interact with lipoproteins and are easily packaged in liposomes.
- Compositions of green porphyrins involving lipocomplexes, including liposomes, are described in U.S. Pat. No. 5,214,036 and in U.S. Ser. No. 07/832,542 filed 5 Feb. 1992, the disclosures of both of these being incorporated herein by reference.
- Liposomal BPD can also be obtained from Quadra Logic Technologies, Inc., Vancouver, British Columbia.
- BPD-MA When injected intravenously, BPD-MA is cleared from the bloodstream with a half-life of about 10-30 minutes, with the highest tissue levels being reached in about three hours after administration by injection and declining rapidly in the first 24 hours. BPD-MA is cleared primarily via bile and feces (60%), with only 4% being cleared via the kidneys and urine. Thus, skin photosensitivity occurs with BPD-MA only transiently, with minimal reactivity after 24 hours in in vivo models.
- the green porphyrin can be administered in any of a wide variety of ways, for example, orally, parenterally, or rectally.
- Parenteral administration such as intravenous, intramuscular, or subcutaneous, is preferred.
- Intravenous injection is especially preferred.
- the dose of green porphyrin can vary widely depending on the tissue to be treated; the physical delivery system in which it is carried, such as in the form of liposome; or whether it is coupled to a target-specific ligand, such as an antibody or an immunologically active fragment.
- the various parameters used for effective, selective photodynamic therapy in the invention are interrelated. Therefore, the dose should also be adjusted with respect to other parameters, for example, fluence, irradiance, duration of the light used in photodynamic therapy, and time interval between administration of the dose and the therapeutic irradiation. All of these parameters should be adjusted to produce significant damage to neovascular tissue without significant damage to the surrounding tissue.
- the dose of green porphyrin used is within the range of from about 0.1 to about 20 mg/kg, preferably from about 0.15-2.0 mg/kg, and even more preferably from about 0.25 to about 0.75 mg/kg.
- the fluence required to close choroidal neovascular tissue tends to increase, for example, from about 50 to about 100 Joules/cm 2 .
- the neovascular tissue or tumor being treated in the eye is irradiated at the wavelength of maximum absorbance of the green porphyrin, usually between about 550 and 695 nm. A wavelength in this range is especially preferred for enhanced penetration into bodily tissues.
- the green porphyrin in its triplet state is thought to interact with oxygen and other compounds to form reactive intermediates, such as singlet oxygen, which can cause disruption of cellular structures.
- Possible cellular targets include the cell membrane, mitochondria, lysosomal membranes, and the nucleus.
- Evidence from tumor and neovascular models indicates that occlusion of the vasculature is a major mechanism of photodynamic therapy, which occurs by damage to endothelial cells, with subsequent platelet adhesion, degranulation, and thrombus formation.
- the fluence during the irradiating treatment can vary widely, depending on type of tissue, depth of target tissue, and the amount of overlying fluid or blood, but preferably varies from about 50-200 Joules/cm 2 .
- the irradiance typically varies from about 150-900 mW/cm 2 , with the range between about 150-600 mW/cm 2 being preferred. However, the use of higher irradiances may be selected as effective and having the advantage of shortening treatment times.
- the optimum time following green porphyrin administration until light treatment can vary widely depending on the mode of administration, the form of administration such as in the form of liposomes or as a complex with LDL, and the type of target tissue.
- an exposure type of 1-20 minutes is often appropriate for retinal neovascular tissue, about 120 minutes for choroidal neovascular tissue, and up to about three hours for tumors.
- effective vascular closure generally occurs at times in the range of about one minute to about three hours following administration of the green porphyrin.
- the time of light irradiation after administration of the green porphyrin may be important as one way of maximizing the selectivity of the treatment, thus minimizing damage to structures other than the target tissues.
- the green porphyrin begins to reach the retinal vasculature by about 7-15 seconds following administration.
- the green porphyrin persists for a period of about 5-15 minutes, depending on the dose given. Treatment within the first five minutes following administration of the green porphyrin should generally be avoided to prevent undue damage to retinal vessels still containing relatively high concentrations of the green porphyrin.
- Closure can usually be observed angiographically by about 40 seconds to a minute in the early frames by hypofluorescence in the treated areas. During the later angiographic frames, a corona of hyperfluorescence begins to appear and then fills the treated area, possibly representing leakage from the adjacent choriocapillaris through damaged retinal pigment epithelium in the treated area. Large retinal vessels in the treated area perfuse following photodynamic therapy, but tend to demonstrate late staining.
- Minimal retinal damage is generally found on histopathologic correlation and is dependent on the fluence and the time interval after irradiation that the green porphyrin is administered. Histopathologic examination usually reveals vessel remnants in the area of choroidal neovascular tissue, but the retinal vessels typically appear normal. Further, there is no indication of systemic toxicity, and cutaneous photosensitization does not appear to develop.
- photodynamic therapy can be used more selectively, relying on the low intensity light exposure of green porphyrins that have become localized within vascular tissue. Complications, such as hemorrhage, are not noted with the invention method.
- photodynamic therapy with a green porphyrin appears to have broad application to clinical ophthalmology in treating such diseases as age-related macular degeneration, neovascular glaucoma, and persistent disc neovascularization in diabetic retinopathy.
- Cynomolgus monkeys weighing 3-4 kg were anesthetized with an intramuscular injection of ketamine hydrochloride (20 mg/kg), diazepam (1 mg/kg), and atropine (0.125 mg/kg), with a supplement of 5-6 mg/kg of ketamine hydrochloride as needed.
- proparacaine 0.5%) was used for topical anesthesia.
- the pupils were dilated with 2.5% phenylephrine and 0.8% tropicamide.
- Choroidal neovascularization was produced in the eyes of the monkeys using a modification of the Ryan model, in which burns are placed in the macula, causing breaks in Bruch's membrane, with a Coherent Argon Dye Laser #920, Coherent Medical Laser, Palo Alto, Calif. (Ohkuma, H. et al. Arch. Ophthalmol. (1983) 101:1102-1110; Ryan, S. J. Arch Ophthalmol (1982) 100:1804-1809). Initially, a power of 300-700 mW for 0.1 seconds was used to form spots of about 100 ⁇ m, but improved rates of neovascularization were obtained with 50 ⁇ spots formed using a power of about 300-450 mW for 0.1 second.
- the resulting choroidal neovascularizations were observed by (1) fundus photography (using a Canon Fundus CF-60Z camera, Lake Success, Long Island, N.Y.); (2) by fluorescein angiography (for example, by using about 0.1 ml/kg body weight of 10% sodium fluorescein via saphenous vein injection); and (3) histologic examination by light and electron microscopy.
- BPD-MA was dissolved in dimethyl sulfoxide (Aldrich Chemical Co., Inc., Milwaukee, Wis.) at a concentration of about 4 mg/ml.
- Dulbeccos phosphate buffered salt solution (Meditech, Washington, D.C.) was then added to the stock to achieve a final BPD concentration of 0.8 mg/ml.
- Human low-density-lipoprotein (LDL) prepared from fresh frozen plasma was added at a ratio of 1:2.5 mg BPD-MA:LDL.
- the green porphyrin dye and dye solutions were protected from light at all times. After mixing, the dye preparation was incubated at 37° for 30 minutes prior to intravenous injection.
- the monkeys were then injected intravenously via a leg vein with 1-2 mg/kg of the BPD-MA complexed with LDL over a five-minute period, followed by a flush of 3-5 cc of normal saline.
- the eyes of the monkeys were irradiated with 692 nm of light from an argon/dye laser (Coherent 920 Coherent Medical Laser, Palo Alto, Calif.), using a Coherent LDS-20 slit lamp.
- the standard fiber was coupled to larger 400 ⁇ m silica optical fiber (Coherent Medical Laser, Pal Alto, Calif.) to allow larger treatment spots as desired.
- Seventeen (17) areas of choroidal neovascularization were treated using a 1250 ⁇ m spot. Treatment spot sizes were confirmed at the treatment plane using a Dial caliper micrometer. Some areas of choroidal neovascularization were treated with several adjacent treatment spots to treat the whole area of choroidal neovascularization.
- One large choroidal neovascular membrane was treated with photodynamic therapy to the nasal half only.
- the photodynamic irradiation treatments were carried out with a plano fundus contact lens (OGFA, Ocular Instruments, Inc., Bellvue, Mass.). Power was verified at The cornea by a power meter (Coherent Fieldmaster, Coherent, Auborn; CA). The fluence at each treatment spot was 50, 75, 100 or 150 Joules/cm 2 . Initially, the irradiance was set at 150 mW/cm 2 to avoid any thermal effect but, as the experiment proceeded, the irradiance was increased to 300 mW/cm 2 or 600 mW/cm 2 to reduce the treatment duration time. The time interval between injection of the green porphyrin dye and the treatment irradiating step ranged from about 1 to about 81 minutes.
- “Dye only” controls which were exposed to dye but not to laser light, were examined in the areas of normal retina/choroid. Areas of choroidal neovascularization were examined angiographically and histologically. “Light only” controls were not performed, since the irradiances used for photodynamic therapy were well below the levels used for clinical laser photocoagulation. (In a related experiment, a minimally detectable lesion using “light-only” required an irradiance of 37 W/cm 2 , about 100 times the light levels used for photodynamic therapy.)
- the condition of the choroidal neovasculature was followed by fundus photography, fluorescein angiography, and histologic examination.
- the eyes of the monkeys were examined by fluorescein angiography acutely and at 24 hours after the photodynamic therapy was given.
- follow-up by fluorescein angiography was performed at 48 hours and at one week, until the eyes were harvested and the animals killed at the following time points: acutely, at 24 hours, 48 hours, and 8 days following photodynamic therapy. Animals were sacrificed with an intravenous injection of 25 mg/mg Nembutal.
- tissue samples were dehydrated, embedded in epon and serially sectioned at one micron. The sections were stained with tolnizin blue and examined with an Olympus photomicroscope.
- tissue samples were post-fixed in 2% osmium tetroxide and dehydrated in ethanol. Sections were stained with uranyl acetate in methanol, stained with Sato's lead stain, and examined with a Philips # CM 10 transmission electron microscope.
- Choroidal neovascular tissue that was treated and followed for eight days showed persistent closure, as shown by hypofluorescense in the early frames of the angiogram. Histologically, the treated areas demonstrated degraded vessel lumens empty of debris. The choriocapillaris was sparse but patent in the treated area. In contrast, areas of choroidal neovascularization not treated by photodynamic therapy demonstrated branching capillaries between Bruch's membrane and the outer retina.
- the following experiment of photodynamic therapy using a liposomal preparation of BPD-MA was conducted to determine the optimal time interval after intravenous injection as a bolus of the BPD-MA over about 20 seconds, followed by a 3-5 cc saline flush, to begin the irradiating step.
- Choroidal neovascularization in cynomolgus monkeys was treated to demonstrate efficacy of the photodynamic therapy.
- Normal choroid tissue was treated to assess relative damage to adjacent tissues.
- the monkeys were initially injected with a green porphyrin dose of 1 mg/kg.
- the eyes of the monkeys were irradiated with an irradiance of 600 mW/cm 2 , and a fluence of 150 J/cm 2 .
- the irradiating light was from an argon/dye laser (Coherent 920 Coherent Medical Laser, Palo Alto, Calif.) equipped with a 200 micron fiber adapted through a LaserLink (Coherent Medical Laser) and a split lamp delivery System (Coherent).
- the eye membranes were treated in the same manner as described in Example 1.
- the normal choroid treated with the same parameters showed whitening of the retina, early hypofluorescence at all time points, and histologic evidence of choriocapillaris (c-c) accompanied by damage to the choroid and retina, particularly at early time points.
- Example 2 Using the general procedure of Example 1, additional experiments were performed using the intravenous injection of liposomal BPD-MA at doses of 0.25, 0.5 and 1 mg/kg. Photodynamic therapy was performed with an irradiance of 600 mW/cm 2 , a fluence of 150 J/cm 2 , and a treatment duration of four minutes, nine seconds.
- Table 3 below describes the lesions produced on normal choroids by administration of 0.5 mg/kg BPD-MA at time points ranging from 5 to 60 minutes:
- fluorescein angiography and histopathology in the above series of experiments demonstrated early hypofluorescence at early time points. Further, the histopathology study showed partial CNV closure at all time points after injection using 80 and 100 minutes as the post-injection interval before the irradiating treatment.
- the fundus appearance was unchanged immediately after treatment, and only slight deep retinal whitening corresponding to the laser irradiation spot appears 24 hours later.
- CNV closure was determined angiographically at 24 hours by early hypofluorescence corresponding to the treated area. As the angiogram progressed most lesions demonstrated staining starting at the periphery of the lesion.
- Table 6 summarizes the effect of PDT on CNV, using different dye doses and variable treatment times after dye injection.
- PDT using a dye dose of 1 mg/kg was performed over 7 membranes in 1 monkey.
- Laser irradiation was performed at each of the following times after dye injection: 5, 20, 40, 60, 80, 100 and 120 minutes.
- CNV closure was induced in all lesions when irradiation was performed 5-100 minutes after dye injection.
- PDT using dye dose of 0.5 mg/kg was performed on 11 membranes in 2 monkeys, with laser irradiation at 10, 20, 30, 40, 50, 60, 80, 100 minutes after dye injection. PDT effect was assessed 24 hours after treatment. CNV closure was induced in 7/11 membranes, that were irradiated at 10, 20, 30, 40 and 50 minutes after dye injection. Only 1/2 membranes irradiated at 50 minutes after dye injection showed angiographic closure. The treatments performed 60 minutes and more after dye injection showed no angiographic closure of the membranes.
- a dye dose of 0.25 mg/kg was found to be the threshold dose for PDT using a light dose of 150 J/cm 2 and 600 mW/cm 2 .
- CNV closure was demonstrated in 2/2 membranes that were irradiated within 20 minutes after dye injection. Only 2/4 CNV irradiated 20-40 minutes after dye injection showed closure. No effect was demonstrated in the CNV that were irradiated more than 40 minutes after dye injection.
- the closed CNV showed vessels packed with red blood cells (RBCs), occasional extravasated ABCs and pockets of fibrin within the tissue as well as in the subretinal space. Most of the stromal cells appeared undamaged.
- RBCs red blood cells
- Treatment selectivity was investigated by performing PDT in normal retina/choroid using the same dye doses and time points of laser irradiation after dye injection. In most cases the closure of the choriocapillaris in normal choroid followed a similar time course as the closure of CNV.
- PDT was performed using dye doses of 0.5, 0.375, 0.25 mg/kg, the retinal structure was well preserved. In none of the cases were retinal detachment or hemorrhage observed. reducing the dye dose resulted in more selective closure of the choriocapillaris with minimal damage to the adjacent tissues. RPE cells were typically damaged at all dye doses.
- 0.25 mg/kg was found to be a threshold dose for induction of choriocapillaris closure. This was achieved with almost no effect on the overlying retina. There was mild, damage to some RPE cells, minimal swelling of photoreceptors, and a few pyknotic nuclei in the ONL.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Gastroenterology & Hepatology (AREA)
- Dermatology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Photodynamic therapy of conditions of the eye characterized by unwanted neovasculature, such as age-related macular degeneration, is effective using green porphyrins as photoactive agents, preferably as liposomal compositions.
Description
- This is a continuation-in-part of U.S. Ser. No. 08/209,473 filed 14 Mar. 1994, the contents of which are incorporated herein by reference.
- The invention is in the field of photodynamic therapy, specifically related to ocular conditions. More particularly, the invention concerns the use of green porphyrins in photodynamic therapeutic treatment of conditions characterized by unwanted neovasculature in the eye.
- Choroidal neovascularization leads to hemorrhage and fibrosis, with resultant visual loss in a number of eye diseases, including macular degeneration, ocular histoplasmosis syndrome, myopia, and inflammatory diseases. Age-related macular degeneration (AMD) is the leading cause of new blindness in the elderly, and choroidal neovascularization is responsible for 80% of the severe visual loss in patients with this diseases. Although the natural history of the disease is eventual quiescence and regression of the neovascularization process, this usually occurs at the cost of sub-retinal fibrosis and vision loss.
- Current treatment of AMD relies on occlusion of the blood vessels using laser photocoagulation. However, such treatment requires thermal destruction of the neovascular tissue, and is accompanied by full-thickness retinal damage, as well as damage to medium and large choroidal vessels. Further, the subject is left with an atrophic scar and visual scotoma. Moreover, recurrences are common, and visual prognosis is poor.
- Developing strategies have sought more selective closure of the blood vessels to preserve the overlying neurosensory retina. One such strategy is photodynamic therapy, which relies on low intensity light exposure of photosensitized tissues to produce photochemical effects. Photosensitizing dyes are preferentially retained in tumors and neovascular tissue, which allows for selective treatment of the pathologic tissue. As a result of the invention, PDT may be used to cause vascular occlusion in tumors by damaging endothelial cells, as well as a direct cytotoxic effect on tumor cells.
- Photodynamic therapy of conditions in the eye characterized by neovascularization has been attempted over the past several decades using the conventional porphyrin derivatives such as hematoporphyrin derivative and Photofrin porfimer sodium. Problems have been encountered in this context due to interference from eye pigments. In addition, phthalocyanine has been used in photodynamic treatment.
- A newer photosensitizer, a member of the group designated “green porphyrins”, is in the class of compounds called benzoporphyrin derivatives (BPD). This photosensitizer has also been tested to some extent in connection with ocular conditions. For example, Schmidt, U. et al. described experiments using BPD coupled with low density lipoprotein (LDL) for the treatment of Greene melanoma (a nonpigmented tumor) implanted into rabbit eyes and achieved necrosis in this context (IOVS (1992) 33:1253 Abstract 2802). This abstract also describes the success of LDL-BPD in achieving thrombosis in a corneal neovascularization model. The corneal tissue is distinct from that of the retina and choroid.
- The present applicants have described treating choroidal neovascularization using LDL-BPD in several abstracts published 15 Mar. 1993. These abstracts include those by Schmidt-Erfurth, U. et al. (abstract 2956); by Haimovici, R. et al. (abstract 2955); and by Walsh, A. W. et al. (abstract 2954). In addition, Lin, S. C. et al. described photodynamic closure of choroidal vessels using liposomal BPD in (abstract 2953). All of the foregoing are published in IOVS (1993) 34:1303. An additional abstract of the present applicants describing LDL-BPD to inhibit choroidal neovasculature is by Moulton, R. S. et al. (abstract 2294), IOVS (1993) 34:1169.
- The green porphyrins offer advantages in their selectivity for neovasculature. The present applicants have further determined that coupling of the green porphyrins to a carrier such as LDL or as contained in a liposomal formulation provides an advantageous delivery method for the drug to the desired ocular location.
- The invention is directed to diagnosis and treatment of certain conditions of the eye using photodynamic methods and employing green porphyrins as the photoactive compounds. The green porphyrins of the invention are described in U.S. Pat. Nos. 4,883,790; 4,920,143; 5,095,030; and 5,171,749, the entire contents of which are incorporated herein by reference. These materials offer advantages of selectivity and effectiveness when employed in protocols directed to the destruction of unwanted ocular neovasculature, especially in the choroid.
- Accordingly, in one aspect, the invention is directed to a method to treat conditions of the eye characterized by unwanted neovasculature, which method comprises administering to a subject in need of such treatment an amount of a liposomal formulation of green porphyrin that will localize in said neovasculature; and irradiating the neovasculature with light absorbed by the green porphyrin.
- In another aspect, the invention is directed to a method to treat conditions of the choroid characterized by unwanted neovascularization, such as AMD, which method comprises administering to a subject in need of such treatment an amount of a green porphyrin that will localize in the neovascularized choroid; and irradiating the choroid with light absorbed by the green porphyrin.
- In still another aspect, the invention is directed to a method to treat age-related macular degeneration (AMD) which method comprises administering to a subject in need of such treatment an amount of green porphyrin that will localize in the choroid and irradiating the choroid with light absorbed by the green porphyrin.
-
FIG. 1 shows preferred forms of the green porphyrins useful in the methods of the invention. - In general, the green porphyrin is of a formula shown in
FIG. 1 or a mixture thereof. - Referring to
FIG. 1 , in preferred embodiments each of R1 and R2 is independently selected from the group consisting of carbalkoxyl (2-6C), alkyl (1-6C), arylsulfonyl (6-10C), cyano and —CONR5CO wherein R5 is aryl (8-10C) or alkyl (1-6C); each R3 is independently carboxyl, carboxyalkyl (2-6C) or a salt, amide, ester or acylhydrazone thereof or is alkyl (1-6C); R4 is CH═CH2 or —CH(OR4′)CH3 wherein R4′ is H, or alkyl (1-6C) optionally substituted with a hydrophilic substituent. Especially preferred also are green porphyrins of the formula shown inFIG. 1-3 or 1-4 or mixtures thereof. - More preferred are embodiments are those wherein the green porphyrin is of the formula shown in
FIG. 1-3 or 1-4 or a mixture thereof and wherein each of R1 and R2 is independently carbalkoxyl (2-6C); one R3 is carboxyalkyl (2-6C) and the other R3 is an ester of a carboxyalkyl (2-6C) substituent; and R4 is —CH═CH2 or —CH(OH)CH3. - Still more preferred are embodiments wherein green porphyrin is of the formula shown in
FIG. 1-3 and wherein R1 and R2 are methoxycarbonyl; one R3 is —CH2CH2COOCH3 and the other R3 is CH2CH2COOH; and R4 is CH═CH2; i.e., BPD-MA. - The green porphyrin is formulated into a delivery system that delivers high concentrations to the target tissue. Such formulations may include coupling to a specific binding ligand which may bind to a specific surface component of the neovasculature or by formulation with a carrier that delivers higher concentrations to the target tissue.
- In one preferred embodiment, the green porphyrin is prepared as a liposomal formulation. Liposomal formulations are believed to deliver the green porphyrin selectively to the low-density lipoprotein component of plasma which, in turn acts as a carrier to deliver the active ingredient more effectively to the neovasculature. Increased numbers of LDL receptors have been shown to be associated with neovascularization, and by increasing the partitioning of the green porphyrin into the lipoprotein phase of the blood, it appears to be delivered more efficiently to the neovasculature. Green porphyrins, and in particular BPD-MA, strongly interact with such lipoproteins. LDL itself can be used as a carrier, but LDL is considerably more expensive and less practical than a liposomal formulation. LDL, or preferably liposomes, are thus preferred carriers for the green porphyrins since green porphyrins strongly interact with lipoproteins and are easily packaged in liposomes. Compositions of green porphyrins involving lipocomplexes, including liposomes, are described in U.S. Pat. No. 5,214,036 and in U.S. Ser. No. 07/832,542 filed 5 Feb. 1992, the disclosures of both of these being incorporated herein by reference. Liposomal BPD can also be obtained from Quadra Logic Technologies, Inc., Vancouver, British Columbia.
- When injected intravenously, BPD-MA is cleared from the bloodstream with a half-life of about 10-30 minutes, with the highest tissue levels being reached in about three hours after administration by injection and declining rapidly in the first 24 hours. BPD-MA is cleared primarily via bile and feces (60%), with only 4% being cleared via the kidneys and urine. Thus, skin photosensitivity occurs with BPD-MA only transiently, with minimal reactivity after 24 hours in in vivo models.
- The green porphyrin can be administered in any of a wide variety of ways, for example, orally, parenterally, or rectally. Parenteral administration, such as intravenous, intramuscular, or subcutaneous, is preferred. Intravenous injection is especially preferred.
- The dose of green porphyrin can vary widely depending on the tissue to be treated; the physical delivery system in which it is carried, such as in the form of liposome; or whether it is coupled to a target-specific ligand, such as an antibody or an immunologically active fragment.
- It should be noted that the various parameters used for effective, selective photodynamic therapy in the invention are interrelated. Therefore, the dose should also be adjusted with respect to other parameters, for example, fluence, irradiance, duration of the light used in photodynamic therapy, and time interval between administration of the dose and the therapeutic irradiation. All of these parameters should be adjusted to produce significant damage to neovascular tissue without significant damage to the surrounding tissue. Typically, the dose of green porphyrin used is within the range of from about 0.1 to about 20 mg/kg, preferably from about 0.15-2.0 mg/kg, and even more preferably from about 0.25 to about 0.75 mg/kg.
- Specifically, as the green porphyrin dose is reduced from about 2 to about 1 mg/kg, the fluence required to close choroidal neovascular tissue tends to increase, for example, from about 50 to about 100 Joules/cm2.
- After the photosensitizing green porphyrin has been administered, the neovascular tissue or tumor being treated in the eye is irradiated at the wavelength of maximum absorbance of the green porphyrin, usually between about 550 and 695 nm. A wavelength in this range is especially preferred for enhanced penetration into bodily tissues.
- As a result of being irradiated, the green porphyrin in its triplet state is thought to interact with oxygen and other compounds to form reactive intermediates, such as singlet oxygen, which can cause disruption of cellular structures. Possible cellular targets include the cell membrane, mitochondria, lysosomal membranes, and the nucleus. Evidence from tumor and neovascular models indicates that occlusion of the vasculature is a major mechanism of photodynamic therapy, which occurs by damage to endothelial cells, with subsequent platelet adhesion, degranulation, and thrombus formation.
- The fluence during the irradiating treatment can vary widely, depending on type of tissue, depth of target tissue, and the amount of overlying fluid or blood, but preferably varies from about 50-200 Joules/cm2.
- The irradiance typically varies from about 150-900 mW/cm2, with the range between about 150-600 mW/cm2 being preferred. However, the use of higher irradiances may be selected as effective and having the advantage of shortening treatment times.
- The optimum time following green porphyrin administration until light treatment can vary widely depending on the mode of administration, the form of administration such as in the form of liposomes or as a complex with LDL, and the type of target tissue. As a specific example, an exposure type of 1-20 minutes is often appropriate for retinal neovascular tissue, about 120 minutes for choroidal neovascular tissue, and up to about three hours for tumors. Thus, effective vascular closure generally occurs at times in the range of about one minute to about three hours following administration of the green porphyrin.
- The time of light irradiation after administration of the green porphyrin may be important as one way of maximizing the selectivity of the treatment, thus minimizing damage to structures other than the target tissues. For a primate, it is believed that the green porphyrin begins to reach the retinal vasculature by about 7-15 seconds following administration. Typically, the green porphyrin persists for a period of about 5-15 minutes, depending on the dose given. Treatment within the first five minutes following administration of the green porphyrin should generally be avoided to prevent undue damage to retinal vessels still containing relatively high concentrations of the green porphyrin.
- Clinical examination and fundus photography typically reveal no color change immediately following photodynamic therapy, although a mild retinal whitening occurs in some cases after about 24 hours. Closure of choroidal neovascularization, however, is preferably confirmed histologically by the observation of damage to endothelial cells. Vacuolated cytoplasm and abnormal nuclei can become apparent as early as 1-2 hours following photodynamic therapy, with disruption of neovascular tissue typically becoming more apparent by about 24 hours after light treatment. Associated damage to the retinal pigment epithelium (RPE), pyknotic nuclei in the outer nuclear layer, and loss of photoreceptors may also be observed. However, the inner retina usually appears relatively undamaged, as shown by control studies using photodynamic therapy with BPD-MA on a normal retina and choroid showing no damage to large choroidal and retinal vessels.
- Closure can usually be observed angiographically by about 40 seconds to a minute in the early frames by hypofluorescence in the treated areas. During the later angiographic frames, a corona of hyperfluorescence begins to appear and then fills the treated area, possibly representing leakage from the adjacent choriocapillaris through damaged retinal pigment epithelium in the treated area. Large retinal vessels in the treated area perfuse following photodynamic therapy, but tend to demonstrate late staining.
- Minimal retinal damage is generally found on histopathologic correlation and is dependent on the fluence and the time interval after irradiation that the green porphyrin is administered. Histopathologic examination usually reveals vessel remnants in the area of choroidal neovascular tissue, but the retinal vessels typically appear normal. Further, there is no indication of systemic toxicity, and cutaneous photosensitization does not appear to develop.
- As a result of the invention, photodynamic therapy can be used more selectively, relying on the low intensity light exposure of green porphyrins that have become localized within vascular tissue. Complications, such as hemorrhage, are not noted with the invention method. Thus, photodynamic therapy with a green porphyrin appears to have broad application to clinical ophthalmology in treating such diseases as age-related macular degeneration, neovascular glaucoma, and persistent disc neovascularization in diabetic retinopathy.
- The following examples are to illustrate but not to limit the invention.
- Cynomolgus monkeys weighing 3-4 kg were anesthetized with an intramuscular injection of ketamine hydrochloride (20 mg/kg), diazepam (1 mg/kg), and atropine (0.125 mg/kg), with a supplement of 5-6 mg/kg of ketamine hydrochloride as needed. For topical anesthesia, proparacaine (0.5%) was used. The pupils were dilated with 2.5% phenylephrine and 0.8% tropicamide.
- Choroidal neovascularization was produced in the eyes of the monkeys using a modification of the Ryan model, in which burns are placed in the macula, causing breaks in Bruch's membrane, with a Coherent Argon Dye Laser #920, Coherent Medical Laser, Palo Alto, Calif. (Ohkuma, H. et al. Arch. Ophthalmol. (1983) 101:1102-1110; Ryan, S. J. Arch Ophthalmol (1982) 100:1804-1809). Initially, a power of 300-700 mW for 0.1 seconds was used to form spots of about 100 μm, but improved rates of neovascularization were obtained with 50μ spots formed using a power of about 300-450 mW for 0.1 second.
- The resulting choroidal neovascularizations were observed by (1) fundus photography (using a Canon Fundus CF-60Z camera, Lake Success, Long Island, N.Y.); (2) by fluorescein angiography (for example, by using about 0.1 ml/kg body weight of 10% sodium fluorescein via saphenous vein injection); and (3) histologic examination by light and electron microscopy.
- Immediately before use, BPD-MA was dissolved in dimethyl sulfoxide (Aldrich Chemical Co., Inc., Milwaukee, Wis.) at a concentration of about 4 mg/ml. Dulbeccos phosphate buffered salt solution (Meditech, Washington, D.C.) was then added to the stock to achieve a final BPD concentration of 0.8 mg/ml. Human low-density-lipoprotein (LDL) prepared from fresh frozen plasma was added at a ratio of 1:2.5 mg BPD-MA:LDL. The green porphyrin dye and dye solutions were protected from light at all times. After mixing, the dye preparation was incubated at 37° for 30 minutes prior to intravenous injection. The monkeys were then injected intravenously via a leg vein with 1-2 mg/kg of the BPD-MA complexed with LDL over a five-minute period, followed by a flush of 3-5 cc of normal saline.
- Following this intravenous injection, the eyes of the monkeys were irradiated with 692 nm of light from an argon/dye laser (Coherent 920 Coherent Medical Laser, Palo Alto, Calif.), using a Coherent LDS-20 slit lamp. The standard fiber was coupled to larger 400 μm silica optical fiber (Coherent Medical Laser, Pal Alto, Calif.) to allow larger treatment spots as desired. Seventeen (17) areas of choroidal neovascularization were treated using a 1250 μm spot. Treatment spot sizes were confirmed at the treatment plane using a Dial caliper micrometer. Some areas of choroidal neovascularization were treated with several adjacent treatment spots to treat the whole area of choroidal neovascularization. One large choroidal neovascular membrane was treated with photodynamic therapy to the nasal half only.
- The photodynamic irradiation treatments were carried out with a plano fundus contact lens (OGFA, Ocular Instruments, Inc., Bellvue, Mass.). Power was verified at The cornea by a power meter (Coherent Fieldmaster, Coherent, Auborn; CA). The fluence at each treatment spot was 50, 75, 100 or 150 Joules/cm2. Initially, the irradiance was set at 150 mW/cm2 to avoid any thermal effect but, as the experiment proceeded, the irradiance was increased to 300 mW/cm2 or 600 mW/cm2 to reduce the treatment duration time. The time interval between injection of the green porphyrin dye and the treatment irradiating step ranged from about 1 to about 81 minutes.
- A number of different combinations of parameter values were studied and are summarized below in Table 1:
-
TABLE 1 IRRADIANCE AT 150 mW/cm2 Number of Duration of Time after Closure CNV Dye dose Fluence Treatment Injection by Treated (mg/kg) (J/cm2) (mins) (mins) Angiography 2 2 50 5.6 18, 38 2/2 1 2 75 8.3 81 1/1 1 2 100 11.2 22 1/1 2 1 50 5.6 5, 30 0/2 3 1 100 11.2 1, 2 3/3 and 5 4 1 150 16.6 14-43 3/4 - “Dye only” controls, which were exposed to dye but not to laser light, were examined in the areas of normal retina/choroid. Areas of choroidal neovascularization were examined angiographically and histologically. “Light only” controls were not performed, since the irradiances used for photodynamic therapy were well below the levels used for clinical laser photocoagulation. (In a related experiment, a minimally detectable lesion using “light-only” required an irradiance of 37 W/cm2, about 100 times the light levels used for photodynamic therapy.)
- Following photodynamic therapy, the monkeys were returned to an animal care facility. No attempt was made to occlude the animals' eyes, but the room in which they were housed was darkened overnight.
- The condition of the choroidal neovasculature was followed by fundus photography, fluorescein angiography, and histologic examination. In particular, the eyes of the monkeys were examined by fluorescein angiography acutely and at 24 hours after the photodynamic therapy was given. In some cases, follow-up by fluorescein angiography was performed at 48 hours and at one week, until the eyes were harvested and the animals killed at the following time points: acutely, at 24 hours, 48 hours, and 8 days following photodynamic therapy. Animals were sacrificed with an intravenous injection of 25 mg/mg Nembutal.
- To perform the histologic examination, all eyes were enucleated under deep anesthesia and fixed overnight in modified Karnovsky's fixative, and then transferred to 0.1M phosphate buffer, pH 7.2 at 4° C. Both light microscopy and electron microscopy were used for these studies. For light microscopy, tissue samples were dehydrated, embedded in epon and serially sectioned at one micron. The sections were stained with tolnizin blue and examined with an Olympus photomicroscope. For electron microscopy, tissue samples were post-fixed in 2% osmium tetroxide and dehydrated in ethanol. Sections were stained with uranyl acetate in methanol, stained with Sato's lead stain, and examined with a Philips # CM 10 transmission electron microscope.
- Using the low irradiance level of 150 mW/cm2 to minimize any thermal component of the treatment, green porphyrin doses of 1-2 mg/kg of BPD-MA/LDL, and fluences of 50-150 Joules/cm2, choroidal neovascularization was effectively closed. Using the higher 2 mg/kg dose effectively closed choroidal neovascularizations at even the lowest 50 Joules/cm2 fluence. When the green porphyrin dose was decreased to the decrease the damage to surrounding tissues to 1 mg/kg of BPD-MA/LDL, the fluence required to effectively close choroidal neovascular tissue increased to 100 Joules/cm2. At 100 and 150 Joules/cm2, the treated choroidal neovascular tissue was angiographically closed, as shown by hypofluorescence in the area of treatment.
- Prior to photodynamic therapy, the areas of choroidal neovascularization exhibited a gray sub-retinal elevation that leaked profusely on fluorescein angiography. There was no apparent color change in the treated areas either during or immediately after photodynamic treatment. However, 24 hours after the irradiating step, there was mild retinal whitening in the treated areas.
- Further fluorescein angiography showed hypofluorescence in the treated areas, with no apparent filling of the associated neovascular tissues. Retinal vessels within the treated areas were perfused, but stained later. A hyperfluorescent rim at the border of the treated area was apparent in the later frames of the angiograph, and the rim then progressed to fill the treated area. Although mild staining of retinal vessels was noted angiographically, no complications, such as serous retinal detachment or hemorrhage, were noted.
- On histopathologic examination of the 2 mg/kg dose samples, there was marked disruption of the treated choroidal neovascular tissue with disrupted endothelial cells. The choriocapillaris was also occluded. Although large choroidal vessels were unaffected, extravasated red blood cells were noted in the choroid. Retinal pigment epithelium (RPE) damage was noted as well with vacuolated cells, with the outer nuclear layer demonstrating pyknotic nuclei and disrupted architecture. No histologic abnormality of the retinal vessels was seen.
- Histopathologic examination of the 1 mg/kg dose samples showed damage to endothelial cells in the choroidal neovascular tissue, with abnormal nuclei and disrupted cytoplasm in the endothelial cells. The lumens of the vessels in the choroidal neovascular tissue were occluded by fibrin acutely and were closed by 24 hours after treatment. Closure of the choriocapillaris was also noted. At 0.24 hours, the retinal pigment epithelium (RPE) appeared abnormal with vacuolated cytoplasm. Pyknotic nuclei in the inner and outer layer indicated damage secondary to the laser injury used to induce the neovascularization in this model. Retinal vessels appeared to be undamaged.
- Choroidal neovascular tissue that was treated and followed for eight days showed persistent closure, as shown by hypofluorescense in the early frames of the angiogram. Histologically, the treated areas demonstrated degraded vessel lumens empty of debris. The choriocapillaris was sparse but patent in the treated area. In contrast, areas of choroidal neovascularization not treated by photodynamic therapy demonstrated branching capillaries between Bruch's membrane and the outer retina.
- No adverse effects of photodynamic therapy with the green porphyrin were noted. There was no associated serous retinal detachment, retinal or sub-retinal hemorrhage, or post-treatment inflammation. Further, no adverse systemic effects of the dye administration were noted. However, the low irradiance forced treatment times to be long—about 16.6 minutes to yield 150 Joules/cm2.
- To make clinical treatments shorter, additional experiments were performed using higher irradiance values. Experience with higher irradiance indicated that no thermal damage would take place with irradiances as high as 1800 mW/cm2. Moulton et al., “Response of Retinal and Choroidal Vessels to Photodynamic. Therapy Using Benzoporphyrin Derivative Monoacid”, IOVS 34, 1169 (1993), Abstract 2294-58. Therefore, irradiances of 300 mW/cm2 and 600 mW/cm2 were also used to treat choroidal neovascular tissue in accordance with the procedures described in Example 1. The results showed that shortened treatment times effectively closed the choroidal neovascular tissue, as indicated below in Table 2.
-
TABLE 2 IRRADIANCE OVER 150 mW/cm2 Time Dye Irra- Duration after Number dose diance of Treat- Injec- Closure by of CNV (mg/ Fluence (mW/ ment tion Angiog- Treated kg) (J/cm2) cm2) (mins) (mins) raphy 2 1 150 300 8.3 5, 53 2/2 2 1 150 600 4.7 22, 69 2/2 - Occlusion of the choroidal neovascular tissue and subjacent choriocapillaris was observed, as well as damage to the retinal pigment epithelium and outer retina.
- The following experiment of photodynamic therapy using a liposomal preparation of BPD-MA was conducted to determine the optimal time interval after intravenous injection as a bolus of the BPD-MA over about 20 seconds, followed by a 3-5 cc saline flush, to begin the irradiating step. Choroidal neovascularization in cynomolgus monkeys was treated to demonstrate efficacy of the photodynamic therapy. Normal choroid tissue was treated to assess relative damage to adjacent tissues.
- The monkeys were initially injected with a green porphyrin dose of 1 mg/kg. At predetermined time intervals following this injection, the eyes of the monkeys were irradiated with an irradiance of 600 mW/cm2, and a fluence of 150 J/cm2. The irradiating light was from an argon/dye laser (Coherent 920 Coherent Medical Laser, Palo Alto, Calif.) equipped with a 200 micron fiber adapted through a LaserLink (Coherent Medical Laser) and a split lamp delivery System (Coherent). Other than these differences, the eye membranes were treated in the same manner as described in Example 1. All areas of treated choroidal neovasculature for all time points after the liposomal BPD-MA injection showed whitening of the retina and early hypofluorescense on fluorescein angiography when measured one week after treatment. On histology, there was evidence of partial closure of choroidal neovasculature at the early time points, no effect at mid-time points, and more effective closure at late irradiation time points, e.g., at 80 and 100 minutes.
- The normal choroid treated with the same parameters showed whitening of the retina, early hypofluorescence at all time points, and histologic evidence of choriocapillaris (c-c) accompanied by damage to the choroid and retina, particularly at early time points.
- Using the general procedure of Example 1, additional experiments were performed using the intravenous injection of liposomal BPD-MA at doses of 0.25, 0.5 and 1 mg/kg. Photodynamic therapy was performed with an irradiance of 600 mW/cm2, a fluence of 150 J/cm2, and a treatment duration of four minutes, nine seconds.
- The effects of treatment were assessed by fundus photography and fluorescein angiography, and then confirmed by light and electron microscopy. Photodynamic therapy of normal choroid tissue demonstrated the effect on adjacent structures, such as the retina, while the treatment of choroid neovascular tissue demonstrated efficacy.
- Table 3 below describes the lesions produced on normal choroids by administration of 0.5 mg/kg BPD-MA at time points ranging from 5 to 60 minutes:
-
TABLE 3 0.5 mg/kg, NORMAL CHOROID Time after injection Fluorescein (min) Angiography Histology 5 Hypofluorescence c-c and large choroidal vessel closure; outer and inner retina damage. 20 Hypofluorescence; cc closure; damage retinal vessels - to outer retina normal 40 Mild early cc open (not center hypofluorescence of lesion); outer retina damage 60 Early cc closed; outer hypofluorescence; retina damage; less than the 20- inner retina fairly minute lesion good. described above
When 0.5 mg/kg BPD-MA was also used to treat choroidal neovasculature under the same conditions, marked hypofluorescence corresponding to closure of choroid neovasculature was exhibited in areas irradiated at times of 5, 20 and 40 minutes after injection. When 50 minutes after injection were allowed to elapse before photodynamic irradiation was begun, there was less hypofluorescence and presumably less effective closure. - The study was then repeated with the green porphyrin dose decreased to 0.25 mg/kg. Table 4 below describes the lesions produced on normal choroids by treatments with 0.25 mg/kg, 600 mW/cm2, and 150 J/cm2 at time points ranging from 5 to 60 minutes:
-
TABLE 4 0.25 mg/kg, NORMAL CHOROID Time after injection Fluorescein (min) Angiography Histology 10 Early c-c closure; hypofluorescence choroidal vessel - normal; RPE damaged; retinal vessels - normal; mild damage to outer retina 20 Early Same as 10-minute hypofluorescence lesion above 40 Faint early Patchy cc closure; hypofluorescence; less damage to RPE late staining and outer retina 60 Not demonstrated No effect on cc; mild vacuolization of RPE - When the above study was repeated using the same green porphyrin dose of 0.25 mg/kg and irradiance of 600 mW/cm2, but with a reduced fluence of 100 J/cm2, the same angiographic and histologic pattern was exhibited as described above. However, cc was open in the 40-minute lesion.
- In the last portion of these experiments, a green porphyrin dose of 0.25 mg/kg was used to treat experimental choroidal neovascularization with an irradiance of 600 mW/cm2 and a fluence of 150 J/cm2 at elapsed time points ranging from 5 to 100 minutes. This combination of conditions caused effective cc closure with only minimal damage to the outer retina. The results are shown in Table 5 below:
-
TABLE 5 0.25 mg/kg, PDT over CNV Time after injection Fluorescein (min) Angiography Histology 5 Early Partially closed hypofluorescence CNV; c-c closed; damage to inner retina 20 Early CNV - open Vessel, hypofluorescence; fibrin and clots; less than the 5- inner retina looks minute lesion fine 30 Some Minimal effect on hypofluorescense CNV next to CNV 40 Hypofluorescence; Minimal effect on questionable change CNV compared to previous reaction 60 Hypofluorescence Minimal effect on CNV 80 Hypofluorescence Partial closure of CNV; retina over CNV looks intact 100 Hypofluorescence CNV partially closed - Thus, fluorescein angiography and histopathology in the above series of experiments demonstrated early hypofluorescence at early time points. Further, the histopathology study showed partial CNV closure at all time points after injection using 80 and 100 minutes as the post-injection interval before the irradiating treatment.
- In summary, acceptable destruction of Choroidal neovascular tissue at all tested doses of BPD-MA was shown by fluorescein angiography and histology. However, the lower doses appeared to increase selectivity, as assessed by treatment of a normal choroid. Effective choriocapillaris closure in normal choroids with minimal retinal damage was produced by irradiating at a time about 10 minutes, 20 seconds after injection of the green porphyrin at a dose of 0.25 mg/kg. By adjusting the dose, the time of irradiation after green porphyrin injection, and fluence, one can improve even further the selectivity of the green porphyrin. However, the liposomal preparation of BPD-MA was clearly demonstrated to be a potent photosensitizer.
- Using the techniques of Examples 1-4, a total of 61 areas of experimental CNV in 9 monkeys were treated with PDT using BPD-MA. Effective CNV closure was demonstrated by fluorescein angiography at all tested dye doses: 1, 0.5, 0.375, and 0.25 mg/kg. The lower the dose, the shorter the time interval after dye injection in which laser irradiation produced CNV closure.
- The fundus appearance was unchanged immediately after treatment, and only slight deep retinal whitening corresponding to the laser irradiation spot appears 24 hours later. CNV closure was determined angiographically at 24 hours by early hypofluorescence corresponding to the treated area. As the angiogram progressed most lesions demonstrated staining starting at the periphery of the lesion.
- Table 6 summarizes the effect of PDT on CNV, using different dye doses and variable treatment times after dye injection. PDT using a dye dose of 1 mg/kg was performed over 7 membranes in 1 monkey. Laser irradiation was performed at each of the following times after dye injection: 5, 20, 40, 60, 80, 100 and 120 minutes. CNV closure was induced in all lesions when irradiation was performed 5-100 minutes after dye injection.
-
TABLE 6 Angiographic Closure of CNV Time (min) of Dye Dose No. Lesions Px after dye mg/kg CNV injection CNV closure 1 7 5-100 6/7 >100 0/1 0.5 11 <60 7/8 60-100 0/3 0.375 29 <50 16/18 50-100 3/11 0.25 14 <20 2/2 20-40 2/4 40-100 0/8 - PDT using dye dose of 0.5 mg/kg was performed on 11 membranes in 2 monkeys, with laser irradiation at 10, 20, 30, 40, 50, 60, 80, 100 minutes after dye injection. PDT effect was assessed 24 hours after treatment. CNV closure was induced in 7/11 membranes, that were irradiated at 10, 20, 30, 40 and 50 minutes after dye injection. Only 1/2 membranes irradiated at 50 minutes after dye injection showed angiographic closure. The treatments performed 60 minutes and more after dye injection showed no angiographic closure of the membranes.
- 29 areas of CNV in 5 monkeys were treated with PDT using BPD-MA at dose of 0.375 mg/kg. All treated CNV membranes were assessed angiographically at 24 hours. As indicated in Table 6, 7/8 CNV irradiated within 50 minutes after injection demonstrated angiographic closure. Only 3/11 membranes irradiated more than 50 minutes after dye injection demonstrated angiographic closure.
- A dye dose of 0.25 mg/kg was found to be the threshold dose for PDT using a light dose of 150 J/cm2 and 600 mW/cm2. CNV closure was demonstrated in 2/2 membranes that were irradiated within 20 minutes after dye injection. Only 2/4 CNV irradiated 20-40 minutes after dye injection showed closure. No effect was demonstrated in the CNV that were irradiated more than 40 minutes after dye injection.
- Histologic confirmation of CNV closure was evident at all tested dye doses: 1, 0.5, 0.375, and 0.25 mg/kg.
- On light microscopy the closed CNV showed vessels packed with red blood cells (RBCs), occasional extravasated ABCs and pockets of fibrin within the tissue as well as in the subretinal space. Most of the stromal cells appeared undamaged.
- On electron microscopy the closed vessels appeared packed with RBCs and platelets. The endothelial cells were missing or severely damaged. Extravasated RBCs and occasional white blood cells (WBCs) were found near the vessel remnants. At 0.25 mg/kg the vessels were packed with RBCs but the endothelial cells seemed to be surviving the treatment.
- Treatment selectivity was investigated by performing PDT in normal retina/choroid using the same dye doses and time points of laser irradiation after dye injection. In most cases the closure of the choriocapillaris in normal choroid followed a similar time course as the closure of CNV. When PDT was performed using dye doses of 0.5, 0.375, 0.25 mg/kg, the retinal structure was well preserved. In none of the cases were retinal detachment or hemorrhage observed. reducing the dye dose resulted in more selective closure of the choriocapillaris with minimal damage to the adjacent tissues. RPE cells were typically damaged at all dye doses.
- The assessment of the damage to the retina and choroid was graded according to the histologic findings for the retina/choroid at different levels, as follows:
- Grade 1: RPE only or RPE+slight photoreceptor changes+occasional pyknosis in the ONL; with or without choriocapillaris (c-c) closure;
- Grade 2: Choriocapillaris closure+RPE+photoreceptors+10-20% pyknosis in the ONL;
- Grade 3: C-c closure+RPE+photoreceptors+ONL pyknosis >50%;
- Grade 4: C-c closure+RPE+photoreceptors+ONL pyknosis >500;
- Grade 5: C-c closure+RPE+photoreceptors+ONL pyknosis >50%+choroidal vessel damage or retinal vessel or inner retinal damage;
- A total of 38 PDT spots were placed in normal retina/choroid. The treatment parameters and the degree of effect are summarized in Table 7.
-
TABLE 7 PDT effect on normal retina/choroid Time (min) of No. of lesions after dye No. per histologic grading Dye Dose injection Lesions 1 2 3 4 5 1 mg/kg <60 * 2 2 60-100 * 3 3 0.5 mg/kg <20 1 1 20-60 3 3 0.375 mg/kg <20 3 1 1 1 20-50 9 2 4 2 1 50-100 11 1 5 5 0.25 mg/kg <20 1 1 20-40 1 1 40-60 2 2 * The lesions irradiated at 40 and 120 minutes were not identified histologically. - PDT using a dye dose of 1 mg/kg led to damage of both inner and outer retina. The early treatments (5 and 20 minutes after dye injection) demonstrated grade 5 effect with damage to the inner retina, and lesions induced 60 minutes and more after dye injection showed a grade 4 effect.
- At 0.5 mg/kg, only the lesion irradiated 5 minutes after dye injection demonstrated damage to the inner retina (grade 5). Lesions irradiated at 20 minutes 0.10 and later did not affect the inner retina, but showed pyknosis in the outer nuclear layer (ONL), vacuolization and disorganization of the photoreceptors' inner and outer segments, and damage to the RPE (grade 4).
- At 0.375 mg/kg, 2/3 lesions irradiated 10 minutes after dye injection showed some congestion of the small retinal vessels, but the inner nuclear layer (INL) was preserved. Lesions applied 20 minutes and later after dye injection showed some pyknosis in the ONL, some vacuolization and disorientation of the photoreceptors' inner and outer segments, and damage to the RPE. Most lesions demonstrated damage of grade 1 or 2 or 3, with some lesions demonstrated grade 4 damage.
- 0.25 mg/kg was found to be a threshold dose for induction of choriocapillaris closure. This was achieved with almost no effect on the overlying retina. There was mild, damage to some RPE cells, minimal swelling of photoreceptors, and a few pyknotic nuclei in the ONL.
- “Dye only” control areas of normal retina/choroid showed no effect by fluorescein angiography or histologic examination.
Claims (20)
1. A method to treat conditions of the eye characterized by unwanted neovasculature, which method comprises:
administering to a subject in need of such treatment an amount of liposomal formulation of green porphyrin sufficient to permit an effective amount to localize in said neovasculature;
permitting sufficient time to elapse to allow an effective amount of said green porphyrin to localize in said neovasculature; and
irradiating neovasculature with light absorbed by the green porphyrin.
2. The method of claim 1 wherein the neovasculature is choroidal neovasculature.
3. The method of claim 1 wherein the green porphyrin is of the formula shown in FIG. 1-3 or 1-4.
4. The method of claim 1 wherein said green porphyrin is of a formula shown in FIG. 1 or a mixture thereof
wherein each of R1 and R2 is independently selected from the group consisting of carbalkoxyl (2-6C), alkyl (1-6C), arylsulfonyl (6-10C), cyano and —CONR5CO wherein R5 is aryl (6-10C) or alkyl (1-6C);
each R3 is independently carboxyl, carboxyalkyl (2-6C) or a salt, amide, ester or acyl hydrazone thereof, or is alkyl (1-6C);
R4 is CH═CH2 or —CH(OR4′)CH3 wherein R4′ is H, or alkyl (1-6C) optionally substituted with a hydrophilic substituent.
5. The method of claim 4 wherein said green porphyrin is of the formula shown in FIG. 1-3 or 1-4 or a mixture thereof and wherein each of R1 and R2 is independently carbalkoxyl (2-6C);
one R3 is carboxyalkyl (2-6C) and the other R3 is the ester of a carboxyalkyl (2-6C) substituent; and
R4 is CH═CH2 or —CH(OH)CH3.
6. The method of claim 5 wherein said green porphyrin is of the formula shown in FIG. 1-3 and
wherein R1 and R2 are methoxycarbonyl;
one R3 is —CH2CH2COOCH3 and the other R3 is CH2CH2COOH; and
R4 is CH═CH2.
7. A method to treat unwanted choroidal neovasculature, which method comprises
administering to % a subject in need of such in need of such treatment an amount of green porphyrin sufficient to permit an effective amount to localize in said choroidal neovasculature;
permitting sufficient time to elapse to allow an effective amount of said green porphyrin to localize in said choroidal neovasculature; and
irradiating said choroidal neovasculature with light absorbed by the green porphyrin.
8. The method of claim 7 wherein said green porphyrin is complexed with low-density lipoprotein.
9. The method of claim 7 wherein said green porphyrin is contained in a liposomal preparation.
10. The method of claim 7 wherein the green porphyrin is of the formula shown in FIG. 1-3 or 1-4.
11. The method of claim 7 wherein said green porphyrin is of a formula shown in FIG. 1 or a mixture thereof
wherein each of R1 and R2 is independently selected from the group consisting of carbalkoxyl (2-6C), alkyl (1-6C), arylsulfonyl (6-10C), cyano and —CONR5CO wherein R5 is aryl (6-10C) or alkyl (1-6C);
each R3 is independently carboxyl, carboxyalkyl (2-6C) or a salt, amide, ester or acyl hydrazone thereof, or is alkyl (1-6C);
R4 is CH═CH2 or —CH(OR4′)CH3 wherein R4′ is H, or alkyl (1-6C) optionally substituted with a hydrophilic substituent.
12. The method of claim 11 wherein said green porphyrin is of the formula shown in FIG. 1-3 or 1-4 or a mixture thereof and wherein each of R1 and R2 is independently carbalkoxyl (2-6C);
one R3 is carboxyalkyl (2-6C) and the other R3 is the ester of a carboxyalkyl (2-6C) substituent; and
R4 is CH═CH2 or —CH(OH)CH3.
13. The method of claim 12 wherein said green porphyrin is of the formula shown in FIG. 1-3 and
wherein R1 and R2 are methoxycarbonyl;
one R3 is —CH2CH2COOCH3 and the other R3 is CH2CH2COOH; and
R4 is CH═CH2.
14. A method to treat age-related macular degeneration (AMD) which method comprises
administering to a subject in need of such treatment an amount of green porphyrin sufficient to permit an effective amount to localize in the choroid;
permitting sufficient time to elapse to allow an effective amount of said green porphyrin to localize in said choroid; and
irradiating said choroid with light absorbed by the green porphyrin.
15. The method of claim 14 wherein said green porphyrin is complexed with low-density lipoprotein.
16. The method of claim 14 wherein said green porphyrin is contained in a liposomal preparation.
17. The method of claim 14 wherein the green porphyrin is of the formula shown in FIG. 1-3 or 1-4.
18. The method of claim 14 wherein said green porphyrin is of a formula shown in FIG. 1 or a mixture thereof
wherein each of R1 and R2 is independently selected from the group consisting of carbalkoxyl (2-6C), alkyl (1-6C), arylsulfonyl (6-10C), cyano and —CONR5CO wherein R5 is aryl (6-10C) or alkyl (1-6C);
each R3 is independently carboxyl, carboxyalkyl (2-6C) or a salt, amide, ester or acyl hydrazone thereof, or is alkyl (1-6C);
R4 is CH═CH2 or —CH(OR4′)CH3 wherein R4′ is H, or alkyl (1-6C) optionally substituted with a hydrophilic substituent.
19. The method of claim 18 wherein said green porphyrin is of the formula shown in FIG. 1-3 or 1-4 or a mixture thereof and wherein each of R1 and R2 is independently carbalkoxyl (2-6C);
one R3 is carboxyalkyl (2-6C) and the other R3 is the ester of a carboxyalkyl (2-6C) substituent; and
R4 is CH═CH2 or —CH(OH)CH3.
20. The method of claim 19 wherein said green porphyrin is of the formula shown in FIG. 1-3 and
wherein R1 and R2 are methoxycarbonyl;
one R3 is —CH2CH2COOCH3 and the other R3 is CH2CH2COOH; and
R4 is CH═CH2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/849,581 US20110137228A1 (en) | 1994-03-14 | 2010-08-03 | Use of Green Porphyrins to Treat Neovasculature in the Eye |
US13/472,164 US20130072849A1 (en) | 1994-03-14 | 2012-05-15 | Use of green porphyrins to treat neovasculature in the eye |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/209,473 US5707986A (en) | 1994-03-14 | 1994-03-14 | Angiographic method using green porphyrins in primate eyes |
US08/390,591 US5798349A (en) | 1994-03-14 | 1995-02-17 | Use of green porphyrins to treat neovasculature in the eye |
US94247597A | 1997-10-02 | 1997-10-02 | |
US09/347,382 US6225303B1 (en) | 1994-03-14 | 1999-07-06 | Use of green porphyrins to treat neovasculature in the eye |
US09/824,155 US6610679B2 (en) | 1994-03-14 | 2001-04-02 | Use of green porphyrins to treat neovasculature in the eye |
US10/418,965 US20040034007A1 (en) | 1994-03-14 | 2003-04-18 | Use of green porphyrins to treat neovasculature in the eye |
US10/982,409 US20050152960A1 (en) | 1994-03-14 | 2004-11-05 | Use of green porphyrins to treat neovasculature in the eye |
US11/445,956 US20070087046A1 (en) | 1994-03-14 | 2006-06-02 | Use of green porphyrins to treat neovasculature in the eye |
US11/904,018 US20080241232A1 (en) | 1994-03-14 | 2007-09-25 | Use of green porphyrins to treat neovasculature in the eye |
US12/849,581 US20110137228A1 (en) | 1994-03-14 | 2010-08-03 | Use of Green Porphyrins to Treat Neovasculature in the Eye |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/904,018 Continuation US20080241232A1 (en) | 1994-03-14 | 2007-09-25 | Use of green porphyrins to treat neovasculature in the eye |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/472,164 Continuation US20130072849A1 (en) | 1994-03-14 | 2012-05-15 | Use of green porphyrins to treat neovasculature in the eye |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110137228A1 true US20110137228A1 (en) | 2011-06-09 |
Family
ID=46251298
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/390,591 Expired - Lifetime US5798349A (en) | 1994-03-14 | 1995-02-17 | Use of green porphyrins to treat neovasculature in the eye |
US09/347,382 Expired - Lifetime US6225303B1 (en) | 1994-03-14 | 1999-07-06 | Use of green porphyrins to treat neovasculature in the eye |
US09/824,155 Expired - Lifetime US6610679B2 (en) | 1994-03-14 | 2001-04-02 | Use of green porphyrins to treat neovasculature in the eye |
US10/418,965 Abandoned US20040034007A1 (en) | 1994-03-14 | 2003-04-18 | Use of green porphyrins to treat neovasculature in the eye |
US10/982,409 Abandoned US20050152960A1 (en) | 1994-03-14 | 2004-11-05 | Use of green porphyrins to treat neovasculature in the eye |
US11/445,956 Abandoned US20070087046A1 (en) | 1994-03-14 | 2006-06-02 | Use of green porphyrins to treat neovasculature in the eye |
US11/904,018 Abandoned US20080241232A1 (en) | 1994-03-14 | 2007-09-25 | Use of green porphyrins to treat neovasculature in the eye |
US12/849,581 Abandoned US20110137228A1 (en) | 1994-03-14 | 2010-08-03 | Use of Green Porphyrins to Treat Neovasculature in the Eye |
US13/472,164 Abandoned US20130072849A1 (en) | 1994-03-14 | 2012-05-15 | Use of green porphyrins to treat neovasculature in the eye |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/390,591 Expired - Lifetime US5798349A (en) | 1994-03-14 | 1995-02-17 | Use of green porphyrins to treat neovasculature in the eye |
US09/347,382 Expired - Lifetime US6225303B1 (en) | 1994-03-14 | 1999-07-06 | Use of green porphyrins to treat neovasculature in the eye |
US09/824,155 Expired - Lifetime US6610679B2 (en) | 1994-03-14 | 2001-04-02 | Use of green porphyrins to treat neovasculature in the eye |
US10/418,965 Abandoned US20040034007A1 (en) | 1994-03-14 | 2003-04-18 | Use of green porphyrins to treat neovasculature in the eye |
US10/982,409 Abandoned US20050152960A1 (en) | 1994-03-14 | 2004-11-05 | Use of green porphyrins to treat neovasculature in the eye |
US11/445,956 Abandoned US20070087046A1 (en) | 1994-03-14 | 2006-06-02 | Use of green porphyrins to treat neovasculature in the eye |
US11/904,018 Abandoned US20080241232A1 (en) | 1994-03-14 | 2007-09-25 | Use of green porphyrins to treat neovasculature in the eye |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/472,164 Abandoned US20130072849A1 (en) | 1994-03-14 | 2012-05-15 | Use of green porphyrins to treat neovasculature in the eye |
Country Status (1)
Country | Link |
---|---|
US (9) | US5798349A (en) |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5798349A (en) | 1994-03-14 | 1998-08-25 | The General Hospital Corporation | Use of green porphyrins to treat neovasculature in the eye |
US6818199B1 (en) | 1994-07-29 | 2004-11-16 | James F. Hainfeld | Media and methods for enhanced medical imaging |
US5935942A (en) | 1994-12-14 | 1999-08-10 | Zeimer; Ran | Selective and non-invasive visualization or treatment of vasculature |
US6043237A (en) * | 1996-12-10 | 2000-03-28 | Qlt Phototherapeutics, Inc. | Use of photodynamic therapy for prevention of secondary cataracts |
US6117862A (en) | 1998-10-09 | 2000-09-12 | Qlt, Inc. | Model and method for angiogenesis inhibition |
US6602274B1 (en) | 1999-01-15 | 2003-08-05 | Light Sciences Corporation | Targeted transcutaneous cancer therapy |
WO2000041726A2 (en) | 1999-01-15 | 2000-07-20 | Light Sciences Corporation | Noninvasive vascular therapy |
US6454789B1 (en) * | 1999-01-15 | 2002-09-24 | Light Science Corporation | Patient portable device for photodynamic therapy |
US6162242A (en) | 1999-01-21 | 2000-12-19 | Peyman; Gholam A. | Selective photodynamic treatment |
US7022843B1 (en) | 1999-04-14 | 2006-04-04 | The University Of British Columbia | β,β′-dihydroxy meso-substituted chlorins, isobacteriochlorins, and bacteriochlorins |
AU7106400A (en) * | 1999-09-10 | 2001-04-10 | Akorn, Inc. | Fluorescent dye angiography and dye-enhanced photocoagulation |
US6351663B1 (en) | 1999-09-10 | 2002-02-26 | Akorn, Inc. | Methods for diagnosing and treating conditions associated with abnormal vasculature using fluorescent dye angiography and dye-enhanced photocoagulation |
US6944493B2 (en) * | 1999-09-10 | 2005-09-13 | Akora, Inc. | Indocyanine green (ICG) compositions and related methods of use |
US6443976B1 (en) | 1999-11-30 | 2002-09-03 | Akorn, Inc. | Methods for treating conditions and illnesses associated with abnormal vasculature |
WO2001051087A2 (en) * | 2000-01-12 | 2001-07-19 | Light Sciences Corporation | Novel treatment for eye disease |
ES2311507T3 (en) | 2000-02-10 | 2009-02-16 | MASSACHUSETTS EYE & EAR INFIRMARY | PHOTODYNAMIC THERAPY FOR TREATMENT OF OPHTHALMIC AFFECTIONS. |
HUP0300347A3 (en) | 2000-03-24 | 2005-03-29 | Novartis Ag | Improved treatment of neovascularization |
US7754765B2 (en) | 2000-12-01 | 2010-07-13 | Radical Vision Therapeutics Inc | Copper chelators for treating ocular inflammation |
CA2429982C (en) * | 2000-12-01 | 2010-07-13 | The University Of British Columbia | Copper chelators for treating ocular inflammation |
ES2386718T3 (en) * | 2001-02-06 | 2012-08-28 | Qlt Inc. | Photodynamic therapy for macular degeneration associated with hidden age |
WO2002062385A2 (en) * | 2001-02-06 | 2002-08-15 | Qlt, Inc. | Method to prevent vision loss |
ES2304429T3 (en) * | 2001-02-06 | 2008-10-16 | Qlt Inc. | PHOTODYNAMIC THERAPY WITH REDUCED FLUENCE INDEX. |
US7753943B2 (en) * | 2001-02-06 | 2010-07-13 | Qlt Inc. | Reduced fluence rate PDT |
US8106038B2 (en) | 2001-02-15 | 2012-01-31 | Qlt Inc. | Method for reducing or preventing PDT related inflammation |
WO2002100326A2 (en) * | 2001-05-01 | 2002-12-19 | The General Hospital Corporation | Photoimmunotherapies for cancer using photosensitizer immunoconjugates and combination therapies |
AU2002327180A1 (en) * | 2001-06-04 | 2003-01-21 | The General Hospital Corporation | Detection and therapy of vulnerable plaque with photodynamic compounds |
WO2003007944A1 (en) * | 2001-07-20 | 2003-01-30 | Qlt, Inc. | Treatment of macular edema with photodynamic therapy |
KR20050044372A (en) * | 2001-11-09 | 2005-05-12 | 아이테크 파마슈티컬즈, 인크. | Methods for treating ocular neovascular diseases |
US6761694B2 (en) | 2001-12-13 | 2004-07-13 | Allergan, Inc. | Methods for measuring retinal damage |
WO2003061519A2 (en) * | 2002-01-18 | 2003-07-31 | Massachusetts Eye And Ear Infirmary | Methods and compositions for preserving the viability of photoreceptor cells |
US7455858B2 (en) * | 2002-05-16 | 2008-11-25 | Qlt Inc. | Compositions and methods for delivery of photosensitive drugs |
EP1539222A1 (en) * | 2002-07-02 | 2005-06-15 | The Regents Of The University Of California | Treatment for eye disorder |
CA2492964C (en) | 2002-07-24 | 2012-07-17 | Qlt Inc. | Pyrazolylbenzothiazole derivatives and their use as therapeutic agents |
US7288106B2 (en) * | 2002-10-03 | 2007-10-30 | Light Sciences Oncology, Inc. | System and method for excitation of photoreactive compounds in eye tissue |
US20060258629A1 (en) * | 2002-10-18 | 2006-11-16 | Freeman William R | Photodynamic therapy for ocular neovascularization |
EP1581212A4 (en) * | 2002-12-06 | 2008-11-05 | Alcon Inc | Superoxide dismutase mimics for the treatment of ocular disorders and diseases |
WO2004073492A2 (en) * | 2003-02-14 | 2004-09-02 | Massachusetts Eye And Ear Infirmary | Chlamydia pneumoniae associated chronic intraocular disorders and treatment thereof |
WO2004080284A2 (en) * | 2003-03-07 | 2004-09-23 | Board Of Regents, The University Of Texas System | Antibody-targeted photodynamic therapy |
US7659301B2 (en) | 2003-04-15 | 2010-02-09 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US7220778B2 (en) * | 2003-04-15 | 2007-05-22 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US20070020272A1 (en) * | 2003-04-30 | 2007-01-25 | Tayyaba Hasan | Indirectly linked photosensitizer immunoconjugates, processes for the production thereof and methods of use thereof |
US20040220167A1 (en) * | 2003-05-02 | 2004-11-04 | Nasrollah Samiy | Methods of treating neuralgic pain |
US20050101582A1 (en) * | 2003-11-12 | 2005-05-12 | Allergan, Inc. | Compositions and methods for treating a posterior segment of an eye |
US20070224278A1 (en) | 2003-11-12 | 2007-09-27 | Lyons Robert T | Low immunogenicity corticosteroid compositions |
US20060141049A1 (en) * | 2003-11-12 | 2006-06-29 | Allergan, Inc. | Triamcinolone compositions for intravitreal administration to treat ocular conditions |
DE602005011928D1 (en) | 2004-01-20 | 2009-02-05 | Allergan Inc | COMPOSITIONS FOR LOCALIZED THERAPY OF THE EYE, PREFERABLY CONTAINING TRIAMCINOLONE ACETONIDE AND HYALURONIC ACID |
AU2005210042B2 (en) | 2004-02-04 | 2011-04-21 | Takeda Gmbh | 2-(piperidin-4-yl) -4, 5-dihydro-2H-pyridazin-3-one derivatives as PDE4 inhibitors |
US20050244500A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Intravitreal implants in conjuction with photodynamic therapy to improve vision |
US20050244466A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Photodynamic therapy in conjunction with intraocular implants |
US8455656B2 (en) | 2004-04-30 | 2013-06-04 | Allergan, Inc. | Kinase inhibitors |
US8425929B2 (en) * | 2004-04-30 | 2013-04-23 | Allergan, Inc. | Sustained release intraocular implants and methods for preventing retinal dysfunction |
US20050244471A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Estradiol derivative and estratopone containing sustained release intraocular implants and related methods |
US8147865B2 (en) | 2004-04-30 | 2012-04-03 | Allergan, Inc. | Steroid-containing sustained release intraocular implants and related methods |
US20050244461A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Controlled release drug delivery systems and methods for treatment of an eye |
US7993634B2 (en) | 2004-04-30 | 2011-08-09 | Allergan, Inc. | Oil-in-oil emulsified polymeric implants containing a hypotensive lipid and related methods |
US20050244463A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Sustained release intraocular implants and methods for treating ocular vasculopathies |
US7771742B2 (en) | 2004-04-30 | 2010-08-10 | Allergan, Inc. | Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods |
US20070059336A1 (en) * | 2004-04-30 | 2007-03-15 | Allergan, Inc. | Anti-angiogenic sustained release intraocular implants and related methods |
WO2005110374A1 (en) * | 2004-04-30 | 2005-11-24 | Allergan, Inc. | Intraocular drug delivery systems containing a therapeutic component, a cyclodextrin, and a polymeric component |
US9498457B2 (en) | 2004-04-30 | 2016-11-22 | Allergan, Inc. | Hypotensive prostamide-containing biodegradable intraocular implants and related implants |
US20050244465A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Drug delivery systems and methods for treatment of an eye |
US8119154B2 (en) * | 2004-04-30 | 2012-02-21 | Allergan, Inc. | Sustained release intraocular implants and related methods |
US20050244458A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Sustained release intraocular implants and methods for treating ocular neuropathies |
US8722097B2 (en) | 2004-04-30 | 2014-05-13 | Allergan, Inc. | Oil-in-water method for making polymeric implants containing a hypotensive lipid |
US20050244478A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Anti-excititoxic sustained release intraocular implants and related methods |
US8591885B2 (en) * | 2004-04-30 | 2013-11-26 | Allergan, Inc. | Carbonic anhydrase inhibitor sustained release intraocular drug delivery systems |
US7799336B2 (en) | 2004-04-30 | 2010-09-21 | Allergan, Inc. | Hypotensive lipid-containing biodegradable intraocular implants and related methods |
US8512738B2 (en) | 2004-04-30 | 2013-08-20 | Allergan, Inc. | Biodegradable intravitreal tyrosine kinase implants |
US20050244462A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Devices and methods for treating a mammalian eye |
US8673341B2 (en) | 2004-04-30 | 2014-03-18 | Allergan, Inc. | Intraocular pressure reduction with intracameral bimatoprost implants |
CN1980651A (en) * | 2004-05-07 | 2007-06-13 | 加州大学评议会 | Treatment of myopia |
EP1773350B1 (en) * | 2004-07-12 | 2013-05-29 | Allergan, Inc. | Opthalmic compositions for treating ophthalmic conditions |
US20060021623A1 (en) | 2004-07-30 | 2006-02-02 | Miller Joan W | Methods and compositions for treating ocular glaucoma |
WO2006043965A1 (en) * | 2004-10-14 | 2006-04-27 | Allergan, Inc. | Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods |
US7803375B2 (en) * | 2005-02-23 | 2010-09-28 | Massachusetts Eye And Ear Infirmary | Methods and compositions for treating conditions of the eye |
US20060223750A1 (en) * | 2005-04-01 | 2006-10-05 | Allergan, Inc. | Agents and methods for enhancing photodynamic therapy |
WO2007097961A1 (en) * | 2006-02-16 | 2007-08-30 | Massachusetts Eye & Ear Infirmary | Use of azurocidin inhibitors in prevention and treatment of ocular vascular leakage |
WO2007097839A2 (en) * | 2006-02-16 | 2007-08-30 | Massachusetts Eye And Ear Infirmary | Ansamycin analogs or heat shock 90 inhibitors in combination with pdt treatin conditions of the eye |
US8969415B2 (en) | 2006-12-01 | 2015-03-03 | Allergan, Inc. | Intraocular drug delivery systems |
WO2008103299A2 (en) | 2007-02-16 | 2008-08-28 | Massachusetts Eye & Ear Infirmary | Methods and compositions for prognosing, detecting, and treating age-related macular degeneration |
US7911053B2 (en) * | 2007-04-19 | 2011-03-22 | Marvell World Trade Ltd. | Semiconductor packaging with internal wiring bus |
WO2009003173A1 (en) | 2007-06-27 | 2008-12-31 | The General Hospital Corporation | Method and apparatus for optical inhibition of photodymanic therapy |
US8409182B2 (en) | 2007-09-28 | 2013-04-02 | Eos Holdings, Llc | Laser-assisted thermal separation of tissue |
US20090170770A1 (en) * | 2007-11-06 | 2009-07-02 | Ali Hafezi-Moghadam | Methods and compositions for treating conditions associated with angiogenesis using a vascular adhesion protein-1 (vap 1) inhibitor |
US9040079B2 (en) * | 2007-11-19 | 2015-05-26 | Biolitec Pharma Marketing Ltd | Pegylated compounds for age-related macular degeneration |
WO2009126894A2 (en) * | 2008-04-11 | 2009-10-15 | Massachusetts Eye And Ear Infirmary | Methods and compositions for the diagnosis and treatment of angiogenic disorders |
KR101769637B1 (en) | 2009-11-09 | 2017-08-18 | 알러간, 인코포레이티드 | Compositions and methods for stimulating hair growth |
US20140004510A1 (en) | 2010-09-24 | 2014-01-02 | Massachusetts Eye And Ear Infirmary | Methods and compositions for prognosing and/or detecting age-related macular degeneration |
US9211214B2 (en) | 2012-03-21 | 2015-12-15 | Valeant Pharmaceuticals International, Inc | Photodynamic therapy laser |
EP2956096A1 (en) | 2013-02-15 | 2015-12-23 | Allergan, Inc. | Sustained drug delivery implant |
US9820886B2 (en) | 2014-02-28 | 2017-11-21 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10327951B2 (en) | 2014-02-28 | 2019-06-25 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10231872B2 (en) | 2014-02-28 | 2019-03-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
US10206817B2 (en) | 2014-02-28 | 2019-02-19 | Excel-Lens, Inc. | Laser assisted cataract surgery |
CN106620893B (en) | 2015-07-23 | 2021-07-30 | 爱博诺德(北京)医疗科技股份有限公司 | Materials for ocular disease phototherapy |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883790A (en) | 1987-01-20 | 1989-11-28 | University Of British Columbia | Wavelength-specific cytotoxic agents |
US5171749A (en) * | 1987-01-20 | 1992-12-15 | University Of British Columbia | Wavelength-specific cytotoxic agents |
US4920143A (en) | 1987-04-23 | 1990-04-24 | University Of British Columbia | Hydro-monobenzoporphyrin wavelength-specific cytotoxic agents |
US5283255A (en) | 1987-01-20 | 1994-02-01 | The University Of British Columbia | Wavelength-specific cytotoxic agents |
US5087636A (en) | 1990-02-20 | 1992-02-11 | University Of British Columbia | Method to destroy malignant cells in mononuclear cell populations |
US5214036A (en) * | 1990-03-08 | 1993-05-25 | University Of British Columbia | Benzoporphyrin derivatives for photodynamic therapy |
AU679016B2 (en) | 1992-11-20 | 1997-06-19 | University Of British Columbia, The | Method of activating photosensitive agents |
US5798349A (en) | 1994-03-14 | 1998-08-25 | The General Hospital Corporation | Use of green porphyrins to treat neovasculature in the eye |
-
1995
- 1995-02-17 US US08/390,591 patent/US5798349A/en not_active Expired - Lifetime
-
1999
- 1999-07-06 US US09/347,382 patent/US6225303B1/en not_active Expired - Lifetime
-
2001
- 2001-04-02 US US09/824,155 patent/US6610679B2/en not_active Expired - Lifetime
-
2003
- 2003-04-18 US US10/418,965 patent/US20040034007A1/en not_active Abandoned
-
2004
- 2004-11-05 US US10/982,409 patent/US20050152960A1/en not_active Abandoned
-
2006
- 2006-06-02 US US11/445,956 patent/US20070087046A1/en not_active Abandoned
-
2007
- 2007-09-25 US US11/904,018 patent/US20080241232A1/en not_active Abandoned
-
2010
- 2010-08-03 US US12/849,581 patent/US20110137228A1/en not_active Abandoned
-
2012
- 2012-05-15 US US13/472,164 patent/US20130072849A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US5798349A (en) | 1998-08-25 |
US20070087046A1 (en) | 2007-04-19 |
US20010023247A1 (en) | 2001-09-20 |
US6610679B2 (en) | 2003-08-26 |
US20080241232A1 (en) | 2008-10-02 |
US6225303B1 (en) | 2001-05-01 |
US20130072849A1 (en) | 2013-03-21 |
US20040034007A1 (en) | 2004-02-19 |
US20050152960A1 (en) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6225303B1 (en) | Use of green porphyrins to treat neovasculature in the eye | |
EP0894009B1 (en) | Improved vision through photodynamic therapy of the eye | |
US5707986A (en) | Angiographic method using green porphyrins in primate eyes | |
Kramer et al. | Liposomal benzoporphyrin derivative verteporfin photodynamic therapy: selective treatment of choroidal neovascularization in monkeys | |
CA2536069C (en) | Use of green porphyrins in ocular diagnosis and therapy | |
US7060695B2 (en) | Method to prevent vision loss | |
US6524330B1 (en) | Method of ocular treatment | |
Peyman et al. | Photodynamic therapy for choriocapillaris using tin ethyl etiopurpurin (SnET2) | |
CZ295734B6 (en) | Medicament for reducing or preventing the effects of inflammation arising from injured tissue | |
Husain et al. | Photodynamic therapy of exudative age-related macular degeneration | |
Levy et al. | Use Of Green Porphyrinsto Treat Neovasculature In The Eyes | |
AU705100C (en) | Improved vision through photodynamic therapy of the eye | |
JP2012092145A (en) | Composition for visual acuity amelioration through photodynamic therapy of eye |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |