US20100215106A1 - Efficient multi-frame motion estimation for video compression - Google Patents
Efficient multi-frame motion estimation for video compression Download PDFInfo
- Publication number
- US20100215106A1 US20100215106A1 US12/775,312 US77531210A US2010215106A1 US 20100215106 A1 US20100215106 A1 US 20100215106A1 US 77531210 A US77531210 A US 77531210A US 2010215106 A1 US2010215106 A1 US 2010215106A1
- Authority
- US
- United States
- Prior art keywords
- macroblock
- motion estimation
- pixel
- computing device
- macroblocks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/573—Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
Definitions
- This invention relates generally to digital signal compression, coding and representation, and more particularly to a video compression, coding and representation system using multi-frame motion estimation and having both device and method aspects. It further relates to a computer program product, such as a recording medium, carrying program instructions readable by a computing device to cause the computing device to carry out a method according to the invention.
- the later MPEG-4 was more advanced than MPEG-2 and can achieve high quality video at lower bit rate, making it very suitable for video streaming over internet, digital wireless network (e.g. 3G network), multimedia messaging service (MMS standard from 3GPP), etc. MPEG-4 will be included in the next generation DVD players.
- the ITU-T H.261/3/4 standards are designed for low-delay video phone and video conferencing systems.
- the later H.263 is very successful and is widely used in modern day video conferencing systems, and in video streaming in broadband and in wireless network, including the multimedia messaging service (MMS) in 2.5G and 3G networks and beyond.
- H.264 also called MPEG-4 Version 10, or MPEG-4 AVC
- MPEG-4 AVC MPEG-4 Advance Video Coding
- AVS Audio Visual Standard
- H.264 has superior objective and subjective video quality over MPEG-1/2/4 and H.261/3.
- the basic encoding algorithm of H.264 is similar to H.263 or MPEG-4 except that integer 4 ⁇ 4 discrete cosine transform (DCT) is used instead of the traditional 8 ⁇ 8 DCT and there are additional features include intra prediction mode for I-frames, multiple block sizes and multiple reference frames for motion estimation/compensation, quarter pixel accuracy for motion estimation, in-loop deblocking filter, context adaptive binary arithmetic coding, etc.
- DCT discrete cosine transform
- H.264 allows the encoder to store five reference pictures for motion estimation (ME) and motion compensation (MC).
- ME motion estimation
- MC motion compensation
- the processing time increases linearly with the number of reference pictures used. This is because motion estimation needs to be performed for each reference frame in a simple implementation. This full selection process (the examination of all five reference frames) provides the best coding result but the five-fold increase in computation is very high.
- the present invention seeks to provide new and useful multi-frame motion estimation techniques for any current frame in H.264 or MPEG-4 AVC or AVS or related video coding.
- this region may or may not be of the same size as the said region in the first image
- combining all the said motion-compensated regions to form a second image object (predictive frame) of the same size as the first image object
- forming a third image object (residue frame) of the same size as the first image object by subtracting the second image object (predictive frame) from the first image object (original current frame).
- the present invention provides for the intelligent selection of the reference image objects, and the intelligent selection of the relative coordinates. Such intelligent selection allows us to perform the mismatch calculation on a greatly reduced number of candidate reference frames and candidate relative locations (motion vectors).
- a class is defined for each region in the first image object; for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object, the selection of the reference image objects and the selection of relative coordinates in the said reference image objects for the computation of the mismatch measure depend on the class of the said region in the first image and the classes of the said reference image objects, and after the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen.
- a class is defined for each region in the first image object; for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object, among all the reference image objects with the same or similar class, only a number of (e.g. one) image objects is selected for the computation of the mismatch measure; depending on the relationship between the class of the said region in the first image object and the class of any said selected reference image object, a number of the relative coordinates in the search area of the said selected reference image object are selected for mismatch computation. Complete or partial mismatch computations are both possible. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen. This may be followed by an optional local search at integer-pixel or sub-pixel precision.
- the selected image object within a class is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- a class is defined for each of the reference image objects (a class is defined for each reference frame); for each region in the first image object (e.g. frame N), a second image object (e.g.
- frame N-1 is defined and a class is defined for the second image object; for each region in the first image object, a class is defined for the said region according to the class of the second image object, and the relative coordinate in the search area in the second image object achieving the least mismatch measure between the first image object and the second image object; for each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said reference image objects; and after the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen.
- the second image is the immediate past image object.
- a class is defined for each of the reference image objects; for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a class is defined for the second image object; a search region is defined in the second image and a number of relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computations are both possible.
- a class is defined for the said region according to the class of the second image object, and one or more of the selected relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object.
- the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said reference image objects.
- one or more relative coordinates in the search regions of the reference image objects are chosen.
- the second image is the immediate past image object.
- a class is defined for each of the reference image objects; for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a class is defined for the second image object; a search region is defined in the second image and a number of relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computation are both possible.
- a class is defined according to the class of the second image object, and one or more of the selected relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object.
- the second image is the immediate past image object.
- the selected image object is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- a class is defined for each region in the first image object; for each region in the first image object, and for each relative coordinate in the corresponding search region in any of the reference image objects, a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame); for each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said relative coordinate in the said reference image objects. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen.
- a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame); for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a search region is defined in the second image object and a class is defined for all the relative coordinates in the said search region in the second image object; a number of the relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computations are both possible.
- a class is defined according to (i) one or more relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object, and (ii) the classes of the said relative coordinates in the second image object; For each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said relative coordinate in the said reference image objects.
- the said second image is the immediate past image object.
- a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame).
- a second image object e.g.
- frame N-1 is defined and a search region is defined in the second image object and a class is defined for all the relative coordinates in the said search region in the second image object; for each region in the first image object, a class is defined according to (i) a number of relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object, and (ii) the classes of the said relative coordinate in the second image object; (more than one relative coordinates used); for each region in the first image object, among all the reference image objects with the same class, only one image object is selected for the computation of the mismatch measure.
- a number of the relative coordinates in the search area of the said selected reference image object are selected for mismatch computation. Complete or partial mismatch computations are both possible.
- one or more relative coordinates in the search regions of the reference image objects are chosen.
- the said second image in is the immediate past image object.
- the selected image object within a class is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- the classification of regions can be updated or reset because classification errors can occur in some classification methods and such errors can accumulate over time.
- the updating or resetting can be performed periodically or when certain situations occur.
- the class of the said region, of the said second image object and the said reference image objects are updated, after the mismatch measure computation, depending on the behavior of the computed mismatch measure.
- the classes can be pixel-location classes such as “integer location”, “half-pixel location”, “quarter-pixel location, “1 ⁇ 8-pixel location”, “ 1/16-pixel location”, In this embodiment, the pixel location classification of regions in the first image object may be determined with respect to the pixel location classification of the regions in the second image object.
- any error in the pixel location classification of the regions in the second image object can affect the accuracy of the classification in the first image object, which in turn can affect future image objects.
- the updating or resetting can be triggered when there is a large reduction in the mismatch measure as the motion estimation changed from one pixel precision to another (e.g. full integer pixel to half-pixel motion, or from half-pixel to quarter-pixel, and so on).
- the class of the selected reference image object may be updated or reset to “integer-pixel location”.
- the class of the selected reference image object when there is a large reduction in the mismatch measure as the motion changed from half-pixel precision to quarter-pixel precision, the class of the selected reference image object may be updated or reset to “half-pixel location” and similarly when there is a large reduction in the mismatch measure as the motion changed from quarter-pixel to 1 ⁇ 8-pixel or 1 ⁇ 8-pixel to 1/16 pixel, the selected reference image object may be updated or reset to quarter-pixel or 1 ⁇ 8 pixel respectively.
- the present invention provides an overall multi-frame motion estimation method such that single-frame motion estimation is performed with respect to the most recent reference frame; if best distortion is smaller than a threshold, the search terminates; otherwise, single-frame motion estimation is performed on other reference frames in such a way that only one frame from the same pixel-location class is examine, the one being the most recent frame.
- full search or fast search can be applied. In other words, complete or partial mismatch computations are both possible.
- the classes may be defined according to the pixel location, with classes such as “integer location”, “half-pixel location”, “quarter-pixel location”, “1 ⁇ 8-pixel location”, “ 1/16-pixel location”, etc.
- the classes may also be defined according to the type of regions (e.g. “smooth”, “edge”, “texture” etc), orientation of edges (e.g. “vertical edge”, “horizontal edge”, and edges with various angle of orientation or inclination, etc), width of the edges (e.g. “1-pixel wide edge”, “2-pixel wide edge”, etc), etc, or even a combination of various attributes.
- H.264 allows 5 reference frames, actually any amount of reference frames can be used.
- This invention can be applied with multiple block size, and the blocks do not necessarily be non-overlapping.
- the reference frames may be in the past or in the future. While only one of the reference frames is used in the above description, more than one frames can be used (e.g. a linear combination of several reference frames). While H.264 uses discrete cosine transform, any discrete transform can be applied. Actually, the use of “pixel location” classes in the decision of which reference frames to use, or not to use, can be extended to other decisions.
- the classification of situations according to “pixel location” due to horizontal and vertical translational motion can be generalized to classes due to translational and rotational motion in all possible directions. It can also be generalized to classes due to rigid or non-rigid objects at different spatial location, orientation and scale. While video is a sequence of “frames” which are 2-dimensional pictures of the world, the invention can be applied to sequences of lower (e.g. 1) or higher (e.g. 3) dimensional description of the world.
- one picture element may have one or more components such as the luminance component, the red, green, blue (RGB) components, the YUV components, the YCrCb components, the infra-red components, the X-ray or other components.
- Each component of a picture element is a symbol that can be represented as a number, which may be a natural number, an integer, a real number or even a complex number. In the case of natural numbers, they may be 12-bit, 8-bit, or any other bit resolution. While the pixels in video are 2-dimensional samples with rectangular sampling grid and uniform sampling period, the sampling grid does not need to be rectangular and the sampling period does not need to be uniform.
- the present invention in any of its aspect is applicable not only to the encoding of video, but also to the correspondence estimation in the encoding of audio signals, speech signals, video signals, seismic signals, medical signals, etc.
- FIG. 1 illustrates examples of half-pixel motion and quarter-pixel motion
- FIG. 2 shows an example of selection of frames t- 1 , t- 2 , t- 3 for motion estimation of frame t.
- FIG. 3 shows the flow chart of the proposed method FMFME.
- FIG. 4 shows the PSNR comparison between full search and the proposed FMFME for a test sequence called “Coastguard”.
- the present invention at least in its preferred embodiments, provides a novel fast multi-frame selection scheme that requires significantly reduced computational cost while achieving similar visual quality and bit-rate as the full selection process. Instead of searching through all the possible reference frames, the proposed scheme tries to select only a few representative frames for motion estimation. This is very useful for real-time applications.
- the object motion may be an integer pixel motion, a half-pixel motion, or a quarter-pixel motion, 1 ⁇ 8-pixel motion, 1/16-pixel motion etc.
- sub-pixel motion estimation algorithms use interpolation to predict the sub-pixel shift of texture relative to the sampling grid.
- an object has edges aligned perfectly with the sensor boundaries at a particular time instant such that the object edge is clear and sharp.
- this object will describe this object as having “integer-pixel location”.
- the object will look exactly the same in the two consecutive frames except that one is a translation to another.
- the moved object can be predicted perfectly by integer-pixel motion estimation.
- the edges may be blurred as shown in FIG. 1 a.
- the original zero-pixel-wide (sharp) object edge now becomes one pixel-wide (blurred).
- the pixel at the blurred object edges 106 may have only half the intensity of the original object, which can lead to difficulty in motion estimation.
- the block on the right 102 in FIG. 1 a can be predicted perfectly by block 100 using half-pixel motion estimation.
- block 100 cannot be predicted perfectly by block 102 .
- the edges may be blurred as shown in FIG. 1 b.
- the zero-pixel-wide (sharp) object edge becomes one-pixel-wide (blurred).
- the pixels at the blurred edges may have 3 ⁇ 4 ( 108 ) or 1 ⁇ 4 ( 110 ) of the intensity.
- the blurred “quarter-pixel location” object 104 can be predicted perfectly from the sharp “integer-pixel location” object 100 using quarter-pixel motion estimation, but not vice versa.
- the objects can be classified into sub-pixel location classes, namely “integer-pixel location”, “half-pixel location” and “quarter-pixel location”.
- sub-pixel location classes namely “integer-pixel location”, “half-pixel location” and “quarter-pixel location”.
- edge (and probably texture) details in the three classes are different.
- multi-frame ME can further reduce the temporal redundancy in the video sequences by considering more than one reference frames.
- the best match is usually found by minimizing the cost function:
- the first type of redundancy is related to short-term memory.
- the current frame is frame t.
- objects may be distorted or absent in frame t- 1 , but well represented in frames t- 2 to t- 5 .
- An example is the blinking of an eye, which is a very fast motion. If multiple reference frames are allowed, the motion estimation and compensation can be significantly better than just a single reference frame.
- the previous reference frame i.e. frame t- 1
- the previous reference frame i.e. frame t- 1
- the previous reference frame still has the highest probability of being selected among the five possible reference frames.
- the second type is the sub-pixel movement of textures described above. Textures and objects with different version of “sub-pixel locations” (“integer-pixel”, “half-pixel” and “quarter-pixel”) may occur in successive video frames. In our experiments, we observe that there is a great tendency for the cost function to be especially small when the same shifted version of texture is used to do the motion estimation and compensation. In other words, the optimal reference frame tends to be the one with the same sub-pixel location as the current frame.
- the motion estimation speed can be increased by estimating the type of shifted version of texture (“sub-pixel location”) in the frame buffer.
- sub-pixel location the type of shifted version of texture
- the black square means collocated macroblocks in Frame t and the multiple reference frames.
- each macroblock e.g., macroblock 200
- the reference frames frames t- 5 to t- 1
- FMFME fast multi-frame motion estimation
- the motion vectors of all the collocated macroblocks in frames t- 1 to t- 5 will be examined. If two or more macroblocks have the same sub-pixel location, only one frame is enabled for motion estimation. The sub-pixel location of two macroblocks are considered the same if both the x and y components of the sub-pixel location are equal. The process will enable the frame with smallest temporal distance (closest) to the current frame.
- Motion estimation is then performed on the immediate past frame (i.e. frame t- 1 ( 204 )), as this is the most likely frame to be the best.
- the sub-pixel motion vectors obtained are added to the sub-pixel locations of the “dominant” reference macroblocks (with maximum overlapping area) to obtain the sub-pixel location of the current macroblock. So for FIG. 2 if we assume frame t- 3 ( 206 ) is chosen to be the reference frame for the black (current) macroblock in frame t, the sub-pixel location of the current macroblock in frame t is obtained by adding its sub-pixel motion vector to the sub-pixel position of black macroblock in frame t- 3 .
- FIG. 3 shows the flow chart 300 of the proposed algorithm.
- the proposed scheme was implemented in the H.264 reference software TML9.0. PMVFAST was used for fast motion estimation.
- Table 1 below gives the results of PSNR (peak signal-to-reconstructed image measure), bit rate and complexity reduction of the proposed FMFME in the testing sequences.
- the computational cost using a powerful performance analyzer in term of number of clock cycles is used.
- the proposed FMFME can reduce computational cost by 53% (equivalent complexity of performing PMVFAST on 2.6 frames instead of 5 reference frames) with negligibly small PSNR degradation (0.02 dB) and fewer bits (0.10%) on the average.
- FIG. 4 shows a graph 400 the PSNR comparison for “Coastguard”.
- the fast motion estimation process of embodiments of the present invention is mainly targeted for fast, low-delay and low cost software and hardware implementation of H.264, or MPEG4 AVC, or AVS, or related video coding standards or methods.
- Possible applications include digital cameras, digital camcorders, digital video recorders, set-top boxes, personal digital assistants (PDA), multimedia-enabled cellular phones (2.5G, 3G, and beyond), video conferencing systems, video-on-demand systems, wireless LAN devices, bluetooth applications, web servers, video streaming server in low or high bandwidth applications, video transcoders (converter from one format to another), and other visual communication systems, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Analysis (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/556,363, filed Mar. 26, 2004, which is hereby incorporated herein by reference in its entirety.
- This invention relates generally to digital signal compression, coding and representation, and more particularly to a video compression, coding and representation system using multi-frame motion estimation and having both device and method aspects. It further relates to a computer program product, such as a recording medium, carrying program instructions readable by a computing device to cause the computing device to carry out a method according to the invention.
- Due to the huge size of the raw digital video data (or image sequences), compression must be applied such data so that they may be transmitted and stored. There have been many important video compression standards, including the ISO/IEC MPEG-1, MPEG-2, MPEG-4 standards and the ITU-T H.261, H.263, H.263+, H.263++, H.264 standards. The ISO/IEC MPEG-1/2/4 standards are used extensively by the entertainment industry to distribute movies, digital video broadcast including video compact disk or VCD (MPEG-1), digital video disk or digital versatile disk or DVD (MPEG-2), recordable DVD (MPEG-2), digital video broadcast or DVB (MPEG-2), video-on-demand or VOD (MPEG-2), high definition television or HDTV in the US (MPEG-2), etc. The later MPEG-4 was more advanced than MPEG-2 and can achieve high quality video at lower bit rate, making it very suitable for video streaming over internet, digital wireless network (e.g. 3G network), multimedia messaging service (MMS standard from 3GPP), etc. MPEG-4 will be included in the next generation DVD players. The ITU-T H.261/3/4 standards are designed for low-delay video phone and video conferencing systems. The early H.261 was designed to operate at bit rates of p*64 kbit/s, with p=1,2, . . . , 31. The later H.263 is very successful and is widely used in modern day video conferencing systems, and in video streaming in broadband and in wireless network, including the multimedia messaging service (MMS) in 2.5G and 3G networks and beyond. The latest H.264 (also called MPEG-4 Version 10, or MPEG-4 AVC) is currently the state-of-the-art video compression standard. It is so powerful that MPEG decided to jointly develop with ITU-T in the framework of the Joint Video Team (JVT). The new standard is called H.264 in ITU-T and is called MPEG-4 Advance Video Coding (MPEG-4 AVC), or MPEG-4 Version 10. Based on H.264, a related standard called the Audio Visual Standard (AVS) is currently under development in China. Other related standards may be under development.
- H.264 has superior objective and subjective video quality over MPEG-1/2/4 and H.261/3. The basic encoding algorithm of H.264 is similar to H.263 or MPEG-4 except that integer 4×4 discrete cosine transform (DCT) is used instead of the traditional 8×8 DCT and there are additional features include intra prediction mode for I-frames, multiple block sizes and multiple reference frames for motion estimation/compensation, quarter pixel accuracy for motion estimation, in-loop deblocking filter, context adaptive binary arithmetic coding, etc.
- In particular, H.264 allows the encoder to store five reference pictures for motion estimation (ME) and motion compensation (MC). However, the processing time increases linearly with the number of reference pictures used. This is because motion estimation needs to be performed for each reference frame in a simple implementation. This full selection process (the examination of all five reference frames) provides the best coding result but the five-fold increase in computation is very high.
- The present invention seeks to provide new and useful multi-frame motion estimation techniques for any current frame in H.264 or MPEG-4 AVC or AVS or related video coding.
- According to the present invention there is provided a method of matching a first image object (original current frame) against a number of reference image object (reference frames), including; defining regions (e.g. non-overlapping rectangular blocks, or some expanded regions similar to those in the overlapping motion compensation in H.263) in the first image object (e.g. frame N); for each region in the first image object, defining the corresponding representative coordinate (e.g. upper left corner of a block within the current frame); for each region in the first image object, defining a search region (e.g. a search window of 3×4 in frame N-1, 5×8 in frame N-2, 7×12 in frame N-3 and so on) in each of the reference image objects, with different search regions of possibly different sizes; for each region in the first image and for a relative coordinate in the search region (a location of the search block within the search window) in each of the reference image objects, defining a relative coordinate (motion vector) with respect to the representative coordinate of the said region in the first image, and a mismatch measure (e.g. SAD or MSE or some rate-distortion cost function) between the said region in the first image and the corresponding region at the said relative location in the said reference image; for each region in the first image object, computing the mismatch measure at selected relative locations in the search regions of selected reference image objects and choosing one or more relative coordinates in the search regions of the selected reference image objects; followed possibly by an optional local search at integer-pixel and sub-pixel precision around the chosen relative coordinates for each region in the first image object, constructing a motion-compensated region by considering regions (such regions may or may not be of the same size as the said region in the first image, e.g. they can be the expanded regions used in overlapped motion compensation in H.263) at the said selected relative coordinates in the said selected reference image objects and applying linear or nonlinear operations to combine them to form a motion-compensated region (this region may or may not be of the same size as the said region in the first image); combining all the said motion-compensated regions to form a second image object (predictive frame) of the same size as the first image object; and forming a third image object (residue frame) of the same size as the first image object by subtracting the second image object (predictive frame) from the first image object (original current frame).
- The present invention provides for the intelligent selection of the reference image objects, and the intelligent selection of the relative coordinates. Such intelligent selection allows us to perform the mismatch calculation on a greatly reduced number of candidate reference frames and candidate relative locations (motion vectors).
- In a preferred embodiment a class is defined for each region in the first image object; for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object, the selection of the reference image objects and the selection of relative coordinates in the said reference image objects for the computation of the mismatch measure depend on the class of the said region in the first image and the classes of the said reference image objects, and after the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen.
- In a preferred embodiment a class is defined for each region in the first image object; for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object, among all the reference image objects with the same or similar class, only a number of (e.g. one) image objects is selected for the computation of the mismatch measure; depending on the relationship between the class of the said region in the first image object and the class of any said selected reference image object, a number of the relative coordinates in the search area of the said selected reference image object are selected for mismatch computation. Complete or partial mismatch computations are both possible. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen. This may be followed by an optional local search at integer-pixel or sub-pixel precision. In one version of this embodiment the selected image object within a class is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- In a preferred embodiment of the invention for each region in the first image object, a class is defined for each of the reference image objects (a class is defined for each reference frame); for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a class is defined for the second image object; for each region in the first image object, a class is defined for the said region according to the class of the second image object, and the relative coordinate in the search area in the second image object achieving the least mismatch measure between the first image object and the second image object; for each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said reference image objects; and after the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen. In one version of this embodiment the second image is the immediate past image object.
- In a preferred embodiment of the invention for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a class is defined for the second image object; a search region is defined in the second image and a number of relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computations are both possible. For each region in the first image object, a class is defined for the said region according to the class of the second image object, and one or more of the selected relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object. For each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said reference image objects. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen. In a version of this embodiment the second image is the immediate past image object.
- In a preferred embodiment of the invention for each region in the first image object, a class is defined for each of the reference image objects; for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a class is defined for the second image object; a search region is defined in the second image and a number of relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computation are both possible. For each region in the first image object, a class is defined according to the class of the second image object, and one or more of the selected relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object. For each region in the first image object, among all the reference image objects with the same class, only one image object is selected for the computation of the mismatch measure. Depending on the relationship between the class of the said region in the first image object and the class of any said selected reference image object, a number of the relative coordinates in the search area of the said selected reference image object are selected for mismatch computation. Complete or partial mismatch computations are both possible. After the said mismatch measure computation, one or more relative coordinates in the search regions of the reference image objects are chosen. In a version of this embodiment the second image is the immediate past image object. In a version of this embodiment the selected image object is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- In an embodiment of the invention a class is defined for each region in the first image object; for each region in the first image object, and for each relative coordinate in the corresponding search region in any of the reference image objects, a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame); for each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said relative coordinate in the said reference image objects. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen.
- In an embodiment of the invention for each region in the first image object, and for each relative coordinate in the corresponding search region in any of the reference image objects, a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame); for each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a search region is defined in the second image object and a class is defined for all the relative coordinates in the said search region in the second image object; a number of the relative coordinates in the search region are selected for mismatch computation. Complete or partial mismatch computations are both possible. For each region in the first image object, a class is defined according to (i) one or more relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object, and (ii) the classes of the said relative coordinates in the second image object; For each region in the first image object, the selection of the reference image objects and the selection of relative coordinate in the said reference image objects for the computation of the mismatch measure depends on the class of the said region in the first image and the classes of the said relative coordinate in the said reference image objects. In one version of this embodiment the said second image is the immediate past image object.
- In an embodiment of the invention for each region in the first image object, and for each relative coordinate in the corresponding search region in any of the reference image objects, a class is defined for the said relative coordinate; (a class is defined for each possible search point in each reference frame). For each region in the first image object (e.g. frame N), a second image object (e.g. frame N-1) is defined and a search region is defined in the second image object and a class is defined for all the relative coordinates in the said search region in the second image object; for each region in the first image object, a class is defined according to (i) a number of relative coordinates in the search region in the second image object achieving the least mismatch measures between the first image object and the second image object, and (ii) the classes of the said relative coordinate in the second image object; (more than one relative coordinates used); for each region in the first image object, among all the reference image objects with the same class, only one image object is selected for the computation of the mismatch measure. Depending on the relationship between the class of the said region in the first image object and the class of any said selected reference image object, a number of the relative coordinates in the search area of the said selected reference image object are selected for mismatch computation. Complete or partial mismatch computations are both possible. After the said mismatch computation, one or more relative coordinates in the search regions of the reference image objects are chosen. In one version of this embodiment the said second image in is the immediate past image object. In one version of this embodiment the selected image object within a class is the image object that is closest in time within the class (e.g. the nearest past frame with the same class).
- In some embodiments of the invention, the classification of regions can be updated or reset because classification errors can occur in some classification methods and such errors can accumulate over time. The updating or resetting can be performed periodically or when certain situations occur. In some embodiments of the invention, the class of the said region, of the said second image object and the said reference image objects are updated, after the mismatch measure computation, depending on the behavior of the computed mismatch measure. In one embodiment, the classes can be pixel-location classes such as “integer location”, “half-pixel location”, “quarter-pixel location, “⅛-pixel location”, “ 1/16-pixel location”, In this embodiment, the pixel location classification of regions in the first image object may be determined with respect to the pixel location classification of the regions in the second image object. Thus any error in the pixel location classification of the regions in the second image object can affect the accuracy of the classification in the first image object, which in turn can affect future image objects. In one embodiment, the updating or resetting can be triggered when there is a large reduction in the mismatch measure as the motion estimation changed from one pixel precision to another (e.g. full integer pixel to half-pixel motion, or from half-pixel to quarter-pixel, and so on). In one embodiment, when there is a large reduction in the mismatch measure as the motion changed from integer pixel precision to half-pixel precision, the class of the selected reference image object may be updated or reset to “integer-pixel location”. In another embodiment, when there is a large reduction in the mismatch measure as the motion changed from half-pixel precision to quarter-pixel precision, the class of the selected reference image object may be updated or reset to “half-pixel location” and similarly when there is a large reduction in the mismatch measure as the motion changed from quarter-pixel to ⅛-pixel or ⅛-pixel to 1/16 pixel, the selected reference image object may be updated or reset to quarter-pixel or ⅛ pixel respectively.
- Viewed from another aspect the present invention provides an overall multi-frame motion estimation method such that single-frame motion estimation is performed with respect to the most recent reference frame; if best distortion is smaller than a threshold, the search terminates; otherwise, single-frame motion estimation is performed on other reference frames in such a way that only one frame from the same pixel-location class is examine, the one being the most recent frame. In the single-frame motion estimation, full search or fast search can be applied. In other words, complete or partial mismatch computations are both possible.
- In the above embodiments of the invention, the classes may be defined according to the pixel location, with classes such as “integer location”, “half-pixel location”, “quarter-pixel location”, “⅛-pixel location”, “ 1/16-pixel location”, etc. The classes may also be defined according to the type of regions (e.g. “smooth”, “edge”, “texture” etc), orientation of edges (e.g. “vertical edge”, “horizontal edge”, and edges with various angle of orientation or inclination, etc), width of the edges (e.g. “1-pixel wide edge”, “2-pixel wide edge”, etc), etc, or even a combination of various attributes. Some of these classifications of the first image object may require a second image object, while others do not.
- The embodiments of the invention given above are in terms of the current H.264 setting. While H.264 allows 5 reference frames, actually any amount of reference frames can be used. This invention can be applied with multiple block size, and the blocks do not necessarily be non-overlapping. The reference frames may be in the past or in the future. While only one of the reference frames is used in the above description, more than one frames can be used (e.g. a linear combination of several reference frames). While H.264 uses discrete cosine transform, any discrete transform can be applied. Actually, the use of “pixel location” classes in the decision of which reference frames to use, or not to use, can be extended to other decisions. The classification of situations according to “pixel location” due to horizontal and vertical translational motion can be generalized to classes due to translational and rotational motion in all possible directions. It can also be generalized to classes due to rigid or non-rigid objects at different spatial location, orientation and scale. While video is a sequence of “frames” which are 2-dimensional pictures of the world, the invention can be applied to sequences of lower (e.g. 1) or higher (e.g. 3) dimensional description of the world.
- For the video, one picture element (pixel) may have one or more components such as the luminance component, the red, green, blue (RGB) components, the YUV components, the YCrCb components, the infra-red components, the X-ray or other components. Each component of a picture element is a symbol that can be represented as a number, which may be a natural number, an integer, a real number or even a complex number. In the case of natural numbers, they may be 12-bit, 8-bit, or any other bit resolution. While the pixels in video are 2-dimensional samples with rectangular sampling grid and uniform sampling period, the sampling grid does not need to be rectangular and the sampling period does not need to be uniform.
- Moreover, the present invention in any of its aspect is applicable not only to the encoding of video, but also to the correspondence estimation in the encoding of audio signals, speech signals, video signals, seismic signals, medical signals, etc.
- Embodiments of the invention will now be described for the sake of example only with reference to the following figures, in which:
-
FIG. 1 illustrates examples of half-pixel motion and quarter-pixel motion -
FIG. 2 shows an example of selection of frames t-1, t-2, t-3 for motion estimation of frame t. -
FIG. 3 shows the flow chart of the proposed method FMFME. -
FIG. 4 shows the PSNR comparison between full search and the proposed FMFME for a test sequence called “Coastguard”. - The present invention, at least in its preferred embodiments, provides a novel fast multi-frame selection scheme that requires significantly reduced computational cost while achieving similar visual quality and bit-rate as the full selection process. Instead of searching through all the possible reference frames, the proposed scheme tries to select only a few representative frames for motion estimation. This is very useful for real-time applications.
- Accurate prediction can efficiently reduce the degree of error between the original image and the predicted image. For this reason, quarter-pixel translational motion estimation/compensation is adopted in H.264 for better compression performance. Between two consecutive frames, the object motion may be an integer pixel motion, a half-pixel motion, or a quarter-pixel motion, ⅛-pixel motion, 1/16-pixel motion etc. Typically, sub-pixel motion estimation algorithms use interpolation to predict the sub-pixel shift of texture relative to the sampling grid.
- Suppose an object has edges aligned perfectly with the sensor boundaries at a particular time instant such that the object edge is clear and sharp. We will describe this object as having “integer-pixel location”. When the object undergoes an integer-pixel translational motion, the object will look exactly the same in the two consecutive frames except that one is a translation to another. And the moved object can be predicted perfectly by integer-pixel motion estimation.
- When the
object 100 undergoes a half-pixel motion, the edges may be blurred as shown inFIG. 1 a. We will describe this object as having “half-pixel location”. The original zero-pixel-wide (sharp) object edge now becomes one pixel-wide (blurred). The pixel at the blurred object edges 106 may have only half the intensity of the original object, which can lead to difficulty in motion estimation. In particular, the block on the right 102 inFIG. 1 a can be predicted perfectly byblock 100 using half-pixel motion estimation. However, block 100 cannot be predicted perfectly byblock 102. - Similarly, when the
object 100 undergoes a quarter-pixel motion, the edges may be blurred as shown inFIG. 1 b. We will describe this object as having “quarter-pixel location”. The zero-pixel-wide (sharp) object edge becomes one-pixel-wide (blurred). The pixels at the blurred edges may have ¾ (108) or ¼ (110) of the intensity. Again, the blurred “quarter-pixel location”object 104 can be predicted perfectly from the sharp “integer-pixel location”object 100 using quarter-pixel motion estimation, but not vice versa. - In general, the objects can be classified into sub-pixel location classes, namely “integer-pixel location”, “half-pixel location” and “quarter-pixel location”. The edge (and probably texture) details in the three classes are different.
- The advantage of multi-frame ME is that it can further reduce the temporal redundancy in the video sequences by considering more than one reference frames. The best match is usually found by minimizing the cost function:
-
J(m, λ MOTION)=SAD(s, c(m))+λMOTION ·R(m−p)) (1) - with m=(mx, my)T being the motion vector, p=(px,py)T being the prediction for the motion vector and λMOTION being the Lagrange multiplier. The term R(m−p) represents the bits used to encode the motion information and are obtained by table-lookup. The SAD (Sum of Absolute Differences) is computed as:
-
- with B=16, 8 or 4 and s being the original video signal and c being the coded video signal.
- There are basically two types of temporal redundancy that can be captured by using multiple reference frames but not the traditional single frames. The first type of redundancy is related to short-term memory. Suppose the current frame is frame t. Sometimes, objects may be distorted or absent in frame t-1, but well represented in frames t-2 to t-5. An example is the blinking of an eye, which is a very fast motion. If multiple reference frames are allowed, the motion estimation and compensation can be significantly better than just a single reference frame. However, in our experiments, we observe that the previous reference frame (i.e. frame t-1) still has the highest probability of being selected among the five possible reference frames.
- The second type is the sub-pixel movement of textures described above. Textures and objects with different version of “sub-pixel locations” (“integer-pixel”, “half-pixel” and “quarter-pixel”) may occur in successive video frames. In our experiments, we observe that there is a great tendency for the cost function to be especially small when the same shifted version of texture is used to do the motion estimation and compensation. In other words, the optimal reference frame tends to be the one with the same sub-pixel location as the current frame.
- The more reference frames used, the higher the probability for the current image to find a reference frame with the same sub-pixel location. Probably this is the reason why it has been suggested that sub-pixel motion compensation is more important in single-frame ME/MC than in multi-frame ME/MC. Nevertheless, multi-frame motion estimation together with sub-pixel accuracy motion estimation is a strong combination to tackle the sub-pixel movement of texture and edges. However, it is difficult to determine accurately the current sub-pixel location class a priori.
- We also observe that when there is more than one frame with the same sub-pixel location, the one closer to the current frame is usually better. As a result, the motion estimation speed can be increased by estimating the type of shifted version of texture (“sub-pixel location”) in the frame buffer. For example in
FIG. 2 , the black square means collocated macroblocks in Frame t and the multiple reference frames. - So if the macroblock at Frame t-1 and Frame t-2 show the same shifting characteristics, then we can drop the redundant one (Frame t-2) and reduce motion estimation complexity.
- Suppose we need to perform multi-frame motion estimation for frame t, as shown in
FIG. 2 . In the proposed fast multi-frame motion estimation (FMFME) algorithm, each macroblock (e.g., macroblock 200) in the reference frames (frames t-5 to t-1) is assumed to have a sub-pixel location. - Before performing motion estimation for the current macroblock (with black frame) in frame t (202), the motion vectors of all the collocated macroblocks in frames t-1 to t-5 will be examined. If two or more macroblocks have the same sub-pixel location, only one frame is enabled for motion estimation. The sub-pixel location of two macroblocks are considered the same if both the x and y components of the sub-pixel location are equal. The process will enable the frame with smallest temporal distance (closest) to the current frame.
- Motion estimation is then performed on the immediate past frame (i.e. frame t-1 (204)), as this is the most likely frame to be the best. After the motion estimation process, the sub-pixel motion vectors obtained are added to the sub-pixel locations of the “dominant” reference macroblocks (with maximum overlapping area) to obtain the sub-pixel location of the current macroblock. So for
FIG. 2 if we assume frame t-3 (206) is chosen to be the reference frame for the black (current) macroblock in frame t, the sub-pixel location of the current macroblock in frame t is obtained by adding its sub-pixel motion vector to the sub-pixel position of black macroblock in frame t-3. - Several early termination checks are then performed. If the best SAD with respect to frame t-1 is smaller than a threshold T1, we consider it “good enough” and would skip the motion estimation for other reference frames. If the current macroblock is sufficiently flat such that there is no strong texture inside the macroblock, we would also skip the multi-frame motion estimation because multi-frame motion estimation in such cases tends to have little performance gain over single-frame motion estimation. To determine the flatness of the macroblock, 4×4 Hadamard transform is performed for every 4×4 sub-block inside the macroblock. If all the AC coefficients of the 4×4 sub-blocks are equal to zero, we would consider the macroblock is sufficiently flat. Otherwise, motion estimation is performed on the enabled reference frames.
- There is also a sub-pixel location refreshing mechanism. Our sub-pixel location estimation of the macroblocks may not be 100% accurate, especially with potential error drifting over many frames. The accumulation of error can affect the performance of FMFME. Therefore, refreshing of sub-pixel location is necessary. We observe in our experiments that, for texture at integer-pixel, half-pixel or quarter-pixel locations, only the textures at integer-pixel location can give a large SAD reduction when it is interpolated/filtered into half pixel type texture for half-pixel motion estimation. When this occurs, we reset the sub-pixel location of the reference macroblock to be integer-pixel, and update the current sub-pixel location if appropriate. This refreshing can help to suppress the propagation of error.
- Here is how our refreshing mechanism works. During the motion estimation between the current and reference frame, the best SAD obtained using integer-pixel and half-pixel motion estimation is compared. If the half-pixel ME gives 50% reduction in SAD compared with the integer-pixel ME, the sub-pixel location type of the reference macroblock will be updated to be of integer-pixel.
FIG. 3 shows theflow chart 300 of the proposed algorithm. - The proposed FMFME was tested on four QCIF (176×144) sequences, “Akiyo”, “Coastguard”, “Stefan” and “Foreman”, with constant quantization factor, Qp=16 and T1=512. The proposed scheme was implemented in the H.264 reference software TML9.0. PMVFAST was used for fast motion estimation.
- Table 1 below gives the results of PSNR (peak signal-to-reconstructed image measure), bit rate and complexity reduction of the proposed FMFME in the testing sequences. The computational cost using a powerful performance analyzer in term of number of clock cycles is used. Compared with the full search (FS) multi-frame selection scheme in H.264, the proposed FMFME can reduce computational cost by 53% (equivalent complexity of performing PMVFAST on 2.6 frames instead of 5 reference frames) with negligibly small PSNR degradation (0.02 dB) and fewer bits (0.10%) on the average.
FIG. 4 shows agraph 400 the PSNR comparison for “Coastguard”. -
TABLE 1 Comparison of PSNR, bitrate and complexity for H.264 and proposed FMFME algorithm Complexity PSNR(dB) Bitrate Coastguard H.264 (FS) 120.66 × 109 34.01 2472144 FMFME 64.92 × 109 34.00 2476936 Saving 46.2% −0.01 −0.19% Akiyo H.264 (FS) 102.43 × 109 38.23 287336 FMFME 28.73 × 109 38.23 287024 Saving 72% 0.00 1.1% Stefan H.264 (FS) 122.98 × 109 34.01 4814040 FMFME 71.32 × 109 33.99 4838168 Saving 42% −0.02 −0.5% Foreman H.264 (FS) 126.77 × 109 35.65 1604520 FMFME 71.35 × 109 35.60 1617704 Saving 43.64% −0.05 −0.82% - The fast motion estimation process of embodiments of the present invention is mainly targeted for fast, low-delay and low cost software and hardware implementation of H.264, or MPEG4 AVC, or AVS, or related video coding standards or methods. Possible applications include digital cameras, digital camcorders, digital video recorders, set-top boxes, personal digital assistants (PDA), multimedia-enabled cellular phones (2.5G, 3G, and beyond), video conferencing systems, video-on-demand systems, wireless LAN devices, bluetooth applications, web servers, video streaming server in low or high bandwidth applications, video transcoders (converter from one format to another), and other visual communication systems, etc.
- While several aspects of the present invention have been described and depicted herein, alternative aspects may be effected by those skilled in the art to accomplish the same objectives. Accordingly, it is intended by the appended claims to cover all such alternative aspects as fall within the true spirit and scope of the invention.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/775,312 US20100215106A1 (en) | 2004-03-26 | 2010-05-06 | Efficient multi-frame motion estimation for video compression |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55636304P | 2004-03-26 | 2004-03-26 | |
US11/090,373 US7720148B2 (en) | 2004-03-26 | 2005-03-25 | Efficient multi-frame motion estimation for video compression |
US12/775,312 US20100215106A1 (en) | 2004-03-26 | 2010-05-06 | Efficient multi-frame motion estimation for video compression |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/090,373 Continuation US7720148B2 (en) | 2004-03-26 | 2005-03-25 | Efficient multi-frame motion estimation for video compression |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100215106A1 true US20100215106A1 (en) | 2010-08-26 |
Family
ID=35187087
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/090,373 Active 2029-03-18 US7720148B2 (en) | 2004-03-26 | 2005-03-25 | Efficient multi-frame motion estimation for video compression |
US12/775,312 Abandoned US20100215106A1 (en) | 2004-03-26 | 2010-05-06 | Efficient multi-frame motion estimation for video compression |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/090,373 Active 2029-03-18 US7720148B2 (en) | 2004-03-26 | 2005-03-25 | Efficient multi-frame motion estimation for video compression |
Country Status (1)
Country | Link |
---|---|
US (2) | US7720148B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110051813A1 (en) * | 2009-09-02 | 2011-03-03 | Sony Computer Entertainment Inc. | Utilizing thresholds and early termination to achieve fast motion estimation in a video encoder |
US8605786B2 (en) * | 2007-09-04 | 2013-12-10 | The Regents Of The University Of California | Hierarchical motion vector processing method, software and devices |
US20160080766A1 (en) * | 2008-03-07 | 2016-03-17 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US20230300365A1 (en) * | 2018-01-09 | 2023-09-21 | Sharp Kabushiki Kaisha | Video decoding apparatus and video coding apparatus |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7634148B2 (en) * | 2005-01-07 | 2009-12-15 | Ntt Docomo, Inc. | Image signal transforming and inverse-transforming method and computer program product with pre-encoding filtering features |
US7728909B2 (en) * | 2005-06-13 | 2010-06-01 | Seiko Epson Corporation | Method and system for estimating motion and compensating for perceived motion blur in digital video |
JP4203498B2 (en) | 2005-09-22 | 2009-01-07 | アドバンスド・マスク・インスペクション・テクノロジー株式会社 | Image correction apparatus, pattern inspection apparatus, image correction method, and pattern defect inspection method |
US9071844B2 (en) * | 2005-12-16 | 2015-06-30 | Texas Instruments Incorporated | Motion estimation with motion vector penalty |
KR100842557B1 (en) * | 2006-10-20 | 2008-07-01 | 삼성전자주식회사 | Method for accessing memory in moving picture processing device |
US20080126278A1 (en) * | 2006-11-29 | 2008-05-29 | Alexander Bronstein | Parallel processing motion estimation for H.264 video codec |
US7822280B2 (en) * | 2007-01-16 | 2010-10-26 | Microsoft Corporation | Epipolar geometry-based motion estimation for multi-view image and video coding |
US20080279277A1 (en) * | 2007-05-09 | 2008-11-13 | To-Wei Chen | Methods and systems for performing image processing upon pixel data and loading pixel data in parallel |
WO2009070508A1 (en) * | 2007-11-30 | 2009-06-04 | Dolby Laboratories Licensing Corp. | Temporally smoothing a motion estimate |
US8861598B2 (en) * | 2008-03-19 | 2014-10-14 | Cisco Technology, Inc. | Video compression using search techniques of long-term reference memory |
PT104083A (en) * | 2008-06-02 | 2009-12-02 | Inst Politecnico De Leiria | METHOD FOR TRANSCODING H.264 / AVC VIDEO IMAGES IN MPEG-2 |
JP2010028220A (en) * | 2008-07-15 | 2010-02-04 | Sony Corp | Motion vector detecting device, motion vector detecting method, image encoding device, and program |
US8144766B2 (en) * | 2008-07-16 | 2012-03-27 | Sony Corporation | Simple next search position selection for motion estimation iterative search |
KR101619972B1 (en) * | 2008-10-02 | 2016-05-11 | 한국전자통신연구원 | Apparatus and method for coding/decoding image selectivly using descrete cosine/sine transtorm |
JP5347849B2 (en) * | 2009-09-01 | 2013-11-20 | ソニー株式会社 | Image encoding apparatus, image receiving apparatus, image encoding method, and image receiving method |
TWI566586B (en) | 2009-10-20 | 2017-01-11 | 湯姆生特許公司 | Method for coding a block of a sequence of images and method for reconstructing said block |
BR112012009116A2 (en) * | 2009-10-22 | 2020-08-18 | Koninklijke Philips Electronics N.V | method for aligning an ordered stack of specimen images, equipment for aligning an ordered stack of specimen images, computer program product, data carrier |
US10178406B2 (en) * | 2009-11-06 | 2019-01-08 | Qualcomm Incorporated | Control of video encoding based on one or more video capture parameters |
US8837576B2 (en) * | 2009-11-06 | 2014-09-16 | Qualcomm Incorporated | Camera parameter-assisted video encoding |
US8488007B2 (en) * | 2010-01-19 | 2013-07-16 | Sony Corporation | Method to estimate segmented motion |
EP2526699A1 (en) * | 2010-01-22 | 2012-11-28 | Thomson Licensing | Data pruning for video compression using example-based super-resolution |
KR101789845B1 (en) | 2010-01-22 | 2017-11-20 | 톰슨 라이센싱 | Methods and apparatus for sampling-based super resolution video encoding and decoding |
US9237355B2 (en) * | 2010-02-19 | 2016-01-12 | Qualcomm Incorporated | Adaptive motion resolution for video coding |
US8285079B2 (en) * | 2010-03-19 | 2012-10-09 | Sony Corporation | Method for highly accurate estimation of motion using phase correlation |
US8391563B2 (en) | 2010-05-25 | 2013-03-05 | Sony Corporation | Using computer video camera to detect earthquake |
EP2407803A1 (en) * | 2010-07-15 | 2012-01-18 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method for safely identifying moving objects |
US9338477B2 (en) | 2010-09-10 | 2016-05-10 | Thomson Licensing | Recovering a pruned version of a picture in a video sequence for example-based data pruning using intra-frame patch similarity |
US9544598B2 (en) | 2010-09-10 | 2017-01-10 | Thomson Licensing | Methods and apparatus for pruning decision optimization in example-based data pruning compression |
US20130222645A1 (en) * | 2010-09-14 | 2013-08-29 | Nokia Corporation | Multi frame image processing apparatus |
US10327008B2 (en) | 2010-10-13 | 2019-06-18 | Qualcomm Incorporated | Adaptive motion vector resolution signaling for video coding |
US20130156114A1 (en) * | 2011-12-17 | 2013-06-20 | Faramarz Azadegan | Data Movement Reduction In Video Compression Systems |
US9338461B2 (en) * | 2013-02-04 | 2016-05-10 | Mitsubishi Electric Research Laboratories, Inc | Method and system for encoding collections of images and videos |
KR101560186B1 (en) * | 2013-03-18 | 2015-10-14 | 삼성전자주식회사 | A method and apparatus for encoding and decoding image using adaptive search range decision for motion estimation |
US9990536B2 (en) | 2016-08-03 | 2018-06-05 | Microsoft Technology Licensing, Llc | Combining images aligned to reference frame |
US20190191168A1 (en) * | 2017-12-19 | 2019-06-20 | Google Llc | Video quality and throughput control |
CN112738529B (en) * | 2020-12-23 | 2023-07-07 | 北京百度网讯科技有限公司 | Inter prediction method, device, apparatus, storage medium, and program product |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5233992A (en) * | 1991-07-22 | 1993-08-10 | Edison Biotechnology Center | MRI method for high liver iron measurement using magnetic susceptibility induced field distortions |
US5481627A (en) * | 1993-08-31 | 1996-01-02 | Daewoo Electronics Co., Ltd. | Method for rectifying channel errors in a transmitted image signal encoded by classified vector quantization |
US5587741A (en) * | 1993-07-21 | 1996-12-24 | Daewoo Electronics Co., Ltd. | Apparatus and method for detecting motion vectors to half-pixel accuracy |
US5614959A (en) * | 1992-02-08 | 1997-03-25 | Samsung Electronics Co., Ltd. | Method and apparatus for motion estimation |
US5719630A (en) * | 1993-12-10 | 1998-02-17 | Nec Corporation | Apparatus for compressive coding in moving picture coding device |
US5751893A (en) * | 1992-03-24 | 1998-05-12 | Kabushiki Kaisha Toshiba | Variable length code recording/playback apparatus |
US5781249A (en) * | 1995-11-08 | 1998-07-14 | Daewoo Electronics Co., Ltd. | Full or partial search block matching dependent on candidate vector prediction distortion |
US5805228A (en) * | 1996-08-09 | 1998-09-08 | U.S. Robotics Access Corp. | Video encoder/decoder system |
US6434196B1 (en) * | 1998-04-03 | 2002-08-13 | Sarnoff Corporation | Method and apparatus for encoding video information |
US20030202594A1 (en) * | 2002-03-15 | 2003-10-30 | Nokia Corporation | Method for coding motion in a video sequence |
US6859494B2 (en) * | 2001-07-27 | 2005-02-22 | General Instrument Corporation | Methods and apparatus for sub-pixel motion estimation |
US6987866B2 (en) * | 2001-06-05 | 2006-01-17 | Micron Technology, Inc. | Multi-modal motion estimation for video sequences |
US7079579B2 (en) * | 2000-07-13 | 2006-07-18 | Samsung Electronics Co., Ltd. | Block matching processor and method for block matching motion estimation in video compression |
US7260148B2 (en) * | 2001-09-10 | 2007-08-21 | Texas Instruments Incorporated | Method for motion vector estimation |
US7471725B2 (en) * | 2003-03-26 | 2008-12-30 | Lsi Corporation | Segmented motion estimation with no search for small block sizes |
US7800367B2 (en) * | 2008-04-02 | 2010-09-21 | General Electric Co. | Method and apparatus for generating T2* weighted magnetic resonance images |
Family Cites Families (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633652A (en) * | 1984-02-17 | 1997-05-27 | Canon Kabushiki Kaisha | Method for driving optical modulation device |
JPH0242761A (en) * | 1988-04-20 | 1990-02-13 | Matsushita Electric Ind Co Ltd | Manufacture of active matrix substrate |
US5206629A (en) * | 1989-02-27 | 1993-04-27 | Texas Instruments Incorporated | Spatial light modulator and memory for digitized video display |
KR100202246B1 (en) * | 1989-02-27 | 1999-06-15 | 윌리엄 비. 켐플러 | Apparatus and method for digital video system |
US5214419A (en) * | 1989-02-27 | 1993-05-25 | Texas Instruments Incorporated | Planarized true three dimensional display |
US5287096A (en) * | 1989-02-27 | 1994-02-15 | Texas Instruments Incorporated | Variable luminosity display system |
US5214420A (en) * | 1989-02-27 | 1993-05-25 | Texas Instruments Incorporated | Spatial light modulator projection system with random polarity light |
US5446479A (en) * | 1989-02-27 | 1995-08-29 | Texas Instruments Incorporated | Multi-dimensional array video processor system |
US5192946A (en) * | 1989-02-27 | 1993-03-09 | Texas Instruments Incorporated | Digitized color video display system |
US5381253A (en) * | 1991-11-14 | 1995-01-10 | Board Of Regents Of University Of Colorado | Chiral smectic liquid crystal optical modulators having variable retardation |
US5500635A (en) * | 1990-02-20 | 1996-03-19 | Mott; Jonathan C. | Products incorporating piezoelectric material |
US5142405A (en) * | 1990-06-29 | 1992-08-25 | Texas Instruments Incorporated | Bistable dmd addressing circuit and method |
US5083857A (en) * | 1990-06-29 | 1992-01-28 | Texas Instruments Incorporated | Multi-level deformable mirror device |
US5216537A (en) * | 1990-06-29 | 1993-06-01 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
EP0467048B1 (en) * | 1990-06-29 | 1995-09-20 | Texas Instruments Incorporated | Field-updated deformable mirror device |
US5526688A (en) * | 1990-10-12 | 1996-06-18 | Texas Instruments Incorporated | Digital flexure beam accelerometer and method |
US5192395A (en) * | 1990-10-12 | 1993-03-09 | Texas Instruments Incorporated | Method of making a digital flexure beam accelerometer |
US5331454A (en) * | 1990-11-13 | 1994-07-19 | Texas Instruments Incorporated | Low reset voltage process for DMD |
US5602671A (en) * | 1990-11-13 | 1997-02-11 | Texas Instruments Incorporated | Low surface energy passivation layer for micromechanical devices |
US5233459A (en) * | 1991-03-06 | 1993-08-03 | Massachusetts Institute Of Technology | Electric display device |
CA2063744C (en) * | 1991-04-01 | 2002-10-08 | Paul M. Urbanus | Digital micromirror device architecture and timing for use in a pulse-width modulated display system |
US5142414A (en) * | 1991-04-22 | 1992-08-25 | Koehler Dale R | Electrically actuatable temporal tristimulus-color device |
US5226099A (en) * | 1991-04-26 | 1993-07-06 | Texas Instruments Incorporated | Digital micromirror shutter device |
FR2679057B1 (en) * | 1991-07-11 | 1995-10-20 | Morin Francois | LIQUID CRYSTAL, ACTIVE MATRIX AND HIGH DEFINITION SCREEN STRUCTURE. |
US5179274A (en) * | 1991-07-12 | 1993-01-12 | Texas Instruments Incorporated | Method for controlling operation of optical systems and devices |
US5233385A (en) * | 1991-12-18 | 1993-08-03 | Texas Instruments Incorporated | White light enhanced color field sequential projection |
US5233456A (en) * | 1991-12-20 | 1993-08-03 | Texas Instruments Incorporated | Resonant mirror and method of manufacture |
US5228013A (en) * | 1992-01-10 | 1993-07-13 | Bik Russell J | Clock-painting device and method for indicating the time-of-day with a non-traditional, now analog artistic panel of digital electronic visual displays |
US5296950A (en) * | 1992-01-31 | 1994-03-22 | Texas Instruments Incorporated | Optical signal free-space conversion board |
US5231532A (en) * | 1992-02-05 | 1993-07-27 | Texas Instruments Incorporated | Switchable resonant filter for optical radiation |
DE69310974T2 (en) * | 1992-03-25 | 1997-11-06 | Texas Instruments Inc | Built-in optical calibration system |
US5312513A (en) * | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
WO1993021663A1 (en) * | 1992-04-08 | 1993-10-28 | Georgia Tech Research Corporation | Process for lift-off of thin film materials from a growth substrate |
US5311360A (en) * | 1992-04-28 | 1994-05-10 | The Board Of Trustees Of The Leland Stanford, Junior University | Method and apparatus for modulating a light beam |
TW245772B (en) * | 1992-05-19 | 1995-04-21 | Akzo Nv | |
JPH0651250A (en) * | 1992-05-20 | 1994-02-25 | Texas Instr Inc <Ti> | Monolithic space optical modulator and memory package |
US5638084A (en) * | 1992-05-22 | 1997-06-10 | Dielectric Systems International, Inc. | Lighting-independent color video display |
JPH06214169A (en) * | 1992-06-08 | 1994-08-05 | Texas Instr Inc <Ti> | Controllable optical and periodic surface filter |
US5818095A (en) * | 1992-08-11 | 1998-10-06 | Texas Instruments Incorporated | High-yield spatial light modulator with light blocking layer |
US5345328A (en) * | 1992-08-12 | 1994-09-06 | Sandia Corporation | Tandem resonator reflectance modulator |
US5327286A (en) * | 1992-08-31 | 1994-07-05 | Texas Instruments Incorporated | Real time optical correlation system |
US5325116A (en) * | 1992-09-18 | 1994-06-28 | Texas Instruments Incorporated | Device for writing to and reading from optical storage media |
US5296775A (en) * | 1992-09-24 | 1994-03-22 | International Business Machines Corporation | Cooling microfan arrangements and process |
US5659374A (en) * | 1992-10-23 | 1997-08-19 | Texas Instruments Incorporated | Method of repairing defective pixels |
EP0610665B1 (en) * | 1993-01-11 | 1997-09-10 | Texas Instruments Incorporated | Pixel control circuitry for spatial light modulator |
US5324683A (en) * | 1993-06-02 | 1994-06-28 | Motorola, Inc. | Method of forming a semiconductor structure having an air region |
US5489952A (en) * | 1993-07-14 | 1996-02-06 | Texas Instruments Incorporated | Method and device for multi-format television |
US5365283A (en) * | 1993-07-19 | 1994-11-15 | Texas Instruments Incorporated | Color phase control for projection display using spatial light modulator |
US5526172A (en) * | 1993-07-27 | 1996-06-11 | Texas Instruments Incorporated | Microminiature, monolithic, variable electrical signal processor and apparatus including same |
US5629790A (en) * | 1993-10-18 | 1997-05-13 | Neukermans; Armand P. | Micromachined torsional scanner |
US5526051A (en) * | 1993-10-27 | 1996-06-11 | Texas Instruments Incorporated | Digital television system |
US5497197A (en) * | 1993-11-04 | 1996-03-05 | Texas Instruments Incorporated | System and method for packaging data into video processor |
US5452024A (en) * | 1993-11-01 | 1995-09-19 | Texas Instruments Incorporated | DMD display system |
US5517347A (en) * | 1993-12-01 | 1996-05-14 | Texas Instruments Incorporated | Direct view deformable mirror device |
US5448314A (en) * | 1994-01-07 | 1995-09-05 | Texas Instruments | Method and apparatus for sequential color imaging |
US5500761A (en) * | 1994-01-27 | 1996-03-19 | At&T Corp. | Micromechanical modulator |
US5444566A (en) * | 1994-03-07 | 1995-08-22 | Texas Instruments Incorporated | Optimized electronic operation of digital micromirror devices |
US5526327A (en) * | 1994-03-15 | 1996-06-11 | Cordova, Jr.; David J. | Spatial displacement time display |
JPH07253594A (en) * | 1994-03-15 | 1995-10-03 | Fujitsu Ltd | Display device |
EP0674208A1 (en) * | 1994-03-22 | 1995-09-27 | Shinto Paint Co., Ltd. | Method for manufacturing of color filter and liquid crystal display |
DE69522856T2 (en) * | 1994-05-17 | 2002-05-02 | Sony Corp | Display device with position detection of a pointer |
US5497172A (en) * | 1994-06-13 | 1996-03-05 | Texas Instruments Incorporated | Pulse width modulation for spatial light modulator with split reset addressing |
US5499062A (en) * | 1994-06-23 | 1996-03-12 | Texas Instruments Incorporated | Multiplexed memory timing with block reset and secondary memory |
US5485304A (en) * | 1994-07-29 | 1996-01-16 | Texas Instruments, Inc. | Support posts for micro-mechanical devices |
US5636052A (en) * | 1994-07-29 | 1997-06-03 | Lucent Technologies Inc. | Direct view display based on a micromechanical modulation |
US5619059A (en) * | 1994-09-28 | 1997-04-08 | National Research Council Of Canada | Color deformable mirror device having optical thin film interference color coatings |
US5650881A (en) * | 1994-11-02 | 1997-07-22 | Texas Instruments Incorporated | Support post architecture for micromechanical devices |
US5552924A (en) * | 1994-11-14 | 1996-09-03 | Texas Instruments Incorporated | Micromechanical device having an improved beam |
US5610624A (en) * | 1994-11-30 | 1997-03-11 | Texas Instruments Incorporated | Spatial light modulator with reduced possibility of an on state defect |
US5726480A (en) * | 1995-01-27 | 1998-03-10 | The Regents Of The University Of California | Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same |
US5610438A (en) * | 1995-03-08 | 1997-03-11 | Texas Instruments Incorporated | Micro-mechanical device with non-evaporable getter |
US5636185A (en) * | 1995-03-10 | 1997-06-03 | Boit Incorporated | Dynamically changing liquid crystal display timekeeping apparatus |
US5535047A (en) * | 1995-04-18 | 1996-07-09 | Texas Instruments Incorporated | Active yoke hidden hinge digital micromirror device |
US5784190A (en) * | 1995-04-27 | 1998-07-21 | John M. Baker | Electro-micro-mechanical shutters on transparent substrates |
US5641391A (en) * | 1995-05-15 | 1997-06-24 | Hunter; Ian W. | Three dimensional microfabrication by localized electrodeposition and etching |
US5739945A (en) * | 1995-09-29 | 1998-04-14 | Tayebati; Parviz | Electrically tunable optical filter utilizing a deformable multi-layer mirror |
JP3799092B2 (en) * | 1995-12-29 | 2006-07-19 | アジレント・テクノロジーズ・インク | Light modulation device and display device |
US5638946A (en) * | 1996-01-11 | 1997-06-17 | Northeastern University | Micromechanical switch with insulated switch contact |
US5710656A (en) * | 1996-07-30 | 1998-01-20 | Lucent Technologies Inc. | Micromechanical optical modulator having a reduced-mass composite membrane |
US5793504A (en) * | 1996-08-07 | 1998-08-11 | Northrop Grumman Corporation | Hybrid angular/spatial holographic multiplexer |
US5912758A (en) * | 1996-09-11 | 1999-06-15 | Texas Instruments Incorporated | Bipolar reset for spatial light modulators |
US5771116A (en) * | 1996-10-21 | 1998-06-23 | Texas Instruments Incorporated | Multiple bias level reset waveform for enhanced DMD control |
US5943158A (en) * | 1998-05-05 | 1999-08-24 | Lucent Technologies Inc. | Micro-mechanical, anti-reflection, switched optical modulator array and fabrication method |
-
2005
- 2005-03-25 US US11/090,373 patent/US7720148B2/en active Active
-
2010
- 2010-05-06 US US12/775,312 patent/US20100215106A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5233992A (en) * | 1991-07-22 | 1993-08-10 | Edison Biotechnology Center | MRI method for high liver iron measurement using magnetic susceptibility induced field distortions |
US5614959A (en) * | 1992-02-08 | 1997-03-25 | Samsung Electronics Co., Ltd. | Method and apparatus for motion estimation |
US5751893A (en) * | 1992-03-24 | 1998-05-12 | Kabushiki Kaisha Toshiba | Variable length code recording/playback apparatus |
US5587741A (en) * | 1993-07-21 | 1996-12-24 | Daewoo Electronics Co., Ltd. | Apparatus and method for detecting motion vectors to half-pixel accuracy |
US5481627A (en) * | 1993-08-31 | 1996-01-02 | Daewoo Electronics Co., Ltd. | Method for rectifying channel errors in a transmitted image signal encoded by classified vector quantization |
US5719630A (en) * | 1993-12-10 | 1998-02-17 | Nec Corporation | Apparatus for compressive coding in moving picture coding device |
US5781249A (en) * | 1995-11-08 | 1998-07-14 | Daewoo Electronics Co., Ltd. | Full or partial search block matching dependent on candidate vector prediction distortion |
US5805228A (en) * | 1996-08-09 | 1998-09-08 | U.S. Robotics Access Corp. | Video encoder/decoder system |
US6434196B1 (en) * | 1998-04-03 | 2002-08-13 | Sarnoff Corporation | Method and apparatus for encoding video information |
US7079579B2 (en) * | 2000-07-13 | 2006-07-18 | Samsung Electronics Co., Ltd. | Block matching processor and method for block matching motion estimation in video compression |
US6987866B2 (en) * | 2001-06-05 | 2006-01-17 | Micron Technology, Inc. | Multi-modal motion estimation for video sequences |
US6859494B2 (en) * | 2001-07-27 | 2005-02-22 | General Instrument Corporation | Methods and apparatus for sub-pixel motion estimation |
US7260148B2 (en) * | 2001-09-10 | 2007-08-21 | Texas Instruments Incorporated | Method for motion vector estimation |
US20030202594A1 (en) * | 2002-03-15 | 2003-10-30 | Nokia Corporation | Method for coding motion in a video sequence |
US7471725B2 (en) * | 2003-03-26 | 2008-12-30 | Lsi Corporation | Segmented motion estimation with no search for small block sizes |
US7800367B2 (en) * | 2008-04-02 | 2010-09-21 | General Electric Co. | Method and apparatus for generating T2* weighted magnetic resonance images |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8605786B2 (en) * | 2007-09-04 | 2013-12-10 | The Regents Of The University Of California | Hierarchical motion vector processing method, software and devices |
US20160080766A1 (en) * | 2008-03-07 | 2016-03-17 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US10244254B2 (en) | 2008-03-07 | 2019-03-26 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US10334271B2 (en) | 2008-03-07 | 2019-06-25 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US10341679B2 (en) | 2008-03-07 | 2019-07-02 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US10412409B2 (en) | 2008-03-07 | 2019-09-10 | Sk Planet Co., Ltd. | Encoding system using motion estimation and encoding method using motion estimation |
US20110051813A1 (en) * | 2009-09-02 | 2011-03-03 | Sony Computer Entertainment Inc. | Utilizing thresholds and early termination to achieve fast motion estimation in a video encoder |
US8848799B2 (en) * | 2009-09-02 | 2014-09-30 | Sony Computer Entertainment Inc. | Utilizing thresholds and early termination to achieve fast motion estimation in a video encoder |
US20230300365A1 (en) * | 2018-01-09 | 2023-09-21 | Sharp Kabushiki Kaisha | Video decoding apparatus and video coding apparatus |
Also Published As
Publication number | Publication date |
---|---|
US7720148B2 (en) | 2010-05-18 |
US20050243921A1 (en) | 2005-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7720148B2 (en) | Efficient multi-frame motion estimation for video compression | |
US8718143B2 (en) | Optical flow based motion vector estimation systems and methods | |
EP1797722B1 (en) | Adaptive overlapped block matching for accurate motion compensation | |
US9247250B2 (en) | Method and system for motion compensated picture rate up-conversion of digital video using picture boundary processing | |
US8761258B2 (en) | Enhanced block-based motion estimation algorithms for video compression | |
KR101037816B1 (en) | Coding and decoding for interlaced video | |
US8780970B2 (en) | Motion wake identification and control mechanism | |
US20060002474A1 (en) | Efficient multi-block motion estimation for video compression | |
KR20040069210A (en) | Sharpness enhancement in post-processing of digital video signals using coding information and local spatial features | |
US6873657B2 (en) | Method of and system for improving temporal consistency in sharpness enhancement for a video signal | |
EP1506525B1 (en) | System for and method of sharpness enhancement for coded digital video | |
US20070140336A1 (en) | Video coding device and image recording/reproducing device | |
US8767831B2 (en) | Method and system for motion compensated picture rate up-conversion using information extracted from a compressed video stream | |
US8848793B2 (en) | Method and system for video compression with integrated picture rate up-conversion | |
KR101037834B1 (en) | Coding and decoding for interlaced video | |
Nakajima et al. | Motion vector re-estimation for fast video transcoding from MPEG-2 to MPEG-4 | |
KR100778469B1 (en) | An optimization of motion estimation method and apparatus | |
Murmu | Fast motion estimation algorithm in H. 264 standard | |
Arévalo López | Frame Rate Up-Conversion with Frame Interpolation over non-regular block partitions of H. 264. | |
Lange | Multiresolution Representation of Motion Vectors in Video Compression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AU, OSCAR CHI-LIM;REEL/FRAME:026072/0032 Effective date: 20050316 Owner name: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AU, OSCAR CHI-LIM;CHANG, ANDY;REEL/FRAME:026072/0054 Effective date: 20050316 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |