Nothing Special   »   [go: up one dir, main page]

US20100202177A1 - Voltage link control of a dc-ac boost converter system - Google Patents

Voltage link control of a dc-ac boost converter system Download PDF

Info

Publication number
US20100202177A1
US20100202177A1 US12/761,197 US76119710A US2010202177A1 US 20100202177 A1 US20100202177 A1 US 20100202177A1 US 76119710 A US76119710 A US 76119710A US 2010202177 A1 US2010202177 A1 US 2010202177A1
Authority
US
United States
Prior art keywords
inverter
boost converter
voltage
node
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/761,197
Inventor
Lateef A. Kajouke
Brian A. Welchko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US12/761,197 priority Critical patent/US20100202177A1/en
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAJOUKE, LATEEF A., WELCHKO, BRIAN A.
Publication of US20100202177A1 publication Critical patent/US20100202177A1/en
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Definitions

  • Embodiments of the present invention relate generally to electric power converters, and more particularly relate to DC-AC inverters.
  • An inverter is an electronic circuit for converting direct current (DC) to alternating current (AC). Inverters are used in a wide range of applications, from small uninterruptible power supplies for a computer to large electric power transport utility applications, and variable speed industrial drives. Inverters are also used to provide a source of AC power from fuel cell or photovoltaic solar cell power supplies. A common application is to power an AC electric motor.
  • Three-phase is a common type of AC that can be produced by an inverter and used for electric power applications.
  • An important type of three-phase load is an AC electric motor.
  • a three-phase AC electric motor has a simple design, high torque at low RPM, and high efficiency.
  • Three-phase motors are used for pumps, fans, blowers, compressors, electric and diesel-electric locomotives and many other kinds of motor-driven equipment.
  • Three-phase motors are more compact, less expensive, vibrate less, last longer than a single-phase motor of the same power rating, and are subsequently preferred over single-phase for motors above 10 HP (7.5 kW).
  • Hybrid, fuel cell, and electric vehicles often use three-phase motors because their high starting torque can be used to accelerate a vehicle to a useful speed.
  • a three-phase motor can also be used as a generator for regenerative braking.
  • Hybrid, fuel cell, and electric vehicles generally have a source of DC power.
  • these vehicles may use electric batteries, ultra-capacitors, fuel cells, and fuel powered generators, all producing DC power.
  • the different sources will often have different voltages requiring voltage conversion to effectively use their electrical voltages with an inverter.
  • One approach is to use a voltage converter to obtain the various operating voltages.
  • Voltage converters usually include a capacitor to condition the DC power input to an inverter.
  • This capacitor can be large and expensive. Accordingly, it is desirable to have a system that reduces the size of the input capacitor.
  • Systems and methods are disclosed for a DC-AC boost converter system.
  • the systems and methods combine operation of an inductor with the input capacitor of a DC/AC inverter via a switch configuration to power the DC/AC inverter.
  • the switch configuration is controlled by a plurality of control signals generated by a controller, based on a variety of control modes and feedback signals.
  • the system has an inverter with a first DC input, a second DC input, control inputs, AC outputs configured to be coupled to a load, and a voltage source with a first output coupled to a first node, and a second output coupled to the second DC input.
  • the system also has a boost converter connected to the first node, the first DC input, and the second DC input.
  • a multi-phase load may be coupled to the inverter AC outputs.
  • a controller may also be coupled to the control inputs, where the controller is configured to receive feedback signals from the boost converter and the inverter, and to control current flow through the boost converter and the inverter.
  • a DC boosting method as described herein begins by determining a control mode for a controller that processes a plurality of control signals and feedback signals. The method then operates a boost converter.
  • the boost converter controls flow of an electrical current, via switches, from an electrical voltage source to an inverter based on a control signal and a feedback signal.
  • the method then operates the inverter.
  • the inverter produces AC outputs for powering a load based on the plurality of control signals and feedback signals.
  • the method then delivers power to the load via the inverter.
  • FIG. 1 is a schematic representation of an embodiment of a DC-AC boost converter system
  • FIG. 2 is a flowchart illustrating an embodiment of a DC-AC boost process.
  • Embodiments of the invention may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of the invention may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments of the present invention may be practiced in conjunction with any number of vehicle applications and that the system described herein is merely one example embodiment of the invention.
  • node means any internal or external reference point, connection point, junction, signal line, conductive element, or the like, at which a given signal, logic level, voltage, data pattern, current, or quantity is present. Furthermore, two or more nodes may be realized by one physical element (and two or more signals can be multiplexed, modulated, or otherwise distinguished even though received or output at a common mode).
  • connection means that one element/node/feature is directly joined to (or directly communicates with) another element/node/feature, and not necessarily mechanically.
  • coupled means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically.
  • Embodiments of the invention are described herein in the context of one practical non-limiting application, namely, a DC-AC boost converter system for a vehicle with a three-phase electric motor.
  • Three-phase inverters are used for variable-frequency drive applications.
  • the technique described here is applicable to operation of an electrical system of a vehicle, embodiments of the invention are not limited to such vehicle applications, and the techniques described herein may also be utilized in other power conversion systems.
  • a boost converter is a power converter with an output DC voltage that is greater than its input DC voltage.
  • a boost converter may be considered to be in a class of switching-mode power supplies (SMPS) containing at least two semiconductor switches (e.g., a diode-based switch and a transistor-based switch) and at least one energy storage element. Filters made of inductor and capacitor combinations are often added to a boost converter to improve its output performance.
  • SMPS switching-mode power supplies
  • FIG. 1 is a schematic representation of a DC boost converter system 100 for a vehicle that is suitably configured to perform the operations described in detail herein.
  • System 100 is suitable for use with a vehicle having an electric traction motor (e.g., a fully electric vehicle or a hybrid vehicle).
  • a practical DC boost converter system 100 may include a number of electrical components, circuits and controller units other than those shown in FIG. 1 . Conventional subsystems, features, and aspects of the DC boost converter system 100 will not be described in detail herein. For this embodiment, as shown in FIG.
  • the system 100 may include, without limitation: a boost converter 102 , an inverter 104 , a capacitor C 1 , which is common to both the boost converter 102 and the inverter 104 , and a controller 108 .
  • boost converter 102 is coupled to a voltage source 110
  • inverter 104 is coupled to a machine 106 or other load.
  • the machine 106 is coupled to the AC output nodes 144 / 146 / 148 of controlled switches Q 2 -Q 7 .
  • the machine 106 for this example includes an AC electric machine that provides power or additional power to a powertrain, and regenerative braking. AC electric machines are often used for this application because they provide high torque under load, and high power. In practice, machine 106 may be, without limitation, an induction or synchronous three-phase or multi-phase AC electric machine.
  • the voltage source 110 is configured to support the operation of a hybrid vehicle or an electric vehicle.
  • the voltage source 110 has a first pole or terminal coupled to a node 114 and a second pole or terminal coupled to a node 116 .
  • the nodes 114 and 116 correspond to a positive reference potential and a negative (ground) reference potential, respectively.
  • the voltage source 110 may be coupled in this manner to the boost converter 102 , which in turn provides power to the inverter 104 .
  • the voltage source 110 is configured to provide an electrical voltage and current to the boost converter 102 via node 114 and node 116 .
  • the electrical voltage provided by the voltage source 110 is a relatively high DC voltage, which may be about 200 volts for this application.
  • the voltage source 110 may be, for example, a generator, a fuel cell, batteries (such as lead acid, nickel metal hydride, or lithium ion batteries), or a number of ultra-capacitors.
  • the boost converter 102 controls the flow of electrical current from voltage source 110 to inverter 104 , based on a plurality of control signals and feedback signals present in system 100 .
  • This embodiment of boost converter 102 includes, without limitation: an inductor L 1 , controlled switches S 1 and S 2 , a gate contact 150 , a gate contact 152 , and a diode D 1 .
  • the boost converter 102 has a first input at node 114 , coupled to the first pole of voltage source 110 , and a second input at node 116 , coupled to the second pole of voltage source 110 .
  • boost converter 102 This description refers to these nodes as “inputs” of boost converter 102 because in most operating conditions current will flow into these inputs, however under some operating conditions, such as regenerative braking, current may flow in a negative direction (recharge current).
  • the boost converter 102 also has a DC output in system 100 referenced between a first output pole at node 118 and a second output pole at node 116 .
  • Inductor L 1 is coupled between node 114 and node 112 , and is used to resist fluctuation in the DC voltage, and to store energy.
  • An appropriate size of inductor L 1 for this embodiment would be about 50 micro-Henrys.
  • Inductor L 1 may be used in conjunction with switches S 1 and S 2 to increase (hence “boost”) the voltage of the voltage source 110 by alternately storing and releasing charge from inductor L 1 .
  • the illustrated embodiment employs IGBT controlled switches. In practice, however, other controlled switch types may be utilized.
  • the controlled switch S 1 is coupled between node 112 and node 118 .
  • the collector of controlled switch S 1 corresponds to node 118
  • the emitter of controlled switch S 1 corresponds to node 112 .
  • the controlled switch S 2 is coupled between node 112 and node 116 .
  • the collector of controlled switch S 2 corresponds to node 112
  • the emitter of controlled switch S 2 corresponds to node 116 .
  • the current capacity of the controlled switches is selected according to the power rating of the machine 106 , voltage rating of the source 110 , and the desired boosted voltage at node 118 .
  • Gate contacts 150 and 152 are each coupled to the controller 108 for purposes of controlling the operation of switches S 1 and S 2 .
  • the gate contacts 150 and 152 are separately configured to allow current flow or to block current flow in response to control signals provided by the controller 108 .
  • the controlled switches S 1 and S 2 control the current flow from the voltage source 110 to inverter 104 .
  • the controlled switches S 1 and S 2 are switched on and off by control signals from the controller 108 in order to control current flow from the voltage source 110 to inverter 104 , which in turn converts the DC into AC that is suitable for use by the machine 106 .
  • the controlled switch S 1 in conjunction with inverter 104 , controls and provides power to the machine 106 .
  • the controlled switches S 1 and S 2 in combination influence whether power/current flows from voltage source 110 .
  • the boost converter 102 controls the amplitude of the DC voltage into the inverter 104 .
  • the DC voltage is varied to maintain a fixed modulation index (M i ) by inverter 104 .
  • the modulation index is the ratio of inverter 104 output voltage to the maximum possible output voltage of inverter 104 if it were operated in six-step mode.
  • An M i equal to one means that inverter 104 is operating in six-step mode, and an M i equal to zero means that inverter 104 is producing an AC output voltage of zero volts.
  • the RMS capacitor current stress is minimum at a high modulation index.
  • Boost converter 102 can be used to maintain an M i of, for example, about 0.9.
  • the high voltage DC capacitors used with inverters are generally costly, bulky and may need periodic maintenance due to the high ripple current from the inverter. Operating the inverter at high M i reduces the capacitor ripple current, capacitor cost, size, and reduces failure.
  • Switch S 1 can be controlled to allow reverse current flow into boost converter 102 .
  • the voltage source 110 can be recharged through switch S 1 , which allows flow of a recharging current from the three-phase load 106 to the voltage source 110 , wherein a recharging current is a current out of the three-phase load 106 operating in generator mode.
  • switch S 1 is coupled between node 112 and node 118 . Accordingly, switch S 1 is controlled to be continuously on in a regenerative operating condition to facilitate recharging of voltage source 110 .
  • Capacitor C 1 is included to provide power conditioning and to smooth voltage surges of the inverter 104 .
  • the capacitor C 1 has a first pole coupled to node 116 and a second pole coupled to node 118 .
  • the capacitor C 1 is included to buffer electrical energy between the voltage source 110 and the output node 118 .
  • capacitor C 1 may be realized as an ultra-capacitor or as any suitable capacitance element or capacitive arrangement.
  • Capacitor C 1 may also represent the capacitance that will naturally exist in other components of the hybrid vehicle, such as an active electrical bus and/or power electronics (such components may contain capacitors, power output stages, etc.).
  • the capacitance of capacitor C 1 may vary from one application to another, depending on the power required by the machine 106 . In this embodiment, capacitor C 1 has a capacitance of about 1000 microfarads.
  • the inverter 104 is configured to produce AC outputs for a load (e.g., machine 106 ) in response to a plurality of control signals and feedback signals present in system 100 .
  • the inverter 104 by itself is a common architecture for a single voltage source inverter, and may be a three-phase or multi-phase inverter.
  • the inverter 104 is an inverter circuit that includes: controlled switches Q 2 -Q 7 , diodes (reference numbers 120 , 122 , 124 , 126 , 128 , and 130 ), and gate contacts (reference numbers 132 , 134 , 136 , 138 , 140 , and 142 ).
  • the inverter 104 has a first input coupled to node 118 and a second input coupled to node 116 .
  • the inverter 104 also has a set of AC outputs coupled as follows: a first AC output corresponding to a node 144 , a second AC output corresponding to a node 146 , and a third AC output corresponding to a node 148 .
  • the respective collectors and emitters of controlled switches Q 2 -Q 7 are coupled as follows in this embodiment: Q 2 is between node 118 and node 144 , Q 4 is between node 118 and node 146 , Q 6 is between node 118 and node 148 , Q 3 is between node 116 and node 144 , Q 5 is between node 116 and node 146 , and Q 7 is between node 116 and node 148 .
  • the current capacity of the controlled switches is related to the power rating of the machine 106 and maximum voltage at bus 118 .
  • the current capacity is the same for all controlled switches Q 2 -Q 7 . Since most loads contain inductance, diodes (reference numbers 120 , 122 , 124 , 126 , 128 , and 130 ) are respectively connected across the controlled switches to provide bidirectional current flow across the controlled switches.
  • each of the controlled switches Q 2 -Q 7 contains a respective diode between its emitter and collector to allow a negative current from the load to charge the voltage source 110 during regenerative operation.
  • machine 106 can recharge the voltage source 110 (assuming voltage source 110 is a rechargeable device) during regenerative braking of a vehicle.
  • the controller 108 may be implemented as part of a vehicle computing module, a centralized vehicle processor, a subsystem computing module devoted to the switch arrangement, or the like.
  • the controller 108 is generally a software-controlled device. Under normal conditions, it operates the controlled switches S 1 , S 2 , and Q 2 -Q 7 to produce a three-phase AC current during vehicle operation.
  • the boost converter 102 and inverter 104 arrangement is actuated by controller 108 , which can be coupled to the arrangement 102 / 104 in a manner that allows routing of control input signals 154 / 158 / 164 .
  • the control input signals 154 / 158 / 164 are preferably generated by the controller 108 in response to a variety of control modes and feedback signals 156 / 160 / 162 obtained from boost converter 102 and/or inverter 104 .
  • the controller 108 receives feedback signals 156 / 160 / 162 , and controls the actuation of the controlled switches in accordance with the current state of the vehicle or required power flow, e.g., whether the regenerative braking mode or the normal operating mode is active.
  • the controlled switches S 1 , S 2 , and Q 2 -Q 7 are activated by the controller 108 based on a predetermined switching pattern, and the controller may be configured to adjust the pattern based on the feedback signals 156 / 160 / 162 .
  • a controlling pattern for the control signals is generated by the controller for activating the controlled switches S 1 , S 2 , and Q 2 -Q 7 .
  • Each switch may be activated via its respective control inputs depending on a predetermined duty cycle as explained below in the context of FIG. 2 .
  • FIG. 2 is a flowchart illustrating a process 200 for controlling a high voltage DC bus using a boost converter for an electric, hybrid electric, or fuel cell vehicle that may be performed by system 100 as described above.
  • An embodiment of process 200 determines a control mode, generates a plurality of control and feedback signals, operates a boost converter via controlled switches, operates an inverter to produce AC outputs for powering a load, and delivers power to a three-phase load.
  • the various tasks performed in connection with process 200 may be performed by software, hardware, firmware, or any combination thereof.
  • the following description of process 200 may refer to elements mentioned above in connection with FIG. 1 .
  • portions of process 200 may be performed by different elements of DC boost converter system 100 , e.g., the voltage source 110 , a boost converter 102 , an inverter 104 , and a controller 108 .
  • This embodiment of boost converter operating process 200 begins by determining a control mode (task 202 ). The determination may be made by consideration of various status conditions, for example the RPM of the vehicle wheels, the power output of a gasoline engine, the RPM of the gasoline engine, an amount of charge in voltage source 110 , and various relations between these parameters. For example, if a vehicle is braking, then the machine should send power to the voltage sources if they are rechargeable, and determine a regeneration mode. In this regard, the control mode may allow positive current only from voltage source 110 , or negative current flow recharging voltage source 110 and C 1 .
  • process 200 generates control signals and feedback signals (task 203 ) as explained in the context of FIG. 1 above.
  • Process 200 then operates a boost converter via controlled switches S 1 and S 2 in order to control flow of an electrical current from the electrical voltage source through the inductor, and into the inverter based on the control signals and the feedback signals (task 204 ).
  • the controlled switches S 1 and S 2 in conjunction with the controlled switches Q 2 -Q 7 and proper control, the current flow to the machine can be more precisely controlled.
  • Switching S 1 and S 2 with a pre-determined duty cycle controls power flow from voltage source 110 .
  • the controlled switches S 1 and S 2 and the controlled switches Q 2 -Q 7 may be operated together or independently using Pulse Width Modulation (PWM) to provide power individually or in combination to the machine.
  • PWM Pulse Width Modulation
  • the frequency represented by the number of narrow pulses per second is called the switching frequency or carrier frequency.
  • Combining the current from the controlled switches S 1 and S 2 and the controlled switches Q 2 -Q 7 allows for an even larger number of options since the inductor L 1 can be used to store charge and thus increase voltage over and above that of voltage source 110 .
  • the combination of switching patterns using, for example, controlled switches S 1 and S 2 in conjunction with the controlled switches Q 2 -Q 7 will produce more varied levels of voltage.
  • the process essentially boosts the voltage of source 110 to a voltage at node 118 such that the inverter 104 will be operated at a fixed modulation index, M i , which will minimize the RMS current stress on capacitor C 1 .
  • M i the modulation index
  • the modulation index is approximately 0.9.
  • process 200 operates an inverter via the controlled switches Q 2 -Q 7 to produce AC outputs for powering the three-phase load (task 206 ).
  • each of the controlled switches Q 2 -Q 7 are turned on and off by a Pulse Width Modulation (PWM) control signal.
  • PWM provides control signals to operate the controlled switches Q 2 -Q 7 to produce a desired AC output voltage of modulation index M i .
  • Power coming from voltage source 110 is regulated by controlling the duty cycle of control signals sent to switches S 1 and S 2 .
  • the duty cycle is determined based on how much power is required from the voltage source 110 .
  • voltage source 110 and capacitor C 1 are connected in parallel through diode D 1 to provide current (power) to the machine 106 via the inverter 104 .
  • the current (power) flows from the machine 106 to voltage source 110 and capacitor C 1 via the inverter 104 and switch S 1 .
  • the duty cycles of the control signals for switches S 1 and S 2 are controlled by a controller as explained above in the context of FIG. 1 . For example, with a duty cycle of 30%, switch S 2 is on 30% of the switching period.
  • Process 200 then delivers power to a load (task 208 ).
  • the load is an electric machine.
  • the electric machine may be operating as a load receiving power from the voltage source 110 through the inverter, or operating as a generator returning power to the first voltage source 110 through the controlled switches S 1 and S 2 and the controlled switches Q 2 -Q 7 .
  • the performance of the electric machine depends on the level of current flow from the switching of the controlled switches S 1 and S 2 and the controlled switches Q 2 -Q 7 as described above.
  • Process 200 then leads back to task 202 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Systems and methods are disclosed for a DC boost converter. The systems and methods combine operation of an inductor with the input capacitor of a DC/AC inverter via a switch configuration to power the DC/AC inverter. The switch configuration is controlled by a plurality of control signals generated by a controller based on a variety of control modes, and feedback signals.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 11/829,285, filed Jul. 27, 2007.
  • TECHNICAL FIELD
  • Embodiments of the present invention relate generally to electric power converters, and more particularly relate to DC-AC inverters.
  • BACKGROUND
  • An inverter is an electronic circuit for converting direct current (DC) to alternating current (AC). Inverters are used in a wide range of applications, from small uninterruptible power supplies for a computer to large electric power transport utility applications, and variable speed industrial drives. Inverters are also used to provide a source of AC power from fuel cell or photovoltaic solar cell power supplies. A common application is to power an AC electric motor.
  • Three-phase is a common type of AC that can be produced by an inverter and used for electric power applications. An important type of three-phase load is an AC electric motor. A three-phase AC electric motor has a simple design, high torque at low RPM, and high efficiency. Three-phase motors are used for pumps, fans, blowers, compressors, electric and diesel-electric locomotives and many other kinds of motor-driven equipment. Three-phase motors are more compact, less expensive, vibrate less, last longer than a single-phase motor of the same power rating, and are subsequently preferred over single-phase for motors above 10 HP (7.5 kW). Hybrid, fuel cell, and electric vehicles often use three-phase motors because their high starting torque can be used to accelerate a vehicle to a useful speed. A three-phase motor can also be used as a generator for regenerative braking.
  • Hybrid, fuel cell, and electric vehicles generally have a source of DC power. For example, these vehicles may use electric batteries, ultra-capacitors, fuel cells, and fuel powered generators, all producing DC power. Moreover, the different sources will often have different voltages requiring voltage conversion to effectively use their electrical voltages with an inverter. One approach is to use a voltage converter to obtain the various operating voltages.
  • Voltage converters usually include a capacitor to condition the DC power input to an inverter. This capacitor can be large and expensive. Accordingly, it is desirable to have a system that reduces the size of the input capacitor. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
  • BRIEF SUMMARY
  • Systems and methods are disclosed for a DC-AC boost converter system. The systems and methods combine operation of an inductor with the input capacitor of a DC/AC inverter via a switch configuration to power the DC/AC inverter. The switch configuration is controlled by a plurality of control signals generated by a controller, based on a variety of control modes and feedback signals.
  • The system has an inverter with a first DC input, a second DC input, control inputs, AC outputs configured to be coupled to a load, and a voltage source with a first output coupled to a first node, and a second output coupled to the second DC input. The system also has a boost converter connected to the first node, the first DC input, and the second DC input. A multi-phase load may be coupled to the inverter AC outputs. A controller may also be coupled to the control inputs, where the controller is configured to receive feedback signals from the boost converter and the inverter, and to control current flow through the boost converter and the inverter.
  • A DC boosting method as described herein begins by determining a control mode for a controller that processes a plurality of control signals and feedback signals. The method then operates a boost converter. The boost converter controls flow of an electrical current, via switches, from an electrical voltage source to an inverter based on a control signal and a feedback signal. The method then operates the inverter. The inverter produces AC outputs for powering a load based on the plurality of control signals and feedback signals. The method then delivers power to the load via the inverter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of a DC-AC boost converter system will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
  • FIG. 1 is a schematic representation of an embodiment of a DC-AC boost converter system; and
  • FIG. 2 is a flowchart illustrating an embodiment of a DC-AC boost process.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
  • Embodiments of the invention may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of the invention may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments of the present invention may be practiced in conjunction with any number of vehicle applications and that the system described herein is merely one example embodiment of the invention.
  • For the sake of brevity, conventional techniques and components related to vehicle electrical parts and other functional aspects of the system (and the individual operating components of the system) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent example functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the invention.
  • As used herein, a “node” means any internal or external reference point, connection point, junction, signal line, conductive element, or the like, at which a given signal, logic level, voltage, data pattern, current, or quantity is present. Furthermore, two or more nodes may be realized by one physical element (and two or more signals can be multiplexed, modulated, or otherwise distinguished even though received or output at a common mode).
  • The following description may refer to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “connected” means that one element/node/feature is directly joined to (or directly communicates with) another element/node/feature, and not necessarily mechanically. Likewise, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically. Thus, although the schematic shown in FIG. 1 depicts an example arrangement of elements, additional intervening elements, devices, features, or components may be present in an embodiment of the invention (assuming that the functionality of the system is not adversely affected).
  • Embodiments of the invention are described herein in the context of one practical non-limiting application, namely, a DC-AC boost converter system for a vehicle with a three-phase electric motor. Three-phase inverters are used for variable-frequency drive applications. There are many different power circuit topologies and control strategies used in inverter designs. Different design approaches are used to address various issues that may be more or less important depending on the way that the inverter is intended to be used. Although the technique described here is applicable to operation of an electrical system of a vehicle, embodiments of the invention are not limited to such vehicle applications, and the techniques described herein may also be utilized in other power conversion systems.
  • A boost converter (step-up converter) is a power converter with an output DC voltage that is greater than its input DC voltage. A boost converter may be considered to be in a class of switching-mode power supplies (SMPS) containing at least two semiconductor switches (e.g., a diode-based switch and a transistor-based switch) and at least one energy storage element. Filters made of inductor and capacitor combinations are often added to a boost converter to improve its output performance.
  • FIG. 1 is a schematic representation of a DC boost converter system 100 for a vehicle that is suitably configured to perform the operations described in detail herein. System 100 is suitable for use with a vehicle having an electric traction motor (e.g., a fully electric vehicle or a hybrid vehicle). A practical DC boost converter system 100 may include a number of electrical components, circuits and controller units other than those shown in FIG. 1. Conventional subsystems, features, and aspects of the DC boost converter system 100 will not be described in detail herein. For this embodiment, as shown in FIG. 1, the system 100 may include, without limitation: a boost converter 102, an inverter 104, a capacitor C1, which is common to both the boost converter 102 and the inverter 104, and a controller 108. As shown in FIG. 1, boost converter 102 is coupled to a voltage source 110, and inverter 104 is coupled to a machine 106 or other load.
  • The machine 106 is coupled to the AC output nodes 144/146/148 of controlled switches Q2-Q7. The machine 106 for this example includes an AC electric machine that provides power or additional power to a powertrain, and regenerative braking. AC electric machines are often used for this application because they provide high torque under load, and high power. In practice, machine 106 may be, without limitation, an induction or synchronous three-phase or multi-phase AC electric machine.
  • The voltage source 110 is configured to support the operation of a hybrid vehicle or an electric vehicle. The voltage source 110 has a first pole or terminal coupled to a node 114 and a second pole or terminal coupled to a node 116. For this embodiment, the nodes 114 and 116 correspond to a positive reference potential and a negative (ground) reference potential, respectively. The voltage source 110 may be coupled in this manner to the boost converter 102, which in turn provides power to the inverter 104. The voltage source 110 is configured to provide an electrical voltage and current to the boost converter 102 via node 114 and node 116. For this embodiment, the electrical voltage provided by the voltage source 110 is a relatively high DC voltage, which may be about 200 volts for this application. The voltage source 110 may be, for example, a generator, a fuel cell, batteries (such as lead acid, nickel metal hydride, or lithium ion batteries), or a number of ultra-capacitors.
  • The boost converter 102 controls the flow of electrical current from voltage source 110 to inverter 104, based on a plurality of control signals and feedback signals present in system 100. This embodiment of boost converter 102 includes, without limitation: an inductor L1, controlled switches S1 and S2, a gate contact 150, a gate contact 152, and a diode D1. The boost converter 102 has a first input at node 114, coupled to the first pole of voltage source 110, and a second input at node 116, coupled to the second pole of voltage source 110. This description refers to these nodes as “inputs” of boost converter 102 because in most operating conditions current will flow into these inputs, however under some operating conditions, such as regenerative braking, current may flow in a negative direction (recharge current). The boost converter 102 also has a DC output in system 100 referenced between a first output pole at node 118 and a second output pole at node 116.
  • Inductor L1 is coupled between node 114 and node 112, and is used to resist fluctuation in the DC voltage, and to store energy. An appropriate size of inductor L1 for this embodiment would be about 50 micro-Henrys. Inductor L1 may be used in conjunction with switches S1 and S2 to increase (hence “boost”) the voltage of the voltage source 110 by alternately storing and releasing charge from inductor L1.
  • Regarding switches S1 and S2, the illustrated embodiment employs IGBT controlled switches. In practice, however, other controlled switch types may be utilized. The controlled switch S1 is coupled between node 112 and node 118. In this embodiment the collector of controlled switch S1 corresponds to node 118, and the emitter of controlled switch S1 corresponds to node 112. The controlled switch S2 is coupled between node 112 and node 116. In this embodiment the collector of controlled switch S2 corresponds to node 112, and the emitter of controlled switch S2 corresponds to node 116. The current capacity of the controlled switches is selected according to the power rating of the machine 106, voltage rating of the source 110, and the desired boosted voltage at node 118. In this embodiment, the current capacity is the same for all controlled switches. Gate contacts 150 and 152 are each coupled to the controller 108 for purposes of controlling the operation of switches S1 and S2. The gate contacts 150 and 152 are separately configured to allow current flow or to block current flow in response to control signals provided by the controller 108.
  • In this application, the controlled switches S1 and S2 control the current flow from the voltage source 110 to inverter 104. Thus, the controlled switches S1 and S2 are switched on and off by control signals from the controller 108 in order to control current flow from the voltage source 110 to inverter 104, which in turn converts the DC into AC that is suitable for use by the machine 106. The controlled switch S1, in conjunction with inverter 104, controls and provides power to the machine 106. The controlled switches S1 and S2 in combination influence whether power/current flows from voltage source 110.
  • By varying the timing of the opening and closing of the switches S1 and S2 individually or in combination, the boost converter 102 controls the amplitude of the DC voltage into the inverter 104. In practice, the DC voltage is varied to maintain a fixed modulation index (Mi) by inverter 104. The modulation index is the ratio of inverter 104 output voltage to the maximum possible output voltage of inverter 104 if it were operated in six-step mode. An Mi equal to one means that inverter 104 is operating in six-step mode, and an Mi equal to zero means that inverter 104 is producing an AC output voltage of zero volts. The RMS capacitor current stress is minimum at a high modulation index. Boost converter 102 can be used to maintain an Mi of, for example, about 0.9. The high voltage DC capacitors used with inverters are generally costly, bulky and may need periodic maintenance due to the high ripple current from the inverter. Operating the inverter at high Mi reduces the capacitor ripple current, capacitor cost, size, and reduces failure.
  • Switch S1 can be controlled to allow reverse current flow into boost converter 102. Thus, the voltage source 110 can be recharged through switch S1, which allows flow of a recharging current from the three-phase load 106 to the voltage source 110, wherein a recharging current is a current out of the three-phase load 106 operating in generator mode. Again, switch S1 is coupled between node 112 and node 118. Accordingly, switch S1 is controlled to be continuously on in a regenerative operating condition to facilitate recharging of voltage source 110.
  • Capacitor C1 is included to provide power conditioning and to smooth voltage surges of the inverter 104. The capacitor C1 has a first pole coupled to node 116 and a second pole coupled to node 118. The capacitor C1 is included to buffer electrical energy between the voltage source 110 and the output node 118. In practice, capacitor C1 may be realized as an ultra-capacitor or as any suitable capacitance element or capacitive arrangement. Capacitor C1 may also represent the capacitance that will naturally exist in other components of the hybrid vehicle, such as an active electrical bus and/or power electronics (such components may contain capacitors, power output stages, etc.). The capacitance of capacitor C1 may vary from one application to another, depending on the power required by the machine 106. In this embodiment, capacitor C1 has a capacitance of about 1000 microfarads.
  • The inverter 104 is configured to produce AC outputs for a load (e.g., machine 106) in response to a plurality of control signals and feedback signals present in system 100. The inverter 104 by itself is a common architecture for a single voltage source inverter, and may be a three-phase or multi-phase inverter. For this example, the inverter 104 is an inverter circuit that includes: controlled switches Q2-Q7, diodes ( reference numbers 120, 122, 124, 126, 128, and 130), and gate contacts ( reference numbers 132, 134, 136, 138, 140, and 142). The inverter 104 has a first input coupled to node 118 and a second input coupled to node 116. The inverter 104 also has a set of AC outputs coupled as follows: a first AC output corresponding to a node 144, a second AC output corresponding to a node 146, and a third AC output corresponding to a node 148. The respective collectors and emitters of controlled switches Q2-Q7 are coupled as follows in this embodiment: Q2 is between node 118 and node 144, Q4 is between node 118 and node 146, Q6 is between node 118 and node 148, Q3 is between node 116 and node 144, Q5 is between node 116 and node 146, and Q7 is between node 116 and node 148.
  • The current capacity of the controlled switches is related to the power rating of the machine 106 and maximum voltage at bus 118. In this example, the current capacity is the same for all controlled switches Q2-Q7. Since most loads contain inductance, diodes ( reference numbers 120, 122, 124, 126, 128, and 130) are respectively connected across the controlled switches to provide bidirectional current flow across the controlled switches. In this regard, each of the controlled switches Q2-Q7 contains a respective diode between its emitter and collector to allow a negative current from the load to charge the voltage source 110 during regenerative operation. In practice, machine 106 can recharge the voltage source 110 (assuming voltage source 110 is a rechargeable device) during regenerative braking of a vehicle. During regenerative braking from the machine 106, current flows from the machine into the nodes 144, 146, and 148 (i.e., negative or recharge current flow). This embodiment handles such current flow using the gate contacts 132, 134, 136, 138, 140, and 142. In particular, the gate contacts are coupled to the controller 108 to enable control of the respective switches (for the sake of clarity, the individual control signals from controller 108 to each gate contact are not depicted in FIG. 1). The controlled switches Q2-Q7 are switched to allow current flow or to block current flow in response to the voltage of the control signals from the controller 108. During regeneration, the switches are opened, which allows negative current to flow through the diodes and, ultimately, back to voltage source 110.
  • The controller 108 may be implemented as part of a vehicle computing module, a centralized vehicle processor, a subsystem computing module devoted to the switch arrangement, or the like. The controller 108 is generally a software-controlled device. Under normal conditions, it operates the controlled switches S1, S2, and Q2-Q7 to produce a three-phase AC current during vehicle operation.
  • The boost converter 102 and inverter 104 arrangement is actuated by controller 108, which can be coupled to the arrangement 102/104 in a manner that allows routing of control input signals 154/158/164. The control input signals 154/158/164 are preferably generated by the controller 108 in response to a variety of control modes and feedback signals 156/160/162 obtained from boost converter 102 and/or inverter 104. In operation, the controller 108 receives feedback signals 156/160/162, and controls the actuation of the controlled switches in accordance with the current state of the vehicle or required power flow, e.g., whether the regenerative braking mode or the normal operating mode is active. The controlled switches S1, S2, and Q2-Q7 are activated by the controller 108 based on a predetermined switching pattern, and the controller may be configured to adjust the pattern based on the feedback signals 156/160/162. In this regard, a controlling pattern for the control signals is generated by the controller for activating the controlled switches S1, S2, and Q2-Q7. Each switch may be activated via its respective control inputs depending on a predetermined duty cycle as explained below in the context of FIG. 2.
  • FIG. 2 is a flowchart illustrating a process 200 for controlling a high voltage DC bus using a boost converter for an electric, hybrid electric, or fuel cell vehicle that may be performed by system 100 as described above. An embodiment of process 200 determines a control mode, generates a plurality of control and feedback signals, operates a boost converter via controlled switches, operates an inverter to produce AC outputs for powering a load, and delivers power to a three-phase load. The various tasks performed in connection with process 200 may be performed by software, hardware, firmware, or any combination thereof. For illustrative purposes, the following description of process 200 may refer to elements mentioned above in connection with FIG. 1. In practical embodiments, portions of process 200 may be performed by different elements of DC boost converter system 100, e.g., the voltage source 110, a boost converter 102, an inverter 104, and a controller 108.
  • This embodiment of boost converter operating process 200 begins by determining a control mode (task 202). The determination may be made by consideration of various status conditions, for example the RPM of the vehicle wheels, the power output of a gasoline engine, the RPM of the gasoline engine, an amount of charge in voltage source 110, and various relations between these parameters. For example, if a vehicle is braking, then the machine should send power to the voltage sources if they are rechargeable, and determine a regeneration mode. In this regard, the control mode may allow positive current only from voltage source 110, or negative current flow recharging voltage source 110 and C1.
  • Next, process 200 generates control signals and feedback signals (task 203) as explained in the context of FIG. 1 above. Process 200 then operates a boost converter via controlled switches S1 and S2 in order to control flow of an electrical current from the electrical voltage source through the inductor, and into the inverter based on the control signals and the feedback signals (task 204). Using the controlled switches S1 and S2 in conjunction with the controlled switches Q2-Q7 and proper control, the current flow to the machine can be more precisely controlled. Switching S1 and S2 with a pre-determined duty cycle controls power flow from voltage source 110. The controlled switches S1 and S2 and the controlled switches Q2-Q7 may be operated together or independently using Pulse Width Modulation (PWM) to provide power individually or in combination to the machine. The frequency represented by the number of narrow pulses per second is called the switching frequency or carrier frequency. Combining the current from the controlled switches S1 and S2 and the controlled switches Q2-Q7 allows for an even larger number of options since the inductor L1 can be used to store charge and thus increase voltage over and above that of voltage source 110. The combination of switching patterns using, for example, controlled switches S1 and S2 in conjunction with the controlled switches Q2-Q7 will produce more varied levels of voltage. The process essentially boosts the voltage of source 110 to a voltage at node 118 such that the inverter 104 will be operated at a fixed modulation index, Mi, which will minimize the RMS current stress on capacitor C1. For this example, the modulation index is approximately 0.9.
  • Next, process 200 operates an inverter via the controlled switches Q2-Q7 to produce AC outputs for powering the three-phase load (task 206). For this embodiment, each of the controlled switches Q2-Q7 are turned on and off by a Pulse Width Modulation (PWM) control signal. PWM provides control signals to operate the controlled switches Q2-Q7 to produce a desired AC output voltage of modulation index Mi.
  • Power coming from voltage source 110 is regulated by controlling the duty cycle of control signals sent to switches S1 and S2. The duty cycle is determined based on how much power is required from the voltage source 110. During motoring, when S2 is turned off, voltage source 110 and capacitor C1 are connected in parallel through diode D1 to provide current (power) to the machine 106 via the inverter 104. During generating, the current (power) flows from the machine 106 to voltage source 110 and capacitor C1 via the inverter 104 and switch S1. The duty cycles of the control signals for switches S1 and S2 are controlled by a controller as explained above in the context of FIG. 1. For example, with a duty cycle of 30%, switch S2 is on 30% of the switching period.
  • Process 200 then delivers power to a load (task 208). For this embodiment, the load is an electric machine. Depending on the vehicle operation mode, the electric machine may be operating as a load receiving power from the voltage source 110 through the inverter, or operating as a generator returning power to the first voltage source 110 through the controlled switches S1 and S2 and the controlled switches Q2-Q7. The performance of the electric machine depends on the level of current flow from the switching of the controlled switches S1 and S2 and the controlled switches Q2-Q7 as described above. Process 200 then leads back to task 202.
  • With this approach, instead of a costly, bulky high voltage DC bus capacitor, a smaller size capacitor with lower probability of failure and cost can be used to control the high voltage DC bus.
  • While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.

Claims (10)

1. A method for boosting a DC voltage, the method comprising:
determining a control mode;
generating a plurality of control signals and feedback signals in response to the control mode;
operating a plurality of switches in order to control flow of an electrical current from an electrical voltage source through an inductor, and into an inverter based on the control signals and the feedback signals;
producing, in response to the control signals and the feedback signals, a plurality of AC outputs for powering a load; and
delivering power to the load via the inverter.
2. The method according to claim 9, further comprising modulating the plurality of control signals to represent pulse-width modulated signals.
3. The method according to claim 9, wherein the control mode corresponds to an operating state that allows a recharging current flow to the electrical voltage source.
4. The method according to claim 9, wherein producing a plurality of AC outputs is based on a first set of duty cycles for the plurality of switches.
5. The method according to claim 9, wherein controlling flow of the electrical current is based on a second duty cycle for the plurality of switches.
6. The method according to claim 9, wherein controlling flow of the electrical current produces a voltage with a high modulation index.
7. The method according to claim 14, wherein the high modulation index is greater than about 0.9.
8. The method according to claim 9, wherein controlling flow of the electrical current produces a voltage that is higher than the voltage of an electrical voltage source that is coupled to the inverter.
9. A DC boost converter comprising:
a first DC output;
a second DC output;
an inductor having a first end and a second end;
a first switch coupled between the second end and the second DC output; and
a second switch coupled between the second end and the first DC output.
10. The DC boost converter according to claim 17, further comprising a diode coupled between the second end and the first DC output, wherein the diode is configured to allow current flow from the boost converter.
US12/761,197 2007-07-27 2010-04-15 Voltage link control of a dc-ac boost converter system Abandoned US20100202177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/761,197 US20100202177A1 (en) 2007-07-27 2010-04-15 Voltage link control of a dc-ac boost converter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/829,285 US7728562B2 (en) 2007-07-27 2007-07-27 Voltage link control of a DC-AC boost converter system
US12/761,197 US20100202177A1 (en) 2007-07-27 2010-04-15 Voltage link control of a dc-ac boost converter system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/829,285 Division US7728562B2 (en) 2007-07-27 2007-07-27 Voltage link control of a DC-AC boost converter system

Publications (1)

Publication Number Publication Date
US20100202177A1 true US20100202177A1 (en) 2010-08-12

Family

ID=40295187

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/829,285 Expired - Fee Related US7728562B2 (en) 2007-07-27 2007-07-27 Voltage link control of a DC-AC boost converter system
US12/761,197 Abandoned US20100202177A1 (en) 2007-07-27 2010-04-15 Voltage link control of a dc-ac boost converter system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/829,285 Expired - Fee Related US7728562B2 (en) 2007-07-27 2007-07-27 Voltage link control of a DC-AC boost converter system

Country Status (3)

Country Link
US (2) US7728562B2 (en)
CN (1) CN101355320A (en)
DE (1) DE102008034357A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301786A1 (en) * 2009-05-28 2010-12-02 Gm Global Technology Operations, Inc. Methods, systems and apparatus for controlling operation of two alternating current (ac) machines
US20110012430A1 (en) * 2009-07-16 2011-01-20 General Cybernation Group, Inc. Smart and scalable power inverters
WO2012171014A2 (en) * 2011-06-10 2012-12-13 Cyboenergy, Inc. Smart and scalable off-grid mini-inverters
US9093902B2 (en) 2011-02-15 2015-07-28 Cyboenergy, Inc. Scalable and redundant mini-inverters
US9331488B2 (en) 2011-06-30 2016-05-03 Cyboenergy, Inc. Enclosure and message system of smart and scalable power inverters
US9837888B2 (en) 2015-02-13 2017-12-05 Toyota Jidosha Kabushiki Kaisha Boost control apparatus based on output current change amount
US10164551B2 (en) 2015-02-13 2018-12-25 Toyota Jidosha Kabushiki Kaisha Boost control apparatus based on output current change rate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345411T3 (en) * 2007-02-14 2010-09-22 SEMIKRON ELEKTRONIK GMBH & CO. KG A CONVERTER CIRCUIT WITH A DOUBLE POWER ASYNCHRONIC GENERATOR WITH VARIABLE POWER OUTPUT AND A PROCEDURE FOR OPERATION.
US7714461B2 (en) * 2007-10-17 2010-05-11 Gm Global Technology Operations, Inc. Apparatus and methods for reducing resonance in multiple inverter systems
JP4883313B2 (en) * 2007-11-28 2012-02-22 トヨタ自動車株式会社 Power control device
JP5504155B2 (en) * 2008-04-28 2014-05-28 ダイキン工業株式会社 Inverter control device and power conversion device
DE102008002525A1 (en) * 2008-06-19 2009-12-24 Robert Bosch Gmbh DC converter
CN102449896B (en) 2009-04-01 2014-12-10 内克斯特罗尼克斯公司 A grid tie solar system and a method
DE102009024362A1 (en) 2009-06-03 2010-12-09 Jungheinrich Ag Power supply circuit for a truck
US8576598B2 (en) * 2009-07-20 2013-11-05 General Electric Company Systems, methods, and apparatus for converting direct current (DC) power to alternating current (AC) power
AT508993B1 (en) * 2009-10-27 2012-05-15 Felix Dipl Ing Dr Himmelstoss Single- and multi-phase inverters with the potential to increase the voltage
US9583946B2 (en) * 2010-05-27 2017-02-28 Enphase Energy, Inc. Method and apparatus for power converter input voltage regulation
US8233294B2 (en) * 2010-08-23 2012-07-31 Ford Global Technologies, Llc Method and system for controlling a power converter system connected to a DC-bus capacitor
US8717788B2 (en) 2011-03-10 2014-05-06 Ford Global Technologies, Llc Method and system for controlling a power converter system connected to a DC-bus capacitor
CN103023315A (en) * 2011-09-28 2013-04-03 艾默生网络能源有限公司 Boost circuit
WO2013067429A1 (en) * 2011-11-03 2013-05-10 Arraypower, Inc. Direct current to alternating current conversion utilizing intermediate phase modulation
DE102016202102A1 (en) 2016-02-11 2017-08-17 Volkswagen Aktiengesellschaft Multifunctional and highly integrated power converter component
WO2017195213A1 (en) * 2016-05-12 2017-11-16 H2E Power Systems Pvt. Ltd. Integration of multiple power source with optimization of power source and load conditions
US10148212B2 (en) 2017-01-06 2018-12-04 Thermo King Corporation DC to DC converter sourcing variable DC link voltage
CN108565954B (en) * 2018-06-27 2020-08-28 佛山市诺行科技有限公司 Solar cell direct supply driving device of transverse moving lifting parking equipment
DE102019131085A1 (en) * 2019-11-18 2021-05-20 Audi Ag Method for operating an electrical circuit, electrical circuit and motor vehicle
CN112072977B (en) * 2020-08-10 2022-06-10 南京航空航天大学 High-efficiency low-ripple variable frequency modulation method
CN113285622A (en) * 2021-05-18 2021-08-20 浙江华消科技有限公司 Photovoltaic inverter circuit, and inverter circuit multiplexing method and device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US6194880B1 (en) * 1999-10-22 2001-02-27 Lucent Technologies Inc. Boost converter, method of converting power and power supply employing the same
US6750633B2 (en) * 2001-11-17 2004-06-15 Semikron Elektronik Gmbh Electrical circuit for generating a three-phase alternating current
US20060156096A1 (en) * 2003-01-10 2006-07-13 Toyota Jidosha Kabushiki Kaisha Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
US7304457B1 (en) * 2006-04-25 2007-12-04 Ming-Ho Huang Bridgeless power factor corrector circuit and control method thereof
US7327124B2 (en) * 2005-03-28 2008-02-05 Richtek Technology Corp. Control apparatus and method for a boost-inverting converter
US20090058385A1 (en) * 2007-09-04 2009-03-05 Yoshiyuki Inoue Step-up DC-DC converter
US7579792B2 (en) * 2007-04-23 2009-08-25 Gm Global Technology Operations, Inc. Hybrid motor boost system and methods
US20090302814A1 (en) * 2008-06-06 2009-12-10 Infineon Technologies Austria Ag System and method for controlling a converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1465492A (en) 2002-07-02 2004-01-07 四川大学 Energy-saving driving device for electric vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US6194880B1 (en) * 1999-10-22 2001-02-27 Lucent Technologies Inc. Boost converter, method of converting power and power supply employing the same
US6750633B2 (en) * 2001-11-17 2004-06-15 Semikron Elektronik Gmbh Electrical circuit for generating a three-phase alternating current
US20060156096A1 (en) * 2003-01-10 2006-07-13 Toyota Jidosha Kabushiki Kaisha Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
US7327124B2 (en) * 2005-03-28 2008-02-05 Richtek Technology Corp. Control apparatus and method for a boost-inverting converter
US7304457B1 (en) * 2006-04-25 2007-12-04 Ming-Ho Huang Bridgeless power factor corrector circuit and control method thereof
US7579792B2 (en) * 2007-04-23 2009-08-25 Gm Global Technology Operations, Inc. Hybrid motor boost system and methods
US20090058385A1 (en) * 2007-09-04 2009-03-05 Yoshiyuki Inoue Step-up DC-DC converter
US20090302814A1 (en) * 2008-06-06 2009-12-10 Infineon Technologies Austria Ag System and method for controlling a converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301786A1 (en) * 2009-05-28 2010-12-02 Gm Global Technology Operations, Inc. Methods, systems and apparatus for controlling operation of two alternating current (ac) machines
US8115430B2 (en) * 2009-05-28 2012-02-14 GM Global Technology Operations LLC Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
US20110012430A1 (en) * 2009-07-16 2011-01-20 General Cybernation Group, Inc. Smart and scalable power inverters
US8786133B2 (en) 2009-07-16 2014-07-22 Cyboenergy, Inc. Smart and scalable power inverters
US9257916B2 (en) 2009-07-16 2016-02-09 Cyboenergy, Inc. Power inverters with multiple input channels
US9093902B2 (en) 2011-02-15 2015-07-28 Cyboenergy, Inc. Scalable and redundant mini-inverters
WO2012171014A2 (en) * 2011-06-10 2012-12-13 Cyboenergy, Inc. Smart and scalable off-grid mini-inverters
WO2012171014A3 (en) * 2011-06-10 2013-03-28 Cyboenergy, Inc. Smart and scalable off-grid mini-inverters
US8994218B2 (en) 2011-06-10 2015-03-31 Cyboenergy, Inc. Smart and scalable off-grid mini-inverters
US9331488B2 (en) 2011-06-30 2016-05-03 Cyboenergy, Inc. Enclosure and message system of smart and scalable power inverters
US9837888B2 (en) 2015-02-13 2017-12-05 Toyota Jidosha Kabushiki Kaisha Boost control apparatus based on output current change amount
US10164551B2 (en) 2015-02-13 2018-12-25 Toyota Jidosha Kabushiki Kaisha Boost control apparatus based on output current change rate

Also Published As

Publication number Publication date
US20090027933A1 (en) 2009-01-29
CN101355320A (en) 2009-01-28
US7728562B2 (en) 2010-06-01
DE102008034357A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US7728562B2 (en) Voltage link control of a DC-AC boost converter system
US7605497B2 (en) Two-source inverter
JP3910220B2 (en) Electric drive system
JP7160007B2 (en) power supply
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US7719138B2 (en) Two-source series inverter
US9878635B1 (en) Powertrain system in plug-in electric vehicles
US7969039B2 (en) Method of controlling fuel cell vehicle and method of controlling DC/DC converter apparatus
CN108306488B (en) Variable voltage converter for obtaining lower minimum step-up ratio
US8203236B2 (en) Dual voltage-source inverter system and method
US20100085787A1 (en) System and method for powering a hybrid electric vehicle
CN1537355A (en) Motor driver control apparatus
US8058744B2 (en) Electrical system and automotive drive system having an on-demand boost converter, and related operating methods
JP6671402B2 (en) Power supply for vehicles
US20220410741A1 (en) System for charging vehicle battery using motor driving system
CN117674335B (en) Power supply circuit, power supply control method, storage medium, and vehicle
JP7559573B2 (en) Power Supplies
JP7320561B2 (en) Power supply system and moving object
Anandkrishnan et al. Fuel Cell-Battery Integrated BLDC Motor for Electric Vehicle with Regenerative Braking
JP2022109098A (en) Power supply device
US20220416560A1 (en) System for charging vehicle battery using motor driving system
EP2080662B1 (en) Fuel cell vehicle and DC/DC converter apparatus
Banović et al. Increase in Efficiency of PMSM Drive Using Supercapacitor Storage
JP2022160874A (en) Electric motor drive device and control method for the same
KR20240085705A (en) Electrified vehicle and method controlling for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAJOUKE, LATEEF A.;WELCHKO, BRIAN A.;REEL/FRAME:024345/0947

Effective date: 20100416

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0156

Effective date: 20101027

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025781/0333

Effective date: 20101202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION