US20100038628A1 - Chemical doping of nano-components - Google Patents
Chemical doping of nano-components Download PDFInfo
- Publication number
- US20100038628A1 US20100038628A1 US12/551,310 US55131009A US2010038628A1 US 20100038628 A1 US20100038628 A1 US 20100038628A1 US 55131009 A US55131009 A US 55131009A US 2010038628 A1 US2010038628 A1 US 2010038628A1
- Authority
- US
- United States
- Prior art keywords
- nanotube
- fet
- doped
- doping
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000126 substance Substances 0.000 title description 4
- 239000002019 doping agent Substances 0.000 claims abstract description 55
- 239000002071 nanotube Substances 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000005669 field effect Effects 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 99
- 239000002041 carbon nanotube Substances 0.000 claims description 74
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 74
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 49
- 229920000767 polyaniline Polymers 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- DWJXWSIJKSXJJA-UHFFFAOYSA-N 4-n-[4-(4-aminoanilino)phenyl]benzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1NC(C=C1)=CC=C1NC1=CC=C(N)C=C1 DWJXWSIJKSXJJA-UHFFFAOYSA-N 0.000 claims description 14
- 229920000763 leucoemeraldine polymer Polymers 0.000 claims description 14
- 150000002429 hydrazines Chemical class 0.000 claims description 10
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 8
- PGLASKORVDVZEZ-UHFFFAOYSA-N (2z)-1-cycloundecyl-2-diazocycloundecane Chemical compound [N-]=[N+]=C1CCCCCCCCCC1C1CCCCCCCCCC1 PGLASKORVDVZEZ-UHFFFAOYSA-N 0.000 claims description 7
- GKKDBHXKIYZTJJ-UHFFFAOYSA-N trimethylsilylhydrazine Chemical compound C[Si](C)(C)NN GKKDBHXKIYZTJJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 3
- 239000002159 nanocrystal Substances 0.000 abstract description 37
- 239000002070 nanowire Substances 0.000 abstract description 28
- 150000001412 amines Chemical class 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 33
- 239000000306 component Substances 0.000 description 31
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- 239000010408 film Substances 0.000 description 17
- 238000012546 transfer Methods 0.000 description 14
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- -1 e.g. Substances 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 239000004054 semiconductor nanocrystal Substances 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 229920000775 emeraldine polymer Polymers 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 125000000879 imine group Chemical group 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910004613 CdTe Inorganic materials 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 3
- 229910005542 GaSb Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910005829 GeS Inorganic materials 0.000 description 3
- 229910005866 GeSe Inorganic materials 0.000 description 3
- 229910005900 GeTe Inorganic materials 0.000 description 3
- 229910004262 HgTe Inorganic materials 0.000 description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- 229910002665 PbTe Inorganic materials 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 125000005418 aryl aryl group Chemical group 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052949 galena Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VYBFJKPXWYJWMF-UHFFFAOYSA-N hexane octane Chemical compound CCCCCC.CCCCCC.CCCCCCCC.CCCCCCCC VYBFJKPXWYJWMF-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000005839 radical cations Chemical class 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
Definitions
- the present invention relates to nanostructures and particularly to methods of doping nano-components, and forming devices incorporating these nano-components.
- semiconductor nanocrystals In the field of molecular nanoelectronics, semiconductor nanocrystals, nanowires and nanotubes are showing increasing promise as components of various electronic devices.
- Semiconductor nanocrystals for examples, have physical properties significantly different from those of bulk materials.
- the strong dependency of electronic structure of semiconductor nanocrystals on the nanocrystal size and shape provides additional options for the design and optimization of their material properties [Murray et al., Annu. Rev. Mater. Sci., 30, 542 (2000)].
- the ability of semiconductor nanocrystals to form stable colloidal solutions allows their integration into electronic devices by inexpensive and high-throughput solution based processes like spin-coating and jet-printing.
- Nano-components such as semiconductor nanowires [Lieber et al., US Published Application US 2002/0130311 A1] and carbon nanotubes are also important elements of nanoelectronics. Nanotubes are unique for their size, shape, and physical properties, and depending on their electrical characteristics, have been used in electronic devices such as diodes and transistors.
- CNFET Unlike doping in CMOS processes, CNFET cannot be doped substitutionally via ion implantation due to damages to the CN lattice. It is known that CNFETs fabricated from as-grown CNs under ambient conditions show p channel conduction due to oxygen interactions at the metal-CN interface [Derycke et al., Appl. Phys. Lett. 80, 2773 (2002)]. However, the oxygen content at the metal-CN interface can easily be changed by standard fabrication processes (e.g., any post processing involving vacuum pumping such as thin film deposition). In fact, a p-CNFET can be easily converted to an ambipolar or n-CNFET via vacuum pumping.
- n-CNFETs can be formed by alkali metals [Derycke et al., Appl. Phys. Lett. 80, 2773 (2002)] or gas-phase (NH 3 ) doping [Kong et al., Science 287, 622 (2000)], a controlled environment is required to prevent dopant desorption, because upon exposure to air, these devices quickly degrade and may become non-operational. Shim et al. has demonstrated the use of polyethyleneimine (PEI) for n-doping of CNFETs [Shim et al., J. Am. Chem. Soc. 123, 11512 (2001)]. However, additional alternative methods are still needed to provide consistent and stable doping for technologically viable CNFETs.
- PEI polyethyleneimine
- One aspect of the invention provides a method of doping a nano-component comprising the step of exposing the nano-component to a dopant selected from the group consisting of hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, diazobicycloundecane and polyaniline.
- a dopant selected from the group consisting of hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, diazobicycloundecane and polyaniline.
- a dopant selected from the group consisting of hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, diazobicycloundecane and polyaniline.
- Illustrative examples include doping of carbon nanotubes, PbSe nanowires and PbSe nanocrystal films with hydrazine; and the use of different oxidation states of polyaniline as n-dopant and p-dopant.
- Another aspect of the invention provides a method of forming a field effect transistor comprising a nano-component that has been doped with one of these dopants. Yet another aspect of the invention relates to a field effect transistor having a nano-component as a channel that has been doped using one of these dopants.
- FIGS. 1A-1D illustrates a method of forming a FET according to one embodiment of this invention
- FIG. 2 illustrates the transfer characteristics of a CNFET before and after doping by hydrazine
- FIG. 3 shows the dependence of the transfer characteristics on V ds of a CNFET after hydrazine doping
- FIG. 4 illustrates another embodiment of forming a CNFET
- FIG. 5 illustrates an embodiment of a dual-gate CNFET
- FIGS. 6A-6C illustrate another embodiment of forming a CNFET
- FIGS. 7A-C illustrates the different oxidation states of polyaniline.
- FIG. 8 is a device characteristic plot for a CNFET before and after doping by polyaniline.
- One aspect of the present invention relates to a method of doping a nano-component (nano-structure) by exposing the nano-component to a suitable organic amine-containing dopant.
- the nano-component includes semiconducting nanotubes, e.g., carbon nanotubes, semiconductor nanocrystals and nanowires.
- the nano-component may comprise elements from Groups III, IV, V and VI of the periodic table; e.g., Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and appropriate combinations of two or more of these semiconductors:
- Another aspect of the invention relates to a method of forming a device, e.g., a field effect transistor (FET) comprising a n-doped nano-component.
- FET field effect transistor
- the resulting FET with the n-doped nano-component which is stable in air, exhibits improved device performance in both on- and off-states.
- the dopant may be selected from organic amine-containing compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, derivatives of hydrazine, diazobicycloundecane (BDU), or polymeric compounds such as polyaniline.
- the hydrazine derivatives are preferably compounds with chemical formulae RHN—NH 2 , where R represents one of alkyl-, aryl-, substituted alkyl, or substituted aryl-group.
- R represents one of alkyl-, aryl-, substituted alkyl, or substituted aryl-group.
- either p- or n-type doping can be achieved by using different forms of polyaniline, e.g., oxidized or reduced forms.
- Doping is preferably conducted in solution phase, although gas phase doping is also feasible.
- organic solvents such as dichlorobenzene, dichloromethane, ethanol, acetonitrile, chloroform, methanol, butanol, among others, are suitable. It is believed that n-doping is accomplished by charge transfer from the dopants to the nano-components, e.g., interaction of the lone electron pairs of doping molecules with the quantum confined orbitals of semiconductor nanowires and nanocrystals which affects the concentration of carriers involved in charge transport.
- Nano-components can be doped before and/or after their integration into a circuit on a chip. Nano-components can also be doped locally on the chip using techniques such as inkjet printing. The doping level along a nanowire, nanotube or a nanocrystal film can be varied by masking certain portions (e.g., contacts) of the nano-component with resist and doping only the exposed portions.
- nanowires can be protected from damage by implementing the doping at an appropriate stage during process integration. For example, undoped, poorly conductive nanowires can first be aligned and assembled on a chip by applying external electric fields. The low conductivity protects the nanowires from burning during the alignment step. After alignment and integration into the chip, the conductivity of nanowires can then be significantly enhanced by solution-phase doping to the desired level.
- Nanotubes e.g., carbon nanotubes
- carbon nanotubes are used as examples in the following discussions, doping methods of this invention can also be applied to other semiconducting nanotubes, which may comprise, for example, Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and combinations thereof.
- Carbon nanotubes with the dopants e.g., via charge transfer
- Bulk doping can be achieved by stirring a suspension of the carbon nanotubes in a dopant solution at a preferred temperature from about 20° C. to about 50° C., with a dopant concentration preferably from about 1M to about 5M. Depending on the specific dopants and solvents, however, concentration ranging from about 0.0001M to about 10M may be used with temperatures from about 0° C. to about 50° C.
- the extent of doping depends on the concentration and temperature of the doping medium, and process parameters are selected according to the specific nano-component, dopant and solvent combination, as well as specific application needs or desired device characteristics.
- concentration from about 0.1 mm to about 100 mM is preferred in order to provide a solution with a viscosity suitable for thin film processing or deposition.
- different nano-components may be doped by using dopant concentration from about 0.0001M to about 10M, preferably from about 0.001M to about 10M, and more preferably, from about 1M to about 5M; at a temperature ranging from about 0° C. to about 50° C., preferably from about 10° C. to about 50° C., and more preferably, from 20° C. to about 50° C.
- “Device doping”—i.e., doping the nanotube after it has been incorporated as part of a device structure of substrate, can be achieved by exposing the device or substrate with the nanotube to a dopant solution. By appropriately masking the nanotube, selective doping of portions of the nanotube can be achieved to produce desired doping profiles along the nanotube.
- a dopant concentration is preferably in the range of about 0.001M to about 10M, more preferably from about 1M to about 5M, and most preferably, from about 1M to about 3M, with the solution temperature preferably from about 10° C. to about 50° C., and more preferably, from about 20° C. to about 50° C.
- the choice of process conditions also depends on compatibility with other materials present on the device or substrate. For example, while lower dopant concentrations tend to be less effective in general, too high a concentration of certain dopants may result in potential corrosion issues.
- the doping is done under a N 2 atmosphere without stirring or agitation of the solution. However, agitation of the solution is also acceptable as long as it does not cause damage to the device.
- the resulting n-doped carbon nanotube device shows an improvement of drive current by about 1 to about 3 orders of magnitude. Depending on oxide thickness, an increase of threshold voltage by about 0.5 to about 3 volt can be expected. Other improvements include a suppression of electron current in ambipolar transistors, a transformation of a scaled CNFET from ambipolar to unipolar, a ratio of I on /I off ratio of about 3 to about 6 and excellent DIBL.
- the doped nanotubes are also stable in ambient conditions when exposed to air.
- FIGS. 1A-1D illustrates a method of forming a FET according to one embodiment of this invention.
- a gate dielectric 120 such as silicon dioxide, or oxynitride, or high K material layer is deposited on gate 100 , which is generally a doped silicon substrate. In one embodiment, the silicon substrate is degenerately doped.
- the gate dielectric has a thickness from about 1 to about 100 nm.
- a nano-component 140 e.g., carbon nanotube, is deposited on gate dielectric 120 by spin-coating.
- a resist pattern is then formed on the carbon nanotube 140 by conventional lithographic techniques. For example, a resist layer can be deposited over the carbon nanotube 140 and patterned by using e-beam lithography or photolithography.
- the resist pattern formed on the carbon nanotube may have one or multiple separations from about 10 nm to about 500 nm when e-beam lithography is used, and from about 500 nm to about 10 ⁇ m with photolithography.
- the multiple separations correspond to the line and space separations resulting from the respective lithographic techniques, and represent separations between adjacent top gates.
- the availability of multiple top gates provides flexibility of individual control for different logic applications, e.g., AND, OR, NOR operations.
- a metal 160 having a thickness ranging from about 15 nm to about 50 nm, is deposited on the resist pattern and over portions of the carbon nanotube 140 .
- the metal can be Pd, Ti, W, Au, Co, Pt, or alloys thereof, or a metallic nanotube. If a metallic nanotube is used, the metal 160 may include one or more metallic nanotubes.
- Other metals or alloys of Pd, Ti, W, Au, Co, Pt can be deposited by e-beam or thermal evaporation under vacuum, while metallic nanotubes can be deposited with solution phase techniques such as spin coating.
- the structure can be immersed in acetone or N-methylpyrrolidone (NMP) for resist liftoff, a process that removes the lithographically patterned resist and the metal deposited on top by soaking the sample in solvents such as acetone or NMP.
- solvents are also referred generally as resist liftoff components.
- the metal portions 162 and 164 remaining on the carbon nanotube 140 form the FET source and drain.
- the source and drains are formed over a first and a second region, respectively, of the carbon nanotube 140 , or more generally, of the nano-component 140 .
- FIG. 1C illustrates the structure in FIG. 1C with the carbon nanotube 140 .
- an organic solution comprising a suitable dopant selected from organic amine-containing compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, e.g., with chemical formulae of HRN—NH 2 , where R represents one of alkyl-, aryl-, substituted alkyl, or substituted aryl-groups, diazobicycloundecane (BDU), and polymeric compounds such as polyaniline.
- FIG. 1D illustrates the doping molecules bonding to the carbon nanotube 140 .
- the doped portion of the carbon nanotube 140 acts as the channel of the FET.
- carbon nanotube FETs with laser ablation carbon nanotubes [Thess et al., Science, 273, 483 (1996)] having diameters of about 1.4 nm have been fabricated with titanium source and drain electrodes separated by 300 nm on top of 10 nm thick SiO 2 and a Si backgate.
- the substrate with the fabricated devices is immersed in a 3M solution of hydrazine (N 2 H 4 ) in acetonitrile for about 5 hours at a temperature of about 50° C.
- the electron rich di-amine group of hydrazine make it a strong reducing agent. Interaction of the carbon nanotube with N 2 H 4 results in electron injection, as shown in FIG.
- Hydrazine doping can be done at concentration ranging from about 0.1M to about 10M, preferably from about 1 to about 5M, and more preferably around 3M. It was observed that concentrations in the mM range showed insignificant impact on device characteristics.
- solvents including, for example, dichlorobenzene, dichloromethane, ethanol and acetonitrile, have been investigated for optimal doping effects, with acetonitrile being more effective because of its more polar nature compared to the other solvents. In general, polar solvents are preferred for hydrazine.
- the device was transformed from a p-type CNFET to a n-type CNFET, which is indicative of electron transfer from N 2 H 4 to the carbon nanotube, moving the nanotube Fermi level toward the conduction band.
- the resulting CNFET shows improved device characteristics such as a reduction in the threshold voltage and a three orders of magnitude improvement in the drive current.
- the threshold voltage reduction is indicative of a shift of the Fermi level of the nanotubes as a result of n-doping, while the drive current improvement is indicative of a change of metal-carbon nanotube interface lineup and a reduction of contact resistance.
- Other improvements include suppression of the ambipolar branch, possibly due to degenerate doping at the contacts leading to the suppression of the minority carrier (hole) injection and sharpening of the subthreshold slope (87 mV/dec)—an indication of heavy contacts doping and reduction of the metal-carbon nanotube Schottkey barriers.
- the V ds dependence shown in FIG. 3 indicates excellent drain-induced-barrier-lowering (DIBL)-like behavior.
- hydrazine e.g., electron donors such mono-, di-, tri or tetra-kis trimethylsilylhydrazine, alkyl-, aryl-, substituted alkyl- or substituted aryl-derivatives, among others, are also expected to be effective n-dopants.
- One advantage of using hydrazine derivatives as dopants is that other functionalities can be introduced to the nano-components as a result of doping.
- FIG. 4 illustrates another embodiment of forming a carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films.
- metal portions 162 and 164 are formed on gate dielectric 120 using a resist liftoff process (not shown) similar to that described for FIGS. 1A-1D .
- Metal portions 162 and 164 each having a thickness from about 15 nm to about 300 nm, form the FET source and drain.
- Metals such as Pd, Ti, W, Au, Co and Pt, and alloys thereof, or one or more metallic nanotubes can be used for the metal portions 162 , 164 .
- a carbon nanotube 140 is then disposed, e.g., by spin-coating, over the gate dielectric 120 and the metal portions 162 and 164 .
- Blanket doping of the carbon nanotube 140 is achieved by immersing the structure in an organic solution comprising a suitable dopant.
- the dopant molecules bond to the carbon nanotube, e.g., via charge transfer interaction with the nitrogen of hydrazine (or another dopant) donating a lone pair of electrons to the carbon nanotube.
- the portion of the carbon nanotube 140 in contact with the gate dielectric 120 forms the channel of the FET.
- the carbon nanotube 140 can be selectively doped through a patterned resist (not shown) that is formed over the carbon nanotube 140 .
- the patterned resist may be formed, for example, by depositing a suitable resist material over the carbon nanotube 140 and patterning using conventional lithographic techniques. Hydrogensilsesquioxanes (HSQ), a dielectric that can be used as a negative resist, may be used for this purpose.
- HSQ Hydrogensilsesquioxanes
- FIG. 5 illustrates an embodiment of a dual-gate carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films.
- a gate dielectric 120 is formed over the substrate 100 , which acts as a first gate (also referred to as a bottom or back gate)
- a carbon nanotube, or more generally, a nano-component 140 is deposited on gate dielectric 120 .
- Metal portions 162 , 164 are formed over the carbon nanotube 140 using a resist liftoff technique such as that described in connection with FIGS. 1A-1D .
- a dielectric layer 180 which can be a low temperature oxide (LTO) or a CVD high dielectric material such as hafnium dioxide.
- a second gate 200 (also referred to as top or front gate), which can comprise a metal or highly doped polysilicon, is formed over the dielectric layer 180 , e.g., by first depositing a gate material over dielectric layer 180 and then patterning to form top gate 200 . With the top gate 200 acting as an etch mask, the dielectric layer 180 is etched such that only the portion underneath the top gate 200 remains, as shown in FIG. 5 .
- a dilute hydrofluoric acid such as 100:1 HF can be used as an etchant for LTO.
- the device is immersed in a dopant solution to achieve partial doping of the carbon nanotube 140 .
- the channel consists of both the gated undoped region 500 and the two doped regions 502 , 504 .
- the doped regions 502 , 504 act like the “extensions” of a CMOS FET, resulting in reduced contact barrier and improvements in drive current and transistor switching.
- the device can be operated by either the top gate 200 or the bottom gate 100 , or both. In logic applications, it is desirable to operate a FET with the top gate configuration for good AC performance.
- FIGS. 6A-6C illustrate another embodiment of forming a carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films.
- a patterned resist is formed on the carbon nanotube 140 using conventional lithographic techniques such as e-bearn or photolithography.
- the structure (shown in FIG. 6A ) containing the patterned resist and carbon nanotube 140 is immersed in an organic solution comprising a suitable dopant. The doping molecules bond to the exposed portions of the carbon nanotube 140 .
- a metal layer 160 having a thickness ranging from about 15 nm to about 50 nm is deposited over the patterned resist and the doped carbon nanotube 140 .
- Pd, Ti, W, Au, Co, Pt, or alloys thereof, or one or more metallic nanotubes can be used for metal 160 .
- Metallic nanotubes can be deposited using solution phase techniques such as spin coating, while electron beam or vacuum evaporation can be used for deposition of other metals or alloys.
- the structure shown in FIG. 6B is immersed in acetone or NMP for resist liftoff.
- metal portions 162 , 164 remaining after resist liftoff form the source and drain of the FET.
- FIGS. 6A-6C generates a significant doping profile difference along the channel of the carbon nanotube transistor. Note that in this case, the undoped portion 500 of the carbon nanotube 140 forms the channel of the FET.
- passivation can be performed by covering the respective devices with a spin-on organic material like poly(methyl methacrylate) (PMMA) or hydrogensilsesquioxanes (HSQ)—a low K dielectric layer, or by depositing a low temperature dielectric film such as silicon dioxide. Further processing of the device is accomplished via metallization for the back-end of the line.
- a spin-on organic material like poly(methyl methacrylate) (PMMA) or hydrogensilsesquioxanes (HSQ)—a low K dielectric layer, or by depositing a low temperature dielectric film such as silicon dioxide.
- FIGS. 7A-C illustrates three distinct oxidation states of polyaniline.
- the emeraldine (E) state shown in FIG. 7A , is the most stable form.
- this partially oxidized and partially reduced form of polyaniline has a mixture of amine (—NH—) and imine (—N ⁇ where nitrogen forms a double bond with carbon) groups and partially delocalized electron lone pairs (50% sp 2 +50% sp 3 hybridization).
- Leucoemeraldine has amine groups (—NH—) that are attached to the benzene rings
- n-doping of carbon nanotube is achieved by using leucoemeraldine, i.e., the reduced form of polyaniline. Subsequent doping by the oxidized form of polyaniline allows the n-type FET to be converted back to a p-type FET. The ability to switch a carbon nanotube FET between p- and n-polarities is believed to be due to changes in charge transfer abilities through different degrees of charge localization of the reduced and oxidized forms of polyaniline. Thus, the use of the redox-active polyaniline as a dopant provides a method of controlled doping of carbon nanotube FETs.
- pristine carbon nanotube FETs were fabricated with 1.4 nm diameter laser ablation carbon nanotube as the channel material.
- the device was then treated with leucoemeraldine, the fully reduced form of polyaniline.
- leucoemeraldine the as-purchased emeraldine was heated in 1-methylpyrrolidinone (NMP) at about 160° C. for about 2 hr. in a N 2 atmosphere, resulting in emeraldine being fully reduced [Afzali et al., Polymer 38, 4439 (1997)].
- NMP 1-methylpyrrolidinone
- the transfer characteristics of the pristine carbon nanotube FET after leucoemeraldine doping is shown as curve 820 in FIG. 8 , where the original p-carbon nanotube FET was converted to a n-FET.
- the sample can be spin-coated with PMMA and baked for an hour at about 100° C. under N 2 .
- polyaniline as a dopant is the ability to convert the n-doped nanotube to p-doped by oxidation.
- polyaniline was fully oxidized to pernigraniline. The oxidation process was carried out by immersing the leucoemeraldine-covered device in a 1% solution of tetrachloro-1,4-benzoquinone (TCBQ) in 4:1 acetonitrile/dimethylacetamide at 80° C. for 30 min. [Afzali et al. Polymer 38, 4439 (1997)].
- TABQ tetrachloro-1,4-benzoquinone
- nanocrystals and nanowires with semiconductors comprising elements from Groups III, IV, V and VI, e.g., Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and appropriate combinations thereof, can also be n-doped by exposing the nanocrystals and nanowires to a dopant solution.
- Groups III, IV, V and VI e.g., Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbT
- the dopant may be selected from organic compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydraine, derivatives of hydrazine such as RHN—NH 2 where R represents alkyl-, aryl-, substituted alkyl- and substituted aryl-groups, diazobicycloundecane (BDU), and polymeric compounds such as leucoemeraldine, the highly reduced form of polyaniline. Furthermore, it is expected that pemigraniline, the fully oxidized form of polyaniline, will also be effective as a p-dopant for these semiconductor nanowires and nanocrystals. Similar to nanotubes, doping of nanocrystals or nanowires may be done in bulk, e.g., by providing a suspensions of nanocrystals or nanowires in a dopant solution.
- nanocrystals or nanowires can be supported on a substrate or be incorporated as part of a device, and doped by soaking the substrate or device in a suitable dopant solution.
- monodisperse nearly spherical PbSe nanocrystals were synthesized as described by Murray et al., e.g., IBM J. Res. Dev. 45, 47-55 (2001).
- the PbSe nanocrystals were capped with oleic acid as a stabilizing agent, although other organic ligands may also be used.
- the molecules of the stabilizing agent are attached to the nanocrystal surface during synthesis.
- the stabilizing agent is typically used to enable the nanocrystals to form stable colloidal solutions, help control nanocrystal growth and protect the nanocrystals from oxidation.
- the PbSe nanocrystal film with a thickness of about 50 nm is supported on a substrate, e.g., as part of a semiconductor device, and immersed in a 1M solution of N 2 H 4 in acetonitrile at a temperature of about 23° C. for about 3 minutes.
- the doping results in a significant improvement, e.g., about 5-6 orders of magnitude, in the conductivity of the layer of nanocrystals, specifically, n-type conductivity.
- the resulting semiconductor nanocrystal film can have different morphologies due to differences in packing density, packing symmetry and packing disorder.
- the rate of destabilization of the colloidal solution can result in the formation of a glassy film with short-range ordering of nanocrystals or superlattices with dense packing and long-range order [Murray et al., Ann. Rev. Mater. Sci. 30, 545 (2000)].
- Nanocrystals with significant shape anisotropy can have liquid crystalline type of ordering (nematic, smectic-A, smectic-B, etc.) and strongly anisotropic properties [Talapin et al., “CdSe and CdSe/CdS Nanorod Solids”, J. Am. Chem. Soc. 126 (40), 12984 (2004)], while dipolar interactions between the nanocrystals, or their ordering on a template like DNA-molecule, etc. can result in one-dimensional chains of semiconductor nanocrystals.
- nanocrystal film as used herein, is meant to cover any resulting aggregates of nanocrystals, regardless of their specific packing configurations.
- PbSe nanowires incorporated as part of a semiconductor device are exposed to a 1M solution of N 2 H 4 in acetonitrile at a temperature of about 23° C. for about one minute, resulting in a 2-3 orders of magnitude enhancement in their conductivity, as well as a change in the conductivity of the nanowires from p-type to n-type.
- processing parameters such as the dopant solution concentration, temperature and doping time vary according to the material composition of the nano-components, dopant molecules, chemistry involved, material compatibility and specific application needs.
- a dopant concentration is preferably between about 0.01M to about 5M, and more preferably, between about 0.5M to about 2M.
- a concentration range between about 0.001M to about 10M, preferably between about 0.1M to about 5M, more preferably between about 1M to about 5M, and a temperature range of about 10° C. to about 50° C., will be acceptable.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
- The present invention relates to nanostructures and particularly to methods of doping nano-components, and forming devices incorporating these nano-components.
- In the field of molecular nanoelectronics, semiconductor nanocrystals, nanowires and nanotubes are showing increasing promise as components of various electronic devices. Semiconductor nanocrystals, for examples, have physical properties significantly different from those of bulk materials. The strong dependency of electronic structure of semiconductor nanocrystals on the nanocrystal size and shape provides additional options for the design and optimization of their material properties [Murray et al., Annu. Rev. Mater. Sci., 30, 542 (2000)]. Moreover, the ability of semiconductor nanocrystals to form stable colloidal solutions allows their integration into electronic devices by inexpensive and high-throughput solution based processes like spin-coating and jet-printing. The films of close-packed nanocrystals exhibit extremely poor conductivities [Morgan et al., Phys. Rev. B. 66, 075339 (2002)], thus hindering their application in electronic devices. Recently it has been shown that electrochemical doping of semiconductor nanocrystals results in significant improvement of their conductivity [Yu et al., Science 300, 1277 (2003); Yu et al., Phys. Rev. Lett. 92, 216802 (2004)]. However, electrochemical doping is not suitable for use in solid state electronic devices because it requires the presence of liquid electrolytes. Thus, there is a need for alternative methods of doping nanocrystals.
- Other nano-components such as semiconductor nanowires [Lieber et al., US Published Application US 2002/0130311 A1] and carbon nanotubes are also important elements of nanoelectronics. Nanotubes are unique for their size, shape, and physical properties, and depending on their electrical characteristics, have been used in electronic devices such as diodes and transistors.
- Although much progress has been made on carbon nanotube (CN) based transistors in terms of both fabrication and understanding of their performance limits [Javet et al., Nature 424, 654 (2003); Javey et al., “Advancements in Complementary Carbon Nanotube Field-Effect Transistors”, IEDM Conference 2003; Wind et al., Appl. Phys. Lett. 80, 3817 (2002); Favey et al., Nano Lett. 4, 447 (2004)], there are still key issues to be addressed for potential technological applications. In particular, there has been no process-compatible doping method for CN field effect transistors (CNFET). Unlike doping in CMOS processes, CNFET cannot be doped substitutionally via ion implantation due to damages to the CN lattice. It is known that CNFETs fabricated from as-grown CNs under ambient conditions show p channel conduction due to oxygen interactions at the metal-CN interface [Derycke et al., Appl. Phys. Lett. 80, 2773 (2002)]. However, the oxygen content at the metal-CN interface can easily be changed by standard fabrication processes (e.g., any post processing involving vacuum pumping such as thin film deposition). In fact, a p-CNFET can be easily converted to an ambipolar or n-CNFET via vacuum pumping. Although n-CNFETs can be formed by alkali metals [Derycke et al., Appl. Phys. Lett. 80, 2773 (2002)] or gas-phase (NH3) doping [Kong et al., Science 287, 622 (2000)], a controlled environment is required to prevent dopant desorption, because upon exposure to air, these devices quickly degrade and may become non-operational. Shim et al. has demonstrated the use of polyethyleneimine (PEI) for n-doping of CNFETs [Shim et al., J. Am. Chem. Soc. 123, 11512 (2001)]. However, additional alternative methods are still needed to provide consistent and stable doping for technologically viable CNFETs.
- For semiconductor nanowires, n-doping of nanowires using gas-phase dopants has been demonstrated [Greytak et al., Appl. Phys. Lett. 84, 4176 (2004)]. However, after a nanowire has been integrated into a device, it is not easy, or possible, to vary doping level along the nanowire using gas phase doping because the higher temperatures typically used in gas phase doping may not be compatible with other materials already present in the device. Alternative approaches such as solution phase processing provide various advantages, one of which is the ability to allow controlled doping along the nanowire at temperatures compatible with device doping.
- One aspect of the invention provides a method of doping a nano-component comprising the step of exposing the nano-component to a dopant selected from the group consisting of hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, diazobicycloundecane and polyaniline. Embodiments of the inventions provide for doping of nanotubes, nanowires and nanocrystals. Illustrative examples include doping of carbon nanotubes, PbSe nanowires and PbSe nanocrystal films with hydrazine; and the use of different oxidation states of polyaniline as n-dopant and p-dopant.
- Another aspect of the invention provides a method of forming a field effect transistor comprising a nano-component that has been doped with one of these dopants. Yet another aspect of the invention relates to a field effect transistor having a nano-component as a channel that has been doped using one of these dopants.
- So that the manner in which the above recited embodiments of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be obtained by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIGS. 1A-1D illustrates a method of forming a FET according to one embodiment of this invention; -
FIG. 2 illustrates the transfer characteristics of a CNFET before and after doping by hydrazine; -
FIG. 3 shows the dependence of the transfer characteristics on Vds of a CNFET after hydrazine doping; -
FIG. 4 illustrates another embodiment of forming a CNFET; -
FIG. 5 illustrates an embodiment of a dual-gate CNFET; -
FIGS. 6A-6C illustrate another embodiment of forming a CNFET; -
FIGS. 7A-C illustrates the different oxidation states of polyaniline. -
FIG. 8 is a device characteristic plot for a CNFET before and after doping by polyaniline. - To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
- One aspect of the present invention relates to a method of doping a nano-component (nano-structure) by exposing the nano-component to a suitable organic amine-containing dopant. The nano-component includes semiconducting nanotubes, e.g., carbon nanotubes, semiconductor nanocrystals and nanowires. The nano-component may comprise elements from Groups III, IV, V and VI of the periodic table; e.g., Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and appropriate combinations of two or more of these semiconductors:
- Another aspect of the invention relates to a method of forming a device, e.g., a field effect transistor (FET) comprising a n-doped nano-component. The resulting FET with the n-doped nano-component, which is stable in air, exhibits improved device performance in both on- and off-states.
- According to embodiments of this invention, the dopant may be selected from organic amine-containing compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, derivatives of hydrazine, diazobicycloundecane (BDU), or polymeric compounds such as polyaniline. The hydrazine derivatives are preferably compounds with chemical formulae RHN—NH2, where R represents one of alkyl-, aryl-, substituted alkyl, or substituted aryl-group. As discussed below, either p- or n-type doping can be achieved by using different forms of polyaniline, e.g., oxidized or reduced forms.
- Doping is preferably conducted in solution phase, although gas phase doping is also feasible. For solution processes, organic solvents such as dichlorobenzene, dichloromethane, ethanol, acetonitrile, chloroform, methanol, butanol, among others, are suitable. It is believed that n-doping is accomplished by charge transfer from the dopants to the nano-components, e.g., interaction of the lone electron pairs of doping molecules with the quantum confined orbitals of semiconductor nanowires and nanocrystals which affects the concentration of carriers involved in charge transport.
- Solution phase doping offers a variety of process flexibilities and advantages. For example, nano-components can be doped before and/or after their integration into a circuit on a chip. Nano-components can also be doped locally on the chip using techniques such as inkjet printing. The doping level along a nanowire, nanotube or a nanocrystal film can be varied by masking certain portions (e.g., contacts) of the nano-component with resist and doping only the exposed portions. For device applications, nanowires can be protected from damage by implementing the doping at an appropriate stage during process integration. For example, undoped, poorly conductive nanowires can first be aligned and assembled on a chip by applying external electric fields. The low conductivity protects the nanowires from burning during the alignment step. After alignment and integration into the chip, the conductivity of nanowires can then be significantly enhanced by solution-phase doping to the desired level.
- Nanotubes, e.g., carbon nanotubes, can be doped either in bulk by suspension of the nanotubes in a dopant solution, with or without heating; or immersing in the dopant solution a substrate supporting the nanotubes. Although carbon nanotubes are used as examples in the following discussions, doping methods of this invention can also be applied to other semiconducting nanotubes, which may comprise, for example, Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and combinations thereof. Details relating to the synthesis of semiconducting nanotubes can be found, for example, in Bakkers et al., J. Am. Chem. Soc. 125; 3440 (2003); and Kong et al., J. Phys. Chem. B. 108, 570 (2004).
- Interaction of carbon nanotubes with the dopants, e.g., via charge transfer, results in the formation of charged (radical cation) moeities close to the nanotubes. Bulk doping can be achieved by stirring a suspension of the carbon nanotubes in a dopant solution at a preferred temperature from about 20° C. to about 50° C., with a dopant concentration preferably from about 1M to about 5M. Depending on the specific dopants and solvents, however, concentration ranging from about 0.0001M to about 10M may be used with temperatures from about 0° C. to about 50° C.
- In general, the extent of doping depends on the concentration and temperature of the doping medium, and process parameters are selected according to the specific nano-component, dopant and solvent combination, as well as specific application needs or desired device characteristics. For example, with polyaniline dopant, a concentration from about 0.1 mm to about 100 mM is preferred in order to provide a solution with a viscosity suitable for thin film processing or deposition. It is expected that different nano-components may be doped by using dopant concentration from about 0.0001M to about 10M, preferably from about 0.001M to about 10M, and more preferably, from about 1M to about 5M; at a temperature ranging from about 0° C. to about 50° C., preferably from about 10° C. to about 50° C., and more preferably, from 20° C. to about 50° C.
- “Device doping”—i.e., doping the nanotube after it has been incorporated as part of a device structure of substrate, can be achieved by exposing the device or substrate with the nanotube to a dopant solution. By appropriately masking the nanotube, selective doping of portions of the nanotube can be achieved to produce desired doping profiles along the nanotube. A dopant concentration is preferably in the range of about 0.001M to about 10M, more preferably from about 1M to about 5M, and most preferably, from about 1M to about 3M, with the solution temperature preferably from about 10° C. to about 50° C., and more preferably, from about 20° C. to about 50° C. With device doping, the choice of process conditions also depends on compatibility with other materials present on the device or substrate. For example, while lower dopant concentrations tend to be less effective in general, too high a concentration of certain dopants may result in potential corrosion issues. In one embodiment, the doping is done under a N2 atmosphere without stirring or agitation of the solution. However, agitation of the solution is also acceptable as long as it does not cause damage to the device.
- With either bulk or device doping, the resulting n-doped carbon nanotube device shows an improvement of drive current by about 1 to about 3 orders of magnitude. Depending on oxide thickness, an increase of threshold voltage by about 0.5 to about 3 volt can be expected. Other improvements include a suppression of electron current in ambipolar transistors, a transformation of a scaled CNFET from ambipolar to unipolar, a ratio of Ion/Ioff ratio of about 3 to about 6 and excellent DIBL. The doped nanotubes are also stable in ambient conditions when exposed to air.
-
FIGS. 1A-1D illustrates a method of forming a FET according to one embodiment of this invention. Agate dielectric 120 such as silicon dioxide, or oxynitride, or high K material layer is deposited ongate 100, which is generally a doped silicon substrate. In one embodiment, the silicon substrate is degenerately doped. The gate dielectric has a thickness from about 1 to about 100 nm. A nano-component 140, e.g., carbon nanotube, is deposited ongate dielectric 120 by spin-coating. A resist pattern is then formed on thecarbon nanotube 140 by conventional lithographic techniques. For example, a resist layer can be deposited over thecarbon nanotube 140 and patterned by using e-beam lithography or photolithography. With a positive resist, regions of the resist layer exposed to the e-beam or lithographic radiation are removed by using a developer, resulting in a structure with resist pattern shown inFIG. 1A . The resist pattern formed on the carbon nanotube may have one or multiple separations from about 10 nm to about 500 nm when e-beam lithography is used, and from about 500 nm to about 10 μm with photolithography. The multiple separations correspond to the line and space separations resulting from the respective lithographic techniques, and represent separations between adjacent top gates. The availability of multiple top gates provides flexibility of individual control for different logic applications, e.g., AND, OR, NOR operations. - As shown in
FIG. 1B , ametal 160, having a thickness ranging from about 15 nm to about 50 nm, is deposited on the resist pattern and over portions of thecarbon nanotube 140. The metal can be Pd, Ti, W, Au, Co, Pt, or alloys thereof, or a metallic nanotube. If a metallic nanotube is used, themetal 160 may include one or more metallic nanotubes. Other metals or alloys of Pd, Ti, W, Au, Co, Pt, can be deposited by e-beam or thermal evaporation under vacuum, while metallic nanotubes can be deposited with solution phase techniques such as spin coating. Following deposition of the metal, the structure can be immersed in acetone or N-methylpyrrolidone (NMP) for resist liftoff, a process that removes the lithographically patterned resist and the metal deposited on top by soaking the sample in solvents such as acetone or NMP. For the purpose of this disclosure, such solvents are also referred generally as resist liftoff components. Themetal portions carbon nanotube 140 form the FET source and drain. In this embodiment, the source and drains are formed over a first and a second region, respectively, of thecarbon nanotube 140, or more generally, of the nano-component 140. - Following resist liftoff, the structure in
FIG. 1C with thecarbon nanotube 140 is immersed in an organic solution comprising a suitable dopant selected from organic amine-containing compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydrazine, hydrazine derivatives, e.g., with chemical formulae of HRN—NH2, where R represents one of alkyl-, aryl-, substituted alkyl, or substituted aryl-groups, diazobicycloundecane (BDU), and polymeric compounds such as polyaniline.FIG. 1D illustrates the doping molecules bonding to thecarbon nanotube 140. The doped portion of the carbon nanotube 140 (between the metal source and drain) acts as the channel of the FET. - In one embodiment, carbon nanotube FETs with laser ablation carbon nanotubes [Thess et al., Science, 273, 483 (1996)] having diameters of about 1.4 nm have been fabricated with titanium source and drain electrodes separated by 300 nm on top of 10 nm thick SiO2 and a Si backgate. The substrate with the fabricated devices is immersed in a 3M solution of hydrazine (N2H4) in acetonitrile for about 5 hours at a temperature of about 50° C. The electron rich di-amine group of hydrazine make it a strong reducing agent. Interaction of the carbon nanotube with N2H4 results in electron injection, as shown in
FIG. 2 , which illustrates the transfer characteristics (plot of current Ids vs. voltage Vgs) of the carbon nanotube FET before and after doping. Excess dopants are then removed by rinsing with the solvent. Hydrazine doping can be done at concentration ranging from about 0.1M to about 10M, preferably from about 1 to about 5M, and more preferably around 3M. It was observed that concentrations in the mM range showed insignificant impact on device characteristics. Different solvents, including, for example, dichlorobenzene, dichloromethane, ethanol and acetonitrile, have been investigated for optimal doping effects, with acetonitrile being more effective because of its more polar nature compared to the other solvents. In general, polar solvents are preferred for hydrazine. - After doping with N2H4, the device was transformed from a p-type CNFET to a n-type CNFET, which is indicative of electron transfer from N2H4 to the carbon nanotube, moving the nanotube Fermi level toward the conduction band. A typical transfer characteristics (Ids vs. Vgs) at Vds=−0.5V of a CNFET before and after doping is shown in
FIG. 2 . The resulting CNFET shows improved device characteristics such as a reduction in the threshold voltage and a three orders of magnitude improvement in the drive current. The threshold voltage reduction is indicative of a shift of the Fermi level of the nanotubes as a result of n-doping, while the drive current improvement is indicative of a change of metal-carbon nanotube interface lineup and a reduction of contact resistance. Other improvements include suppression of the ambipolar branch, possibly due to degenerate doping at the contacts leading to the suppression of the minority carrier (hole) injection and sharpening of the subthreshold slope (87 mV/dec)—an indication of heavy contacts doping and reduction of the metal-carbon nanotube Schottkey barriers. - Compared with n-doped devices using both potassium doping [Radosavljevic et al., Appl. Phys. Lett. 84, 3693 (2004)] and aluminum as source/drain contacts [Javet et al., Nature 424, 654 (2003); Javey et al., “Advancements in Complementary Carbon Nanotube Field-Effect Transistors”, IEDM Conference 2003], the subthreshold swing S=dVgs/d(log Id) of 87 mV/decade observed for the n-doped CNFET of this invention is the sharpest among these n-doped devices. Furthermore, the Vds dependence shown in
FIG. 3 indicates excellent drain-induced-barrier-lowering (DIBL)-like behavior. - Derivatives of hydrazine, e.g., electron donors such mono-, di-, tri or tetra-kis trimethylsilylhydrazine, alkyl-, aryl-, substituted alkyl- or substituted aryl-derivatives, among others, are also expected to be effective n-dopants. One advantage of using hydrazine derivatives as dopants is that other functionalities can be introduced to the nano-components as a result of doping.
-
FIG. 4 illustrates another embodiment of forming a carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films. After the formation of gate dielectric 120 onsubstrate 100,metal portions gate dielectric 120 using a resist liftoff process (not shown) similar to that described forFIGS. 1A-1D .Metal portions metal portions carbon nanotube 140, or more generally, a nano-component, is then disposed, e.g., by spin-coating, over thegate dielectric 120 and themetal portions carbon nanotube 140 is achieved by immersing the structure in an organic solution comprising a suitable dopant. The dopant molecules bond to the carbon nanotube, e.g., via charge transfer interaction with the nitrogen of hydrazine (or another dopant) donating a lone pair of electrons to the carbon nanotube. In this illustration, the portion of thecarbon nanotube 140 in contact with the gate dielectric 120 forms the channel of the FET. - Alternatively, the
carbon nanotube 140 can be selectively doped through a patterned resist (not shown) that is formed over thecarbon nanotube 140. The patterned resist may be formed, for example, by depositing a suitable resist material over thecarbon nanotube 140 and patterning using conventional lithographic techniques. Hydrogensilsesquioxanes (HSQ), a dielectric that can be used as a negative resist, may be used for this purpose. -
FIG. 5 illustrates an embodiment of a dual-gate carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films. After thegate dielectric 120 is formed over thesubstrate 100, which acts as a first gate (also referred to as a bottom or back gate), a carbon nanotube, or more generally, a nano-component 140 is deposited ongate dielectric 120.Metal portions carbon nanotube 140 using a resist liftoff technique such as that described in connection withFIGS. 1A-1D . Aftermetal portions carbon nanotube 140 andmetal portions dielectric layer 180, which can be a low temperature oxide (LTO) or a CVD high dielectric material such as hafnium dioxide. A second gate 200 (also referred to as top or front gate), which can comprise a metal or highly doped polysilicon, is formed over thedielectric layer 180, e.g., by first depositing a gate material overdielectric layer 180 and then patterning to formtop gate 200. With thetop gate 200 acting as an etch mask, thedielectric layer 180 is etched such that only the portion underneath thetop gate 200 remains, as shown inFIG. 5 . As an example, a dilute hydrofluoric acid such as 100:1 HF can be used as an etchant for LTO. - The device is immersed in a dopant solution to achieve partial doping of the
carbon nanotube 140. In this case, the channel consists of both the gatedundoped region 500 and the twodoped regions regions top gate 200 or thebottom gate 100, or both. In logic applications, it is desirable to operate a FET with the top gate configuration for good AC performance. -
FIGS. 6A-6C illustrate another embodiment of forming a carbon nanotube FET, or more generally, a FET with a channel comprising a nano-component such as other semiconducting nanotubes, nanowires or nanocrystal films. After the carbon nanotube or nano-component 140 is deposited ongate dielectric 120, which has previously been formed oversubstrate 100, a patterned resist is formed on thecarbon nanotube 140 using conventional lithographic techniques such as e-bearn or photolithography. The structure (shown inFIG. 6A ) containing the patterned resist andcarbon nanotube 140 is immersed in an organic solution comprising a suitable dopant. The doping molecules bond to the exposed portions of thecarbon nanotube 140. Following doping of thenanotube 140, ametal layer 160 having a thickness ranging from about 15 nm to about 50 nm is deposited over the patterned resist and the dopedcarbon nanotube 140. As previously described, Pd, Ti, W, Au, Co, Pt, or alloys thereof, or one or more metallic nanotubes can be used formetal 160. Metallic nanotubes can be deposited using solution phase techniques such as spin coating, while electron beam or vacuum evaporation can be used for deposition of other metals or alloys. Following deposition of the metal, the structure shown inFIG. 6B is immersed in acetone or NMP for resist liftoff. As shown inFIG. 6C ,metal portions FIGS. 6A-6C generates a significant doping profile difference along the channel of the carbon nanotube transistor. Note that in this case, theundoped portion 500 of thecarbon nanotube 140 forms the channel of the FET. - To complete the formation of the FET devices illustrated in
FIGS. 1 , 4, 5 and 6, passivation can be performed by covering the respective devices with a spin-on organic material like poly(methyl methacrylate) (PMMA) or hydrogensilsesquioxanes (HSQ)—a low K dielectric layer, or by depositing a low temperature dielectric film such as silicon dioxide. Further processing of the device is accomplished via metallization for the back-end of the line. - Doping of carbon nanotubes have also been demonstrated using polyaniline. Specifically, reduced and oxidized forms of polyaniline have been shown to be effective n-type and p-type dopants, respectively.
FIGS. 7A-C illustrates three distinct oxidation states of polyaniline. The emeraldine (E) state, shown inFIG. 7A , is the most stable form. As purchased (e.g., from Aldrich Chemicals), this partially oxidized and partially reduced form of polyaniline has a mixture of amine (—NH—) and imine (—N═ where nitrogen forms a double bond with carbon) groups and partially delocalized electron lone pairs (50% sp2+50% sp3 hybridization). - Complete reduction of emeraldine results in the reduction of all imine moeities to corresponding amines and formation of leucoemeraldine (L), as shown in
FIG. 7B . Leucoemeraldine has amine groups (—NH—) that are attached to the benzene rings - and the electron lone pairs in the amine groups have the least degree of delocalization among the three oxidation states of polyaniline (sp3 hybridization).
- The fully oxidized state of polyaniline, pernigraniline (P), shown in
FIG. 7C , has imine groups, —N═ that resonate with the quinoid ring - and thus the electron lone pairs in the imine groups have the most degree of delocalization (sp2 hybridization).
- As will be shown below, doping of carbon nanotube with leucoemeraldine results in a n-type semiconductor. On the other hand, if emeraldine or leucoemeraldine is oxidized completely to pernigraniline, it acts as a p-dopant for carbon nanotubes. It is expected that other oxidation states of polyaniline, e.g., those that are intermediate between leucoemeraldine and pernigraniline, can also act as dopants for the carbon nanotube, although they may not be as effective as leucoemeraldine and pernigraniline. With emeraldine, some Vth shift is observed, but there is no significant n-doping effects. It is possible, however, that n-doping with emeraldine will be effective for devices with very thin oxide or gate dielectric, e.g., less than about 2-4 nm.
- In one embodiment, n-doping of carbon nanotube is achieved by using leucoemeraldine, i.e., the reduced form of polyaniline. Subsequent doping by the oxidized form of polyaniline allows the n-type FET to be converted back to a p-type FET. The ability to switch a carbon nanotube FET between p- and n-polarities is believed to be due to changes in charge transfer abilities through different degrees of charge localization of the reduced and oxidized forms of polyaniline. Thus, the use of the redox-active polyaniline as a dopant provides a method of controlled doping of carbon nanotube FETs.
- In one example, pristine carbon nanotube FETs were fabricated with 1.4 nm diameter laser ablation carbon nanotube as the channel material. The FET has 7 Å Ti/250 Å Pd as source and drain electrodes, a channel length of about 500 nm, 20 nm SiO2 gate dielectric and a Si backgate. Its transfer characteristics at Vds=−0.5V is shown as
curve 810 inFIG. 8 , corresponding to a typical p-type carbon nanotube FET. - The device was then treated with leucoemeraldine, the fully reduced form of polyaniline. To prepare leucoemeraldine, the as-purchased emeraldine was heated in 1-methylpyrrolidinone (NMP) at about 160° C. for about 2 hr. in a N2 atmosphere, resulting in emeraldine being fully reduced [Afzali et al., Polymer 38, 4439 (1997)]. A dopant solution with NMP as solvent, having a dopant concentration between about 0.01% to about 1%; or about 0.5 mM to about 50 mM, was then spin-coated onto the pristine carbon nanotube FET devices to a thickness of about 10 nm to about 500 nm and heated at about 160° C. in a N2 atmosphere to drive out the solvent. The transfer characteristics of the pristine carbon nanotube FET after leucoemeraldine doping is shown as
curve 820 inFIG. 8 , where the original p-carbon nanotube FET was converted to a n-FET. This p to n conversion is also consistent with hydrazine doping results where the lone electron pair on nitrogen (sp3 hybridization) in the amine group transfers electron to carbon nanotube FET and most likely modified the metal-nanotube interface band lineup. To prevent device re-oxidation over time, the sample can be spin-coated with PMMA and baked for an hour at about 100° C. under N2. - One advantage of using polyaniline as a dopant is the ability to convert the n-doped nanotube to p-doped by oxidation. To reduce the charge transfer from polyaniline to carbon nanotube FET, polyaniline was fully oxidized to pernigraniline. The oxidation process was carried out by immersing the leucoemeraldine-covered device in a 1% solution of tetrachloro-1,4-benzoquinone (TCBQ) in 4:1 acetonitrile/dimethylacetamide at 80° C. for 30 min. [Afzali et al. Polymer 38, 4439 (1997)]. The transfer characteristics after the device oxidation process is shown as
curve 830 inFIG. 8 , where the carbon nanotube FET is converted from n-type back to p-type. This switching of the polarity of a carbon nanotube FET from p- to n- then back to p- is believed to be due to modification of the degree of charge localization of the lone electron pair from sp3 hybridization in the amine group (as in leucoemeraldine) to sp2 hybridization in the imine group (as in pernigraniline). The more delocalized lone electron pair in the imine group in pernigraniline cannot transfer sufficient electron to the carbon nanotube FET to maintain its n-conduction. - According to other embodiments of this invention, nanocrystals and nanowires with semiconductors comprising elements from Groups III, IV, V and VI, e.g., Si, Ge, GaAs, GaP, GaSb, InN, InP, InAs, InSb, CdS, CdSe, CdTe, HgS, HgSe, HgTe, GeS, GeSe, GeTe, PbO, PbS, PbSe, PbTe, and appropriate combinations thereof, can also be n-doped by exposing the nanocrystals and nanowires to a dopant solution. The dopant may be selected from organic compounds including hydrazine, mono-, di-, tri- or tetra-kis trimethylsilylhydraine, derivatives of hydrazine such as RHN—NH2 where R represents alkyl-, aryl-, substituted alkyl- and substituted aryl-groups, diazobicycloundecane (BDU), and polymeric compounds such as leucoemeraldine, the highly reduced form of polyaniline. Furthermore, it is expected that pemigraniline, the fully oxidized form of polyaniline, will also be effective as a p-dopant for these semiconductor nanowires and nanocrystals. Similar to nanotubes, doping of nanocrystals or nanowires may be done in bulk, e.g., by providing a suspensions of nanocrystals or nanowires in a dopant solution.
- Alternatively, nanocrystals or nanowires can be supported on a substrate or be incorporated as part of a device, and doped by soaking the substrate or device in a suitable dopant solution. In one embodiment, monodisperse nearly spherical PbSe nanocrystals were synthesized as described by Murray et al., e.g., IBM J. Res. Dev. 45, 47-55 (2001). In this embodiment, the PbSe nanocrystals were capped with oleic acid as a stabilizing agent, although other organic ligands may also be used. The molecules of the stabilizing agent are attached to the nanocrystal surface during synthesis. The stabilizing agent is typically used to enable the nanocrystals to form stable colloidal solutions, help control nanocrystal growth and protect the nanocrystals from oxidation. An optically clear, uniform film of PbSe nanocrystals, having a thickness of about 50 nm, was obtained by drop-casting and drying a colloidal solution containing 7.3 nm diameter PbSe nanocrystals dissolved in a hexane-octane mixture (volume ratio 9:1).
- The PbSe nanocrystal film with a thickness of about 50 nm is supported on a substrate, e.g., as part of a semiconductor device, and immersed in a 1M solution of N2H4 in acetonitrile at a temperature of about 23° C. for about 3 minutes. The doping results in a significant improvement, e.g., about 5-6 orders of magnitude, in the conductivity of the layer of nanocrystals, specifically, n-type conductivity.
- Subsequent treatment of the PbSe nanocrystal film, which leads to cross-linking of the nanocrystals, was carried out by immersing the device in a 5 mM solution of 1,8-octanediamine in ethanol for about 1 minute. Cross-linking of nanocrystals with diamines has been discussed, for example, by Yu et al., Science 300, 1277 (2003), and Poznyak et al.,
Nano Letters 3, 693 (2004). The film was then annealed at about 70° C. for about 40 min. After cross-linking and anneal, further enhancement of the film conductivity is observed. The doping with hydrazine and cross-linking with 1,8-octanediamine increases conductivity of the film of PbSe nanocrystals by at least 7 orders of magnitude. - In general, depending on the nanocrystal size, shape and size distribution, and preparation conditions, the resulting semiconductor nanocrystal film can have different morphologies due to differences in packing density, packing symmetry and packing disorder. For example, the rate of destabilization of the colloidal solution can result in the formation of a glassy film with short-range ordering of nanocrystals or superlattices with dense packing and long-range order [Murray et al., Ann. Rev. Mater. Sci. 30, 545 (2000)]. Films of nanocrystals with significant shape anisotropy, e.g., nanorods or nanodisks, can have liquid crystalline type of ordering (nematic, smectic-A, smectic-B, etc.) and strongly anisotropic properties [Talapin et al., “CdSe and CdSe/CdS Nanorod Solids”, J. Am. Chem. Soc. 126 (40), 12984 (2004)], while dipolar interactions between the nanocrystals, or their ordering on a template like DNA-molecule, etc. can result in one-dimensional chains of semiconductor nanocrystals. The term nanocrystal film, as used herein, is meant to cover any resulting aggregates of nanocrystals, regardless of their specific packing configurations.
- In another embodiment, PbSe nanowires incorporated as part of a semiconductor device are exposed to a 1M solution of N2H4 in acetonitrile at a temperature of about 23° C. for about one minute, resulting in a 2-3 orders of magnitude enhancement in their conductivity, as well as a change in the conductivity of the nanowires from p-type to n-type. As previously mentioned, processing parameters such as the dopant solution concentration, temperature and doping time vary according to the material composition of the nano-components, dopant molecules, chemistry involved, material compatibility and specific application needs. For N2H4 in acetonitrile, a dopant concentration is preferably between about 0.01M to about 5M, and more preferably, between about 0.5M to about 2M. In general, a concentration range between about 0.001M to about 10M, preferably between about 0.1M to about 5M, more preferably between about 1M to about 5M, and a temperature range of about 10° C. to about 50° C., will be acceptable.
- Having described the foregoing embodiments, it is to be noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the appended claims. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/551,310 US20100038628A1 (en) | 2004-11-18 | 2009-08-31 | Chemical doping of nano-components |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/991,582 US7582534B2 (en) | 2004-11-18 | 2004-11-18 | Chemical doping of nano-components |
US12/551,310 US20100038628A1 (en) | 2004-11-18 | 2009-08-31 | Chemical doping of nano-components |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/991,582 Division US7582534B2 (en) | 2004-11-18 | 2004-11-18 | Chemical doping of nano-components |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100038628A1 true US20100038628A1 (en) | 2010-02-18 |
Family
ID=36386905
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/991,582 Expired - Fee Related US7582534B2 (en) | 2004-11-18 | 2004-11-18 | Chemical doping of nano-components |
US12/551,310 Abandoned US20100038628A1 (en) | 2004-11-18 | 2009-08-31 | Chemical doping of nano-components |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/991,582 Expired - Fee Related US7582534B2 (en) | 2004-11-18 | 2004-11-18 | Chemical doping of nano-components |
Country Status (2)
Country | Link |
---|---|
US (2) | US7582534B2 (en) |
CN (1) | CN100590797C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856169A (en) * | 2011-05-04 | 2013-01-02 | 高骐 | Preparation method of thin film transistor and top gate type thin film transistor |
US8609481B1 (en) * | 2012-12-05 | 2013-12-17 | International Business Machines Corporation | Gate-all-around carbon nanotube transistor with selectively doped spacers |
US8674412B2 (en) | 2012-08-13 | 2014-03-18 | International Business Machines Corporation | Contacts-first self-aligned carbon nanotube transistor with gate-all-around |
US8796096B2 (en) | 2012-12-04 | 2014-08-05 | International Business Machines Corporation | Self-aligned double-gate graphene transistor |
US20150221884A1 (en) * | 2014-01-31 | 2015-08-06 | International Business Machines Corporation | Carbon nanotube transistor having extended contacts |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070246784A1 (en) * | 2004-10-13 | 2007-10-25 | Samsung Electronics Co., Ltd. | Unipolar nanotube transistor using a carrier-trapping material |
US7582534B2 (en) * | 2004-11-18 | 2009-09-01 | International Business Machines Corporation | Chemical doping of nano-components |
US7598516B2 (en) * | 2005-01-07 | 2009-10-06 | International Business Machines Corporation | Self-aligned process for nanotube/nanowire FETs |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7572695B2 (en) | 2005-05-27 | 2009-08-11 | Micron Technology, Inc. | Hafnium titanium oxide films |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US7575978B2 (en) | 2005-08-04 | 2009-08-18 | Micron Technology, Inc. | Method for making conductive nanoparticle charge storage element |
US7622371B2 (en) * | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7763511B2 (en) * | 2006-12-29 | 2010-07-27 | Intel Corporation | Dielectric barrier for nanocrystals |
US20080293228A1 (en) * | 2007-05-25 | 2008-11-27 | Kalburge Amol M | CMOS Compatible Method of Forming Source/Drain Contacts for Self-Aligned Nanotube Devices |
WO2009023349A2 (en) * | 2007-05-25 | 2009-02-19 | Kalburge Amol M | Integrated nanotube and cmos devices for system-on-chip (soc) applications and method for forming the same |
US8367506B2 (en) | 2007-06-04 | 2013-02-05 | Micron Technology, Inc. | High-k dielectrics with gold nano-particles |
US7911234B1 (en) * | 2007-09-28 | 2011-03-22 | The Board Of Trustees Of The Leland Stanford Junior University | Nanotube logic circuits |
KR100902128B1 (en) * | 2007-09-28 | 2009-06-09 | 삼성전기주식회사 | Heat radiating printed circuit board and semiconductor chip package |
US20110146766A1 (en) * | 2008-02-26 | 2011-06-23 | Solar Cells Based On Quantum Dot Or Colloidal Nanocrystal Films | Solar cells based on quantum dot or colloidal nanocrystal films |
US8022393B2 (en) * | 2008-07-29 | 2011-09-20 | Nokia Corporation | Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process |
US20110048508A1 (en) * | 2009-08-26 | 2011-03-03 | International Business Machines Corporation | Doping of Carbon Nanotube Films for the Fabrication of Transparent Electrodes |
US8691675B2 (en) * | 2009-11-25 | 2014-04-08 | International Business Machines Corporation | Vapor phase deposition processes for doping silicon |
US9121823B2 (en) * | 2010-02-19 | 2015-09-01 | The Trustees Of The University Of Pennsylvania | High-resolution analysis devices and related methods |
US8513099B2 (en) * | 2010-06-17 | 2013-08-20 | International Business Machines Corporation | Epitaxial source/drain contacts self-aligned to gates for deposited FET channels |
US9711296B2 (en) * | 2010-11-02 | 2017-07-18 | The Regents Of The University Of California | Energy storage method and system using defect-engineered nanostructures |
US8471249B2 (en) | 2011-05-10 | 2013-06-25 | International Business Machines Corporation | Carbon field effect transistors having charged monolayers to reduce parasitic resistance |
US8685781B2 (en) | 2011-07-20 | 2014-04-01 | Alliance For Sustainable Energy, Llc | Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby |
US8916405B2 (en) | 2011-10-11 | 2014-12-23 | International Business Machines Corporation | Light emitting diode (LED) using carbon materials |
US8895417B2 (en) * | 2011-11-29 | 2014-11-25 | International Business Machines Corporation | Reducing contact resistance for field-effect transistor devices |
US8772910B2 (en) | 2011-11-29 | 2014-07-08 | International Business Machines Corporation | Doping carbon nanotubes and graphene for improving electronic mobility |
US8642432B2 (en) * | 2011-12-01 | 2014-02-04 | International Business Machines Corporation | N-dopant for carbon nanotubes and graphene |
US8420474B1 (en) | 2012-01-11 | 2013-04-16 | International Business Machines Corporation | Controlling threshold voltage in carbon based field effect transistors |
US8895340B1 (en) * | 2013-09-10 | 2014-11-25 | Georgetown University | Biosensor and system and process for forming |
US9525147B2 (en) * | 2014-09-25 | 2016-12-20 | International Business Machines Corporation | Fringing field assisted dielectrophoresis assembly of carbon nanotubes |
CN105493256B (en) * | 2015-09-15 | 2018-07-06 | 京东方科技集团股份有限公司 | A kind of thin film transistor (TFT) and preparation method thereof, display device |
US10319926B2 (en) * | 2015-11-05 | 2019-06-11 | International Business Machines Corporation | End-bonded metal contacts on carbon nanotubes |
KR102149907B1 (en) | 2016-03-03 | 2020-08-31 | 어플라이드 머티어리얼스, 인코포레이티드 | Improved self-assembly monolayer blocking by periodic air-water exposure |
CN108695413B (en) * | 2017-04-11 | 2019-11-12 | Tcl集团股份有限公司 | A kind of electroluminescent device and preparation method thereof |
CN109427287B (en) * | 2017-08-29 | 2020-12-22 | 昆山国显光电有限公司 | Pixel driving circuit suitable for high pixel density, pixel structure and manufacturing method |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020117659A1 (en) * | 2000-12-11 | 2002-08-29 | Lieber Charles M. | Nanosensors |
US20020130311A1 (en) * | 2000-08-22 | 2002-09-19 | Lieber Charles M. | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
US6528816B1 (en) * | 1998-06-19 | 2003-03-04 | Thomas Jackson | Integrated inorganic/organic complementary thin-film transistor circuit and a method for its production |
US20030042562A1 (en) * | 2001-08-30 | 2003-03-06 | Carsten Giebeler | Magnetoresistive device and electronic device |
US20030211649A1 (en) * | 2002-05-09 | 2003-11-13 | Katsura Hirai | Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof |
US20040201064A1 (en) * | 2001-09-05 | 2004-10-14 | Konica Corporation | Organic thin-film semiconductor element and manufacturing method for the same |
US20050037428A1 (en) * | 2002-09-16 | 2005-02-17 | Receptors Llc | Artificial receptors including reversibly immobilized building blocks, the building blocks, and methods |
US20050059193A1 (en) * | 2003-09-11 | 2005-03-17 | Nobuhide Yoneya | Method for forming metal single-layer film, method for forming wiring, and method for producing field effect transistors |
US6891277B2 (en) * | 2002-07-01 | 2005-05-10 | Oki Electric Industry Co., Ltd. | Semiconductor device alignment mark having oxidation prevention cover film |
US20050199731A9 (en) * | 2002-09-30 | 2005-09-15 | Nanosys, Inc. | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
US20060021881A1 (en) * | 2003-09-30 | 2006-02-02 | Nano-Proprietary, Inc. | Nanobiosensor and carbon nanotube thin film transistors |
US20060073667A1 (en) * | 2004-10-05 | 2006-04-06 | Xerox Corporation | Stabilized silver nanoparticles and their use |
US7582534B2 (en) * | 2004-11-18 | 2009-09-01 | International Business Machines Corporation | Chemical doping of nano-components |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040030506A (en) | 2001-02-16 | 2004-04-09 | 이 아이 듀폰 디 네모아 앤드 캄파니 | High Conductivity Polyaniline Compositions and Uses Therefor |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
-
2004
- 2004-11-18 US US10/991,582 patent/US7582534B2/en not_active Expired - Fee Related
-
2005
- 2005-11-14 CN CN200510124674A patent/CN100590797C/en active Active
-
2009
- 2009-08-31 US US12/551,310 patent/US20100038628A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528816B1 (en) * | 1998-06-19 | 2003-03-04 | Thomas Jackson | Integrated inorganic/organic complementary thin-film transistor circuit and a method for its production |
US20020130311A1 (en) * | 2000-08-22 | 2002-09-19 | Lieber Charles M. | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
US20020117659A1 (en) * | 2000-12-11 | 2002-08-29 | Lieber Charles M. | Nanosensors |
US20030042562A1 (en) * | 2001-08-30 | 2003-03-06 | Carsten Giebeler | Magnetoresistive device and electronic device |
US20040201064A1 (en) * | 2001-09-05 | 2004-10-14 | Konica Corporation | Organic thin-film semiconductor element and manufacturing method for the same |
US20030211649A1 (en) * | 2002-05-09 | 2003-11-13 | Katsura Hirai | Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof |
US6891277B2 (en) * | 2002-07-01 | 2005-05-10 | Oki Electric Industry Co., Ltd. | Semiconductor device alignment mark having oxidation prevention cover film |
US20050037428A1 (en) * | 2002-09-16 | 2005-02-17 | Receptors Llc | Artificial receptors including reversibly immobilized building blocks, the building blocks, and methods |
US20050199731A9 (en) * | 2002-09-30 | 2005-09-15 | Nanosys, Inc. | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
US20050059193A1 (en) * | 2003-09-11 | 2005-03-17 | Nobuhide Yoneya | Method for forming metal single-layer film, method for forming wiring, and method for producing field effect transistors |
US20060021881A1 (en) * | 2003-09-30 | 2006-02-02 | Nano-Proprietary, Inc. | Nanobiosensor and carbon nanotube thin film transistors |
US20060073667A1 (en) * | 2004-10-05 | 2006-04-06 | Xerox Corporation | Stabilized silver nanoparticles and their use |
US7582534B2 (en) * | 2004-11-18 | 2009-09-01 | International Business Machines Corporation | Chemical doping of nano-components |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856169A (en) * | 2011-05-04 | 2013-01-02 | 高骐 | Preparation method of thin film transistor and top gate type thin film transistor |
US8674412B2 (en) | 2012-08-13 | 2014-03-18 | International Business Machines Corporation | Contacts-first self-aligned carbon nanotube transistor with gate-all-around |
US8741756B2 (en) | 2012-08-13 | 2014-06-03 | International Business Machines Corporation | Contacts-first self-aligned carbon nanotube transistor with gate-all-around |
US8796096B2 (en) | 2012-12-04 | 2014-08-05 | International Business Machines Corporation | Self-aligned double-gate graphene transistor |
US8803132B2 (en) | 2012-12-04 | 2014-08-12 | International Business Machines Corporation | Self-aligned double-gate graphene transistor |
US8609481B1 (en) * | 2012-12-05 | 2013-12-17 | International Business Machines Corporation | Gate-all-around carbon nanotube transistor with selectively doped spacers |
US9000499B2 (en) | 2012-12-05 | 2015-04-07 | International Business Machines Corporation | Gate-all-around carbon nanotube transistor with selectively doped spacers |
US20150221884A1 (en) * | 2014-01-31 | 2015-08-06 | International Business Machines Corporation | Carbon nanotube transistor having extended contacts |
US9203041B2 (en) * | 2014-01-31 | 2015-12-01 | International Business Machines Corporation | Carbon nanotube transistor having extended contacts |
CN105940497A (en) * | 2014-01-31 | 2016-09-14 | 国际商业机器公司 | Carbon nanotube transistor having extended contacts |
DE112014005890B4 (en) * | 2014-01-31 | 2017-02-09 | International Business Machines Corporation | Carbon nanotube transistor with extended contacts and method of manufacture |
JP2017507483A (en) * | 2014-01-31 | 2017-03-16 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Semiconductor device and semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN1841664A (en) | 2006-10-04 |
US20060105523A1 (en) | 2006-05-18 |
CN100590797C (en) | 2010-02-17 |
US7582534B2 (en) | 2009-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7582534B2 (en) | Chemical doping of nano-components | |
US7405129B2 (en) | Device comprising doped nano-component and method of forming the device | |
US7253431B2 (en) | Method and apparatus for solution processed doping of carbon nanotube | |
US9105853B2 (en) | N-dopant for carbon nanotubes and graphene | |
US8895417B2 (en) | Reducing contact resistance for field-effect transistor devices | |
US8772141B2 (en) | Doping carbon nanotubes and graphene for improving electronic mobility | |
EP2667417A1 (en) | Graphene-based semiconductor device | |
JP3963393B2 (en) | Carbon nanotube field effect transistor and method of manufacturing the same | |
US10096733B2 (en) | Methods for the preparation of colloidal nanocrystal dispersion | |
US20070275498A1 (en) | Enhancing performance in ink-jet printed organic semiconductors | |
KR20050065274A (en) | Field effect transistor and manufacturing method thereof | |
JP4661065B2 (en) | Complementary organic semiconductor device | |
Park et al. | Functional Self‐Assembled Monolayers for Optimized Photoinduced Charge Transfer in Organic Field Effect Transistors | |
KR100658993B1 (en) | Semiconductor nanorod surface-treated with organic material | |
Chen et al. | Air-stable chemical doping of carbon nanotube transistors [CNFETs] | |
Kshirsagar et al. | Fabrication of 100nm Nano Pillars on Silicon | |
KR100988322B1 (en) | Carbon ananotube Schottky diode and a method for fabricating the same | |
Yip et al. | Properties Engineering of III–V Nanowires for Electronic Application | |
KR101732814B1 (en) | Preparation method of pedotpss electrode for organic thin film transistor | |
Lai et al. | Van der Waals Metal-Semiconductor Contacts for High-Performance Polymer Field-Effect Transistors | |
Diallo et al. | Charge transport in hybrid solution processed heterojunction based on P3HT and ZnO from bilayer to blend | |
Gan et al. | Organic thin-film transistors based on conjugated polymer/carbon nanotube composites | |
Chen | Organic thin film transistors based on conjugated polymers | |
Jeon et al. | Si-Nanowire-Array-Based NOT-Logic Circuits Constructed on Plastic Substrates Using Top–Down Methods | |
Javey | Electrical characterization and device applications of individual singled-wall carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |