Nothing Special   »   [go: up one dir, main page]

US20090188483A1 - Oven panel construction - Google Patents

Oven panel construction Download PDF

Info

Publication number
US20090188483A1
US20090188483A1 US12/021,545 US2154508A US2009188483A1 US 20090188483 A1 US20090188483 A1 US 20090188483A1 US 2154508 A US2154508 A US 2154508A US 2009188483 A1 US2009188483 A1 US 2009188483A1
Authority
US
United States
Prior art keywords
panel
rail
surface area
wall
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/021,545
Inventor
Michael L. Grande
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisconsin Oven Corp
Original Assignee
Wisconsin Oven Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisconsin Oven Corp filed Critical Wisconsin Oven Corp
Priority to US12/021,545 priority Critical patent/US20090188483A1/en
Assigned to WISCONSIN OVEN CORPORATION reassignment WISCONSIN OVEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRANDE, MICHAEL L.
Publication of US20090188483A1 publication Critical patent/US20090188483A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/34Elements and arrangements for heat storage or insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/08Foundations or supports plates; Legs or pillars; Casings; Wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0023Linings or walls comprising expansion joints or means to restrain expansion due to thermic flows

Definitions

  • the present invention relates to industrial ovens.
  • Industrial ovens are heated chambers used for a variety of industrial applications, including, but not limited to, drying, curing, or baking components, parts or final products. Industrial ovens can be used for large or small volume applications, in batches or continuously with a conveyor line, and for a variety of temperature ranges, sizes and configurations.
  • Such ovens are used in many different applications including, but not limited to, chemical processing, food production, metal processing, and the electronics industry.
  • Industrial ovens often include wall panels that provide both structural support and thermal insulation such that heat transfer between the interior of the oven and the outside environment is reduced.
  • One source of heat transfer through the wall panels is the through-metal of each wall panel's support structure.
  • the through-metal is positioned such that heat may conduct from the interior surface of the oven to the outside surface of the oven and to the environment via the through-metal.
  • the invention provides a panel for an oven.
  • the panel includes an outer wall, an inner wall, and a rail that interconnects the outer wall and the inner wall.
  • the rail includes an outer beam coupled with the outer wall, an inner beam coupled with the inner wall, and a plurality of rungs connecting the outer beam and the inner beam.
  • the rail has a first end portion, an intermediate portion, and a second end portion that together define a total length of the rail.
  • the intermediate portion includes all of the rungs such that there are no rungs on either of the first or second end portions.
  • the first end portion and the second end portion together define at least about 33 percent of the total length of the rail and the intermediate portion defines no more than about 67 percent of the total length of the rail.
  • FIG. 1 is a perspective view of an oven that includes panels embodying the invention.
  • FIG. 2 is a partial exploded view of two panels of the oven of FIG. 1 .
  • FIG. 3 is an enlarged view of a portion of the panel at 3 - 3 of FIG. 2 .
  • FIG. 4 is an enlarged view of a portion of the panel at 4 - 4 of FIG. 2 , with insulation removed for clarity.
  • FIG. 5 is a perspective view of a rail.
  • FIG. 6 is an enlarged view of a portion of the rail at 6 - 6 of FIG. 5 .
  • FIG. 7 is a perspective view of another embodiment of a rail.
  • FIG. 8 is a schematic representation of a rail.
  • FIG. 1 shows an oven 10 that includes a frame 14 , access doors 18 , controls 22 , and multiple panels 26 or wall panels (i.e. insulated panels).
  • the illustrated oven 10 is an industrial oven and may be used for heat processing or other known applications (e.g. curing paint, continuous run, adhesive curing, tempering, food-grade heat processing, non-food grade heat processing, etc.).
  • the illustrated frame 14 includes frame or support members 30 that provide additional structural support to the oven 10 .
  • the oven 10 need not include the frame 14 and may be formed substantially only by the panels 26 .
  • the frame 14 may include other components or frame members 30 that are not shown.
  • the illustrated oven 10 has a rectangular footprint.
  • the frame 14 may be arranged differently or may have a different footprint.
  • the panels 26 may be arranged differently to fit a specific space or application as is well known by those skilled in the art.
  • the illustrated access doors 18 are connected to the frame 14 with hinges 34 such that they are movable between a closed position ( FIG. 1 ) that inhibits access to an oven interior and an open position that provides access to the oven interior.
  • the access doors 18 are insulated to inhibit heat transfer from the oven interior to an oven exterior. In other embodiments, more or less that two access doors 18 may be provided. For example, access doors 18 may be provided at two opposite ends of the oven 10 .
  • the access doors 18 may be a different style (e.g. sliding doors or other door arrangements as are known by those skilled in the art).
  • the access doors 18 may be constructed similarly to the panels 26 , or the access doors 18 may be a panel 26 movable between the open position and the closed position.
  • the illustrated controls 22 control the oven 10 such that the desired heat processing is performed in the oven 10 .
  • Oven controls and terminals are well known to those skilled in the art and will not be discussed further.
  • each panel 26 includes an outer wall 42 that defines at least a portion of the oven exterior, an inner wall 46 that defines at least a portion of the oven interior, two engagement members 50 , each defined by the opposing inner and outer walls 42 , 46 at opposite edges of the panel 26 , and two rails 54 that interconnect the outer wall 42 and the inner wall 46 adjacent the engagement members 50 .
  • Insulation 58 is disposed between the outer wall 42 and the inner wall 46 to inhibit heat transfer through the panel 26 .
  • the illustrated insulation 58 is a mineral wool although many other types of insulation 58 may be used.
  • the panels 26 substantially cover three sides and the top of the oven 10 . In other embodiments, the panels 26 may cover more or less oven sides than illustrated.
  • the illustrated outer wall 42 includes a first or outer surface 62 defining a portion of the oven exterior and a second or inner surface 66 facing the oven interior relative to the oven exterior.
  • the illustrated inner wall 46 includes a first or inner surface 70 defining at least a portion of the oven interior and a second or outer surface 74 facing the oven exterior relative to the oven interior.
  • Each panel 26 includes two engagement members 50 , and in the illustrated embodiment a first engagement member 50 is a female engagement member 78 and a second engagement member 50 is a male engagement member 82 .
  • One edge of each panel 26 includes the female engagement member 78 ( FIG. 3 ) and the other edge includes the male engagement member 82 ( FIG. 4 ) such that multiple panels 26 may be coupled together (see FIG. 2 ).
  • the male engagement member 82 of a first panel 26 engages and overlaps with the female engagement member 78 of a second panel 26 . In this way, multiple panels 26 are coupled together to form the oven walls 38 .
  • both the first and second engagement members 50 may be male engagement members 82 or female engagement members 78 .
  • first engagement member 50 may be a male engagement member 82 and the second engagement member 50 may be a female engagement member 78 .
  • the engagement members 50 may be constructed differently in order that the first panel 26 couples to the second panel 26 and is held substantially rigid with respect to the first panel 26 .
  • each panel 26 may have more or less than two engagement members 50 .
  • the female engagement member 78 is formed by bending or wrapping the inner and outer walls 42 , 46 at one edge.
  • the outer wall 42 is bent or wrapped toward the oven interior such that the outer surface 62 remains substantially planar at the female engagement member 78 .
  • the inner wall 46 is bent or wrapped toward the oven exterior such that the inner surface 70 remains substantially planar at the female engagement member 78 .
  • Bent portions form the female engagement members 78 and include a receiving portion or chamber 86 that receives respective portions of a rail 54 such that the inner wall 46 and the outer wall 42 are coupled together, as will be discussed further below.
  • the male engagement member 82 is formed by bending or wrapping the inner and outer walls 42 , 46 at the edge opposite the female engagement member 78 .
  • the outer wall 42 is depressed or offset toward the oven interior and bent or wrapped toward the oven interior such that the outer surface 62 at the male engagement member 82 is substantially offset from a plane containing the remainder of the outer surface 62 of the outer wall 42 .
  • the inner wall 46 is depressed or offset toward the oven exterior and bent or wrapped toward the oven exterior such that the inner surface 70 at the male engagement member 82 is substantially offset from a plane containing the remainder of the inner surface 70 of the inner wall 46 .
  • Bent portions form the male engagement member 82 and include the receiving portion or chamber 86 that receives respective portions of a rail 54 such that the inner wall 46 and the outer wall 42 are coupled together.
  • the male engagement member 82 is offset from the inner and outer walls 42 , 46 such that the female engagement member 78 fits over and overlaps the male engagement member 82 in an interlocking arrangement.
  • the rail 54 may be formed as a single piece with the engagement members 50 .
  • each panel 26 may include more or less than two rails 54 .
  • the male engagement member 82 of the first panel 26 is received within the female engagement member 78 of the second panel 26 .
  • the male and female engagement members 78 , 82 interlock along the length of the engagement members 50 to provide a secure coupling and a uniform appearance.
  • a void 88 formed between the rails 54 of the first and second connected panels 26 is filled with insulation 58 to inhibit heat transfer through the void 88 .
  • the male engagement member 82 and the female engagement member 78 may interlock along less than the entire length of the engagement members 50 .
  • the arrangement of the engagement members 50 may be different.
  • the illustrated rail 54 ( FIG. 5 ) is formed as a single piece and includes two vertical beams 90 and five rungs 94 .
  • the illustrated vertical beams 90 include base portions 96 , and connecting portions 98 .
  • the connecting portions 98 When assembled with a panel 26 , the connecting portions 98 are received in the respective receiving portions 86 of the engagement members 50 such that they are coupled to the inner and outer walls 42 , 46 .
  • the illustrated base portions 96 are substantially perpendicular to the connecting portions 98 such that the base portions 96 and the connecting portions 98 provide structural rigidity to the rail 54 .
  • the rail 54 is coupled to the engagement member 50 by inserting the connecting portions 98 into the respective receiving portions 86 and sliding the rail 54 along the length of the engagement member 50 such that the rail 54 is received within the receiving portions 86 over substantially the full length of the rail 54 .
  • the illustrated vertical beams 90 are about nine feet long. In other embodiments, the vertical beams 90 may be more or less than nine feet long depending on the size of the panel 26 and the oven 10 .
  • the rail 54 may couple to the engagement member 50 in a different way, may be formed with the engagement member 50 , and/or may be a different length than the engagement member 50 .
  • the base portions 96 may be arranged at different angles with respect to the connecting portions 98 .
  • the rail 54 illustrated in FIGS. 5 and 6 is constructed from a stamped blank of steel, or other suitable material, that initially may have one rung 94 spaced about every twelve inches. Each illustrated rung 94 is about one inch wide. To produce the finished rail 54 , all the rungs 94 except the five central rungs 94 can be clipped to remove the rungs 94 thereby minimizing the total amount of through-metal in the rail 54 .
  • the rungs 94 may be clipped as shown in FIGS. 5 and 6 wherein a small protrusion 102 remains extending from the vertical beam 90 , or may be clipped flush to the vertical beam 90 as illustrated in FIG. 7 .
  • the stamping may be done such that only the five central rungs 94 (or another amount of centrally-located rungs 94 ) are originally produced (see FIG. 7 ).
  • One advantage to clipping the initially formed rungs 94 is the ability to produce rails 54 of varying length with a single blank stock. For example, if the stamped blank is twenty feet long, a rail 54 of nine feet or eighteen feet may be made out of the same twenty foot blank. The extra rungs 94 are clipped off to eliminate the through-metal and provide a finished rail 54 of the desired length.
  • the finished rail 54 includes a first end portion 106 , an intermediate portion 110 , and a second end portion 114 .
  • the first end portion 106 is defined from a first end 118 of the rail 54 to a first edge 122 of the rung 94 closest to the first end 118 .
  • the intermediate portion 110 is defined from the first edge 122 of the rung 94 closest to the first end 118 to a second edge 126 on the rung 94 closest to a second end 130 of the rail 54 opposite the first end 118 .
  • the second end portion 114 is defined from the second edge 126 of the rung 94 closest to the second end 130 to the second end 130 .
  • the first and second end portions 106 , 114 are characterized in that there are no rungs 94 in the first end portion 106 or the second end portion 114 . Only the intermediate portion 110 includes any rungs 94 or through-metal of any kind. Removing the rungs 94 and all through-metal from the first end portion 106 and the second end portion 114 yielded the unexpected result of a stronger panel that was more resistant to bowing or warping. In this way, the inventor has found that the counter-intuitive solution of removing through-metal has fortified the rail 54 against the current problems with bowing and warping due to heat transfer. Until now, a larger amount of through-metal at locations closer to the ends of the rail 54 was thought necessary to retain the structural integrity and rigidity of the panels 26 .
  • a total length L of the rail 54 is about nine feet.
  • the first end portion 106 defines about twenty-two percent of the total length L and is about two feet long.
  • the illustrated second end portion 114 defines about thirty-three percent of the total length L and is about three feet long. As such, in the illustrated embodiment, the first end portion 106 and the second end portion 114 combine to define about fifty-five percent and about five feet of the total length L.
  • the illustrated intermediate portion 110 defines about forty-five percent and about four feet of the total length L.
  • the rail 54 may have a total length L more or less than about nine feet.
  • a rail with a total length of about six feet includes a first end portion and a second end portion that together define about thirty-three percent of the total length of the rail, and an intermediate portion that defines about sixty-seven percent of the total length of the rail.
  • the rail with the total length of about six feet includes the first end portion and the second end portion that are each about one foot in length and the intermediate portion that is about four feet in length.
  • a rail with a total length of about twelve feet includes a first end portion and a second end portion that together define about sixty-seven percent of the total length of the rail, and an intermediate portion that defines about thirty-three percent of the total length of the rail.
  • the rail with the total length of about twelve feet includes the first end portion and the second end portion that are each about four feet in length and the intermediate portion that is about four feet in length.
  • the first and second end portions 106 , 114 combine to define at least about thirty-three percent of the total length L and the intermediate portion 110 defines no more than about sixty-seven percent of the total length L.
  • the intermediate portion 110 may be more or less than about four feet in length.
  • the first end portion 106 may have a substantially equal length or a substantially different length from the second end portion 114 .
  • the first end portion 106 and the second end portion 114 may combine to define at least about fifty percent of the total length L while the intermediate portion 110 may define no more than about fifty percent of the total length L (e.g., an eight foot rail having a four foot long intermediate portion).
  • the illustrated intermediate portion 110 includes five rungs 94 .
  • Each rung 94 has a width W of about one inch and connects from the base portion 96 of the outer or first vertical beam 90 to the base portion 96 of the inner or second vertical beam 90 .
  • the illustrated rail 54 is formed from 20 gauge steel such that the thickness T of each rung 94 is about 0.06 inches. As such, each rung 94 presents a cross-sectional area (T ⁇ W) of about 0.06 square inches of through-metal and all five rungs 94 present about 0.3 square inches in cross-section of total through-metal. In other embodiments, a different metal and gauge may be used. In addition, more or less than five rungs 94 may be included in the intermediate portion 110 . Furthermore, other embodiments may include up to 1.0 square inch in cross-section of total through-metal. In still other embodiments, the rail 54 may include up to 1.5 square inches in cross-section of total through-metal.
  • the illustrated rail 54 defines a space 134 (L ⁇ D as viewed from the front as in FIG. 8 ) between the base portion 96 of the first vertical beam 90 and the base portion 96 of the second vertical beam 90 .
  • the protrusions 102 are shown in broken lines and may or may not be present. Regardless of whether the protrusions 102 are present, the protrusions 102 do not define through-metal such that the space 134 is defined between the base portions 96 of the vertical beams 90 and includes the protrusions 102 if present as illustrated in FIG. 8 .
  • the space 134 is split into a first end surface area 138 , a second end surface area 142 , and an intermediate surface area 146 corresponding to the space 134 between the base portions 96 in the respective portions 106 , 114 , 110 .
  • the rungs 94 in the intermediate portion 110 define a through-metal surface area 150 (W ⁇ D ⁇ total number of rungs) that is about eleven percent of the intermediate surface area 146 .
  • the protrusions 102 do not define any through-metal, through-metal surface area, or through-metal cross-sectional area.
  • the first end surface area 138 and the second end surface area 142 include no through-metal (zero percent through-metal surface area 150 ).
  • the intermediate portion 110 may include a through-metal surface area 150 that may be up to about fifteen percent of the intermediate surface area 146 . In still other embodiments, the intermediate portion 110 may include a through-metal surface area 150 that may be up to about twenty percent of the intermediate surface area 146 .
  • a total surface area 154 (L ⁇ D) is defined by the combination of the first end surface area 138 , the second end surface area 142 , and the intermediate surface area 146 .
  • the through-metal surface area 150 in the illustrated embodiment is about five percent of the total surface area 154 . In other embodiments, the through-metal surface area 150 may be up to about seven percent of the total surface area 154 . In still other embodiments, the through-metal surface area 150 may be up to about ten percent of the total surface area 154 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Finishing Walls (AREA)

Abstract

A panel for an oven includes an outer wall, an inner wall, and a rail interconnecting the outer wall and the inner wall. The rail including an outer beam coupled with the outer wall, an inner beam coupled with the inner wall, and a plurality of rungs connecting the outer beam and the inner beam. The rail having a first end portion, an intermediate portion, and a second end portion that together define a total length of the rail. The intermediate portion including all of the rungs such that there are no rungs on either of the first or second end portions. The first end portion and the second end portion together defining at least about 33 percent of the total length of the rail and the intermediate portion defining no more than about 67 percent of the total length of the rail.

Description

    BACKGROUND
  • The present invention relates to industrial ovens.
  • Industrial ovens are heated chambers used for a variety of industrial applications, including, but not limited to, drying, curing, or baking components, parts or final products. Industrial ovens can be used for large or small volume applications, in batches or continuously with a conveyor line, and for a variety of temperature ranges, sizes and configurations.
  • Such ovens are used in many different applications including, but not limited to, chemical processing, food production, metal processing, and the electronics industry.
  • SUMMARY
  • Industrial ovens often include wall panels that provide both structural support and thermal insulation such that heat transfer between the interior of the oven and the outside environment is reduced. One source of heat transfer through the wall panels is the through-metal of each wall panel's support structure. The through-metal is positioned such that heat may conduct from the interior surface of the oven to the outside surface of the oven and to the environment via the through-metal.
  • Reducing the amount of through-metal is a solution to reducing heat transfer through the wall panel. However, prior art wall panels have been unable to realize a minimum amount of through-metal while maintaining the structural rigidity of the oven wall panels. Often, in reduced through-metal wall panels, bowing occurs along the length of the panel causing decreased structural rigidity and an unsightly appearance. Thus, the industrial oven industry has a long standing need for a wall panel for an industrial oven with a minimal amount of through-metal that maintains an acceptable structural rigidity.
  • In one embodiment, the invention provides a panel for an oven. The panel includes an outer wall, an inner wall, and a rail that interconnects the outer wall and the inner wall. The rail includes an outer beam coupled with the outer wall, an inner beam coupled with the inner wall, and a plurality of rungs connecting the outer beam and the inner beam. The rail has a first end portion, an intermediate portion, and a second end portion that together define a total length of the rail. The intermediate portion includes all of the rungs such that there are no rungs on either of the first or second end portions. The first end portion and the second end portion together define at least about 33 percent of the total length of the rail and the intermediate portion defines no more than about 67 percent of the total length of the rail.
  • Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an oven that includes panels embodying the invention.
  • FIG. 2 is a partial exploded view of two panels of the oven of FIG. 1.
  • FIG. 3 is an enlarged view of a portion of the panel at 3-3 of FIG. 2.
  • FIG. 4 is an enlarged view of a portion of the panel at 4-4 of FIG. 2, with insulation removed for clarity.
  • FIG. 5 is a perspective view of a rail.
  • FIG. 6 is an enlarged view of a portion of the rail at 6-6 of FIG. 5.
  • FIG. 7 is a perspective view of another embodiment of a rail.
  • FIG. 8 is a schematic representation of a rail.
  • DETAILED DESCRIPTION
  • Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
  • FIG. 1 shows an oven 10 that includes a frame 14, access doors 18, controls 22, and multiple panels 26 or wall panels (i.e. insulated panels). The illustrated oven 10 is an industrial oven and may be used for heat processing or other known applications (e.g. curing paint, continuous run, adhesive curing, tempering, food-grade heat processing, non-food grade heat processing, etc.).
  • The illustrated frame 14 includes frame or support members 30 that provide additional structural support to the oven 10. In other embodiments, the oven 10 need not include the frame 14 and may be formed substantially only by the panels 26. In addition, the frame 14 may include other components or frame members 30 that are not shown.
  • The illustrated oven 10 has a rectangular footprint. In other embodiments, the frame 14 may be arranged differently or may have a different footprint. In addition, the panels 26 may be arranged differently to fit a specific space or application as is well known by those skilled in the art.
  • The illustrated access doors 18 are connected to the frame 14 with hinges 34 such that they are movable between a closed position (FIG. 1) that inhibits access to an oven interior and an open position that provides access to the oven interior. The access doors 18 are insulated to inhibit heat transfer from the oven interior to an oven exterior. In other embodiments, more or less that two access doors 18 may be provided. For example, access doors 18 may be provided at two opposite ends of the oven 10. In addition, the access doors 18 may be a different style (e.g. sliding doors or other door arrangements as are known by those skilled in the art). Furthermore, the access doors 18 may be constructed similarly to the panels 26, or the access doors 18 may be a panel 26 movable between the open position and the closed position.
  • The illustrated controls 22 control the oven 10 such that the desired heat processing is performed in the oven 10. Oven controls and terminals are well known to those skilled in the art and will not be discussed further.
  • With reference to FIGS. 1-4, the illustrated panels 26 are coupled to the frame 14 and other panels 26 to form oven walls 38. Each panel 26 includes an outer wall 42 that defines at least a portion of the oven exterior, an inner wall 46 that defines at least a portion of the oven interior, two engagement members 50, each defined by the opposing inner and outer walls 42, 46 at opposite edges of the panel 26, and two rails 54 that interconnect the outer wall 42 and the inner wall 46 adjacent the engagement members 50. Insulation 58 is disposed between the outer wall 42 and the inner wall 46 to inhibit heat transfer through the panel 26. The illustrated insulation 58 is a mineral wool although many other types of insulation 58 may be used. In the illustrated embodiment, the panels 26 substantially cover three sides and the top of the oven 10. In other embodiments, the panels 26 may cover more or less oven sides than illustrated.
  • As best seen in FIGS. 3 and 4, the illustrated outer wall 42 includes a first or outer surface 62 defining a portion of the oven exterior and a second or inner surface 66 facing the oven interior relative to the oven exterior. The illustrated inner wall 46 includes a first or inner surface 70 defining at least a portion of the oven interior and a second or outer surface 74 facing the oven exterior relative to the oven interior.
  • Each panel 26 includes two engagement members 50, and in the illustrated embodiment a first engagement member 50 is a female engagement member 78 and a second engagement member 50 is a male engagement member 82. One edge of each panel 26 includes the female engagement member 78 (FIG. 3) and the other edge includes the male engagement member 82 (FIG. 4) such that multiple panels 26 may be coupled together (see FIG. 2). The male engagement member 82 of a first panel 26 engages and overlaps with the female engagement member 78 of a second panel 26. In this way, multiple panels 26 are coupled together to form the oven walls 38. In other embodiments, both the first and second engagement members 50 may be male engagement members 82 or female engagement members 78. In addition, the first engagement member 50 may be a male engagement member 82 and the second engagement member 50 may be a female engagement member 78. In still other embodiments, the engagement members 50 may be constructed differently in order that the first panel 26 couples to the second panel 26 and is held substantially rigid with respect to the first panel 26. Furthermore, each panel 26 may have more or less than two engagement members 50.
  • With reference to FIG. 3, the female engagement member 78 is formed by bending or wrapping the inner and outer walls 42, 46 at one edge. The outer wall 42 is bent or wrapped toward the oven interior such that the outer surface 62 remains substantially planar at the female engagement member 78. The inner wall 46 is bent or wrapped toward the oven exterior such that the inner surface 70 remains substantially planar at the female engagement member 78. Bent portions form the female engagement members 78 and include a receiving portion or chamber 86 that receives respective portions of a rail 54 such that the inner wall 46 and the outer wall 42 are coupled together, as will be discussed further below.
  • With reference to FIG. 4, the male engagement member 82 is formed by bending or wrapping the inner and outer walls 42, 46 at the edge opposite the female engagement member 78. The outer wall 42 is depressed or offset toward the oven interior and bent or wrapped toward the oven interior such that the outer surface 62 at the male engagement member 82 is substantially offset from a plane containing the remainder of the outer surface 62 of the outer wall 42. The inner wall 46 is depressed or offset toward the oven exterior and bent or wrapped toward the oven exterior such that the inner surface 70 at the male engagement member 82 is substantially offset from a plane containing the remainder of the inner surface 70 of the inner wall 46. Bent portions form the male engagement member 82 and include the receiving portion or chamber 86 that receives respective portions of a rail 54 such that the inner wall 46 and the outer wall 42 are coupled together. The male engagement member 82 is offset from the inner and outer walls 42, 46 such that the female engagement member 78 fits over and overlaps the male engagement member 82 in an interlocking arrangement. In other embodiments, the rail 54 may be formed as a single piece with the engagement members 50. In addition, each panel 26 may include more or less than two rails 54.
  • To couple the first panel 26 to the second panel 26, the male engagement member 82 of the first panel 26 is received within the female engagement member 78 of the second panel 26. The male and female engagement members 78, 82 interlock along the length of the engagement members 50 to provide a secure coupling and a uniform appearance. A void 88 formed between the rails 54 of the first and second connected panels 26 is filled with insulation 58 to inhibit heat transfer through the void 88. In other embodiments, the male engagement member 82 and the female engagement member 78 may interlock along less than the entire length of the engagement members 50. In addition, the arrangement of the engagement members 50 may be different.
  • The illustrated rail 54 (FIG. 5) is formed as a single piece and includes two vertical beams 90 and five rungs 94. The illustrated vertical beams 90 include base portions 96, and connecting portions 98. When assembled with a panel 26, the connecting portions 98 are received in the respective receiving portions 86 of the engagement members 50 such that they are coupled to the inner and outer walls 42, 46. The illustrated base portions 96 are substantially perpendicular to the connecting portions 98 such that the base portions 96 and the connecting portions 98 provide structural rigidity to the rail 54. The rail 54 is coupled to the engagement member 50 by inserting the connecting portions 98 into the respective receiving portions 86 and sliding the rail 54 along the length of the engagement member 50 such that the rail 54 is received within the receiving portions 86 over substantially the full length of the rail 54. The illustrated vertical beams 90 are about nine feet long. In other embodiments, the vertical beams 90 may be more or less than nine feet long depending on the size of the panel 26 and the oven 10. In addition, the rail 54 may couple to the engagement member 50 in a different way, may be formed with the engagement member 50, and/or may be a different length than the engagement member 50. Furthermore, the base portions 96 may be arranged at different angles with respect to the connecting portions 98.
  • The rail 54 illustrated in FIGS. 5 and 6 is constructed from a stamped blank of steel, or other suitable material, that initially may have one rung 94 spaced about every twelve inches. Each illustrated rung 94 is about one inch wide. To produce the finished rail 54, all the rungs 94 except the five central rungs 94 can be clipped to remove the rungs 94 thereby minimizing the total amount of through-metal in the rail 54. The rungs 94 may be clipped as shown in FIGS. 5 and 6 wherein a small protrusion 102 remains extending from the vertical beam 90, or may be clipped flush to the vertical beam 90 as illustrated in FIG. 7. Alternatively, the stamping may be done such that only the five central rungs 94 (or another amount of centrally-located rungs 94) are originally produced (see FIG. 7). One advantage to clipping the initially formed rungs 94 is the ability to produce rails 54 of varying length with a single blank stock. For example, if the stamped blank is twenty feet long, a rail 54 of nine feet or eighteen feet may be made out of the same twenty foot blank. The extra rungs 94 are clipped off to eliminate the through-metal and provide a finished rail 54 of the desired length.
  • Referring to FIGS. 5-8, the finished rail 54 includes a first end portion 106, an intermediate portion 110, and a second end portion 114. The first end portion 106 is defined from a first end 118 of the rail 54 to a first edge 122 of the rung 94 closest to the first end 118. The intermediate portion 110 is defined from the first edge 122 of the rung 94 closest to the first end 118 to a second edge 126 on the rung 94 closest to a second end 130 of the rail 54 opposite the first end 118. The second end portion 114 is defined from the second edge 126 of the rung 94 closest to the second end 130 to the second end 130. The first and second end portions 106, 114 are characterized in that there are no rungs 94 in the first end portion 106 or the second end portion 114. Only the intermediate portion 110 includes any rungs 94 or through-metal of any kind. Removing the rungs 94 and all through-metal from the first end portion 106 and the second end portion 114 yielded the unexpected result of a stronger panel that was more resistant to bowing or warping. In this way, the inventor has found that the counter-intuitive solution of removing through-metal has fortified the rail 54 against the current problems with bowing and warping due to heat transfer. Until now, a larger amount of through-metal at locations closer to the ends of the rail 54 was thought necessary to retain the structural integrity and rigidity of the panels 26.
  • In the illustrated embodiment, a total length L of the rail 54 is about nine feet. The first end portion 106 defines about twenty-two percent of the total length L and is about two feet long. The illustrated second end portion 114 defines about thirty-three percent of the total length L and is about three feet long. As such, in the illustrated embodiment, the first end portion 106 and the second end portion 114 combine to define about fifty-five percent and about five feet of the total length L. The illustrated intermediate portion 110 defines about forty-five percent and about four feet of the total length L. In other embodiments, the rail 54 may have a total length L more or less than about nine feet.
  • In another embodiment, a rail with a total length of about six feet includes a first end portion and a second end portion that together define about thirty-three percent of the total length of the rail, and an intermediate portion that defines about sixty-seven percent of the total length of the rail. As such, the rail with the total length of about six feet includes the first end portion and the second end portion that are each about one foot in length and the intermediate portion that is about four feet in length.
  • In still another embodiment, a rail with a total length of about twelve feet includes a first end portion and a second end portion that together define about sixty-seven percent of the total length of the rail, and an intermediate portion that defines about thirty-three percent of the total length of the rail. As such, the rail with the total length of about twelve feet includes the first end portion and the second end portion that are each about four feet in length and the intermediate portion that is about four feet in length.
  • Regardless of the total length L, the first and second end portions 106, 114 combine to define at least about thirty-three percent of the total length L and the intermediate portion 110 defines no more than about sixty-seven percent of the total length L. In addition, while the illustrated embodiments show the intermediate portion 110 to be about four feet in length, the intermediate portion may be more or less than about four feet in length. Furthermore, the first end portion 106 may have a substantially equal length or a substantially different length from the second end portion 114. In other embodiments, the first end portion 106 and the second end portion 114 may combine to define at least about fifty percent of the total length L while the intermediate portion 110 may define no more than about fifty percent of the total length L (e.g., an eight foot rail having a four foot long intermediate portion).
  • The illustrated intermediate portion 110 includes five rungs 94. Each rung 94 has a width W of about one inch and connects from the base portion 96 of the outer or first vertical beam 90 to the base portion 96 of the inner or second vertical beam 90. The illustrated rail 54 is formed from 20 gauge steel such that the thickness T of each rung 94 is about 0.06 inches. As such, each rung 94 presents a cross-sectional area (T×W) of about 0.06 square inches of through-metal and all five rungs 94 present about 0.3 square inches in cross-section of total through-metal. In other embodiments, a different metal and gauge may be used. In addition, more or less than five rungs 94 may be included in the intermediate portion 110. Furthermore, other embodiments may include up to 1.0 square inch in cross-section of total through-metal. In still other embodiments, the rail 54 may include up to 1.5 square inches in cross-section of total through-metal.
  • With reference to FIG. 8, the illustrated rail 54 defines a space 134 (L×D as viewed from the front as in FIG. 8) between the base portion 96 of the first vertical beam 90 and the base portion 96 of the second vertical beam 90. The protrusions 102 are shown in broken lines and may or may not be present. Regardless of whether the protrusions 102 are present, the protrusions 102 do not define through-metal such that the space 134 is defined between the base portions 96 of the vertical beams 90 and includes the protrusions 102 if present as illustrated in FIG. 8. The space 134 is split into a first end surface area 138, a second end surface area 142, and an intermediate surface area 146 corresponding to the space 134 between the base portions 96 in the respective portions 106, 114, 110. The rungs 94 in the intermediate portion 110 define a through-metal surface area 150 (W×D×total number of rungs) that is about eleven percent of the intermediate surface area 146. Again, the protrusions 102 do not define any through-metal, through-metal surface area, or through-metal cross-sectional area. The first end surface area 138 and the second end surface area 142 include no through-metal (zero percent through-metal surface area 150). In other embodiments, the intermediate portion 110 may include a through-metal surface area 150 that may be up to about fifteen percent of the intermediate surface area 146. In still other embodiments, the intermediate portion 110 may include a through-metal surface area 150 that may be up to about twenty percent of the intermediate surface area 146.
  • A total surface area 154 (L×D) is defined by the combination of the first end surface area 138, the second end surface area 142, and the intermediate surface area 146. The through-metal surface area 150, in the illustrated embodiment is about five percent of the total surface area 154. In other embodiments, the through-metal surface area 150 may be up to about seven percent of the total surface area 154. In still other embodiments, the through-metal surface area 150 may be up to about ten percent of the total surface area 154.
  • Various features and advantages of the invention are set forth in the following claims.

Claims (20)

1. A panel for an oven, the panel comprising:
an outer wall;
an inner wall; and
a rail interconnecting the outer wall and the inner wall;
wherein the rail includes an outer beam coupled with the outer wall, an inner beam coupled with the inner wall, and a plurality of rungs connecting the outer beam and the inner beam, the rail having a first end portion, an intermediate portion, and a second end portion that together define a total length of the rail;
wherein the intermediate portion includes all of the rungs such that there are no rungs on either of the first or second end portions;
wherein the first end portion and the second end portion together define at least about 33 percent of the total length of the rail; and
wherein the intermediate portion defines no more than about 67 percent of the total length of the rail.
2. The panel of claim 1, wherein a space between the outer beam and the inner beam along the intermediate portion of the rail defines a intermediate surface area; and
wherein the rungs define a through-metal surface area that is less than or equal to about 20 percent of the intermediate surface area.
3. The panel of claim 2, wherein the through-metal surface area that is less than or equal to about 15 percent of the intermediate surface area.
4. The panel of claim 3, wherein the through-metal surface area that is less than or equal to about 11 percent of the intermediate surface area.
5. The panel of claim 1, wherein the first end portion and the second end portion together define at least about 50 percent of the total length of the rail; and
wherein the intermediate portion defines no more than about 50 percent of the total length of the rail.
6. The panel of claim 1, wherein a space between the outer beam and the inner beam defines a total surface area; and
wherein the rungs define a through-metal surface area that is less than or equal to about 10 percent of the total surface area.
7. The panel of claim 6, wherein the through-metal surface area that is less than or equal to about 7 percent of the total surface area.
8. The panel of claim 7, wherein the through-metal surface area that is less than or equal to about 5 percent of the total surface area.
9. The panel of claim 1, wherein the first end portion and the second end portion have substantially different lengths.
10. The panel of claim 1, wherein the rail is formed as a single piece.
11. The panel of claim 1, wherein the rungs are formed at substantially equal intervals over the intermediate portion.
12. The panel of claim 1, further comprising an insulating material disposed between the outer wall and the inner wall.
13. The panel of claim 1, wherein each rung has a thickness and a width, the thickness and the width defining a cross-sectional area of the rung; and
wherein the rung presents a cross-sectional area of less than or equal to about 0.06 square inches.
14. The panel of claim 1, wherein the plurality of rungs have a thickness and a width, the thickness and the width defining a cross-sectional area of the rungs; and
wherein the rungs present a total cross-sectional area of less than 1.5 square inches.
15. The panel of claim 14, wherein the total cross-sectional area is less than or equal to about 1.0 square inches.
16. The panel of claim 15, wherein the total cross-sectional area is less than or equal to about 0.3 square inches.
17. The panel of claim 1, wherein the panel is a first panel;
further comprising a second panel coupled to the first panel; and
wherein the first panel further includes a male engagement member and the second panel further includes a female engagement member configured for receiving the male engagement member.
18. The panel of claim 1, wherein the panel is a first panel;
further comprising a second panel coupled the first panel; and
wherein the first panel includes a first engagement member and the second panel includes a second engagement member, the first engagement member and the second engagement member coupled together when the first panel is coupled to the second panel.
19. A panel for an oven, the panel comprising:
an outer wall;
an inner wall; and
a rail interconnecting the outer wall and the inner wall;
wherein the rail is formed as a single piece and includes an outer beam coupled with the outer wall, an inner beam coupled with the inner wall, and a plurality of rungs connecting the outer beam and the inner beam, the rail having a first end portion, an intermediate portion, and a second end portion that together define a total length of the rail;
wherein the intermediate portion includes all of the rungs such that there are no rungs on either of the first or second end portions;
wherein the first end portion and the second end portion together define at least about 33 percent of the total length of the rail;
wherein the intermediate portion defines no more than about 67 percent of the total length of the rail; and
wherein a space between the outer beam and the inner beam along the intermediate portion of the rail defines a intermediate surface area; and
wherein the rungs define a through-metal surface area that is less than or equal to about 20 percent of the intermediate surface area.
20. The panel of claim 19, wherein the through-metal surface area that is less than or equal to about 11 percent of the intermediate surface area.
US12/021,545 2008-01-29 2008-01-29 Oven panel construction Abandoned US20090188483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/021,545 US20090188483A1 (en) 2008-01-29 2008-01-29 Oven panel construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/021,545 US20090188483A1 (en) 2008-01-29 2008-01-29 Oven panel construction

Publications (1)

Publication Number Publication Date
US20090188483A1 true US20090188483A1 (en) 2009-07-30

Family

ID=40897951

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/021,545 Abandoned US20090188483A1 (en) 2008-01-29 2008-01-29 Oven panel construction

Country Status (1)

Country Link
US (1) US20090188483A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1593718A (en) * 1925-08-19 1926-07-27 Gehnrich Indirect Heat Oven Co Sectional-oven wall
US1771145A (en) * 1929-04-15 1930-07-22 Nichols Products Corp Oven
US2047386A (en) * 1935-03-25 1936-07-14 Foundry Equipment Company Wall panel
US2209816A (en) * 1938-04-04 1940-07-30 Herbert L Grapp Oven panel
US2581989A (en) * 1946-07-01 1952-01-08 Laclede Christy Company Furnace wall structure
US4198951A (en) * 1977-11-21 1980-04-22 Kenneth Ellison Oven wall panel construction
US4222338A (en) * 1977-10-18 1980-09-16 Combustion Linings Limited Linings for furnaces
US4440099A (en) * 1981-06-12 1984-04-03 La Farge Refractaires Ceramic fiber modular assemblies for lining furnace walls
US4764108A (en) * 1986-02-24 1988-08-16 Haden Schweitzer Corporation Modular oven
US4918895A (en) * 1988-01-11 1990-04-24 Hunter Douglas International N.V. Sandwich wall system panel
US6860082B1 (en) * 1999-04-12 2005-03-01 Isuzu Motors Limited Heat insulating wall member, and method of manufacturing the same
US6905332B1 (en) * 2000-08-25 2005-06-14 Raypaul Industries, Inc. Modular oven, panel assembly and method of assembling the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1593718A (en) * 1925-08-19 1926-07-27 Gehnrich Indirect Heat Oven Co Sectional-oven wall
US1771145A (en) * 1929-04-15 1930-07-22 Nichols Products Corp Oven
US2047386A (en) * 1935-03-25 1936-07-14 Foundry Equipment Company Wall panel
US2209816A (en) * 1938-04-04 1940-07-30 Herbert L Grapp Oven panel
US2581989A (en) * 1946-07-01 1952-01-08 Laclede Christy Company Furnace wall structure
US4222338A (en) * 1977-10-18 1980-09-16 Combustion Linings Limited Linings for furnaces
US4198951A (en) * 1977-11-21 1980-04-22 Kenneth Ellison Oven wall panel construction
US4440099A (en) * 1981-06-12 1984-04-03 La Farge Refractaires Ceramic fiber modular assemblies for lining furnace walls
US4764108A (en) * 1986-02-24 1988-08-16 Haden Schweitzer Corporation Modular oven
US4918895A (en) * 1988-01-11 1990-04-24 Hunter Douglas International N.V. Sandwich wall system panel
US6860082B1 (en) * 1999-04-12 2005-03-01 Isuzu Motors Limited Heat insulating wall member, and method of manufacturing the same
US6905332B1 (en) * 2000-08-25 2005-06-14 Raypaul Industries, Inc. Modular oven, panel assembly and method of assembling the same
US20050133016A1 (en) * 2000-08-25 2005-06-23 Greg Neal Modular oven, panel assembly and method of assembling the same
US7216464B2 (en) * 2000-08-25 2007-05-15 Raypaul Industries, Inc. Modular oven wall panel assembly

Similar Documents

Publication Publication Date Title
EP2148591B1 (en) Modular insulation system for an environmentally controlled cabinet
US9683404B2 (en) Spacer for insulating glass panes
US6808240B2 (en) Switch cabinet frame structure
EP2155980B1 (en) Insulated structural wall panel
EP1338854B1 (en) Vacuum-insulated refrigerator with modular frame-and-sheet structure
CN108351154B (en) Door comprising a door frame and a recessed handle element, and domestic refrigeration appliance comprising such a door
US20070074474A1 (en) Insulating wall assembly, and structure including the same
EP0270541B1 (en) A floor to ceiling mullion structure with hanging panels to realize a demountable partition wall
EP0308715A3 (en) Electrical cabinet
KR100256390B1 (en) Wall board and the profiles of it
EP3523584B1 (en) Structural formations incorporated within a vacuum insulated structure
US20090038255A1 (en) C-Shape Profile and Partition Comprising a C-Shaped Profile
US20090188483A1 (en) Oven panel construction
KR101657419B1 (en) Multi purpose adiabatic frame and with a frame windows
US3516216A (en) Multisection hollow post construction
KR100466872B1 (en) Fireproof door of multiplex structure
KR20170079296A (en) Fire door and frame for the same
US11118807B2 (en) Door assembly, air handling unit comprising such a door assembly, and method for manufacturing such a door assembly
PL207868B1 (en) Construction element and use of a support, and method for the production of an element for a facade
EP4363678A1 (en) Fencing panel
EP3129714B1 (en) Process of assembling a muffle to the structure of an oven and oven including a muffle assembled according to the process
US20210148161A1 (en) Climate Chamber
KR20220082714A (en) Bracket for vacuum insulation installation
EP3688241B1 (en) A wall element
KR102457233B1 (en) Thermal insulation panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: WISCONSIN OVEN CORPORATION, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRANDE, MICHAEL L.;REEL/FRAME:020430/0571

Effective date: 20080129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION