Nothing Special   »   [go: up one dir, main page]

US20090073422A1 - Apparatus and method for measuring optical characteristics of an object - Google Patents

Apparatus and method for measuring optical characteristics of an object Download PDF

Info

Publication number
US20090073422A1
US20090073422A1 US12/217,512 US21751208A US2009073422A1 US 20090073422 A1 US20090073422 A1 US 20090073422A1 US 21751208 A US21751208 A US 21751208A US 2009073422 A1 US2009073422 A1 US 2009073422A1
Authority
US
United States
Prior art keywords
light
color
probe
fiber optics
fiber optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/217,512
Inventor
Wayne D. Jung
Russel W. Jung
Alan R. Loudermilk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RPX Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24346160&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090073422(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/091,208 external-priority patent/US6233047B1/en
Priority claimed from PCT/US1997/000126 external-priority patent/WO1997024587A1/en
Application filed by Individual filed Critical Individual
Priority to US12/217,512 priority Critical patent/US20090073422A1/en
Publication of US20090073422A1 publication Critical patent/US20090073422A1/en
Priority to US12/660,691 priority patent/US20110255092A1/en
Priority to US13/597,024 priority patent/US8472012B2/en
Assigned to RPX CORPORATION reassignment RPX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: 511 Innovations, Inc.
Assigned to BARINGS FINANCE LLC, AS COLLATERAL AGENT reassignment BARINGS FINANCE LLC, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: RPX CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0278Control or determination of height or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/508Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour of teeth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1239Interference filters and separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • the present invention relates to devices and methods for measuring optical characteristics such as color of objects, and more particularly to devices and methods for measuring the color and other optical characteristics of teeth, fabric or other objects or surfaces with a hand-held probe that presents minimal problems with height or angular dependencies.
  • the color of an object determines the manner in which light is reflected from the surface of the object. When light is incident upon an object, the reflected light will vary in intensity and wavelength dependent upon the color of the surface of the object. Thus, a red object will reflect red light with a greater intensity than a blue or a green object, and correspondingly a green object will reflect green light with a greater intensity than a red or blue object.
  • One method of quantifying the color of an object is to illuminate it with broad band spectrum or “white” light, and measure the spectral properties of the reflected light over the entire visible spectrum and compare the reflected spectrum with the incident light spectrum.
  • Such instruments typically require a broad band spectrophotometer, which generally are expensive, bulky and relatively cumbersome to operate, thereby limiting the practical application of such instruments.
  • the broad band data provided by a spectrophotometer is unnecessary.
  • devices have been produced or proposed that quantify color in terms of a numerical value or relatively small set of values representative of the color of the object.
  • the color of an object can be represented by three values.
  • the color of an object can be represented by red, green and blue values, an intensity value and color difference values, by a CIE value, or by what are known as “tristimulus values” or numerous other orthogonal combinations. It is important that the three values be orthogonal; i.e., any combination of two elements in the set cannot be included in the third element.
  • One such method of quantifying the color of an object is to illuminate an object with broad band “white” light and measure the intensity of the reflected light after it has been passed through narrow band filters. Typically three filters (such as red, green and blue) are used to provide tristimulus light values representative of the color of the surface. Yet another method is to illuminate an object with three monochromatic light sources (such as red, green and blue) one at a time and then measure the intensity of the reflected light with a single light sensor. The three measurements are then converted to a tristimulus value representative of the color of the surface. Such color measurement techniques can be utilized to produce equivalent tristimulus values representative of the color of the surface.
  • a “white” light source is used with a plurality of color sensors (or a continuum in the case of a spectrophotometer), or if a plurality of colored light sources are utilized with a single light sensor.
  • One method for eliminating the height and angular dependency of the light source and receiver is to provide a fixed mounting arrangement where the light source and receiver are stationary and the object is always positioned and measured at a preset height and angle.
  • the fixed mounting arrangement greatly limits the applicability of such a method.
  • Another method is to add mounting feet to the light source and receiver probe and to touch the object with the probe to maintain a constant height and angle.
  • the feet in such an apparatus must be wide enough apart to insure that a constant angle (usually perpendicular) is maintained relative to the object.
  • Such an apparatus tends to be very difficult to utilize on small objects or on objects that are hard to reach, and in general does not work satisfactorily in measuring objects with curved surfaces.
  • color quantification is needed in many industries.
  • applications include: dentistry (color of teeth); dermatology (color of skin lesions); interior decorating (color of paint, fabrics); the textile industry; automotive repair (matching paint colors); photography (color of reproductions, color reference of photographs to the object being photographed); printing and lithography; cosmetics (hair and skin color, makeup matching); and other applications in which it useful to measure color in an expedient and reliable manner.
  • a handheld probe is utilized in the present invention, with the handheld probe containing a number of fiber optics in certain preferred embodiments.
  • Light is directed from one (or more) light source(s) towards the object to be measured, which in certain preferred embodiments is a central light source fiber optic (other light sources and light source arrangements also may be utilized).
  • Light reflected from the object is detected by a number of light receivers. Included in the light receivers (which may be light receiver fiber optics) are a plurality of perimeter receivers (which may be receiver fiber optics, etc.).
  • three perimeter fiber optics are utilized in order to take measurements at a desired, and predetermined height and angle, thereby minimizing height and angular dependency problems found in conventional methods.
  • the present invention also may measure translucence and fluorescence characteristics of the object being measured, as well as surface texture and/or other optical or surface characteristics.
  • the present invention may include constituent elements of a broad band spectrophotometer, or, alternatively, may include constituent elements of a tristimulus type calorimeter.
  • the present invention may employ a variety of color measuring devices in order to measure color in a practical, reliable and efficient manner, and in certain preferred embodiments includes a color filter array and a plurality of color sensors.
  • a microprocessor is included for control and calculation purposes.
  • a temperature sensor is included to measure temperature in order to detect abnormal conditions and/or to compensate for temperature effects of the filters or other components of the system.
  • the present invention may include audio feedback to guide the operator in making color/optical measurements, as well as one or more display devices for displaying control, status or other information.
  • color/optical measurements may be made with a handheld probe in a practical and reliable manner, essentially free of height and angular dependency problems, without resorting to fixtures, feet or other undesirable mechanical arrangements for fixing the height and angle of the probe with respect to the object.
  • FIG. 1 is a diagram illustrating a preferred embodiment of the present invention
  • FIG. 2 is a diagram illustrating a cross section of a probe in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a diagram illustrating an arrangement of fiber optic receivers and sensors utilized with a preferred embodiment of the present invention
  • FIGS. 4A to 4C illustrate certain geometric considerations of fiber optics
  • FIGS. 5A and 5B illustrate the light amplitude received by fiber optic light receivers as a function of height from an object
  • FIG. 6 is a flow chart illustrating a color measuring method in accordance with an embodiment of the present invention.
  • FIGS. 7A and 7B illustrate a protective cap that may be used with certain embodiments of the present invention
  • FIGS. 8A and 8B illustrate removable probe tips that may be used with certain embodiments of the present invention
  • FIG. 9 illustrates a fiber optic bundle in accordance with another preferred embodiment of the present invention.
  • FIGS. 10A , 10 B, 10 C and 10 D illustrate and describe other fiber optic bundle configurations that may be used in accordance with yet other preferred embodiments of the present invention
  • FIG. 11 illustrates a linear optical sensor array that may be used in certain embodiments of the present invention
  • FIG. 12 illustrates a matrix optical sensor array that may be used in certain embodiments of the present invention
  • FIGS. 13A and 13B illustrate certain optical properties of a filter array that may be used in certain embodiments of the present invention
  • FIGS. 14A and 14B illustrate examples of received light intensities of receivers used in certain embodiments of the present invention
  • FIG. 15 is a flow chart illustrating audio tones that may be used in certain preferred embodiments of the present invention.
  • FIG. 16 illustrates an embodiment of the present invention, which utilizes a plurality of rings of light receivers that may be utilized to take measurements with the probe held substantially stationary with respect to the object being measured;
  • FIGS. 17 and 18 illustrate an embodiment of the present invention, which utilizes a mechanical movement and also may be utilized to take measurements with the probe held substantially stationary with respect to the object being measured;
  • FIGS. 19A to 19C illustrate embodiments of the present invention in which coherent light conduits may serve as removable probe tips.
  • FIG. 1 an exemplary preferred embodiment of a color/optical characteristic measuring system and method in accordance with the present invention will be described.
  • Probe tip 1 encloses a plurality of fiber optics, each of which may constitute one or more fiber optic fibers.
  • the fiber optics contained within probe tip 1 includes a single light source fiber optic and three light receiver fiber optics. The use of such fiber optics to measure the color or other optical characteristics of an object will be described later herein.
  • Probe tip 1 is attached to probe body 2 , on which is fixed switch 17 .
  • Switch 17 communicates with microprocessor 10 through wire 18 and provides, for example, a mechanism by which an operator may activate the device in order to make a color/optical measurement.
  • Fiber optics within probe tip 1 terminate at the forward end thereof (i.e., the end away from probe body 2 ). The forward end of probe tip 1 is directed towards the surface of the object to be measured as described more fully below.
  • the fiber optics within probe tip 1 optically extend through probe body 2 and through fiber optic cable 3 to light sensors 8 , which are coupled to microprocessor 10 .
  • microprocessor 10 includes conventional associated components, such as memory (programmable memory, such as PROM, EPROM or EEPROM; working memory such as DRAMs or SRAMs; and/or other types of memory such as non-volatile memory, such as FLASH), peripheral circuits, clocks and power supplies, although for clarity such components are not explicitly shown.
  • memory programmable memory, such as PROM, EPROM or EEPROM
  • working memory such as DRAMs or SRAMs
  • non-volatile memory such as FLASH
  • peripheral circuits such as non-volatile memory, such as FLASH
  • Other types of computing devices are used in other embodiments of the present invention.
  • each of the three receiver fiber optics used in this embodiment is spliced into at least five smaller fiber optics (generally denoted as fibers 7 ), which in this embodiment are fibers of equal diameter, but which in other embodiments may be of unequal diameter (such as a larger or smaller “height/angle” or perimeter fiber, as more fully described herein).
  • fibers 7 are fibers of equal diameter, but which in other embodiments may be of unequal diameter (such as a larger or smaller “height/angle” or perimeter fiber, as more fully described herein).
  • One of the fibers of each group of five fibers passes to light sensors 8 through a neutral density filter (as more fully described with reference to FIG.
  • splicing connector 4 is not used, and fiber bundles of, for example, five or more fibers each extend from light sensors 8 to the forward end of probe tip 1 .
  • unused fibers or other materials may be included as part of a bundle of fibers for purposes of, for example, easing the manufacturing process for the fiber bundle.
  • a plurality of light receiver fiber optics or elements are presented to light sensors 8 , with the light from the light receiver fiber optics/elements representing light reflected from object 20 . While the various embodiments described herein present tradeoffs and benefits that may not have been apparent prior to the present invention (and thus may be independently novel), what is important for the present discussion is that light from fiber optics/elements at the forward end of probe tip 1 is presented to sensors 8 for color/optical measurements and angle/height determination, etc.
  • Light source 11 in the preferred embodiment is a halogen light source (of, for example, 5-100 watts, with the particular wattage chosen for the particular application), which may be under the control of microprocessor 10 .
  • the light from light source 11 reflects from cold mirror 6 and into source fiber optic 5 .
  • Source fiber optic 5 passes through to the forward end of probe tip 1 and provides the light stimulus used for purposes of making the measurements described herein.
  • Cold mirror 6 reflects visible light and passes infra-red light, and is used to reduce the amount of infra-red light produced by light source 11 before the light is introduced into source fiber optic 5 .
  • Fiber 15 receives light directly from light source 11 and passes through to light sensors 8 (which may be through a neutral density filter).
  • Microprocessor 10 monitors the light output of light source 11 through fiber 15 , and thus may monitor and, if necessary compensate for, drift of the output of light source 11 .
  • microprocessor 10 also may sound an alarm (such as through speaker 16 ) or otherwise provide some indication if abnormal or other undesired performance of light source 11 is detected.
  • microprocessor 10 processes the data from light sensors 8 to produce a measurement of color and/or other characteristics.
  • Microprocessor 10 also is coupled to key pad switches 12 , which serve as an input device. Through key pad switches 12 , the operator may input control information or commands, or information relating to the object being measured or the like.
  • key pad switches 12 or other suitable data input devices (such as push button, toggle, membrane or other switches or the like), serve as a mechanism to input desired information to microprocessor 10 .
  • Microprocessor 10 also communicates with UART 13 , which enables microprocessor 10 to be coupled to an external device such as computer 13 A.
  • data provided by microprocessor 10 may be processed as desired for the particular application, such as for averaging, format conversion or for various display or print options, etc.
  • UART 13 is configured so as to provide what is known as a RS232 interface, such as is commonly found in personal computers.
  • Microprocessor 10 also communicates with LCD 14 for purposes of displaying status, control or other information as desired for the particular application. For example, color bars, charts or other graphic representations of the color or other collected data and/or the measured object or tooth may be displayed. In other embodiments, other display devices are used, such as CRTs, matrix-type LEDs, lights or other mechanisms for producing a visible indicia of system status or the like.
  • LCD 14 may provide an indication that the system is stable, ready and available for taking color measurements.
  • Speaker 16 serves to provide audio feedback to the operator, which may serve to guide the operator in the use of the device. Speaker 16 also may serve to provide status or other information alerting the operator of the condition of the system, including an audio tone, beeps or other audible indication (i.e., voice) that the system is initialized and available for taking measurements. Speaker 16 also may present audio information indicative of the measured data, shade guide or reference values corresponding to the measured data, or an indication of the status of the color/optical measurements.
  • Microprocessor 10 also receives an input from temperature sensor 9 .
  • temperature sensor 9 serves to provide temperature information to microprocessor 10 .
  • color filters such as may be included in light sensors 8 , may be sensitive to temperature, and may operate reliably only over a certain temperature range.
  • microprocessor 10 may compensate for temperature variations of the color filters.
  • the color filters are characterized as to filtering characteristics as a function of temperature, either by data provided by the filter manufacturer, or through measurement as a function of temperature.
  • Such filter temperature compensation data may be stored in the form of a look-up table in memory, or may be stored as a set of polynomial coefficients from which the temperature characteristics of the filters may be computed by microprocessor 10 .
  • microprocessor 10 Under control of microprocessor 10 , which may be in response to operator activation (through, for example, key pad switches 12 or switch 17 ), light is directed from light source 11 , and reflected from cold mirror 6 through source fiber optic 5 (and through fiber optic cable 3 , probe body 2 and probe tip 1 , or through some other suitable light source element) and is directed onto object 20 .
  • Light reflected from object 20 passes through the receiver fiber optics/elements in probe tip 1 to light sensors 8 (through probe body 2 , fiber optic cable 3 and fibers 7 ).
  • microprocessor 10 Based on the information produced by light sensors 8 , microprocessor 10 produces a color/optical measurement result or other information to the operator. Color measurement or other data produced by microprocessor 10 may be displayed on display 14 , passed through UART 13 to computer 13 A, or used to generate audio information that is presented to speaker 16 .
  • Other operational aspects of the preferred embodiment illustrated in FIG. 1 will be explained hereinafter.
  • a preferred embodiment of a fiber optic arrangement presented at the forward end of probe tip 1 will now be described.
  • a preferred embodiment of the present invention utilizes a single central light source fiber optic, denoted as light source fiber optic S, and a plurality of perimeter light receiver fiber optics, denoted as light receivers R 1 , R 2 and R 3 .
  • a preferred embodiment of the present invention utilizes three perimeter fiber optics, although in other embodiments two, four or some other number of receiver fiber optics are utilized.
  • the perimeter light receiver fiber optics serve not only to provide reflected light for purposes of making the color/optical measurement, but such perimeter fibers also serve to provide information regarding the angle and height of probe tip 1 with respect to the surface of the object that is being measured, and also may provide information regarding the surface characteristics of the object that is being measured.
  • receiver fiber optics R 1 to R 3 are positioned symmetrically around source fiber optic S, with a spacing of about 120 degrees from each other. It should be noted that spacing t is provided between receiver fiber optics R 1 to R 3 and source fiber optic S. While the precise angular placement of the receiver fiber optics around the perimeter of the fiber bundle in general is not critical, it has been determined that three receiver fiber optics positioned 120 degrees apart generally may give acceptable results. As discussed above, in certain embodiments light receiver fiber optics R 1 to R 3 each constitute a single fiber, which is divided at splicing connector 4 (refer again to FIG.
  • light receiver fiber optics R 1 to R 3 each constitute a bundle of fibers, numbering, for example, at least five fibers per bundle. It has been determined that, with available fibers of uniform size, a bundle of, for example, seven fibers may be readily produced (although as will be apparent to one of skill in the art, the precise number of fibers may be determined in view of the desired number of receiver fiber optics, manufacturing considerations, etc.).
  • receiver fiber optics R 1 to R 3 may serve to detect whether, for example, the angle of probe tip 1 with respect to the surface of the object being measured is at 90 degrees, or if the surface of the object being measured contains surface texture and/or spectral irregularities.
  • the surface of the object being measured is a diffuse reflector (i.e., a matte-type reflector, as compared to a spectral or shiny-type reflector which may have “hot spots”)
  • the light intensity input into the perimeter fibers should be approximately equal.
  • spacing t serves to adjust the optimal height at which color/optical measurements should be made (as more fully described below).
  • area between the fiber optics on probe tip 1 may be wholly or partially filled with a non-reflective material and/or surface (which may be a black mat, contoured or other non-reflective surface). Having such exposed area of probe tip 1 non-reflective helps to reduce undesired reflections, thereby helping to increase the accuracy and reliability of the present invention.
  • Fibers 7 represent light receiving fiber optics, which transmit light reflected from the object being measured to light sensors 8 .
  • sixteen sensors (two sets of eight) are utilized, although for ease of discussion only 8 are illustrated in FIG. 3 (in this preferred embodiment, the circuitry of FIG. 3 is duplicated, for example, in order to result in sixteen sensors). In other embodiments, other numbers of sensors are utilized in accordance with the present invention.
  • sensing elements 24 include light-to-frequency converters, manufactured by Texas Instruments and sold under the part number TSL230.
  • Such converters constitute, in general, photo diode arrays that integrate the light received from fibers 7 and output an AC signal with a frequency proportional to the intensity (not frequency) of the incident light.
  • the basic principle of such devices is that, as the intensity increases, the integrator output voltage rises more quickly, and the shorter the integrator rise time, the greater the output frequency.
  • the outputs of the TSL230 sensors are TTL or CMOS compatible digital signals, which may be coupled to various digital logic devices.
  • sensing elements 24 are, in this embodiment, asynchronous signals of frequencies depending upon the light intensity presented to the particular sensing elements, which are presented to processor 26 .
  • processor 26 is a Microchip PIC16C55 or PIC16C57 microprocessor, which as described more fully herein implements an algorithm to measure the frequencies of the signals output by sensing elements 24 .
  • a more integrated microprocessor/microcontroller such as Hitachi's SH RISC microcontrollers, is utilized to provide further system integration or the like.
  • processor 26 measures the frequencies of the signals output from sensing elements 24 .
  • processor 26 implements a software timing loop, and at periodic intervals processor 26 reads the states of the outputs of sensing elements 24 .
  • An internal counter is incremented each pass through the software timing loop.
  • the accuracy of the timing loop generally is determined by the crystal oscillator time base (not shown in FIG. 3 ) coupled to processor 26 (such oscillators typically are quite stable).
  • processor 26 After reading the outputs of sensing elements 24 , processor 26 performs an exclusive OR (“XOR”) operation with the last data read (in a preferred embodiment such data is read in byte length). If any bit has changed, the XOR operation will produce a 1, and, if no bits have changed, the XOR operation will produce a 0.
  • XOR exclusive OR
  • processor 26 analyzes the stored input bytes and internal counter states. There should be 2 to 16 saved inputs (for the 8 total sensors of FIG. 3 ) and counter states (if two or more inputs change at the same time, they are saved simultaneously).
  • the stored values of the internal counter contains information determinative of the period of the signals received from sensing elements 24 .
  • the period may be calculated.
  • Such periods calculated for each of the outputs of sensing elements is provided by processor 26 to microprocessor 10 (see, e.g., FIG. 1 ). From such calculated periods, a measure of the received light intensities may be calculated.
  • sensing circuitry and methodology illustrated in FIG. 3 have been determined to provide a practical and expedient manner in which to measure the light intensities received by sensing elements 24 .
  • other circuits and methodologies are employed (other exemplary sensing schemes are described elsewhere herein).
  • one of fibers 7 measures light source 11 , which may be through a neutral density filter, which serves to reduce the intensity of the received light in order maintain the intensity roughly in the range of the other received light intensities.
  • Three of fibers 7 also are from perimeter receiver fiber optics R 1 to R 3 (see, e.g., FIG. 2 ) and also may pass through neutral density filters. Such receiving fibers 7 serve to provide data from which angle/height information and/or surface characteristics may be determined.
  • the remaining twelve fibers (of the preferred embodiment's total of 16 fibers) of fibers 7 pass through color filters and are used to produce the color measurement.
  • the color filters are Kodak Sharp Cutting Wratten Gelatin Filters, which pass light with wavelengths greater than the cut-off value of the filter (i.e., redish values), and absorb light with wavelengths less than the cut-off value of the filter (i.e., bluish values).
  • “Sharp Cutting” filters are available in a wide variety of cut-off frequencies/wavelengths, and the cut-off values generally may be selected by proper selection of the desired cut-off filter.
  • the filter cut-off values are chosen to cover the entire visible spectrum and, in general, to have band spacings of approximately the visible band range (or other desired range) divided by the number of receivers/filters. As an example, 700 nanometers minus 400 nanometers, divided by 11 bands (produced by twelve color receivers/sensors), is roughly 30 nanometer band spacing.
  • band 1 400 nm to 430 nm
  • intensity values that may result from filtering with such an array are more fully described in connection with FIGS. 13A to 14B .
  • notch or bandpass filters may be utilized, such as may be developed using Schott glass-type filters (whether constructed from separate longpass/shortpass filters or otherwise).
  • the specific characteristics of the light source, filters, sensors and fiber optics, etc. are normalized/calibrated by directing the probe towards, and measuring, a known color standard.
  • Such normalization/calibration may be performed by placing the probe in a suitable fixture, with the probe directed from a predetermined position (i.e., height and angle) from the known color standard.
  • Such measured normalization/calibration data may be stored, for example, in a look-up table, and used by microprocessor 10 to normalize or correct measured color or other data. Such procedures may be conducted at start-up, at regular periodic intervals, or by operator command, etc.
  • FIG. 3 provides a practical and expedient way to determine the color by measuring the intensity of the light reflected from the surface of the object being measured.
  • spectral data may be utilized in a variety of ways.
  • spectral data may be displayed directly as intensity-wavelength band values.
  • tristimulus type values may be readily computed (through, for example, conventional matrix math), as may any other desired color values.
  • the color data is output in the form of a closest match or matches of dental shade guide value(s).
  • various existing shade guides are characterized and stored in a look-up table, or in the graphics art industry Pantone color references, and the color measurement data are used to select the closest shade guide value or values, which may be accompanied by a confidence level or other suitable factor indicating the degree of closeness of the match or matches, including, for example, what are known as ⁇ E values or ranges of ⁇ E values, or criteria based on standard deviations, such as standard deviation minimization.
  • the color measurement data are used (such as with look-up tables) to select materials for the composition of paint or ceramics such as for prosthetic teeth. There are many other uses of such spectral data measured in accordance with the present invention.
  • a light source with an ultraviolet component may be used to produce more accurate color/optical data with respect to such objects.
  • a tungsten/halogen source such as used in a preferred embodiment
  • a UV light source such as a mercury vapor, xenon or other fluorescent light source, etc.
  • a separate UV light source combined with a visible-light-blocking filter, may be used to illuminate the object.
  • Such a UV light source may be combined with light from a red LED (for example) in order to provide a visual indication of when the UV light is on and also to serve as an aid for the directional positioning of the probe operating with such a light source.
  • a second measurement may be taken using the UV light source in a manner analogous to that described earlier, with the band of the red LED or other supplemental light source being ignored. The second measurement may thus be used to produce an indication of the fluorescence of the tooth or other object being measured.
  • a silica fiber optic typically would be required to transmit the light to the object (standard fiber optic materials such as glass and plastic in general do not propagate UV light in a desired manner, etc.).
  • the present invention utilizes a plurality of perimeter receiver fiber optics spaced apart from and around a central source fiber optic to measure color and determine information regarding the height and angle of the probe with respect to the surface of the object being measured, which may include other surface characteristic information, etc.
  • a plurality of perimeter receiver fiber optics spaced apart from and around a central source fiber optic to measure color and determine information regarding the height and angle of the probe with respect to the surface of the object being measured, which may include other surface characteristic information, etc.
  • FIG. 4A illustrates a typical step index fiber optic consisting of a core and a cladding.
  • the core has an index of refraction of n 0
  • the cladding has an index of refraction of n 1 .
  • the light In order to propagate light without loss, the light must be incident within the core of the fiber optic at an angle greater than the critical angle, which may be represented as Sin ⁇ 1 ⁇ n 1 /n 0 ⁇ , where n 0 is the index of refraction of the core and n 1 is the index of refraction of the cladding.
  • the critical angle which may be represented as Sin ⁇ 1 ⁇ n 1 /n 0 ⁇ , where n 0 is the index of refraction of the core and n 1 is the index of refraction of the cladding.
  • ⁇ (n 0 2 ⁇ n 1 2 ) is referred to as the aperture of the fiber optic.
  • a typical fiber optic may have an aperture of 0.5, and an acceptance angle of 60°.
  • a fiber optic as a light source.
  • One end is illuminated by a light source (such as light source 11 of FIG. 1 ), and the other is held near a surface.
  • the fiber optic will emit a cone of light as illustrated in FIG. 4A . If the fiber optic is held perpendicular to a surface it will create a circular light pattern on the surface. As the fiber optic is raised, the radius r of the circle will increase. As the fiber optic is lowered, the radius of the light pattern will decrease. Thus, the intensity of the light (light energy per unit area) in the illuminated circular area will increase as the fiber optic is lowered and will decrease as the fiber optic is raised.
  • a fiber optic utilized as a light receiver near a surface will only accept and propagate light from the circular area of radius r on the surface. As the fiber optic is raised from the surface, the area increases. As the fiber optic is lowered to the surface, the area decreases.
  • One fiber optic is a source fiber optic
  • the other fiber optic is a receiver fiber optic.
  • the source fiber optic emits a cone of light that illuminates a circular area of radius r.
  • the receiver fiber optic can only accept light that is within its acceptance angle phi, or only light that is received within a cone of angle phi.
  • the only light available is that emitted by the source fiber optic
  • the only light that can be accepted by the receiver fiber optic is the light that strikes the surface at the intersection of the two circles as illustrated in FIG. 4C .
  • the proportion of the intersection of the two circular areas relative to the circular area of the source fiber optic increases.
  • the proportion of the intersection of the two circular areas to the circular area of the source fiber optic decreases. If the fiber optics are held too close to the surface, the circular areas will no longer intersect and no light emitted from the source fiber optic will be received by the receiver fiber optic.
  • the intensity of the light in the circular area illuminated by the source fiber increases as the fiber is lowered to the surface.
  • the intersection of the two cones decreases as the fiber optic pair is lowered.
  • the total intensity of light received by the receiver fiber optic increases to a maximal value, and then decreases sharply as the fiber optic pair is lowered still further to the surface.
  • the intensity will decrease essentially to zero (assuming the object being measured is not translucent, as described more fully herein), and will remain essentially zero until the fiber optic pair is in contact with the surface.
  • the intensity of light received by the receiver fiber optic reaches a maximal value at a peaking or “critical height” h c .
  • the critical height h c is a function primarily of the geometry of fixed parameters, such as fiber apertures, fiber diameters and fiber spacing. Since the receiver fiber optic in the illustrated arrangement is only detecting a maximum value and not attempting to quantify the value, its maximum in general is independent of the surface characteristics. It is only necessary that the surface reflect sufficient light from the intersecting area of the source and receiver fiber optics to be within the detection range of the receiver fiber optic light sensor. Thus, in general red or green or blue or any color surface will all exhibit a maximum at the same critical height h c .
  • smooth reflecting surfaces and rough surfaces also will have varying intensity values at the maximal value, but generally speaking all such surfaces will exhibit a maximum at the same critical height h c .
  • the actual value of the light intensity will be a function of the color of the surface and of the surface characteristics, but the height where the maximum intensity value occurs in general will not. This is particularly true with respect to similar types or categories of materials such as teeth, industrial objects, etc.
  • FIGS. 5A and 5B the intensity of light received as a fiber optic source-receiver pair is moved to and from a surface will now be described.
  • FIG. 5A illustrates the intensity of the received light as a function of time.
  • FIG. 5B illustrates the height of the fiber optic pair from the surface of the object being measured.
  • FIGS. 5A and 5B illustrate (for ease of discussion) a relatively uniform rate of motion of the fiber optic pair to and from the surface of the object being measured (although similar illustrations/analysis would be applicable for non-uniform rates as well).
  • FIG. 5A illustrates the intensity of received light as the fiber optic pair is moved to and then from a surface. While FIG. 5A illustrates the intensity relationship for a single receiver fiber optic, similar intensity relationships would be expected to be observed for other receiver fiber optics, such as, for example, the multiple receiver fiber optics of FIGS. 1 and 2 . In general with the preferred embodiment described above, all fifteen fiber optic receivers (of fibers 7 ) will exhibit curves similar to that illustrated in FIG. 5A .
  • FIG. 5A illustrates five regions.
  • region 1 the probe is moved towards the surface of the object being measured, which causes the received light intensity to increase.
  • region 2 the probe is moved past the critical height, and the received light intensity peaks and then falls off sharply.
  • region 3 the probe essentially is in contact with the surface of the object being measured. As illustrated, the received intensity in region 3 will vary depending upon the translucence of the object being measured. If the object is opaque, the received light intensity will be very low, or almost zero (perhaps out of range of the sensing circuitry). If the object is translucent, however, the light intensity will be quite high, but in general should be less than the peak value.
  • region 4 the probe is lifted and the light intensity rises sharply to a maximum value.
  • region 5 the probe is lifted further away from the object, and the light intensity decreases again.
  • peaks P 1 and P 2 produced by a receiver fiber optic are the same value, this generally is an indication that the probe has been moved to and from the surface of the object to be measured in a consistent manner. If peaks P 1 and P 2 are of different values, then these may be an indication that the probe was not moved to and from the surface of the object in a desired manner, or that the surface is curved or textured, as described more fully herein. In such a case, the data may be considered suspect and rejected.
  • peaks P 1 and P 2 for each of the perimeter fiber optics see, e.g., FIG.
  • the perimeter fiber optics of a probe moved in a consistent, perpendicular manner to and from the surface of the object being measured should have peaks P 1 and P 2 that occur at the same critical height.
  • Monitoring receiver fibers from the perimeter receiver fiber optics and looking for simultaneous (or near simultaneous, e.g., within a predetermined range) peaks P 1 and P 2 provides a mechanism for determining if the probe is held at a desired perpendicular angle with respect to the object being measured.
  • the relative intensity level in region 3 serves as an indication of the level of translucency of the object being measured.
  • such principles generally are applicable to the totality of receiver fiber optics in the probe (see, e.g., fibers 7 of FIGS. 1 and 3 ). Based on such principles, measurement techniques in accordance with the present invention will now be described.
  • FIG. 6 is a flow chart illustrating a measuring technique in accordance with the present invention.
  • Step 49 indicates the start or beginning of a color/optical measurement.
  • any equipment initialization, diagnostic or setup procedures may be performed. Audio or visual information or other indicia may be given to the operator to inform the operator that the system is available and ready to take a measurement.
  • Initiation of the color/optical measurement commences by the operator moving the probe towards the object to be measured, and may be accompanied by, for example, activation of switch 17 (see FIG. 1 ).
  • step 50 the system on a continuing basis monitors the intensity levels for the receiver fiber optics (see, e.g., fibers 7 of FIG. 1 ). If the intensity is rising, step 50 is repeated until a peak is detected. If a peak is detected, the process proceeds to step 52 . In step 52 , measured peak intensity P 1 , and the time at which such peak occurred, are stored in memory (such as in memory included as a part of microprocessor 10 ), and the process proceeds to step 54 . In step 54 , the system continues to monitor the intensity levels of the receiver fiber optics. If the intensity is falling, step 54 is repeated.
  • step 56 the measured surface intensity (IS) is stored in memory, and the process proceeds to step 58 .
  • step 58 the system continues to monitor the intensity levels of the receiver fibers. If the intensity is rising, step 58 is repeated until a peak is detected. If a peak is detected, the process proceeds to step 60 .
  • step 60 measured peak intensity P 2 , and the time at which such peak occurred, are stored in memory, and the process proceeds to step 62 .
  • step 62 the system continues to monitor the intensity levels of the receiver fiber optics. Once the received intensity levels begin to fall from peak P 2 , the system perceives that region 5 has been entered (see, e.g., FIG. 5A ), and the process proceeds to step 64 .
  • step 64 the system, under control of microprocessor 10 , may analyze the collected data taken by the sensing circuitry for the various receiver fiber optics.
  • peaks P 1 and P 2 of one or more of the various fiber optics may be compared. If any of peaks P 1 and P 2 for any of the various receiver fiber optics have unequal peak values, then the data may be rejected, and the entire color measuring process repeated. Again, unequal values of peaks P 1 and P 2 may be indicative, for example, that the probe was moved in a non-perpendicular or otherwise unstable manner (i.e., angular or lateral movement), and, for example, peak P 1 may be representative of a first point on the object, while peak P 2 may be representative of a second point on the object. As the data is suspect, in a preferred embodiment of the present invention, data taken in such circumstances are rejected in step 64 .
  • step 66 the system analyzes the data taken from the neutral-density-filtered receivers from each of the perimeter fiber optics (e.g., R 1 to R 3 of FIG. 2 ). If the peaks of the perimeter fiber optics did not occur at or about the same point in time, this may be indicative, for example, that the probe was not held perpendicular to the surface of the object being measured. As non-perpendicular alignment of the probe with the surface of the object being measured may cause suspect results, in a preferred embodiment of the present invention, data taken in such circumstances are rejected in step 66 .
  • the system analyzes the data taken from the neutral-density-filtered receivers from each of the perimeter fiber optics (e.g., R 1 to R 3 of FIG. 2 ). If the peaks of the perimeter fiber optics did not occur at or about the same point in time, this may be indicative, for example, that the probe was not held perpendicular to the surface of the object being measured. As non-perpendicular alignment of the probe with the surface of the object being
  • step 66 includes an analysis of peak values P 1 and P 2 of the perimeter fiber optics.
  • the system seeks to determine if the peak values of the perimeter fiber optics (perhaps normalized with any initial calibration data) are equal within a defined range. If the peak values of the perimeter fiber optics are within the defined range, the data may be accepted, and if not, the data may be rejected.
  • a combination of simultaneous peaking and equal value detection are used as acceptance/rejection criteria for the data, and/or the operator may have the ability (such as through key pad switches 12 ) to control one or more of the acceptance criteria ranges.
  • the sensitivity of the system may be controllably altered by the operator depending upon the particular application and operative environment, etc.
  • step 68 the data may be processed in a desired manner to produce output color/optical measurement data.
  • data may be normalized in some manner, or adjusted based on temperature compensation or other data detected by the system.
  • the data also may be converted to different display or other formats, depending on the intended use of the data.
  • the data indicative of the translucence of the object also may be quantified and/or displayed in step 68 .
  • the process may proceed to starting step 49 , or the process may be terminated, etc.
  • three light intensity values are stored per receiver fiber optic to make color and translucency, etc., measurements. If stored peak values P 1 and P 2 are not equal (for some or all of the receivers), this is an indication that the probe was not held steady over one area, and the data may be rejected (in other embodiments, the data may not be rejected, although the resulting data may be used to produce an average of the measured data).
  • peak values P 1 and P 2 for the three neutral density perimeter fiber optics should be equal or approximately equal; if this is not the case, then this is an indication that the probe was not held perpendicular or a curved surface is being measured.
  • the system attempts to compensate for curved surfaces and/or non-perpendicular angles. In any event, if the system cannot make a color/optical measurement, or if the data is rejected because peak values P 1 and P 2 are unequal to an unacceptable degree, then the operator is notified so that another measurement or other action may be taken (such as adjust the sensitivity).
  • color/optical measurements may be taken of an object, with accepted data having height and angular dependencies removed. Data not taken at the critical height, or data not taken with the probe perpendicular to the surface of the object being measured, etc., are rejected in a preferred embodiment of the present invention.
  • data received from the perimeter fiber optics may be used to calculate the angle of the probe with respect to the surface of the object being measured, and in such embodiments non-perpendicular or curved surface data may be compensated instead of rejected.
  • peak values P 1 and P 2 for the neutral density perimeter fiber optics provide a measure of the luminance (gray value) of the surface of the object being measured, and also may serve to quantify the color value.
  • the translucency of the object being measured may be quantified as a ratio or percentage, such as, for example, (IS/P 1 ) ⁇ 100%.
  • other methods of quantifying translucency data provided in accordance with the present invention are utilized, such as some other arithmetic function utilizing IS and P 1 or P 2 , etc.
  • data generated in accordance with the present invention may be used to implement an automated material mixing/generation machine.
  • Certain objects/materials such as dental prostheses, are made from porcelain or other powders/materials that may be combined in the correct ratios to form the desired color of the object/prosthesis.
  • Certain powders often contain pigments that generally obey Beer's law and/or act in accordance with Kubelka-Munk equations and/or Saunderson equations (if needed) when mixed in a recipe.
  • Color and other data taken from a measurement in accordance with the present invention may be used to determine or predict desired quantities of pigment or other materials for the recipe. Porcelain powders and other materials are available in different colors, opacities, etc.
  • Certain objects may be layered to simulate the degree of translucency of the desired object (such as to simulate a human tooth).
  • Data generated in accordance with the present invention also may be used to determine the thickness and position of the porcelain or other material layers to more closely produce the desired color, translucency, surface characteristics, etc.
  • the material recipe may be adjusted to include a desired quantity of fluorescing-type material.
  • surface characteristics (such as texture) information may be used to add a texturing material to the recipe, all of which may be carried out in accordance with the present invention.
  • FIGS. 7A and 7B illustrate a protective cap that may be used to fit over the end of probe tip 1 .
  • a protective cap consists of body 80 , the end of which is covered by optical window 82 , which in a preferred embodiment consists of a structure having a thin sapphire window.
  • body 80 consists of stainless steel.
  • Body 80 fits over the end of probe tip 1 and may be held into place by, for example, indentations formed in body 80 , which fit with ribs 84 (which may be a spring clip or other retainer) formed on probe tip 1 .
  • ribs 84 which may be a spring clip or other retainer
  • other methods of affixing such a protective cap to probe tip 1 are utilized.
  • the protective cap may be removed from probe tip 1 and sterilized in a typical autoclave, hot steam, chemiclave or other sterilizing system.
  • the thickness of the sapphire window should be less than the critical height of the probe in order to preserve the ability to detect peaking in accordance with the present invention, and preferably has a thickness less than the minimal height at which the source/receiver cones overlap (see FIGS. 4B and 4C ). It also is believed that sapphire windows may be manufactured in a reproducible manner, and thus any light attenuation from one cap to another may be reproducible. In addition, any distortion of the color/optical measurements produced by the sapphire window may be calibrated out by microprocessor 10 .
  • body 80 has a cap with a hole in the center (as opposed to a sapphire window), with the hole positioned over the fiber optic source/receivers.
  • the cap with the hole serves to prevent the probe from coming into contact with the surface, thereby reducing the risk of contamination. It should be noted that, with such embodiments, the hole is positioned so that light from/to the light source/receiver elements of the probe tip is not adversely affected by the cap.
  • FIGS. 8A and 8B illustrate another embodiment of a removable probe tip that may be used to reduce contamination in accordance with the present invention.
  • probe tip 88 is removable, and includes four (or a different number, depending upon the application) fiber optic connectors 90 , which are positioned within optical guard 92 .
  • Optical guard 92 serves to prevent “cross talk” between adjacent fiber optics.
  • removable tip 88 is secured in probe tip housing 92 by way of spring clip 96 (other removable retaining implements are utilized in other embodiments).
  • Probe tip housing 92 may be secured to base connector 94 by a screw or other conventional fitting.
  • Removable tip 88 also may be sterilized in a typical autoclave, hot steam, chemiclave or other sterilizing system, or disposed of.
  • the entire probe tip assembly is constructed so that it may be readily disassembled for cleaning or repair.
  • the light source/receiver elements of the removable tip are constructed of glass, silica or similar materials, thereby making them particularly suitable for autoclave or similar high temperature/pressure cleaning methods, which in certain other embodiments the light source/receiver elements of the removable tip are constructed of plastic or other similar materials, which may be of lower cost, thereby making them particularly suitable for disposable-type removable tips, etc.
  • a plastic, paper or other type shield (which may be disposable, cleanable/reusable or the like) may be used in order to address any contamination concerns that may exist in the particular application.
  • the methodology may include positioning such a shield over the probe tip prior to taking color/optical measurements, and may include removing and disposing/cleaning the shield after taking color/optical measurements, etc.
  • FIG. 9 illustrates a cross section of the probe tip fiber optics used in this embodiment.
  • Probe tip 100 includes central source fiber optic 106 , surrounded by (and spaced apart from) three perimeter receiver fiber optics 104 and three color receiver fiber optics 102 .
  • Three perimeter receiver fiber optics 104 are optically coupled to neutral density filters and serve as height/angle sensors in a manner analogous to the embodiment describe above.
  • Three color receiver fiber optics are optically coupled to suitable tristimulus filters, such as red, green and blue filters.
  • tristimulus filters such as red, green and blue filters.
  • perimeter fiber optics 104 may be used to detect simultaneous peaking or otherwise whether the probe is perpendicular to the object being measured.
  • taking color measurement data at the critical height also may be used with this embodiment.
  • FIG. 10A illustrates an embodiment of the present invention, similar to the embodiment discussed with reference to FIG. 9 .
  • Probe tip 100 includes central source fiber optic 106 , surrounded by (and spaced apart from) three perimeter receiver fiber optics 104 and a plurality of color receiver fiber optics 102 .
  • the number of color receiver fiber optics 102 , and the filters associated with such receiver fiber optics 102 may be chosen based upon the particular application. As with the embodiment of FIG. 9 , the process described with reference to FIG. 6 generally is applicable to this embodiment.
  • FIG. 10B illustrates an embodiment of the present invention in which there are a plurality of receiver fiber optics that surround central source fiber optic 240 .
  • the receiver fiber optics are arranged in rings surrounding the central source fiber optic.
  • FIG. 10B illustrates three rings of receiver fiber optics (consisting of fiber optics 242 , 244 and 246 , respectively), in which there are six receiver fiber optics per ring.
  • the rings may be arranged in successive larger circles as illustrated to cover the entire area of the end of the probe, with the distance from each receiver fiber optic within a given ring to the central fiber optic being equal (or approximately so).
  • Central fiber optic 240 is utilized as the light source fiber optic and is connected to the light source in a manner similar to light source fiber optic 5 illustrated in FIG. 1 .
  • the plurality of receiver fiber optics are each coupled to two or more fiber optics in a manner similar to the arrangement illustrated in FIG. 1 for splicing connector 4 .
  • One fiber optic from such a splicing connector for each receiver fiber optic passes through a neutral density filter and then to light sensor circuitry similar to the light sensor circuitry illustrated in FIG. 3 .
  • a second fiber optic from the splicing connector per receiver fiber optic passes through a Sharp Cutting Wrattan Gelatin Filter and then to light sensor circuitry as discussed elsewhere herein.
  • each of the receiver fiber optics in the probe tip includes both color measuring elements and neutral light measuring or “perimeter” elements.
  • FIG. 10D illustrates the geometry of probe 260 (such as described above) illuminating an area on flat diffuse surface 272 .
  • Probe 260 creates light pattern 262 that is reflected diffusely from surface 272 in uniform hemispherical pattern 270 . With such a reflection pattern, the reflected light that is incident upon the receiving elements in the probe will be equal (or nearly equal) for all elements if the probe is perpendicular to the surface as described above herein.
  • FIG. 10C illustrates a probe illuminating rough surface 268 or a surface that reflects light spectrally. Spectral reflected light will exhibit hot spots or regions where the reflected light intensity is considerably greater than it is on other areas. The reflected light pattern will be uneven when compared to a smooth surface as illustrate in FIG. 10D .
  • the probe may be utilized to determine the surface texture of the surface as well as being able to measure the color and translucency, etc., of the surface as described earlier herein. If the light intensity received by the receiver fiber optics is equal for all fiber optics within a given ring of receiver fiber optics, then generally the surface is diffuse and smooth. If, however, the light intensity of receiver fibers in a ring varies with respect to each other, then generally the surface is rough or spectral. By comparing the light intensities measured within receiver fiber optics in a given ring and from ring to ring the texture and other characteristics of the surface may be quantified.
  • FIG. 11 illustrates an embodiment of the present invention in which linear optical sensors and a color gradient filter are utilized instead of light sensors 8 (and filters 22 , etc.).
  • Receiver fiber optics 7 which may be optically coupled to probe tip 1 as with the embodiment of FIG. 1 , are optically coupled to linear optical sensor 112 through color gradient filter 110 .
  • color gradient filter 110 may consist of series of narrow strips of cut-off type filters on a transparent or open substrate, which are constructed so as to positionally correspond to the sensor areas of linear optical sensor 112 .
  • An example of a commercially available linear optical sensor 112 is Texas Instruments part number TSL213, which has 61 photo diodes in a linear array.
  • Light receiver fiber optics 7 are arranged correspondingly in a line over linear optical sensor 112 .
  • the number of receiver fiber optics may be chosen for the particular application, so long as enough are included to more or less evenly cover the full length of color gradient filter 110 .
  • the light is received and output from receiver fiber optics 7 , and the light received by linear optical sensor 112 is integrated for a short period of time (determined by the light intensity, filter characteristics and desired accuracy).
  • the output of linear array sensor 112 is digitized by ADC 114 and output to microprocessor 116 (which may the same processor as microprocessor 10 or another processor).
  • perimeter receiver fiber optics may be used as with the embodiment of FIG. 1 , and in general the process described with reference to FIG. 6 is applicable to this embodiment.
  • FIG. 12 illustrates an embodiment of the present invention in which a matrix optical sensor and a color filter grid are utilized instead of light sensors 8 (and filters 22 , etc.).
  • Receiver fiber optics 7 which may be optically coupled to probe tip 1 as with the embodiment of FIG. 1 , are optically coupled to matrix optical sensor 122 through filter grid 120 .
  • Filter grid 120 is a filter array consisting of a number of small colored spot filters that pass narrow bands of visible light. Light from receiver fiber optics 7 pass through corresponding filter spots to corresponding points on matrix optical sensor 122 .
  • matrix optical sensor 122 may be a monochrome optical sensor array, such as CCD-type or other type of light sensor element such as may be used in a video camera.
  • matrix optical sensor 122 The output of matrix optical sensor 122 is digitized by ADC 124 and output to microprocessor 126 (which may the same processor as microprocessor 10 or another processor). Under control of microprocessor 126 , matrix optical sensor 126 collects data from receiver fiber optics 7 through color filter grid 120 .
  • perimeter receiver fiber optics may be used as with the embodiment of FIG. 1 , and in general the process described with reference to FIG. 6 also is applicable to this embodiment.
  • spectral color/optical photometers or tristimulus-type calorimeters
  • perimeter receiver fiber optics used to collect color/optical data essentially free from height and angular deviations.
  • the present invention enables color/optical measurements to be taken at a critical height from the surface of the object being measured, and thus color/optical data may be taken without physical contact with the object being measured (in such embodiments, the color/optical data is taken only by passing the probe through region 1 and into region 2 , but without necessarily going into region 3 of FIGS. 5A and 5B ).
  • Such embodiments may be utilized if contact with the surface is undesirable in a particular application.
  • physical contact (or near physical contact) of the probe with the object may allow all five regions of FIGS. 5A and 5B to be utilized, thereby enabling measurements to be taken such that translucency information also may be obtained. Both types of embodiments generally are within the scope of the invention described herein.
  • FIG. 13A illustrates the properties of a single Kodak Sharp Cutting Wratten Gelatin Filter discussed in connection with FIG. 3 .
  • Such a cut-off filter passes light below a cut-off frequency (i.e., above a cut-off wavelength).
  • Such filters may be manufactured to have a wide range of cut-off frequencies/wavelengths.
  • FIG. 13B illustrates a number of such filters, twelve in a preferred embodiment, with cut-off frequencies/wavelengths chosen so that essentially the entire visible band is covered by the collection of cut-off filters.
  • FIGS. 14A and 14B illustrate exemplary intensity measurements using a cut-off filter arrangement such as illustrated in FIG. 13B , first in the case of a white surface being measured ( FIG. 14A ), and also in the case of a blue surface being measured ( FIG. 14B ).
  • the neutrally filtered perimeter fiber optics which are used to detect height and angle, etc., generally will produce the highest intensity (although this depends at least in part upon the characteristics of the neutral density filters).
  • the remaining intensities will gradually decrease in value as illustrated in FIG. 14A .
  • the intensities will decrease in value generally as illustrated in FIG. 14B .
  • the intensities out of the filters will always decrease in value as illustrated, with the greatest intensity value being the output of the filter having the lowest wavelength cut-off value (i.e., passes all visible light up to blue), and the lowest intensity value being the output of the filter having the highest wavelength cut-off (i.e., passes only red visible light).
  • any color data detected that does not fit the decreasing intensity profiles of FIGS. 14A and 14B may be detected as an abnormality, and in certain embodiments detection of such a condition results in data rejection, generation of an error message or initiation of a diagnostic routine, etc.
  • FIGS. 1 and 3 Reference should be made to the FIGS. 1 and 3 and the related description for a detailed discussion of how such a cut-off filter arrangement may be utilized in accordance with the present invention.
  • FIG. 15 is a flow chart illustrating audio tones that may be used in certain preferred embodiments of the present invention. It has been discovered that audio tones (such as tones, beeps, voice or the like such as will be described) present a particularly useful and instructive means to guide an operator in the proper use of a color measuring system of the type described herein.
  • audio tones such as tones, beeps, voice or the like such as will be described
  • the operator may initiate a color/optical measurement by activation of a switch (such as switch 17 of FIG. 1 ) at step 150 . Thereafter, if the system is ready (set-up, initialized, calibrated, etc.), a lower the probe tone is emitted (such as through speaker 16 of FIG. 1 ) at step 152 .
  • the system attempts to detect peak intensity P 1 at step 154 . If a peak is detected, at step 156 a determination is made whether the measured peak P 1 meets the applicable criteria (such as discussed above in connection with FIGS. 5A , 5 B and 6 ). If the measured peak P 1 is accepted, a first peak acceptance tone is generated at step 160 .
  • an unsuccessful tone is generated at step 158 , and the system may await the operator to initiate a further color/optical measurement. Assuming that the first peak was accepted, the system attempts to detect peak intensity P 2 at step 162 . If a second peak is detected, at step 164 a determination is made whether the measured peak P 2 meets the applicable criteria. If the measured peak P 2 is accepted the process proceeds to color calculation step 166 (in other embodiments, a second peak acceptance tone also is generated at step 166 ). If the measured peak P 2 is not accepted, an unsuccessful tone is generated at step 158 , and the system may await the operator to initiate a further color/optical measurement.
  • a color/optical calculation is made at step 166 (such as, for example, microprocessor 10 of FIG. 1 processing the data output from light sensors 8 , etc.).
  • step 168 a determination is made whether the color calculation meets the applicable criteria. If the color calculation is accepted, a successful tone is generated at step 170 . If the color calculation is not accepted, an unsuccessful tone is generated at step 158 , and the system may await the operator to initiate a further color/optical measurement.
  • audio tones presented to an operator in accordance with the particular operating state of the system may be greatly facilitated.
  • Such audio information also tends to increase operator satisfaction and skill level, as, for example, acceptance tones provide positive and encouraging feedback when the system is operated in a desired manner.
  • FIGS. 16-18 Further embodiments of the present invention will now be described with reference to FIGS. 16-18 .
  • the previously described embodiments generally rely on movement of the probe with respect to the object being measured. While such embodiments provide great utility in many applications, in certain applications, such as robotics, industrial control, automated manufacturing, etc. (such as positioning the object and/or the probe to be in proximity to each other, detecting color/optical properties of the object, and then directing the object, e.g., sorting, based on the detected color/optical properties, for further industrial processing, packaging, etc.) it may be desired to have the measurement made with the probe held or positioned substantially stationary above the surface of the object to be measured (in such embodiments, the positioned probe may not be handheld as with certain other embodiments).
  • FIG. 16 illustrates such a further embodiment.
  • the probe of this embodiment includes a plurality of perimeter sensors and a plurality of color sensors coupled to receivers 312 - 320 .
  • the color sensors and related components, etc. may be constructed to operate in a manner analogous to previously described embodiments.
  • fiber optic cables or the like may couple light from source 310 that is received by receivers 312 - 320 to sharp cut-off filters, with the received light measured over precisely defined wavelengths (see, e.g., FIGS. 1 , 3 and 11 - 14 and related description).
  • Color/optical characteristics of the object may be determined from the plurality of color sensor measurements, which may include three such sensors in the case of a tristimulus instrument, or 8, 12, 15 or more color sensors for a more full bandwidth system (the precise number may be determined by the desired color resolution, etc.).
  • a relatively greater number of perimeter sensors are utilized (as opposed, for example, to the three perimeter sensors used in certain preferred embodiments of the present invention).
  • a plurality of triads of receivers 312 - 320 coupled to perimeter sensors are utilized, where each triad in the preferred implementation consists of three fiber optics positioned equal distance from light source 310 , which in the preferred embodiment is a central light source fiber optic.
  • the triads of perimeter receivers/sensors may be configured as concentric rings of sensors around the central light source fiber optic. In FIG. 16 , ten such triad rings are illustrated, although in other embodiments a lesser or greater number of triad rings may be utilized, depending upon the desired accuracy and range of operation, as well as cost considerations and the like.
  • the probe illustrated in FIG. 16 may operate within a range of heights (i.e., distances from the object being measured). As with earlier embodiments, such height characteristics are determined primarily by the geometry and constituent materials of the probe, with the spacing of the minimal ring of perimeter sensors determining the minimal height, and the spacing of the maximal ring of perimeter sensors determining the maximum height, etc. It therefore is possible to construct probes of various height ranges and accuracy, etc., by varying the number of perimeter sensor rings and the range of ring distances from the central source fiber optic. It should be noted that such embodiments may be particularly suitable when measuring similar types of materials, etc.
  • the light receiver elements for the plurality of receivers/perimeter sensors may be individual elements such as Texas Instruments TSL230 light-to-frequency converters, or may be constructed with rectangular array elements or the like such as may be found in a CCD camera.
  • Other broadband-type of light measuring elements are utilized in other embodiments.
  • an array such as CCD camera-type sensing elements may be desirable.
  • the absolute intensity levels of light measured by the perimeter sensors is not as critical to such embodiments of the present invention; in such embodiments differences between the triads of perimeter light sensors are advantageously utilized in order to obtain optical measurements.
  • Optical measurements may be made with such a probe by holding/positioning the probe near the surface of the object being measured (i.e., within the range of acceptable heights of the particular probe).
  • the light source providing light to light source 310 is turned on and the reflected light received by receivers 312 - 320 (coupled to the perimeter sensors) is measured.
  • the light intensity of the rings of triad sensors is compared. Generally, if the probe is perpendicular to the surface and if the surface is flat, the light intensity of the three sensors of each triad should be approximately will be equal. If the probe is not perpendicular to the surface or if the surface is not flat, the light intensity of the three sensors within a triad will not be equal.
  • the three sensors forming triads of sensors are at different distances (radii) from central light source 310 , it is expected that the light intensities measured by light receivers 312 - 320 and the perimeter sensors will vary.
  • the received light intensity will increase to a maximum and then sharply decrease as the probe is moved closer to the surface.
  • the intensity decreases rapidly as the probe is moved less than the critical height and decreases rapidly to zero or almost zero for opaque objects.
  • the value of the critical height depends principally upon the distance of the particular receiver from light source 310 .
  • the triads of sensors will peak at different critical heights. By analyzing the variation in light values received by the triads of sensors, the height of the probe can be determined. Again, this is particularly true when measuring similar types of materials.
  • the system initially is calibrated against a neutral background (e.g., a gray background), and the calibration values are stored in non-volatile memory (see, e.g., processor 10 of FIG. 1 ).
  • a neutral background e.g., a gray background
  • the intensity for the receivers/perimeter sensors in general should vary equally.
  • a white surface should produce the highest intensities for the perimeter sensors, and a black surface will produce the lowest intensities.
  • the color of the surface will affect the measured light intensities of the perimeter sensors, it should affect them substantially equally.
  • the height of the probe from the surface of the object will affect the triads of sensors differently.
  • the triad of sensors in the smallest ring (those closest to the source fiber optic) will be at or about their maximal value.
  • the rest of the rings of triads will be measuring light at intensities lower than their maximal values.
  • the intensity of the smallest ring of sensors will decrease and the intensity of the next ring of sensors will increase to a maximal value and will then decrease in intensity as the probe is raised/positioned still further.
  • the pattern of intensities measured by the rings of triads will be height dependent.
  • characteristics of this pattern may be measured and stored in non-volatile RAM look-up tables (or the like) for the probe by calibrating it in a fixture using a neutral color surface.
  • the actual intensity of light is not as important in such embodiments, but the degree of variance from one ring of perimeter sensors to another is.
  • the intensities of the perimeter sensors (coupled to receivers 312 - 320 ) is measured.
  • the variance in light intensity from the inner ring of perimeter sensors to the next ring and so on is analyzed and compared to the values in the look-up table to determine the height of the probe.
  • the determined height of the probe with respect to the surface thus may be utilized by the system processor to compensate for the light intensities measured by the color sensors in order to obtain reflectivity readings that are in general independent of height.
  • the reflectivity measurements may then be used to determine optical characteristics of the object being measured, etc.
  • audio tones such as previously described, may be advantageously employed when such an embodiment is used in a handheld configuration.
  • audio tones of varying pulses, frequencies and/or intensities may be employed to indicate the operational status of the instrument, when the instrument is positioned within an acceptable range for color measurements, when valid or invalid color measurements have been taken, etc.
  • audio tones as previously described may be adapted for advantageous use with such further embodiments.
  • FIG. 17 illustrates a further such embodiment of the present invention.
  • the preferred implementation of this embodiment consists of a central light source 310 (which in the preferred implementation is a central light source fiber optic), surrounded by a plurality of light receivers 322 (which in the preferred implementation consists of three perimeter light receiver fiber optics).
  • the three perimeter light receiver fiber optics may be each spliced into additional fiber optics that pass to light intensity receivers/sensors, which may be implemented with Texas Instruments TSL230 light to frequency converters as described previously.
  • each perimeter receiver is coupled to a sensor and measured full band width (or over substantially the same bandwidth) such as via a neutral density filter, and other of the fibers of the perimeter receivers are coupled to sensors so that the light passes through sharp cut off or notch filters to measure the light intensity over distinct frequency ranges of light (again, as with earlier described embodiments).
  • a neutral density filter such as via a neutral density filter
  • other of the fibers of the perimeter receivers are coupled to sensors so that the light passes through sharp cut off or notch filters to measure the light intensity over distinct frequency ranges of light (again, as with earlier described embodiments).
  • color light sensors and neutral “perimeter” sensors as with previously described embodiments.
  • the color sensors are utilized to determine the color or other optical characteristics of the object, and the perimeter sensors are utilized to determine if the probe is perpendicular to the surface and/or are utilized to compensate for non-perpendicular angles within certain angular ranges.
  • the angle of the perimeter sensor fiber optics is mechanically varied with respect to the central source fiber optic.
  • the angle of the perimeter receivers/sensors with respect to the central source fiber optic is measured and utilized as described hereinafter.
  • An exemplary mechanical mechanism, the details of which are not critical so long as desired, control movement of the perimeter receivers with respect to the light source is obtained, is described with reference to FIG. 18 .
  • the probe is held within the useful range of the instrument (determined by the particular configuration and construction, etc.), and a color measurement is initiated.
  • the angle of the perimeter receivers/sensors with respect to the central light source is varied from parallel to pointing towards the central source fiber optic. While the angle is being varied, the intensities of the light sensors for the perimeter sensors (e.g., neutral sensors) and the color sensors is measured and saved along with the angle of the sensors at the time of the light measurement.
  • the light intensities are measured over a range of angles. As the angle is increased the light intensity will increase to a maximum value and will then decrease as the angle is further increased.
  • the angle where the light values is a maximum is utilized to determine the height of the probe from the surface.
  • simple geometry may be utilized to calculate the height based on the data measured during variation of the angle.
  • the height measurement may then be utilized to compensate for the intensity of the color/optical measurements and/or utilized to normalize color values, etc.
  • FIG. 18 illustrates an exemplary embodiment of a mechanical arrangement to adjust and measure the angle of the perimeter sensors.
  • Each perimeter receiver/sensor 322 is mounted with pivot arm 326 on probe frame 328 .
  • Pivot arm 326 engages central ring 332 in a manner to form a cam mechanism.
  • Central ring 332 includes a groove that holds a portion of pivot arm 326 to form the cam mechanism.
  • Central ring 332 may be moved perpendicular with respect to probe frame 328 via linear actuator 324 and threaded spindle 330 .
  • the position of central ring 332 with respect to linear actuator 324 determines the angle of perimeter receivers/sensors 322 with respect to light source 310 .
  • Such angular position data vis-a-vis the position of linear actuator 324 may be calibrated in advance and stored in non-volatile memory, and later used to produce color/optical characteristic measurement data as previously described.
  • FIG. 19A this embodiment utilizes removable, coherent light conduit 340 as a removable tip.
  • Light conduit 340 is a short segment of a light conduit that preferably may be a fused bundle of small fiber optics, in which the fibers are held essentially parallel to each other, and the ends of which are highly polished.
  • Cross-section 350 of light conduit 340 is illustrated in FIG. 19B .
  • Light conduits similar to light conduit 340 have been utilized in what are known as borescopes, and also have been utilized in medical applications such as endoscopes.
  • Light conduit 340 in this embodiment serves to conduct light from the light source to the surface of the object being measured, and also to receive reflected light from the surface and conduct it to light receiver fiber optics 346 in probe handle 344 .
  • Light conduit 340 is held in position with respect to fiber optics 346 by way or compression jaws 342 or other suitable fitting or coupled that reliably positions light conduit 340 so as to couple light effectively to/from fiber optics 346 .
  • Fiber optics 346 may be separated into separate fibers/light conduits 348 , which may be coupled to appropriate light sensors, etc., as with previously described embodiments.
  • the aperture of the fiber optics used in light conduit 340 may be chosen to match the aperture of the fiber optics for the light source and the light receivers.
  • the central part of the light conduit may conduct light from the light source and illuminate the surface as if it constituted a single fiber within a bundle of fibers.
  • the outer portion of the light conduit may receive reflected light and conduct it to light receiver fiber optics as if it constituted single fibers.
  • Light conduit 340 has ends that preferably are highly polished and cut perpendicular, particularly the end coupling light to fiber optics 346 .
  • the end of fiber optics 346 abutting light conduit 340 also is highly polished and cut perpendicular to a high degree of accuracy in order to minimize light reflection and cross talk between the light source fiber optic and the light receiver fiber optics and between adjacent receiver fiber optics.
  • Light conduit 340 offers significant advantages including in the manufacture and installation of such a removable tip.
  • the probe tip need not be particularly aligned with the probe tip holder; rather, it only needs to be held against the probe tip holder such as with a compression mechanism (such as with compression jaws 342 ) so as to couple light effectively to/from fiber optics 346 .
  • a removable tip mechanism may be implemented without alignment tabs or the like, thereby facilitating easy installation of the removable probe tip.
  • Light conduit 340 also may be implemented, for example, as a small section of light conduit, which may facilitate easy and low cost mass production and the like.
  • Light conduit 352 is a light conduit that is narrower on one end (end 354 ) than the other end (end 356 ).
  • Contoured/tapered light conduits such as light conduit 352 may be fabricated by heating and stretching a bundle of small fiber optics as part of the fusing process.
  • Such light conduits have an additional interesting property of magnification or reduction. Such phenomena result because there are the same number of fibers in both ends.
  • light entering narrow end 354 is conducted to wider end 356 , and since wider end 356 covers a larger area, it has a magnifying affect.
  • Light conduit 352 of FIG. 19C may be utilized in a manner similar to light conduit 340 (which in general may be cylindrical) of FIG. 19A .
  • Light conduit 352 measures smaller areas because of its reduced size at end 354 .
  • a relatively larger probe body may be manufactured where the source fiber optic is spaced widely from the receiver fiber optics, which may provide an advantage in reduced light reflection and cross talk at the junction, while still maintaining a small probe measuring area.
  • the relative sizes of narrow end 354 of light conduit 352 may be varied. This enables the operator to select the size/characteristic of the removable probe tip according to the conditions in the particular application. Such ability to select sizes of probe tips provides a further advantage in making optical characteristics measurements in a variety of applications and operative environments.
  • light conduits 340 and 356 of FIGS. 19A and 19C need not necessarily be cylindrical/tapered as illustrated, but may be curved such as for specialty applications, in which a curved probe tip may be advantageously employed (such as in a confined or hard-to-reach place). It also should be apparent that light conduit 352 of FIG. 19C may be reversed (with narrow end 354 coupling light into fiber optics 346 , etc., and wide end 356 positioned in order to take measurements) in order to cover larger areas.
  • the apparatus and methodology may be utilized to measure the optical properties of objects using other optical focusing and gathering elements, in addition to the fiber optics employed in preferred embodiments herein.
  • lenses or mirrors or other optical elements may also be utilized to construct both the light source element and the light receiver element.
  • a flashlight or other commonly available light source as particular examples, may be utilized as the light source element, and a common telescope with a photoreceiver may be utilized as the receiver element in a large scale embodiment of the invention.
  • Such refinements utilizing teachings provided herein are expressly within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.

Description

  • This is a continuation of U.S. application Ser. No. 11/523,798, filed Sep. 18, 2006, now U.S. Pat. No. 7,397,541, which is a continuation of U.S. application Ser. No. 11/235,969, filed Sep. 26, 2005, now U.S. Pat. No. 7,110,096, which is a continuation of U.S. application Ser. No. 10/407,623, filed Apr. 4, 2003, now U.S. Pat. No. 6,950,189, which is a continuation of U.S. application Ser. No. 10/134,087, filed Apr. 25, 2002, now U.S. Pat. No. 6,570,654, which is a continuation of U.S. application Ser. No. 09/968,302, filed Oct. 1, 2001, now U.S. Pat. No. 6,381,017, which is a continuation of U.S. application Ser. No. 09/586,539, filed May 31, 2000, now U.S. Pat. No. 6,301,004, which is a continuation of U.S. application Ser. No. 09/091,208, which was the National Stage of International Application No. PCT/US97/00126.
  • FIELD OF THE INVENTION
  • The present invention relates to devices and methods for measuring optical characteristics such as color of objects, and more particularly to devices and methods for measuring the color and other optical characteristics of teeth, fabric or other objects or surfaces with a hand-held probe that presents minimal problems with height or angular dependencies.
  • BACKGROUND OF THE INVENTION
  • Various color/optical measuring devices such as spectrophotometers and calorimeters are known in the art. To understand the limitations of such conventional devices, it is helpful to understand certain principles relating to color. Without being bound by theory, Applicants provide the following discussion.
  • The color of an object determines the manner in which light is reflected from the surface of the object. When light is incident upon an object, the reflected light will vary in intensity and wavelength dependent upon the color of the surface of the object. Thus, a red object will reflect red light with a greater intensity than a blue or a green object, and correspondingly a green object will reflect green light with a greater intensity than a red or blue object.
  • One method of quantifying the color of an object is to illuminate it with broad band spectrum or “white” light, and measure the spectral properties of the reflected light over the entire visible spectrum and compare the reflected spectrum with the incident light spectrum. Such instruments typically require a broad band spectrophotometer, which generally are expensive, bulky and relatively cumbersome to operate, thereby limiting the practical application of such instruments.
  • For certain applications, the broad band data provided by a spectrophotometer is unnecessary. For such applications, devices have been produced or proposed that quantify color in terms of a numerical value or relatively small set of values representative of the color of the object.
  • It is known that the color of an object can be represented by three values. For example, the color of an object can be represented by red, green and blue values, an intensity value and color difference values, by a CIE value, or by what are known as “tristimulus values” or numerous other orthogonal combinations. It is important that the three values be orthogonal; i.e., any combination of two elements in the set cannot be included in the third element.
  • One such method of quantifying the color of an object is to illuminate an object with broad band “white” light and measure the intensity of the reflected light after it has been passed through narrow band filters. Typically three filters (such as red, green and blue) are used to provide tristimulus light values representative of the color of the surface. Yet another method is to illuminate an object with three monochromatic light sources (such as red, green and blue) one at a time and then measure the intensity of the reflected light with a single light sensor. The three measurements are then converted to a tristimulus value representative of the color of the surface. Such color measurement techniques can be utilized to produce equivalent tristimulus values representative of the color of the surface. Generally, it does not matter if a “white” light source is used with a plurality of color sensors (or a continuum in the case of a spectrophotometer), or if a plurality of colored light sources are utilized with a single light sensor.
  • There are, however, difficulties with the conventional techniques. When light is incident upon a surface and reflected to a light receiver, the height of the light sensor and the angle of the sensor relative to the surface and to the light source also affect the intensity of the received light. Since the color determination is being made by measuring and quantifying the intensity of the received light for different colors, it is important that the height and angular dependency of the light receiver be eliminated or accounted for in some manner.
  • One method for eliminating the height and angular dependency of the light source and receiver is to provide a fixed mounting arrangement where the light source and receiver are stationary and the object is always positioned and measured at a preset height and angle. The fixed mounting arrangement greatly limits the applicability of such a method. Another method is to add mounting feet to the light source and receiver probe and to touch the object with the probe to maintain a constant height and angle. The feet in such an apparatus must be wide enough apart to insure that a constant angle (usually perpendicular) is maintained relative to the object. Such an apparatus tends to be very difficult to utilize on small objects or on objects that are hard to reach, and in general does not work satisfactorily in measuring objects with curved surfaces.
  • The use of color measuring devices in the field of dentistry has been proposed. In modern dentistry, the color of teeth typically are quantified by manually comparing a patient's teeth with a set of “shade guides.” There are numerous shade guides available for dentists in order to properly select the desired color of dental prosthesis. Such shade guides have been utilized for decades and the color determination is made subjectively by the dentist by holding a set of shade guides next to a patient's teeth and attempting to find the best match. Unfortunately, however, the best match often is affected by the ambient light color in the dental operatory and the surrounding color of the patient's makeup or clothing and by the fatigue level of the dentist.
  • Similar subjective color quantification also is made in the paint industry by comparing the color of an object with a paint reference guide. There are numerous paint guides available in the industry and the color determination also often is affected by ambient light color, user fatigue and the color sensitivity of the user. Many individuals are color insensitive (color blind) to certain colors, further complicating color determination.
  • In general, color quantification is needed in many industries. Several, but certainly not all, applications include: dentistry (color of teeth); dermatology (color of skin lesions); interior decorating (color of paint, fabrics); the textile industry; automotive repair (matching paint colors); photography (color of reproductions, color reference of photographs to the object being photographed); printing and lithography; cosmetics (hair and skin color, makeup matching); and other applications in which it useful to measure color in an expedient and reliable manner.
  • With respect to such applications, however, the limitations of conventional color/optical measuring techniques typically restrict the utility of such techniques. For example, the high cost and bulkiness of typical broad band spectrometers, and the fixed mounting arrangements or feet required to address the height and angular dependency, often limit the applicability of such conventional techniques.
  • Moreover, another limitation of such conventional methods and devices are that the resolution of the height and angular dependency problems typically require contact with the object being measured. In certain applications, it may be desirable to measure and quantify the color of an object with a small probe that does not require contact with the surface of the object. In certain applications, for example, hygienic considerations make such contact undesirable. In the other applications such as interior decorating, contact with the object can mar the surface (such as if the object is coated with wet paint) or otherwise cause undesirable effects.
  • In summary, there is a need for a low cost, hand-held probe of small size that can reliably measure and quantify the color and other optical characteristics of an object without requiring physical contact with the object, and also a need for methods based on such a device in the field of dentistry and other applications.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, devices and methods are provided for measuring the color and other optical characteristics of objects, reliably and with minimal problems of height and angular dependence. A handheld probe is utilized in the present invention, with the handheld probe containing a number of fiber optics in certain preferred embodiments. Light is directed from one (or more) light source(s) towards the object to be measured, which in certain preferred embodiments is a central light source fiber optic (other light sources and light source arrangements also may be utilized). Light reflected from the object is detected by a number of light receivers. Included in the light receivers (which may be light receiver fiber optics) are a plurality of perimeter receivers (which may be receiver fiber optics, etc.). In certain preferred embodiments, three perimeter fiber optics are utilized in order to take measurements at a desired, and predetermined height and angle, thereby minimizing height and angular dependency problems found in conventional methods. In certain embodiments, the present invention also may measure translucence and fluorescence characteristics of the object being measured, as well as surface texture and/or other optical or surface characteristics.
  • The present invention may include constituent elements of a broad band spectrophotometer, or, alternatively, may include constituent elements of a tristimulus type calorimeter. The present invention may employ a variety of color measuring devices in order to measure color in a practical, reliable and efficient manner, and in certain preferred embodiments includes a color filter array and a plurality of color sensors. A microprocessor is included for control and calculation purposes. A temperature sensor is included to measure temperature in order to detect abnormal conditions and/or to compensate for temperature effects of the filters or other components of the system. In addition, the present invention may include audio feedback to guide the operator in making color/optical measurements, as well as one or more display devices for displaying control, status or other information.
  • With the present invention, color/optical measurements may be made with a handheld probe in a practical and reliable manner, essentially free of height and angular dependency problems, without resorting to fixtures, feet or other undesirable mechanical arrangements for fixing the height and angle of the probe with respect to the object.
  • Accordingly, it is an object of the present invention to address limitations of conventional color/optical measuring techniques.
  • It is another object of the present invention to provide a method and device useful in measuring the color or other optical characteristics of teeth, fabric or other objects or surfaces with a hand-held probe of practical size that does not require contact with the object or surface.
  • It is a further object of the present invention to provide a color/optical measurement probe and method that does not require fixed position mechanical mounting, feet or other mechanical impediments.
  • It is yet another object of the present invention to provide a probe and method useful for measuring color or other optical characteristics that may be utilized with a probe simply placed near the surface to be measured.
  • It is a still further object of the present invention to provide a probe and method that are capable of determining translucency characteristics of the object being measured.
  • It is a further object of the present invention to provide a probe and method that are capable of determining surface texture characteristics of the object being measured.
  • It is a still further object of the present invention to provide a probe and method that are capable of determining fluorescence characteristics of the object being measured.
  • It is an object of the present invention to provide a probe and method that can measure the area of a small spot singulary, or that also can measure irregular shapes by moving the probe over an area and integrating the color of the entire area.
  • It also is an object of the present invention to provide probes and methods for measuring optical characteristics with a probe that is held substantially stationary with respect to the object being measured.
  • Finally, it is an object of the present invention to provide probes and methods for measuring optical characteristics with a probe that may have a removable tip or shield that may be removed for cleaning, disposed after use or the like.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention may be more fully understood by a description of certain preferred embodiments in conjunction with the attached drawings in which:
  • FIG. 1 is a diagram illustrating a preferred embodiment of the present invention;
  • FIG. 2 is a diagram illustrating a cross section of a probe in accordance with a preferred embodiment of the present invention;
  • FIG. 3 is a diagram illustrating an arrangement of fiber optic receivers and sensors utilized with a preferred embodiment of the present invention;
  • FIGS. 4A to 4C illustrate certain geometric considerations of fiber optics;
  • FIGS. 5A and 5B illustrate the light amplitude received by fiber optic light receivers as a function of height from an object;
  • FIG. 6 is a flow chart illustrating a color measuring method in accordance with an embodiment of the present invention;
  • FIGS. 7A and 7B illustrate a protective cap that may be used with certain embodiments of the present invention;
  • FIGS. 8A and 8B illustrate removable probe tips that may be used with certain embodiments of the present invention;
  • FIG. 9 illustrates a fiber optic bundle in accordance with another preferred embodiment of the present invention;
  • FIGS. 10A, 10B, 10C and 10D illustrate and describe other fiber optic bundle configurations that may be used in accordance with yet other preferred embodiments of the present invention;
  • FIG. 11 illustrates a linear optical sensor array that may be used in certain embodiments of the present invention;
  • FIG. 12 illustrates a matrix optical sensor array that may be used in certain embodiments of the present invention;
  • FIGS. 13A and 13B illustrate certain optical properties of a filter array that may be used in certain embodiments of the present invention;
  • FIGS. 14A and 14B illustrate examples of received light intensities of receivers used in certain embodiments of the present invention;
  • FIG. 15 is a flow chart illustrating audio tones that may be used in certain preferred embodiments of the present invention;
  • FIG. 16 illustrates an embodiment of the present invention, which utilizes a plurality of rings of light receivers that may be utilized to take measurements with the probe held substantially stationary with respect to the object being measured;
  • FIGS. 17 and 18 illustrate an embodiment of the present invention, which utilizes a mechanical movement and also may be utilized to take measurements with the probe held substantially stationary with respect to the object being measured; and
  • FIGS. 19A to 19C illustrate embodiments of the present invention in which coherent light conduits may serve as removable probe tips.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will be described in greater detail with reference to certain preferred embodiments. As described elsewhere herein, various refinements and substitutions of the various embodiments are possible based on the principles and teachings herein.
  • With reference to FIG. 1, an exemplary preferred embodiment of a color/optical characteristic measuring system and method in accordance with the present invention will be described.
  • Probe tip 1 encloses a plurality of fiber optics, each of which may constitute one or more fiber optic fibers. In a preferred embodiment, the fiber optics contained within probe tip 1 includes a single light source fiber optic and three light receiver fiber optics. The use of such fiber optics to measure the color or other optical characteristics of an object will be described later herein. Probe tip 1 is attached to probe body 2, on which is fixed switch 17. Switch 17 communicates with microprocessor 10 through wire 18 and provides, for example, a mechanism by which an operator may activate the device in order to make a color/optical measurement. Fiber optics within probe tip 1 terminate at the forward end thereof (i.e., the end away from probe body 2). The forward end of probe tip 1 is directed towards the surface of the object to be measured as described more fully below. The fiber optics within probe tip 1 optically extend through probe body 2 and through fiber optic cable 3 to light sensors 8, which are coupled to microprocessor 10.
  • It should be noted that microprocessor 10 includes conventional associated components, such as memory (programmable memory, such as PROM, EPROM or EEPROM; working memory such as DRAMs or SRAMs; and/or other types of memory such as non-volatile memory, such as FLASH), peripheral circuits, clocks and power supplies, although for clarity such components are not explicitly shown. Other types of computing devices (such as other microprocessor systems, programmable logic arrays or the like) are used in other embodiments of the present invention.
  • In the embodiment of FIG. 1, the fiber optics from fiber optic cable 3 end at splicing connector 4. From splicing connector 4, each of the three receiver fiber optics used in this embodiment is spliced into at least five smaller fiber optics (generally denoted as fibers 7), which in this embodiment are fibers of equal diameter, but which in other embodiments may be of unequal diameter (such as a larger or smaller “height/angle” or perimeter fiber, as more fully described herein). One of the fibers of each group of five fibers passes to light sensors 8 through a neutral density filter (as more fully described with reference to FIG. 3), and collectively such neutrally filtered fibers are utilized for purposes of height/angle determination (and also may be utilized to measure surface characteristics, as more fully described herein). Four of the remaining fibers of each group of fibers passes to light sensors 8 through color filters and are used to make the color/optical measurement. In still other embodiments, splicing connector 4 is not used, and fiber bundles of, for example, five or more fibers each extend from light sensors 8 to the forward end of probe tip 1. In certain embodiments, unused fibers or other materials may be included as part of a bundle of fibers for purposes of, for example, easing the manufacturing process for the fiber bundle. What should be noted is that, for purposes of the present invention, a plurality of light receiver fiber optics or elements (such as fibers 7) are presented to light sensors 8, with the light from the light receiver fiber optics/elements representing light reflected from object 20. While the various embodiments described herein present tradeoffs and benefits that may not have been apparent prior to the present invention (and thus may be independently novel), what is important for the present discussion is that light from fiber optics/elements at the forward end of probe tip 1 is presented to sensors 8 for color/optical measurements and angle/height determination, etc.
  • Light source 11 in the preferred embodiment is a halogen light source (of, for example, 5-100 watts, with the particular wattage chosen for the particular application), which may be under the control of microprocessor 10. The light from light source 11 reflects from cold mirror 6 and into source fiber optic 5. Source fiber optic 5 passes through to the forward end of probe tip 1 and provides the light stimulus used for purposes of making the measurements described herein. Cold mirror 6 reflects visible light and passes infra-red light, and is used to reduce the amount of infra-red light produced by light source 11 before the light is introduced into source fiber optic 5. Such infra-red light reduction of the light from a halogen source such as light source 11 can help prevent saturation of the receiving light sensors, which can reduce overall system sensitivity. Fiber 15 receives light directly from light source 11 and passes through to light sensors 8 (which may be through a neutral density filter). Microprocessor 10 monitors the light output of light source 11 through fiber 15, and thus may monitor and, if necessary compensate for, drift of the output of light source 11. In certain embodiments, microprocessor 10 also may sound an alarm (such as through speaker 16) or otherwise provide some indication if abnormal or other undesired performance of light source 11 is detected.
  • The data output from light sensors 8 pass to microprocessor 10. Microprocessor 10 processes the data from light sensors 8 to produce a measurement of color and/or other characteristics. Microprocessor 10 also is coupled to key pad switches 12, which serve as an input device. Through key pad switches 12, the operator may input control information or commands, or information relating to the object being measured or the like. In general, key pad switches 12, or other suitable data input devices (such as push button, toggle, membrane or other switches or the like), serve as a mechanism to input desired information to microprocessor 10.
  • Microprocessor 10 also communicates with UART 13, which enables microprocessor 10 to be coupled to an external device such as computer 13A. In such embodiments, data provided by microprocessor 10 may be processed as desired for the particular application, such as for averaging, format conversion or for various display or print options, etc. In the preferred embodiment, UART 13 is configured so as to provide what is known as a RS232 interface, such as is commonly found in personal computers.
  • Microprocessor 10 also communicates with LCD 14 for purposes of displaying status, control or other information as desired for the particular application. For example, color bars, charts or other graphic representations of the color or other collected data and/or the measured object or tooth may be displayed. In other embodiments, other display devices are used, such as CRTs, matrix-type LEDs, lights or other mechanisms for producing a visible indicia of system status or the like. Upon system initialization, for example, LCD 14 may provide an indication that the system is stable, ready and available for taking color measurements.
  • Also coupled to microprocessor 10 is speaker 16. Speaker 16, in a preferred embodiment as discussed more fully below, serves to provide audio feedback to the operator, which may serve to guide the operator in the use of the device. Speaker 16 also may serve to provide status or other information alerting the operator of the condition of the system, including an audio tone, beeps or other audible indication (i.e., voice) that the system is initialized and available for taking measurements. Speaker 16 also may present audio information indicative of the measured data, shade guide or reference values corresponding to the measured data, or an indication of the status of the color/optical measurements.
  • Microprocessor 10 also receives an input from temperature sensor 9. Given that many types of filters (and perhaps light sources or other components) may operate reliably only in a given temperature range, temperature sensor 9 serves to provide temperature information to microprocessor 10. In particular, color filters, such as may be included in light sensors 8, may be sensitive to temperature, and may operate reliably only over a certain temperature range. In certain embodiments, if the temperature is within a usable range, microprocessor 10 may compensate for temperature variations of the color filters. In such embodiments, the color filters are characterized as to filtering characteristics as a function of temperature, either by data provided by the filter manufacturer, or through measurement as a function of temperature. Such filter temperature compensation data may be stored in the form of a look-up table in memory, or may be stored as a set of polynomial coefficients from which the temperature characteristics of the filters may be computed by microprocessor 10.
  • In general, under control of microprocessor 10, which may be in response to operator activation (through, for example, key pad switches 12 or switch 17), light is directed from light source 11, and reflected from cold mirror 6 through source fiber optic 5 (and through fiber optic cable 3, probe body 2 and probe tip 1, or through some other suitable light source element) and is directed onto object 20. Light reflected from object 20 passes through the receiver fiber optics/elements in probe tip 1 to light sensors 8 (through probe body 2, fiber optic cable 3 and fibers 7). Based on the information produced by light sensors 8, microprocessor 10 produces a color/optical measurement result or other information to the operator. Color measurement or other data produced by microprocessor 10 may be displayed on display 14, passed through UART 13 to computer 13A, or used to generate audio information that is presented to speaker 16. Other operational aspects of the preferred embodiment illustrated in FIG. 1 will be explained hereinafter.
  • With reference to FIG. 2, a preferred embodiment of a fiber optic arrangement presented at the forward end of probe tip 1 will now be described. As illustrated in FIG. 2, a preferred embodiment of the present invention utilizes a single central light source fiber optic, denoted as light source fiber optic S, and a plurality of perimeter light receiver fiber optics, denoted as light receivers R1, R2 and R3. As is illustrated, a preferred embodiment of the present invention utilizes three perimeter fiber optics, although in other embodiments two, four or some other number of receiver fiber optics are utilized. As more fully described herein, the perimeter light receiver fiber optics serve not only to provide reflected light for purposes of making the color/optical measurement, but such perimeter fibers also serve to provide information regarding the angle and height of probe tip 1 with respect to the surface of the object that is being measured, and also may provide information regarding the surface characteristics of the object that is being measured.
  • In the illustrated preferred embodiment, receiver fiber optics R1 to R3 are positioned symmetrically around source fiber optic S, with a spacing of about 120 degrees from each other. It should be noted that spacing t is provided between receiver fiber optics R1 to R3 and source fiber optic S. While the precise angular placement of the receiver fiber optics around the perimeter of the fiber bundle in general is not critical, it has been determined that three receiver fiber optics positioned 120 degrees apart generally may give acceptable results. As discussed above, in certain embodiments light receiver fiber optics R1 to R3 each constitute a single fiber, which is divided at splicing connector 4 (refer again to FIG. 1), or, in alternate embodiments, light receiver fiber optics R1 to R3 each constitute a bundle of fibers, numbering, for example, at least five fibers per bundle. It has been determined that, with available fibers of uniform size, a bundle of, for example, seven fibers may be readily produced (although as will be apparent to one of skill in the art, the precise number of fibers may be determined in view of the desired number of receiver fiber optics, manufacturing considerations, etc.). The use of light receiver fiber optics R1 to R3 to produce color/optical measurements in accordance with the present invention is further described elsewhere herein, although it may be noted here that receiver fiber optics R1 to R3 may serve to detect whether, for example, the angle of probe tip 1 with respect to the surface of the object being measured is at 90 degrees, or if the surface of the object being measured contains surface texture and/or spectral irregularities. In the case where probe tip 1 is perpendicular to the surface of the object being measured and the surface of the object being measured is a diffuse reflector (i.e., a matte-type reflector, as compared to a spectral or shiny-type reflector which may have “hot spots”), then the light intensity input into the perimeter fibers should be approximately equal. It also should be noted that spacing t serves to adjust the optimal height at which color/optical measurements should be made (as more fully described below).
  • In one particular aspect of the present invention, area between the fiber optics on probe tip 1 may be wholly or partially filled with a non-reflective material and/or surface (which may be a black mat, contoured or other non-reflective surface). Having such exposed area of probe tip 1 non-reflective helps to reduce undesired reflections, thereby helping to increase the accuracy and reliability of the present invention.
  • With reference to FIG. 3, a partial arrangement of light receiver fiber optics and sensors used in a preferred embodiment of the present invention will now be described. Fibers 7 represent light receiving fiber optics, which transmit light reflected from the object being measured to light sensors 8. In a preferred embodiment, sixteen sensors (two sets of eight) are utilized, although for ease of discussion only 8 are illustrated in FIG. 3 (in this preferred embodiment, the circuitry of FIG. 3 is duplicated, for example, in order to result in sixteen sensors). In other embodiments, other numbers of sensors are utilized in accordance with the present invention.
  • Light from fibers 7 is presented to sensors 8, which in a preferred embodiment pass through filters 22 to sensing elements 24. In this preferred embodiment, sensing elements 24 include light-to-frequency converters, manufactured by Texas Instruments and sold under the part number TSL230. Such converters constitute, in general, photo diode arrays that integrate the light received from fibers 7 and output an AC signal with a frequency proportional to the intensity (not frequency) of the incident light. Without being bound by theory, the basic principle of such devices is that, as the intensity increases, the integrator output voltage rises more quickly, and the shorter the integrator rise time, the greater the output frequency. The outputs of the TSL230 sensors are TTL or CMOS compatible digital signals, which may be coupled to various digital logic devices.
  • The outputs of sensing elements 24 are, in this embodiment, asynchronous signals of frequencies depending upon the light intensity presented to the particular sensing elements, which are presented to processor 26. In a preferred embodiment, processor 26 is a Microchip PIC16C55 or PIC16C57 microprocessor, which as described more fully herein implements an algorithm to measure the frequencies of the signals output by sensing elements 24. In other embodiments, a more integrated microprocessor/microcontroller, such as Hitachi's SH RISC microcontrollers, is utilized to provide further system integration or the like.
  • As previously described, processor 26 measures the frequencies of the signals output from sensing elements 24. In a preferred embodiment, processor 26 implements a software timing loop, and at periodic intervals processor 26 reads the states of the outputs of sensing elements 24. An internal counter is incremented each pass through the software timing loop. The accuracy of the timing loop generally is determined by the crystal oscillator time base (not shown in FIG. 3) coupled to processor 26 (such oscillators typically are quite stable). After reading the outputs of sensing elements 24, processor 26 performs an exclusive OR (“XOR”) operation with the last data read (in a preferred embodiment such data is read in byte length). If any bit has changed, the XOR operation will produce a 1, and, if no bits have changed, the XOR operation will produce a 0. If the result is non-zero, the input byte is saved along with the value of the internal counter (that is incremented each pass through the software timing loop). If the result is zero, the systems waits (e.g., executes no operation instructions) the same amount of time as if the data had to be saved, and the looping operation continues. The process continues until all eight inputs have changed at least twice, which enables measurement of a full ½ period of each input. Upon conclusion of the looping process, processor 26 analyzes the stored input bytes and internal counter states. There should be 2 to 16 saved inputs (for the 8 total sensors of FIG. 3) and counter states (if two or more inputs change at the same time, they are saved simultaneously). As will be understood by one of skill in the art, the stored values of the internal counter contains information determinative of the period of the signals received from sensing elements 24. By proper subtraction of internal counter values at times when an input bit has changed, the period may be calculated. Such periods calculated for each of the outputs of sensing elements is provided by processor 26 to microprocessor 10 (see, e.g., FIG. 1). From such calculated periods, a measure of the received light intensities may be calculated.
  • It should be noted that the sensing circuitry and methodology illustrated in FIG. 3 have been determined to provide a practical and expedient manner in which to measure the light intensities received by sensing elements 24. In other embodiments, other circuits and methodologies are employed (other exemplary sensing schemes are described elsewhere herein).
  • As discussed above with reference to FIG. 1, one of fibers 7 measures light source 11, which may be through a neutral density filter, which serves to reduce the intensity of the received light in order maintain the intensity roughly in the range of the other received light intensities. Three of fibers 7 also are from perimeter receiver fiber optics R1 to R3 (see, e.g., FIG. 2) and also may pass through neutral density filters. Such receiving fibers 7 serve to provide data from which angle/height information and/or surface characteristics may be determined.
  • The remaining twelve fibers (of the preferred embodiment's total of 16 fibers) of fibers 7 pass through color filters and are used to produce the color measurement. In a preferred embodiment, the color filters are Kodak Sharp Cutting Wratten Gelatin Filters, which pass light with wavelengths greater than the cut-off value of the filter (i.e., redish values), and absorb light with wavelengths less than the cut-off value of the filter (i.e., bluish values). “Sharp Cutting” filters are available in a wide variety of cut-off frequencies/wavelengths, and the cut-off values generally may be selected by proper selection of the desired cut-off filter. In a preferred embodiment, the filter cut-off values are chosen to cover the entire visible spectrum and, in general, to have band spacings of approximately the visible band range (or other desired range) divided by the number of receivers/filters. As an example, 700 nanometers minus 400 nanometers, divided by 11 bands (produced by twelve color receivers/sensors), is roughly 30 nanometer band spacing.
  • With an array of cut-off filters as described above, and without being bound by theory or the specific embodiments described herein, the received optical spectrum may be measured/calculated by subtracting the light intensities of “adjacent” color receivers. For example, band 1 (400 nm to 430 nm)=(intensity of receiver 12) minus (intensity of receiver 11), and so on for the remaining bands. Such an array of cut-off filters, and the intensity values that may result from filtering with such an array, are more fully described in connection with FIGS. 13A to 14B.
  • It should be noted here that in alternate embodiments other color filter arrangements are utilized. For example, “notch” or bandpass filters may be utilized, such as may be developed using Schott glass-type filters (whether constructed from separate longpass/shortpass filters or otherwise).
  • In a preferred embodiment of the present invention, the specific characteristics of the light source, filters, sensors and fiber optics, etc., are normalized/calibrated by directing the probe towards, and measuring, a known color standard. Such normalization/calibration may be performed by placing the probe in a suitable fixture, with the probe directed from a predetermined position (i.e., height and angle) from the known color standard. Such measured normalization/calibration data may be stored, for example, in a look-up table, and used by microprocessor 10 to normalize or correct measured color or other data. Such procedures may be conducted at start-up, at regular periodic intervals, or by operator command, etc.
  • What should be noted from the above description is that the receiving and sensing fiber optics and circuitry illustrated in FIG. 3 provide a practical and expedient way to determine the color by measuring the intensity of the light reflected from the surface of the object being measured.
  • It also should be noted that such a system measures the spectral band of the reflected light from the object, and once measured such spectral data may be utilized in a variety of ways. For example, such spectral data may be displayed directly as intensity-wavelength band values. In addition, tristimulus type values may be readily computed (through, for example, conventional matrix math), as may any other desired color values. In one particular embodiment useful in dental applications (such as for dental prostheses), the color data is output in the form of a closest match or matches of dental shade guide value(s). In a preferred embodiment, various existing shade guides (such as the shade guides produced by Vita Zahnfabrik) are characterized and stored in a look-up table, or in the graphics art industry Pantone color references, and the color measurement data are used to select the closest shade guide value or values, which may be accompanied by a confidence level or other suitable factor indicating the degree of closeness of the match or matches, including, for example, what are known as ΔE values or ranges of ΔE values, or criteria based on standard deviations, such as standard deviation minimization. In still other embodiments, the color measurement data are used (such as with look-up tables) to select materials for the composition of paint or ceramics such as for prosthetic teeth. There are many other uses of such spectral data measured in accordance with the present invention.
  • It is known that certain objects such as human teeth may fluoresce, and such optical characteristics also may be measured in accordance with the present invention. A light source with an ultraviolet component may be used to produce more accurate color/optical data with respect to such objects. In certain embodiments, a tungsten/halogen source (such as used in a preferred embodiment) may be combined with a UV light source (such as a mercury vapor, xenon or other fluorescent light source, etc.) to produce a light output capable of causing the object to fluoresce. Alternately, a separate UV light source, combined with a visible-light-blocking filter, may be used to illuminate the object. Such a UV light source may be combined with light from a red LED (for example) in order to provide a visual indication of when the UV light is on and also to serve as an aid for the directional positioning of the probe operating with such a light source. A second measurement may be taken using the UV light source in a manner analogous to that described earlier, with the band of the red LED or other supplemental light source being ignored. The second measurement may thus be used to produce an indication of the fluorescence of the tooth or other object being measured. With such a UV light source, a silica fiber optic (or other suitable material) typically would be required to transmit the light to the object (standard fiber optic materials such as glass and plastic in general do not propagate UV light in a desired manner, etc.).
  • As described earlier, in certain preferred embodiments the present invention utilizes a plurality of perimeter receiver fiber optics spaced apart from and around a central source fiber optic to measure color and determine information regarding the height and angle of the probe with respect to the surface of the object being measured, which may include other surface characteristic information, etc. Without being bound by theory, certain principles underlying this aspect of the present invention will now be described with reference to FIGS. 4A to 4C.
  • FIG. 4A illustrates a typical step index fiber optic consisting of a core and a cladding. For this discussion, it is assumed that the core has an index of refraction of n0 and the cladding has an index of refraction of n1. Although the following discussion is directed to “step index” fibers, it will be appreciated by those of skill in the art that such discussion generally is applicable for gradient index fibers as well.
  • In order to propagate light without loss, the light must be incident within the core of the fiber optic at an angle greater than the critical angle, which may be represented as Sin−1 {n1/n0}, where n0 is the index of refraction of the core and n1 is the index of refraction of the cladding. Thus, all light must enter the fiber at an acceptance angle equal to or less than phi, with phi=2×Sin−1 {(√n0 2−n1 2)}, or it will not be propagated in a desired manner.
  • For light entering a fiber optic, it must enter within the acceptance angle phi. Similarly, when the light exits a fiber optic, it will exit the fiber optic within a cone of angle phi as illustrated in FIG. 4A. The value √(n0 2−n1 2) is referred to as the aperture of the fiber optic. For example, a typical fiber optic may have an aperture of 0.5, and an acceptance angle of 60°.
  • Consider using a fiber optic as a light source. One end is illuminated by a light source (such as light source 11 of FIG. 1), and the other is held near a surface. The fiber optic will emit a cone of light as illustrated in FIG. 4A. If the fiber optic is held perpendicular to a surface it will create a circular light pattern on the surface. As the fiber optic is raised, the radius r of the circle will increase. As the fiber optic is lowered, the radius of the light pattern will decrease. Thus, the intensity of the light (light energy per unit area) in the illuminated circular area will increase as the fiber optic is lowered and will decrease as the fiber optic is raised.
  • The same principle generally is true for a fiber optic being utilized as a receiver. Consider mounting a light sensor on one end of a fiber optic and holding the other end near an illuminated surface. The fiber optic can only propagate light without loss when the light entering the fiber optic is incident on the end of the fiber optic near the surface if the light enters the fiber optic within its acceptance angle phi. A fiber optic utilized as a light receiver near a surface will only accept and propagate light from the circular area of radius r on the surface. As the fiber optic is raised from the surface, the area increases. As the fiber optic is lowered to the surface, the area decreases.
  • Consider two fiber optics parallel to each other as illustrated in FIG. 4B. For simplicity of discussion, the two fiber optics illustrated are identical in size and aperture. The following discussion, however, generally would be applicable for fiber optics that differ in size and aperture. One fiber optic is a source fiber optic, the other fiber optic is a receiver fiber optic. As the two fiber optics are held perpendicular to a surface the source fiber optic emits a cone of light that illuminates a circular area of radius r. The receiver fiber optic can only accept light that is within its acceptance angle phi, or only light that is received within a cone of angle phi. If the only light available is that emitted by the source fiber optic, then the only light that can be accepted by the receiver fiber optic is the light that strikes the surface at the intersection of the two circles as illustrated in FIG. 4C. As the two fiber optics are lifted from the surface, the proportion of the intersection of the two circular areas relative to the circular area of the source fiber optic increases. As they near the surface, the proportion of the intersection of the two circular areas to the circular area of the source fiber optic decreases. If the fiber optics are held too close to the surface, the circular areas will no longer intersect and no light emitted from the source fiber optic will be received by the receiver fiber optic.
  • As discussed earlier, the intensity of the light in the circular area illuminated by the source fiber increases as the fiber is lowered to the surface. The intersection of the two cones, however, decreases as the fiber optic pair is lowered. Thus, as the fiber optic pair is lowered to a surface, the total intensity of light received by the receiver fiber optic increases to a maximal value, and then decreases sharply as the fiber optic pair is lowered still further to the surface. Eventually, the intensity will decrease essentially to zero (assuming the object being measured is not translucent, as described more fully herein), and will remain essentially zero until the fiber optic pair is in contact with the surface. Thus, as a source-receiver pair of fiber optics as described above are positioned near a surface and as their height is varied, the intensity of light received by the receiver fiber optic reaches a maximal value at a peaking or “critical height” hc.
  • Again without being bound by theory, an interesting property of the critical height hc has been observed. The critical height hc is a function primarily of the geometry of fixed parameters, such as fiber apertures, fiber diameters and fiber spacing. Since the receiver fiber optic in the illustrated arrangement is only detecting a maximum value and not attempting to quantify the value, its maximum in general is independent of the surface characteristics. It is only necessary that the surface reflect sufficient light from the intersecting area of the source and receiver fiber optics to be within the detection range of the receiver fiber optic light sensor. Thus, in general red or green or blue or any color surface will all exhibit a maximum at the same critical height hc. Similarly, smooth reflecting surfaces and rough surfaces also will have varying intensity values at the maximal value, but generally speaking all such surfaces will exhibit a maximum at the same critical height hc. The actual value of the light intensity will be a function of the color of the surface and of the surface characteristics, but the height where the maximum intensity value occurs in general will not. This is particularly true with respect to similar types or categories of materials such as teeth, industrial objects, etc.
  • Although the above discussion has focused on two fiber optics perpendicular to a surface, similar analysis is applicable for fiber optic pairs at other angles. When a fiber optic is not perpendicular to a surface, it generally illuminates an elliptical area. Similarly, the acceptance area of a receiver fiber optic generally becomes elliptical. As the fiber optic pair is moved closer to the surface, the receiver fiber optic also will detect a maximal value at a critical height independent of the surface color or characteristics. The maximal intensity value measured when the fiber optic pair is not perpendicular to the surface, however, will be less than the maximal intensity value measured when the fiber optic pair is perpendicular to the surface.
  • Referring now to FIGS. 5A and 5B, the intensity of light received as a fiber optic source-receiver pair is moved to and from a surface will now be described. FIG. 5A illustrates the intensity of the received light as a function of time. Corresponding FIG. 5B illustrates the height of the fiber optic pair from the surface of the object being measured. FIGS. 5A and 5B illustrate (for ease of discussion) a relatively uniform rate of motion of the fiber optic pair to and from the surface of the object being measured (although similar illustrations/analysis would be applicable for non-uniform rates as well).
  • FIG. 5A illustrates the intensity of received light as the fiber optic pair is moved to and then from a surface. While FIG. 5A illustrates the intensity relationship for a single receiver fiber optic, similar intensity relationships would be expected to be observed for other receiver fiber optics, such as, for example, the multiple receiver fiber optics of FIGS. 1 and 2. In general with the preferred embodiment described above, all fifteen fiber optic receivers (of fibers 7) will exhibit curves similar to that illustrated in FIG. 5A.
  • FIG. 5A illustrates five regions. In region 1, the probe is moved towards the surface of the object being measured, which causes the received light intensity to increase. In region 2, the probe is moved past the critical height, and the received light intensity peaks and then falls off sharply. In region 3, the probe essentially is in contact with the surface of the object being measured. As illustrated, the received intensity in region 3 will vary depending upon the translucence of the object being measured. If the object is opaque, the received light intensity will be very low, or almost zero (perhaps out of range of the sensing circuitry). If the object is translucent, however, the light intensity will be quite high, but in general should be less than the peak value. In region 4, the probe is lifted and the light intensity rises sharply to a maximum value. In region 5, the probe is lifted further away from the object, and the light intensity decreases again.
  • As illustrated, two peak intensity values (discussed as P1 and P2 below) should be detected as the fiber optic pair moves to and from the object at the critical height hc. If peaks P1 and P2 produced by a receiver fiber optic are the same value, this generally is an indication that the probe has been moved to and from the surface of the object to be measured in a consistent manner. If peaks P1 and P2 are of different values, then these may be an indication that the probe was not moved to and from the surface of the object in a desired manner, or that the surface is curved or textured, as described more fully herein. In such a case, the data may be considered suspect and rejected. In addition, peaks P1 and P2 for each of the perimeter fiber optics (see, e.g., FIG. 2) should occur at the same critical height (assuming the geometric attributes of the perimeter fiber optics, such as aperture, diameter and spacing from the source fiber optic, etc.). Thus, the perimeter fiber optics of a probe moved in a consistent, perpendicular manner to and from the surface of the object being measured should have peaks P1 and P2 that occur at the same critical height. Monitoring receiver fibers from the perimeter receiver fiber optics and looking for simultaneous (or near simultaneous, e.g., within a predetermined range) peaks P1 and P2 provides a mechanism for determining if the probe is held at a desired perpendicular angle with respect to the object being measured.
  • In addition, the relative intensity level in region 3 serves as an indication of the level of translucency of the object being measured. Again, such principles generally are applicable to the totality of receiver fiber optics in the probe (see, e.g., fibers 7 of FIGS. 1 and 3). Based on such principles, measurement techniques in accordance with the present invention will now be described.
  • FIG. 6 is a flow chart illustrating a measuring technique in accordance with the present invention. Step 49 indicates the start or beginning of a color/optical measurement. During step 49, any equipment initialization, diagnostic or setup procedures may be performed. Audio or visual information or other indicia may be given to the operator to inform the operator that the system is available and ready to take a measurement. Initiation of the color/optical measurement commences by the operator moving the probe towards the object to be measured, and may be accompanied by, for example, activation of switch 17 (see FIG. 1).
  • In step 50, the system on a continuing basis monitors the intensity levels for the receiver fiber optics (see, e.g., fibers 7 of FIG. 1). If the intensity is rising, step 50 is repeated until a peak is detected. If a peak is detected, the process proceeds to step 52. In step 52, measured peak intensity P1, and the time at which such peak occurred, are stored in memory (such as in memory included as a part of microprocessor 10), and the process proceeds to step 54. In step 54, the system continues to monitor the intensity levels of the receiver fiber optics. If the intensity is falling, step 54 is repeated. If a “valley” or plateau is detected (i.e., the intensity is no longer falling, which generally indicates contact or near contact with the object), then the process proceeds to step 56. In step 56, the measured surface intensity (IS) is stored in memory, and the process proceeds to step 58. In step 58, the system continues to monitor the intensity levels of the receiver fibers. If the intensity is rising, step 58 is repeated until a peak is detected. If a peak is detected, the process proceeds to step 60. In step 60, measured peak intensity P2, and the time at which such peak occurred, are stored in memory, and the process proceeds to step 62. In step 62, the system continues to monitor the intensity levels of the receiver fiber optics. Once the received intensity levels begin to fall from peak P2, the system perceives that region 5 has been entered (see, e.g., FIG. 5A), and the process proceeds to step 64.
  • In step 64, the system, under control of microprocessor 10, may analyze the collected data taken by the sensing circuitry for the various receiver fiber optics. In step 64, peaks P1 and P2 of one or more of the various fiber optics may be compared. If any of peaks P1 and P2 for any of the various receiver fiber optics have unequal peak values, then the data may be rejected, and the entire color measuring process repeated. Again, unequal values of peaks P1 and P2 may be indicative, for example, that the probe was moved in a non-perpendicular or otherwise unstable manner (i.e., angular or lateral movement), and, for example, peak P1 may be representative of a first point on the object, while peak P2 may be representative of a second point on the object. As the data is suspect, in a preferred embodiment of the present invention, data taken in such circumstances are rejected in step 64.
  • If the data are hot rejected in step 64, the process proceeds to step 66. In step 66, the system analyzes the data taken from the neutral-density-filtered receivers from each of the perimeter fiber optics (e.g., R1 to R3 of FIG. 2). If the peaks of the perimeter fiber optics did not occur at or about the same point in time, this may be indicative, for example, that the probe was not held perpendicular to the surface of the object being measured. As non-perpendicular alignment of the probe with the surface of the object being measured may cause suspect results, in a preferred embodiment of the present invention, data taken in such circumstances are rejected in step 66. In one preferred embodiment, detection of simultaneous or near simultaneous peaking (peaking within a predetermined range of time) serves as an acceptance criterion for the data, as perpendicular alignment generally is indicated by simultaneous or near simultaneous peaking of the perimeter fiber optics. In other embodiments, step 66 includes an analysis of peak values P1 and P2 of the perimeter fiber optics. In such embodiments, the system seeks to determine if the peak values of the perimeter fiber optics (perhaps normalized with any initial calibration data) are equal within a defined range. If the peak values of the perimeter fiber optics are within the defined range, the data may be accepted, and if not, the data may be rejected. In still other embodiments, a combination of simultaneous peaking and equal value detection are used as acceptance/rejection criteria for the data, and/or the operator may have the ability (such as through key pad switches 12) to control one or more of the acceptance criteria ranges. With such capability, the sensitivity of the system may be controllably altered by the operator depending upon the particular application and operative environment, etc.
  • If the data are not rejected in step 66, the process proceeds to step 68. In step 68, the data may be processed in a desired manner to produce output color/optical measurement data. For example, such data may be normalized in some manner, or adjusted based on temperature compensation or other data detected by the system. The data also may be converted to different display or other formats, depending on the intended use of the data. In addition, the data indicative of the translucence of the object also may be quantified and/or displayed in step 68. After step 68, the process may proceed to starting step 49, or the process may be terminated, etc.
  • In accordance with the process illustrated in FIG. 6, three light intensity values (P1, P2 and IS) are stored per receiver fiber optic to make color and translucency, etc., measurements. If stored peak values P1 and P2 are not equal (for some or all of the receivers), this is an indication that the probe was not held steady over one area, and the data may be rejected (in other embodiments, the data may not be rejected, although the resulting data may be used to produce an average of the measured data). In addition, peak values P1 and P2 for the three neutral density perimeter fiber optics should be equal or approximately equal; if this is not the case, then this is an indication that the probe was not held perpendicular or a curved surface is being measured. In other embodiments, the system attempts to compensate for curved surfaces and/or non-perpendicular angles. In any event, if the system cannot make a color/optical measurement, or if the data is rejected because peak values P1 and P2 are unequal to an unacceptable degree, then the operator is notified so that another measurement or other action may be taken (such as adjust the sensitivity).
  • With a system constructed and operating as described above, color/optical measurements may be taken of an object, with accepted data having height and angular dependencies removed. Data not taken at the critical height, or data not taken with the probe perpendicular to the surface of the object being measured, etc., are rejected in a preferred embodiment of the present invention. In other embodiments, data received from the perimeter fiber optics may be used to calculate the angle of the probe with respect to the surface of the object being measured, and in such embodiments non-perpendicular or curved surface data may be compensated instead of rejected. It also should be noted that peak values P1 and P2 for the neutral density perimeter fiber optics provide a measure of the luminance (gray value) of the surface of the object being measured, and also may serve to quantify the color value.
  • The translucency of the object being measured may be quantified as a ratio or percentage, such as, for example, (IS/P1)×100%. In other embodiments, other methods of quantifying translucency data provided in accordance with the present invention are utilized, such as some other arithmetic function utilizing IS and P1 or P2, etc.
  • In another particular aspect of the present invention, data generated in accordance with the present invention may be used to implement an automated material mixing/generation machine. Certain objects/materials, such as dental prostheses, are made from porcelain or other powders/materials that may be combined in the correct ratios to form the desired color of the object/prosthesis. Certain powders often contain pigments that generally obey Beer's law and/or act in accordance with Kubelka-Munk equations and/or Saunderson equations (if needed) when mixed in a recipe. Color and other data taken from a measurement in accordance with the present invention may be used to determine or predict desired quantities of pigment or other materials for the recipe. Porcelain powders and other materials are available in different colors, opacities, etc. Certain objects, such as dental prostheses, may be layered to simulate the degree of translucency of the desired object (such as to simulate a human tooth). Data generated in accordance with the present invention also may be used to determine the thickness and position of the porcelain or other material layers to more closely produce the desired color, translucency, surface characteristics, etc. In addition, based on fluorescence data for the desired object, the material recipe may be adjusted to include a desired quantity of fluorescing-type material. In yet other embodiments, surface characteristics (such as texture) information (as more fully described herein) may be used to add a texturing material to the recipe, all of which may be carried out in accordance with the present invention.
  • For more information regarding such pigment-material recipe type technology, reference may be made to: “The Measurement of Appearance,” Second Edition, edited by Hunter and Harold, copyright 1987; “Principles of Color Technology,” by Billmeyer and Saltzman, copyright 1981; and “Pigment Handbook,” edited by Lewis, copyright 1988. All of the foregoing are believed to have been published by John Wiley & Sons, Inc., New York, N.Y., and all of which are hereby incorporated by reference.
  • In certain operative environments, such as dental applications, contamination of the probe is of concern. In certain embodiments of the present invention, implements to reduce such contamination are provided.
  • FIGS. 7A and 7B illustrate a protective cap that may be used to fit over the end of probe tip 1. Such a protective cap consists of body 80, the end of which is covered by optical window 82, which in a preferred embodiment consists of a structure having a thin sapphire window. In a preferred embodiment, body 80 consists of stainless steel. Body 80 fits over the end of probe tip 1 and may be held into place by, for example, indentations formed in body 80, which fit with ribs 84 (which may be a spring clip or other retainer) formed on probe tip 1. In other embodiments, other methods of affixing such a protective cap to probe tip 1 are utilized. The protective cap may be removed from probe tip 1 and sterilized in a typical autoclave, hot steam, chemiclave or other sterilizing system.
  • The thickness of the sapphire window should be less than the critical height of the probe in order to preserve the ability to detect peaking in accordance with the present invention, and preferably has a thickness less than the minimal height at which the source/receiver cones overlap (see FIGS. 4B and 4C). It also is believed that sapphire windows may be manufactured in a reproducible manner, and thus any light attenuation from one cap to another may be reproducible. In addition, any distortion of the color/optical measurements produced by the sapphire window may be calibrated out by microprocessor 10.
  • Similarly, in other embodiments body 80 has a cap with a hole in the center (as opposed to a sapphire window), with the hole positioned over the fiber optic source/receivers. The cap with the hole serves to prevent the probe from coming into contact with the surface, thereby reducing the risk of contamination. It should be noted that, with such embodiments, the hole is positioned so that light from/to the light source/receiver elements of the probe tip is not adversely affected by the cap.
  • FIGS. 8A and 8B illustrate another embodiment of a removable probe tip that may be used to reduce contamination in accordance with the present invention. As illustrated in FIG. 8A, probe tip 88 is removable, and includes four (or a different number, depending upon the application) fiber optic connectors 90, which are positioned within optical guard 92. Optical guard 92 serves to prevent “cross talk” between adjacent fiber optics. As illustrated in FIG. 8B, in this embodiment removable tip 88 is secured in probe tip housing 92 by way of spring clip 96 (other removable retaining implements are utilized in other embodiments). Probe tip housing 92 may be secured to base connector 94 by a screw or other conventional fitting. It should be noted that, with this embodiment, different size tips may be provided for different applications, and that an initial step of the process may be to install the properly-sized (or fitted tip) for the particular application. Removable tip 88 also may be sterilized in a typical autoclave, hot steam, chemiclave or other sterilizing system, or disposed of. In addition, the entire probe tip assembly is constructed so that it may be readily disassembled for cleaning or repair. In certain embodiments the light source/receiver elements of the removable tip are constructed of glass, silica or similar materials, thereby making them particularly suitable for autoclave or similar high temperature/pressure cleaning methods, which in certain other embodiments the light source/receiver elements of the removable tip are constructed of plastic or other similar materials, which may be of lower cost, thereby making them particularly suitable for disposable-type removable tips, etc.
  • In still other embodiments, a plastic, paper or other type shield (which may be disposable, cleanable/reusable or the like) may be used in order to address any contamination concerns that may exist in the particular application. In such embodiments, the methodology may include positioning such a shield over the probe tip prior to taking color/optical measurements, and may include removing and disposing/cleaning the shield after taking color/optical measurements, etc.
  • With reference to FIG. 9, a tristimulus embodiment of the present invention will now be described. In general, the overall system depicted in FIG. 1 and discussed in detail elsewhere herein may be used with this embodiment. FIG. 9 illustrates a cross section of the probe tip fiber optics used in this embodiment.
  • Probe tip 100 includes central source fiber optic 106, surrounded by (and spaced apart from) three perimeter receiver fiber optics 104 and three color receiver fiber optics 102. Three perimeter receiver fiber optics 104 are optically coupled to neutral density filters and serve as height/angle sensors in a manner analogous to the embodiment describe above. Three color receiver fiber optics are optically coupled to suitable tristimulus filters, such as red, green and blue filters. With this embodiment, a measurement may be made of tristimulus color values of the object, and the process described with reference to FIG. 6 generally is applicable to this embodiment. In particular, perimeter fiber optics 104 may be used to detect simultaneous peaking or otherwise whether the probe is perpendicular to the object being measured. In addition, taking color measurement data at the critical height also may be used with this embodiment.
  • FIG. 10A illustrates an embodiment of the present invention, similar to the embodiment discussed with reference to FIG. 9. Probe tip 100 includes central source fiber optic 106, surrounded by (and spaced apart from) three perimeter receiver fiber optics 104 and a plurality of color receiver fiber optics 102. The number of color receiver fiber optics 102, and the filters associated with such receiver fiber optics 102, may be chosen based upon the particular application. As with the embodiment of FIG. 9, the process described with reference to FIG. 6 generally is applicable to this embodiment.
  • FIG. 10B illustrates an embodiment of the present invention in which there are a plurality of receiver fiber optics that surround central source fiber optic 240. The receiver fiber optics are arranged in rings surrounding the central source fiber optic. FIG. 10B illustrates three rings of receiver fiber optics (consisting of fiber optics 242, 244 and 246, respectively), in which there are six receiver fiber optics per ring. The rings may be arranged in successive larger circles as illustrated to cover the entire area of the end of the probe, with the distance from each receiver fiber optic within a given ring to the central fiber optic being equal (or approximately so). Central fiber optic 240 is utilized as the light source fiber optic and is connected to the light source in a manner similar to light source fiber optic 5 illustrated in FIG. 1.
  • The plurality of receiver fiber optics are each coupled to two or more fiber optics in a manner similar to the arrangement illustrated in FIG. 1 for splicing connector 4. One fiber optic from such a splicing connector for each receiver fiber optic passes through a neutral density filter and then to light sensor circuitry similar to the light sensor circuitry illustrated in FIG. 3. A second fiber optic from the splicing connector per receiver fiber optic passes through a Sharp Cutting Wrattan Gelatin Filter and then to light sensor circuitry as discussed elsewhere herein. Thus, each of the receiver fiber optics in the probe tip includes both color measuring elements and neutral light measuring or “perimeter” elements.
  • FIG. 10D illustrates the geometry of probe 260 (such as described above) illuminating an area on flat diffuse surface 272. Probe 260 creates light pattern 262 that is reflected diffusely from surface 272 in uniform hemispherical pattern 270. With such a reflection pattern, the reflected light that is incident upon the receiving elements in the probe will be equal (or nearly equal) for all elements if the probe is perpendicular to the surface as described above herein.
  • FIG. 10C illustrates a probe illuminating rough surface 268 or a surface that reflects light spectrally. Spectral reflected light will exhibit hot spots or regions where the reflected light intensity is considerably greater than it is on other areas. The reflected light pattern will be uneven when compared to a smooth surface as illustrate in FIG. 10D.
  • Since a probe as illustrated in FIG. 10B has a plurality of receiver fiber optics arranged over a large surface area, the probe may be utilized to determine the surface texture of the surface as well as being able to measure the color and translucency, etc., of the surface as described earlier herein. If the light intensity received by the receiver fiber optics is equal for all fiber optics within a given ring of receiver fiber optics, then generally the surface is diffuse and smooth. If, however, the light intensity of receiver fibers in a ring varies with respect to each other, then generally the surface is rough or spectral. By comparing the light intensities measured within receiver fiber optics in a given ring and from ring to ring the texture and other characteristics of the surface may be quantified.
  • FIG. 11 illustrates an embodiment of the present invention in which linear optical sensors and a color gradient filter are utilized instead of light sensors 8 (and filters 22, etc.). Receiver fiber optics 7, which may be optically coupled to probe tip 1 as with the embodiment of FIG. 1, are optically coupled to linear optical sensor 112 through color gradient filter 110. In this embodiment, color gradient filter 110 may consist of series of narrow strips of cut-off type filters on a transparent or open substrate, which are constructed so as to positionally correspond to the sensor areas of linear optical sensor 112. An example of a commercially available linear optical sensor 112 is Texas Instruments part number TSL213, which has 61 photo diodes in a linear array. Light receiver fiber optics 7 are arranged correspondingly in a line over linear optical sensor 112. The number of receiver fiber optics may be chosen for the particular application, so long as enough are included to more or less evenly cover the full length of color gradient filter 110. With this embodiment, the light is received and output from receiver fiber optics 7, and the light received by linear optical sensor 112 is integrated for a short period of time (determined by the light intensity, filter characteristics and desired accuracy). The output of linear array sensor 112 is digitized by ADC 114 and output to microprocessor 116 (which may the same processor as microprocessor 10 or another processor).
  • In general, with the embodiment of FIG. 11, perimeter receiver fiber optics may be used as with the embodiment of FIG. 1, and in general the process described with reference to FIG. 6 is applicable to this embodiment.
  • FIG. 12 illustrates an embodiment of the present invention in which a matrix optical sensor and a color filter grid are utilized instead of light sensors 8 (and filters 22, etc.). Receiver fiber optics 7, which may be optically coupled to probe tip 1 as with the embodiment of FIG. 1, are optically coupled to matrix optical sensor 122 through filter grid 120. Filter grid 120 is a filter array consisting of a number of small colored spot filters that pass narrow bands of visible light. Light from receiver fiber optics 7 pass through corresponding filter spots to corresponding points on matrix optical sensor 122. In this embodiment, matrix optical sensor 122 may be a monochrome optical sensor array, such as CCD-type or other type of light sensor element such as may be used in a video camera. The output of matrix optical sensor 122 is digitized by ADC 124 and output to microprocessor 126 (which may the same processor as microprocessor 10 or another processor). Under control of microprocessor 126, matrix optical sensor 126 collects data from receiver fiber optics 7 through color filter grid 120.
  • In general, with the embodiment of FIG. 12, perimeter receiver fiber optics may be used as with the embodiment of FIG. 1, and in general the process described with reference to FIG. 6 also is applicable to this embodiment.
  • As will be clear from the foregoing description, with the present invention a variety of types of spectral color/optical photometers (or tristimulus-type calorimeters) may be constructed, with perimeter receiver fiber optics used to collect color/optical data essentially free from height and angular deviations. In addition, in certain embodiments, the present invention enables color/optical measurements to be taken at a critical height from the surface of the object being measured, and thus color/optical data may be taken without physical contact with the object being measured (in such embodiments, the color/optical data is taken only by passing the probe through region 1 and into region 2, but without necessarily going into region 3 of FIGS. 5A and 5B). Such embodiments may be utilized if contact with the surface is undesirable in a particular application. In the embodiments described earlier, however, physical contact (or near physical contact) of the probe with the object may allow all five regions of FIGS. 5A and 5B to be utilized, thereby enabling measurements to be taken such that translucency information also may be obtained. Both types of embodiments generally are within the scope of the invention described herein.
  • Additional description will now be provided with respect to cut-off filters of the type described in connection with the preferred embodiment(s) of FIGS. 1 and 3 (such as filters 22 of FIG. 3). FIG. 13A illustrates the properties of a single Kodak Sharp Cutting Wratten Gelatin Filter discussed in connection with FIG. 3. Such a cut-off filter passes light below a cut-off frequency (i.e., above a cut-off wavelength). Such filters may be manufactured to have a wide range of cut-off frequencies/wavelengths. FIG. 13B illustrates a number of such filters, twelve in a preferred embodiment, with cut-off frequencies/wavelengths chosen so that essentially the entire visible band is covered by the collection of cut-off filters.
  • FIGS. 14A and 14B illustrate exemplary intensity measurements using a cut-off filter arrangement such as illustrated in FIG. 13B, first in the case of a white surface being measured (FIG. 14A), and also in the case of a blue surface being measured (FIG. 14B). As illustrated in FIG. 14A, in the case of a white surface, the neutrally filtered perimeter fiber optics, which are used to detect height and angle, etc., generally will produce the highest intensity (although this depends at least in part upon the characteristics of the neutral density filters). As a result of the stepped cut-off filtering provided by filters having the characteristics illustrated in FIG. 13B, the remaining intensities will gradually decrease in value as illustrated in FIG. 14A. In the case of a blue surface, the intensities will decrease in value generally as illustrated in FIG. 14B. Regardless of the surface, however, the intensities out of the filters will always decrease in value as illustrated, with the greatest intensity value being the output of the filter having the lowest wavelength cut-off value (i.e., passes all visible light up to blue), and the lowest intensity value being the output of the filter having the highest wavelength cut-off (i.e., passes only red visible light). As will be understood from the foregoing description, any color data detected that does not fit the decreasing intensity profiles of FIGS. 14A and 14B may be detected as an abnormality, and in certain embodiments detection of such a condition results in data rejection, generation of an error message or initiation of a diagnostic routine, etc.
  • Reference should be made to the FIGS. 1 and 3 and the related description for a detailed discussion of how such a cut-off filter arrangement may be utilized in accordance with the present invention.
  • FIG. 15 is a flow chart illustrating audio tones that may be used in certain preferred embodiments of the present invention. It has been discovered that audio tones (such as tones, beeps, voice or the like such as will be described) present a particularly useful and instructive means to guide an operator in the proper use of a color measuring system of the type described herein.
  • The operator may initiate a color/optical measurement by activation of a switch (such as switch 17 of FIG. 1) at step 150. Thereafter, if the system is ready (set-up, initialized, calibrated, etc.), a lower the probe tone is emitted (such as through speaker 16 of FIG. 1) at step 152. The system attempts to detect peak intensity P1 at step 154. If a peak is detected, at step 156 a determination is made whether the measured peak P1 meets the applicable criteria (such as discussed above in connection with FIGS. 5A, 5B and 6). If the measured peak P1 is accepted, a first peak acceptance tone is generated at step 160. If the measured peak P1 is not accepted, an unsuccessful tone is generated at step 158, and the system may await the operator to initiate a further color/optical measurement. Assuming that the first peak was accepted, the system attempts to detect peak intensity P2 at step 162. If a second peak is detected, at step 164 a determination is made whether the measured peak P2 meets the applicable criteria. If the measured peak P2 is accepted the process proceeds to color calculation step 166 (in other embodiments, a second peak acceptance tone also is generated at step 166). If the measured peak P2 is not accepted, an unsuccessful tone is generated at step 158, and the system may await the operator to initiate a further color/optical measurement. Assuming that the second peak was accepted, a color/optical calculation is made at step 166 (such as, for example, microprocessor 10 of FIG. 1 processing the data output from light sensors 8, etc.). At step 168, a determination is made whether the color calculation meets the applicable criteria. If the color calculation is accepted, a successful tone is generated at step 170. If the color calculation is not accepted, an unsuccessful tone is generated at step 158, and the system may await the operator to initiate a further color/optical measurement.
  • With unique audio tones presented to an operator in accordance with the particular operating state of the system, the operator's use of the system may be greatly facilitated. Such audio information also tends to increase operator satisfaction and skill level, as, for example, acceptance tones provide positive and encouraging feedback when the system is operated in a desired manner.
  • Further embodiments of the present invention will now be described with reference to FIGS. 16-18. The previously described embodiments generally rely on movement of the probe with respect to the object being measured. While such embodiments provide great utility in many applications, in certain applications, such as robotics, industrial control, automated manufacturing, etc. (such as positioning the object and/or the probe to be in proximity to each other, detecting color/optical properties of the object, and then directing the object, e.g., sorting, based on the detected color/optical properties, for further industrial processing, packaging, etc.) it may be desired to have the measurement made with the probe held or positioned substantially stationary above the surface of the object to be measured (in such embodiments, the positioned probe may not be handheld as with certain other embodiments).
  • FIG. 16 illustrates such a further embodiment. The probe of this embodiment includes a plurality of perimeter sensors and a plurality of color sensors coupled to receivers 312-320. The color sensors and related components, etc., may be constructed to operate in a manner analogous to previously described embodiments. For example, fiber optic cables or the like may couple light from source 310 that is received by receivers 312-320 to sharp cut-off filters, with the received light measured over precisely defined wavelengths (see, e.g., FIGS. 1, 3 and 11-14 and related description). Color/optical characteristics of the object may be determined from the plurality of color sensor measurements, which may include three such sensors in the case of a tristimulus instrument, or 8, 12, 15 or more color sensors for a more full bandwidth system (the precise number may be determined by the desired color resolution, etc.).
  • With this embodiment, a relatively greater number of perimeter sensors are utilized (as opposed, for example, to the three perimeter sensors used in certain preferred embodiments of the present invention). As illustrated in FIG. 16, a plurality of triads of receivers 312-320 coupled to perimeter sensors are utilized, where each triad in the preferred implementation consists of three fiber optics positioned equal distance from light source 310, which in the preferred embodiment is a central light source fiber optic. The triads of perimeter receivers/sensors may be configured as concentric rings of sensors around the central light source fiber optic. In FIG. 16, ten such triad rings are illustrated, although in other embodiments a lesser or greater number of triad rings may be utilized, depending upon the desired accuracy and range of operation, as well as cost considerations and the like.
  • The probe illustrated in FIG. 16 may operate within a range of heights (i.e., distances from the object being measured). As with earlier embodiments, such height characteristics are determined primarily by the geometry and constituent materials of the probe, with the spacing of the minimal ring of perimeter sensors determining the minimal height, and the spacing of the maximal ring of perimeter sensors determining the maximum height, etc. It therefore is possible to construct probes of various height ranges and accuracy, etc., by varying the number of perimeter sensor rings and the range of ring distances from the central source fiber optic. It should be noted that such embodiments may be particularly suitable when measuring similar types of materials, etc.
  • As described earlier, the light receiver elements for the plurality of receivers/perimeter sensors may be individual elements such as Texas Instruments TSL230 light-to-frequency converters, or may be constructed with rectangular array elements or the like such as may be found in a CCD camera. Other broadband-type of light measuring elements are utilized in other embodiments. Given the large number of perimeter sensors used in such embodiments (such as 30 for the embodiment of FIG. 16), an array such as CCD camera-type sensing elements may be desirable. It should be noted that the absolute intensity levels of light measured by the perimeter sensors is not as critical to such embodiments of the present invention; in such embodiments differences between the triads of perimeter light sensors are advantageously utilized in order to obtain optical measurements.
  • Optical measurements may be made with such a probe by holding/positioning the probe near the surface of the object being measured (i.e., within the range of acceptable heights of the particular probe). The light source providing light to light source 310 is turned on and the reflected light received by receivers 312-320 (coupled to the perimeter sensors) is measured. The light intensity of the rings of triad sensors is compared. Generally, if the probe is perpendicular to the surface and if the surface is flat, the light intensity of the three sensors of each triad should be approximately will be equal. If the probe is not perpendicular to the surface or if the surface is not flat, the light intensity of the three sensors within a triad will not be equal. It is thus possible to determine if the probe is perpendicular to the surface being measured, etc. It also is possible to compensate for non-perpendicular surfaces by mathematically adjusting the light intensity measurements of the color sensors with the variance in measurements of the triads of perimeters sensors.
  • Since the three sensors forming triads of sensors are at different distances (radii) from central light source 310, it is expected that the light intensities measured by light receivers 312-320 and the perimeter sensors will vary. For any given triad of sensors, as the probe is moved closer to the surface, the received light intensity will increase to a maximum and then sharply decrease as the probe is moved closer to the surface. As with previously described embodiments, the intensity decreases rapidly as the probe is moved less than the critical height and decreases rapidly to zero or almost zero for opaque objects. The value of the critical height depends principally upon the distance of the particular receiver from light source 310. Thus, the triads of sensors will peak at different critical heights. By analyzing the variation in light values received by the triads of sensors, the height of the probe can be determined. Again, this is particularly true when measuring similar types of materials.
  • The system initially is calibrated against a neutral background (e.g., a gray background), and the calibration values are stored in non-volatile memory (see, e.g., processor 10 of FIG. 1). For any given color or intensity, the intensity for the receivers/perimeter sensors (independent of distance from the central source fiber optic) in general should vary equally. Hence, a white surface should produce the highest intensities for the perimeter sensors, and a black surface will produce the lowest intensities. Although the color of the surface will affect the measured light intensities of the perimeter sensors, it should affect them substantially equally. The height of the probe from the surface of the object, however, will affect the triads of sensors differently. At the minimal height range of the probe, the triad of sensors in the smallest ring (those closest to the source fiber optic) will be at or about their maximal value. The rest of the rings of triads will be measuring light at intensities lower than their maximal values. As the probe is raised/positioned from the minimal height, the intensity of the smallest ring of sensors will decrease and the intensity of the next ring of sensors will increase to a maximal value and will then decrease in intensity as the probe is raised/positioned still further. Similarly for the third ring, fourth ring and so on. Thus, the pattern of intensities measured by the rings of triads will be height dependent. In such embodiments, characteristics of this pattern may be measured and stored in non-volatile RAM look-up tables (or the like) for the probe by calibrating it in a fixture using a neutral color surface. Again, the actual intensity of light is not as important in such embodiments, but the degree of variance from one ring of perimeter sensors to another is.
  • To determine a measure of the height of the probe from the surface being measured, the intensities of the perimeter sensors (coupled to receivers 312-320) is measured. The variance in light intensity from the inner ring of perimeter sensors to the next ring and so on is analyzed and compared to the values in the look-up table to determine the height of the probe. The determined height of the probe with respect to the surface thus may be utilized by the system processor to compensate for the light intensities measured by the color sensors in order to obtain reflectivity readings that are in general independent of height. As with previously described embodiments, the reflectivity measurements may then be used to determine optical characteristics of the object being measured, etc.
  • It should be noted that audio tones, such as previously described, may be advantageously employed when such an embodiment is used in a handheld configuration. For example, audio tones of varying pulses, frequencies and/or intensities may be employed to indicate the operational status of the instrument, when the instrument is positioned within an acceptable range for color measurements, when valid or invalid color measurements have been taken, etc. In general, audio tones as previously described may be adapted for advantageous use with such further embodiments.
  • FIG. 17 illustrates a further such embodiment of the present invention. The preferred implementation of this embodiment consists of a central light source 310 (which in the preferred implementation is a central light source fiber optic), surrounded by a plurality of light receivers 322 (which in the preferred implementation consists of three perimeter light receiver fiber optics). The three perimeter light receiver fiber optics, as with earlier described embodiments, may be each spliced into additional fiber optics that pass to light intensity receivers/sensors, which may be implemented with Texas Instruments TSL230 light to frequency converters as described previously. One fiber of each perimeter receiver is coupled to a sensor and measured full band width (or over substantially the same bandwidth) such as via a neutral density filter, and other of the fibers of the perimeter receivers are coupled to sensors so that the light passes through sharp cut off or notch filters to measure the light intensity over distinct frequency ranges of light (again, as with earlier described embodiments). Thus there are color light sensors and neutral “perimeter” sensors as with previously described embodiments. The color sensors are utilized to determine the color or other optical characteristics of the object, and the perimeter sensors are utilized to determine if the probe is perpendicular to the surface and/or are utilized to compensate for non-perpendicular angles within certain angular ranges.
  • In the embodiment of FIG. 17, the angle of the perimeter sensor fiber optics is mechanically varied with respect to the central source fiber optic. The angle of the perimeter receivers/sensors with respect to the central source fiber optic is measured and utilized as described hereinafter. An exemplary mechanical mechanism, the details of which are not critical so long as desired, control movement of the perimeter receivers with respect to the light source is obtained, is described with reference to FIG. 18.
  • The probe is held within the useful range of the instrument (determined by the particular configuration and construction, etc.), and a color measurement is initiated. The angle of the perimeter receivers/sensors with respect to the central light source is varied from parallel to pointing towards the central source fiber optic. While the angle is being varied, the intensities of the light sensors for the perimeter sensors (e.g., neutral sensors) and the color sensors is measured and saved along with the angle of the sensors at the time of the light measurement. The light intensities are measured over a range of angles. As the angle is increased the light intensity will increase to a maximum value and will then decrease as the angle is further increased. The angle where the light values is a maximum is utilized to determine the height of the probe from the surface. As will be apparent to those skilled in the art based on the teachings provided herein, with suitable calibration data, simple geometry may be utilized to calculate the height based on the data measured during variation of the angle. The height measurement may then be utilized to compensate for the intensity of the color/optical measurements and/or utilized to normalize color values, etc.
  • FIG. 18 illustrates an exemplary embodiment of a mechanical arrangement to adjust and measure the angle of the perimeter sensors. Each perimeter receiver/sensor 322 is mounted with pivot arm 326 on probe frame 328. Pivot arm 326 engages central ring 332 in a manner to form a cam mechanism. Central ring 332 includes a groove that holds a portion of pivot arm 326 to form the cam mechanism. Central ring 332 may be moved perpendicular with respect to probe frame 328 via linear actuator 324 and threaded spindle 330. The position of central ring 332 with respect to linear actuator 324 determines the angle of perimeter receivers/sensors 322 with respect to light source 310. Such angular position data vis-a-vis the position of linear actuator 324 may be calibrated in advance and stored in non-volatile memory, and later used to produce color/optical characteristic measurement data as previously described.
  • A further embodiment of the present invention utilizing an alternate removable probe tip will now be described with reference to FIGS. 19A-19C. As illustrated in FIG. 19A, this embodiment utilizes removable, coherent light conduit 340 as a removable tip. Light conduit 340 is a short segment of a light conduit that preferably may be a fused bundle of small fiber optics, in which the fibers are held essentially parallel to each other, and the ends of which are highly polished. Cross-section 350 of light conduit 340 is illustrated in FIG. 19B. Light conduits similar to light conduit 340 have been utilized in what are known as borescopes, and also have been utilized in medical applications such as endoscopes.
  • Light conduit 340 in this embodiment serves to conduct light from the light source to the surface of the object being measured, and also to receive reflected light from the surface and conduct it to light receiver fiber optics 346 in probe handle 344. Light conduit 340 is held in position with respect to fiber optics 346 by way or compression jaws 342 or other suitable fitting or coupled that reliably positions light conduit 340 so as to couple light effectively to/from fiber optics 346. Fiber optics 346 may be separated into separate fibers/light conduits 348, which may be coupled to appropriate light sensors, etc., as with previously described embodiments.
  • In general, the aperture of the fiber optics used in light conduit 340 may be chosen to match the aperture of the fiber optics for the light source and the light receivers. Thus, the central part of the light conduit may conduct light from the light source and illuminate the surface as if it constituted a single fiber within a bundle of fibers. Similarly, the outer portion of the light conduit may receive reflected light and conduct it to light receiver fiber optics as if it constituted single fibers. Light conduit 340 has ends that preferably are highly polished and cut perpendicular, particularly the end coupling light to fiber optics 346. Similarly, the end of fiber optics 346 abutting light conduit 340 also is highly polished and cut perpendicular to a high degree of accuracy in order to minimize light reflection and cross talk between the light source fiber optic and the light receiver fiber optics and between adjacent receiver fiber optics. Light conduit 340 offers significant advantages including in the manufacture and installation of such a removable tip. For example, the probe tip need not be particularly aligned with the probe tip holder; rather, it only needs to be held against the probe tip holder such as with a compression mechanism (such as with compression jaws 342) so as to couple light effectively to/from fiber optics 346. Thus, such a removable tip mechanism may be implemented without alignment tabs or the like, thereby facilitating easy installation of the removable probe tip. Such an easy installable probe tip may thus be removed and cleaned prior to installation, thereby facilitating use of the color/optical measuring apparatus by dentists, medical professions or others working in an environment in which contamination may be a concern. Light conduit 340 also may be implemented, for example, as a small section of light conduit, which may facilitate easy and low cost mass production and the like.
  • A further embodiment of such a light conduit probe tip is illustrated as light conduit 352 in FIG. 19C. Light conduit 352 is a light conduit that is narrower on one end (end 354) than the other end (end 356). Contoured/tapered light conduits such as light conduit 352 may be fabricated by heating and stretching a bundle of small fiber optics as part of the fusing process. Such light conduits have an additional interesting property of magnification or reduction. Such phenomena result because there are the same number of fibers in both ends. Thus, light entering narrow end 354 is conducted to wider end 356, and since wider end 356 covers a larger area, it has a magnifying affect.
  • Light conduit 352 of FIG. 19C may be utilized in a manner similar to light conduit 340 (which in general may be cylindrical) of FIG. 19A. Light conduit 352, however, measures smaller areas because of its reduced size at end 354. Thus, a relatively larger probe body may be manufactured where the source fiber optic is spaced widely from the receiver fiber optics, which may provide an advantage in reduced light reflection and cross talk at the junction, while still maintaining a small probe measuring area. Additionally, the relative sizes of narrow end 354 of light conduit 352 may be varied. This enables the operator to select the size/characteristic of the removable probe tip according to the conditions in the particular application. Such ability to select sizes of probe tips provides a further advantage in making optical characteristics measurements in a variety of applications and operative environments.
  • As should be apparent to those skilled in the art in view of the disclosures herein, light conduits 340 and 356 of FIGS. 19A and 19C need not necessarily be cylindrical/tapered as illustrated, but may be curved such as for specialty applications, in which a curved probe tip may be advantageously employed (such as in a confined or hard-to-reach place). It also should be apparent that light conduit 352 of FIG. 19C may be reversed (with narrow end 354 coupling light into fiber optics 346, etc., and wide end 356 positioned in order to take measurements) in order to cover larger areas.
  • Additionally, and to emphasize the wide utility and variability of various of the inventive concepts and techniques disclosed herein, it should be apparent to those skilled in the art in view of the disclosures herein that the apparatus and methodology may be utilized to measure the optical properties of objects using other optical focusing and gathering elements, in addition to the fiber optics employed in preferred embodiments herein. For example, lenses or mirrors or other optical elements may also be utilized to construct both the light source element and the light receiver element. A flashlight or other commonly available light source, as particular examples, may be utilized as the light source element, and a common telescope with a photoreceiver may be utilized as the receiver element in a large scale embodiment of the invention. Such refinements utilizing teachings provided herein are expressly within the scope of the present invention.
  • As will be apparent to those skilled in the art, certain refinements may be made in accordance with the present invention. For example, a central light source fiber optic is utilized in certain preferred embodiments, but other light source arrangements (such as a plurality of light source fibers, etc.). In addition, lookup tables are utilized for various aspects of the present invention, but polynomial type calculations could similarly be employed. Thus, although various preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and/or substitutions are possible without departing from the scope and spirit of the present invention as disclosed in the claims.
  • Reference is also made to copending international application filed on even date herewith under the Patent Cooperation Treaty, for “Apparatus and Method for Measuring Optical Characteristics of Teeth,” by the inventors hereof, which is hereby incorporated by reference.

Claims (2)

1. A method for determining optical characteristics of an object, comprising the steps of:
measuring the object by moving a probe in proximity to the object, wherein the probe provides light to the surface of the object from one or more light sources, and receives light reflected from the object through a plurality of light receivers;
determining the intensity of reflected light received by more than one of the light receivers with first sensors; and
measuring the optical characteristics of the object with second sensors based on light received by one or more of the light receivers in response to the intensity determinations made by the first sensors, wherein the measurement produces data indicative of the optical characteristics of the object.
2.-39. (canceled)
US12/217,512 1997-01-02 2008-07-03 Apparatus and method for measuring optical characteristics of an object Abandoned US20090073422A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/217,512 US20090073422A1 (en) 1997-01-02 2008-07-03 Apparatus and method for measuring optical characteristics of an object
US12/660,691 US20110255092A1 (en) 1997-01-02 2010-03-01 Apparatus and method for measuring optical characteristics of an object
US13/597,024 US8472012B2 (en) 1997-01-02 2012-08-28 Apparatus having a first optical sensor making a first measurement to detect position and a second optical sensor making a second measurement

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US09/091,208 US6233047B1 (en) 1997-01-02 1997-01-02 Apparatus and method for measuring optical characteristics of an object
PCT/US1997/000126 WO1997024587A1 (en) 1996-01-02 1997-01-02 Apparatus and method for measuring optical characteristics of an object
US09/586,539 US6301004B1 (en) 2000-05-31 2000-05-31 Apparatus and method for measuring optical characteristics of an object
US09/968,302 US6381017B2 (en) 1997-01-02 2001-10-01 Apparatus and method for measuring optical characteristics of an object
US10/134,087 US6570654B2 (en) 1997-01-02 2002-04-25 Apparatus and method for measuring optical characteristics of an object
US10/407,623 US6950189B2 (en) 1997-01-02 2003-04-04 Apparatus and method for measuring optical characteristics of an object
US11/235,969 US7110096B2 (en) 1997-01-02 2005-09-26 Method for determing optical characteristics through a protective barrier
US11/523,798 US7397541B2 (en) 1997-01-02 2006-09-18 Apparatus and method for measuring optical characteristics of an object
US12/217,512 US20090073422A1 (en) 1997-01-02 2008-07-03 Apparatus and method for measuring optical characteristics of an object

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/523,798 Continuation US7397541B2 (en) 1997-01-02 2006-09-18 Apparatus and method for measuring optical characteristics of an object

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/660,691 Continuation US20110255092A1 (en) 1997-01-02 2010-03-01 Apparatus and method for measuring optical characteristics of an object

Publications (1)

Publication Number Publication Date
US20090073422A1 true US20090073422A1 (en) 2009-03-19

Family

ID=24346160

Family Applications (9)

Application Number Title Priority Date Filing Date
US09/586,539 Expired - Lifetime US6301004B1 (en) 1997-01-02 2000-05-31 Apparatus and method for measuring optical characteristics of an object
US09/968,302 Expired - Lifetime US6381017B2 (en) 1997-01-02 2001-10-01 Apparatus and method for measuring optical characteristics of an object
US10/134,087 Expired - Fee Related US6570654B2 (en) 1997-01-02 2002-04-25 Apparatus and method for measuring optical characteristics of an object
US10/407,623 Expired - Fee Related US6950189B2 (en) 1997-01-02 2003-04-04 Apparatus and method for measuring optical characteristics of an object
US11/235,969 Expired - Fee Related US7110096B2 (en) 1997-01-02 2005-09-26 Method for determing optical characteristics through a protective barrier
US11/523,798 Expired - Fee Related US7397541B2 (en) 1997-01-02 2006-09-18 Apparatus and method for measuring optical characteristics of an object
US12/217,512 Abandoned US20090073422A1 (en) 1997-01-02 2008-07-03 Apparatus and method for measuring optical characteristics of an object
US12/660,691 Abandoned US20110255092A1 (en) 1997-01-02 2010-03-01 Apparatus and method for measuring optical characteristics of an object
US13/597,024 Expired - Fee Related US8472012B2 (en) 1997-01-02 2012-08-28 Apparatus having a first optical sensor making a first measurement to detect position and a second optical sensor making a second measurement

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US09/586,539 Expired - Lifetime US6301004B1 (en) 1997-01-02 2000-05-31 Apparatus and method for measuring optical characteristics of an object
US09/968,302 Expired - Lifetime US6381017B2 (en) 1997-01-02 2001-10-01 Apparatus and method for measuring optical characteristics of an object
US10/134,087 Expired - Fee Related US6570654B2 (en) 1997-01-02 2002-04-25 Apparatus and method for measuring optical characteristics of an object
US10/407,623 Expired - Fee Related US6950189B2 (en) 1997-01-02 2003-04-04 Apparatus and method for measuring optical characteristics of an object
US11/235,969 Expired - Fee Related US7110096B2 (en) 1997-01-02 2005-09-26 Method for determing optical characteristics through a protective barrier
US11/523,798 Expired - Fee Related US7397541B2 (en) 1997-01-02 2006-09-18 Apparatus and method for measuring optical characteristics of an object

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/660,691 Abandoned US20110255092A1 (en) 1997-01-02 2010-03-01 Apparatus and method for measuring optical characteristics of an object
US13/597,024 Expired - Fee Related US8472012B2 (en) 1997-01-02 2012-08-28 Apparatus having a first optical sensor making a first measurement to detect position and a second optical sensor making a second measurement

Country Status (1)

Country Link
US (9) US6301004B1 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254385B1 (en) 1997-01-02 2001-07-03 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of teeth
US6373573B1 (en) 2000-03-13 2002-04-16 Lj Laboratories L.L.C. Apparatus for measuring optical characteristics of a substrate and pigments applied thereto
US5759030A (en) * 1996-01-02 1998-06-02 Lj Laboratories, L.L.C. Method for determing optical characteristics of teeth
US6307629B1 (en) 1997-08-12 2001-10-23 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US6301004B1 (en) 2000-05-31 2001-10-09 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US6501542B2 (en) 1998-06-30 2002-12-31 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6870616B2 (en) * 1998-06-30 2005-03-22 Jjl Technologies Llc Spectrometer apparatus for determining an optical characteristic of an object or material having one or more sensors for determining a physical position or non-color property
US6573984B2 (en) 1998-06-30 2003-06-03 Lj Laboratories Llc Apparatus and method for measuring optical characteristics of teeth
US6249348B1 (en) * 1998-11-23 2001-06-19 Lj Laboratories, L.L.C. Integrated spectrometer assembly and methods
US6538726B2 (en) 1998-07-10 2003-03-25 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
BE1012272A5 (en) * 1998-11-06 2000-08-01 Biophotonics Sa Device and method for measuring image colored.
US7050168B2 (en) * 1999-12-08 2006-05-23 X-Rite, Incorporated Optical measurement device and related process
TW514996B (en) * 1999-12-10 2002-12-21 Tokyo Electron Ltd Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
US6362888B1 (en) 1999-12-23 2002-03-26 Lj Laboratories, L.L.C. Spectrometer assembly
US6414750B2 (en) 2000-01-10 2002-07-02 Lj Laboratories, L.L.C. Spectrometric apparatus and method for measuring optical characteristics of an object
US6674530B2 (en) * 2001-04-27 2004-01-06 International Business Machines Corporation Portable colorimeter
US6903813B2 (en) 2002-02-21 2005-06-07 Jjl Technologies Llc Miniaturized system and method for measuring optical characteristics
US8131332B2 (en) * 2002-04-04 2012-03-06 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence of various sites
US7773802B2 (en) * 2002-07-26 2010-08-10 Olympus Corporation Image processing system with multiple imaging modes
EP1528380A4 (en) 2002-07-26 2009-12-09 Olympus Corp Image processing system
US6837966B2 (en) * 2002-09-30 2005-01-04 Tokyo Electron Limeted Method and apparatus for an improved baffle plate in a plasma processing system
US7166166B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
US7166200B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate in a plasma processing system
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
US6798519B2 (en) * 2002-09-30 2004-09-28 Tokyo Electron Limited Method and apparatus for an improved optical window deposition shield in a plasma processing system
US7137353B2 (en) * 2002-09-30 2006-11-21 Tokyo Electron Limited Method and apparatus for an improved deposition shield in a plasma processing system
US7147749B2 (en) * 2002-09-30 2006-12-12 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system
US7351977B2 (en) 2002-11-08 2008-04-01 L-3 Communications Cincinnati Electronics Corporation Methods and systems for distinguishing multiple wavelengths of radiation and increasing detected signals in a detection system using micro-optic structures
US7095026B2 (en) * 2002-11-08 2006-08-22 L-3 Communications Cincinnati Electronics Corporation Methods and apparatuses for selectively limiting undesired radiation
KR100772740B1 (en) * 2002-11-28 2007-11-01 동경 엘렉트론 주식회사 Internal member of a plasma processing vessel
DE10256188A1 (en) * 2002-12-02 2004-06-24 Johann Wolfgang Goethe-Universität Frankfurt am Main reflectance spectrometer
KR101016913B1 (en) * 2003-03-31 2011-02-22 도쿄엘렉트론가부시키가이샤 A barrier layer for a processing element and a method of forming the same
DE10317447A1 (en) * 2003-04-16 2004-11-18 Nexpress Solutions Llc Method and sensor device for detecting colors
US7064830B2 (en) * 2003-06-12 2006-06-20 Eastman Kodak Company Dental color imaging system
CN1910431A (en) * 2004-01-23 2007-02-07 奥林巴斯株式会社 Image processing system and camera
US7466416B2 (en) * 2004-04-30 2008-12-16 X-Rite, Inc. Color measurement system
EP1607041B1 (en) * 2004-06-17 2008-01-16 Cadent Ltd. Method for providing data associated with the intraoral cavity
EP1849411B1 (en) 2004-06-17 2019-12-25 Align Technology, Inc. Method for providing data associated with the intraoral cavity
JP5461753B2 (en) * 2004-07-30 2014-04-02 オリンパス株式会社 Endoscope device
US7351245B2 (en) * 2004-09-21 2008-04-01 Bernice Joy Rozinsky Apparatus and method for dislodging object from throat
GB0421469D0 (en) * 2004-09-27 2004-10-27 Dt Assembly & Test Europ Ltd Apparatus for monitoring engine exhaust
KR100713414B1 (en) * 2004-11-24 2007-05-04 삼성전자주식회사 Portable communication device with up/down keys
EP1694048B1 (en) * 2005-02-16 2013-01-09 X-Rite Europe GmbH Colour measuring device and measuring method therefor
EP1736756A1 (en) * 2005-06-20 2006-12-27 Bp Oil International Limited Development of disposable/Sealable tips for near infra-red (NIR) spectroscopic probes
US7483151B2 (en) * 2006-03-17 2009-01-27 Alpineon D.O.O. Active 3D triangulation-based imaging method and device
JP5094730B2 (en) * 2006-10-23 2012-12-12 オリンパス株式会社 Spectroscopic endoscope and operating method of spectroscopic endoscope
JP5118867B2 (en) * 2007-03-16 2013-01-16 オリンパス株式会社 Endoscope observation apparatus and operation method of endoscope
DE102008033556A1 (en) * 2008-03-14 2009-09-17 Kaltenbach & Voigt Gmbh Light source for a dental device
WO2010022079A1 (en) * 2008-08-18 2010-02-25 Board Of Regents, The University Of Texas System System and methods for diagnosis of epithelial lesions
US20120057145A1 (en) * 2008-08-18 2012-03-08 Tunnell James W Systems and methods for diagnosis of epithelial lesions
EP2373249B1 (en) 2008-12-30 2018-04-11 Ultradent Products, Inc. Dental curing light having unibody design that acts as a heat sink
CN101799328B (en) * 2009-02-10 2011-11-09 致茂电子股份有限公司 Method for constructing light source measurement contrast table, light source measuring method and system
US20140247442A1 (en) * 2010-07-27 2014-09-04 Microptix Technologies, Llc Spectroradiometer device and applications of same
US9436868B2 (en) * 2010-09-10 2016-09-06 Dimensional Photonics International, Inc. Object classification for measured three-dimensional object scenes
US9449451B2 (en) * 2013-10-14 2016-09-20 Michael J. Hall Coin identifier
US9233507B2 (en) * 2013-11-22 2016-01-12 Charles Bibas 3D printing apparatus with sensor device
CN104127253B (en) * 2014-08-11 2016-02-03 福州大学 A kind of seamless appliance Orthodontic force measuring method that there is coating thickness and compensate
US10871031B1 (en) * 2017-03-13 2020-12-22 Wing Enterprises, Incorporated Methods of fabricating composite articles and related articles and structures
USD900580S1 (en) * 2019-01-11 2020-11-03 Hong Ann Tool Industries Co., Ltd. Hand tool
USD900581S1 (en) * 2019-01-11 2020-11-03 Hong Ann Tool Industries Co., Ltd. Hand tool
US20230314317A1 (en) * 2022-03-31 2023-10-05 Logistics and Supply Chain MultiTech R&D Centre Limited Method and system for material classification of an object

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233047B1 (en) * 1997-01-02 2001-05-15 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object

Family Cites Families (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327584A (en) * 1963-09-09 1967-06-27 Mechanical Tech Inc Fiber optic proximity probe
US3436157A (en) 1966-04-08 1969-04-01 Hans Adler Color and surface structure comparator
US3555262A (en) 1968-05-07 1971-01-12 Dainippon Screen Mfg Apparatus for production of color separation records
US3507042A (en) 1969-04-14 1970-04-21 Dahlin Dental Lab Color matching system for teeth
US3663813A (en) * 1970-01-19 1972-05-16 American Cyanamid Co Optical reader for luminescent codes luminescing in different wavelengths
NL7106648A (en) 1970-05-18 1971-11-22 Kyoto Daiichi Kagaku Kk
US3684868A (en) 1970-10-29 1972-08-15 Ncr Co Color bar code tag reader with light-emitting diodes
US3709612A (en) * 1971-03-10 1973-01-09 Miles Lab Apparatus for measuring reflected light under stabilized light source conditions
US3778541A (en) 1971-09-03 1973-12-11 Itek Corp System for analyzing multicolored scenes
US3792928A (en) * 1972-02-28 1974-02-19 Schlumberger Compteurs Fiber optics distance converting technique
DE2256355A1 (en) 1972-06-01 1973-12-13 Swinson Jun METHOD AND DEVICE FOR COLOR DETERMINATION OR. ADAPTING OBJECTS, FOR EXAMPLE TEETH
US3748741A (en) 1972-06-08 1973-07-31 J Yerkes Model for tooth color matching
US3940608A (en) * 1974-02-04 1976-02-24 Mechanical Technology Incorporated Fiber optic displacement measuring apparatus
US3986777A (en) 1974-08-22 1976-10-19 Weber Dental Mfg. Co., Div. Of Sterndent Corporation Tristimulus colorimeter for use in the fabrication of artificial teeth
US4125329A (en) 1976-09-07 1978-11-14 Sterndent Corporation Tristimulus colorimeter
US4115922A (en) 1976-09-20 1978-09-26 Alderman C Gale Dental crown and bridge shading system
US4054389A (en) 1976-09-23 1977-10-18 International Business Machines Corporation Spectrophotometer with photodiode array
US4088890A (en) 1976-09-28 1978-05-09 United Technologies Corporation Optical position detector
US4184175A (en) 1977-02-09 1980-01-15 The Procter & Gamble Company Method of and apparatus for optically detecting anomalous subsurface structure in translucent articles
JPS53106031A (en) 1977-02-28 1978-09-14 Asahi Optical Co Ltd Strobo luminous control device using light measuring circuit for focal plane shutter type camera
DE2726606A1 (en) 1977-06-13 1978-12-21 Max Planck Gesellschaft MEDICAL SPECTRAL PHOTOMETER
US4207678A (en) 1977-09-26 1980-06-17 Jeannette William W Multiple dental shade guide system
US4150287A (en) * 1978-02-01 1979-04-17 Amf Incorporated Optical system for use with color sorter or grader
US4187175A (en) * 1978-06-23 1980-02-05 Robert Filter Manufacturing Company Treatment facility with backwash control system
US4269512A (en) 1979-02-21 1981-05-26 Nosler John C Electro-optical position-monitoring apparatus with tracking detector
US4290433A (en) 1979-08-20 1981-09-22 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible luminescence
DE2936847A1 (en) 1979-09-12 1981-03-19 Paul Dr. 6054 Rodgau Heitlinger METHOD FOR PRODUCING DENTAL SPARE AND DEVICE FOR IMPLEMENTING THE METHOD
FR2465213A1 (en) * 1979-09-13 1981-03-20 Oreal APPARATUS FOR DIGITAL COLORING OR COLOR MODIFICATION OF AN OBJECT
DE3003435A1 (en) 1980-01-31 1981-08-06 Becker Dental-Labor Gmbh, 5100 Aachen METHOD AND DEVICE FOR PRODUCING A CROWN PART
US4345840A (en) 1980-04-08 1982-08-24 California Institute Of Technology Method and apparatus for instantaneous band ratioing in a reflectance radiometer
US4278353A (en) 1980-04-11 1981-07-14 Bell Telephone Laboratories, Incorporated Optical inspection of gold surfaces
US4382784A (en) 1980-07-02 1983-05-10 Freller Robert T Custom dental shade guide selector and method for its use
DE3038786A1 (en) 1980-10-14 1982-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München METHOD FOR MEASURING THE COLOR OF THE GUM
US4575805A (en) 1980-12-24 1986-03-11 Moermann Werner H Method and apparatus for the fabrication of custom-shaped implants
US4505589A (en) 1981-04-03 1985-03-19 Gretag Aktiengesellschaft Process and apparatus for the colorimetric analysis of printed material
GB2115175A (en) 1982-01-05 1983-09-01 Eastman Kodak Co Fibre optics head featuring core spacing to block specular reflection
US4464054A (en) 1982-05-27 1984-08-07 Pacific Scientific Company Colorimeter instrument with fiber optic ring illuminator
DE3226370A1 (en) 1982-07-14 1984-01-19 Compur-Electronic GmbH, 8000 München REMISSION MEASURING HEAD
DE3226372A1 (en) 1982-07-14 1984-01-19 Compur-Electronic GmbH, 8000 München METHOD AND DEVICE FOR MEASURING REMISSIONS
US4434654A (en) 1982-08-09 1984-03-06 Sundstrand Data Control, Inc. Borehole orientation detection system employing polarized radiation
US4589846A (en) * 1982-09-29 1986-05-20 Annoni Jerry D Tooth transilluminating light holder
US4487206A (en) 1982-10-13 1984-12-11 Honeywell Inc. Fiber optic pressure sensor with temperature compensation and reference
FR2539613B1 (en) 1983-01-24 1990-06-29 Univ Duke METABOLISM CONTROL APPARATUS
US5671735A (en) 1983-07-18 1997-09-30 Chromatics Color Sciences International, Inc. Method and apparatus for detecting and measuring conditions affecting color
US4654794A (en) 1984-02-18 1987-03-31 Colorgen, Inc. Methods for determining the proper coloring for a tooth replica
EP0167750A2 (en) 1984-06-13 1986-01-15 Abbott Laboratories Spectrophotometer
US4773063A (en) 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
DE3686184T2 (en) 1985-03-21 1993-02-25 Abbott Lab SPECTRAL PHOTOMETER.
US4730922A (en) 1985-05-08 1988-03-15 E. I. Du Pont De Nemours And Company Absorbance, turbidimetric, fluorescence and nephelometric photometer
US4707138A (en) * 1985-06-03 1987-11-17 Filper Industries, Inc. Color measuring and control device
US4653905A (en) * 1985-08-21 1987-03-31 Newport Corporation Fiber optic range finder systems
FR2591470B1 (en) 1985-12-13 1992-05-15 Bertin & Cie COLOR DETERMINATION METHOD AND DEVICE, IN PARTICULAR FOR A DENTAL PROSTHESIS
EP0234579B1 (en) 1986-02-26 1995-01-11 Fuji Photo Film Co., Ltd. Reflection density measuring system
US4909633A (en) * 1986-05-12 1990-03-20 Minolta Camera Kabushiki Kaisha Multi-channel spectral light measuring device
GB2193803A (en) 1986-07-04 1988-02-17 De La Rue Syst Monitoring diffuse reflectivity
FR2604252B1 (en) 1986-09-22 1990-09-14 Crouzet Sa DISPLACEMENT SENSOR AND FIBER OPTIC PROXIMITY
EP0266682B1 (en) 1986-11-07 1993-07-14 The Perkin-Elmer Corporation Spectrophotometer with line frequency slaved voltage-to-frequency converter system
US4728290A (en) 1987-04-28 1988-03-01 Eisner Mark R Dental hand piece shield or prophylactic
US5028139A (en) 1987-07-16 1991-07-02 Miles Inc. Readhead for reflectance measurement of distant samples
ATE87737T1 (en) 1987-12-03 1993-04-15 Siemens Ag COLOR SENSOR ARRANGEMENT FOR DETECTING OBJECTS WITH COLORED SURFACES.
US4957371A (en) 1987-12-11 1990-09-18 Santa Barbara Research Center Wedge-filter spectrometer
US4798951A (en) 1987-12-14 1989-01-17 Consolidated Controls Corporation Fiber optic displacement transducer with dichroic target
US4870267A (en) 1988-01-13 1989-09-26 The Boeing Company Ambient light sensitive activator
US4914512A (en) 1988-01-19 1990-04-03 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of displaying hemoglobin concentration on color image
US4844617A (en) 1988-01-20 1989-07-04 Tencor Instruments Confocal measuring microscope with automatic focusing
US4881811A (en) 1988-02-16 1989-11-21 Colorgen, Inc. Remote color measurement device
US4886355A (en) 1988-03-28 1989-12-12 Keane Thomas J Combined gloss and color measuring instrument
US4966458A (en) 1988-05-06 1990-10-30 Milton Roy Company Optical system for a multidetector array spectrograph
US5212256A (en) * 1988-05-24 1993-05-18 Sumitomo Chemical Co., Ltd. Thermoplastic resin composition
US5106195A (en) * 1988-06-09 1992-04-21 Oms - Optical Measuring Systems Product discrimination system and method therefor
KR900702340A (en) 1988-07-14 1990-12-06 원본미기재 Computerized Color Matching Method and Apparatus
DE3837710A1 (en) 1988-11-07 1990-05-10 Statomat Globe Maschf METHOD AND DEVICE FOR ALIGNING THE SHEATHED END OF ROUND CABLES
US4878485A (en) 1989-02-03 1989-11-07 Adair Edwin Lloyd Rigid video endoscope with heat sterilizable sheath
US4986671A (en) 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
CA2011517C (en) 1989-05-15 1998-04-21 Gordon W. Arbeitman Flat touch screen workpad for a data processing system
US5017772A (en) 1989-05-30 1991-05-21 Bei Electronics, Inc. Fiber optic probe sensor for measuring target displacement
US4970496A (en) * 1989-09-08 1990-11-13 Lee Mechanical, Inc. Vehicular monitoring system
US5164597A (en) 1989-09-29 1992-11-17 University Of Kentucky Research Foundation Method and apparatus for detecting microorganisms within a liquid product in a sealed vial
US5313260A (en) 1989-10-12 1994-05-17 High Tech Concepts & Inventions Corporation Photosensitive probes
US5257617A (en) 1989-12-25 1993-11-02 Asahi Kogaku Kogyo Kabushiki Kaisha Sheathed endoscope and sheath therefor
US5142383A (en) 1990-01-25 1992-08-25 American Banknote Holographics, Inc. Holograms with discontinuous metallization including alpha-numeric shapes
US5095210A (en) 1990-04-06 1992-03-10 The Dow Chemical Company Multilayer film indicator for determining the integrity or authenticity of an item and process for using same
US5166755A (en) 1990-05-23 1992-11-24 Nahum Gat Spectrometer apparatus
US5149963A (en) 1990-07-03 1992-09-22 Parker Hannifin Corporation Fiber-optic position sensor including photovoltaic bi-cell
US5139335A (en) 1990-08-24 1992-08-18 Sets, Inc. Holographic grating imaging spectrometer
US5103085A (en) 1990-09-05 1992-04-07 Zimmerman Thomas G Photoelectric proximity detector and switch
DE9012977U1 (en) 1990-09-12 1991-01-31 Nordmeier, Dieter, 2390 Flensburg Tooth color determination
JP2855008B2 (en) 1990-10-03 1999-02-10 富士写真フイルム株式会社 Image processing method and apparatus
US5245404A (en) 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
FR2669526B1 (en) 1990-11-26 1993-02-19 Tretout Jean Pierre DEVICE FOR PREPARING A DEFINED QUANTITY OF A DENTAL RESTORATION MATERIAL.
US5193525A (en) 1990-11-30 1993-03-16 Vision Sciences Antiglare tip in a sheath for an endoscope
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5401967A (en) 1990-12-26 1995-03-28 Colorado Seminary Dba University Of Denver Apparatus for remote analysis of vehicle emissions
US5684807A (en) 1991-04-02 1997-11-04 Carnegie Mellon University Adaptive distributed system and method for fault tolerance
US5784507A (en) 1991-04-05 1998-07-21 Holm-Kennedy; James W. Integrated optical wavelength discrimination devices and methods for fabricating same
US5131844A (en) 1991-04-08 1992-07-21 Foster-Miller, Inc. Contact digitizer, particularly for dental applications
US5229841A (en) 1991-07-10 1993-07-20 Eaton Corporation Color sensor employing optical fiber bundles with varied diameters
US5159199A (en) 1991-08-12 1992-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Integrated filter and detector array for spectral imaging
US5387977A (en) * 1991-09-04 1995-02-07 X-Rite, Incorporated Multiangular color measuring apparatus
US5650940A (en) 1991-10-25 1997-07-22 Kabushiki Kaisha Toshiba Process monitoring system with remote supervision
FR2685477B1 (en) 1991-12-23 1994-04-01 Bertin Et Cie METHOD AND DEVICE FOR DETERMINING THE COLOR OF A TRANSLUCENT OBJECT, SUCH AS A TOOTH.
US5309257A (en) 1991-12-31 1994-05-03 Eastman Kodak Company Method and apparatus for providing color matching between color output devices
DE4200741C2 (en) 1992-01-14 2000-06-15 Kaltenbach & Voigt Device for the detection of caries on teeth
JP2914807B2 (en) 1992-01-16 1999-07-05 キヤノン株式会社 Light receiving sensor for distance measurement
EP0553712A1 (en) 1992-01-29 1993-08-04 Kaltenbach & Voigt Gmbh & Co. Laser treatment device, especially for medical or dental use
US5369261A (en) 1992-02-12 1994-11-29 Shamir; Harry Multi-color information encoding system
EP0557658B1 (en) 1992-02-24 1997-05-07 Hewlett-Packard Company Raman spectroscopy of respiratory gases
US5533628A (en) 1992-03-06 1996-07-09 Agri Tech Incorporated Method and apparatus for sorting objects by color including stable color transformation
US5273429A (en) 1992-04-03 1993-12-28 Foster-Miller, Inc. Method and apparatus for modeling a dental prosthesis
DE4211547C2 (en) 1992-04-06 1994-08-11 Henke Sass Wolf Gmbh Protective cover for the distal end of endoscopes
US5308771A (en) 1992-04-13 1994-05-03 Geo-Centers, Inc. Chemical sensors
JP2943499B2 (en) 1992-04-22 1999-08-30 日本電気株式会社 Height measuring method and device
EP0568236B1 (en) 1992-04-29 1999-06-16 AT&T Corp. Efficient reflective optical multiplexers and demultiplexers
DE4214876C2 (en) 1992-05-05 2000-07-06 Kaltenbach & Voigt Optical measurement of teeth without a matt surface treatment
US5369481A (en) 1992-05-08 1994-11-29 X-Rite, Incorporated Portable spectrophotometer
US5434412A (en) 1992-07-15 1995-07-18 Myron J. Block Non-spectrophotometric measurement of analyte concentrations and optical properties of objects
GB9215584D0 (en) 1992-07-22 1992-09-02 Holman Martin R Monitoring device
US5214274A (en) * 1992-07-24 1993-05-25 President And Fellows Of Harvard College Image sensor array with threshold voltage detectors and charged storage capacitors
JP3215175B2 (en) 1992-08-10 2001-10-02 シスメックス株式会社 Particle analyzer
US5270818A (en) 1992-09-17 1993-12-14 Alliedsignal Inc. Arrangement for automatically controlling brightness of cockpit displays
JPH0797388B2 (en) 1992-09-29 1995-10-18 日本発条株式会社 Object identification structure
US5498157A (en) 1992-10-07 1996-03-12 Hall; Neil R. Dental color mixture indicator device
US5371586A (en) 1992-10-09 1994-12-06 Instruments Sa, Inc. Low aberration diffraction grating system
US5467289A (en) 1992-10-15 1995-11-14 Mitutoyo Corporation Method of and an apparatus for measuring surface contour
US5286980A (en) 1992-10-30 1994-02-15 Oms-Optical Measuring Systems Product discrimination system and method therefor
EP0667753B1 (en) 1992-11-09 2000-01-19 Ormco Corporation Custom orthodontic appliance forming method and apparatus
CA2084152A1 (en) 1992-11-30 1994-05-31 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of National Defence Optical apparatus
US5477332A (en) 1992-12-17 1995-12-19 Mcdonnell Douglas Corporation Digital image system and method for determining surface reflective and refractive characteristics of objects
FR2699677B1 (en) 1992-12-22 1995-03-03 Bertin & Cie Method and device for determining the color of a transparent, diffusing and absorbing object, such as in particular a tooth.
US5410410A (en) 1992-12-29 1995-04-25 Mitutoyo Corporation Non-contact type measuring device for measuring three-dimensional shape using optical probe
JP2752309B2 (en) 1993-01-19 1998-05-18 松下電器産業株式会社 Display device
US5583631A (en) 1993-02-11 1996-12-10 Mantegazza Antonio Arti Grafiche S.R.L. Anticounterfeit security device . . . including two security elements
US5483335A (en) 1993-03-18 1996-01-09 Tobias; Reginald Multiplex spectroscopy
US5619936A (en) * 1993-05-28 1997-04-15 Kleen Soil Technologies, L.C. Thermal desorption unit and processes
US5479252A (en) 1993-06-17 1995-12-26 Ultrapointe Corporation Laser imaging system for inspection and analysis of sub-micron particles
DE69414323T2 (en) 1993-08-06 1999-05-27 Toyota Jidosha K.K., Toyota, Aichi Process for reproducing a color
US5410413A (en) 1993-08-18 1995-04-25 Petrometrix Ltd. Optical head probe using a gradient index lens and optical fibers
US5946220A (en) 1993-08-25 1999-08-31 Lemelson; Jerome H. Computer operated material processing systems and method
US5850195A (en) 1993-09-09 1998-12-15 Texas Instruments Incorporated Monolithic light-to-digital signal converter
US5487661A (en) 1993-10-08 1996-01-30 Dentsply International, Inc. Portable dental camera and system
US5404218A (en) 1993-11-18 1995-04-04 The United States Of America As Represented By The United States Department Of Energy Fiber optic probe for light scattering measurements
US5560355A (en) 1993-12-17 1996-10-01 Nellcor Puritan Bennett Incorporated Medical sensor with amplitude independent output
US5450203A (en) * 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
JPH07270238A (en) * 1994-03-30 1995-10-20 Minolta Co Ltd Colorimetry device
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5483259A (en) * 1994-04-12 1996-01-09 Digital Light & Color Inc. Color calibration of display devices
ATE182703T1 (en) 1994-05-06 1999-08-15 Schablonentechnik Kufstein Ag OPTICAL READING DEVICE
JPH07311331A (en) 1994-05-18 1995-11-28 Nikon Corp Camera provided with line-of-sight detection device
DE59402605D1 (en) 1994-05-19 1997-06-05 Schablonentechnik Kufstein Ag Device for determining the color value of a luminous flux
JP3417051B2 (en) * 1994-05-20 2003-06-16 東洋インキ製造株式会社 Color information processing method and apparatus using feature parameter values independent of light source
US5537052A (en) 1994-06-17 1996-07-16 Emc Corporation System and method for executing on board diagnostics and maintaining an event history on a circuit board
US5453838A (en) 1994-06-17 1995-09-26 Ceram Optec Industries, Inc. Sensing system with a multi-channel fiber optic bundle sensitive probe
US5543920A (en) 1994-08-10 1996-08-06 Kollmorgen Corporation System and method for sensing color and preventing use of unauthorized color formulation software
CA2199868C (en) 1994-09-14 2000-05-16 David R. Bowden Compact spectrophotometer
US5754283A (en) 1994-10-26 1998-05-19 Byk-Gardner Usa, Division Of Atlana Color measuring device having interchangeable optical geometries
US5742060A (en) 1994-12-23 1998-04-21 Digirad Corporation Medical system for obtaining multiple images of a body from different perspectives
US5565976A (en) 1995-01-18 1996-10-15 Abbott Laboratories Method and apparatus for detecting and compensating for a kink in an optic fiber
US5625459A (en) 1995-03-03 1997-04-29 Galileo Electro-Optics Corporation Diffuse reflectance probe
US5695949A (en) 1995-04-07 1997-12-09 Lxn Corp. Combined assay for current glucose level and intermediate or long-term glycemic control
JPH08336069A (en) 1995-04-13 1996-12-17 Eastman Kodak Co Electronic still camera
US5609978A (en) 1995-06-06 1997-03-11 Eastman Kodak Company Method for producing an electronic image from a photographic element
US5766006A (en) 1995-06-26 1998-06-16 Murljacic; Maryann Lehmann Tooth shade analyzer system and methods
US5760760A (en) 1995-07-17 1998-06-02 Dell Usa, L.P. Intelligent LCD brightness control system
US5690486A (en) 1995-07-28 1997-11-25 Dentalase Corporation Dental tooth color detector apparatus and method
JP3006671B2 (en) 1995-08-21 2000-02-07 日本電気株式会社 Optical branch circuit and transmission line setting method thereof
JP3463717B2 (en) 1995-08-24 2003-11-05 三菱電機株式会社 WDM optical transmission apparatus and WDM optical transmission system
US5671043A (en) 1995-10-03 1997-09-23 Cambridge Technology, Inc. Optical position detector for determining the angular position of a rotatable element
US5668633A (en) 1995-10-03 1997-09-16 General Electric Company Method and system for formulating a color match
US5845077A (en) 1995-11-27 1998-12-01 Microsoft Corporation Method and system for identifying and obtaining computer software from a remote computer
EP0777113A1 (en) 1995-12-01 1997-06-04 MHT Optic Research AG Method and device for determination of colour value of transparent bodies
US6205716B1 (en) 1995-12-04 2001-03-27 Diane P. Peltz Modular video conference enclosure
US5745229A (en) 1996-01-02 1998-04-28 Lj Laboratories, L.L.C. Apparatus for determining optical characteristics of an object
US6254385B1 (en) * 1997-01-02 2001-07-03 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of teeth
US5966205A (en) 1997-07-01 1999-10-12 Lj Laboratories, Llc Method and apparatus for detecting and preventing counterfeiting
US6118521A (en) 1996-01-02 2000-09-12 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US5880826A (en) 1997-07-01 1999-03-09 L J Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of teeth
US6307629B1 (en) 1997-08-12 2001-10-23 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US6239868B1 (en) 1996-01-02 2001-05-29 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US6373573B1 (en) 2000-03-13 2002-04-16 Lj Laboratories L.L.C. Apparatus for measuring optical characteristics of a substrate and pigments applied thereto
US5926262A (en) 1997-07-01 1999-07-20 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US5759030A (en) * 1996-01-02 1998-06-02 Lj Laboratories, L.L.C. Method for determing optical characteristics of teeth
US5924981A (en) 1996-01-17 1999-07-20 Spectrx, Inc. Disposable calibration target
US5760913A (en) 1996-02-12 1998-06-02 Splash Technology, Inc. Color calibration method and system having independent color scanner profiles
US5884156A (en) 1996-02-20 1999-03-16 Geotek Communications Inc. Portable communication device
GB2310557B (en) 1996-02-21 2000-05-10 Rank Taylor Hobson Ltd Image processing apparatus
US5715823A (en) * 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US5902246A (en) * 1996-03-26 1999-05-11 Lifespex, Incorporated Method and apparatus for calibrating an optical probe
KR100205009B1 (en) * 1996-04-17 1999-06-15 윤종용 A video signal conversion device and a display device having the same
US6049671A (en) 1996-04-18 2000-04-11 Microsoft Corporation Method for identifying and obtaining computer software from a network computer
US5889683A (en) * 1996-04-22 1999-03-30 Ismail; Ashraf A. Method and apparatus for continuous oil monitoring and treatment
US5892585A (en) 1996-05-05 1999-04-06 Sequel Imaging Colorimeter for measurement of temporally variant light sources
US5768528A (en) 1996-05-24 1998-06-16 V-Cast, Inc. Client-server system for delivery of online information
US5774610A (en) 1996-07-08 1998-06-30 Equitech Int'l Corporation Fiber optic probe
US5701175A (en) 1996-08-02 1997-12-23 Kostizak; David A. Spectrophotometer mouse
US6031930A (en) 1996-08-23 2000-02-29 Bacus Research Laboratories, Inc. Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing
US6007332A (en) 1996-09-26 1999-12-28 O'brien; William J. Tooth color matching system
JP3036751U (en) 1996-10-14 1997-05-02 株式会社松風 Artificial teeth and crown restoration materials Color matching aids
US5684294A (en) 1996-10-17 1997-11-04 Northern Telecom Ltd Proximity and ambient light monitor
US5780340A (en) * 1996-10-30 1998-07-14 Advanced Micro Devices, Inc. Method of forming trench transistor and isolation trench
US6301004B1 (en) * 2000-05-31 2001-10-09 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US5995235A (en) 1997-02-13 1999-11-30 Applied Materials, Inc. Bandpass photon detector
US5757496A (en) 1997-03-07 1998-05-26 Mitutoyo Corporation Method of surface roughness measurement using a fiber-optic probe
DE19709499A1 (en) 1997-03-07 1998-09-17 Kaltenbach & Voigt Dental treatment device
DE19722073C2 (en) 1997-05-27 1999-12-16 Techkon Elektronik Gmbh Process and line printer for digital output and colorimetric measurement of colored images
US6271913B1 (en) 1997-07-01 2001-08-07 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6501542B2 (en) 1998-06-30 2002-12-31 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6449041B1 (en) 1997-07-01 2002-09-10 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6870616B2 (en) * 1998-06-30 2005-03-22 Jjl Technologies Llc Spectrometer apparatus for determining an optical characteristic of an object or material having one or more sensors for determining a physical position or non-color property
JP3511361B2 (en) 1997-08-04 2004-03-29 セイコーインスツルメンツ株式会社 Scanning probe microscope
US6111650A (en) 1997-08-14 2000-08-29 Rawicz; Andrew Method and apparatus for color matching of slightly colored translucent objects such as teeth and dental prosthesis, in particular
US5963332A (en) 1997-08-20 1999-10-05 General Electric Company Internal color probe
US5892583A (en) * 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US5924575A (en) * 1997-09-15 1999-07-20 General Electric Company Method and apparatus for color-based sorting of titanium fragments
US6030209A (en) 1997-10-15 2000-02-29 Jeneric/Pentron Incorporated Method for accurately preparing the color of a dental restoration
US6038024A (en) 1998-01-09 2000-03-14 Mht Optic Research Method and an apparatus for determining the color stimulus specification of an object
US6130752A (en) 1998-03-20 2000-10-10 Prisma Fibers, Inc. On-line color monitoring and control system and method
US6052195A (en) 1998-05-22 2000-04-18 Xerox Corporation Automatic colorant mixing method and apparatus
US6246479B1 (en) 1998-06-08 2001-06-12 Lj Laboratories, L.L.C. Integrated spectrometer assembly and methods
US6246471B1 (en) 1998-06-08 2001-06-12 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6573984B2 (en) 1998-06-30 2003-06-03 Lj Laboratories Llc Apparatus and method for measuring optical characteristics of teeth
US6127673A (en) 1998-07-09 2000-10-03 Lj Laboratories, L.L.C. Apparatus and method for detecting curvature
US6249348B1 (en) 1998-11-23 2001-06-19 Lj Laboratories, L.L.C. Integrated spectrometer assembly and methods
US6538726B2 (en) * 1998-07-10 2003-03-25 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6043894A (en) * 1998-07-10 2000-03-28 Gretamacbeth Llc Method for maintaining uniformity among color measuring instruments
US6057925A (en) 1998-08-28 2000-05-02 Optical Coating Laboratory, Inc. Compact spectrometer device
TW384385B (en) 1998-09-16 2000-03-11 Karlsruhe Forschzent Optical position detection device
US6249887B1 (en) 1998-09-21 2001-06-19 William G. Gray Apparatus and method for predicting failure of a disk drive
US6078398A (en) 1998-11-09 2000-06-20 General Electric Company Pattern analyzer
US6212256B1 (en) 1998-11-25 2001-04-03 Ge Medical Global Technology Company, Llc X-ray tube replacement management system
US6008905A (en) 1998-12-22 1999-12-28 Deus Ex Machina Inc. Method and apparatus for determining the appearance of an object
US6323487B1 (en) 1999-01-26 2001-11-27 Delphi Technologies, Inc. IR optical position sensor system
US6246862B1 (en) 1999-02-03 2001-06-12 Motorola, Inc. Sensor controlled user interface for portable communication device
US6188471B1 (en) * 1999-03-05 2001-02-13 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
US6836325B2 (en) 1999-07-16 2004-12-28 Textron Systems Corporation Optical probes and methods for spectral analysis
US6163377A (en) 1999-07-23 2000-12-19 Cv Us, Inc. Colorimeter
US7050168B2 (en) 1999-12-08 2006-05-23 X-Rite, Incorporated Optical measurement device and related process
US6362888B1 (en) 1999-12-23 2002-03-26 Lj Laboratories, L.L.C. Spectrometer assembly
US6519037B2 (en) * 1999-12-23 2003-02-11 Lj Laboratories, Llc Spectrometer having optical unit including a randomized fiber optic implement
US6414750B2 (en) 2000-01-10 2002-07-02 Lj Laboratories, L.L.C. Spectrometric apparatus and method for measuring optical characteristics of an object
US6512577B1 (en) * 2000-03-13 2003-01-28 Richard M. Ozanich Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
US6596981B1 (en) 2002-01-14 2003-07-22 Texas Advanced Optoelectronic Solutions, Inc. Method and apparatus for optical detector with special discrimination
US6903813B2 (en) 2002-02-21 2005-06-07 Jjl Technologies Llc Miniaturized system and method for measuring optical characteristics
US7099012B1 (en) 2003-03-13 2006-08-29 Turner Designs, Inc. In-line spectrometer
US7580130B2 (en) 2005-03-23 2009-08-25 Datacolor Holding Ag Method for designing a colorimeter having integral illuminant-weighted CIE color-matching filters
JP5011774B2 (en) 2006-03-27 2012-08-29 凸版印刷株式会社 Transfer mask blank, transfer mask, and pattern exposure method
US7957762B2 (en) 2007-01-07 2011-06-07 Apple Inc. Using ambient light sensor to augment proximity sensor output
US7768645B2 (en) 2007-11-20 2010-08-03 Siemens Healthcare Diagnostics Inc. Miniature optical readhead and colorimeter for analysis media
US8008613B2 (en) 2009-05-05 2011-08-30 Apple Inc. Light sensing device having a color sensor and a clear sensor for infrared rejection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233047B1 (en) * 1997-01-02 2001-05-15 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object

Also Published As

Publication number Publication date
US20070115472A1 (en) 2007-05-24
US20020154305A1 (en) 2002-10-24
US6381017B2 (en) 2002-04-30
US20110255092A1 (en) 2011-10-20
US6570654B2 (en) 2003-05-27
US20030202184A1 (en) 2003-10-30
US8472012B2 (en) 2013-06-25
US20130027687A1 (en) 2013-01-31
US6950189B2 (en) 2005-09-27
US6301004B1 (en) 2001-10-09
US20020018209A1 (en) 2002-02-14
US7110096B2 (en) 2006-09-19
US20060017929A1 (en) 2006-01-26
US7397541B2 (en) 2008-07-08

Similar Documents

Publication Publication Date Title
US8472012B2 (en) Apparatus having a first optical sensor making a first measurement to detect position and a second optical sensor making a second measurement
EP0909376B1 (en) Apparatus and method for measuring optical characteristics of an object
US7400404B2 (en) Apparatus and method for measuring color
US5926262A (en) Apparatus and method for measuring optical characteristics of an object
AU734091B2 (en) Apparatus and method for measuring optical characteristics of teeth
US8998613B2 (en) Apparatus and method for measuring optical characteristics using a camera and a calibration chart imaged with the camera
US6233047B1 (en) Apparatus and method for measuring optical characteristics of an object
AU2006213964B2 (en) Apparatus and method for measuring optical characteristics of an object
AU2006252232A1 (en) Apparatus and method for measuring optical characteristics of teeth
AU2650201A (en) Apparatus and method for measuring optical characteristics of an object
AU2003257517A1 (en) Apparatus and method for measuring optical characteristics of teeth

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: RPX CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:511 INNOVATIONS, INC.;REEL/FRAME:054449/0400

Effective date: 20201117

AS Assignment

Owner name: BARINGS FINANCE LLC, AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:RPX CORPORATION;REEL/FRAME:055983/0914

Effective date: 20210205