Nothing Special   »   [go: up one dir, main page]

US20080306426A9 - Blood flow control in a blood treatment device - Google Patents

Blood flow control in a blood treatment device Download PDF

Info

Publication number
US20080306426A9
US20080306426A9 US10/796,899 US79689904A US2008306426A9 US 20080306426 A9 US20080306426 A9 US 20080306426A9 US 79689904 A US79689904 A US 79689904A US 2008306426 A9 US2008306426 A9 US 2008306426A9
Authority
US
United States
Prior art keywords
blood
fluid
waste
machine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/796,899
Other versions
US20050113735A1 (en
Inventor
James Brugger
Jeffrey Burbank
Dennis Treu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NxStage Medical Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/800,881 external-priority patent/US20010016699A1/en
Priority claimed from US09/513,773 external-priority patent/US6579253B1/en
Priority claimed from US10/649,582 external-priority patent/US7473238B2/en
Priority to US10/796,899 priority Critical patent/US20080306426A9/en
Application filed by Individual filed Critical Individual
Assigned to NXSTAGE MEDICAL, INC. reassignment NXSTAGE MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUGGER, JAMES M., BURBANK, JEFFREY H., TREU, DENNIS M.
Publication of US20050113735A1 publication Critical patent/US20050113735A1/en
Publication of US20080306426A9 publication Critical patent/US20080306426A9/en
Assigned to GE BUSINESS FINANCIAL SERVICES INC. reassignment GE BUSINESS FINANCIAL SERVICES INC. SECURITY AGREEMENT Assignors: EIR MEDICAL, INC., MEDISYSTEMS CORPORATION, MEDISYSTEMS SERVICES CORPORATION, NXSTAGE MEDICAL, INC.
Assigned to EIR MEDICAL, INC., MEDISYSTEMS SERVICES CORPORATION, NXSTAGE MEDICAL, INC., MEDISYSTEMS CORPORATION reassignment EIR MEDICAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GE BUSINESS FINANCIAL SERVICES INC.
Assigned to ASAHI KASEI KURARAY MEDICAL CO., LTD. reassignment ASAHI KASEI KURARAY MEDICAL CO., LTD. INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: EIR MEDICAL, INC., MEDISYSTEMS CORPORATION, MEDISYSTEMS SERVICES CORPORATION, NXSTAGE MEDICAL, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: NXSTAGE MEDICAL, INC.
Assigned to NXSTAGE MEDICAL, INC. reassignment NXSTAGE MEDICAL, INC. RELEASE OF SECURITY INTEREST Assignors: SILICON VALLEY BANK
Assigned to MEDISYSTEMS CORPORATION, MEDISYSTEMS SERVICES CORPORATION, NXSTAGE MEDICAL, INC. reassignment MEDISYSTEMS CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ASAHI KASEI MEDICAL CO., LTD. F/K/A ASAHI KASEI KURARAY MEDICAL CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1611Weight of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1635Constructional aspects thereof with volume chamber balancing devices between used and fresh dialysis fluid
    • A61M1/1639Constructional aspects thereof with volume chamber balancing devices between used and fresh dialysis fluid linked by membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3401Cassettes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • A61M1/341Regulation parameters by measuring the filtrate rate or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • A61M1/3444Substitution rate control as a function of the ultrafiltration rate in which the collected ultra-filtrate expels an equal volume of substitution fluid from a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • A61M1/3448Substitution rate control as a function of the ultrafiltration rate by mechanically linked pumps in both ultra-filtrate and substitution flow line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3455Substitution fluids
    • A61M1/3458Substitution fluids having electrolytes not present in the dialysate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/361Physical characteristics of the blood, e.g. haematocrit, urea before treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36224Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit with sensing means or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36225Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit with blood pumping means or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3646Expelling the residual body fluid after use, e.g. back to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/367Circuit parts not covered by the preceding subgroups of group A61M1/3621
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0208Subcutaneous access sites for injecting or removing fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36222Details related to the interface between cassette and machine
    • A61M1/362223Details related to the interface between cassette and machine the interface being evacuated interfaces to enhance contact
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36226Constructional details of cassettes, e.g. specific details on material or shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36226Constructional details of cassettes, e.g. specific details on material or shape
    • A61M1/362262Details of incorporated reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36226Constructional details of cassettes, e.g. specific details on material or shape
    • A61M1/362265Details of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/125General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated filters
    • A61M2205/126General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated filters with incorporated membrane filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/128General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6018General characteristics of the apparatus with identification means providing set-up signals for the apparatus configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6063Optical identification systems
    • A61M2205/6072Bar codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/929Hemoultrafiltrate volume measurement or control processes

Definitions

  • This invention relates to systems and methods for processing blood, e.g., for filtration, pheresis, or other diagnostic or therapeutic purposes.
  • hemofiltration emulates normal kidney activities for an individual whose renal function is impaired or lacking.
  • blood from the individual is conveyed in an extracorporeal path along a semipermeable membrane, across which a pressure difference (called transmembrane pressure) exists.
  • the pores of the membrane have a molecular weight cut-off that can thereby pass liquid and uremic toxins carried in blood.
  • the membrane pores can not pass formed cellular blood elements and plasma proteins. These components are retained and returned to the individual with the toxin-depleted blood.
  • Membranes indicated for hemofiltration are commercially available and can be acquired from, e.g., Asahi Medical Co. (Oita, Japan).
  • replacement fluid After hemofiltration, fresh physiologic fluid is supplied to toxin-depleted blood. This fluid, called replacement fluid, is buffered either with bicarbonate, lactate, or acetate. The replacement fluid restores, at least partially, a normal physiologic fluid and electrolytic balance to the blood. Usually, an ultrafiltration function is also performed during hemofiltration, by which liquid is replaced in an amount slightly less than that removed. Ultrafiltration decreases the overall fluid level of the individual, which typically increases, in the absence of ultrafiltration, due to normal fluid intake between treatment sessions.
  • the blood is returned to the individual.
  • One aspect of the invention provides a fluid processing system comprising an extracorporeal circuit for circulating a fluid from an individual through a filter to remove waste and to return fluid to the individual after removal of waste.
  • a first portion of the extracorporeal circuit is integrated, at least in part, within a first panel.
  • a second portion of the extracorporeal circuit is integrated, at least in part, within a second panel.
  • the system further includes a fluid processing cartridge, which orients the first and second panels for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
  • the first portion of the extracoporeal circuit handles waste fluid
  • the second portion of the extracoporeal circuit handles replacement fluid for return to the individual.
  • the first and second portions of the extracorporeal circuit include in-line chambers that volumetrically balance waste fluid removed from the individual and waste replacement fluid returned to the individual.
  • the in-line chambers can occupy a fixed volume cavity on the fluid processing machine, whereby the in-line chambers possess a volume defined by the fixed volume cavity on the machine.
  • At least one of the first and second panels includes an operative region that flexes in response to an external force applied by the fluid processing machine.
  • the operative region can comprise, e.g., an in-line clamping region that flexes to occlude fluid flow, or an in-line pump tube that flexes in response to peristaltic force to pump fluid, or an operative region that permits sensing of a flow condition by a sensor on the fluid processing machine.
  • the fluid processing cartridge includes a tray containing the first and second panels, which are oriented within the tray in an overlaying relationship.
  • the system comprises an extracoporeal fluid circuit.
  • the circuit includes a first flexible panel having a pattern of seals defining a first flow path that forms a part of the extracorporeal fluid circuit.
  • the circuit also includes a second flexible panel having a pattern of seals defining a second flow path that forms another part of the extracorporeal fluid circuit.
  • a fluid processing cartridge retains the first and second flexible panels in an overlaying relationship.
  • the system further includes a fluid processing device including a chassis to removably mount the fluid processing cartridge with the first flexible panel oriented adjacent to the chassis.
  • the fluid processing device includes an actuator on the chassis operating to apply force through the first flexible panel to a region of the second flexible panel to either pump fluid in the second flow path or occlude flow in the second flow path.
  • the actuator can comprise, e.g. a pump element to apply a peristaltic force to the region of the second flexible panel through the first flexible panel, or an in-line pump tube to which the peristaltic force is applied, or a clamp element to apply an occlusion force to the region of the second flexible panel through the first flexible panel.
  • a pump element to apply a peristaltic force to the region of the second flexible panel through the first flexible panel
  • an in-line pump tube to which the peristaltic force is applied
  • a clamp element to apply an occlusion force to the region of the second flexible panel through the first flexible panel.
  • a sensor on the chassis senses a flow condition in the second flow path through the first and second flexible panels.
  • the fluid processing cartridge includes a tray movable into and out of association with the chassis.
  • the tray includes a cut-out exposing a region of the first flexible panel to the actuator.
  • the machine includes a chassis and an operating element on the chassis comprising at least one of a peristaltic pump, a clamp, and a sensor.
  • a door is movable with respect to the chassis between a first position enabling mounting of a fluid processing cartridge on the chassis and a second position holding the fluid processing cartridge on the chassis in a predetermined orientation with the operating element.
  • the door moves in a path toward and away from the chassis.
  • a depression on the chassis defines a space of known volume to accommodate a fluid balancing chamber carried in the fluid processing cartridge.
  • the door includes at least one pump race for registry with a pump region carried in the fluid processing cartridge.
  • Another aspect of the invention provides a fluid processing method.
  • the method establishes an extracoporeal fluid circuit that communicates with a filter.
  • the method defines within a first panel a first flow path that forms a part of the extracorporeal fluid circuit, while defining within a second panel a second flow path that forms another part of the extracorporeal fluid circuit.
  • the method orients the first and second panels in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
  • the method orients the first and second panels in an overlaying relationship.
  • FIG. 1 is a diagrammatic view of a system that enables frequent hemofiltration by supplying to a treatment location a durable hemofiltration machine, a disposable fluid processing cartridge that fits on the machine, ancillary processing materials that the machine and cartridge use, and telemetry that supports the hemofiltration therapy;
  • FIG. 2 is a front perspective view of a hemofiltration machine that the system shown in FIG. 1 supplies to a treatment location;
  • FIGS. 3 to 5 are side elevation views showing the loading into the machine shown in FIG. 2 of a fluid processing cartridge, which the system shown in FIG. 1 also supplies to the treatment location;
  • FIG. 6A is a perspective view,of the inside of the door of the hemofiltration machine shown in FIG. 2 ;
  • FIG. 6B is a side section view of a spring loaded pump race carried on the door shown in FIG. 6A , taken generally along line 6 B- 6 B in FIG. 6A ;
  • FIG. 7 is an exploded perspective view of one embodiment of the fluid processing cartridge that is supplied to the treatment location, comprising a tray in which a fluid processing circuit is contained;
  • FIG. 8 is an assembled perspective view of the fluid processing cartridge shown in FIG. 7 ;
  • FIG. 9 is a side section view of the fluid processing cartridge shown in FIGS. 7 and 8 , showing the cartridge as it is supplied in a closed, sterile condition to the treatment location;
  • FIG. 10 is a perspective view of the cartridge shown in FIGS. 7 to 9 , in preparation of being mounted on the hemofiltration machine shown in FIG. 2 ;
  • FIG. 11 is an embodiment of a fluid circuit that the cartridge shown in FIG. 10 can incorporate, being shown in association with the pumps, valves, and sensors of the hemofiltration machine shown in FIG. 2 ;
  • FIGS. 12A and 12B are largely schematic side section views of one embodiment of fluid balancing compartments that can form a part of the circuit shown in FIG. 11 , showing their function of volumetrically balancing replacement fluid with waste fluid;
  • FIGS. 13A, 13B , and 13 C are perspective views of a bag configured with a pattern of seals and folded over to define a overlaying flexible fluid circuit that can be placed in a fluid processing cartridge of a type shown in FIG. 11 ;
  • FIG. 14 is a plane view of the pattern of seals that the bag shown in FIGS. 13A, 13B , and 13 C carries, before the bag is folded over on itself;
  • FIG. 15 is a plane view of the overlaying fluid circuit that the bag shown in FIG. 14 forms after having been folded over on itself;
  • FIG. 16 is a largely schematic side section view of the overlaying fluid balancing compartments that are part of the circuit shown in FIG. 15 , showing their function of volumetrically balancing replacement fluid with waste fluid;
  • FIG. 17 is a front perspective view of an embodiment of a chassis panel that the hemofiltration machine shown in FIG. 2 can incorporate;
  • FIG. 18 is a back perspective view of the chassis panel shown in FIG. 17 , showing the mechanical linkage of motors, pumps, and valve elements carried by the chassis panel;
  • FIG. 19 is a diagrammatic view of a telemetry network that can form a part of the system shown in FIG. 1 ;
  • FIG. 20 is a diagrammatic view of overlays for imparting control logic to the machine shown in FIG. 2 ;
  • FIG. 21 is an embodiment of a set for attaching multiple replacement fluid bags to the cartridge shown in FIG. 10 , the set including an in-line sterilizing filter;
  • FIG. 22 is a plane view of a graphical user interface that the hemofiltration machine shown in FIG. 2 can incorporate.
  • FIG. 23 is a perspective view of a generic user interface which can be customized by use of a family of interface templates, which the hemofiltration machine shown in FIG. 2 can incorporate.
  • FIG. 1 shows a system 10 that makes it possible for a person whose renal function is impaired or lacking, to receive convenient and therapeutically effective hemofiltration on a frequent basis, e.g., at least four times weekly and, preferably, six times weekly.
  • the frequent hemofiltration therapy that the system 10 provides has as one of its objectives the maintenance of uremic toxin levels in the person's blood within a comfortable range, e.g., at no more than 80% of the maximum level.
  • the system 10 can provide either acute or chronic treatment of renal impairment or failure.
  • the system 10 delivers the durable and disposable equipment and materials necessary to perform frequent hemofiltration on the person at a designated treatment location 12 .
  • the location 12 can vary. It can, for example, be a setting where support and assistance by one or more medically trained care givers are immediately available to the person, such as at a hospital, an outpatient clinic, or another treatment center. Alternatively, the location 12 can comprise a setting where support or assistance are provided by a trained partner, such as in the person's residence.
  • the system 10 can make it possible for the person to perform frequency hemofiltration in a non-clinical setting, without direct assistance from technically or medically trained persons.
  • Each device 14 may be generally constructed in the manner disclosed in pending U.S. patent application Ser. No. 08/724,948, filed Nov. 20, 1996, and entitled “Subcutaneously Implanted Cannula and Method for Arterial Access.”
  • the devices 14 preferably support high blood flow rates at or above 300 ml/min and preferably at least 600 ml/min.
  • the devices 14 also enable quick and frequent cannulation.
  • the devices 14 thereby reduce the time required to set up, perform, and complete a frequent hemofiltration session.
  • the high blood flow rates that the devices 14 support also increase the removal rate of uremic toxins during hemofiltration, as will be described in greater detail later.
  • the system 10 supplies to the treatment location 12 a durable hemofiltration machine 16 .
  • the system 10 also supplies fluid processing cartridges 18 to the treatment location 12 , for installation on the machine 16 at the time of treatment.
  • the system 10 further supplies ancillary materials 20 , such as replacement fluids, to the treatment location 12 for use in association with the cartridge 18 and machine 16 .
  • the system 10 also preferably supplies a telemetry network 22 , to enable centralized, off-site monitoring and supervision of the frequent hemofiltration treatment regime.
  • the system 10 includes a source 24 that supplies a hemofiltration machine 16 (which can also be called a “cycler”) to the treatment location 12 .
  • the machine 16 is intended to be a durable item capable of long term, maintenance free use.
  • FIG. 2 shows a representative embodiment of a machine 16 capable of performing frequent hemofiltration.
  • the machine 16 is preferably lightweight and portable, presenting a compact footprint, suited for operation on a table top or other relatively small surface normally found, e.g., in a hospital room or in a home.
  • the compact size of the machine 16 also makes it well suited for shipment to a remote service depot for maintenance and repair.
  • the machine 16 includes a chassis panel 26 and a panel door 28 that moves on a pair of rails 31 in a path toward and away from the chassis panel 26 (as shown by arrows in FIG. 2 ).
  • a slot 27 is formed between the chassis panel 26 and the door 28 .
  • FIGS. 3 to 4 show, when the door 28 is positioned away from the panel 26 , the operator can, in a simple vertical motion, move a fluid processing cartridge 18 into the slot 27 and, in a simple horizontal motion, fit the cartridge 18 onto a raised portion of the chassis panel 26 . When properly oriented, the fluid processing cartridge 18 rest on the rails 31 to help position the cartridge 18 .
  • FIG. 5 shows, movement of the door 28 toward the panel 26 engages and further supports the cartridge 18 for use on the panel 26 for use. This position of the door 28 will be called the closed position.
  • the machine 16 preferably includes a latching mechanism 30 and a sensor 32 (see FIG. 2 ) to secure the door 28 and cartridge against movement before enabling circulation of fluid through the cartridge 18 .
  • the processing cartridge 18 provides the blood and fluid interface for the machine 16 .
  • the machine 16 pumps blood from the person, through the fluid processing cartridge 18 to a hemofilter 34 (mounted in brackets to the side of the chassis panel 26 , as shown in phantom lines in FIGS. 2 to 5 ), back to the cartridge 18 , and then back to the person.
  • a hemofilter 34 mounted in brackets to the side of the chassis panel 26 , as shown in phantom lines in FIGS. 2 to 5 .
  • the hemofilter 34 can form an integrated part of the cartridge 18 .
  • the hemofilter 34 is connected via the cartridge 18 to the person's blood supply through the vascular access devices 14 .
  • the machine 16 includes a blood handling unit 36 mounted on the chassis panel 26 .
  • the blood handling unit 36 includes a peristaltic blood pump 92 and various clamping and sensing devices(described later).
  • the blood handling unit 36 circulates the person's blood in a controlled fashion through the hemofilter 34 and back to the person.
  • the hemofilter 34 removes waste fluid containing urea and other toxins.
  • the machine 16 also includes a fluid management unit 38 mounted on the chassis panel 26 .
  • the fluid management unit 38 includes a peristaltic waste and replacement fluid pump 152 and various clamping and sensing devices(described later).
  • the fluid management unit 38 replaces the waste fluid with a sterile replacement fluid, for return with the treated blood to the person's blood supply.
  • the replacement fluid also acts to maintain the person's electrolytic balance and acid/base balance.
  • the fluid management unit 38 includes a fluid balancing element 40 mounted on the chassis panel 26 .
  • the fluid balancing element 40 meters the return replacement fluid in proportion to the amount of waste fluid removed.
  • the fluid balancing element 40 includes one or more balancing chambers 206 , 208 and associated clamping devices(the details of which will be described later).
  • the chambers 206 , 208 comprise preformed depressions formed in the raised portion of the chassis panel 26 .
  • preformed depressions on the door 28 form mating chambers 206 ′, 208 ′, which register with the chassis panel chambers 206 , 208 .
  • the registered chambers 206 / 206 ′ and 208 / 208 ′ define between them spaces of known volume, e.g., 20 ml.
  • the known volume can, of course, be greater or less than 20 ml, and the chambers 206 / 206 ′ and 208 / 208 ′ can each have a different known volume.
  • flexible containers 212 and 214 which form a part of a preformed fluid circuit carried within the fluid processing cartridge 18 , fit into the registered chambers 206 / 206 ′ and 208 / 208 ′.
  • the chambers 206 / 206 ′ and 208 / 208 ′ and associated clamping devices interact with the containers 212 and 214 , to provide the capability of balancing waste and replacement fluid volumetrically, in an accurate, straightforward manner, without use of weigh scales and weight sensing.
  • the machine 16 also includes an ultrafiltration unit 42 on the chassis panel 26 .
  • the ultrafiltration unit 42 includes a peristaltic ultrafiltration pump 144 to remove additional waste from the person without addition of replacement fluid.
  • the machine 16 provides, at the end of each frequent hemofiltration session, a net ultrafiltration fluid loss, which coincides with an amount prescribed by the attending physician.
  • the machine 16 completes a frequent hemofiltration session when a prescribed replacement fluid volume has been exchanged and the net ultrafiltration fluid loss target has been met.
  • the machine 16 can accommodate continuous or extended treatment sessions on an automated basis.
  • the machine 16 can also accommodate operation based upon individually set ultrafiltration rates, blood flow rates, or return fluid flow rates, with completion determined by the volume of replacement fluid exchanged or by a treatment timer.
  • the various pumping, clamping, and sensing devices on the machine 16 provide blood flow, fluid management, and safety functions by sensing pump pressures, detecting air, detecting blood leak through the hemofilter 34 , and sensing waste pressure.
  • the sensors also provide addition fluid management and safety functions, such as sensing replacement fluid temperature and replacement fluid pump pressure.
  • the machine 16 also provides other processing functions, such as priming, supplying a replacement fluid bolus, and carrying out a rinseback of the person's blood.
  • the machine 16 also preferable includes an operator interface 44 , which, in the illustrated embodiment (see FIG. 2 ) is carried on the exterior of the door 28 .
  • the interface 44 provides simple switch and/or knob operation of the machine 16 , preferably by use of one hand.
  • the interface 44 displays information necessary to operate the machine 16 , presenting an uncluttered display and tactile touch buttons to intuitively lead a person without technical or medical background through set up and operation of the machine 16 with a minimum of training.
  • the source 24 supplying the machine 16 can comprise a company or business that manufactures the machine 16 or otherwise distributes the machine 16 to the treatment location 12 on a sale, lease, or rental basis.
  • the system 10 further includes a source 46 for supplying a fluid processing cartridge 18 to the treatment location 12 for use in association with the machine 16 .
  • the cartridge 18 is intended to be disposable item, capable of single or extended use, which the loads on the machine 16 before beginning a hemofiltration session (as FIGS. 3 to 5 show).
  • the cartridge 18 can be removed from the machine 16 and discarded upon the completing the hemofiltration session, or its use can be extended to one or more subsequent sessions, as will be described later.
  • the cartridge 18 couples to the person's vascular access devices 14 and interacts with the machine 16 to draw, process, and return blood in a continuous, extracoporeal path, to carry out fluid balancing through waste removal, replacement fluid exchange, and ultrafiltration.
  • the tasks of loading and unloading the cartridge 18 are simple and straightforward, following a simple, straight loading and unloading path into the slot 27 and against the chassis panel 26 , as FIGS. 3 to 5 show.
  • the person receiving hemofiltration can by himself/herself set up the cartridge 18 and machine 16 , without necessarily requiring assistance from a technically or medically trained person.
  • the cartridge 18 preferably provides the entire blood and fluid interface for the machine 16 , including all pumping, valving, pressure sensing, air detection, blood leak detection, and tubing management.
  • the cartridge 18 preferable is supplied to the treatment location 12 with all tubing, access needles and waste and replacement fluid connections preconnected.
  • a waste bag also can be preattached, if desired, or the waste line can be placed in a drain.
  • Loading the cartridge 18 on the chassis panel 26 and closing the door 28 also automatically locates all sensors of the machine's safety function in association with the blood fluid interface. The operator is not required to load anything else to carry out the machine's safety function. Once the machine 18 undergoes start up testing to confirm cartridge placement and integrity and to confirm the functionality of the sensors, subsequent automated operation the machine 18 in a safe mode is assured.
  • the cartridge 18 can be constructed in various ways.
  • the cartridge 18 includes a preformed tray 48 and insert 53 manufactured, e.g., by thermoforming polystyrene or another comparable material.
  • the tray 48 and insert 53 are peripherally joined together, e.g., by ultrasonic welding.
  • the tray includes a base 50 , side walls 52 , and an open top edge 54 .
  • the geometry of the tray 48 is appropriately keyed to fit in only one orientation on the rails 31 in the slot 27 between the chassis panel 26 and door 28 of the machine 16 .
  • the insert 53 rests on the raised portion of the chassis panel 26 . Closing the door 28 secures the tray 48 to the panel 26 .
  • a preformed circuit 56 is carried between the base 50 of the tray 48 and the insert 53 .
  • the circuit 56 is arranged to carry blood, waste, and replacement fluid during hemofiltration.
  • the circuit 56 includes an array of fluid flow paths formed with in-line flexible containers 212 and 214 (for fluid balancing), peristaltic pump headers, sensor stations, tubing, and valve stations.
  • the layout of flow paths, containers, pump headers, sensing stations, and valve stations on the circuit 56 form a mirror image of the layout of the structural and mechanical components on the chassis panel 26 and door 28 of the machine 16 .
  • the insert 53 includes cut outs 58 to expose the containers, peristaltic pump headers, sensing stations, and valve stations for engagement with equipment on the chassis panel 26 .
  • the in-line containers 212 / 214 formed in the circuit 56 fit within the registered chambers 206 / 206 ′ and 208 / 208 ′ on the chassis panel 26 and door 28 .
  • the pump headers and the sensor and valve stations on the circuit 56 overlay and engage corresponding peristaltic pumps, sensors, and valve on the chassis panel 26 .
  • the base 50 of the tray 48 underlaying the pump stations is relieved, to form pump races 360 .
  • the inside surface of the door 28 carries concave pump races 362 supported by springs 364 (see FIGS. 6A and 6B ).
  • the spring loaded pump races 362 on the door 28 nest with the relieved pump races 360 on the tray 48 , to provide rigidity and support.
  • the pump races 360 can form cutouts in the base 50 (like cut outs 58 in the insert, as earlier described), through which the pump races 362 on the door 28 extend.
  • the base 50 of the tray 48 underlying the containers 212 / 214 is also relieved, to form chamber supports 368 .
  • the tray supports 368 fit within the door chambers 206 ′ and 208 ′. The door 28 therefore engages the tray 48 , to add overall rigidity and support to the tray base 50 .
  • the containers 212 / 214 are enclosed within the registered chambers 206 / 206 ′ and 208 / 208 ′ and tray chamber supports 368 , which define for the containers 212 / 214 to a known maximum volume.
  • the peristaltic pumps, sensors, and valve stations on the machine 16 interact with the flexible components of the circuit 56 .
  • the cartridge 18 makes possible direct, centralized connection of a blood-fluid interface to the blood pump, the waste and replacement pump, the ultrafiltration pump, the fluid balancing chambers, the sensor devices, and the clamping devices of the machine 16 , with no air interfaces.
  • the compact arrangement of the cartridge 18 also reduces fluid pressure drops, thereby accommodating high flow rates, e.g., an arterial blood line pressure drop of less than 250 mmHg at a flow rate of 600 ml/min and a hematocrit of 25.
  • FIGS. 9 and 10 show, lengths of flexible tubing FT are coupled to the circuit 56 in the base 50 of the tray 48 and rest in coils on top of the insert 53 within the tray 48 during shipment and before use (see FIG. 9 ).
  • a removable lid 60 made, e.g., from ethylene oxide permeable TYVEKJ material or polyethylene plastic sheet stock, covers and seals the interior of the tray 48 prior to use.
  • the cartridge 18 can therefore be sterilized by exposure to ethylene oxide prior to use. Other methods of sterilization, e.g., gamma radiation or steam sterilization, can be used.
  • the ultrasonically welded assembly of the tray 58 , insert 53 , and the circuit 56 (with attached tubing FT) can be packaged as a unit into a sealed plastic bag for sterilization, obviating the need for the lid 60 .
  • the lid 60 is peeled away, or, in the alternative arrangement, the sealed plastic bag is opened.
  • the attached flexible tubing FT is extended beyond the bounds of the tray 48 to make connection with external processing items (see FIG. 10 ).
  • the tubing FT carries appropriate couplers for this purpose.
  • the tray 48 is moved along a vertical path for loading into the slot 27 and then a horizontal path for loading on the raised portion of the chassis panel 26 , after which a simple motion of the door latching mechanism 30 aligns the entire fluid circuit 56 with the pumps, sensors, and clamps on the chassis panel 26 . There is no area of blood or fluid contact that this outside the disposable circuit 56 .
  • the source 46 supplying the cartridge 18 can comprise a company or business that manufactures the cartridge 18 or that otherwise distributes the cartridge 18 to the treatment location 12 on a sale, lease, or rental basis.
  • FIG. 11 shows a representative fluid circuit 56 that is well suited for carrying out frequent hemofiltration, and which can be incorporated into the cartridge 18 for interface with pumps, valves, and sensors arranged as a mirror image on the chassis panel 26 .
  • the fluid circuit 56 couples the hemofilter 34 to several main fluid flow paths.
  • the main fluid flow paths comprise an arterial blood supply path 62 , a venous blood return path 64 , a blood waste path 66 , a replacement fluid path 68 , and an ultrafiltration/fluid balancing path 70 .
  • the arterial blood supply path 62 and venous blood return path 64 includes lengths of flexible tubing 72 and 74 that extend outside the tray 48 (see FIG. 10 ). As FIG. 10 shows, The paths 72 and 74 carry cannulas 76 at their distal ends (or connectors that enable connection to cannulas 76 ), to enable connection, respectively, to the person's arterial and venous access devices 14 .
  • the arterial blood supply path 62 also includes a length of flexible tubing 78 (see FIG. 10 ) that extends outside the tray 48 .
  • the tubing 78 includes a distal connector 80 to couple to the blood inlet 82 of the hemofilter 34 .
  • the venous blood return path 64 includes a length of flexible tubing 84 that extends outside the tray 48 .
  • the tubing 84 includes a distal connector 86 to couple to the blood outlet 88 of the hemofilter 34 .
  • the hemofilter 34 can be an integral part of the tray 48 .
  • the arterial and venous blood paths 78 and 84 are supplied pre-connected to the hemofilter 34 .
  • the exterior tubing components of the arterial or venous blood paths can include injection sites 90 .
  • the sites can be used, e.g., to remove trapped air or to inject anticoagulant, medication, or buffers into the blood flows.
  • the exterior tubing components of the arterial or venous blood paths can also include conventional pinch clamps, to facilitate patient connection and disconnection.
  • the remaining portions of arterial and venous blood paths 62 and 64 are contained in the circuit 56 held within the tray 48 .
  • the blood pump 92 of the machine 16 engages a pump header region 94 in the arterial blood supply path 62 within the tray 48 upstream of the hemofilter 34 , to convey blood into and through the hemofilter 34 .
  • An arterial blood clamp 96 and a patient connection-disconnection (air bubble detector) sensor 98 on the machine 16 engage a clamp region 100 and a sensor region 102 in the arterial blood supply path 62 within the tray 48 upstream of the blood pump 92 .
  • an air bubble sensor (not shown) can be located downstream of the blood pump 92 and upstream of the hemofilter 34 .
  • the placement of the air sensor 98 upstream of the hemofilter 34 allows air bubbles to be detected prior to entering the hemofilter 34 .
  • air bubbles break up into tiny micro-bubbles, which are not as easily detected.
  • Placement of the air sensor 98 upstream of the hemofilter 34 also serves the additional purpose of detecting air when the blood pump 92 is operated in reverse, to rinse back blood to the patient, as will be described later.
  • An air detector 108 on the machine 16 engages a sensing region 110 in the venous blood return path 64 within the tray 48 downstream of the hemofilter 34 .
  • a venous clamp 112 on the machine 16 engages a clamp region 114 in the venous blood return path 64 within the tray 48 downstream of the air detector 108 .
  • the membrane (not shown) located in the hemofilter 34 separates waste including liquid and uremic toxins from the blood.
  • a waste outlet 116 conveys waste from the hemofilter 34 .
  • the blood waste path 66 includes a length of flexible tubing 118 (see FIG. 10 ) that extends beyond the tray 48 .
  • the tubing 118 carries a distal connector 120 to couple to the waste outlet 116 of the hemofilter 34 .
  • the waste path 66 can be supplied pre-connected to the hemofilter 34 .
  • the waste path 66 also includes a length of flexible tubing 122 that extends beyond the tray 48 .
  • the tubing 122 carries a connector 124 to couple to a waste bag 126 or an external drain. Alternatively, the waste bag 126 can be preconnected to the tubing 122 .
  • the remainder of the waste path 66 is contained within the circuit 56 inside the tray 48 .
  • a blood leak detector 128 on the machine 16 engages a sensor region 130 in the waste path 66 downstream of the hemofilter 34 .
  • a waste pressure sensor 132 on the machine 16 engages another sensor region 134 in the waste path 66 downstream of the blood leak detector 128 .
  • the waste path 66 branches into an ultrafiltration path 136 and a balancing path 138 .
  • the ultrafiltration branch path 136 bypasses in-line containers 212 and 214 of the circuit 56 .
  • the ultrafiltration pump 144 on the machine 16 engages a pump header region 146 in the ultrafiltration branch path 136 within the tray 48 .
  • the waste balancing branch path 138 communicates with the in-line containers 212 and 214 .
  • the waste and replacement fluid pump 152 on the machine 16 engages a pump header region 154 in the waste balancing branch path 138 within the tray 48 upstream of the in-line containers 212 and 214 .
  • a pressure sensor 156 on the machine 16 engages a sensor region 160 in the waste balancing branch path 138 within the tray 48 between the waste and replacement fluid pump 152 and the in-line containers 212 and 214 .
  • the pressure sensor 156 senses the fluid pressure required to convey replacement fluid into the venous return line. This resistance to the flow of replacement fluid is the venous blood pressure.
  • the pressure sensor 156 in the waste fluid path 138 thereby serves to sense the venous blood pressure.
  • a flush clamp 162 engages a clamp region 164 in the waste path 66 within the tray 48 downstream of the in-line containers 212 and 214 .
  • a waste clamp 166 engages a clamp region 168 in the waste path 66 downstream of the flush clamp 162 .
  • the circuit 56 in the tray 48 also can include an air break 170 , which communicates with the waste path 66 downstream of the waste clamp 166 . The air break 170 prevents back flow of contaminants into the circuit 56 from the waste bag 126 or drain.
  • the replacement fluid path 68 includes a length of flexible tubing 172 that extends outside the tray 48 .
  • the tubing 172 includes a distal connector 174 or connectors that enable connection to multiple containers of replacement fluid 176 .
  • the tubing 172 can also include an in-line 0.2 m sterilizing filter 178 to avoid contamination of-the circuit 56 .
  • the containers 176 together typically hold from 8 to 20 combined liters of replacement fluid, depending upon the fluid removal objectives of the particular frequent hemofiltration procedure.
  • the replacement fluid is also used to prime the fluid circuit 56 at the outset of a treatment session and to rinse back blood to the patient at the end of a treatment session.
  • the remainder of the replacement fluid path 68 is contained in the circuit 56 within the tray 48 .
  • Sensing region 186 in the replacement fluid path 68 inside the tray 48 engages a replacement fluid flow rate detector 182 on the machine 16 .
  • a clamping region 190 in the replacement fluid path 68 inside the tray 48 engages a replacement fluid clamp 188 on the machine 16 .
  • the replacement-fluid path 68 includes a priming or bolus branch path 192 that communicates with the arterial blood supply path 62 .
  • a clamping region 196 in the priming branch path 192 engages a priming clamp 194 on the machine 16 .
  • the replacement fluid path 68 also includes a balancing branch path 198 that communicates with the venous blood return path 64 , via the in-line containers 212 and 214 .
  • a pump header region 200 in the balancing replacement branch path 198 engages the waste and fluid replacement pump 152 on the machine 16 upstream of the in-line containers 212 and 214 .
  • the waste and fluid replacement pump 152 comprises a dual header pump, simultaneously engaging the two pump header regions 154 and 200 on the waste path 66 and the replacement fluid path 68 .
  • a sensor region 204 in the balancing replacement branch path 198 engages a pressure sensor 202 on the machine 16 between the waste and replacement fluid pump 152 and the in-line containers 212 and 214 .
  • the pressure sensor 202 senses the pressure required to convey waste fluid into the waste return line. This resistance to the flow of waste fluid is the waste line pressure.
  • the pressure sensor 202 in the replacement fluid path 198 thereby serves to sense the waste line pressure.
  • the pressure sensor 156 in the waste fluid path 138 serves to sense the venous blood pressure.
  • the ultrafiltration waste branch path 136 within the tray 48 which bypasses the in-line containers 212 and 214 of the circuit 56 , accommodates transfer of a prescribed volume of waste to the waste bag 126 , without an offsetting volume of replacement fluid.
  • the circuit 56 thereby is capable of performing an ultrafiltration function.
  • the balancing waste branch path 138 and the balancing replacement branch path 198 pass through the in-line containers 212 and 214 in the circuit 56 contained within the tray 48 .
  • the in-line containers 212 and 214 transfer a volume of replacement fluid to the venous blood return path 64 in proportion to the volume of waste fluid removed, except for the volume making up the ultrafiltration volume loss.
  • the circuit 56 is thereby capable of performing a fluid balancing function in addition to the ultrafiltration function.
  • the machine 16 and circuit 56 carry out the fluid balancing function volumetrically, without weight sensing. More particularly, the registered chambers 206 / 206 ′ and 208 / 208 ′ on the chassis panel 26 and door 28 , of the machine 16 receive the in-line containers 212 and 214 when the tray 48 is mounted on the chassis panel 26 .
  • the registered chambers 206 / 206 ′ and 208 / 208 ′ mutually impose volumetric constraints on the in-line containers 212 and 214 , to define a maximum interior volume for each of the on-line containers 212 and 214 .
  • FIGS. 12A and 12B show one embodiment of the right and left orientation of the containers 212 and 214 , with the containers 212 and 214 also shown in side section.
  • each in-line container 212 and 214 is itself divided along their midline from front to back by an interior flexible wall 210 , to form four compartments.
  • two of the compartments face the door 28 , and are thus designated as front compartments 212 F and 214 F.
  • the other two compartments face the chassis panel 26 , and will thus be designed as rear compartments 212 R and 214 R.
  • Each in-line container 212 and 214 has a waste side compartment communicating with waste path 66 and a replacement side compartment communicating with the replacement fluid path 68 .
  • the circuit 56 establishes communication between the balancing waste branch path 138 and the rear compartments 212 R and 214 R (which will also be called the waste side compartments).
  • the circuit 56 also establishes communication between the balancing replacement branch. path 198 and the front compartments 212 R and 214 R (which will also be called the replacement side compartments).
  • fluid enters the compartments from the bottom and exits the compartments from the top. Other flow paths into and from the compartments can be established, as will be described later.
  • the machine 16 includes an inlet valve assembly 216 and an outlet valve assembly 218 on the chassis panel 26 , located in association with the chambers 206 and 208 .
  • the circuit 56 in the tray 48 likewise includes, for each in-line container 212 and 214 , an inlet clamp region 220 and an outlet clamp region 222 , which govern flow into and out of the waste side compartments 212 R and 214 R.
  • the circuit 56 in the tray 48 also includes, for each in-line container 212 and 214 , an inlet clamp region 224 and an outlet clamp region 226 , which govern flow into and out of the replacement side compartments 212 F and 214 F.
  • the inlet and outlet valve assemblies 216 and 218 on the machine 16 engage the corresponding waste and replacement fluid inlet and outlet clamp regions 220 , 222 , 224 , 226 in the circuit 56 .
  • the machine 16 toggles the operation of inlet and outlet valve assemblies 216 and 218 to synchronize the flow of fluids into and out of the waste side and replacement side compartments of each in-line container 212 and 214 .
  • the waste side inlet valve 220 is opened while the waste side outlet valve 222 is closed. Waste fluid is conveyed by operation of the waste and replacement pump 152 from the waste path 66 into the waste side compartment of the given in-line container 212 and 214 . Simultaneously, for the same in-line compartment 212 and 214 , the replacement side inlet valve 224 is closed and the replacement side outlet valve 226 is opened, so that the incoming flow of waste in the waste side compartment displaces the interior wall 210 to express a like volume of replacement fluid from the replacement side compartment into the venous blood return path 64 .
  • an opposite valve action occurs (see FIG. 12B ).
  • the replacement side inlet valve 224 is opened and the replacement side outlet valve 226 is closed, and replacement fluid is conveyed into the replacement side compartment from the replacement fluid path 68 .
  • the incoming replacement fluid displaces the interior wall 210 to express a like volume of waste fluid from the waste side compartment to the waste bag 126 (the waste side inlet valve 220 now being closed and the waste side outlet valve 222 now being opened).
  • valve assemblies work in tandem upon the two in-line containers 212 and 214 , with one container 140 receiving waste and dispensing replacement fluid, while the other container 142 receives replacement fluid and dispenses waste, and vice versa.
  • the circuit 56 provides a continuous, volumetrically balanced flow of waste fluid to the waste bag 126 and replacement fluid to the venous blood return path 64 .
  • FIGS. 13A to 13 C show a fluid circuit bag 228 made from two overlaying sheets 230 A and 230 B of flexible medical grade plastic, e.g., poly vinyl chloride (see FIG. 13A ).
  • the bag 228 When laid flat (see FIG. 13B ), the bag 228 defines first and second panels 232 and 234 divided along a midline 236 .
  • the first and second panels 232 and 234 are brought into registration in a reverse facing relationship, with one panel 232 comprising the front of the bag 228 and the other panel 234 comprising the back of the bag 228 .
  • the first and second panel 232 and 234 each includes an individual pattern of seals S formed, e.g., by radio frequency welding.
  • the seals S form fluid flow paths, including the in-line containers 212 and 214 , peristaltic pump header regions, the sensor regions, and clamp regions previously described.
  • the flow paths formed by the pattern of seals S can comprise all or part of the circuit 56 .
  • Pump header tubing lengths 155 , 145 , and 201 are sealed in placed within the seal pattern S to form the pump regions 154 , 146 , and 201 , respectively.
  • the seals S on the first panel 232 are configured to form the flow paths of the circuit 56 through which replacement fluid is conveyed from the replacement fluid path 68 to the venous blood return path 64 , including the left and right front-facing replacement fluid compartments 212 F and 214 F.
  • the seals S on the second panel 234 are configured to form the flow paths of the circuit 56 through which waste fluid is conveyed from the waste path 66 to the waste bag 126 or drain, including the left and right rear-facing waste fluid compartments 212 R and 214 R. Seals S form four individual containers, two containers 212 F and 214 F on the panel 232 , and two containers 212 R and 214 R on the panel 234 .
  • the bag 228 is folded over about its midline 236 (see FIG. 15 ).
  • the bag 228 places in close association or registry the waste and replacement fluid paths 66 and 68 of the circuit 56 .
  • the replacement fluid paths 68 of the circuit 56 occupy the front panel 232 of the bag 228
  • the waste paths 66 of the circuit 56 occupy the back panel 234 of the bag 228 (or vice versa, depending upon the desired orientation of the bag 228 ).
  • the folded over bag 228 is contained in the base 50 of the tray 48 , with portions exposed through cutouts 58 in the insert 51 for engagement with the machine peristaltic pumps, sensing elements, and clamping elements, in the manner shown in FIG. 10 .
  • the remaining portions of the circuit 56 not contained within the bag 228 are formed of tubing and fit into preformed areas in the base 50 of the tray 48 (or formed within another bag) and coupled in fluid communication with the flow paths of the bag 228 , to complete the circuit 56 shown in FIG. 10 .
  • the flow paths formed on the first panel 232 include the balance replacement fluid paths 198 , which lead to and from the replacement side compartments 212 F and 214 F.
  • the replacement side compartments 212 F and 214 F rest in recesses in the tray base 50 .
  • Cutouts 58 in the insert 51 expose the pump header regions 200 and 154 , to engage the peristaltic waste and replacement pump 152 on the machine 16 ; the inlet clamp regions 224 , to engage the inlet valve assembly 216 on the machine 16 to control inflow of replacement fluid into the replacement side compartments 212 F and 214 F; and the outlet clamp regions 226 , to engage the outlet valve assembly 218 on the machine 16 to control outflow of replacement fluid from the replacement side compartments 212 F and 214 F.
  • the cutouts 58 also expose the sensor region 204 , to engage the pressure sensor 202 downstream of the waste and replacement pump 152 , and a pressure relief path 240 with exposed pressure relief bypass valve 242 , the purpose of which will be described later.
  • a small opening 203 formed in the pump header tubing 201 opens communication with the relief path 240 .
  • the flow paths formed on the second panel 234 include the waste path 138 that lead to and from the waste side compartments 212 R and 214 R (for fluid balancing) and the waste path 136 that bypasses the waste side compartments 212 R and 214 R (for ultrafiltration).
  • FIG. 15 shows, when the bag 228 is folded over in the tray 48 , the waste compartments 212 R and 214 R on the waste panel 234 and the replacement compartments 212 F and 214 F on the replacement panel 232 overlay, so both are exposed through the cutout 58 in the insert for registry as a unit with the chambers 206 and 208 on the chassis panel 26 .
  • the flow paths on the waste panel 234 also include the exposed waste inlet clamp regions 220 , to engage the valve assembly 218 to control inflow of waste fluid into the waste compartments 212 R and 214 R, and the exposed waste outlet clamp regions 222 , to engage the valve assembly 216 to control outflow of waste fluid from the waste compartments 212 R and 214 R.
  • the inlet clamp regions of the waste compartments 212 R and 214 R formed on the waste panel 234 overlay the outlet clamp regions of the replacement compartments 212 F and 214 F formed on the replacement panel 232 , and vice versa.
  • the flow paths also includes an exposed pump header region 154 , to engage the peristaltic waste and replacement pump 152 .
  • the exposed pump header regions 200 and 154 on the replacement and waste panels 232 and 234 lay side-by-side, to accommodate common engagement with the dual header waste and replacement pump 152 .
  • the flow paths also include the sensor region 160 , to engage the pressure sensor 156 downstream of the waste and replacement fluid pump 152 .
  • the flow paths also include the pump header region 146 , to engage the peristaltic ultrafiltration pump 144 .
  • the exposed pump header region 146 for the ultrafiltration pump 144 is spaced away from the other pump header regions of the circuit 56 .
  • FIGS. 12A and 12B the entry paths serving the waste and replacement compartments are located at the bottom, while the exit paths serving the waste and replacement compartments are located at the top. This configuration facilitates priming of the compartments. Still, the spaced apart configuration requires eight valve assemblies.
  • the entry and exit paths serving the waste and replacement compartments are all located at the top. Priming is still achieved, as the paths are top-oriented. Furthermore, due to the folded-over configuration of the bag itself, the clamping regions 220 , 222 , 226 can be arranged overlay one another. The overlaying arrangement of the clamping regions 220 , 222 , 224 , and 226 serving the waste and replacement compartments simplifies the number and operation of the inlet and outlet valve assemblies 216 and 218 on the machine 16 .
  • the first clamping element 244 is movable into simultaneous clamping engagement with the inlet clamp region 224 of the left replacement compartment 212 F (on the replacement panel 232 ) and the outlet clamp region 222 of the left waste compartment 212 R (on the waste panel 234 ), closing both.
  • the fourth clamping element 250 is movable into simultaneous clamping engagement with the inlet clamp region 224 of the right replacement compartment 214 F (on the replacement panel 232 ) and the outlet clamp region 222 of the right waste compartment 214 R (on the waste panel 234 ), closing both.
  • the second clamping element 246 is movable into simultaneous clamping engagement with the outlet clamp region 226 of the left replacement compartment 212 F (on the replacement panel 232 ) and the inlet clamp region 220 of the left waste compartment 212 R (on the waste panel 232 ), closing both.
  • the third clamping element 248 is movable into simultaneous clamping engagement with the outlet clamp region 226 of the right replacement compartment 214 F (on the replacement panel 232 ) and the inlet clamp region 220 of the right waste compartment 214 R (on the waste panel 234 ), closing both.
  • the machine 16 toggles operation of the first and third clamping elements 244 , 248 in tandem, while toggling operation the second and fourth clamping elements 246 , 250 in tandem.
  • first and third clamping elements 244 , 248 are operated to close their respective clamp regions, replacement fluid enters the right replacement compartment 214 F to displace waste fluid from the underlying right waste compartment 214 R, while waste fluid enters the left waste compartment 212 R to displace replacement fluid from the overlaying left replacement compartment 212 F.
  • FIGS. 17 and 18 show a mechanically linked pump and valve system 300 that can be arranged on the chassis panel 26 and used in association with the layered fluid circuit bag 228 shown in FIG. 15 .
  • the system 300 includes three electric motors 302 , 304 , and 306 .
  • the first motor 302 is mechanically linked by a drive belt 308 to the dual header waste and replacement pump 152 , previously described.
  • the second motor 304 is mechanically linked by a drive belt 310 to the blood pump 92 , also previously described.
  • the third motor 306 is mechanically linked by a drive belt 312 to the ultrafiltration pump 144 , also as previously described.
  • a drive belt 314 also mechanically links the first motor to the first, second, third, and fourth clamping elements 244 , 246 , 248 , and 250 , via a cam actuator mechanism 316 .
  • the cam actuator mechanism 316 includes, for each clamping element 244 , 246 , 248 , and 250 a pinch valve 318 mechanically coupled to a cam 320 .
  • the cams 320 rotate about a drive shaft 322 , which is coupled to the drive belt 314 .
  • Rotation of the cams 320 advances or withdraws the pinch valves 318 , according to the surface contour machined on the periphery of the cam 320 .
  • the pinch valve 318 closes the overlying clamp regions of the fluid circuit bag 228 that lay in its path.
  • the pinch valve 318 opens the overlying clamp regions.
  • the cams 320 are arranged along the drive shaft 322 to achieve a predetermined sequence of pinch valve operation. During the sequence, the rotating cams 320 first simultaneously close all the clamping elements 244 , 246 , 248 , and 250 for a predetermined short time period, and then open clamping elements 244 and 248 , while closing clamping elements 246 and 250 for a predetermined time period. The rotating cams 320 then return all the clamping elements 244 , 246 , 248 , and 250 to a simultaneously closed condition for a short predetermined time period, and then open clamping elements 246 and 250 , while closing clamping elements 244 and 248 for a predetermined time period.
  • a chamber cycle occurs in the time interval that the valve elements 244 , 246 , 248 , and 250 change from a simultaneously closed condition and return to the simultaneously closed condition.
  • the cam actuator mechanism 316 mechanically links the clamping elements 244 , 246 , 248 , and 250 ratiometrically with the first motor 302 . As the motor 302 increases or decreases the speed of the dual header waste and replacement pump 152 , the operation of the clamping elements 244 , 246 , 248 and 250 increases or decreases a proportional amount.
  • the ratio is set so that the flow rate per unit time through the waste pump header region 154 (i.e., through waste path 66 ) approximately equals three-fourths of the volume of the waste compartment 212 R/ 214 R, while maintaining the cycle rate at less than 10 cycles per minute. For example, if the chamber volume is 20 cc, the cycle occurs after 15 to 17 cc of waste fluid enters the compartment.
  • the waste pump header region 154 is made smaller in diameter than the replacement fluid header region 200 .
  • the flow rate through the replacement fluid header region 200 (through replacement fluid path 68 ) will always be larger than the flow rate through the waste pump header region 154 (through waste path 68 ).
  • a pressure relief path 240 with pressure relief bypass valve 242 is provided, to prevent overfilling.
  • the valve 242 is a mechanically spring biased pressure regulator, and serves the pressure regulation and bypass function of the machine 16 .
  • the in-line compartment that receives waste fluid will fill to approximately three-fourths of its volume during each cycle, displacing an equal amount of replacement fluid from its companion compartment.
  • the other in-line compartment that receives replacement fluid will fill completely. If the compartment completely fills with replacement fluid before the end of the cycle, the pressure relief bypass valve 242 will open to circulate replacement fluid through the relief path 240 to prevent overfilling. During the next cycle, waste fluid in the compartment will be completely displaced by the complete fill of replacement fluid in its companion compartment.
  • the pump and valve system 300 used in association with the layered fluid circuit bag 228 achieves accurate fluid balancing during frequent hemofiltration. Due to the smaller volumes of replacement fluid required during each frequent hemofiltration session, slight variations that may occur (e.g., plus or minus 5%) between fluid volume removed and fluid volume replaced do not lead to large volume shifts. As a result of accurate balancing of small fluid volumes, a person undergoing frequent hemofiltration does not experience significant day-to-day swings in body fluid volume, and more precise control of the person's body fluid and weight can be achieved.
  • the system 10 further includes a source 252 or sources that supply ancillary materials 20 to the treatment location 12 for use in association with the cartridge 18 and machine 16 .
  • the ancillary materials 20 include the replacement fluid containers 176 , as prescribed by the person's physician.
  • the ancillary materials 20 may also include an anticoagulant prescribed by a physician.
  • anticoagulant may not be required for every person undergoing frequent hemofiltration, depending upon treatment time, treatment frequency, blood hematocrit, and other physiologic conditions of the person.
  • the ancillary materials 20 can also include the hemofilter 34 , although, alternatively, the tray 48 can carry the hemofilter 34 , or the hemofilter 34 can -comprise an integrated component of the cartridge 18 .
  • the person's blood is conveyed through the hemofilter 34 for removal of waste fluid containing urea and other toxins.
  • Replacement fluid is exchanged for the removed waste fluid, to maintain the person's electrolyte balance and acid/base balance.
  • the replacement fluid is also balanced against an additional waste fluid removal, to yield a net ultrafiltration loss, as prescribed by the person's physician.
  • composition of an optimal replacement fluid solution usable during frequent hemofiltration consist of a balanced salt solution containing the major cationic and anionic plasma constituents, including bicarbonate or another anion from which net bicarbonate can be generated by metabolism.
  • Specific cationic substances removed by frequent hemofiltration that require replacement typically include sodium, potassium and calcium.
  • Specific anionic substances removed by frequent hemofiltration that require replacement include chloride and either bicarbonate or another anion that can be metabolized into bicarbonate, such as acetate, citrate, or, typically, lactate.
  • the replacement fluid for frequent hemofiltration should exclude phosphorus and other anionic substances. These materials typically accumulate in undesirable amounts in persons experiencing renal failure and are either difficult to remove in large amounts during hemofiltration or are safely removed without need for specific replacement.
  • the concentration of sodium in a replacement fluid for frequent hemofiltration should fall slightly below that of the typical blood filtrate concentration of 135 to 152 meq/liter.
  • the optimal range for sodium in the replacement fluid for frequent hemofiltration is 128-132 meq/liter, and typically 130 meq/liter. This concentration allows for a net sodium removal during frequent hemofiltration sessions, which is easily tolerated due to the smaller replacement fluid volumes necessary for frequent hemofiltration. This concentration also results in a minimal net drop in serum osmolality, so as to decrease extracellular volume to a extent sufficient to maintain euvolemia while ameliorating thirst in the person undergoing frequent hemofiltration.
  • the optimal concentration in a replacement fluid for frequent hemofiltration should be much closer to the normal physiologic range of calcium in plasma, i.e., in a range of 2.5 to 3.5 meq/liter, and typically 2.7 meq/liter.
  • This calcium concentration range is required to prevent tetany, which can result from excessive removal of ionized calcium, while removing excessive serum calcium that may result from the oral calcium supplements and phosphorus binders frequently used by persons requiring hemofiltration.
  • the potassium concentrations selected for replacement fluids used during infrequent hemofiltration are quite low, e.g., in the range of 0 to 3 meq/liter. These low concentrations of potassium are required for infrequent hemofiltration therapies, to prevent life threatening accumulations of serum potassium between treatment sessions. Interim accumulation of toxic levels of potassium can be encountered between infrequent hemofiltration sessions, both because of decreased renal excretion of potassium and the interim development of acidosis between sessions. This, in turn, can result in total body potassium depletion in many persons undergoing infrequent therapy. Potassium depletion results in vasoconstriction and subsequent alterations in regional blood flow.
  • Potassium depletion also interferes with the efficiency of solute removal, as measured by a decrease in Kt/V for urea, which is a dimensionless parameter commonly employed to measure the adequacy of dialysis. Potassium depletion is also implicated in the pathogenesis of hypertension in patients undergoing hemodialysis or infrequent hemofiltration.
  • the optimal range for potassium in a replacement fluid used for frequent hemofiltration can fall in a higher range than that required of less frequent treatment schedules, laying in the range of 2.7 to 4.5 meq/liter, and typically 4.0 meq/liter.
  • This higher concentration of potassium when infused frequently in smaller fluid replacement volumes, prevents potassium depletion, while also maintaining more stable potassium levels to prevent toxic accumulation of potassium between sessions.
  • the optimal range for chloride concentrations in a replacement fluid used for frequent hemofiltration is 105 to 115 meq/liter, and typically 109 meq/liter. This concentration most closely approximates the normal sodium to chloride ratio of 1.38:1 maintained in the plasma. The small deviation from this ratio in the replacement fluid itself allows for the normalization of the ratio by daily oral intake of these electrolytes. Due to the larger replacement fluid volumes needed for infrequent treatment (three times per week or less), this deviation from the normal 1.38:1 ratio are exaggerated, and can lead to a hyperchloremic acidosis. Due to the use of smaller fluid volumes during each frequent hemofiltration session, hyperchloremic acidosis can be avoided.
  • bicarbonate or an equivalent in a replacement fluid used for frequent hemofiltration is also important. Concentrations must adequately replace filtered bicarbonate while controlling acidosis and avoiding metabolic alkalosis. Because of precipitation of calcium carbonate in solutions containing dissolved calcium and bicarbonate, bicarbonate itself is generally impractical for use in a replacement fluid. Other substances such as acetate, citrate, or typically lactate, are substituted. These substances are metabolized by the body into bicarbonate and do not precipitate when placed into solution with the cationic substances mentioned previously.
  • lactate necessary to replace filtered bicarbonate and control acidosis without alkalemia is 25 to 35 mmoles per liter, and typically 28 mmoles per liter. Due to the large volumes of replacement fluid used for infrequent therapies, use of lactate containing replacement fluids can result in lactate accumulation and pathologic alterations in the lactate:pyruvate ratio and resulting in undesirable changes in cellular redox potentials. However, these effects are minimized by the frequent use of smaller volumes of replacement fluid during frequent hemofiltration. This also results in more physiologic control of acidosis and, secondarily, serum potassium concentration. The latter is accounted for by reduced extra-cellular shift of potassium caused by acidosis.
  • the source 252 may therefore supply relatively inexpensive commodity solutions of physiologic fluids, free of electrolytes, e.g., normal saline or Ringer's lactate (which typically contains 6 mg/ml sodium chloride (130 meq/liter); 3.1 mg/ml of sodium lactate (28 meq/liter); 0.3 mg/ml potassium chloride (4 meq/liter); 0.2 mg/ml calcium chloride (2.7 meq/liter, 109 meq/liter at an osmolarity of 272 mos/liter); at a pH of 6.0 to 7.5).
  • normal saline or Ringer's lactate which typically contains 6 mg/ml sodium chloride (130 meq/liter); 3.1 mg/ml of sodium lactate (28 meq/liter); 0.3 mg/ml potassium chloride (4 meq/liter); 0.2 mg/ml calcium chloride (2.7 meq/liter, 109 meq/liter at an osmolarity of 272 mos/liter); at a pH of 6.0 to 7.5
  • citrate used to buffer the inexpensive, electrolyte-free replacement fluid can also serve the additional function of anticoagulating the blood as it undergoes hemofiltration in the first place.
  • the source 252 supplying the ancillary materials 20 can comprise one or more companies or businesses that manufacture the ancillary materials or that otherwise distributes the ancillary materials 20 to the treatment location 12 .
  • the system 10 serves to enable frequent hemofiltration with high blood flow rates.
  • the high blood flow rates reduce the processing time, and also significantly increases the transport rate of uremic toxins across the hemofiltration membrane.
  • the frequent hemofiltration that the system 10 enables removes high concentrations of uremic toxins, without requiring the removal of high fluid volumes, with the attendant loss of electrolytes.
  • the system 10 thereby provides multiple benefits for the individual, i.e., a tolerable procedure time (e.g., about one to two hours), with high clearance of uremic toxins, without high depletion of liquids and physiologic electrolyte levels in the blood, accurate fluid volume balancing, and use of inexpensive commodity replacement fluids.
  • the machine 16 and cartridge 18 that the system 10 may provide can be used to provide diverse frequent hemofiltration modalities on a continuous or extended basis, e.g., normal frequent hemofiltration, balanced frequent hemofiltration, only net ultrafiltration, and replacement fluid bolus.
  • normal hemofiltration occurs without an ultrafiltration function.
  • This mode can be used for persons that experience no weight gains between treatment sessions.
  • This mode can also be used at the end of a normal frequent hemofiltration session, when the net ultrafiltration goal was achieved before exhausting the supply of replacement fluid.
  • the ultrafiltration pump 144 is run in reverse at a speed lower than the waste and replacement pump 152 .
  • This recirculates waste fluid through the waste compartments 212 R and 214 R, to add replacement fluid from the replacement compartments 212 F and 214 F to the patient.
  • the waste fluid that is recirculated limits waste fluid removal through the hemofilter 34 , yielding replacement fluid addition without additional waste fluid removal.
  • the net volume of added replacement fluid conveyed to the patient equals the volume of waste fluid recirculated.
  • This mode can be used to return fluid to a person in a bolus volume, e.g., during a hypotensive episode or during rinse back at the end of a given hemofiltration session.
  • High blood flow rates are conducive to rapid, efficient frequent hemofiltration.
  • the high blood flow rates not only reduce the processing time, but also significantly increases the transport rate of uremic toxins across the hemofiltration membrane. In this way, the system 10 removes high concentrations of uremic toxins, without requiring the removal of high fluid volumes, with the attendant loss of electrolytes.
  • the BFR can be prescribed by an attending physician and input by the operator at the beginning of a treatment session.
  • a desired FF (typically 20% to 35%) can be either preset or prescribed by the attending physician.
  • a desired FF takes into account the desired therapeutic objectives of toxin removal, as well as the performance characteristics of the hemofilter 34 .
  • a nominal FF can be determined based upon empirical and observed information drawn from a population of individuals undergoing hemofiltration. A maximum value of 30% is believed to be appropriate for most individuals and hemofilters 34 , to achieve a desired therapeutic result without clogging of the hemofilter 34 .
  • air leaks into the extracorporeal circuit is monitored by the sensor 98 .
  • the sensor 98 is an ultrasonic detector, which also can provide the added capacity to sense flow rate.
  • the machine 16 senses waste fluid pressure to control the blood flow rate to optimize the removal of fluid across the hemofilter 34 .
  • waste fluid pressure As arterial blood flows through the hemofilter 34 (controlled by the blood pump 92 ), a certain volume of waste fluid will cross the membrane into the waste line 118 .
  • the volume of waste fluid entering the waste line 118 depends upon the magnitude of the waste fluid pressure, which is sensed by the sensor 132 .
  • the waste fluid pressure is adjusted by controlling the waste fluid removal rate through the fluid balancing compartments (i.e., through control of the waste and replacement pump 152 ).
  • the machine 16 monitors the waste fluid pressure at sensor 132 . By keeping the pressure sensed by the sensor 132 slightly above zero, the machine 16 achieves the maximum removal of fluid from the blood at then operative arterial flow rate. Waste pressure values significantly higher than zero will limit removal of fluid from the blood and keep a higher percentage of waste fluid in the blood (i.e., result in a lower filtration fraction). However, this may be desirable for persons who tend to clot easier.
  • the machine 16 By sensing waste fluid pressure by sensor 132 , the machine 16 also indirectly monitors arterial blood pressure. At a constant blood pump speed, changes in arterial blood flow caused, e.g., by access clotting or increased arterial blood pressure, makes less waste fluid available in the waste line 118 . At a given speed for pump 152 , change in arterial blood flow will lower the sensed waste pressure at sensor 132 to a negative value, as fluid is now drawn across the membrane. The machine 16 adjusts for the change in arterial blood flow by correcting the waste fluid removal rate through the pump 152 , to bring the waste pressure back to slightly above zero, or to another set value.
  • a pressure sensor in the arterial blood line is not required. If the arterial pressure increases at a fixed blood pump speed, the blood flow must drop, which will result in a sensed related drop in the waste fluid pressure by the sensor 132 . Adjusting the pump 152 to achieve a pressure slightly above zero corrects the reduced arterial blood flow. In this arrangement, since the waste fluid pressure is maintained at a slightly positive value, it is not possible to develop a reverse transmembrane pressure, which conveys waste fluid back to the person's blood. The maximum transmembrane pressure is the maximum venous pressure, since waste fluid pressure is held slightly positive.
  • arterial blood pressure can be measured by a sensor located upstream of the blood pump.
  • the rate of the blood pump is set to maintain sensed arterial blood pressure at a predetermined control point. This controls the blood pump speed to a maximum rate.
  • the control point can be determined by the attending physician, e.g., on a day-to-day basis, to take into account the blood access function of the person undergoing treatment.
  • Use of an arterial pressure control point minimizes the treatment time, or, alternatively, if treatment time is fixed, the removal of waste fluid can maximized.
  • safety alarms can be included should the sensed arterial pressure become more negative than the control point, along with a function to shut down the blood pump should an alarm occur.
  • RFR can be prescribed by an attending physician and inputted by the operator at the beginning of a treatment session.
  • waste is conveyed to the waste side compartments 212 R and 214 R, and replacement fluid is conveyed to the replacement side compartments 212 F and 214 F, by operation of the dual header waste and replacement fluid pump 152 .
  • dual header waste and replacement fluid pump 152 can be provided.
  • the speed of the waste and replacement pump 152 is controlled to achieve the desired RFR.
  • the machine 16 cycles the inlet and outlet valve assemblies 216 , 218 , as described.
  • the machine 16 cycles between the valve states according to the speed of the waste and fluid pump 152 to avoid overfilling the compartments 212 , 214 receiving fluid.
  • Various synchronization techniques can be used.
  • the interval of a valve cycle is timed according to the RFR, so that the volume of waste or replacement fluid supplied to waste compartment during the valve cycle interval is less than volume of the compartment receiving the waste fluid overfilling is thereby avoided without active end of cycle monitoring.
  • the waste fluid is pumped at RFR, and the replacement fluid is pumped at a higher rate, but is subject to pressure relief through the pressure relief path 240 upon filling the corresponding replacement side compartment 214 .
  • the timing of the transition between valve cycles is determined by active sensing of pressure within the compartments 212 , 214 receiving liquid. As the interior wall 210 reaches the end of its travel, pressure will increase, signaling an end of cycle to switch valve states.
  • the location of the interior wall 210 as it reaches the end of its travel is actively sensed by end of cycle sensors on the machine 16 .
  • the sensors can comprise, e.g., optical sensors, capacitance sensors, magnetic Hall effect sensors, or by radio frequency (e.g., microwave) sensors.
  • the termination of movement of the interior wall 210 indicates the complete filling of a compartment and the concomitant emptying of the other compartment, marking the end of a cycle.
  • the sensors trigger an end of cycle signal to switch valve states.
  • the machine 16 counts the valve cycles. Since a known volume of replacement fluid is expelled from a replacement side compartment during each valve cycle, the machine 16 can derive the total replacement volume from the number of valve cycles.
  • the replacement fluid volume is also known by the number of replacement fluid bags of known volume that are emptied during a given session.
  • Frequent hemofiltration can be conducted without fluid replacement, i.e., only net ultrafiltration, by setting RFR to zero.
  • UFR can be prescribed by an attending physician and inputted by the operator at the beginning of a treatment session.
  • the speed of the ultrafiltration pump is monitored and varied to maintain UFR.
  • Frequent hemofiltration can be conducted without an ultrafiltration function, i.e., balanced hemofiltration, by setting UFR to zero.
  • the machine 16 also actively controls the filtration rate along with the blood flow rate, to achieve a desired magnitude of uremic toxin removal through the hemofilter 34 .
  • the machine 16 includes a flow restrictor which is positioned to engage a region of the venous blood return path in the circuit 56 .
  • the restrictor comprises, e.g., a stepper-driven pressure clamp, which variably pinches a region of the venous blood return path upon command to alter the outlet flow rate of blood. This, in turn, increases or decreases the transmembrane pressure across the filter membrane.
  • waste transport across the filter membrane will increase with increasing transmembrane pressure, and vice versa.
  • an increase in transmembrane pressure aimed at maximizing waste transport across the filter membrane, will drive cellular blood components against the filter membrane. Contact with cellular blood components can also clog the filter membrane pores, which decreases waste transport through the membrane.
  • Filtration rate control can also rely upon an upstream sensor mounted on the machine 16 .
  • the sensor is positioned for association with a region of the arterial blood supply path between the blood pump 92 and the inlet of the hemofilter 34 .
  • the sensor senses the hematocrit of the blood prior to its passage through the filter membrane which will be called the “pre-treatment hematocrit”).
  • a downstream sensor is also mounted on the machine 16 .
  • the sensor is positioned for associated with a region of the venous blood return path downstream of the outlet of the hemofilter 34 .
  • the sensor senses the hematocrit of the blood after its passage through the hemofilter 34 (which will be called the “post-treatment hematocrit”).
  • the difference between pre-treatment and post-treatment hematocrit is a function of the degree of waste fluid removal by the hemofilter 34 . That is, for a given blood flow rate, the more waste fluid that is removed by the hemofilter 34 , the greater the difference will be between the pre-treatment and post-treatment hematocrits, and vice versa.
  • the machine 16 can therefore derive an actual blood fluid reduction ratio based upon the difference detected by sensors between the pre-treatment and post-treatment hematocrits.
  • the machine 16 periodically compares the derived fluid reduction value, based upon hematocrit sensing by the sensors, with the desired FF.
  • the machine 16 issues a command to the flow restrictor to bring the difference to zero.
  • the pumps can be operated in forward and reverse modes and the valves operated accordingly to establish predetermined pressure conditions within the circuit.
  • the sensors monitor build up of pressure within the circuit, as well as decay in pressure over time. In this way, the machine can verify the function and integrity of pumps, the pressure sensors, the valves, and the flow paths overall.
  • the machine 16 can also verify the accuracy of the ultrafiltration pump using the fluid balancing containers.
  • Priming can be accomplished at the outset of each frequent hemofiltration session to flush air and any residual fluid from the disposable fluid circuit. Fluid paths from the arterial access to the waste bag are flushed with replacement fluid. Replacement fluid is, also circulated through the fluid balancing containers into the waste bag and the venous return path. The higher flow rate in the replacement fluid path and timing of the fluid balancing valve elements assure that the replacement fluid compartments completely fill and the waste fluid compartments completely empty during each cycle for priming.
  • waste fluid pressure is controlled and monitored to assure its value is always positive.
  • pressure between the blood pump and the hemofilter must also be positive, so that air does not enter this region of the circuit. Forward operation of the blood pump to convey arterial blood into the hemofilter establishes this positive pressure condition.
  • the rinse back of blood at the end of a given frequent hemofiltration procedure can also be accomplished without risk of air entry into the blood flow path. Rinse can be accomplished by stopping the blood pump and operating the ultrafiltration pump in the reverse bolus mode, as already described. The recirculation of waste fluid by the ultrafiltration pump through the fluid balancing compartments introduces replacement fluid to flush the venous return line. When complete, the venous clamp is closed.
  • the ultrafiltration pump With the venous clamp closed, continued operation of the ultrafiltration pump in the reverse bolus mode introduces replacement fluid from the fluid balancing compartments into the hemofilter, in a back flow direction through the outlet port.
  • the blood pump is run in reverse to convey the replacement fluid through the hemofilter and into the arterial blood line. Residual blood is flushed from the blood line.
  • the blood pump is operated in reverse at a rate slower than the reverse bolus rate of the ultrafiltration pump (which supplies replacement fluid to the outlet port of the hemofilter), so that air cannot enter the blood path between the blood pump and the hemofilter.
  • the arterial blood line At this stage of the rinse back, the arterial blood line is also subject to positive pressure between the blood pump and the arterial access, so no air can enter this region, either.
  • the system 10 also preferably includes a telemetry network 22 (see FIGS. 1 and 19 ).
  • the telemetry network 22 provides the means to link the machine 16 at the treatment location 12 in communication with one or more remote locations 254 via, e.g., cellular networks, digital networks, modem, Internet, or satellites.
  • a given remote location 254 can, for example, receive data from the machine 16 at the treatment location 12 or transmit data to a data transmission/receiving device 296 at the treatment location 12 , or both.
  • a main server 256 can monitor operation of the machine 16 or therapeutic parameters of the person undergoing frequent hemofiltration. The main server 256 can also provide helpful information to the person undergoing frequent hemofiltration.
  • the telemetry network 22 can download processing or service commands to the data receiver/transmitter 296 at the treatment location 12 .
  • FIG. 19 shows the telemetry network 22 in association with a machine 16 that carries out frequent hemofiltration.
  • the telemetry network 22 includes the data receiver/transmitter 296 coupled to the machine 16 .
  • the data receiver/transmitter 296 can be electrically isolated from the machine 16 , if desired.
  • the telemetry network 22 also includes a main data base server 256 coupled to the data receiver/transmitter 296 and an array of satellite servers 260 linked to the main data base server 256 .
  • the data generated by the machine 16 during operation is processed by the data receiver/transmitter 296 .
  • the data is stored, organized, and formatted for transmission to the main data base server 256 .
  • the data base server 256 further processes and dispenses the information to the satellite data base servers 260 , following by pre-programmed rules, defined by job function or use of the information. Data processing to suit the particular needs of the telemetry network 22 can be developed and modified without changing the machine 16 .
  • the main data base server 256 can be located, e.g., at the company that creates or manages the system 10 .
  • the satellite data base servers 260 can be located, for example, at the residence of a designated remote care giver for the person, or at a full time remote centralized monitoring facility staffed by medically trained personnel, or at a remote service provider for the machine 16 , or at a company that supplies the machine 16 , or the processing cartridge 18 , or the ancillary processing material to the treatment location 12 .
  • the machine 16 acts as a satellite.
  • the machine 16 performs specified therapy tasks while monitoring basic safety functions and providing the person at the treatment location 12 notice of safety alarm conditions for resolution. Otherwise, the machine 16 transmits procedure data to the telemetry network 22 .
  • the telemetry network 22 relieves the machine 16 from major data processing tasks and related complexity. It is the main data base server 256 , remote from the machine 16 , that controls the processing and distribution of the data among the telemetry network 22 , including the flow of information and data to the person undergoing therapy.
  • the person at the treatment location 12 can access data from the machine 16 through the local date receiver/transmitter 296 , which can comprise a laptop computer, handheld PC device, web tablet, or cell phone.
  • the machine 16 can transmit data to the receiver/transmitter 296 in various ways, e.g., electrically, by phone lines, optical cable connection, infrared light, or radio frequency, using cordless phone/modem, cellular phone/modem, or cellular satellite phone/modem.
  • The. telemetry network 22 may comprise a local, stand-alone network, or be part of the Internet.
  • the safety alarm and its underlying data will also be sent to the main server 256 on the telemetry network 22 via the receiver/transmitter 296 . While the person undergoing therapy or the care giver works to resolve the alarm condition, the main server 256 determines, based upon the prevailing data rule, whether the alarm condition is to be forwarded to other servers 260 in the network 22 .
  • the main server 256 can locate and download to the receiving device 296 the portion of the operator's manual for the machine that pertains to the alarm condition. Based upon this information, and exercising judgment, the operator/user can intervene with operation of the machine 16 . In this way, the main server 256 can provide an automatic, context-sensitive help function to the treatment location 12 .
  • the telemetry network 22 obviates the need to provide on-board context-sensitive help programs for each machine 16 .
  • the telemetry network 22 centralizes this help function at a single location, i.e., a main server 256 coupled to all machines 16 .
  • the telemetry network 22 can relay to an inventory server 262 supply and usage information of components used for frequent hemofiltration at each treatment location 12 .
  • the server 262 can maintain treatment site-specific inventories of such items, such as cartridges 18 , replacement fluid, and hemofilters 34 .
  • the company or companies of the system 10 that supply the machine 16 , or the processing cartridge 18 , or the ancillary processing material to the treatment location 12 can all be readily linked through the telemetry network 22 to the inventory server 262 .
  • the inventory server 262 thereby centralizes inventory control and planning for the entire system 10 , based upon information received in real time from each machine 16 at each treatment location 12 .
  • the telemetry network 22 can relay to a service server 264 hardware status information for each machine 16 at every treatment location 12 .
  • the service server 264 can process the information according to preprogrammed rules, to generate diagostic reports, service requests or maintenance schedules.
  • the company or companies of the system 10 that supply or service the machine 16 can all be readily linked through the telemetry network 22 to the service server 264 .
  • the service server 264 thereby centralizes service, diagnostic, and maintenance functions for the entire system 10 .
  • Service-related information can also be sent to the treatment location 12 via the receiving device 296 .
  • the telemetry network 22 can also relay to a treatment monitoring server 266 , treatment-specific information pertaining to the hemofiltration therapy provided by each machine 16 for the person at each treatment location 12 .
  • Remote monitoring facilities 268 staffed by medically trained personnel, can be readily linked through the telemetry network 22 to the treatment monitoring server 266 .
  • the monitoring server 266 thereby centralizes treatment monitoring functions for all treatment locations 12 served by the system 10 .
  • Treatment-monitoring information can also be sent to the treatment location 12 via the receiving device 296 .
  • the telemetry network 22 can also provide through the device 296 an access portal for the person undergoing frequent hemofiltration to the myriad services and information contained on the Internet, e.g., over the web radio and TV, video, telephone, games, financial management, tax services, grocery ordering, prescriptions purchases, etc.
  • the main server 256 can compile diagnostic, therapeutic, and/or medical information to create a profile for each person served by the system 10 to develop customized content for that person.
  • the main server 256 thus provide customized ancillary services such as on line training, billing, coaching, mentoring, and provide a virtual community whereby persons using the system 10 can contact and communicate via the telemetry network 22 .
  • the telemetry network 22 thus provides the unique ability to remotely monitor equipment status, via the internet, then provide information to the user, also via the internet, at the location of the equipment.
  • This information can includes, e.g., what page on the operator's manual would be the most helpful for their current operational situation, actual data about the equipment's performance (e.g., could it use service, or is it set up based on the caretaker's recommendations, data about the current session i.e., buttons pressed, alarms, internal machine parameters, commands, measurements.
  • the remote site can monitor the equipment for the same reasons that the user might. It can also retrieve information about the machine when it is turned off because the telemetry device is self-powered. It retains all information about the machine over a period of time (much like-a flight recorder for an airplane).
  • the main server 256 on the telemetry network 22 can also store and download to each machine 16 (via the device 296 ) the system control logic and programs necessary to perform a desired frequent hemofiltration procedure.
  • Programming to alter a treatment protocol to suit the particular needs of a single person at a treatments site can be developed and modified without a service call to change the machine 16 at any treatment location 12 , as is the current practice.
  • System wide modifications and revisions to control logic and programs that condition a machine 16 to perform frequent hemofiltration can be developed and implemented without the need to retrofit each machine 16 at all treatment locations 12 by a service call. This approach separates the imparting of control functions that are tailored to particular procedures, which can be downloaded to the machine 16 at time of use, from imparting safety functions that are generic to all procedures, which can be integrated in the machine 16 .
  • control logic and programs necessary to perform a desired frequent hemofiltration procedure can be carried in a machine readable format on the cartridge 18 .
  • Scanners on the machine 16 automatically transfer the control logic and programs to the machine 16 in the act of loading the cartridge 18 on the machine 16 .
  • Bar code can be used for this purpose.
  • Touch contact or radio frequency silicon memory devices can also be used.
  • the machine 16 can also include local memory, e.g., flash memory, to download and retain the code.
  • the machine 16 can include one or more code readers 270 on the chassis panel 26 .
  • the tray 48 carries, e.g., on a label or labels, a machine readable (e.g., digital) code 272 (see FIG. 10 ) that contains the control logic and programs necessary to perform a desired frequent hemofiltration procedure using the cartridge 18 .
  • Loading the tray 48 on the machine 16 orients the code 272 to be scanned by the reader(s) 270 . Scanning the code 272 downloads the control logic and programs to memory. The machine 16 is thereby programmed on site.
  • the code 272 can also include the control logic and programs necessary to monitor use of the the cartridge 18 .
  • the code 272 can provide unique identification for each cartridge 18 .
  • the machine 16 registers the unique identification at the time it scans the code 272 .
  • the machine 16 transmits this cartridge 18 identification information to the main server 256 of the telemetry network 22 .
  • the telemetry network 22 is able to uniquely track cartridge 18 use by the identification code throughout the system 10 .
  • the main server 256 can include preprogrammed rules that prohibit multiple use of a cartridge 18 , or that limit extended uses to a prescribed period of time. An attempted extended use of the same cartridge 18 on any machine 16 , or an attempted use beyond the prescribed time period, will be detected by the machine 16 or the main server 256 . In this arrangement, the machine 16 is disabled until an unused cartridge 18 is loaded on the machine 16 .
  • Service cartridges can also be provided for the machine 16 .
  • a service cartridge carries a code that, when scanned by the reader or readers on the chassis panel 26 and downloaded to memory, programs the machine 16 to conduct a prescribed service and diagnostic protocol using the service cartridge 18 .
  • the chassis panel 26 can be configured to receive overlays 274 , 276 , 278 , 280 (see FIG. 20 ), which are specific to particular hemofiltration modalities or therapies that the machine 16 can carry out.
  • overlays 274 , 276 , 278 , 280 are specific to particular hemofiltration modalities or therapies that the machine 16 can carry out.
  • one overlay 274 would be specific to the normal frequent hemofiltration mode
  • a second overlay 276 would be specific to the balanced frequent hemofiltration mode
  • a third overlay 278 would be specific to the only net ultrafiltration mode
  • a fourth overlay 280 would be specific to the replacement fluid bolus mode.
  • Other overlays could be provided, e.g., for a pediatric hemofiltration procedure, or a neo-natal hemofiltration procedure.
  • each overlay contains a code 282 or a chip imbedded in the overlay that is scanned or discerned by one or more readers 284 on the chassis panel 26 after the overlay is mounted on the chassis panel 26 .
  • the code 282 is downloaded to flash memory on the machine 16 and programs the machine 16 to conduct hemofiltration in that particular mode.
  • a person at the treatment location 12 mounts the appropriate overlay 274 , 276 , 278 , 280 and then mounts a cartridge 18 on the chassis panel 26 .
  • the machine 16 is then conditioned by the overlay and made capable by the cartridge 18 to conduct that particular mode of hemofiltration using the cartridge 18 .
  • a universal cartridge 18 capable of performing several hemofiltration modes, can be provided. It is the overlay that conditions the machine 16 to perform different treatment modalities. Alternatively, the operator can link the overlay, machine, and cartridge together by therapy type.
  • treatment-site specific alterations of generic hemofiltration modes can be developed and implemented.
  • treatment-site specific overlays 286 are provided for the machine 16 .
  • the treatment site-specific overlay 286 carries a code 282 or a chip imbedded in the overlay that, when downloaded by the machine 16 , implements a particular variation of the hemofiltration mode for the person at that treatment location 12 , as developed, e.g., by an attending physician.
  • a person at the treatment location 12 mounts the treatment-site specific overlay 286 and then mounts a universal cartridge 18 on the chassis panel 26 .
  • the machine 16 is conditioned by the treatment site-specific overlay 286 and made capable by the universal cartridge 18 to conduct that particular specific mode of hemofiltration using the cartridge 18 .
  • An additional overlay 288 can be provided that contains code 282 or a chip imbedded in the overlay that, when scanned by the reader(s) 284 on the chassis panel 26 and downloaded to flash memory, programs the machine 16 to conduct a prescribed service and diagnostic protocol using the cartridge 18 , which is also mounted on the chassis panel 26 .
  • the consolidation of all blood and fluid flow paths in a single, easily installed cartridge 18 avoids the potential of contamination, by minimizing the number of connections and disconnections needed during a hemofiltration session.
  • the cartridge 18 can remain mounted to the machine 16 after one hemofiltration session for an extended dwell or break period and allow reconnection and continued use by the same person in a subsequent session or in a continuation of a session following x-rays or testing.
  • the cartridge 18 can therefore provide multiple intermittent treatment sessions during a prescribed time period, without exchange of the cartridge 18 after each treatment session.
  • the time of use confines are typically prescribed by the attending physician or technical staff for the treatment center to avoid biocontamination and can range, e.g., from 48 hours to 120 hours, and more typically 72 to 80 hours.
  • the cartridge 18 can carry a bacteriostatic agent that can be returned to the patient (e.g., an anticoagulant, saline, ringers lactate, or alcohol) and/or be refrigerated during storage.
  • the cartridge 18 can include one or more in-line sterilizing filters 178 (e.g., 0.2 m) in association with connectors that, in use, are attached to outside fluid sources, e.g., the replacement fluid source.
  • the filter 178 can be pre-attached to the cartridge 18 and be coupled to a multiple connection set 290 , which itself is coupled to the prescribed number of replacement fluid bags 176 .
  • a separate customized filtration set 292 can be provided, which attaches to the connector 174 carried by the cartridge 18 .
  • the filtration set 292 includes a sterilizing filter 178 to which an array of multiple connector leads 294 is integrated.
  • fluid can be recirculated either continuously or intermittently through the circuit 56 .
  • the fluid can be circulate past a region of ultraviolet light carried on the machine 16 to provide a bacteriostatic effect.
  • the fluid can carry a bacteriostatic agent, such as an anticoagulant, saline, ringers lactate, or alcohol, which can be returned to the person at the beginning of the next treatment session.
  • a bacteriostatic agent such as an anticoagulant, saline, ringers lactate, or alcohol, which can be returned to the person at the beginning of the next treatment session.
  • the machine 16 and cartridge 18 can also be subjected to refrigeration during the dwell period.
  • an active disinfecting agent can be circulated through the circuit 56 during the dwell period.
  • The-disinfecting material can include a solution containing AmuchinaJ material. This material can be de-activated by exposure to ultraviolet light prior to the next treatment session. Exposure to ultraviolet light causes a chemical reaction, during which AmuchinaJ material breaks down and transforms into a normal saline solution, which can be returned to the person at the start of the next hemofiltration session.
  • FIG. 22 shows a representative display 324 for an operator interface 44 for the machine.
  • the display 324 comprises a graphical user interface (GUI), which, in the illustrated embodiment, is displayed by the interface 44 on the exterior of the door 28 , as FIG. 2 shows.
  • GUI graphical user interface
  • the GUI can be realized, e.g., as a membrane switch panel, using an icon-based touch button membrane.
  • the GUI can also be realized as a “C” language program implemented using the MS WINDOWSTM application and the standard WINDOWS 32 API controls, e.g., as provided by the WINDOWSTM Development Kit, along with conventional graphics software disclosed in public literature.
  • the GUI 324 presents to the operator a simplified information input and output platform, with graphical icons, push buttons, and display bars.
  • the icons, push buttons, and display bars are preferably back-lighted in a purposeful sequence to intuitively lead the operator through set up, execution, and completion of a frequent hemofiltration session.
  • the GUI 324 includes an array of icon-based touch button controls 326 , 328 , 330 , and 332 .
  • the controls include an icon-based treatment start/select touch button 326 , an icon-based treatment stop touch button 328 , and an icon-based audio alarm mute touch button 330 .
  • the controls also include an icon-based add fluid touch button 332 (for prime, rinse back, and bolus modes, earlier described).
  • the fields comprise information display bars 334 , 336 , and 338 , each with associated touch keys 340 to incrementally change the displayed information.
  • the top data display bar 334 numerically displays the Replacement Fluid Flow Rate (in ml/min), which is the flow rate for removing waste fluid and replacing it with an equal volume of replacement fluid.
  • the middle data display bar 336 numerically displays the ultrafiltration flow rate (in kg/hr), which is the flow rate for removing waste fluid to control net weight loss.
  • the bottom data display bar 338 numerically displays the Blood Pump Flow Rate (in ml/min).
  • the associated touch keys 340 point up (to increase the displayed value) or down (to decrease the displayed value), to intuitively indicate their function.
  • the display bars 334 , 336 , and 338 and touch keys 340 can be shaded in different colors, e.g., dark blue for the replacement flow rate, light blue for ultrafiltrational flow rate, and red for the blood flow rate.
  • the left bar 342 when lighted, displays a “safe” color (e.g., green) to indicate a safe operation condition.
  • the middle bar 344 when lighted, displays a “cautionary” color (e.g., yellow) to indicate a caution or warning condition and may, if desired, display a numeric or letter identifying the condition.
  • the right bar 346 when lighted, displays an “alarm” color (e.g., red) to indicate a safety alarm condition and may, if desired, display a numeric or letter identifying the condition.
  • an “alarm” color e.g., red
  • a processing status touch button 348 is also present on the display.
  • the button 348 when touched, changes for a period of time (e.g., 5 seconds) the values displayed in the information display bars 334 , 336 , and 338 , to show the corresponding current real time values of the replacement fluid volume exchanged (in the top display bar 334 ), the ultrafiltrate volume (in the middle display bar 336 ), and the blood volume processed (in the bottom display bar 338 ).
  • the status button 348 when touched, also shows the elapsed procedure time in the left status indicator bar 342 .
  • the display also includes a cartridge status icon 350 .
  • the icon 350 when lighted, indicates that the cartridge 18 can be installed or removed from the machine 16 .
  • the GUI 324 though straightforward and simplified, enables the operator to set the processing parameters for a given treatment session in different ways.
  • the GUI 324 prompts the operator by back-lighting the replacement fluid display bar 334 , the ultrafiltration display bar 336 , and the blood flow rate display bar 338 .
  • the operator follows the lights and enters the desired processing values using the associated touch up/down bottons 340 .
  • the GUI back-lights the start/select touch button 326 , prompting the operator to begin the treatment.
  • the machine 16 controls the pumps to achieve the desired replacement fluid, ultrafiltration, and blood flow rates set by the operator. The machine terminates the procedure when all the replacement fluid is used and the net ultrafiltration goal is achieved.
  • the operator can specify individual processing objectives, and the machine 16 will automatically set and maintain appropriate pump values to achieve these objectives.
  • This mode can be activated, e.g., by pressing the start/select touch button 326 while powering on the machine 16 .
  • the GUI 324 changes the. function of the display bars 334 and 336 , so that the operator can select and change processing parameters.
  • the processing parameters are assigned identification numbers, which can be scrolled through and selected for display in the top bar 334 using the touch up/down keys 340 .
  • the current value for the selected parameter is displayed in the middle display bar 336 , which the operator can change using the touch up/down keys 340 .
  • the operator can, e.g., specify a desired filtration factor value (FF) along with a desired ultrafiltration flow rate (UFR) and replacement fluid flow rate (RFR).
  • FF filtration factor value
  • UFR ultrafiltration flow rate
  • RFR replacement fluid flow rate
  • BFR blood pump rate
  • the operator can specify a desired filtration factor value (FF) along with a desired ultrafiltration flow rate (UFR) and blood flow rate (BFR).
  • FF filtration factor value
  • UFR ultrafiltration flow rate
  • BFR blood flow rate
  • the operator can specify only an ultrafiltration volume.
  • the machine 16 senses waste fluid pressure to automatically control the blood flow rate to optimize the removal of fluid across the hemofilter 34 , as previously described.
  • the machine can automatically control the blood flow rate to optimize removal of fluid based a set control arterial blood pressure, as also already described.
  • the interface also preferably includes an infrared port 360 to support the telemetry function, as previously described.
  • the interface 44 can include a generic display panel 352 that receives a family of templates 354 .
  • Each template 354 contains code 356 or chip that, when scanned or discerned by a reader 358 on the interface panel 352 , programs the look and feel of the interface 44 .
  • a generic display panel 352 can serve to support a host of different interfaces, each optimized for a particular treatment modality.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)

Abstract

A first flow path is defined within a first panel that forms a part of an extracorporeal fluid circuit. A second flow path is defined within a second panel that also forms a part of the extracorporeal fluid circuit. The first and second panels are oriented in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 08/800,881, filed Feb. 14, 1997, and entitled “Hemofiltration System,” which is incorporated herein by reference. This application is also a divisional of co-pending U.S. patent application Ser. No. 09/451,238, filed Nov. 29, 1999, and entitled “Systems and Methods for Performing Frequent Hemofiltration,” which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to systems and methods for processing blood, e.g., for filtration, pheresis, or other diagnostic or therapeutic purposes.
  • BACKGROUND OF THE INVENTION
  • There are many types of continuous and intermittent blood processing systems, each providing different therapeutic effects and demanding different processing criteria.
  • For example, hemofiltration emulates normal kidney activities for an individual whose renal function is impaired or lacking. During hemofiltration, blood from the individual is conveyed in an extracorporeal path along a semipermeable membrane, across which a pressure difference (called transmembrane pressure) exists. The pores of the membrane have a molecular weight cut-off that can thereby pass liquid and uremic toxins carried in blood. However, the membrane pores can not pass formed cellular blood elements and plasma proteins. These components are retained and returned to the individual with the toxin-depleted blood. Membranes indicated for hemofiltration are commercially available and can be acquired from, e.g., Asahi Medical Co. (Oita, Japan).
  • After hemofiltration, fresh physiologic fluid is supplied to toxin-depleted blood. This fluid, called replacement fluid, is buffered either with bicarbonate, lactate, or acetate. The replacement fluid restores, at least partially, a normal physiologic fluid and electrolytic balance to the blood. Usually, an ultrafiltration function is also performed during hemofiltration, by which liquid is replaced in an amount slightly less than that removed. Ultrafiltration decreases the overall fluid level of the individual, which typically increases, in the absence of ultrafiltration, due to normal fluid intake between treatment sessions.
  • Following hemofiltration, fluid balancing, and ultrafiltration, the blood is returned to the individual.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention provides a fluid processing system comprising an extracorporeal circuit for circulating a fluid from an individual through a filter to remove waste and to return fluid to the individual after removal of waste. A first portion of the extracorporeal circuit is integrated, at least in part, within a first panel. A second portion of the extracorporeal circuit is integrated, at least in part, within a second panel. The system further includes a fluid processing cartridge, which orients the first and second panels for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
  • In one embodiment, the first portion of the extracoporeal circuit handles waste fluid, and the second portion of the extracoporeal circuit handles replacement fluid for return to the individual.
  • In one embodiment, the first and second portions of the extracorporeal circuit include in-line chambers that volumetrically balance waste fluid removed from the individual and waste replacement fluid returned to the individual. The in-line chambers can occupy a fixed volume cavity on the fluid processing machine, whereby the in-line chambers possess a volume defined by the fixed volume cavity on the machine.
  • In one embodiment, at least one of the first and second panels includes an operative region that flexes in response to an external force applied by the fluid processing machine. The operative region can comprise, e.g., an in-line clamping region that flexes to occlude fluid flow, or an in-line pump tube that flexes in response to peristaltic force to pump fluid, or an operative region that permits sensing of a flow condition by a sensor on the fluid processing machine.
  • In one embodiment, the fluid processing cartridge includes a tray containing the first and second panels, which are oriented within the tray in an overlaying relationship.
  • Another aspect of the invention provides a blood processing system. The system comprises an extracoporeal fluid circuit. The circuit includes a first flexible panel having a pattern of seals defining a first flow path that forms a part of the extracorporeal fluid circuit. The circuit also includes a second flexible panel having a pattern of seals defining a second flow path that forms another part of the extracorporeal fluid circuit. A fluid processing cartridge retains the first and second flexible panels in an overlaying relationship. The system further includes a fluid processing device including a chassis to removably mount the fluid processing cartridge with the first flexible panel oriented adjacent to the chassis. The fluid processing device includes an actuator on the chassis operating to apply force through the first flexible panel to a region of the second flexible panel to either pump fluid in the second flow path or occlude flow in the second flow path.
  • The actuator can comprise, e.g. a pump element to apply a peristaltic force to the region of the second flexible panel through the first flexible panel, or an in-line pump tube to which the peristaltic force is applied, or a clamp element to apply an occlusion force to the region of the second flexible panel through the first flexible panel.
  • In one embodiment, a sensor on the chassis senses a flow condition in the second flow path through the first and second flexible panels.
  • In one embodiment, the fluid processing cartridge includes a tray movable into and out of association with the chassis. In one arrangement, the tray includes a cut-out exposing a region of the first flexible panel to the actuator.
  • Another aspect of the invention provides a hemofiltration machine. The machine includes a chassis and an operating element on the chassis comprising at least one of a peristaltic pump, a clamp, and a sensor. A door is movable with respect to the chassis between a first position enabling mounting of a fluid processing cartridge on the chassis and a second position holding the fluid processing cartridge on the chassis in a predetermined orientation with the operating element.
  • In one embodiment, the door moves in a path toward and away from the chassis.
  • In one embodiment, a depression on the chassis defines a space of known volume to accommodate a fluid balancing chamber carried in the fluid processing cartridge.
  • In one embodiment, the door includes at least one pump race for registry with a pump region carried in the fluid processing cartridge.
  • Another aspect of the invention provides a fluid processing method. The method establishes an extracoporeal fluid circuit that communicates with a filter. The method defines within a first panel a first flow path that forms a part of the extracorporeal fluid circuit, while defining within a second panel a second flow path that forms another part of the extracorporeal fluid circuit. The method orients the first and second panels in a fluid processing cartridge for mounting as an integrated unit on a fluid processing machine and for removal as an integrated unit from the fluid processing machine.
  • In one embodiment, the method orients the first and second panels in an overlaying relationship.
  • Other features and advantages of the inventions are set forth in the following specification and attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic view of a system that enables frequent hemofiltration by supplying to a treatment location a durable hemofiltration machine, a disposable fluid processing cartridge that fits on the machine, ancillary processing materials that the machine and cartridge use, and telemetry that supports the hemofiltration therapy;
  • FIG. 2 is a front perspective view of a hemofiltration machine that the system shown in FIG. 1 supplies to a treatment location;
  • FIGS. 3 to 5 are side elevation views showing the loading into the machine shown in FIG. 2 of a fluid processing cartridge, which the system shown in FIG. 1 also supplies to the treatment location;
  • FIG. 6A is a perspective view,of the inside of the door of the hemofiltration machine shown in FIG. 2;
  • FIG. 6B is a side section view of a spring loaded pump race carried on the door shown in FIG. 6A, taken generally along line 6B-6B in FIG. 6A;
  • FIG. 7 is an exploded perspective view of one embodiment of the fluid processing cartridge that is supplied to the treatment location, comprising a tray in which a fluid processing circuit is contained;
  • FIG. 8 is an assembled perspective view of the fluid processing cartridge shown in FIG. 7;
  • FIG. 9 is a side section view of the fluid processing cartridge shown in FIGS. 7 and 8, showing the cartridge as it is supplied in a closed, sterile condition to the treatment location;
  • FIG. 10 is a perspective view of the cartridge shown in FIGS. 7 to 9, in preparation of being mounted on the hemofiltration machine shown in FIG. 2;
  • FIG. 11 is an embodiment of a fluid circuit that the cartridge shown in FIG. 10 can incorporate, being shown in association with the pumps, valves, and sensors of the hemofiltration machine shown in FIG. 2;
  • FIGS. 12A and 12B are largely schematic side section views of one embodiment of fluid balancing compartments that can form a part of the circuit shown in FIG. 11, showing their function of volumetrically balancing replacement fluid with waste fluid;
  • FIGS. 13A, 13B, and 13C are perspective views of a bag configured with a pattern of seals and folded over to define a overlaying flexible fluid circuit that can be placed in a fluid processing cartridge of a type shown in FIG. 11;
  • FIG. 14 is a plane view of the pattern of seals that the bag shown in FIGS. 13A, 13B, and 13C carries, before the bag is folded over on itself;
  • FIG. 15 is a plane view of the overlaying fluid circuit that the bag shown in FIG. 14 forms after having been folded over on itself;
  • FIG. 16 is a largely schematic side section view of the overlaying fluid balancing compartments that are part of the circuit shown in FIG. 15, showing their function of volumetrically balancing replacement fluid with waste fluid;
  • FIG. 17 is a front perspective view of an embodiment of a chassis panel that the hemofiltration machine shown in FIG. 2 can incorporate;
  • FIG. 18 is a back perspective view of the chassis panel shown in FIG. 17, showing the mechanical linkage of motors, pumps, and valve elements carried by the chassis panel;
  • FIG. 19 is a diagrammatic view of a telemetry network that can form a part of the system shown in FIG. 1;
  • FIG. 20 is a diagrammatic view of overlays for imparting control logic to the machine shown in FIG. 2;
  • FIG. 21 is an embodiment of a set for attaching multiple replacement fluid bags to the cartridge shown in FIG. 10, the set including an in-line sterilizing filter;
  • FIG. 22 is a plane view of a graphical user interface that the hemofiltration machine shown in FIG. 2 can incorporate; and
  • FIG. 23 is a perspective view of a generic user interface which can be customized by use of a family of interface templates, which the hemofiltration machine shown in FIG. 2 can incorporate.
  • The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The various aspects of the invention will be described in connection with providing hemofiltration. That is because the features and advantages that arise due to the invention are well suited to the performance of hemofiltration. Still, it should be appreciated that the various aspects of the invention can be applied to achieve other blood processing objectives as well, such as hemodialysis and hemopheresis.
  • I. System for Providing Frequent Hemofiltration
  • FIG. 1 shows a system 10 that makes it possible for a person whose renal function is impaired or lacking, to receive convenient and therapeutically effective hemofiltration on a frequent basis, e.g., at least four times weekly and, preferably, six times weekly. The frequent hemofiltration therapy that the system 10 provides has as one of its objectives the maintenance of uremic toxin levels in the person's blood within a comfortable range, e.g., at no more than 80% of the maximum level. Through frequent hemofiltration, the system 10 can provide either acute or chronic treatment of renal impairment or failure.
  • The system 10 delivers the durable and disposable equipment and materials necessary to perform frequent hemofiltration on the person at a designated treatment location 12.
  • The location 12 can vary. It can, for example, be a setting where support and assistance by one or more medically trained care givers are immediately available to the person, such as at a hospital, an outpatient clinic, or another treatment center. Alternatively, the location 12 can comprise a setting where support or assistance are provided by a trained partner, such as in the person's residence.
  • By careful design of durable and disposable equipment, the system 10 can make it possible for the person to perform frequency hemofiltration in a non-clinical setting, without direct assistance from technically or medically trained persons.
  • To make frequent hemofiltration more convenient, the person preferably has been fitted with one or more vascular access devices 14. Each device 14, for example, may be generally constructed in the manner disclosed in pending U.S. patent application Ser. No. 08/724,948, filed Nov. 20, 1996, and entitled “Subcutaneously Implanted Cannula and Method for Arterial Access.” The devices 14 preferably support high blood flow rates at or above 300 ml/min and preferably at least 600 ml/min. The devices 14 also enable quick and frequent cannulation. The devices 14 thereby reduce the time required to set up, perform, and complete a frequent hemofiltration session. The high blood flow rates that the devices 14 support also increase the removal rate of uremic toxins during hemofiltration, as will be described in greater detail later.
  • To enable frequent hemofiltration, the system 10 supplies to the treatment location 12 a durable hemofiltration machine 16. The system 10 also supplies fluid processing cartridges 18 to the treatment location 12, for installation on the machine 16 at the time of treatment. The system 10 further supplies ancillary materials 20, such as replacement fluids, to the treatment location 12 for use in association with the cartridge 18 and machine 16. The system 10 also preferably supplies a telemetry network 22, to enable centralized, off-site monitoring and supervision of the frequent hemofiltration treatment regime.
  • The operation of the system 10 to provide these various functions will now be described in greater detail.
  • A. Supplying a Hemofiltration Machine
  • The system 10 includes a source 24 that supplies a hemofiltration machine 16 (which can also be called a “cycler”) to the treatment location 12. The machine 16 is intended to be a durable item capable of long term, maintenance free use.
  • FIG. 2 shows a representative embodiment of a machine 16 capable of performing frequent hemofiltration. The machine 16 is preferably lightweight and portable, presenting a compact footprint, suited for operation on a table top or other relatively small surface normally found, e.g., in a hospital room or in a home. The compact size of the machine 16 also makes it well suited for shipment to a remote service depot for maintenance and repair.
  • In the illustrated embodiment, the machine 16 includes a chassis panel 26 and a panel door 28 that moves on a pair of rails 31 in a path toward and away from the chassis panel 26 (as shown by arrows in FIG. 2). A slot 27 is formed between the chassis panel 26 and the door 28. As FIGS. 3 to 4 show, when the door 28 is positioned away from the panel 26, the operator can, in a simple vertical motion, move a fluid processing cartridge 18 into the slot 27 and, in a simple horizontal motion, fit the cartridge 18 onto a raised portion of the chassis panel 26. When properly oriented, the fluid processing cartridge 18 rest on the rails 31 to help position the cartridge 18. As FIG. 5 shows, movement of the door 28 toward the panel 26 engages and further supports the cartridge 18 for use on the panel 26 for use. This position of the door 28 will be called the closed position.
  • The machine 16 preferably includes a latching mechanism 30 and a sensor 32 (see FIG. 2) to secure the door 28 and cartridge against movement before enabling circulation of fluid through the cartridge 18.
  • As will be described in greater detail later, the processing cartridge 18 provides the blood and fluid interface for the machine 16.
  • The machine 16 pumps blood from the person, through the fluid processing cartridge 18 to a hemofilter 34 (mounted in brackets to the side of the chassis panel 26, as shown in phantom lines in FIGS. 2 to 5), back to the cartridge 18, and then back to the person.
  • Alternatively, the hemofilter 34 can form an integrated part of the cartridge 18. The hemofilter 34 is connected via the cartridge 18 to the person's blood supply through the vascular access devices 14.
  • The machine 16 includes a blood handling unit 36 mounted on the chassis panel 26. The blood handling unit 36 includes a peristaltic blood pump 92 and various clamping and sensing devices(described later). The blood handling unit 36 circulates the person's blood in a controlled fashion through the hemofilter 34 and back to the person. The hemofilter 34 removes waste fluid containing urea and other toxins.
  • The machine 16 also includes a fluid management unit 38 mounted on the chassis panel 26. The fluid management unit 38 includes a peristaltic waste and replacement fluid pump 152 and various clamping and sensing devices(described later). The fluid management unit 38 replaces the waste fluid with a sterile replacement fluid, for return with the treated blood to the person's blood supply. The replacement fluid also acts to maintain the person's electrolytic balance and acid/base balance.
  • The fluid management unit 38 includes a fluid balancing element 40 mounted on the chassis panel 26. The fluid balancing element 40 meters the return replacement fluid in proportion to the amount of waste fluid removed.
  • In the illustrated embodiment, the fluid balancing element 40 includes one or more balancing chambers 206, 208 and associated clamping devices(the details of which will be described later). The chambers 206, 208 comprise preformed depressions formed in the raised portion of the chassis panel 26. As FIG. 6A shows, preformed depressions on the door 28 form mating chambers 206′, 208′, which register with the chassis panel chambers 206, 208. When the door 28 is closed, the registered chambers 206/206′ and 208/208′ define between them spaces of known volume, e.g., 20 ml. The known volume can, of course, be greater or less than 20 ml, and the chambers 206/206′ and 208/208′ can each have a different known volume.
  • As will be described in greater detail later, flexible containers 212 and 214, which form a part of a preformed fluid circuit carried within the fluid processing cartridge 18, fit into the registered chambers 206/206′ and 208/208′. The chambers 206/206′ and 208/208′ and associated clamping devices interact with the containers 212 and 214, to provide the capability of balancing waste and replacement fluid volumetrically, in an accurate, straightforward manner, without use of weigh scales and weight sensing.
  • The machine 16 also includes an ultrafiltration unit 42 on the chassis panel 26. The ultrafiltration unit 42 includes a peristaltic ultrafiltration pump 144 to remove additional waste from the person without addition of replacement fluid. The machine 16 provides, at the end of each frequent hemofiltration session, a net ultrafiltration fluid loss, which coincides with an amount prescribed by the attending physician.
  • The machine 16 completes a frequent hemofiltration session when a prescribed replacement fluid volume has been exchanged and the net ultrafiltration fluid loss target has been met. The machine 16 can accommodate continuous or extended treatment sessions on an automated basis. The machine 16 can also accommodate operation based upon individually set ultrafiltration rates, blood flow rates, or return fluid flow rates, with completion determined by the volume of replacement fluid exchanged or by a treatment timer.
  • As will be described in greater detail later, the various pumping, clamping, and sensing devices on the machine 16 provide blood flow, fluid management, and safety functions by sensing pump pressures, detecting air, detecting blood leak through the hemofilter 34, and sensing waste pressure. The sensors also provide addition fluid management and safety functions, such as sensing replacement fluid temperature and replacement fluid pump pressure. The machine 16 also provides other processing functions, such as priming, supplying a replacement fluid bolus, and carrying out a rinseback of the person's blood.
  • The machine 16 also preferable includes an operator interface 44, which, in the illustrated embodiment (see FIG. 2) is carried on the exterior of the door 28. As will be described later, the interface 44 provides simple switch and/or knob operation of the machine 16, preferably by use of one hand. The interface 44 displays information necessary to operate the machine 16, presenting an uncluttered display and tactile touch buttons to intuitively lead a person without technical or medical background through set up and operation of the machine 16 with a minimum of training.
  • Further details of the machine 16, the pumps and sensing devices, and their interaction with the fluid processing cartridge 18 will be described later.
  • The source 24 supplying the machine 16 can comprise a company or business that manufactures the machine 16 or otherwise distributes the machine 16 to the treatment location 12 on a sale, lease, or rental basis.
  • B. Supplying a Fluid Processing Cartridge
  • The system 10 further includes a source 46 for supplying a fluid processing cartridge 18 to the treatment location 12 for use in association with the machine 16. The cartridge 18 is intended to be disposable item, capable of single or extended use, which the loads on the machine 16 before beginning a hemofiltration session (as FIGS. 3 to 5 show). The cartridge 18 can be removed from the machine 16 and discarded upon the completing the hemofiltration session, or its use can be extended to one or more subsequent sessions, as will be described later.
  • The cartridge 18 couples to the person's vascular access devices 14 and interacts with the machine 16 to draw, process, and return blood in a continuous, extracoporeal path, to carry out fluid balancing through waste removal, replacement fluid exchange, and ultrafiltration.
  • Preferably, the tasks of loading and unloading the cartridge 18 are simple and straightforward, following a simple, straight loading and unloading path into the slot 27 and against the chassis panel 26, as FIGS. 3 to 5 show. In this way, the person receiving hemofiltration can by himself/herself set up the cartridge 18 and machine 16, without necessarily requiring assistance from a technically or medically trained person.
  • The cartridge 18 preferably provides the entire blood and fluid interface for the machine 16, including all pumping, valving, pressure sensing, air detection, blood leak detection, and tubing management. The cartridge 18 preferable is supplied to the treatment location 12 with all tubing, access needles and waste and replacement fluid connections preconnected. A waste bag also can be preattached, if desired, or the waste line can be placed in a drain.
  • Loading the cartridge 18 on the chassis panel 26 and closing the door 28 also automatically locates all sensors of the machine's safety function in association with the blood fluid interface. The operator is not required to load anything else to carry out the machine's safety function. Once the machine 18 undergoes start up testing to confirm cartridge placement and integrity and to confirm the functionality of the sensors, subsequent automated operation the machine 18 in a safe mode is assured.
  • The cartridge 18 can be constructed in various ways. In the illustrated embodiment (see FIGS. 7 to 9), the cartridge 18 includes a preformed tray 48 and insert 53 manufactured, e.g., by thermoforming polystyrene or another comparable material. The tray 48 and insert 53 are peripherally joined together, e.g., by ultrasonic welding.
  • The tray includes a base 50, side walls 52, and an open top edge 54. The geometry of the tray 48 is appropriately keyed to fit in only one orientation on the rails 31 in the slot 27 between the chassis panel 26 and door 28 of the machine 16. When so fitted, the insert 53 rests on the raised portion of the chassis panel 26. Closing the door 28 secures the tray 48 to the panel 26.
  • A preformed circuit 56 is carried between the base 50 of the tray 48 and the insert 53. The circuit 56 is arranged to carry blood, waste, and replacement fluid during hemofiltration.
  • As will be described in greater detail later, the circuit 56 includes an array of fluid flow paths formed with in-line flexible containers 212 and 214 (for fluid balancing), peristaltic pump headers, sensor stations, tubing, and valve stations. The layout of flow paths, containers, pump headers, sensing stations, and valve stations on the circuit 56 form a mirror image of the layout of the structural and mechanical components on the chassis panel 26 and door 28 of the machine 16.
  • The insert 53 includes cut outs 58 to expose the containers, peristaltic pump headers, sensing stations, and valve stations for engagement with equipment on the chassis panel 26. When the tray 48 is fitted to the chassis panel 26, and the door 28 is closed, the in-line containers 212/214 formed in the circuit 56 fit within the registered chambers 206/206′ and 208/208′ on the chassis panel 26 and door 28. Likewise, the pump headers and the sensor and valve stations on the circuit 56 overlay and engage corresponding peristaltic pumps, sensors, and valve on the chassis panel 26.
  • In the illustrated embodiment (see FIG. 7), the base 50 of the tray 48 underlaying the pump stations is relieved, to form pump races 360. The inside surface of the door 28 carries concave pump races 362 supported by springs 364 (see FIGS. 6A and 6B). When the door 28 is closed, the spring loaded pump races 362 on the door 28 nest with the relieved pump races 360 on the tray 48, to provide rigidity and support. Alternatively, the pump races 360 can form cutouts in the base 50 (like cut outs 58 in the insert, as earlier described), through which the pump races 362 on the door 28 extend.
  • The base 50 of the tray 48 underlying the containers 212/214 is also relieved, to form chamber supports 368. When the the door 28 is closed, the tray supports 368 fit within the door chambers 206′ and 208′. The door 28 therefore engages the tray 48, to add overall rigidity and support to the tray base 50.
  • When the door 28 is closed, the containers 212/214 are enclosed within the registered chambers 206/206′ and 208/208′ and tray chamber supports 368, which define for the containers 212/214 to a known maximum volume. The peristaltic pumps, sensors, and valve stations on the machine 16 interact with the flexible components of the circuit 56.
  • The cartridge 18 makes possible direct, centralized connection of a blood-fluid interface to the blood pump, the waste and replacement pump, the ultrafiltration pump, the fluid balancing chambers, the sensor devices, and the clamping devices of the machine 16, with no air interfaces. The compact arrangement of the cartridge 18 also reduces fluid pressure drops, thereby accommodating high flow rates, e.g., an arterial blood line pressure drop of less than 250 mmHg at a flow rate of 600 ml/min and a hematocrit of 25.
  • As FIGS. 9 and 10 show, lengths of flexible tubing FT are coupled to the circuit 56 in the base 50 of the tray 48 and rest in coils on top of the insert 53 within the tray 48 during shipment and before use (see FIG. 9). As FIG. 9 also shows, a removable lid 60, made, e.g., from ethylene oxide permeable TYVEKJ material or polyethylene plastic sheet stock, covers and seals the interior of the tray 48 prior to use. The cartridge 18 can therefore be sterilized by exposure to ethylene oxide prior to use. Other methods of sterilization, e.g., gamma radiation or steam sterilization, can be used. Alternatively, the ultrasonically welded assembly of the tray 58, insert 53, and the circuit 56 (with attached tubing FT) can be packaged as a unit into a sealed plastic bag for sterilization, obviating the need for the lid 60.
  • At the instant of use, the lid 60 is peeled away, or, in the alternative arrangement, the sealed plastic bag is opened. The attached flexible tubing FT is extended beyond the bounds of the tray 48 to make connection with external processing items (see FIG. 10). The tubing FT carries appropriate couplers for this purpose. The tray 48 is moved along a vertical path for loading into the slot 27 and then a horizontal path for loading on the raised portion of the chassis panel 26, after which a simple motion of the door latching mechanism 30 aligns the entire fluid circuit 56 with the pumps, sensors, and clamps on the chassis panel 26. There is no area of blood or fluid contact that this outside the disposable circuit 56.
  • The source 46 supplying the cartridge 18 can comprise a company or business that manufactures the cartridge 18 or that otherwise distributes the cartridge 18 to the treatment location 12 on a sale, lease, or rental basis.
  • 1. Fluid Circuit for Frequent Hemofiltration
  • FIG. 11 shows a representative fluid circuit 56 that is well suited for carrying out frequent hemofiltration, and which can be incorporated into the cartridge 18 for interface with pumps, valves, and sensors arranged as a mirror image on the chassis panel 26.
  • The fluid circuit 56 couples the hemofilter 34 to several main fluid flow paths. The main fluid flow paths comprise an arterial blood supply path 62, a venous blood return path 64, a blood waste path 66, a replacement fluid path 68, and an ultrafiltration/fluid balancing path 70.
  • (i) Blood Supply and Return Paths
  • The arterial blood supply path 62 and venous blood return path 64 includes lengths of flexible tubing 72 and 74 that extend outside the tray 48 (see FIG. 10). As FIG. 10 shows, The paths 72 and 74 carry cannulas 76 at their distal ends (or connectors that enable connection to cannulas 76), to enable connection, respectively, to the person's arterial and venous access devices 14.
  • The arterial blood supply path 62 also includes a length of flexible tubing 78 (see FIG. 10) that extends outside the tray 48. The tubing 78 includes a distal connector 80 to couple to the blood inlet 82 of the hemofilter 34.
  • Likewise, the venous blood return path 64 includes a length of flexible tubing 84 that extends outside the tray 48. The tubing 84 includes a distal connector 86 to couple to the blood outlet 88 of the hemofilter 34.
  • Alternatively, the hemofilter 34 can be an integral part of the tray 48. In this arrangement, the arterial and venous blood paths 78 and 84 are supplied pre-connected to the hemofilter 34.
  • The exterior tubing components of the arterial or venous blood paths can include injection sites 90. The sites can be used, e.g., to remove trapped air or to inject anticoagulant, medication, or buffers into the blood flows. The exterior tubing components of the arterial or venous blood paths can also include conventional pinch clamps, to facilitate patient connection and disconnection.
  • The remaining portions of arterial and venous blood paths 62 and 64 are contained in the circuit 56 held within the tray 48. The blood pump 92 of the machine 16 engages a pump header region 94 in the arterial blood supply path 62 within the tray 48 upstream of the hemofilter 34, to convey blood into and through the hemofilter 34. An arterial blood clamp 96 and a patient connection-disconnection (air bubble detector) sensor 98 on the machine 16 engage a clamp region 100 and a sensor region 102 in the arterial blood supply path 62 within the tray 48 upstream of the blood pump 92. Alternatively, an air bubble sensor (not shown) can be located downstream of the blood pump 92 and upstream of the hemofilter 34.
  • The placement of the air sensor 98 upstream of the hemofilter 34 allows air bubbles to be detected prior to entering the hemofilter 34. In the hemofilter 34, air bubbles break up into tiny micro-bubbles, which are not as easily detected. Placement of the air sensor 98 upstream of the hemofilter 34 also serves the additional purpose of detecting air when the blood pump 92 is operated in reverse, to rinse back blood to the patient, as will be described later.
  • An air detector 108 on the machine 16 engages a sensing region 110 in the venous blood return path 64 within the tray 48 downstream of the hemofilter 34. A venous clamp 112 on the machine 16 engages a clamp region 114 in the venous blood return path 64 within the tray 48 downstream of the air detector 108.
  • (ii) Blood Waste Path
  • The membrane (not shown) located in the hemofilter 34 separates waste including liquid and uremic toxins from the blood. A waste outlet 116 conveys waste from the hemofilter 34.
  • The blood waste path 66 includes a length of flexible tubing 118 (see FIG. 10) that extends beyond the tray 48. The tubing 118 carries a distal connector 120 to couple to the waste outlet 116 of the hemofilter 34. Alternatively, when the hemofilter 34 is integrated in the tray 48, the waste path 66 can be supplied pre-connected to the hemofilter 34.
  • The waste path 66 also includes a length of flexible tubing 122 that extends beyond the tray 48. The tubing 122 carries a connector 124 to couple to a waste bag 126 or an external drain. Alternatively, the waste bag 126 can be preconnected to the tubing 122.
  • The remainder of the waste path 66 is contained within the circuit 56 inside the tray 48. A blood leak detector 128 on the machine 16 engages a sensor region 130 in the waste path 66 downstream of the hemofilter 34. A waste pressure sensor 132 on the machine 16 engages another sensor region 134 in the waste path 66 downstream of the blood leak detector 128.
  • Within the tray 48, the waste path 66 branches into an ultrafiltration path 136 and a balancing path 138. The ultrafiltration branch path 136 bypasses in- line containers 212 and 214 of the circuit 56. The ultrafiltration pump 144 on the machine 16 engages a pump header region 146 in the ultrafiltration branch path 136 within the tray 48. The waste balancing branch path 138 communicates with the in- line containers 212 and 214. The waste and replacement fluid pump 152 on the machine 16 engages a pump header region 154 in the waste balancing branch path 138 within the tray 48 upstream of the in- line containers 212 and 214. A pressure sensor 156 on the machine 16 engages a sensor region 160 in the waste balancing branch path 138 within the tray 48 between the waste and replacement fluid pump 152 and the in- line containers 212 and 214. The pressure sensor 156 senses the fluid pressure required to convey replacement fluid into the venous return line. This resistance to the flow of replacement fluid is the venous blood pressure. The pressure sensor 156 in the waste fluid path 138 thereby serves to sense the venous blood pressure.
  • A flush clamp 162 engages a clamp region 164 in the waste path 66 within the tray 48 downstream of the in- line containers 212 and 214. A waste clamp 166 engages a clamp region 168 in the waste path 66 downstream of the flush clamp 162. The circuit 56 in the tray 48 also can include an air break 170, which communicates with the waste path 66 downstream of the waste clamp 166. The air break 170 prevents back flow of contaminants into the circuit 56 from the waste bag 126 or drain.
  • (iii) Replacement Fluid Path
  • The replacement fluid path 68 includes a length of flexible tubing 172 that extends outside the tray 48. The tubing 172 includes a distal connector 174 or connectors that enable connection to multiple containers of replacement fluid 176. As will be described later, the tubing 172 can also include an in-line 0.2 m sterilizing filter 178 to avoid contamination of-the circuit 56.
  • The containers 176 together typically hold from 8 to 20 combined liters of replacement fluid, depending upon the fluid removal objectives of the particular frequent hemofiltration procedure. The replacement fluid is also used to prime the fluid circuit 56 at the outset of a treatment session and to rinse back blood to the patient at the end of a treatment session.
  • The remainder of the replacement fluid path 68 is contained in the circuit 56 within the tray 48. Sensing region 186 in the replacement fluid path 68 inside the tray 48 engages a replacement fluid flow rate detector 182 on the machine 16. A clamping region 190 in the replacement fluid path 68 inside the tray 48 engages a replacement fluid clamp 188 on the machine 16.
  • Within the tray 48, the replacement-fluid path 68 includes a priming or bolus branch path 192 that communicates with the arterial blood supply path 62. A clamping region 196 in the priming branch path 192 engages a priming clamp 194 on the machine 16.
  • Within the tray 48, the replacement fluid path 68 also includes a balancing branch path 198 that communicates with the venous blood return path 64, via the in- line containers 212 and 214. A pump header region 200 in the balancing replacement branch path 198 engages the waste and fluid replacement pump 152 on the machine 16 upstream of the in- line containers 212 and 214.
  • In the illustrated embodiment, the waste and fluid replacement pump 152 comprises a dual header pump, simultaneously engaging the two pump header regions 154 and 200 on the waste path 66 and the replacement fluid path 68. A sensor region 204 in the balancing replacement branch path 198 engages a pressure sensor 202 on the machine 16 between the waste and replacement fluid pump 152 and the in- line containers 212 and 214. The pressure sensor 202 senses the pressure required to convey waste fluid into the waste return line. This resistance to the flow of waste fluid is the waste line pressure. The pressure sensor 202 in the replacement fluid path 198 thereby serves to sense the waste line pressure. Similarly, as already described, the pressure sensor 156 in the waste fluid path 138 serves to sense the venous blood pressure.
  • (iv) Ultrafiltration/Fluid Balancing Path
  • The ultrafiltration waste branch path 136 within the tray 48, which bypasses the in- line containers 212 and 214 of the circuit 56, accommodates transfer of a prescribed volume of waste to the waste bag 126, without an offsetting volume of replacement fluid. The circuit 56 thereby is capable of performing an ultrafiltration function.
  • The balancing waste branch path 138 and the balancing replacement branch path 198 pass through the in- line containers 212 and 214 in the circuit 56 contained within the tray 48. The in- line containers 212 and 214 transfer a volume of replacement fluid to the venous blood return path 64 in proportion to the volume of waste fluid removed, except for the volume making up the ultrafiltration volume loss. The circuit 56 is thereby capable of performing a fluid balancing function in addition to the ultrafiltration function.
  • In the illustrated embodiment, the machine 16 and circuit 56 carry out the fluid balancing function volumetrically, without weight sensing. More particularly, the registered chambers 206/206′ and 208/208′ on the chassis panel 26 and door 28, of the machine 16 receive the in- line containers 212 and 214 when the tray 48 is mounted on the chassis panel 26. The registered chambers 206/206′ and 208/208′ mutually impose volumetric constraints on the in- line containers 212 and 214, to define a maximum interior volume for each of the on- line containers 212 and 214. In the illustrated embodiment, when facing the chassis panel 26, the container 212 is situated on the left side (in registered chambers 206/206′) and the container 214 is situated on the right side (in registered chambers 208/208′). FIGS. 12A and 12B show one embodiment of the right and left orientation of the containers 212 and 214, with the containers 212 and 214 also shown in side section.
  • In the embodiment shown in FIGS. 12A and 12B, each in- line container 212 and 214 is itself divided along their midline from front to back by an interior flexible wall 210, to form four compartments. As FIG. 12A and 12B show, two of the compartments face the door 28, and are thus designated as front compartments 212F and 214F. The other two compartments face the chassis panel 26, and will thus be designed as rear compartments 212R and 214R.
  • Each in- line container 212 and 214 has a waste side compartment communicating with waste path 66 and a replacement side compartment communicating with the replacement fluid path 68. In the illustrated embodiment, the circuit 56 establishes communication between the balancing waste branch path 138 and the rear compartments 212R and 214R (which will also be called the waste side compartments). The circuit 56 also establishes communication between the balancing replacement branch. path 198 and the front compartments 212R and 214R (which will also be called the replacement side compartments). In the embodiment illustrated in FIGS. 12A and 12B, fluid enters the compartments from the bottom and exits the compartments from the top. Other flow paths into and from the compartments can be established, as will be described later.
  • The machine 16 includes an inlet valve assembly 216 and an outlet valve assembly 218 on the chassis panel 26, located in association with the chambers 206 and 208. The circuit 56 in the tray 48 likewise includes, for each in- line container 212 and 214, an inlet clamp region 220 and an outlet clamp region 222, which govern flow into and out of the waste side compartments 212R and 214R. The circuit 56 in the tray 48 also includes, for each in- line container 212 and 214, an inlet clamp region 224 and an outlet clamp region 226, which govern flow into and out of the replacement side compartments 212F and 214F.
  • When the tray 48 is mounted on the chassis panel 26, the inlet and outlet valve assemblies 216 and 218 on the machine 16 engage the corresponding waste and replacement fluid inlet and outlet clamp regions 220, 222, 224, 226 in the circuit 56. The machine 16 toggles the operation of inlet and outlet valve assemblies 216 and 218 to synchronize the flow of fluids into and out of the waste side and replacement side compartments of each in- line container 212 and 214.
  • More particularly, for a given in- line container 212 and 214, in a first valve cycle (see FIG. 12A), the waste side inlet valve 220 is opened while the waste side outlet valve 222 is closed. Waste fluid is conveyed by operation of the waste and replacement pump 152 from the waste path 66 into the waste side compartment of the given in- line container 212 and 214. Simultaneously, for the same in- line compartment 212 and 214, the replacement side inlet valve 224 is closed and the replacement side outlet valve 226 is opened, so that the incoming flow of waste in the waste side compartment displaces the interior wall 210 to express a like volume of replacement fluid from the replacement side compartment into the venous blood return path 64.
  • In a subsequent cycle for the same in- line container 212 and 214, an opposite valve action occurs (see FIG. 12B). The replacement side inlet valve 224 is opened and the replacement side outlet valve 226 is closed, and replacement fluid is conveyed into the replacement side compartment from the replacement fluid path 68. The incoming replacement fluid displaces the interior wall 210 to express a like volume of waste fluid from the waste side compartment to the waste bag 126 (the waste side inlet valve 220 now being closed and the waste side outlet valve 222 now being opened).
  • As FIGS. 12A and 12B show, the valve assemblies work in tandem upon the two in- line containers 212 and 214, with one container 140 receiving waste and dispensing replacement fluid, while the other container 142 receives replacement fluid and dispenses waste, and vice versa. In this way, the circuit 56 provides a continuous, volumetrically balanced flow of waste fluid to the waste bag 126 and replacement fluid to the venous blood return path 64.
  • 2. A Circuit Contained in a Double Panel Bag
  • The function of the fluid circuit 56 shown in FIGS. 11, 12A, and 12B can be realized in various ways. FIGS. 13A to 13C show a fluid circuit bag 228 made from two overlaying sheets 230A and 230B of flexible medical grade plastic, e.g., poly vinyl chloride (see FIG. 13A). When laid flat (see FIG. 13B), the bag 228 defines first and second panels 232 and 234 divided along a midline 236. By folding the bag 228 about its midline 236 (see FIG. 13C), the first and second panels 232 and 234 are brought into registration in a reverse facing relationship, with one panel 232 comprising the front of the bag 228 and the other panel 234 comprising the back of the bag 228.
  • The first and second panel 232 and 234 each includes an individual pattern of seals S formed, e.g., by radio frequency welding. The seals S form fluid flow paths, including the in- line containers 212 and 214, peristaltic pump header regions, the sensor regions, and clamp regions previously described. The flow paths formed by the pattern of seals S can comprise all or part of the circuit 56. Pump header tubing lengths 155, 145, and 201 are sealed in placed within the seal pattern S to form the pump regions 154, 146, and 201, respectively.
  • In the illustrated embodiment, as FIG. 14 shows, the seals S on the first panel 232 are configured to form the flow paths of the circuit 56 through which replacement fluid is conveyed from the replacement fluid path 68 to the venous blood return path 64, including the left and right front-facing replacement fluid compartments 212F and 214F. The seals S on the second panel 234 are configured to form the flow paths of the circuit 56 through which waste fluid is conveyed from the waste path 66 to the waste bag 126 or drain, including the left and right rear-facing waste fluid compartments 212R and 214R. Seals S form four individual containers, two containers 212F and 214F on the panel 232, and two containers 212R and 214R on the panel 234.
  • Once the seal patterns S are formed, the bag 228 is folded over about its midline 236 (see FIG. 15). The bag 228 places in close association or registry the waste and replacement fluid paths 66 and 68 of the circuit 56. The replacement fluid paths 68 of the circuit 56 occupy the front panel 232 of the bag 228, and the waste paths 66 of the circuit 56 occupy the back panel 234 of the bag 228 (or vice versa, depending upon the desired orientation of the bag 228).
  • In use, the folded over bag 228 is contained in the base 50 of the tray 48, with portions exposed through cutouts 58 in the insert 51 for engagement with the machine peristaltic pumps, sensing elements, and clamping elements, in the manner shown in FIG. 10. The remaining portions of the circuit 56 not contained within the bag 228 are formed of tubing and fit into preformed areas in the base 50 of the tray 48 (or formed within another bag) and coupled in fluid communication with the flow paths of the bag 228, to complete the circuit 56 shown in FIG. 10.
  • The flow paths formed on the first panel 232 include the balance replacement fluid paths 198, which lead to and from the replacement side compartments 212F and 214F. In the tray 48, the replacement side compartments 212F and 214F rest in recesses in the tray base 50. Cutouts 58 in the insert 51 expose the pump header regions 200 and 154, to engage the peristaltic waste and replacement pump 152 on the machine 16; the inlet clamp regions 224, to engage the inlet valve assembly 216 on the machine 16 to control inflow of replacement fluid into the replacement side compartments 212F and 214F; and the outlet clamp regions 226, to engage the outlet valve assembly 218 on the machine 16 to control outflow of replacement fluid from the replacement side compartments 212F and 214F. The cutouts 58 also expose the sensor region 204, to engage the pressure sensor 202 downstream of the waste and replacement pump 152, and a pressure relief path 240 with exposed pressure relief bypass valve 242, the purpose of which will be described later. A small opening 203 formed in the pump header tubing 201 opens communication with the relief path 240.
  • The flow paths formed on the second panel 234 (shown in phantom lines in FIG. 15) include the waste path 138 that lead to and from the waste side compartments 212R and 214R (for fluid balancing) and the waste path 136 that bypasses the waste side compartments 212R and 214R (for ultrafiltration). As FIG. 15 shows, when the bag 228 is folded over in the tray 48, the waste compartments 212R and 214R on the waste panel 234 and the replacement compartments 212F and 214F on the replacement panel 232 overlay, so both are exposed through the cutout 58 in the insert for registry as a unit with the chambers 206 and 208 on the chassis panel 26.
  • The flow paths on the waste panel 234 also include the exposed waste inlet clamp regions 220, to engage the valve assembly 218 to control inflow of waste fluid into the waste compartments 212R and 214R, and the exposed waste outlet clamp regions 222, to engage the valve assembly 216 to control outflow of waste fluid from the waste compartments 212R and 214R. When the bag 228 is folded over in the tray 48, the inlet clamp regions of the waste compartments 212R and 214R formed on the waste panel 234 overlay the outlet clamp regions of the replacement compartments 212F and 214F formed on the replacement panel 232, and vice versa.
  • The flow paths also includes an exposed pump header region 154, to engage the peristaltic waste and replacement pump 152. When the bag 228 is folded over in the tray 48, the exposed pump header regions 200 and 154 on the replacement and waste panels 232 and 234 lay side-by-side, to accommodate common engagement with the dual header waste and replacement pump 152. The flow paths also include the sensor region 160, to engage the pressure sensor 156 downstream of the waste and replacement fluid pump 152.
  • The flow paths also include the pump header region 146, to engage the peristaltic ultrafiltration pump 144. When the bag 228 is folded over in the tray 48, the exposed pump header region 146 for the ultrafiltration pump 144 is spaced away from the other pump header regions of the circuit 56.
  • In FIGS. 12A and 12B, the entry paths serving the waste and replacement compartments are located at the bottom, while the exit paths serving the waste and replacement compartments are located at the top. This configuration facilitates priming of the compartments. Still, the spaced apart configuration requires eight valve assemblies.
  • In FIG. 16, the entry and exit paths serving the waste and replacement compartments are all located at the top. Priming is still achieved, as the paths are top-oriented. Furthermore, due to the folded-over configuration of the bag itself, the clamping regions 220, 222, 226 can be arranged overlay one another. The overlaying arrangement of the clamping regions 220, 222, 224, and 226 serving the waste and replacement compartments simplifies the number and operation of the inlet and outlet valve assemblies 216 and 218 on the machine 16. Since the inlet clamp regions 224 for the replacement compartments 212F and 214F overlay the outlet clamp regions 222 for the waste compartments 212R and 214R, and vice versa, only four clamping elements 244, 246, 248, 250 need be employed to simultaneously open and close the overlaying eight clamp regions (see FIG. 16). By further stacking (not shown) of the compartments, the clamping elements could be reduced to two.
  • As FIG. 16 shows, the first clamping element 244 is movable into simultaneous clamping engagement with the inlet clamp region 224 of the left replacement compartment 212F (on the replacement panel 232) and the outlet clamp region 222 of the left waste compartment 212R (on the waste panel 234), closing both. Likewise, the fourth clamping element 250 is movable into simultaneous clamping engagement with the inlet clamp region 224 of the right replacement compartment 214F (on the replacement panel 232) and the outlet clamp region 222 of the right waste compartment 214R (on the waste panel 234), closing both.
  • The second clamping element 246 is movable into simultaneous clamping engagement with the outlet clamp region 226 of the left replacement compartment 212F (on the replacement panel 232) and the inlet clamp region 220 of the left waste compartment 212R (on the waste panel 232), closing both. Likewise, the third clamping element 248 is movable into simultaneous clamping engagement with the outlet clamp region 226 of the right replacement compartment 214F (on the replacement panel 232) and the inlet clamp region 220 of the right waste compartment 214R (on the waste panel 234), closing both.
  • The machine 16 toggles operation of the first and third clamping elements 244, 248 in tandem, while toggling operation the second and fourth clamping elements 246, 250 in tandem. When the first and third clamping elements 244, 248 are operated to close their respective clamp regions, replacement fluid enters the right replacement compartment 214F to displace waste fluid from the underlying right waste compartment 214R, while waste fluid enters the left waste compartment 212R to displace replacement fluid from the overlaying left replacement compartment 212F. When the second and fourth clamping elements 246, 250 are operated to close their respective clamp regions, replacement fluid enters the left replacement compartment 212F to displace waste fluid from the underlying left waste compartment 212R, while waste fluid enters the right waste compartment 214R to displace replacement fluid from the overlaying right replacement compartment 214F.
  • FIGS. 17 and 18 show a mechanically linked pump and valve system 300 that can be arranged on the chassis panel 26 and used in association with the layered fluid circuit bag 228 shown in FIG. 15.
  • The system 300 includes three electric motors 302, 304, and 306. The first motor 302 is mechanically linked by a drive belt 308 to the dual header waste and replacement pump 152, previously described. The second motor 304 is mechanically linked by a drive belt 310 to the blood pump 92, also previously described. The third motor 306 is mechanically linked by a drive belt 312 to the ultrafiltration pump 144, also as previously described.
  • A drive belt 314 also mechanically links the first motor to the first, second, third, and fourth clamping elements 244, 246, 248, and 250, via a cam actuator mechanism 316. The cam actuator mechanism 316 includes, for each clamping element 244, 246, 248, and 250 a pinch valve 318 mechanically coupled to a cam 320. The cams 320 rotate about a drive shaft 322, which is coupled to the drive belt 314.
  • Rotation of the cams 320 advances or withdraws the pinch valves 318, according to the surface contour machined on the periphery of the cam 320. When advanced, the pinch valve 318 closes the overlying clamp regions of the fluid circuit bag 228 that lay in its path. When withdrawn, the pinch valve 318 opens the overlying clamp regions.
  • The cams 320 are arranged along the drive shaft 322 to achieve a predetermined sequence of pinch valve operation. During the sequence, the rotating cams 320 first simultaneously close all the clamping elements 244, 246, 248, and 250 for a predetermined short time period, and then open clamping elements 244 and 248, while closing clamping elements 246 and 250 for a predetermined time period. The rotating cams 320 then return all the clamping elements 244, 246, 248, and 250 to a simultaneously closed condition for a short predetermined time period, and then open clamping elements 246 and 250, while closing clamping elements 244 and 248 for a predetermined time period.
  • The sequence is repeated and achieves the balanced cycling of replacement fluid and waste fluid through the containers 212 and 214, as previously described. A chamber cycle occurs in the time interval that the valve elements 244, 246, 248, and 250 change from a simultaneously closed condition and return to the simultaneously closed condition.
  • The cam actuator mechanism 316 mechanically links the clamping elements 244, 246, 248, and 250 ratiometrically with the first motor 302. As the motor 302 increases or decreases the speed of the dual header waste and replacement pump 152, the operation of the clamping elements 244, 246, 248 and 250 increases or decreases a proportional amount.
  • In a preferred embodiment, the ratio is set so that the flow rate per unit time through the waste pump header region 154 (i.e., through waste path 66) approximately equals three-fourths of the volume of the waste compartment 212R/214R, while maintaining the cycle rate at less than 10 cycles per minute. For example, if the chamber volume is 20 cc, the cycle occurs after 15 to 17 cc of waste fluid enters the compartment.
  • In the illustrated embodiment, the waste pump header region 154 is made smaller in diameter than the replacement fluid header region 200. Thus, during operation of the dual header pump 152, the flow rate through the replacement fluid header region 200 (through replacement fluid path 68) will always be larger than the flow rate through the waste pump header region 154 (through waste path 68). Due to the high flow rate through the replacement fluid path 68, a pressure relief path 240 with pressure relief bypass valve 242 is provided, to prevent overfilling. In the illustrated embodiment, the valve 242 is a mechanically spring biased pressure regulator, and serves the pressure regulation and bypass function of the machine 16.
  • In this arrangement, the in-line compartment that receives waste fluid will fill to approximately three-fourths of its volume during each cycle, displacing an equal amount of replacement fluid from its companion compartment. At the same time, the other in-line compartment that receives replacement fluid will fill completely. If the compartment completely fills with replacement fluid before the end of the cycle, the pressure relief bypass valve 242 will open to circulate replacement fluid through the relief path 240 to prevent overfilling. During the next cycle, waste fluid in the compartment will be completely displaced by the complete fill of replacement fluid in its companion compartment.
  • The provision of a higher flow rate in the replacement fluid path also facilitates initial priming (as will be described later). Only several chamber cycles are required to completely prime the in- line containers 212 and 214 with replacement fluid before fluid balancing operations begin.
  • The pump and valve system 300 used in association with the layered fluid circuit bag 228 achieves accurate fluid balancing during frequent hemofiltration. Due to the smaller volumes of replacement fluid required during each frequent hemofiltration session, slight variations that may occur (e.g., plus or minus 5%) between fluid volume removed and fluid volume replaced do not lead to large volume shifts. As a result of accurate balancing of small fluid volumes, a person undergoing frequent hemofiltration does not experience significant day-to-day swings in body fluid volume, and more precise control of the person's body fluid and weight can be achieved.
  • C. Supplying Ancillary Materials
  • The system 10 further includes a source 252 or sources that supply ancillary materials 20 to the treatment location 12 for use in association with the cartridge 18 and machine 16. The ancillary materials 20 include the replacement fluid containers 176, as prescribed by the person's physician.
  • The ancillary materials 20 may also include an anticoagulant prescribed by a physician. However, anticoagulant may not be required for every person undergoing frequent hemofiltration, depending upon treatment time, treatment frequency, blood hematocrit, and other physiologic conditions of the person.
  • The ancillary materials 20 can also include the hemofilter 34, although, alternatively, the tray 48 can carry the hemofilter 34, or the hemofilter 34 can -comprise an integrated component of the cartridge 18.
  • Through operation of the machine 16, cartridge 18, and ancillary materials 20 supplied by the system 10, the person's blood is conveyed through the hemofilter 34 for removal of waste fluid containing urea and other toxins. Replacement fluid is exchanged for the removed waste fluid, to maintain the person's electrolyte balance and acid/base balance. The replacement fluid is also balanced against an additional waste fluid removal, to yield a net ultrafiltration loss, as prescribed by the person's physician.
  • The composition of an optimal replacement fluid solution usable during frequent hemofiltration consist of a balanced salt solution containing the major cationic and anionic plasma constituents, including bicarbonate or another anion from which net bicarbonate can be generated by metabolism. Specific cationic substances removed by frequent hemofiltration that require replacement typically include sodium, potassium and calcium. Specific anionic substances removed by frequent hemofiltration that require replacement include chloride and either bicarbonate or another anion that can be metabolized into bicarbonate, such as acetate, citrate, or, typically, lactate.
  • The replacement fluid for frequent hemofiltration should exclude phosphorus and other anionic substances. These materials typically accumulate in undesirable amounts in persons experiencing renal failure and are either difficult to remove in large amounts during hemofiltration or are safely removed without need for specific replacement.
  • The concentration of sodium in a replacement fluid for frequent hemofiltration should fall slightly below that of the typical blood filtrate concentration of 135 to 152 meq/liter. The optimal range for sodium in the replacement fluid for frequent hemofiltration is 128-132 meq/liter, and typically 130 meq/liter. This concentration allows for a net sodium removal during frequent hemofiltration sessions, which is easily tolerated due to the smaller replacement fluid volumes necessary for frequent hemofiltration. This concentration also results in a minimal net drop in serum osmolality, so as to decrease extracellular volume to a extent sufficient to maintain euvolemia while ameliorating thirst in the person undergoing frequent hemofiltration.
  • The metabolism of calcium is quite complicated and much less straightforward than sodium. Thus, the optimal concentration in a replacement fluid for frequent hemofiltration should be much closer to the normal physiologic range of calcium in plasma, i.e., in a range of 2.5 to 3.5 meq/liter, and typically 2.7 meq/liter. This calcium concentration range is required to prevent tetany, which can result from excessive removal of ionized calcium, while removing excessive serum calcium that may result from the oral calcium supplements and phosphorus binders frequently used by persons requiring hemofiltration.
  • Selecting an optimal concentration of potassium in a replacement fluid for frequent hemofiltration is important. Typically, the potassium concentrations selected for replacement fluids used during infrequent hemofiltration (3 times a week or less) or during hemodialysis are quite low, e.g., in the range of 0 to 3 meq/liter. These low concentrations of potassium are required for infrequent hemofiltration therapies, to prevent life threatening accumulations of serum potassium between treatment sessions. Interim accumulation of toxic levels of potassium can be encountered between infrequent hemofiltration sessions, both because of decreased renal excretion of potassium and the interim development of acidosis between sessions. This, in turn, can result in total body potassium depletion in many persons undergoing infrequent therapy. Potassium depletion results in vasoconstriction and subsequent alterations in regional blood flow. Potassium depletion also interferes with the efficiency of solute removal, as measured by a decrease in Kt/V for urea, which is a dimensionless parameter commonly employed to measure the adequacy of dialysis. Potassium depletion is also implicated in the pathogenesis of hypertension in patients undergoing hemodialysis or infrequent hemofiltration.
  • In contrast, the optimal range for potassium in a replacement fluid used for frequent hemofiltration can fall in a higher range than that required of less frequent treatment schedules, laying in the range of 2.7 to 4.5 meq/liter, and typically 4.0 meq/liter. This higher concentration of potassium, when infused frequently in smaller fluid replacement volumes, prevents potassium depletion, while also maintaining more stable potassium levels to prevent toxic accumulation of potassium between sessions.
  • Additional benefits derived from frequent hemofiltration in the control of serum potassium lay in the more physiologic control of acidosis, which prevents extra cellular shift of potassium from the intracellular space. In addition to the control of acidosis, the avoidance of total body potassium depletion enhances aldosterone-mediated gut elimination of potassium, further safeguarding against hyperkalemia.
  • The optimal range for chloride concentrations in a replacement fluid used for frequent hemofiltration is 105 to 115 meq/liter, and typically 109 meq/liter. This concentration most closely approximates the normal sodium to chloride ratio of 1.38:1 maintained in the plasma. The small deviation from this ratio in the replacement fluid itself allows for the normalization of the ratio by daily oral intake of these electrolytes. Due to the larger replacement fluid volumes needed for infrequent treatment (three times per week or less), this deviation from the normal 1.38:1 ratio are exaggerated, and can lead to a hyperchloremic acidosis. Due to the use of smaller fluid volumes during each frequent hemofiltration session, hyperchloremic acidosis can be avoided.
  • The optimal range of bicarbonate or an equivalent in a replacement fluid used for frequent hemofiltration is also important. Concentrations must adequately replace filtered bicarbonate while controlling acidosis and avoiding metabolic alkalosis. Because of precipitation of calcium carbonate in solutions containing dissolved calcium and bicarbonate, bicarbonate itself is generally impractical for use in a replacement fluid. Other substances such as acetate, citrate, or typically lactate, are substituted. These substances are metabolized by the body into bicarbonate and do not precipitate when placed into solution with the cationic substances mentioned previously.
  • The range of lactate necessary to replace filtered bicarbonate and control acidosis without alkalemia is 25 to 35 mmoles per liter, and typically 28 mmoles per liter. Due to the large volumes of replacement fluid used for infrequent therapies, use of lactate containing replacement fluids can result in lactate accumulation and pathologic alterations in the lactate:pyruvate ratio and resulting in undesirable changes in cellular redox potentials. However, these effects are minimized by the frequent use of smaller volumes of replacement fluid during frequent hemofiltration. This also results in more physiologic control of acidosis and, secondarily, serum potassium concentration. The latter is accounted for by reduced extra-cellular shift of potassium caused by acidosis.
  • The above observation also holds true for acetate and citrate, as well. The typical range of acetate in replacement fluid would be 25 to 35 mmoles/liter, and typically 30 mmoles/liter. The typical range of citrate would be 16 to 24 mmoles/liter, and typically 20 mmoles/liter. These concentrations render solutions containing acetate impractical for large volume replacements on an infrequent basis, because of toxicity incurred by the accumulation of acetate. These include both cardiac and hepatic toxicity. There are additional issues of calcium and magnesium chelation, which become significant when citrate is used in the large volumes necessary for infrequent therapy. These toxic effects attributable to acetate or citrate are minimized by the smaller replacement volumes required for daily hemofiltration.
  • The unique combination of electrolytes and basic substances discussed above represent a novel solution to the problem of choosing replacement fluid for frequent hemofiltration. The same constituents would not likely be applicable to less frequent treatment schedules.
  • Frequent hemofiltration minimizes the depletion of blood electrolytes during each hemofiltration session. Thus, the replacement fluid need not include replacement electrolytes. The source 252 may therefore supply relatively inexpensive commodity solutions of physiologic fluids, free of electrolytes, e.g., normal saline or Ringer's lactate (which typically contains 6 mg/ml sodium chloride (130 meq/liter); 3.1 mg/ml of sodium lactate (28 meq/liter); 0.3 mg/ml potassium chloride (4 meq/liter); 0.2 mg/ml calcium chloride (2.7 meq/liter, 109 meq/liter at an osmolarity of 272 mos/liter); at a pH of 6.0 to 7.5). When buffered with citrate, Ringer's lactate effectively achieves the fluid balancing function. The citrate used to buffer the inexpensive, electrolyte-free replacement fluid can also serve the additional function of anticoagulating the blood as it undergoes hemofiltration in the first place.
  • The source 252 supplying the ancillary materials 20 can comprise one or more companies or businesses that manufacture the ancillary materials or that otherwise distributes the ancillary materials 20 to the treatment location 12.
  • D. Exemplary Frequent Hemofiltration Modalities
  • The system 10 serves to enable frequent hemofiltration with high blood flow rates. The high blood flow rates reduce the processing time, and also significantly increases the transport rate of uremic toxins across the hemofiltration membrane. The frequent hemofiltration that the system 10 enables removes high concentrations of uremic toxins, without requiring the removal of high fluid volumes, with the attendant loss of electrolytes. The system 10 thereby provides multiple benefits for the individual, i.e., a tolerable procedure time (e.g., about one to two hours), with high clearance of uremic toxins, without high depletion of liquids and physiologic electrolyte levels in the blood, accurate fluid volume balancing, and use of inexpensive commodity replacement fluids.
  • The machine 16 and cartridge 18 that the system 10 may provide can be used to provide diverse frequent hemofiltration modalities on a continuous or extended basis, e.g., normal frequent hemofiltration, balanced frequent hemofiltration, only net ultrafiltration, and replacement fluid bolus.
  • During normal frequent hemofiltration, blood is drawn from the person at a prescribed flow rate (BFR). Waste fluid is removed from the arterial blood flow and volumetrically balanced with replacement fluid, which is returned in the venous blood flow at a prescribed rate (RFR). A prescribed net ultrafiltration volume of waste fluid is also removed at a prescribed flow rate (UFR) with fluid balancing, to control net weight loss. Operation of the machine 16 in the normal frequent hemofiltration mode terminates when either (i) the replacement fluid sensor indicates the absence of replacement fluid flow by sensing the presence of air (i.e., no more replacement fluid) and the net ultrafiltration goal has been achieved; or (ii) the time prescribed for the session has elapsed.
  • During balanced frequent hemofiltration, normal hemofiltration occurs without an ultrafiltration function. This mode can be used for persons that experience no weight gains between treatment sessions. This mode can also be used at the end of a normal frequent hemofiltration session, when the net ultrafiltration goal was achieved before exhausting the supply of replacement fluid.
  • During only net ultrafiltration, only a net ultrafiltration volume of waste is removed from the person. No fluid is replaced. This mode can be used when it is desired only to remove fluid. This mode can also be used at the end of a normal frequent hemofiltration session, when the net ultrafiltration goal has not been achieved but the supply of replacement fluid has been exhausted.
  • During replacement fluid bolus, there is no fluid balancing and ultrafiltration functions. Blood is circulated in an extracorpeal path and a bolus of replacement fluid is added. In the illustrated embodiment, the ultrafiltration pump 144 is run in reverse at a speed lower than the waste and replacement pump 152. This recirculates waste fluid through the waste compartments 212R and 214R, to add replacement fluid from the replacement compartments 212F and 214F to the patient. The waste fluid that is recirculated limits waste fluid removal through the hemofilter 34, yielding replacement fluid addition without additional waste fluid removal. The net volume of added replacement fluid conveyed to the patient equals the volume of waste fluid recirculated. This mode can be used to return fluid to a person in a bolus volume, e.g., during a hypotensive episode or during rinse back at the end of a given hemofiltration session.
  • 1. Controlling the Blood Flow Rate
  • High blood flow rates (e.g., at least 300 ml/min, and preferably at least 600 ml/min) are conducive to rapid, efficient frequent hemofiltration. The high blood flow rates not only reduce the processing time, but also significantly increases the transport rate of uremic toxins across the hemofiltration membrane. In this way, the system 10 removes high concentrations of uremic toxins, without requiring the removal of high fluid volumes, with the attendant loss of electrolytes.
  • The BFR can be prescribed by an attending physician and input by the operator at the beginning of a treatment session. Alternatively, the machine 16 can automatically control to achieve an optimal BFR and minimize procedure time, based upon a desired filtration fraction value (FF), FPR, and UFR, as follows: BFR=(RFR+UFR)/FF.
  • where:
      • FF is the desired percentage of fluid to be removed from the blood stream through the hemofilter 34.
  • A desired FF (typically 20% to 35%) can be either preset or prescribed by the attending physician. A desired FF takes into account the desired therapeutic objectives of toxin removal, as well as the performance characteristics of the hemofilter 34. A nominal FF can be determined based upon empirical and observed information drawn from a population of individuals undergoing hemofiltration. A maximum value of 30% is believed to be appropriate for most individuals and hemofilters 34, to achieve a desired therapeutic result without clogging of the hemofilter 34.
  • In the illustrated embodiment, air leaks into the extracorporeal circuit (due, e.g., to improper patient line connection) is monitored by the sensor 98. The sensor 98 is an ultrasonic detector, which also can provide the added capacity to sense flow rate.
  • In the illustrated embodiment, the machine 16 senses waste fluid pressure to control the blood flow rate to optimize the removal of fluid across the hemofilter 34. As arterial blood flows through the hemofilter 34 (controlled by the blood pump 92), a certain volume of waste fluid will cross the membrane into the waste line 118. The volume of waste fluid entering the waste line 118 depends upon the magnitude of the waste fluid pressure, which is sensed by the sensor 132. The waste fluid pressure is adjusted by controlling the waste fluid removal rate through the fluid balancing compartments (i.e., through control of the waste and replacement pump 152).
  • The machine 16 monitors the waste fluid pressure at sensor 132. By keeping the pressure sensed by the sensor 132 slightly above zero, the machine 16 achieves the maximum removal of fluid from the blood at then operative arterial flow rate. Waste pressure values significantly higher than zero will limit removal of fluid from the blood and keep a higher percentage of waste fluid in the blood (i.e., result in a lower filtration fraction). However, this may be desirable for persons who tend to clot easier.
  • By sensing waste fluid pressure by sensor 132, the machine 16 also indirectly monitors arterial blood pressure. At a constant blood pump speed, changes in arterial blood flow caused, e.g., by access clotting or increased arterial blood pressure, makes less waste fluid available in the waste line 118. At a given speed for pump 152, change in arterial blood flow will lower the sensed waste pressure at sensor 132 to a negative value, as fluid is now drawn across the membrane. The machine 16 adjusts for the change in arterial blood flow by correcting the waste fluid removal rate through the pump 152, to bring the waste pressure back to slightly above zero, or to another set value.
  • In this arrangement, a pressure sensor in the arterial blood line is not required. If the arterial pressure increases at a fixed blood pump speed, the blood flow must drop, which will result in a sensed related drop in the waste fluid pressure by the sensor 132. Adjusting the pump 152 to achieve a pressure slightly above zero corrects the reduced arterial blood flow. In this arrangement, since the waste fluid pressure is maintained at a slightly positive value, it is not possible to develop a reverse transmembrane pressure, which conveys waste fluid back to the person's blood. The maximum transmembrane pressure is the maximum venous pressure, since waste fluid pressure is held slightly positive.
  • In an alternative arrangement, arterial blood pressure can be measured by a sensor located upstream of the blood pump. The rate of the blood pump is set to maintain sensed arterial blood pressure at a predetermined control point. This controls the blood pump speed to a maximum rate. The control point can be determined by the attending physician, e.g., on a day-to-day basis, to take into account the blood access function of the person undergoing treatment. Use of an arterial pressure control point minimizes the treatment time, or, alternatively, if treatment time is fixed, the removal of waste fluid can maximized.
  • In this arrangement, safety alarms can be included should the sensed arterial pressure become more negative than the control point, along with a function to shut down the blood pump should an alarm occur.
  • 2. Controlling the Replacement Fluid Flow Rate
  • RFR can be prescribed by an attending physician and inputted by the operator at the beginning of a treatment session.
  • Alternatively, the machine 16 can automatically control RFR to minimize procedure time based upon the desired filtration fraction value (FF), BFR, and UFR, as follows: RFR=(BFR*FF)−UFR.
  • In the illustrated embodiment, waste is conveyed to the waste side compartments 212R and 214R, and replacement fluid is conveyed to the replacement side compartments 212F and 214F, by operation of the dual header waste and replacement fluid pump 152. Alternatively, separate waste and replacement fluid pumps can be provided.
  • The speed of the waste and replacement pump 152 is controlled to achieve the desired RFR. The machine 16 cycles the inlet and outlet valve assemblies 216, 218, as described. The machine 16 cycles between the valve states according to the speed of the waste and fluid pump 152 to avoid overfilling the compartments 212, 214 receiving fluid. Various synchronization techniques can be used.
  • In one arrangement, as previously described, the interval of a valve cycle is timed according to the RFR, so that the volume of waste or replacement fluid supplied to waste compartment during the valve cycle interval is less than volume of the compartment receiving the waste fluid overfilling is thereby avoided without active end of cycle monitoring. In a preferred embodiment, the waste fluid is pumped at RFR, and the replacement fluid is pumped at a higher rate, but is subject to pressure relief through the pressure relief path 240 upon filling the corresponding replacement side compartment 214.
  • In another arrangement, the timing of the transition between valve cycles is determined by active sensing of pressure within the compartments 212, 214 receiving liquid. As the interior wall 210 reaches the end of its travel, pressure will increase, signaling an end of cycle to switch valve states.
  • In yet another arrangement, the location of the interior wall 210 as it reaches the end of its travel is actively sensed by end of cycle sensors on the machine 16. The sensors can comprise, e.g., optical sensors, capacitance sensors, magnetic Hall effect sensors, or by radio frequency (e.g., microwave) sensors. The termination of movement of the interior wall 210 indicates the complete filling of a compartment and the concomitant emptying of the other compartment, marking the end of a cycle. The sensors trigger an end of cycle signal to switch valve states.
  • The machine 16 counts the valve cycles. Since a known volume of replacement fluid is expelled from a replacement side compartment during each valve cycle, the machine 16 can derive the total replacement volume from the number of valve cycles. The replacement fluid volume is also known by the number of replacement fluid bags of known volume that are emptied during a given session.
  • Frequent hemofiltration can be conducted without fluid replacement, i.e., only net ultrafiltration, by setting RFR to zero.
  • 3. Controlling the Ultrafiltration Flow Rate
  • UFR can be prescribed by an attending physician and inputted by the operator at the beginning of a treatment session.
  • The speed of the ultrafiltration pump is monitored and varied to maintain UFR.
  • Frequent hemofiltration can be conducted without an ultrafiltration function, i.e., balanced hemofiltration, by setting UFR to zero.
  • 4. Active Filtration Rate Control
  • In an alternative embodiment, the machine 16 also actively controls the filtration rate along with the blood flow rate, to achieve a desired magnitude of uremic toxin removal through the hemofilter 34.
  • In this embodiment, the machine 16 includes a flow restrictor which is positioned to engage a region of the venous blood return path in the circuit 56. The restrictor comprises, e.g., a stepper-driven pressure clamp, which variably pinches a region of the venous blood return path upon command to alter the outlet flow rate of blood. This, in turn, increases or decreases the transmembrane pressure across the filter membrane.
  • For a given blood flow rate, waste transport across the filter membrane will increase with increasing transmembrane pressure, and vice versa. However, at some point, an increase in transmembrane pressure, aimed at maximizing waste transport across the filter membrane, will drive cellular blood components against the filter membrane. Contact with cellular blood components can also clog the filter membrane pores, which decreases waste transport through the membrane.
  • Filtration rate control can also rely upon an upstream sensor mounted on the machine 16. The sensor is positioned for association with a region of the arterial blood supply path between the blood pump 92 and the inlet of the hemofilter 34. The sensor senses the hematocrit of the blood prior to its passage through the filter membrane which will be called the “pre-treatment hematocrit”). In the arrangement, a downstream sensor is also mounted on the machine 16. The sensor is positioned for associated with a region of the venous blood return path downstream of the outlet of the hemofilter 34. The sensor senses the hematocrit of the blood after its passage through the hemofilter 34 (which will be called the “post-treatment hematocrit”).
  • The difference between pre-treatment and post-treatment hematocrit is a function of the degree of waste fluid removal by the hemofilter 34. That is, for a given blood flow rate, the more waste fluid that is removed by the hemofilter 34, the greater the difference will be between the pre-treatment and post-treatment hematocrits, and vice versa. The machine 16 can therefore derive an actual blood fluid reduction ratio based upon the difference detected by sensors between the pre-treatment and post-treatment hematocrits. The machine 16 periodically compares the derived fluid reduction value, based upon hematocrit sensing by the sensors, with the desired FF. The machine 16 issues a command to the flow restrictor to bring the difference to zero.
  • 5. Set Up Pressure Testing/Priming
  • Upon mounting the disposable fluid circuit on the machine 16, the pumps can be operated in forward and reverse modes and the valves operated accordingly to establish predetermined pressure conditions within the circuit. The sensors monitor build up of pressure within the circuit, as well as decay in pressure over time. In this way, the machine can verify the function and integrity of pumps, the pressure sensors, the valves, and the flow paths overall.
  • The machine 16 can also verify the accuracy of the ultrafiltration pump using the fluid balancing containers.
  • Priming can be accomplished at the outset of each frequent hemofiltration session to flush air and any residual fluid from the disposable fluid circuit. Fluid paths from the arterial access to the waste bag are flushed with replacement fluid. Replacement fluid is, also circulated through the fluid balancing containers into the waste bag and the venous return path. The higher flow rate in the replacement fluid path and timing of the fluid balancing valve elements assure that the replacement fluid compartments completely fill and the waste fluid compartments completely empty during each cycle for priming.
  • 6. Rinse Back
  • As previously described, waste fluid pressure is controlled and monitored to assure its value is always positive. Likewise, pressure between the blood pump and the hemofilter must also be positive, so that air does not enter this region of the circuit. Forward operation of the blood pump to convey arterial blood into the hemofilter establishes this positive pressure condition.
  • The rinse back of blood at the end of a given frequent hemofiltration procedure can also be accomplished without risk of air entry into the blood flow path. Rinse can be accomplished by stopping the blood pump and operating the ultrafiltration pump in the reverse bolus mode, as already described. The recirculation of waste fluid by the ultrafiltration pump through the fluid balancing compartments introduces replacement fluid to flush the venous return line. When complete, the venous clamp is closed.
  • With the venous clamp closed, continued operation of the ultrafiltration pump in the reverse bolus mode introduces replacement fluid from the fluid balancing compartments into the hemofilter, in a back flow direction through the outlet port. The blood pump is run in reverse to convey the replacement fluid through the hemofilter and into the arterial blood line. Residual blood is flushed from the blood line. The blood pump is operated in reverse at a rate slower than the reverse bolus rate of the ultrafiltration pump (which supplies replacement fluid to the outlet port of the hemofilter), so that air cannot enter the blood path between the blood pump and the hemofilter. At this stage of the rinse back, the arterial blood line is also subject to positive pressure between the blood pump and the arterial access, so no air can enter this region, either.
  • In this arrangement, no air sensing is required in the arterial blood line and a pressure sensor between the blood pump and the hemofilter is required.
  • E. Supplying Telemetry
  • The system 10 also preferably includes a telemetry network 22 (see FIGS. 1 and 19). The telemetry network 22 provides the means to link the machine 16 at the treatment location 12 in communication with one or more remote locations 254 via, e.g., cellular networks, digital networks, modem, Internet, or satellites. A given remote location 254 can, for example, receive data from the machine 16 at the treatment location 12 or transmit data to a data transmission/receiving device 296 at the treatment location 12, or both. A main server 256 can monitor operation of the machine 16 or therapeutic parameters of the person undergoing frequent hemofiltration. The main server 256 can also provide helpful information to the person undergoing frequent hemofiltration. The telemetry network 22 can download processing or service commands to the data receiver/transmitter 296 at the treatment location 12.
  • Further details about the telemetry aspect of the system 10 will now be described.
  • 1. Remote Information Management
  • FIG. 19 shows the telemetry network 22 in association with a machine 16 that carries out frequent hemofiltration. The telemetry network 22 includes the data receiver/transmitter 296 coupled to the machine 16. The data receiver/transmitter 296 can be electrically isolated from the machine 16, if desired. The telemetry network 22 also includes a main data base server 256 coupled to the data receiver/transmitter 296 and an array of satellite servers 260 linked to the main data base server 256.
  • The data generated by the machine 16 during operation is processed by the data receiver/transmitter 296. The data is stored, organized, and formatted for transmission to the main data base server 256. The data base server 256 further processes and dispenses the information to the satellite data base servers 260, following by pre-programmed rules, defined by job function or use of the information. Data processing to suit the particular needs of the telemetry network 22 can be developed and modified without changing the machine 16.
  • The main data base server 256 can be located, e.g., at the company that creates or manages the system 10.
  • The satellite data base servers 260 can be located, for example, at the residence of a designated remote care giver for the person, or at a full time remote centralized monitoring facility staffed by medically trained personnel, or at a remote service provider for the machine 16, or at a company that supplies the machine 16, or the processing cartridge 18, or the ancillary processing material to the treatment location 12.
  • Linked to the telemetry network 22, the machine 16 acts as a satellite. The machine 16 performs specified therapy tasks while monitoring basic safety functions and providing the person at the treatment location 12 notice of safety alarm conditions for resolution. Otherwise, the machine 16 transmits procedure data to the telemetry network 22. The telemetry network 22 relieves the machine 16 from major data processing tasks and related complexity. It is the main data base server 256, remote from the machine 16, that controls the processing and distribution of the data among the telemetry network 22, including the flow of information and data to the person undergoing therapy. The person at the treatment location 12 can access data from the machine 16 through the local date receiver/transmitter 296, which can comprise a laptop computer, handheld PC device, web tablet, or cell phone.
  • The machine 16 can transmit data to the receiver/transmitter 296 in various ways, e.g., electrically, by phone lines, optical cable connection, infrared light, or radio frequency, using cordless phone/modem, cellular phone/modem, or cellular satellite phone/modem. The. telemetry network 22 may comprise a local, stand-alone network, or be part of the Internet.
  • For example, when the machine 16 notifies the person at the treatment location 12 of a safety alarm condition, the safety alarm and its underlying data will also be sent to the main server 256 on the telemetry network 22 via the receiver/transmitter 296. While the person undergoing therapy or the care giver works to resolve the alarm condition, the main server 256 determines, based upon the prevailing data rule, whether the alarm condition is to be forwarded to other servers 260 in the network 22.
  • When an alarm condition is received by the main server 256, the main server 256 can locate and download to the receiving device 296 the portion of the operator's manual for the machine that pertains to the alarm condition. Based upon this information, and exercising judgment, the operator/user can intervene with operation of the machine 16. In this way, the main server 256 can provide an automatic, context-sensitive help function to the treatment location 12. The telemetry network 22 obviates the need to provide on-board context-sensitive help programs for each machine 16. The telemetry network 22 centralizes this help function at a single location, i.e., a main server 256 coupled to all machines 16.
  • The telemetry network 22 can relay to an inventory server 262 supply and usage information of components used for frequent hemofiltration at each treatment location 12. The server 262 can maintain treatment site-specific inventories of such items, such as cartridges 18, replacement fluid, and hemofilters 34. The company or companies of the system 10 that supply the machine 16, or the processing cartridge 18, or the ancillary processing material to the treatment location 12 can all be readily linked through the telemetry network 22 to the inventory server 262. The inventory server 262 thereby centralizes inventory control and planning for the entire system 10, based upon information received in real time from each machine 16 at each treatment location 12.
  • The telemetry network 22 can relay to a service server 264 hardware status information for each machine 16 at every treatment location 12. The service server 264 can process the information according to preprogrammed rules, to generate diagostic reports, service requests or maintenance schedules. The company or companies of the system 10 that supply or service the machine 16 can all be readily linked through the telemetry network 22 to the service server 264. The service server 264 thereby centralizes service, diagnostic, and maintenance functions for the entire system 10. Service-related information can also be sent to the treatment location 12 via the receiving device 296.
  • The telemetry network 22 can also relay to a treatment monitoring server 266, treatment-specific information pertaining to the hemofiltration therapy provided by each machine 16 for the person at each treatment location 12. Remote monitoring facilities 268, staffed by medically trained personnel, can be readily linked through the telemetry network 22 to the treatment monitoring server 266. The monitoring server 266 thereby centralizes treatment monitoring functions for all treatment locations 12 served by the system 10. Treatment-monitoring information can also be sent to the treatment location 12 via the receiving device 296.
  • The telemetry network 22 can also provide through the device 296 an access portal for the person undergoing frequent hemofiltration to the myriad services and information contained on the Internet, e.g., over the web radio and TV, video, telephone, games, financial management, tax services, grocery ordering, prescriptions purchases, etc. The main server 256 can compile diagnostic, therapeutic, and/or medical information to create a profile for each person served by the system 10 to develop customized content for that person. The main server 256 thus provide customized ancillary services such as on line training, billing, coaching, mentoring, and provide a virtual community whereby persons using the system 10 can contact and communicate via the telemetry network 22.
  • The telemetry network 22 thus provides the unique ability to remotely monitor equipment status, via the internet, then provide information to the user, also via the internet, at the location of the equipment. This information can includes, e.g., what page on the operator's manual would be the most helpful for their current operational situation, actual data about the equipment's performance (e.g., could it use service, or is it set up based on the caretaker's recommendations, data about the current session i.e., buttons pressed, alarms, internal machine parameters, commands, measurements.
  • The remote site can monitor the equipment for the same reasons that the user might. It can also retrieve information about the machine when it is turned off because the telemetry device is self-powered. It retains all information about the machine over a period of time (much like-a flight recorder for an airplane).
  • 2. On Site Programming
  • (i) Using the Telemetry Network
  • The main server 256 on the telemetry network 22 can also store and download to each machine 16 (via the device 296) the system control logic and programs necessary to perform a desired frequent hemofiltration procedure. Programming to alter a treatment protocol to suit the particular needs of a single person at a treatments site can be developed and modified without a service call to change the machine 16 at any treatment location 12, as is the current practice. System wide modifications and revisions to control logic and programs that condition a machine 16 to perform frequent hemofiltration can be developed and implemented without the need to retrofit each machine 16 at all treatment locations 12 by a service call. This approach separates the imparting of control functions that are tailored to particular procedures, which can be downloaded to the machine 16 at time of use, from imparting safety functions that are generic to all procedures, which can be integrated in the machine 16.
  • (ii) Using the Cartridge
  • Alternatively, the control logic and programs necessary to perform a desired frequent hemofiltration procedure can be carried in a machine readable format on the cartridge 18. Scanners on the machine 16 automatically transfer the control logic and programs to the machine 16 in the act of loading the cartridge 18 on the machine 16. Bar code can be used for this purpose. Touch contact or radio frequency silicon memory devices can also be used. The machine 16 can also include local memory, e.g., flash memory, to download and retain the code.
  • For example, as FIG. 2 shows, the machine 16 can include one or more code readers 270 on the chassis panel 26. The tray 48 carries, e.g., on a label or labels, a machine readable (e.g., digital) code 272 (see FIG. 10) that contains the control logic and programs necessary to perform a desired frequent hemofiltration procedure using the cartridge 18. Loading the tray 48 on the machine 16 orients the code 272 to be scanned by the reader(s) 270. Scanning the code 272 downloads the control logic and programs to memory. The machine 16 is thereby programmed on site.
  • The code 272 can also include the control logic and programs necessary to monitor use of the the cartridge 18. For example, the code 272 can provide unique identification for each cartridge 18. The machine 16 registers the unique identification at the time it scans the code 272. The machine 16 transmits this cartridge 18 identification information to the main server 256 of the telemetry network 22. The telemetry network 22 is able to uniquely track cartridge 18 use by the identification code throughout the system 10.
  • Furthermore, the main server 256 can include preprogrammed rules that prohibit multiple use of a cartridge 18, or that limit extended uses to a prescribed period of time. An attempted extended use of the same cartridge 18 on any machine 16, or an attempted use beyond the prescribed time period, will be detected by the machine 16 or the main server 256. In this arrangement, the machine 16 is disabled until an unused cartridge 18 is loaded on the machine 16.
  • Service cartridges can also be provided for the machine 16. A service cartridge carries a code that, when scanned by the reader or readers on the chassis panel 26 and downloaded to memory, programs the machine 16 to conduct a prescribed service and diagnostic protocol using the service cartridge 18.
  • (iii) Using an Overlay
  • Alternatively, or in combination with any of the foregoing on-site machine 16 programming techniques, the chassis panel 26 can be configured to receive overlays 274, 276, 278, 280 (see FIG. 20), which are specific to particular hemofiltration modalities or therapies that the machine 16 can carry out. For example, in the context of the illustrated embodiment, one overlay 274 would be specific to the normal frequent hemofiltration mode, a second overlay 276 would be specific to the balanced frequent hemofiltration mode, a third overlay 278 would be specific to the only net ultrafiltration mode, and a fourth overlay 280 would be specific to the replacement fluid bolus mode. Other overlays could be provided, e.g., for a pediatric hemofiltration procedure, or a neo-natal hemofiltration procedure.
  • When a treatment location 12 wants to conduct a particular hemofiltration modality, the treatment location 12 mounts the associated overlay on the chassis panel 26. Each overlay contains a code 282 or a chip imbedded in the overlay that is scanned or discerned by one or more readers 284 on the chassis panel 26 after the overlay is mounted on the chassis panel 26. The code 282 is downloaded to flash memory on the machine 16 and programs the machine 16 to conduct hemofiltration in that particular mode.
  • A person at the treatment location 12 mounts the appropriate overlay 274, 276, 278, 280 and then mounts a cartridge 18 on the chassis panel 26. The machine 16 is then conditioned by the overlay and made capable by the cartridge 18 to conduct that particular mode of hemofiltration using the cartridge 18. In this way, a universal cartridge 18, capable of performing several hemofiltration modes, can be provided. It is the overlay that conditions the machine 16 to perform different treatment modalities. Alternatively, the operator can link the overlay, machine, and cartridge together by therapy type.
  • Furthermore, treatment-site specific alterations of generic hemofiltration modes can be developed and implemented. In this arrangement, treatment-site specific overlays 286 are provided for the machine 16. The treatment site-specific overlay 286 carries a code 282 or a chip imbedded in the overlay that, when downloaded by the machine 16, implements a particular variation of the hemofiltration mode for the person at that treatment location 12, as developed, e.g., by an attending physician. A person at the treatment location 12 mounts the treatment-site specific overlay 286 and then mounts a universal cartridge 18 on the chassis panel 26. The machine 16 is conditioned by the treatment site-specific overlay 286 and made capable by the universal cartridge 18 to conduct that particular specific mode of hemofiltration using the cartridge 18.
  • An additional overlay 288 can be provided that contains code 282 or a chip imbedded in the overlay that, when scanned by the reader(s) 284 on the chassis panel 26 and downloaded to flash memory, programs the machine 16 to conduct a prescribed service and diagnostic protocol using the cartridge 18, which is also mounted on the chassis panel 26.
  • F. Extended Use of the Cartridge
  • The consolidation of all blood and fluid flow paths in a single, easily installed cartridge 18 avoids the potential of contamination, by minimizing the number of connections and disconnections needed during a hemofiltration session. By enabling a dwell or wait mode on the machine 16, the cartridge 18 can remain mounted to the machine 16 after one hemofiltration session for an extended dwell or break period and allow reconnection and continued use by the same person in a subsequent session or in a continuation of a session following x-rays or testing.
  • The cartridge 18 can therefore provide multiple intermittent treatment sessions during a prescribed time period, without exchange of the cartridge 18 after each treatment session. The time of use confines are typically prescribed by the attending physician or technical staff for the treatment center to avoid biocontamination and can range, e.g., from 48 hours to 120 hours, and more typically 72 to 80 hours. The cartridge 18 can carry a bacteriostatic agent that can be returned to the patient (e.g., an anticoagulant, saline, ringers lactate, or alcohol) and/or be refrigerated during storage.
  • To reduce the change of biocontamination, the cartridge 18 can include one or more in-line sterilizing filters 178 (e.g., 0.2 m) in association with connectors that, in use, are attached to outside fluid sources, e.g., the replacement fluid source. As FIG. 11 shows, the filter 178 can be pre-attached to the cartridge 18 and be coupled to a multiple connection set 290, which itself is coupled to the prescribed number of replacement fluid bags 176. Alternative (as FIG. 21 shows), a separate customized filtration set 292 can be provided, which attaches to the connector 174 carried by the cartridge 18. The filtration set 292 includes a sterilizing filter 178 to which an array of multiple connector leads 294 is integrated.
  • In the dwell mode of the machine 16, fluid can be recirculated either continuously or intermittently through the circuit 56. The fluid can be circulate past a region of ultraviolet light carried on the machine 16 to provide a bacteriostatic effect. Alternatively, or in combination with exposure to ultraviolet light, the fluid can carry a bacteriostatic agent, such as an anticoagulant, saline, ringers lactate, or alcohol, which can be returned to the person at the beginning of the next treatment session. The machine 16 and cartridge 18 can also be subjected to refrigeration during the dwell period.
  • In an alternative embodiment, an active disinfecting agent can be circulated through the circuit 56 during the dwell period. The-disinfecting material can include a solution containing AmuchinaJ material. This material can be de-activated by exposure to ultraviolet light prior to the next treatment session. Exposure to ultraviolet light causes a chemical reaction, during which AmuchinaJ material breaks down and transforms into a normal saline solution, which can be returned to the person at the start of the next hemofiltration session.
  • G. The Operator Interface
  • FIG. 22 shows a representative display 324 for an operator interface 44 for the machine. The display 324 comprises a graphical user interface (GUI), which, in the illustrated embodiment, is displayed by the interface 44 on the exterior of the door 28, as FIG. 2 shows. The GUI can be realized, e.g., as a membrane switch panel, using an icon-based touch button membrane. The GUI can also be realized as a “C” language program implemented using the MS WINDOWS™ application and the standard WINDOWS 32 API controls, e.g., as provided by the WINDOWS™ Development Kit, along with conventional graphics software disclosed in public literature.
  • The GUI 324 presents to the operator a simplified information input and output platform, with graphical icons, push buttons, and display bars. The icons, push buttons, and display bars are preferably back-lighted in a purposeful sequence to intuitively lead the operator through set up, execution, and completion of a frequent hemofiltration session.
  • The GUI 324 includes an array of icon-based touch button controls 326, 328, 330, and 332. The controls include an icon-based treatment start/select touch button 326, an icon-based treatment stop touch button 328, and an icon-based audio alarm mute touch button 330. The controls also include an icon-based add fluid touch button 332 (for prime, rinse back, and bolus modes, earlier described).
  • An array of three numeric entry and display fields appear between the icon-based touch buttons. The fields comprise information display bars 334, 336, and 338, each with associated touch keys 340 to incrementally change the displayed information. In the illustrated embodiment, the top data display bar 334 numerically displays the Replacement Fluid Flow Rate (in ml/min), which is the flow rate for removing waste fluid and replacing it with an equal volume of replacement fluid. The middle data display bar 336 numerically displays the ultrafiltration flow rate (in kg/hr), which is the flow rate for removing waste fluid to control net weight loss. The bottom data display bar 338 numerically displays the Blood Pump Flow Rate (in ml/min).
  • The associated touch keys 340 point up (to increase the displayed value) or down (to decrease the displayed value), to intuitively indicate their function. The display bars 334, 336, and 338 and touch keys 340 can be shaded in different colors, e.g., dark blue for the replacement flow rate, light blue for ultrafiltrational flow rate, and red for the blood flow rate.
  • An array of status indicator bars appears across the top of the screen. The left bar 342, when lighted, displays a “safe” color (e.g., green) to indicate a safe operation condition. The middle bar 344, when lighted, displays a “cautionary” color (e.g., yellow) to indicate a caution or warning condition and may, if desired, display a numeric or letter identifying the condition.
  • The right bar 346, when lighted, displays an “alarm” color (e.g., red) to indicate a safety alarm condition and may, if desired, display a numeric or letter identifying the condition.
  • Also present on the display is a processing status touch button 348. The button 348, when touched, changes for a period of time (e.g., 5 seconds) the values displayed in the information display bars 334, 336, and 338, to show the corresponding current real time values of the replacement fluid volume exchanged (in the top display bar 334), the ultrafiltrate volume (in the middle display bar 336), and the blood volume processed (in the bottom display bar 338). The status button 348, when touched, also shows the elapsed procedure time in the left status indicator bar 342.
  • The display also includes a cartridge status icon 350. The icon 350, when lighted, indicates that the cartridge 18 can be installed or removed from the machine 16.
  • The GUI 324, though straightforward and simplified, enables the operator to set the processing parameters for a given treatment session in different ways.
  • For example, in one input mode, the GUI 324 prompts the operator by back-lighting the replacement fluid display bar 334, the ultrafiltration display bar 336, and the blood flow rate display bar 338. The operator follows the lights and enters the desired processing values using the associated touch up/down bottons 340. The GUI back-lights the start/select touch button 326, prompting the operator to begin the treatment. In this mode, the machine 16 controls the pumps to achieve the desired replacement fluid, ultrafiltration, and blood flow rates set by the operator. The machine terminates the procedure when all the replacement fluid is used and the net ultrafiltration goal is achieved.
  • In another input mode, the operator can specify individual processing objectives, and the machine 16 will automatically set and maintain appropriate pump values to achieve these objectives. This mode can be activated, e.g., by pressing the start/select touch button 326 while powering on the machine 16. The GUI 324 changes the. function of the display bars 334 and 336, so that the operator can select and change processing parameters. In the illustrated embodiment, the processing parameters are assigned identification numbers, which can be scrolled through and selected for display in the top bar 334 using the touch up/down keys 340. The current value for the selected parameter is displayed in the middle display bar 336, which the operator can change using the touch up/down keys 340.
  • In this way, the operator can, e.g., specify a desired filtration factor value (FF) along with a desired ultrafiltration flow rate (UFR) and replacement fluid flow rate (RFR). The machine will automatically control the blood pump rate (BFR), based upon the relationship BFR=(RFR+UFR)/FF, as previously described.
  • Alternatively, the operator can specify a desired filtration factor value (FF) along with a desired ultrafiltration flow rate (UFR) and blood flow rate (BFR). The machine will automatically control the replacement fluid pump rate (RFR), based upon the relationship RFR=(BFR*FF)−UFR, as already described.
  • Alternatively, the operator can specify only an ultrafiltration volume. In this arrangement, the machine 16 senses waste fluid pressure to automatically control the blood flow rate to optimize the removal of fluid across the hemofilter 34, as previously described. Alternatively, the machine can automatically control the blood flow rate to optimize removal of fluid based a set control arterial blood pressure, as also already described.
  • As FIG. 22 shows, the interface also preferably includes an infrared port 360 to support the telemetry function, as previously described.
  • As FIG. 23 shows, the interface 44 can include a generic display panel 352 that receives a family of templates 354. Each template 354 contains code 356 or chip that, when scanned or discerned by a reader 358 on the interface panel 352, programs the look and feel of the interface 44. In this way, a generic display panel 352 can serve to support a host of different interfaces, each optimized for a particular treatment modality.
  • Various features of the invention are set forth in the following claims.

Claims (12)

1. A renal replacement therapy system comprising an extracorporeal circuit for circulating blood from an individual through a blood treatment device to remove waste, the extracorporeal circuit including a blood line coupled to the blood treatment device and adapted to draw blood from the individual, a blood pump to convey blood through the blood line from the individual into the blood treatment device at a blood flow rate, a waste removal line to convey waste fluid from the blood treatment device, a sensor in the blood line to sense blood pressure, and a controller coupled to the sensor and the blood pump to adjust the blood flow rate to maintain blood pressure at a predetermined set value.
2. A system according to claim 1
wherein the controller generates an alarm output based upon variance between sensed blood pressure and the predetermined set value.
3. A system according to claim 2
wherein the alarm output terminates operation of the blood pump.
4. A method for carrying out renal replacement therapy comprising the steps of
conveying blood from the individual at a blood flow rate through a blood line into a blood treatment device to remove waste fluid,
conveying waste fluid from the blood treatment device through a waste removal line,
sensing blood pressure in the blood line, and
adjusting the blood flow rate to maintain blood pressure at a predetermined set value.
5. A method according to claim 4
further including the step of generating an alarm output based upon variance between sensed blood pressure and the predetermined set value.
6. A method according to claim 5
wherein the alarm output terminates operation of the blood pump.
7. A renal replacement therapy system, comprising:
a filter;
an arterial blood line connectable to a patient access and adapted to convey blood from said patient access to a filter;
a venous blood line connectable to said patient access and adapted to convey blood from said filter to patient access; and
a pump configured to convey blood through said arterial blood line, a sensor to sense pressure in said arterial blood line, and a controller connected to receive a pressure signal from said sensor and to control a rate of flow of said pump;
said controller being configured to maintain a constant pressure in said arterial blood line by regulating a speed of said pump in response to said pressure signal.
8. A system as in claim 7, wherein said controller is configured to slow said rate of flow when said pressure drops.
9. A system as in claim 8, wherein said controller is configured to speed up said rate of flow when said pressure increases.
10. A system as in claim 7, wherein said controller is configured to control said rate of flow by controlling a speed of said pump.
11. A system as in claim 7, wherein said controller is a microcomputer programmed to compare said pressure signal with a predetermined value.
12. A system as in claim 7, wherein said controller is configured such that when said patient access becomes clogged, said rate of flow is slowed.
US10/796,899 1997-02-14 2004-03-08 Blood flow control in a blood treatment device Abandoned US20080306426A9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/796,899 US20080306426A9 (en) 1997-02-14 2004-03-08 Blood flow control in a blood treatment device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US08/800,881 US20010016699A1 (en) 1997-02-14 1997-02-14 Hemofiltration system
US45123899A 1999-11-29 1999-11-29
US09/513,773 US6579253B1 (en) 1997-02-14 2000-02-25 Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US09/512,927 US6589482B1 (en) 1997-02-14 2000-02-25 Extracorporeal circuits for performing hemofiltration employing pressure sensing without an air interface
US09/865,905 US6852090B2 (en) 1997-02-14 2001-05-24 Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US09/894,236 US6955655B2 (en) 1997-02-14 2001-06-27 Hemofiltration system
US10/649,582 US7473238B2 (en) 1997-02-14 2003-08-27 Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US10/796,899 US20080306426A9 (en) 1997-02-14 2004-03-08 Blood flow control in a blood treatment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/865,905 Division US6852090B2 (en) 1997-02-14 2001-05-24 Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge

Publications (2)

Publication Number Publication Date
US20050113735A1 US20050113735A1 (en) 2005-05-26
US20080306426A9 true US20080306426A9 (en) 2008-12-11

Family

ID=46277663

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/865,905 Expired - Lifetime US6852090B2 (en) 1997-02-14 2001-05-24 Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US10/796,898 Abandoned US20050113734A1 (en) 1997-02-14 2004-03-08 Network-based extracorporeal blood treatment information system
US10/796,899 Abandoned US20080306426A9 (en) 1997-02-14 2004-03-08 Blood flow control in a blood treatment device
US10/797,666 Abandoned US20040243049A1 (en) 1997-02-14 2004-03-08 Blood-contactless measurement of arterial pressure
US10/796,787 Expired - Lifetime US7147613B2 (en) 1997-02-14 2004-03-08 Measurement of fluid pressure in a blood treatment device
US10/796,913 Expired - Lifetime US7776001B2 (en) 1997-02-14 2004-03-08 Registration of fluid circuit components in a blood treatment device
US10/808,213 Expired - Lifetime US7267658B2 (en) 1997-02-14 2004-03-23 Renal replacement therapy device for controlling fluid balance of treated patient
US10/807,906 Expired - Lifetime US7300413B2 (en) 1997-02-14 2004-03-23 Blood processing machine and system using fluid circuit cartridge
US10/807,907 Abandoned US20040245161A1 (en) 1997-02-14 2004-03-23 Mechanism for mechanically balancing flows of fluids in a blood treatment
US10/808,207 Expired - Lifetime US7338460B2 (en) 1997-02-14 2004-03-23 Blood processing machine fluid circuit cartridge

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/865,905 Expired - Lifetime US6852090B2 (en) 1997-02-14 2001-05-24 Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US10/796,898 Abandoned US20050113734A1 (en) 1997-02-14 2004-03-08 Network-based extracorporeal blood treatment information system

Family Applications After (7)

Application Number Title Priority Date Filing Date
US10/797,666 Abandoned US20040243049A1 (en) 1997-02-14 2004-03-08 Blood-contactless measurement of arterial pressure
US10/796,787 Expired - Lifetime US7147613B2 (en) 1997-02-14 2004-03-08 Measurement of fluid pressure in a blood treatment device
US10/796,913 Expired - Lifetime US7776001B2 (en) 1997-02-14 2004-03-08 Registration of fluid circuit components in a blood treatment device
US10/808,213 Expired - Lifetime US7267658B2 (en) 1997-02-14 2004-03-23 Renal replacement therapy device for controlling fluid balance of treated patient
US10/807,906 Expired - Lifetime US7300413B2 (en) 1997-02-14 2004-03-23 Blood processing machine and system using fluid circuit cartridge
US10/807,907 Abandoned US20040245161A1 (en) 1997-02-14 2004-03-23 Mechanism for mechanically balancing flows of fluids in a blood treatment
US10/808,207 Expired - Lifetime US7338460B2 (en) 1997-02-14 2004-03-23 Blood processing machine fluid circuit cartridge

Country Status (1)

Country Link
US (10) US6852090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100274169A1 (en) * 2009-04-23 2010-10-28 Fresenius Medical Care Deutschland Gmbh Valve device, valve insert, external functional means, treatment apparatus, and method

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852090B2 (en) 1997-02-14 2005-02-08 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US6877713B1 (en) 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
US7780619B2 (en) * 1999-11-29 2010-08-24 Nxstage Medical, Inc. Blood treatment apparatus
US6890315B1 (en) * 2000-05-23 2005-05-10 Chf Solutions, Inc. Method and apparatus for vein fluid removal in heart failure
US6887214B1 (en) * 2000-09-12 2005-05-03 Chf Solutions, Inc. Blood pump having a disposable blood passage cartridge with integrated pressure sensors
US6585675B1 (en) 2000-11-02 2003-07-01 Chf Solutions, Inc. Method and apparatus for blood withdrawal and infusion using a pressure controller
US6689083B1 (en) * 2000-11-27 2004-02-10 Chf Solutions, Inc. Controller for ultrafiltration blood circuit which prevents hypotension by monitoring osmotic pressure in blood
US6773412B2 (en) * 2001-04-13 2004-08-10 Chf Solutions, Inc. User interface for blood treatment device
US7241272B2 (en) 2001-11-13 2007-07-10 Baxter International Inc. Method and composition for removing uremic toxins in dialysis processes
US6796955B2 (en) * 2002-02-14 2004-09-28 Chf Solutions, Inc. Method to control blood and filtrate flowing through an extracorporeal device
AU2003230862A1 (en) 2002-04-11 2003-10-27 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US6947131B2 (en) * 2002-05-07 2005-09-20 Chf Solutions, Inc. Blood leak detector for extracorporeal treatment system
DE10224750A1 (en) * 2002-06-04 2003-12-24 Fresenius Medical Care De Gmbh Device for the treatment of a medical fluid
WO2003103533A2 (en) * 2002-06-06 2003-12-18 Nxstage Medical, Inc. Last-chance quality check and/or air/pyrogen filter for infusion systems
EP1523350B1 (en) 2002-07-19 2011-04-13 Baxter International Inc. System for performing peritoneal dialysis
US9700663B2 (en) * 2005-01-07 2017-07-11 Nxstage Medical, Inc. Filtration system for preparation of fluids for medical applications
WO2004062710A2 (en) * 2003-01-07 2004-07-29 Nxstage Medical Inc. Batch filtration system for preparation of sterile replacement fluid for renal therapy
US20080210606A1 (en) 2004-01-07 2008-09-04 Jeffrey Burbank Filtration System Preparation of Fluids for Medical Applications
WO2004066121A2 (en) * 2003-01-15 2004-08-05 Nxstage Medical Inc. Waste balancing for extracorporeal blood treatment systems
US8235931B2 (en) 2003-01-15 2012-08-07 Nxstage Medical, Inc. Waste balancing for extracorporeal blood treatment systems
US7297270B2 (en) * 2003-04-04 2007-11-20 Chf Solutions, Inc. Hollow fiber filter for extracorporeal blood circuit
US7671974B2 (en) * 2003-10-29 2010-03-02 Chf Solutions Inc. Cuvette apparatus and system for measuring optical properties of a liquid such as blood
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US8803044B2 (en) 2003-11-05 2014-08-12 Baxter International Inc. Dialysis fluid heating systems
US8038639B2 (en) * 2004-11-04 2011-10-18 Baxter International Inc. Medical fluid system with flexible sheeting disposable unit
US7744553B2 (en) 2003-12-16 2010-06-29 Baxter International Inc. Medical fluid therapy flow control systems and methods
US7303540B2 (en) 2004-04-26 2007-12-04 Chf Solutions, Inc. User interface for blood treatment device
US7615028B2 (en) * 2004-12-03 2009-11-10 Chf Solutions Inc. Extracorporeal blood treatment and system having reversible blood pumps
US7935074B2 (en) * 2005-02-28 2011-05-03 Fresenius Medical Care Holdings, Inc. Cassette system for peritoneal dialysis machine
US8197231B2 (en) 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
US7871391B2 (en) 2005-10-21 2011-01-18 Fresenius Medical Care Holdings, Inc. Extracorporeal fluid circuit
DE602007008395D1 (en) 2006-04-07 2010-09-23 Nxstage Medical Inc TUBE TERMINAL FOR MEDICAL APPLICATIONS
US8366316B2 (en) * 2006-04-14 2013-02-05 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
EP2010247A1 (en) 2006-04-14 2009-01-07 Deka Products Limited Partnership Systems, devices and methods for fluid pumping, heat exchange, thermal sensing, and conductivity sensing
AU2007244000B2 (en) * 2006-04-27 2013-03-14 Gambro Lundia Ab Remote controlled medical apparatus
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
EP2081618B1 (en) 2006-10-13 2016-01-06 Bluesky Medical Group Inc. Improved control circuit and apparatus for negative pressure wound treatment
JP5160455B2 (en) * 2007-02-15 2013-03-13 旭化成メディカル株式会社 Blood purification system
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US20080253911A1 (en) 2007-02-27 2008-10-16 Deka Products Limited Partnership Pumping Cassette
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US20090107335A1 (en) 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US10463774B2 (en) 2007-02-27 2019-11-05 Deka Products Limited Partnership Control systems and methods for blood or fluid handling medical devices
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
AU2016203233C1 (en) * 2007-02-27 2020-07-02 Deka Products Limited Partnership Cassette system integrated apparatus
AU2015201053C1 (en) * 2007-02-27 2017-10-05 Deka Products Limited Partnership Hemodialysis systems and methods
MX337294B (en) 2007-02-27 2016-02-23 Deka Products Lp Hemodialysis systems and methods.
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
US8409124B2 (en) * 2007-03-08 2013-04-02 Medronic, Inc. Blood pump system user interface alarm management
US8206594B2 (en) * 2007-06-06 2012-06-26 Emoery University Fluid management system for accurate continuous hemofiltration in extracorporeal membrane oxygenation (ECMO)
GB0715259D0 (en) 2007-08-06 2007-09-12 Smith & Nephew Canister status determination
GB0715211D0 (en) * 2007-08-06 2007-09-12 Smith & Nephew Apparatus
US9408954B2 (en) 2007-07-02 2016-08-09 Smith & Nephew Plc Systems and methods for controlling operation of negative pressure wound therapy apparatus
US8496609B2 (en) * 2007-07-05 2013-07-30 Baxter International Inc. Fluid delivery system with spiked cassette
US7955295B2 (en) 2007-07-05 2011-06-07 Baxter International Inc. Fluid delivery system with autoconnect features
US8512553B2 (en) 2007-07-05 2013-08-20 Baxter International Inc. Extracorporeal dialysis ready peritoneal dialysis machine
US7909795B2 (en) * 2007-07-05 2011-03-22 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US8715235B2 (en) * 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US7736328B2 (en) 2007-07-05 2010-06-15 Baxter International Inc. Dialysis system having supply container autoconnection
US8057423B2 (en) * 2007-07-05 2011-11-15 Baxter International Inc. Dialysis system having disposable cassette
US12121648B2 (en) 2007-08-06 2024-10-22 Smith & Nephew Plc Canister status determination
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8040493B2 (en) * 2007-10-11 2011-10-18 Fresenius Medical Care Holdings, Inc. Thermal flow meter
US8475399B2 (en) * 2009-02-26 2013-07-02 Fresenius Medical Care Holdings, Inc. Methods and systems for measuring and verifying additives for use in a dialysis machine
US8535522B2 (en) * 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US20090076434A1 (en) * 2007-09-13 2009-03-19 Mischelevich David J Method and System for Achieving Volumetric Accuracy in Hemodialysis Systems
US20090101577A1 (en) * 2007-09-28 2009-04-23 Fulkerson Barry N Methods and Systems for Controlling Ultrafiltration Using Central Venous Pressure Measurements
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US20090114037A1 (en) * 2007-10-11 2009-05-07 Mark Forrest Smith Photo-Acoustic Flow Meter
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
CA2698408C (en) 2007-09-19 2015-11-03 Fresenius Medical Care Holdings, Inc. Safety vent structure for extracorporeal circuit
US7892197B2 (en) * 2007-09-19 2011-02-22 Fresenius Medical Care Holdings, Inc. Automatic prime of an extracorporeal blood circuit
MX2010003105A (en) * 2007-09-19 2010-04-09 Fresenius Med Care Hldg Inc Dialysis systems and related components.
US8038886B2 (en) 2007-09-19 2011-10-18 Fresenius Medical Care North America Medical hemodialysis container including a self sealing vent
US7995816B2 (en) * 2007-09-24 2011-08-09 Baxter International Inc. Detecting access disconnect by pattern recognition
US8771508B2 (en) 2008-08-27 2014-07-08 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
KR101934142B1 (en) * 2007-10-12 2018-12-31 데카 프로덕츠 리미티드 파트너쉽 Apparatus and method for hemodialysis
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
US9415150B2 (en) * 2007-11-09 2016-08-16 Baxter Healthcare S.A. Balanced flow dialysis machine
CA3057806C (en) 2007-11-29 2021-11-23 Fresenius Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
US10201647B2 (en) 2008-01-23 2019-02-12 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US10195330B2 (en) 2008-01-23 2019-02-05 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9078971B2 (en) 2008-01-23 2015-07-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
EP2254616B1 (en) 2008-01-23 2016-07-06 DEKA Products Limited Partnership Disposable fluid handling cassette for peritoneal dialysis
US11975128B2 (en) 2008-01-23 2024-05-07 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11833281B2 (en) 2008-01-23 2023-12-05 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
WO2009126217A2 (en) * 2008-04-07 2009-10-15 Brian Lewis Interchangeable graphic display system and method of making same
US8870804B2 (en) * 2008-04-15 2014-10-28 Gambro Lundia Ab Blood treatment apparatus and method
AU2009237692B2 (en) * 2008-04-15 2014-01-16 Gambro Lundia Ab Blood treatment apparatus
US9514283B2 (en) * 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US8062513B2 (en) 2008-07-09 2011-11-22 Baxter International Inc. Dialysis system and machine having therapy prescription recall
US20100184198A1 (en) * 2009-01-16 2010-07-22 Joseph Russell T Systems and Methods of Urea Processing to Reduce Sorbent Load
NZ592653A (en) * 2008-10-07 2013-11-29 Fresenius Med Care Hldg Inc Priming system and method for dialysis systems
EP2342003B1 (en) * 2008-10-30 2018-09-26 Fresenius Medical Care Holdings, Inc. Modular, portable dialysis system
US8298167B2 (en) * 2008-11-03 2012-10-30 B. Braun Avitum Ag Modular hemofiltration apparatus with interactive operator instructions and control system
US9370324B2 (en) 2008-11-05 2016-06-21 Fresenius Medical Care Holdings, Inc. Hemodialysis patient data acquisition, management and analysis system
US8663463B2 (en) * 2009-02-18 2014-03-04 Fresenius Medical Care Holdings, Inc. Extracorporeal fluid circuit and related components
US8192401B2 (en) 2009-03-20 2012-06-05 Fresenius Medical Care Holdings, Inc. Medical fluid pump systems and related components and methods
CN104958797B (en) * 2009-04-23 2019-04-30 费森尼斯医疗德国公司 The haemodialysis device and method of external functional device, accommodating external functional device of the present invention
US8282829B2 (en) 2009-05-20 2012-10-09 Baxter International Inc. System and method for automated data collection of twenty-four hour ultrafiltration and other patient parameters using wired or wireless technology
US8926551B2 (en) * 2009-07-07 2015-01-06 Baxter Healthcare Inc. Peritoneal dialysis therapy with large dialysis solution volumes
WO2011008858A1 (en) 2009-07-15 2011-01-20 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US20110017667A1 (en) * 2009-07-27 2011-01-27 Transvivo Inc. Modular hemofiltration apparatus and method for carrying out neonatal and pediatric crrt
US8720913B2 (en) 2009-08-11 2014-05-13 Fresenius Medical Care Holdings, Inc. Portable peritoneal dialysis carts and related systems
WO2011053810A2 (en) 2009-10-30 2011-05-05 Deka Products Limited Partnership Apparatus and method for detecting disconnection of an intravascular access device
US8529491B2 (en) * 2009-12-31 2013-09-10 Fresenius Medical Care Holdings, Inc. Detecting blood flow degradation
US9220832B2 (en) 2010-01-07 2015-12-29 Fresenius Medical Care Holdings, Inc. Dialysis systems and methods
US8500994B2 (en) * 2010-01-07 2013-08-06 Fresenius Medical Care Holdings, Inc. Dialysis systems and methods
US8425780B2 (en) 2010-03-11 2013-04-23 Fresenius Medical Care Holdings, Inc. Dialysis system venting devices and related systems and methods
US8734376B2 (en) 2010-04-20 2014-05-27 Sorin Group Italia S.R.L. Perfusion system with RFID
EP2567718B1 (en) 2010-04-20 2016-10-19 Sorin Group Italia S.r.l. Perfusion system with RFID
CN104317175B (en) 2010-06-11 2020-03-03 株式会社理光 Device and toner container
EP3282289B1 (en) 2010-07-07 2023-06-14 DEKA Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
EP2404629B1 (en) 2010-07-08 2013-05-29 Gambro Lundia AB Apparatus for controlling an extra-corporeal blood treatment in a medical device
US8821135B2 (en) 2010-08-25 2014-09-02 Emory University Devices and systems for medical fluid treatment
US8743354B2 (en) 2010-09-07 2014-06-03 Fresenius Medical Care Holdings, Inc. Shrouded sensor clip assembly and blood chamber for an optical blood monitoring system
US9194792B2 (en) 2010-09-07 2015-11-24 Fresenius Medical Care Holdings, Inc. Blood chamber for an optical blood monitoring system
US8517968B2 (en) 2011-02-25 2013-08-27 Fresenius Medical Care Holdings, Inc. Shrouded sensor clip assembly and blood chamber for an optical blood monitoring system
CN107307871B (en) 2010-11-17 2020-04-28 弗雷泽纽斯医疗保健控股公司 Sensor clip assembly for optical monitoring system
US9173988B2 (en) 2010-11-17 2015-11-03 Fresenius Medical Care Holdings, Inc. Sensor clip assembly for an optical monitoring system
DE102010053973A1 (en) 2010-12-09 2012-06-14 Fresenius Medical Care Deutschland Gmbh Medical device with a heater
US8506684B2 (en) 2010-12-15 2013-08-13 Fresenius Medical Care Holdings, Inc. Gas release devices for extracorporeal fluid circuits and related methods
EP2654825B1 (en) 2010-12-20 2017-08-02 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9624915B2 (en) 2011-03-09 2017-04-18 Fresenius Medical Care Holdings, Inc. Medical fluid delivery sets and related systems and methods
US10413652B2 (en) 2011-04-13 2019-09-17 Fenwal, Inc. Systems and methods for use and control of an automated separator with adsorption columns
US9180240B2 (en) 2011-04-21 2015-11-10 Fresenius Medical Care Holdings, Inc. Medical fluid pumping systems and related devices and methods
US9999717B2 (en) 2011-05-24 2018-06-19 Deka Products Limited Partnership Systems and methods for detecting vascular access disconnection
CA2837187A1 (en) 2011-05-24 2012-11-29 Deka Products Limited Partnership Blood treatment systems and methods
AU2012258687C1 (en) 2011-05-24 2018-03-08 Deka Products Limited Partnership Hemodial ysis system
US9375524B2 (en) 2011-06-03 2016-06-28 Fresenius Medical Care Holdings, Inc. Method and arrangement for venting gases from a container having a powdered concentrate for use in hemodialysis
ES2647775T3 (en) 2011-08-02 2017-12-26 Medtronic, Inc. Hemodialysis system that has a flow path with a controlled distensible volume
JP2014533133A (en) 2011-10-07 2014-12-11 ホーム・ダイアリシス・プラス・リミテッドHome DialysisPlus, Ltd. Purification of heat exchange fluids for dialysis systems
US9186449B2 (en) 2011-11-01 2015-11-17 Fresenius Medical Care Holdings, Inc. Dialysis machine support assemblies and related systems and methods
JP6027129B2 (en) 2011-11-04 2016-11-16 デカ・プロダクツ・リミテッド・パートナーシップ Medical systems that use multiple fluid lines
US20130146541A1 (en) 2011-12-13 2013-06-13 Nxstage Medical, Inc. Fluid purification methods, devices, and systems
USD725261S1 (en) 2012-02-24 2015-03-24 Fresenius Medical Care Holdings, Inc. Blood flow chamber
EP2641624B1 (en) 2012-03-21 2016-03-02 Gambro Lundia AB Treatment solution delivery in an extracorporeal blood treatment apparatus
EP2662101B2 (en) 2012-05-09 2018-05-30 D_MED Consulting AG Method for priming a haemodialysis device
US9364655B2 (en) 2012-05-24 2016-06-14 Deka Products Limited Partnership Flexible tubing occlusion assembly
US9610392B2 (en) 2012-06-08 2017-04-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9500188B2 (en) 2012-06-11 2016-11-22 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US8888730B2 (en) 2012-09-19 2014-11-18 Sorin Group Italia S.R.L. Perfusion system with RFID feature activation
CN104363935B (en) 2012-12-14 2017-06-20 甘布罗伦迪亚股份公司 The barrier film for pressure pockets sensed using position is repositioned
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US9713666B2 (en) 2013-01-09 2017-07-25 Medtronic, Inc. Recirculating dialysate fluid circuit for blood measurement
US10010663B2 (en) 2013-02-01 2018-07-03 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US9623164B2 (en) 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9064137B2 (en) * 2013-03-08 2015-06-23 Fenwal, Inc. Counterfeit protection and verification system and method
US9433720B2 (en) 2013-03-14 2016-09-06 Fresenius Medical Care Holdings, Inc. Universal portable artificial kidney for hemodialysis and peritoneal dialysis
US9440017B2 (en) 2013-03-14 2016-09-13 Baxter International Inc. System and method for performing alternative and sequential blood and peritoneal dialysis modalities
US9561323B2 (en) 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
US20140263062A1 (en) 2013-03-14 2014-09-18 Fresenius Medical Care Holdings, Inc. Universal portable machine for online hemodiafiltration using regenerated dialysate
US9433718B2 (en) * 2013-03-15 2016-09-06 Fresenius Medical Care Holdings, Inc. Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device
US9597439B2 (en) 2013-03-15 2017-03-21 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field
US9433721B2 (en) 2013-06-25 2016-09-06 Fresenius Medical Care Holdings, Inc. Vial spiking assemblies and related methods
GB201314512D0 (en) * 2013-08-14 2013-09-25 Quanta Fluid Solutions Ltd Dual Haemodialysis and Haemodiafiltration blood treatment device
US10117985B2 (en) 2013-08-21 2018-11-06 Fresenius Medical Care Holdings, Inc. Determining a volume of medical fluid pumped into or out of a medical fluid cassette
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US9884145B2 (en) 2013-11-26 2018-02-06 Medtronic, Inc. Parallel modules for in-line recharging of sorbents using alternate duty cycles
US10537875B2 (en) 2013-11-26 2020-01-21 Medtronic, Inc. Precision recharging of sorbent materials using patient and session data
US10004841B2 (en) 2013-12-09 2018-06-26 Michael C. Larson Blood purifier device and method
WO2015153370A2 (en) 2014-03-29 2015-10-08 Labib Mohamed E Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US12026271B2 (en) 2014-05-27 2024-07-02 Deka Products Limited Partnership Control systems and methods for blood or fluid handling medical devices
US10058694B2 (en) 2014-06-05 2018-08-28 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
WO2015199768A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. Stacked sorbent assembly
WO2015199766A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. Modular dialysate regeneration assembly
EP3539586B1 (en) 2014-10-10 2022-08-24 NxStage Medical Inc. Flow balancing methods
US10220132B2 (en) 2014-12-19 2019-03-05 Fenwal, Inc. Biological fluid flow control apparatus and method
US9974942B2 (en) 2015-06-19 2018-05-22 Fresenius Medical Care Holdings, Inc. Non-vented vial drug delivery
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
USD799031S1 (en) 2015-09-09 2017-10-03 Fresenius Medical Care Holdings, Inc. Blood flow chamber with directional arrow
US10399040B2 (en) 2015-09-24 2019-09-03 Novaflux Inc. Cartridges and systems for membrane-based therapies
US9945838B2 (en) 2015-12-17 2018-04-17 Fresenius Medical Care Holdings, Inc. Extracorporeal circuit blood chamber having an integrated deaeration device
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
US10898635B2 (en) 2016-07-18 2021-01-26 Nxstage Medical, Inc. Flow balancing devices, methods, and systems
US10981148B2 (en) 2016-11-29 2021-04-20 Medtronic, Inc. Zirconium oxide module conditioning
US10964417B2 (en) 2016-12-21 2021-03-30 Baxter International Inc. Medical fluid delivery system including a mobile platform for patient engagement and treatment compliance
US10589014B2 (en) 2016-12-21 2020-03-17 Baxter International Inc. Medical fluid delivery system including remote machine updating and control
US11135345B2 (en) 2017-05-10 2021-10-05 Fresenius Medical Care Holdings, Inc. On demand dialysate mixing using concentrates
US10960381B2 (en) 2017-06-15 2021-03-30 Medtronic, Inc. Zirconium phosphate disinfection recharging and conditioning
CN111405915B (en) * 2017-11-01 2024-04-02 巴克斯特国际公司 Mixing for in-line medical fluid generation
EP3505200B1 (en) 2017-12-29 2020-09-09 Gambro Lundia AB Apparatus for extracorporeal blood treatment
CA3095364A1 (en) 2018-03-30 2019-10-03 Deka Products Limited Partnership Liquid pumping cassettes, pressure distribution manifold, and related methods
US11213616B2 (en) 2018-08-24 2022-01-04 Medtronic, Inc. Recharge solution for zirconium phosphate
US11504458B2 (en) 2018-10-17 2022-11-22 Fresenius Medical Care Holdings, Inc. Ultrasonic authentication for dialysis
KR102638062B1 (en) * 2019-03-22 2024-02-21 제벡스, 아이엔씨. Method for delivering residual liquid within enteral or other infusion device
WO2020210465A1 (en) 2019-04-09 2020-10-15 Nxstage Medical, Inc. Medical device loading systems, devices, and methods
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709222A (en) * 1970-12-28 1973-01-09 Sarns Inc Method and apparatus for automatic peritoneal dialysis
US3774762A (en) * 1971-01-20 1973-11-27 E Lichtenstein Analogue fluid flow programming structures
US3912455A (en) * 1971-01-20 1975-10-14 Lichtenstein Eric Stefan Apparatus for clinical laboratory sample collection and automatic sample processing
US4069968A (en) * 1976-11-01 1978-01-24 Union Carbide Corporation Disposable tubing harness for use with blood washing apparatus
US4127481A (en) * 1976-04-01 1978-11-28 Japan Foundation For Artificial Organs Device and method for effecting fluid interchange functions
US4370983A (en) * 1971-01-20 1983-02-01 Lichtenstein Eric Stefan Computer-control medical care system
US4379452A (en) * 1977-10-18 1983-04-12 Baxter Travenol Laboratories, Inc. Prepackaged, self-contained fluid circuit module
US4468329A (en) * 1980-06-27 1984-08-28 Gambro Lundia Ab Hemofiltration system and safety system therefor
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4514295A (en) * 1981-08-05 1985-04-30 Fresenius Ag Dialysis apparatus
US4526515A (en) * 1979-12-06 1985-07-02 Baxter Travenol Laboratories, Inc. Fluid pumping assembly including a prepackaged fluid circuit module
US4537561A (en) * 1983-02-24 1985-08-27 Medical Technology, Ltd. Peristaltic infusion pump and disposable cassette for use therewith
US4610781A (en) * 1983-12-30 1986-09-09 Baxter Travenol Laboratories, Inc. Fluid processing system with flow control manifold
US4692138A (en) * 1984-10-29 1987-09-08 Mcneilab, Inc. Pump block for interfacing irradiation chamber to photoactivation patient treatment system
US4702829A (en) * 1984-12-07 1987-10-27 Fresenius Ag Hemodiafiltration apparatus
US4711715A (en) * 1983-04-13 1987-12-08 Fresenius Ag Apparatus for extracorporeal treatment of blood
US4713171A (en) * 1983-01-28 1987-12-15 Fresenius Ag Apparatus for removing water from blood
US4737140A (en) * 1984-10-29 1988-04-12 Mcneilab, Inc. Irradiation chamber for photoactivation patient treatment system
US4739492A (en) * 1985-02-21 1988-04-19 Cochran Michael J Dialysis machine which verifies operating parameters
US4892518A (en) * 1987-12-04 1990-01-09 Biocontrol Technology, Inc. Hemodialysis
US4894150A (en) * 1982-04-10 1990-01-16 Schurek Hans Joachim Mechanical device for simplifying fluid balance in hemofiltration
US4923598A (en) * 1987-06-23 1990-05-08 Fresenius Ag Apparatus for the treatment of blood in particular for hemodialysis and hemofiltration
US4997570A (en) * 1988-11-04 1991-03-05 Fresenius Ag Method and device for ultrafiltration during hemodialysis
US5041098A (en) * 1989-05-19 1991-08-20 Strato Medical Corporation Vascular access system for extracorporeal treatment of blood
US5098373A (en) * 1989-07-19 1992-03-24 Fresenius Ag Process for controlling blood pumps in the extra-corporeal circuit of a single needle arrangement and apparatus thereof
US5125891A (en) * 1987-04-27 1992-06-30 Site Microsurgical Systems, Inc. Disposable vacuum/peristaltic pump cassette system
US5188604A (en) * 1989-09-29 1993-02-23 Rocky Mountain Research, Inc. Extra corporeal support system
US5204681A (en) * 1991-09-24 1993-04-20 Gordian Holding Corporation Radio frequency automatic identification system
US5211849A (en) * 1991-10-11 1993-05-18 Children's Hospital Medical Center Hemofiltration system and method
US5230702A (en) * 1991-01-16 1993-07-27 Paradigm Biotechnologies Partnership Hemodialysis method
US5311568A (en) * 1992-05-01 1994-05-10 Picker International, Inc. Optical alignment means utilizing inverse projection of a test pattern/target
US5330448A (en) * 1990-03-08 1994-07-19 Cristina Chu Method and apparatus for medical fluid transfer
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5441636A (en) * 1993-02-12 1995-08-15 Cobe Laboratories, Inc. Integrated blood treatment fluid module
US5462416A (en) * 1993-12-22 1995-10-31 Baxter International Inc. Peristaltic pump tube cassette for blood processing systems
US5484397A (en) * 1991-08-21 1996-01-16 Twardowski; Zbylut J. Artificial kidney for frequent (daily) hemodialysis
US5522998A (en) * 1993-03-18 1996-06-04 Fresenius Ag Hemodialysis apparatus having a single balance chamber and method of dialyzing blood therewith
US5536412A (en) * 1992-02-06 1996-07-16 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5581257A (en) * 1991-09-24 1996-12-03 Gordian Holding Corporation Radio frequency automatic identification system
US5614677A (en) * 1994-06-03 1997-03-25 Fresenius Ag Diaphragm gage for measuring the pressure of a fluid
US5616305A (en) * 1994-06-24 1997-04-01 Fresenius Ag Flexible medical hemodialysis packaging unit for the production of concentrated dialysis solution including a device for the same
US5679245A (en) * 1993-02-12 1997-10-21 Cobe Laboratories, Inc. Retention device for extracorporeal treatment apparatus
US5730713A (en) * 1993-03-16 1998-03-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Removal of selected factors from whole blood or its components
US5836908A (en) * 1995-12-09 1998-11-17 Fresenius Aktiengesellschaft Disposable balancing unit for balancing fluids, and related medical treatment device
US5846419A (en) * 1994-07-13 1998-12-08 Fresenius Ag Hemo(Dia)filtration apparatus
US5858238A (en) * 1996-03-08 1999-01-12 Baxter Research Medical, Inc. Salvage of autologous blood via selective membrane/sorption technologies
US5871694A (en) * 1995-12-09 1999-02-16 Fresenius Ag Device for providing a substituate
US5902336A (en) * 1996-10-15 1999-05-11 Mirimedical, Inc. Implantable device and method for removing fluids from the blood of a patient method for implanting such a device and method for treating a patient experiencing renal failure
US5919369A (en) * 1992-02-06 1999-07-06 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5923001A (en) * 1994-08-05 1999-07-13 Surgical Resources, L.L.C. Automatic surgical sponge counter and blood loss determination system
US5944709A (en) * 1996-05-13 1999-08-31 B. Braun Medical, Inc. Flexible, multiple-compartment drug container and method of making and using same
US6022335A (en) * 1998-07-01 2000-02-08 Ramadan; Hossein Implantable hemodialysis triple port assembly
US6406631B1 (en) * 1999-07-30 2002-06-18 Nephros, Inc. Two stage diafiltration method and apparatus
US6595943B1 (en) * 1997-02-14 2003-07-22 Nxstage Medical, Inc. Systems and methods for controlling blood flow and waste fluid removal during hemofiltration

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902030A (en) 1973-08-31 1975-08-26 Laurentiv Popa Diverter switch for on-load changers
US4033345A (en) * 1975-11-13 1977-07-05 Sorenson Research Co., Inc. Autologous transfusion filter system and method
US4181132A (en) 1977-05-31 1980-01-01 Parks Leon C Method and apparatus for effecting hyperthermic treatment
US4385384A (en) * 1977-06-06 1983-05-24 Racal Data Communications Inc. Modem diagnostic and control system
DE2754894C2 (en) 1977-12-09 1983-10-13 Fresenius AG, 6380 Bad Homburg Device for balancing a fluid withdrawn from a patient with a replacement fluid
FR2491336A1 (en) 1980-10-06 1982-04-09 Hospal Sodip ARTIFICIAL RESIN WITH DIALYSIS LIQUID CIRCUIT FOR SINGLE USE
FR2493706A1 (en) 1980-11-13 1982-05-14 Hospal Sodip ARTIFICIAL KIDNEY WITH INTEGRATED DIALYSIS LIQUID CIRCUIT
US4396383A (en) 1981-11-09 1983-08-02 Baxter Travenol Laboratories, Inc. Multiple chamber solution container including positive test for homogenous mixture
EP0089003B1 (en) 1982-03-10 1987-11-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Blood purification apparatus
EP0100682A1 (en) 1982-08-03 1984-02-15 Peritronic Medical Industries Plc Fluid flow control process and apparatus
SE451056B (en) 1982-09-10 1987-08-31 Gambro Lundia Ab SLANGSET PROVIDED FOR EXTRACORPORAL TREATMENT OF BLOOD AND SIMILAR EXCESSIVE LIQUID
DE3335744C1 (en) 1983-10-01 1984-12-13 B. Braun Melsungen Ag, 3508 Melsungen Dialysis machine
US4507114A (en) 1983-10-21 1985-03-26 Baxter Travenol Laboratories, Inc. Multiple chamber container having leak detection compartment
US5047147A (en) 1983-11-23 1991-09-10 Hospal Industrie Single-needle artificial kidneys
DE3416955C2 (en) 1984-05-08 1986-06-12 Fresenius AG, 6380 Bad Homburg Hemodialysis machine
US4576603A (en) 1984-06-18 1986-03-18 Gerald Moss Feeding device for enterally administering liquids into a human body
US4776964A (en) 1984-08-24 1988-10-11 William F. McLaughlin Closed hemapheresis system and method
US4770787A (en) 1985-06-25 1988-09-13 Cobe Laboratories, Inc. Method of operating a fluid flow transfer device
US4666598A (en) 1985-06-25 1987-05-19 Cobe Laboratories, Inc. Apparatus for use with fluid flow transfer device
SE452405B (en) 1985-12-19 1987-11-30 Gambro Cardio Ab HEART-LUNGE SYSTEM PROVIDED FOR ACIDING A PATIENT'S BLOOD
WO1987005811A1 (en) 1986-03-26 1987-10-08 Hoshin Kagaku Sangyosho Co., Ltd. Sanitary device
FR2605228B1 (en) 1986-10-20 1988-12-02 Hospal Ind PUMPING METHOD FOR ARTIFICIAL KIDNEY OF TWO EQUAL QUANTITIES AND PUMPING DEVICE USING THE SAME
DE3636995A1 (en) 1986-10-30 1988-05-11 Fresenius Ag METHOD AND DEVICE FOR EXTRACTING HEAT FROM BLOOD IN THE EXTRACORPORAL CIRCUIT
FR2607393B1 (en) 1986-11-28 1997-01-24 Hospal Ind ARTIFICIAL KIDNEY AT MODERATE EXCHANGE RATES
US4808167A (en) 1987-01-16 1989-02-28 Pacesetter Infusion, Ltd. Medication infusion system with disposable pump/battery cassette
US4824339A (en) 1987-08-19 1989-04-25 Cobe Laboratories, Inc. Peristaltic pump cartridge
EP0310699B1 (en) 1987-10-09 1991-05-08 Hewlett-Packard GmbH Input device
US4851126A (en) 1987-11-25 1989-07-25 Baxter International Inc. Apparatus and methods for generating platelet concentrate
US5006110A (en) 1987-12-01 1991-04-09 Pacesetter Infusion, Ltd. Air-in-line detector infusion system
US4909931A (en) 1987-12-17 1990-03-20 Tana - Netiv Halamed-He Industries Water-purifier device
US4886431A (en) 1988-04-29 1989-12-12 Cole-Parmer Instrument Company Peristaltic pump having independently adjustable cartridges
DE3817411A1 (en) 1988-05-21 1989-11-30 Fresenius Ag MULTIPLE INFUSION SYSTEM
US4885001A (en) 1988-06-03 1989-12-05 Cobe Laboratories, Inc. Pump with plural flow lines
US5151082A (en) 1988-08-05 1992-09-29 Heathdyne, Inc. Apparatus and method for kidney dialysis using plasma in lieu of blood
US4905395A (en) * 1989-02-06 1990-03-06 Wagner David M Increased capacity magazine for firearm
CA2046855A1 (en) * 1989-02-27 1990-08-28 William J. Storti Incubator with remote control and display module
JPH02310898A (en) * 1989-05-25 1990-12-26 Nec Corp Memory circuit
US5114580A (en) 1989-06-20 1992-05-19 The Board Of Regents Of The University Of Washington Combined hemofiltration and hemodialysis system
US5062774A (en) 1989-12-01 1991-11-05 Abbott Laboratories Solution pumping system including disposable pump cassette
US5511875A (en) 1990-02-19 1996-04-30 Gambro Ab System for the preparation of a fluid concentrate intended for medical use
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
GB2246718B (en) 1990-07-06 1995-01-18 Limited Renalaid Fluid control apparatus
US5108063A (en) 1990-11-01 1992-04-28 Hill-Rom Company, Inc. Hospital room computer mounting arm
US5486286A (en) 1991-04-19 1996-01-23 Althin Medical, Inc. Apparatus for performing a self-test of kidney dialysis membrane
US5247434A (en) 1991-04-19 1993-09-21 Althin Medical, Inc. Method and apparatus for kidney dialysis
US5698090A (en) 1991-09-10 1997-12-16 Hospal Industrie Artificial kidney for adjusting a concentration of substance in blood
FR2680975B1 (en) 1991-09-10 1998-12-31 Hospal Ind ARTIFICIAL KIDNEY WITH MEANS FOR DETERMINING A SUBSTANCE IN BLOOD.
US5187641A (en) * 1991-10-24 1993-02-16 Critikon, Inc. Patient monitoring unit and care station
FR2684879A1 (en) 1991-12-11 1993-06-18 Fournier Gilles Disposable haemodialysis system
IT1250558B (en) 1991-12-30 1995-04-20 Hospal Dasco Spa DIALYSIS MACHINE WITH SAFETY CONTROL AND RELATED SAFETY CONTROL METHOD.
US5277820A (en) 1992-02-06 1994-01-11 Hemocleanse, Inc. Device and method for extracorporeal blood treatment
US5423769A (en) 1993-02-09 1995-06-13 Dlp, Inc. Cardioplegia management system
FR2704432B1 (en) 1993-04-27 1995-06-23 Hospal Ind DEVICE FOR INJECTING LIQUID INTO AN EXTRACORPOREAL BLOOD CIRCUIT.
US5460493A (en) 1993-11-17 1995-10-24 Baxter International Inc. Organizer frame for holding an array of flexible tubing in alignment with one or more peristaltic pump rotors
US5632606A (en) 1993-11-23 1997-05-27 Sarcos Group Volumetric pump/valve
US5360395A (en) 1993-12-20 1994-11-01 Utterberg David S Pump conduit segment having connected, parallel branch line
US5445506A (en) 1993-12-22 1995-08-29 Baxter International Inc. Self loading peristaltic pump tube cassette
US5562617A (en) 1994-01-18 1996-10-08 Finch, Jr.; Charles D. Implantable vascular device
US5417222A (en) 1994-01-21 1995-05-23 Hewlett-Packard Company Patient monitoring system
FR2723002B1 (en) 1994-07-26 1996-09-06 Hospal Ind DEVICE AND METHOD FOR PREPARING A FILTRATION PROCESSING LIQUID
US5838908A (en) 1994-11-14 1998-11-17 Texas Instruments Incorporated Device for having processors each having interface for transferring delivery units specifying direction and distance and operable to emulate plurality of field programmable gate arrays
US5573506A (en) * 1994-11-25 1996-11-12 Block Medical, Inc. Remotely programmable infusion system
US5591344A (en) 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof
US5693008A (en) 1995-06-07 1997-12-02 Cobe Laboratories, Inc. Dialysis blood tubing set
US5676644A (en) * 1995-06-07 1997-10-14 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
DE19534417A1 (en) 1995-09-16 1997-03-20 Fresenius Ag Method for checking at least one filter arranged in the dialysis fluid system of a device for extracorporeal blood treatment
US5807336A (en) * 1996-08-02 1998-09-15 Sabratek Corporation Apparatus for monitoring and/or controlling a medical device
JPH1078610A (en) * 1996-09-03 1998-03-24 Olympus Optical Co Ltd Data imprinting device
US5865749A (en) 1996-11-07 1999-02-02 Data Sciences International, Inc. Blood flow meter apparatus and method of use
US5870805A (en) 1997-01-06 1999-02-16 Baxter International Inc. Disposable tubing set and organizer frame for holding flexible tubing
DE19700466A1 (en) 1997-01-09 1998-07-16 Polaschegg Hans Dietrich Dr Hemodiafiltration device and method
WO2001037786A2 (en) 1997-02-14 2001-05-31 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US6852090B2 (en) 1997-02-14 2005-02-08 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US6589482B1 (en) * 1997-02-14 2003-07-08 Nxstage Medical, Inc. Extracorporeal circuits for performing hemofiltration employing pressure sensing without an air interface
US6830553B1 (en) * 1997-02-14 2004-12-14 Nxstage Medical, Inc. Blood treatment systems and methods that maintain sterile extracorporeal processing conditions
US6673314B1 (en) 1997-02-14 2004-01-06 Nxstage Medical, Inc. Interactive systems and methods for supporting hemofiltration therapies
US6638477B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Fluid replacement systems and methods for use in hemofiltration
US6554789B1 (en) * 1997-02-14 2003-04-29 Nxstage Medical, Inc. Layered fluid circuit assemblies and methods for making them
US6638478B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Synchronized volumetric fluid balancing systems and methods
US6979309B2 (en) 1997-02-14 2005-12-27 Nxstage Medical Inc. Systems and methods for performing blood processing and/or fluid exchange procedures
US20010016699A1 (en) 1997-02-14 2001-08-23 Jeffrey H. Burbank Hemofiltration system
US20040243047A1 (en) 1997-02-14 2004-12-02 Brugger James M. Single step fluid circuit engagement device and method
DE19708391C1 (en) 1997-03-01 1998-10-22 Fresenius Medical Care De Gmbh Method and device for ultrafiltration in hemodialysis
US6620120B2 (en) 1997-05-22 2003-09-16 Nephros, Inc. Method for high efficiency hemofiltration
US5951870A (en) 1997-10-21 1999-09-14 Dsu Medical Corporation Automatic priming of blood sets
US6582385B2 (en) 1998-02-19 2003-06-24 Nstage Medical, Inc. Hemofiltration system including ultrafiltrate purification and re-infusion system
US6171237B1 (en) 1998-03-30 2001-01-09 Boaz Avitall Remote health monitoring system
DE19814695C2 (en) 1998-04-01 2001-09-13 Fresenius Medical Care De Gmbh Cassette for conveying liquids, in particular dialysis liquids, dialysis machine and method for conveying, balancing, dosing and heating a medical fluid
CN1304512A (en) 1998-04-03 2001-07-18 三角药品公司 Systems, methods and computer program products for guiding selection of therapeutic treatment regiment
US6287516B1 (en) 1998-07-10 2001-09-11 Immunocept, L.L.C. Hemofiltration systems, methods, and devices used to treat inflammatory mediator related disease
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6113554A (en) 1998-10-16 2000-09-05 Haemonetics Corporation Automatic whole blood collection system
JP4638986B2 (en) * 1998-10-16 2011-02-23 テルモ メディカル コーポレイション Blood processing equipment
US6302844B1 (en) 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6264830B1 (en) 1999-08-13 2001-07-24 The Coca-Cola Company On premise water treatment system and method
US7780619B2 (en) 1999-11-29 2010-08-24 Nxstage Medical, Inc. Blood treatment apparatus
WO2001051185A1 (en) 2000-01-11 2001-07-19 Nephros, Inc. Thermally enhanced dialysis/diafiltration system
US6887214B1 (en) 2000-09-12 2005-05-03 Chf Solutions, Inc. Blood pump having a disposable blood passage cartridge with integrated pressure sensors
EP1225508A1 (en) 2001-01-19 2002-07-24 Thinkingcap Technology Limited A universal software application
US6622542B2 (en) 2001-03-20 2003-09-23 Therox, Inc. Bubble detector and method of use thereof
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US20050010158A1 (en) 2001-05-24 2005-01-13 Brugger James M. Drop-in blood treatment cartridge with filter
US7771379B2 (en) 2001-05-24 2010-08-10 Nxstage Medical, Inc. Functional isolation of upgradeable components to reduce risk in medical treatment devices
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
SE523610C2 (en) 2001-10-02 2004-05-04 Gambro Lundia Ab Method of controlling dialysis device
EP1314442A1 (en) 2001-11-26 2003-05-28 Infomed S.A. Intra- and extracorporeal purification device
DE10159620C1 (en) 2001-12-05 2003-08-14 Fresenius Medical Care De Gmbh Method and device for monitoring the supply of substitution fluid during extracorporeal blood treatment
ITMI20012829A1 (en) 2001-12-28 2003-06-28 Gambro Dasco Spa APPARATUS AND METHOD OF CONTROL IN A BLOOD EXTRACORPOREAL CIRCUIT
ITMI20020359A1 (en) 2002-02-22 2003-08-22 Gambro Lundia Ab METHOD OF CONTROL OF THE OPERATION OF A FLOW INTERDICTION BODY AND A FLOW STOP DEVICE FOR AN EXTRA-BODY CIRCUIT
US20040127840A1 (en) 2002-03-04 2004-07-01 Steve Gara Blood separation apparatus and method of using the same
US20030220607A1 (en) 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US6764761B2 (en) 2002-05-24 2004-07-20 Baxter International Inc. Membrane material for automated dialysis system
US20030220606A1 (en) 2002-05-24 2003-11-27 Don Busby Compact housing for automated dialysis system
US6869538B2 (en) 2002-05-24 2005-03-22 Baxter International, Inc. Method and apparatus for controlling a medical fluid heater
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US20030217957A1 (en) 2002-05-24 2003-11-27 Bowman Joseph H. Heat seal interface for a disposable medical fluid unit
DE10224750A1 (en) 2002-06-04 2003-12-24 Fresenius Medical Care De Gmbh Device for the treatment of a medical fluid
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
US20040138607A1 (en) 2002-10-08 2004-07-15 Burbank Jeffrey H. Cartridge-based medical fluid processing system
US7223338B2 (en) 2003-02-07 2007-05-29 Gambro Lundia Ab Support element for an integrated module for blood treatment, an integrated module for blood treatment, and a manufacturing process for an integrated module for blood treatment
US7247146B2 (en) 2003-02-07 2007-07-24 Gambro Lundia Ab Support element for an integrated blood treatment module, integrated blood treatment module and extracorporeal blood treatment apparatus equipped with said integrated module
US7232418B2 (en) 2003-02-07 2007-06-19 Gambro Lundia Ab Support element, an integrated module for extracorporeal blood treatment comprising the support element, an apparatus for extracorporeal blood treatment equipped with the integrated module, and an assembly process for an integrated module for extracorporeal blood treatment
US7264607B2 (en) 2003-03-21 2007-09-04 Gambro Lundia Ab Circuit for extracorporeal blood circulation
ITMO20030204A1 (en) 2003-07-14 2005-01-15 Gambro Lundia Ab DIALYSIS BAG, SET FOR DIALYSIS INCLUDING THE SAME
ITMO20030259A1 (en) 2003-09-25 2005-03-26 Gambro Lundia Ab USER INTERFACE FOR A TREATMENT MACHINE
US7575564B2 (en) 2003-10-28 2009-08-18 Baxter International Inc. Priming, integrity and head height methods and apparatuses for medical fluid systems
US20050171501A1 (en) 2004-02-03 2005-08-04 Thomas Kelly Intravenous solution producing systems and methods
US20050209563A1 (en) 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
CN1946441B (en) 2004-05-07 2011-04-13 甘布罗伦迪亚股份公司 Blood treatment equipment, method for controlling infusion

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709222A (en) * 1970-12-28 1973-01-09 Sarns Inc Method and apparatus for automatic peritoneal dialysis
US3774762A (en) * 1971-01-20 1973-11-27 E Lichtenstein Analogue fluid flow programming structures
US3912455A (en) * 1971-01-20 1975-10-14 Lichtenstein Eric Stefan Apparatus for clinical laboratory sample collection and automatic sample processing
US4370983A (en) * 1971-01-20 1983-02-01 Lichtenstein Eric Stefan Computer-control medical care system
US4127481A (en) * 1976-04-01 1978-11-28 Japan Foundation For Artificial Organs Device and method for effecting fluid interchange functions
US4069968A (en) * 1976-11-01 1978-01-24 Union Carbide Corporation Disposable tubing harness for use with blood washing apparatus
US4379452A (en) * 1977-10-18 1983-04-12 Baxter Travenol Laboratories, Inc. Prepackaged, self-contained fluid circuit module
US4526515A (en) * 1979-12-06 1985-07-02 Baxter Travenol Laboratories, Inc. Fluid pumping assembly including a prepackaged fluid circuit module
US4468329A (en) * 1980-06-27 1984-08-28 Gambro Lundia Ab Hemofiltration system and safety system therefor
US4514295A (en) * 1981-08-05 1985-04-30 Fresenius Ag Dialysis apparatus
US4894150A (en) * 1982-04-10 1990-01-16 Schurek Hans Joachim Mechanical device for simplifying fluid balance in hemofiltration
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4713171A (en) * 1983-01-28 1987-12-15 Fresenius Ag Apparatus for removing water from blood
US4537561A (en) * 1983-02-24 1985-08-27 Medical Technology, Ltd. Peristaltic infusion pump and disposable cassette for use therewith
US4711715A (en) * 1983-04-13 1987-12-08 Fresenius Ag Apparatus for extracorporeal treatment of blood
US4610781A (en) * 1983-12-30 1986-09-09 Baxter Travenol Laboratories, Inc. Fluid processing system with flow control manifold
US4692138A (en) * 1984-10-29 1987-09-08 Mcneilab, Inc. Pump block for interfacing irradiation chamber to photoactivation patient treatment system
US4737140A (en) * 1984-10-29 1988-04-12 Mcneilab, Inc. Irradiation chamber for photoactivation patient treatment system
US4702829A (en) * 1984-12-07 1987-10-27 Fresenius Ag Hemodiafiltration apparatus
US4739492A (en) * 1985-02-21 1988-04-19 Cochran Michael J Dialysis machine which verifies operating parameters
US5125891A (en) * 1987-04-27 1992-06-30 Site Microsurgical Systems, Inc. Disposable vacuum/peristaltic pump cassette system
US4923598A (en) * 1987-06-23 1990-05-08 Fresenius Ag Apparatus for the treatment of blood in particular for hemodialysis and hemofiltration
US4892518A (en) * 1987-12-04 1990-01-09 Biocontrol Technology, Inc. Hemodialysis
US4997570A (en) * 1988-11-04 1991-03-05 Fresenius Ag Method and device for ultrafiltration during hemodialysis
US5041098A (en) * 1989-05-19 1991-08-20 Strato Medical Corporation Vascular access system for extracorporeal treatment of blood
US5098373A (en) * 1989-07-19 1992-03-24 Fresenius Ag Process for controlling blood pumps in the extra-corporeal circuit of a single needle arrangement and apparatus thereof
US5188604A (en) * 1989-09-29 1993-02-23 Rocky Mountain Research, Inc. Extra corporeal support system
US5330448A (en) * 1990-03-08 1994-07-19 Cristina Chu Method and apparatus for medical fluid transfer
US5230702A (en) * 1991-01-16 1993-07-27 Paradigm Biotechnologies Partnership Hemodialysis method
US5484397A (en) * 1991-08-21 1996-01-16 Twardowski; Zbylut J. Artificial kidney for frequent (daily) hemodialysis
US5204681A (en) * 1991-09-24 1993-04-20 Gordian Holding Corporation Radio frequency automatic identification system
US5291205A (en) * 1991-09-24 1994-03-01 Gordian Holding Corporation Radio frequency automatic identification system
US5581257A (en) * 1991-09-24 1996-12-03 Gordian Holding Corporation Radio frequency automatic identification system
US5211849B1 (en) * 1991-10-11 1997-05-27 Childrens Hosp Medical Center Hemofiltration system and method
US5211849A (en) * 1991-10-11 1993-05-18 Children's Hospital Medical Center Hemofiltration system and method
US5536412A (en) * 1992-02-06 1996-07-16 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5919369A (en) * 1992-02-06 1999-07-06 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5311568A (en) * 1992-05-01 1994-05-10 Picker International, Inc. Optical alignment means utilizing inverse projection of a test pattern/target
US5762805A (en) * 1993-02-12 1998-06-09 Cobe Laboratories, Inc. Technique for extracorporeal treatment of blood
US5910252A (en) * 1993-02-12 1999-06-08 Cobe Laboratories, Inc. Technique for extracorporeal treatment of blood
US5679245A (en) * 1993-02-12 1997-10-21 Cobe Laboratories, Inc. Retention device for extracorporeal treatment apparatus
US5441636A (en) * 1993-02-12 1995-08-15 Cobe Laboratories, Inc. Integrated blood treatment fluid module
US5776345A (en) * 1993-02-12 1998-07-07 Cobe Laboratories, Inc. Automatic priming technique
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5730713A (en) * 1993-03-16 1998-03-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Removal of selected factors from whole blood or its components
US5522998A (en) * 1993-03-18 1996-06-04 Fresenius Ag Hemodialysis apparatus having a single balance chamber and method of dialyzing blood therewith
US5462416A (en) * 1993-12-22 1995-10-31 Baxter International Inc. Peristaltic pump tube cassette for blood processing systems
US5614677A (en) * 1994-06-03 1997-03-25 Fresenius Ag Diaphragm gage for measuring the pressure of a fluid
US5616305A (en) * 1994-06-24 1997-04-01 Fresenius Ag Flexible medical hemodialysis packaging unit for the production of concentrated dialysis solution including a device for the same
US5846419A (en) * 1994-07-13 1998-12-08 Fresenius Ag Hemo(Dia)filtration apparatus
US5923001A (en) * 1994-08-05 1999-07-13 Surgical Resources, L.L.C. Automatic surgical sponge counter and blood loss determination system
US5871694A (en) * 1995-12-09 1999-02-16 Fresenius Ag Device for providing a substituate
US5836908A (en) * 1995-12-09 1998-11-17 Fresenius Aktiengesellschaft Disposable balancing unit for balancing fluids, and related medical treatment device
US5858238A (en) * 1996-03-08 1999-01-12 Baxter Research Medical, Inc. Salvage of autologous blood via selective membrane/sorption technologies
US5944709A (en) * 1996-05-13 1999-08-31 B. Braun Medical, Inc. Flexible, multiple-compartment drug container and method of making and using same
US5902336A (en) * 1996-10-15 1999-05-11 Mirimedical, Inc. Implantable device and method for removing fluids from the blood of a patient method for implanting such a device and method for treating a patient experiencing renal failure
US6595943B1 (en) * 1997-02-14 2003-07-22 Nxstage Medical, Inc. Systems and methods for controlling blood flow and waste fluid removal during hemofiltration
US6022335A (en) * 1998-07-01 2000-02-08 Ramadan; Hossein Implantable hemodialysis triple port assembly
US6406631B1 (en) * 1999-07-30 2002-06-18 Nephros, Inc. Two stage diafiltration method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100274169A1 (en) * 2009-04-23 2010-10-28 Fresenius Medical Care Deutschland Gmbh Valve device, valve insert, external functional means, treatment apparatus, and method
US9789300B2 (en) * 2009-04-23 2017-10-17 Fresenius Medical Care Deutschland Gmbh Valve device, valve insert, external functional means, treatment apparatus, and method

Also Published As

Publication number Publication date
US7267658B2 (en) 2007-09-11
US20040238416A1 (en) 2004-12-02
US20040243048A1 (en) 2004-12-02
US7776001B2 (en) 2010-08-17
US20040243050A1 (en) 2004-12-02
US20040243049A1 (en) 2004-12-02
US20050113734A1 (en) 2005-05-26
US20020103453A1 (en) 2002-08-01
US20040245161A1 (en) 2004-12-09
US20040267184A1 (en) 2004-12-30
US20040249331A1 (en) 2004-12-09
US20090012442A9 (en) 2009-01-08
US6852090B2 (en) 2005-02-08
US7147613B2 (en) 2006-12-12
US7300413B2 (en) 2007-11-27
US20050113735A1 (en) 2005-05-26
US7338460B2 (en) 2008-03-04

Similar Documents

Publication Publication Date Title
US7267658B2 (en) Renal replacement therapy device for controlling fluid balance of treated patient
US6595943B1 (en) Systems and methods for controlling blood flow and waste fluid removal during hemofiltration
US6579253B1 (en) Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US7347849B2 (en) Modular medical treatment replaceable component
US6830553B1 (en) Blood treatment systems and methods that maintain sterile extracorporeal processing conditions
EP1235613B1 (en) Fluid processing systems using extracorporeal fluid flow panels oriented within a cartridge
US6554789B1 (en) Layered fluid circuit assemblies and methods for making them
US6638477B1 (en) Fluid replacement systems and methods for use in hemofiltration
EP1235614B1 (en) Interactive systems and methods for supporting hemofiltration therapies
WO2001042758A2 (en) Systems and methods for detecting air in an arterial blood line of a blood processing circuit
US20040243047A1 (en) Single step fluid circuit engagement device and method
WO2001047576A2 (en) Compositions for replacement fluid and associated systems and methods usable in the performance of frequent hemofiltration
WO2001041832A2 (en) Systems and methods for performing frequent hemofiltration

Legal Events

Date Code Title Description
AS Assignment

Owner name: NXSTAGE MEDICAL, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURBANK, JEFFREY H.;BRUGGER, JAMES M.;TREU, DENNIS M.;REEL/FRAME:015812/0841

Effective date: 20040824

AS Assignment

Owner name: GE BUSINESS FINANCIAL SERVICES INC., CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNORS:NXSTAGE MEDICAL, INC.;EIR MEDICAL, INC.;MEDISYSTEMS CORPORATION;AND OTHERS;REEL/FRAME:022610/0602

Effective date: 20090316

Owner name: GE BUSINESS FINANCIAL SERVICES INC.,CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNORS:NXSTAGE MEDICAL, INC.;EIR MEDICAL, INC.;MEDISYSTEMS CORPORATION;AND OTHERS;REEL/FRAME:022610/0602

Effective date: 20090316

AS Assignment

Owner name: NXSTAGE MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: EIR MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: MEDISYSTEMS CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: MEDISYSTEMS SERVICES CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: ASAHI KASEI KURARAY MEDICAL CO., LTD., JAPAN

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:NXSTAGE MEDICAL, INC.;EIR MEDICAL, INC.;MEDISYSTEMS CORPORATION;AND OTHERS;REEL/FRAME:022804/0496

Effective date: 20090605

Owner name: NXSTAGE MEDICAL, INC.,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: EIR MEDICAL, INC.,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: MEDISYSTEMS CORPORATION,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: MEDISYSTEMS SERVICES CORPORATION,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022804/0150

Effective date: 20090605

Owner name: ASAHI KASEI KURARAY MEDICAL CO., LTD.,JAPAN

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:NXSTAGE MEDICAL, INC.;EIR MEDICAL, INC.;MEDISYSTEMS CORPORATION;AND OTHERS;REEL/FRAME:022804/0496

Effective date: 20090605

AS Assignment

Owner name: SILICON VALLEY BANK,MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:NXSTAGE MEDICAL, INC.;REEL/FRAME:024114/0789

Effective date: 20100310

Owner name: SILICON VALLEY BANK, MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:NXSTAGE MEDICAL, INC.;REEL/FRAME:024114/0789

Effective date: 20100310

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NXSTAGE MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:033133/0902

Effective date: 20140609

AS Assignment

Owner name: MEDISYSTEMS CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ASAHI KASEI MEDICAL CO., LTD. F/K/A ASAHI KASEI KURARAY MEDICAL CO., LTD.;REEL/FRAME:043364/0936

Effective date: 20120504

Owner name: MEDISYSTEMS SERVICES CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ASAHI KASEI MEDICAL CO., LTD. F/K/A ASAHI KASEI KURARAY MEDICAL CO., LTD.;REEL/FRAME:043364/0936

Effective date: 20120504

Owner name: NXSTAGE MEDICAL, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ASAHI KASEI MEDICAL CO., LTD. F/K/A ASAHI KASEI KURARAY MEDICAL CO., LTD.;REEL/FRAME:043364/0936

Effective date: 20120504