US20080305330A1 - Gliding or rolling board - Google Patents
Gliding or rolling board Download PDFInfo
- Publication number
- US20080305330A1 US20080305330A1 US12/125,259 US12525908A US2008305330A1 US 20080305330 A1 US20080305330 A1 US 20080305330A1 US 12525908 A US12525908 A US 12525908A US 2008305330 A1 US2008305330 A1 US 2008305330A1
- Authority
- US
- United States
- Prior art keywords
- fibers
- layer
- board
- board according
- natural fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/12—Making thereof; Selection of particular materials
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/01—Skateboards
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/01—Skateboards
- A63C17/017—Production or mounting thereof
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/12—Making thereof; Selection of particular materials
- A63C5/124—Selection of particular materials for the upper ski surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
Definitions
- the invention relates to the field of sports boards, particularly gliding or rolling boards adapted for sporting activities such as snowboarding or water surfing, skiing on snow or waterskiing, skateboarding, and the like.
- a sports board has a length measured along a longitudinal direction, between a first end and a second end; a width measured along a transverse direction, between a first edge and a second edge; as well as a thickness, or height, measured between a top and a bottom, i.e., between an upper surface and a lower surface.
- the board conventionally includes a lower reinforcement, a core, and an upper reinforcement.
- the term “lower” designates the reinforcement that is the closest to the gliding or rolling surface (i.e., such as the ground, water, or snow, e.g.) when the board is gliding or rolling under normal operating conditions.
- the term “upper” designates the reinforcement that is the farthest from the gliding or rolling surface.
- the core serves to separate the reinforcements.
- the board has a sandwich structure, which is both lightweight and mechanically strong. This is especially the case in a snowboard.
- the user's feet are both retained on the board, i.e., in bindings, in a first and second receiving zone, respectively.
- the feet are each oriented in a substantially transverse direction of the board. This makes it easier for the rider to apply lateral pressure with his/her heels or with the toes.
- the board is mechanically stressed during steering.
- the rider transmits impulse forces to the board in order to make turns and to perform acrobatic maneuvers or jumps.
- the rider exerts forces on the board in order to manage trajectories and changes in direction.
- each reinforcement is sufficiently thick to provide the board with the desired mechanical properties.
- the reinforcements are not overly thick to avoid unnecessarily weighing down the board. A compromise is therefore found between the mechanical strength and the weight of the board.
- Certain materials are known to be particularly adapted for the manufacture of the reinforcements in the structure of the board.
- the fibers can be made of glass, carbon, aramid, or any equivalent material.
- Such composite materials provide lightness and mechanical characteristics that provide the board with satisfactory properties.
- the invention provides a board having a reduced weight without altering its mechanical properties.
- the invention provides a board having a reduced inertia.
- the invention provides a sports board, a gliding or rolling board in particular, which has a length measured along a longitudinal direction, between a first end and a second end; a width measured along a transverse direction, between a first edge and a second edge, and a height, or thickness, measured between a top and a bottom, i.e., between an upper surface and a lower surface, the board including a core that extends along a substantial surface.
- the board according to the invention includes a lower reinforcement, or load-carrying layer, located below the core and an upper reinforcement, or load-carrying layer, located above the core, the lower reinforcement including a first layer of natural fibers, the upper reinforcement including a first layer of natural fibers.
- the natural fibers of the invention are to be understood as fibers produced by nature.
- they can be fibers of plants having a bambooous stem, such as bamboo, sugar cane, reed, or the like.
- the natural aspect of the fibers used for the invention contrasts with the industrial aspect of the known fibers, such as glass, carbon, aramid fibers, or the like.
- a difference between natural and industrial fibers is that natural fibers are lighter. Therefore, natural fibers make it possible to produce lightweight reinforcement layers. Natural fibers lighten the reinforcement layers and, therefore, the board.
- the board according to the invention is lighter than a board according to the prior art, i.e., the two having similar dimensions.
- the advantages that result with the invention include an improvement to the steering performances, giving rise to improved steering for equal performances, and less fatigue for the user.
- FIG. 1 is a perspective view of a board according to a first embodiment of the invention
- FIG. 2 is a transverse cross-section along the line II-II of FIG. 1 ;
- FIG. 3 is a cross section similar to FIG. 2 , for an alternative construction that is encompassed by the first embodiment
- FIG. 4 is a schematic, perspective, exploded view of the board of FIG. 1 ;
- FIG. 5 is a schematic view, similar to FIG. 4 , according to a second embodiment of the invention.
- the first exemplary embodiment is shown in FIGS. 1 to 4 .
- a snowboard 1 has a length measured along a longitudinal direction, between a first end 2 and a second end 3 .
- the longitudinal direction is marked by means of the central longitudinal axis Lo.
- the first 2 and second 3 ends each are rounded, but they could also have a different shape, having a narrowed tip or a fin, for example.
- the board 1 also has a width measured along a transverse direction, between a first lateral edge 4 and a second lateral edge 5 , as well as a height, or thickness, measured between a bottom or gliding surface 6 (also referred to as the running surface) and a top or receiving surface 7 .
- the transverse direction is marked by means of the median transverse axis Wo.
- the periphery of the board includes the ends and the edges. For each edge, the dimension line, according to the embodiment shown, is concave with respect to the longitudinal direction Lo.
- the transverse direction is perpendicular to the longitudinal direction and parallel to the gliding surface 6 .
- the gliding surface 6 is shown flat in FIGS. 2 and 3 , the surface could be otherwise.
- the central longitudinal axis Lo can be considered as being contained within a central longitudinal plane and the median transverse axis Wo can be considered as being contained within a median transverse plane, the median transverse plane being perpendicular to the central longitudinal plane.
- the board also has, from the first end 2 to the second end 3 , a first end zone 8 , a first contact line W 1 , a central zone 9 , a second contact line W 2 , and a second end zone 10 .
- the central zone 9 itself successively has, between the contact lines W 1 , W 2 , a first intermediate zone 15 , a first retaining zone 16 , a second intermediate zone 17 arranged in the area of the median axis Wo, a second retaining zone 18 , and a third intermediate zone 19 .
- the end 8 , intermediate 15 , retaining 16 , intermediate 17 , retaining 18 , intermediate 19 , and end 10 zones are longitudinally successive.
- Each retaining zone 16 , 18 is provided to receive a device, or binding, for retaining a user's foot.
- the devices, not shown, can be affixed to the board 1 by means such as screws.
- Each retaining zone 16 , 18 is provided for this purpose with threaded openings 20 .
- Each contact line W 1 , W 2 is a substantially transverse line of the board 1 , in the area of which the gliding surface 6 touches a planar surface, when the board 1 rests on the surface without external influence.
- the general shape of the board 1 is that of an elongated plate.
- the bottom 6 is slightly concave between the contact lines W 1 , W 2 .
- the bottom 6 has a camber, i.e., an inner hollowed or rounded portion, that extends longitudinally along the central zone 9 , substantially from the first intermediate zone 15 to the third intermediate zone 19 .
- the camber has a regular, or even, geometry.
- the top 7 has two slight projecting portions, or raised portions, produced by thicker areas in the retaining zones 16 , 18 .
- the board is slightly reduced widthwise between the edges 4 , 5 in the area of the second intermediate zone 17 , giving the board a side cut and side camber.
- the height, or thickness, of the board 1 is shown in cross section in FIG. 2 .
- the board 1 From the gliding surface 6 to the receiving surface 7 , the board 1 has a sole 21 , a lower reinforcement 22 , a core 23 , an upper reinforcement 24 , and a protective layer 25 .
- the lower reinforcement 22 is that which is the closer to the ground (i.e., such as the snow in the case of a snowboard) when the board glides under normal operating conditions.
- the upper reinforcement 24 is that which is farther from the ground (gliding surface) under the same conditions.
- the number of reinforcements can be modified, and there can be more than two.
- Each reinforcement 22 , 24 extends parallel to the bottom 6 or to the top 7 .
- the board could be made according to the invention, without a protective layer.
- the sole 21 can be made of a plastic material, such as polyethylene or containing polyethylene.
- the protective layer 25 can be made of a plastic material such as acetyl-butadiene-styrene (ABS) or containing ABS.
- the core 23 includes a main body 26 providing its general shape.
- the main body 26 includes, for example, wood, a foam of synthetic material, or any of various other materials.
- the core 23 extends along a substantial surface of the board 1 , i.e., as near as practical from the first end 2 up to the second end 3 lengthwise, and from the first edge 4 up to the second edge 5 widthwise.
- the core 23 could extend along a substantial surface while alternatively remaining set back with respect to an end or to an edge.
- the reinforcements 22 , 24 and the core 23 form a sandwich panel that extends along at least 50% of the surface of the board and, according to particular embodiments, substantially along the entire surface.
- the board 1 further includes a first lateral sidewall 30 , or stringer, located in the area of the first lateral edge 4 , as well as a second lateral sidewall 31 , or stringer, located in the area of the second lateral edge 5 .
- This provides the board with a box type of structure.
- the core 23 is positioned transversely between the first and second sidewalls 30 , 31 .
- Each sidewall 30 , 31 includes a synthetic material, such as acetyl-butadiene-styrene, for example.
- a construction can be provided that is part of the first embodiment of the invention.
- This alternative omits the sidewalls of the embodiment of FIG. 2 , with the upper reinforcement 24 extending down at the sides toward the lower reinforcement 22 , thereby forming the top and sides in one piece.
- the first 22 and second 24 reinforcements are directly connected, which provides the board with a cap, or shell, type of structure.
- a portion of the board such as a portion of the length of the board, can be of the sandwich or box type, while another is of the shell type.
- a peripheral edge 32 extends along the sole 21 .
- the running edge 32 is continuous; but it could also be sectioned, or not extend along the entire periphery. For example, it could include a portion located along the first edge 4 and a portion located along the second edge 5 .
- the running edge 32 in a certain configuration within the scope of the invention, can include a metal, or a metal alloy, such as steel, or the like.
- the lower reinforcement 22 is located beneath the core 23
- the upper reinforcement 24 is located above the core, the lower reinforcement 22 including a first layer 40 of natural fibers, the upper reinforcement 24 including a first layer 41 of natural fibers.
- the natural fibers are produced by nature. For example, they are fibers from plants such as bamboo, sugar cane, linen, hemp, or the like, and they are lightweight. Consequently, they lighten the lower 22 and upper 24 reinforcements. As a result, the board 1 is lighter than a board according to the prior art.
- the board 1 according to the invention therefore has reduced inertia, which makes it easier to steer it.
- the natural fibers of the first layer 40 of the lower reinforcement 22 include bamboo
- the natural fibers of the first layer 41 of the upper reinforcement 24 include bamboo. All of the natural fibers of the first layers 40 , 41 can be made of bamboo. This simplifies the manufacture of the board 1 .
- bamboo has a density on the order of 0.6 to 0.7 kg/dm 3 .
- the bamboo density is markedly lower than that of an artificial material, such as glass, which has a density between 1.3 and 1.6 kg/dm 3 .
- the first layer 40 of the lower reinforcement 22 includes longitudinally oriented fibers 42 .
- the first layer 40 is unidirectional, in the sense that it only includes longitudinally oriented fibers.
- the first layer 41 of the upper reinforcement 24 includes longitudinally oriented fibers 43 .
- the fibers 43 extend parallel to the longitudinal axis Lo of the board.
- the first layer 41 is also unidirectional.
- This orientation of the natural fibers 42 , 43 in this case the bamboo fibers, provides the board 1 with good mechanical strength in bending or flexing along a transverse axis.
- Each of the first layers 40 , 41 has a thickness between 0.1 and 0.2 mm, for example 0.5 mm. This provides the layers with lightness and a good capability for flexion.
- the lower reinforcement 22 also includes a first layer 50 of artificial fibers.
- This layer 50 itself includes longitudinal fibers 51 , oriented along the direction Lo, as well as transverse fibers 52 , oriented along the direction Wo.
- the fibers 51 , 52 are woven, for example, so as to form a tight-meshed fabric. Alternatively, one can provide the longitudinal 51 and transverse 52 fibers to be superimposed, without being woven.
- the fibers 51 , 52 of the first layer 50 are impregnated with a binder such as resin or any equivalent. This provides the first layer 50 with coherence, as is known to one of ordinary skill in the art.
- the artificial fibers are made with worked materials, such as glass, carbon, aramid, or the like.
- the layer 50 is provided to include glass, for example with a density of 300 g/m 2 for the longitudinal fibers 51 and a density of 180 g/m 2 for the transverse fibers 52 . These values offer a good compromise between weight and mechanical strength.
- the transverse fibers 52 provide the board 1 with good resistance to transverse flexing along a longitudinal axis.
- the upper reinforcement 24 also includes a first layer 60 of artificial fibers.
- This layer 60 itself includes longitudinal fibers 61 , oriented along the direction Lo, as well as transverse fibers 62 , oriented along the direction Wo.
- the fibers 61 , 62 can be woven or superimposed, and impregnated with a binder.
- the layer 60 is provided to include glass fibers having, for example, a density of 300 g/m 2 for the longitudinal fibers 61 and a density of 180 g/m 2 for the transverse fibers 62 . A good compromise between weight and mechanical strength is obtained.
- each reinforcement 22 , 24 includes a first layer 40 , 41 of natural fibers 42 , 43 , as well as a first layer 50 , 60 of artificial fibers 51 , 52 , 61 , 62 .
- This number of layers is not limiting; other layers can be added.
- the board 1 according to the first embodiment enables a weight reduction on the order of 14%.
- the use of a layer 40 , 41 of natural fibers within each reinforcement 22 , 24 instead of artificial fibers, lightens the board by about 14%.
- each of the reinforcements 22 , 24 respectively, that the layer 50 , 60 of artificial fibers is directly connected to the core 23 , whereas the layer 40 , 41 of natural fibers is attached to the layer of artificial fibers.
- each layer 50 , 60 of artificial fibers separates the core 23 from the layer 40 , 41 of natural fibers.
- This construction makes it possible to use the resin pressed by a layer 50 , 60 of artificial fibers to affix the layer 40 , 41 of natural fibers to the core 23 .
- Specific films inserted between the core 23 and a layer 40 , 41 of natural fibers can serve as a gluing agent.
- the second embodiment of the invention is described hereafter with reference to FIG. 5 .
- the elements that are common with the first embodiment are designated by the same reference numerals.
- the new elements use new reference numerals.
- the board 1 has a sole 21 , a lower reinforcement 22 , a core 23 , an upper reinforcement 24 , and a protective layer 25 .
- the second embodiment is different from the first embodiment in that the lower reinforcement 22 includes a first layer 80 of natural fibers and a second layer 81 of natural fibers, and in that the upper reinforcement 24 also includes a first layer 90 of natural fibers and a second layer 91 of natural fibers. More specifically, each of the reinforcements 22 , 24 only includes natural fibers. In other words, artificial fibers are not used.
- the first layer 80 of natural fibers for the lower reinforcement 22 , includes fibers 82 that are longitudinally oriented along the axis Lo. These fibers are distributed in a braid whose thickness is between 0.1 and 2 mm. A thickness close to 0.5 mm is suitable.
- the second layer 81 of natural fibers still for the lower reinforcement 22 , includes fibers 83 that are transversely oriented along the axis Wo. These fibers form a braid whose thickness is between 0.1 and 2 mm. A thickness close to 0.5 mm is suitable.
- the first layer 90 of natural fibers of the upper reinforcement 24 includes longitudinally oriented fibers 92
- the second layer 91 of natural fibers includes transversely oriented fibers 93 .
- the fibers 92 , 93 are distributed along a thickness of 0.1 to 2 mm; a thickness on the order of 0.5 mm is suitable.
- the board 1 of the second embodiment enables a weight reduction on the order of about 17%.
- the use of two layers of natural fibers within each reinforcement 22 , 24 instead of layers of artificial fibers, lightens the board by about 17%.
- the natural fibers used in the second embodiment are made of bamboo, a material that does not pollute when it burns.
- the board includes polyethylene-base gluing films.
- the transverse fibers 83 , 93 of the two reinforcements 22 , 24 are juxtaposed with the core 23 .
- the longitudinal fibers 82 , 92 be the ones juxtaposed with the core 23 .
- the invention is made from materials and according to implementation techniques known to one with ordinary skill in the art.
- a material other than bamboo can be used.
- the fibers can be oriented in directions other than longitudinal and transverse.
Landscapes
- Laminated Bodies (AREA)
- Belt Conveyors (AREA)
- Metal Rolling (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. §119 of French Patent Application No. 07 04046, filed on Jun. 6, 2007, the disclosure of which is hereby incorporated by reference thereto in its entirety.
- 1. Field of the Invention
- The invention relates to the field of sports boards, particularly gliding or rolling boards adapted for sporting activities such as snowboarding or water surfing, skiing on snow or waterskiing, skateboarding, and the like.
- 2. Description of Background and Other Information
- Conventionally, a sports board has a length measured along a longitudinal direction, between a first end and a second end; a width measured along a transverse direction, between a first edge and a second edge; as well as a thickness, or height, measured between a top and a bottom, i.e., between an upper surface and a lower surface.
- Heightwise, the board conventionally includes a lower reinforcement, a core, and an upper reinforcement. The term “lower” designates the reinforcement that is the closest to the gliding or rolling surface (i.e., such as the ground, water, or snow, e.g.) when the board is gliding or rolling under normal operating conditions. Similarly, the term “upper” designates the reinforcement that is the farthest from the gliding or rolling surface. The core serves to separate the reinforcements. Thus, the board has a sandwich structure, which is both lightweight and mechanically strong. This is especially the case in a snowboard.
- In snowboarding, the user's feet are both retained on the board, i.e., in bindings, in a first and second receiving zone, respectively. The feet are each oriented in a substantially transverse direction of the board. This makes it easier for the rider to apply lateral pressure with his/her heels or with the toes.
- The board is mechanically stressed during steering. In particular, the rider transmits impulse forces to the board in order to make turns and to perform acrobatic maneuvers or jumps. In other words, the rider exerts forces on the board in order to manage trajectories and changes in direction.
- Steering is much easier when the board is lightweight. Indeed, a lightweight board has less inertia; the impulse forces applied by the rider are therefore more efficient. This is why the manufacture of the board is usually optimized. In particular, each reinforcement is sufficiently thick to provide the board with the desired mechanical properties. However, the reinforcements are not overly thick to avoid unnecessarily weighing down the board. A compromise is therefore found between the mechanical strength and the weight of the board.
- Certain materials, particularly resin-impregnated fibers or fabrics, are known to be particularly adapted for the manufacture of the reinforcements in the structure of the board. The fibers can be made of glass, carbon, aramid, or any equivalent material. Such composite materials provide lightness and mechanical characteristics that provide the board with satisfactory properties.
- However, the users, or at least some of them, sometimes operate their boards under extreme conditions. These users also seek to improve their performances. Other users simply wish to minimize the fatigue related to steering the board.
- In any event, it is desirable to reduce the weight of the board in order to reduce its inertia. However, overly reducing the weight weakens the board. Therefore, there is a limit beyond which it is a priori not possible to reduce the weight of the board.
- In view of the above, the invention provides a board having a reduced weight without altering its mechanical properties.
- In addition, the invention provides a board having a reduced inertia.
- Further, manufacturing a board according to the invention is made easier.
- To this end, the invention provides a sports board, a gliding or rolling board in particular, which has a length measured along a longitudinal direction, between a first end and a second end; a width measured along a transverse direction, between a first edge and a second edge, and a height, or thickness, measured between a top and a bottom, i.e., between an upper surface and a lower surface, the board including a core that extends along a substantial surface.
- The board according to the invention includes a lower reinforcement, or load-carrying layer, located below the core and an upper reinforcement, or load-carrying layer, located above the core, the lower reinforcement including a first layer of natural fibers, the upper reinforcement including a first layer of natural fibers.
- The natural fibers of the invention are to be understood as fibers produced by nature. For example, they can be fibers of plants having a ligneous stem, such as bamboo, sugar cane, reed, or the like.
- The natural aspect of the fibers used for the invention contrasts with the industrial aspect of the known fibers, such as glass, carbon, aramid fibers, or the like. A difference between natural and industrial fibers is that natural fibers are lighter. Therefore, natural fibers make it possible to produce lightweight reinforcement layers. Natural fibers lighten the reinforcement layers and, therefore, the board.
- As a result, the board according to the invention is lighter than a board according to the prior art, i.e., the two having similar dimensions.
- Thus, using natural fibers makes it possible to reduce the inertia of the board.
- The advantages that result with the invention include an improvement to the steering performances, giving rise to improved steering for equal performances, and less fatigue for the user.
- Other characteristics and advantages of the invention will be better understood from the description that follows, with reference to the annexed drawings showing, by way of non-limiting examples, how the invention can be embodied, and in which:
-
FIG. 1 is a perspective view of a board according to a first embodiment of the invention; -
FIG. 2 is a transverse cross-section along the line II-II ofFIG. 1 ; -
FIG. 3 is a cross section similar toFIG. 2 , for an alternative construction that is encompassed by the first embodiment; -
FIG. 4 is a schematic, perspective, exploded view of the board ofFIG. 1 ; -
FIG. 5 is a schematic view, similar toFIG. 4 , according to a second embodiment of the invention. - Although the non-limiting embodiments described hereafter relate to a snowboard, it is to be understood that the description applies as well to other boards adapted for practicing sports, as mentioned above.
- The first exemplary embodiment is shown in
FIGS. 1 to 4 . - In a known fashion, and as seen more particularly in
FIG. 1 , asnowboard 1 has a length measured along a longitudinal direction, between afirst end 2 and asecond end 3. The longitudinal direction is marked by means of the central longitudinal axis Lo. The first 2 and second 3 ends each are rounded, but they could also have a different shape, having a narrowed tip or a fin, for example. Theboard 1 also has a width measured along a transverse direction, between a firstlateral edge 4 and a secondlateral edge 5, as well as a height, or thickness, measured between a bottom or gliding surface 6 (also referred to as the running surface) and a top or receivingsurface 7. The transverse direction is marked by means of the median transverse axis Wo. The periphery of the board includes the ends and the edges. For each edge, the dimension line, according to the embodiment shown, is concave with respect to the longitudinal direction Lo. - In the context of the invention, the transverse direction is perpendicular to the longitudinal direction and parallel to the
gliding surface 6. Although thegliding surface 6 is shown flat inFIGS. 2 and 3 , the surface could be otherwise. Further, the central longitudinal axis Lo can be considered as being contained within a central longitudinal plane and the median transverse axis Wo can be considered as being contained within a median transverse plane, the median transverse plane being perpendicular to the central longitudinal plane. - The board also has, from the
first end 2 to thesecond end 3, afirst end zone 8, a first contact line W1, acentral zone 9, a second contact line W2, and asecond end zone 10. Thecentral zone 9 itself successively has, between the contact lines W1, W2, a firstintermediate zone 15, afirst retaining zone 16, a secondintermediate zone 17 arranged in the area of the median axis Wo, asecond retaining zone 18, and a thirdintermediate zone 19. Theend 8, intermediate 15, retaining 16, intermediate 17, retaining 18, intermediate 19, and end 10 zones are longitudinally successive. - Each retaining
zone board 1 by means such as screws. Each retainingzone openings 20. - Each contact line W1, W2 is a substantially transverse line of the
board 1, in the area of which thegliding surface 6 touches a planar surface, when theboard 1 rests on the surface without external influence. - The general shape of the
board 1 is that of an elongated plate. According to the embodiment shown, thebottom 6 is slightly concave between the contact lines W1, W2. Thebottom 6 has a camber, i.e., an inner hollowed or rounded portion, that extends longitudinally along thecentral zone 9, substantially from the firstintermediate zone 15 to the thirdintermediate zone 19. In the embodiment shown, the camber has a regular, or even, geometry. The top 7 has two slight projecting portions, or raised portions, produced by thicker areas in the retainingzones edges intermediate zone 17, giving the board a side cut and side camber. - The height, or thickness, of the
board 1 is shown in cross section inFIG. 2 . - From the
gliding surface 6 to the receivingsurface 7, theboard 1 has a sole 21, alower reinforcement 22, acore 23, anupper reinforcement 24, and aprotective layer 25. Thelower reinforcement 22 is that which is the closer to the ground (i.e., such as the snow in the case of a snowboard) when the board glides under normal operating conditions. Similarly, theupper reinforcement 24 is that which is farther from the ground (gliding surface) under the same conditions. - Depending upon the type of board, the number of reinforcements can be modified, and there can be more than two.
- Each
reinforcement - As an example, the sole 21 can be made of a plastic material, such as polyethylene or containing polyethylene. As an example, the
protective layer 25 can be made of a plastic material such as acetyl-butadiene-styrene (ABS) or containing ABS. - According to the first embodiment, the
core 23 includes amain body 26 providing its general shape. Themain body 26 includes, for example, wood, a foam of synthetic material, or any of various other materials. Thecore 23 extends along a substantial surface of theboard 1, i.e., as near as practical from thefirst end 2 up to thesecond end 3 lengthwise, and from thefirst edge 4 up to thesecond edge 5 widthwise. However, thecore 23 could extend along a substantial surface while alternatively remaining set back with respect to an end or to an edge. - The
reinforcements - The
board 1 further includes a firstlateral sidewall 30, or stringer, located in the area of the firstlateral edge 4, as well as a secondlateral sidewall 31, or stringer, located in the area of the secondlateral edge 5. This provides the board with a box type of structure. Thecore 23 is positioned transversely between the first andsecond sidewalls sidewall - Alternatively, as seen in
FIG. 3 , a construction can be provided that is part of the first embodiment of the invention. This alternative omits the sidewalls of the embodiment ofFIG. 2 , with theupper reinforcement 24 extending down at the sides toward thelower reinforcement 22, thereby forming the top and sides in one piece. The first 22 and second 24 reinforcements are directly connected, which provides the board with a cap, or shell, type of structure. - Alternatively, within the scope of the invention, other structures can be provided. For example, a portion of the board, such as a portion of the length of the board, can be of the sandwich or box type, while another is of the shell type.
- A
peripheral edge 32, or running edge, extends along the sole 21. The runningedge 32 is continuous; but it could also be sectioned, or not extend along the entire periphery. For example, it could include a portion located along thefirst edge 4 and a portion located along thesecond edge 5. The runningedge 32, in a certain configuration within the scope of the invention, can include a metal, or a metal alloy, such as steel, or the like. - According to the invention, as illustrated particularly in
FIGS. 2 to 4 , thelower reinforcement 22 is located beneath thecore 23, and theupper reinforcement 24 is located above the core, thelower reinforcement 22 including afirst layer 40 of natural fibers, theupper reinforcement 24 including a first layer 41 of natural fibers. - The natural fibers are produced by nature. For example, they are fibers from plants such as bamboo, sugar cane, linen, hemp, or the like, and they are lightweight. Consequently, they lighten the lower 22 and upper 24 reinforcements. As a result, the
board 1 is lighter than a board according to the prior art. Theboard 1 according to the invention therefore has reduced inertia, which makes it easier to steer it. - According to the first embodiment, the natural fibers of the
first layer 40 of thelower reinforcement 22 include bamboo, and the natural fibers of the first layer 41 of theupper reinforcement 24 include bamboo. All of the natural fibers of thefirst layers 40, 41 can be made of bamboo. This simplifies the manufacture of theboard 1. Bamboo has a density on the order of 0.6 to 0.7 kg/dm3. - The bamboo density is markedly lower than that of an artificial material, such as glass, which has a density between 1.3 and 1.6 kg/dm3.
- As schematically shown in
FIG. 4 , thefirst layer 40 of thelower reinforcement 22 includes longitudinally oriented fibers 42. This means that the fibers 42 extend parallel to the longitudinal axis Lo of the board. In fact, thefirst layer 40 is unidirectional, in the sense that it only includes longitudinally oriented fibers. - Similarly, the first layer 41 of the
upper reinforcement 24 includes longitudinally orientedfibers 43. Here again, thefibers 43 extend parallel to the longitudinal axis Lo of the board. The first layer 41 is also unidirectional. - This orientation of the
natural fibers 42, 43, in this case the bamboo fibers, provides theboard 1 with good mechanical strength in bending or flexing along a transverse axis. - Each of the
first layers 40, 41 has a thickness between 0.1 and 0.2 mm, for example 0.5 mm. This provides the layers with lightness and a good capability for flexion. - According to the first embodiment of the invention, the
lower reinforcement 22 also includes afirst layer 50 of artificial fibers. Thislayer 50 itself includeslongitudinal fibers 51, oriented along the direction Lo, as well astransverse fibers 52, oriented along the direction Wo. Thefibers fibers first layer 50 are impregnated with a binder such as resin or any equivalent. This provides thefirst layer 50 with coherence, as is known to one of ordinary skill in the art. - The artificial fibers are made with worked materials, such as glass, carbon, aramid, or the like.
- In a non-limiting manner, the
layer 50 is provided to include glass, for example with a density of 300 g/m2 for thelongitudinal fibers 51 and a density of 180 g/m2 for thetransverse fibers 52. These values offer a good compromise between weight and mechanical strength. Thetransverse fibers 52 provide theboard 1 with good resistance to transverse flexing along a longitudinal axis. - Similar to the
lower reinforcement 22, theupper reinforcement 24 also includes a first layer 60 of artificial fibers. This layer 60 itself includeslongitudinal fibers 61, oriented along the direction Lo, as well astransverse fibers 62, oriented along the direction Wo. Here again, thefibers - For example, the layer 60 is provided to include glass fibers having, for example, a density of 300 g/m2 for the
longitudinal fibers 61 and a density of 180 g/m2 for thetransverse fibers 62. A good compromise between weight and mechanical strength is obtained. - Thus, according to the first embodiment of the invention, each
reinforcement first layer 40, 41 ofnatural fibers 42, 43, as well as afirst layer 50, 60 ofartificial fibers - With equal dimensions, in comparison to the board according to the prior art, the
board 1 according to the first embodiment enables a weight reduction on the order of 14%. In other words, the use of alayer 40, 41 of natural fibers within eachreinforcement - It is noted, for each of the
reinforcements layer 50, 60 of artificial fibers is directly connected to thecore 23, whereas thelayer 40, 41 of natural fibers is attached to the layer of artificial fibers. In other words, eachlayer 50, 60 of artificial fibers separates the core 23 from thelayer 40, 41 of natural fibers. This construction makes it possible to use the resin pressed by alayer 50, 60 of artificial fibers to affix thelayer 40, 41 of natural fibers to thecore 23. - However, one can provide an inverse arrangement for one or both
reinforcements layer 40, 41 of natural fibers that is directly affixed to thecore 23. Specific films inserted between the core 23 and alayer 40, 41 of natural fibers can serve as a gluing agent. - The second embodiment of the invention is described hereafter with reference to
FIG. 5 . For convenience, the elements that are common with the first embodiment are designated by the same reference numerals. The new elements use new reference numerals. - Thus, the
board 1, according to the second embodiment, has a sole 21, alower reinforcement 22, acore 23, anupper reinforcement 24, and aprotective layer 25. - The second embodiment is different from the first embodiment in that the
lower reinforcement 22 includes afirst layer 80 of natural fibers and asecond layer 81 of natural fibers, and in that theupper reinforcement 24 also includes afirst layer 90 of natural fibers and asecond layer 91 of natural fibers. More specifically, each of thereinforcements - By way of a non-limiting example, the
first layer 80 of natural fibers, for thelower reinforcement 22, includesfibers 82 that are longitudinally oriented along the axis Lo. These fibers are distributed in a braid whose thickness is between 0.1 and 2 mm. A thickness close to 0.5 mm is suitable. In the same context, thesecond layer 81 of natural fibers, still for thelower reinforcement 22, includesfibers 83 that are transversely oriented along the axis Wo. These fibers form a braid whose thickness is between 0.1 and 2 mm. A thickness close to 0.5 mm is suitable. - Similarly, the
first layer 90 of natural fibers of theupper reinforcement 24 includes longitudinally orientedfibers 92, and thesecond layer 91 of natural fibers includes transversely orientedfibers 93. For eachlayer fibers - This fiber arrangement offers an excellent compromise between the weight and the mechanical properties. In particular, with equal dimensions, in comparison to a board according to the prior art, the
board 1 of the second embodiment enables a weight reduction on the order of about 17%. The use of two layers of natural fibers within eachreinforcement - This structure further improves the inertial characteristics of the board, and also promotes its ability to be recycled. Indeed, the natural fibers used in the second embodiment, in a particular construction, are made of bamboo, a material that does not pollute when it burns.
- Moreover, it is possible to use gluing films having a low pollution ratio to glue the layers of fibers to one another or to other surfaces such as the core. For example, the board includes polyethylene-base gluing films.
- According to the second embodiment of the invention, the
transverse fibers reinforcements core 23. Conversely, one can provide that, for one or both reinforcements, thelongitudinal fibers core 23. The two solutions are equivalent. - The invention is made from materials and according to implementation techniques known to one with ordinary skill in the art.
- The invention is not limited to the particular embodiments illustrated and described above. It includes all of the technical equivalents that come within the scope of the claims that follow.
- In particular, one can provide to add layers of natural fibers.
- A material other than bamboo can be used.
- The fibers can be oriented in directions other than longitudinal and transverse.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR07.04046 | 2007-06-06 | ||
FR0704046A FR2916983B1 (en) | 2007-06-06 | 2007-06-06 | SLIDING OR ROLLING BOARD |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080305330A1 true US20080305330A1 (en) | 2008-12-11 |
Family
ID=39168410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/125,259 Abandoned US20080305330A1 (en) | 2007-06-06 | 2008-05-22 | Gliding or rolling board |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080305330A1 (en) |
EP (1) | EP2000180B1 (en) |
AT (1) | ATE552895T1 (en) |
FR (1) | FR2916983B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070252362A1 (en) * | 2006-04-28 | 2007-11-01 | Scott Burwell | Hybrid skateboard deck |
US20100327560A1 (en) * | 2009-06-26 | 2010-12-30 | Salomon S.A.S. | Gliding board |
US10137357B1 (en) * | 2018-02-02 | 2018-11-27 | Lithe Industries, Llc | Skateboard decks and methods for constructing skateboard decks |
CN109795182A (en) * | 2019-01-24 | 2019-05-24 | 国际竹藤中心 | A kind of glass web enhancing bamboo fibre molding slide plate and preparation method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1400397A (en) * | 1964-02-03 | 1965-05-28 | Materiel Electrique S W Le | Ignition phase shift control device for inverter rectifier unit without circulating current |
FR2941382B1 (en) * | 2009-01-27 | 2011-02-11 | Rossignol Sa | SNOWBOARD BOARD ON SNOW |
FR3003474B1 (en) * | 2013-03-20 | 2016-08-26 | Salomon Sas | REINFORCING STRUCTURE FOR SLIDING BOARD. |
ITMI20131462A1 (en) * | 2013-09-06 | 2015-03-07 | Gaia S R L | METHOD OF REALIZING A TOOL TO SLIP ON THE SNOW, AND A TOOL REALIZED ACCORDING TO THIS METHOD |
FR3017306B1 (en) * | 2014-02-13 | 2017-09-15 | Salomon Sas | BOARD OF SLIDERS |
CN105216077B (en) * | 2014-06-25 | 2018-05-15 | 湖南省丰源体育科技有限公司 | A kind of forming technique for suppressing special-shaped bamboo slide plate |
GB2612783B (en) | 2021-11-10 | 2024-05-29 | Capsule Skateboards Ltd | A board for use in skateboarding or other extreme sports and a method of manufacturing such a board |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1512327A (en) * | 1923-07-26 | 1924-10-21 | Jr William Hoyt Young | Skate or other runner |
US3844576A (en) * | 1973-07-18 | 1974-10-29 | Olin Corp | Vibration damped ski |
US4383701A (en) * | 1979-12-17 | 1983-05-17 | Kastle Gesellschaft M.B.H. | Ski |
US5320378A (en) * | 1991-09-05 | 1994-06-14 | Wiig Jeffrey R | Snowboard |
US5573264A (en) * | 1993-04-30 | 1996-11-12 | Salomon S.A. | Snowboard |
US5591509A (en) * | 1990-12-24 | 1997-01-07 | Hoechst Aktiengesellschaft | Ski containing sheetlike plates or tapes made of a fiber reinforced material |
US5590908A (en) * | 1995-07-07 | 1997-01-07 | Carr; Donald W. | Sports board having a pressure sensitive panel responsive to contact between the sports board and a surface being ridden |
US5649717A (en) * | 1994-08-29 | 1997-07-22 | Clinton L. Augustine | Snowboard and method of constructing the same |
US5759664A (en) * | 1996-02-29 | 1998-06-02 | Goode Ski Technologies | Composite ski |
US5924707A (en) * | 1996-08-29 | 1999-07-20 | Salomon S.A. | Snowboard equipped with a shock-absorbing device |
US6059306A (en) * | 1997-01-24 | 2000-05-09 | Salomon S.A. | Glide board intended for snowboarding |
US6059308A (en) * | 1996-03-27 | 2000-05-09 | Salomon S.A. | Gliding board surrounded with a continuous running edge, and method of making same |
US6073954A (en) * | 1997-01-27 | 2000-06-13 | Skis Rossignol S.A. | Gliding board having an improved internal structure |
US6182986B1 (en) * | 1998-05-08 | 2001-02-06 | Creighton B. Smith | Laminated skateboard |
US20010040356A1 (en) * | 1999-10-19 | 2001-11-15 | Jeffrey Madrid | Corrugated skateboard deck and method of corrugating skateboard decks |
US6357781B1 (en) * | 1999-11-05 | 2002-03-19 | Salomon S.A. | Gliding or rolling board |
US6386561B1 (en) * | 2000-06-19 | 2002-05-14 | Rolf R. Hanson | Laminated skateboard with protective edge and racing base |
US6406054B1 (en) * | 1998-07-31 | 2002-06-18 | Salomon S.A. | Gliding board used for alpine skiing or snowboarding |
US6481741B1 (en) * | 2000-01-28 | 2002-11-19 | Salomon S.A. | Snowboard |
US6502850B1 (en) * | 1999-10-12 | 2003-01-07 | The Burton Corporation | Core for a gliding board |
US6520530B1 (en) * | 1997-11-20 | 2003-02-18 | The Burton Corporation | Core for a gliding board |
US20030102650A1 (en) * | 2001-12-05 | 2003-06-05 | Shale Gordon | Composite sports board such as a skateboard deck |
US20040084878A1 (en) * | 2002-10-03 | 2004-05-06 | Salomon S.A. | Gliding or rolling board |
US20040135347A1 (en) * | 2002-12-19 | 2004-07-15 | Salomon S.A. | Gliding or rolling board |
US20050077704A1 (en) * | 2001-11-30 | 2005-04-14 | Salomon S.A. | Gliding or rolling board, such as a snowboard or skateboard, or the like |
US20060119077A1 (en) * | 2002-08-13 | 2006-06-08 | Stefan Rott | Multilayer film for constructing skis |
US7234721B2 (en) * | 2000-08-16 | 2007-06-26 | K-2 Corporation | Snowboard with partial sidewall |
US20070170694A1 (en) * | 2006-01-25 | 2007-07-26 | Salomon S.A. | Gliding or rolling board |
US20070252362A1 (en) * | 2006-04-28 | 2007-11-01 | Scott Burwell | Hybrid skateboard deck |
US7338066B2 (en) * | 2004-01-30 | 2008-03-04 | Atomic Austria Gmbh | Method for producing a board-like gliding device, and a board-like gliding device |
US7506880B2 (en) * | 2006-04-28 | 2009-03-24 | Scott Burwell | Bamboo core hybrid skateboard deck |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU727913B3 (en) * | 2000-03-10 | 2001-01-04 | Shale Gordon | Improvements in watercraft and the manufacture thereof |
DE20310246U1 (en) * | 2003-07-03 | 2004-11-04 | Schwabe, Thorsten, Dipl.-Ing. | Bamboo core construction, for snowboards and skis of all kinds, consisting of an internal torsion box made of bamboo, which is independent of laminates and which is rigid in itself and resistant to bending |
US20050121881A1 (en) * | 2003-12-05 | 2005-06-09 | K-2 Corporation | Ski core |
-
2007
- 2007-06-06 FR FR0704046A patent/FR2916983B1/en not_active Expired - Fee Related
-
2008
- 2008-04-17 AT AT08007498T patent/ATE552895T1/en active
- 2008-04-17 EP EP08007498A patent/EP2000180B1/en not_active Not-in-force
- 2008-05-22 US US12/125,259 patent/US20080305330A1/en not_active Abandoned
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1512327A (en) * | 1923-07-26 | 1924-10-21 | Jr William Hoyt Young | Skate or other runner |
US3844576A (en) * | 1973-07-18 | 1974-10-29 | Olin Corp | Vibration damped ski |
US4383701A (en) * | 1979-12-17 | 1983-05-17 | Kastle Gesellschaft M.B.H. | Ski |
US5591509A (en) * | 1990-12-24 | 1997-01-07 | Hoechst Aktiengesellschaft | Ski containing sheetlike plates or tapes made of a fiber reinforced material |
US5320378A (en) * | 1991-09-05 | 1994-06-14 | Wiig Jeffrey R | Snowboard |
US5988668A (en) * | 1993-04-30 | 1999-11-23 | Salomon S.A. | Snowboard |
US5573264A (en) * | 1993-04-30 | 1996-11-12 | Salomon S.A. | Snowboard |
US5649717A (en) * | 1994-08-29 | 1997-07-22 | Clinton L. Augustine | Snowboard and method of constructing the same |
US5590908A (en) * | 1995-07-07 | 1997-01-07 | Carr; Donald W. | Sports board having a pressure sensitive panel responsive to contact between the sports board and a surface being ridden |
US5759664A (en) * | 1996-02-29 | 1998-06-02 | Goode Ski Technologies | Composite ski |
US6059308A (en) * | 1996-03-27 | 2000-05-09 | Salomon S.A. | Gliding board surrounded with a continuous running edge, and method of making same |
US5924707A (en) * | 1996-08-29 | 1999-07-20 | Salomon S.A. | Snowboard equipped with a shock-absorbing device |
US6059306A (en) * | 1997-01-24 | 2000-05-09 | Salomon S.A. | Glide board intended for snowboarding |
US6073954A (en) * | 1997-01-27 | 2000-06-13 | Skis Rossignol S.A. | Gliding board having an improved internal structure |
US6520530B1 (en) * | 1997-11-20 | 2003-02-18 | The Burton Corporation | Core for a gliding board |
US6182986B1 (en) * | 1998-05-08 | 2001-02-06 | Creighton B. Smith | Laminated skateboard |
US6406054B1 (en) * | 1998-07-31 | 2002-06-18 | Salomon S.A. | Gliding board used for alpine skiing or snowboarding |
US6502850B1 (en) * | 1999-10-12 | 2003-01-07 | The Burton Corporation | Core for a gliding board |
US20010040356A1 (en) * | 1999-10-19 | 2001-11-15 | Jeffrey Madrid | Corrugated skateboard deck and method of corrugating skateboard decks |
US6357781B1 (en) * | 1999-11-05 | 2002-03-19 | Salomon S.A. | Gliding or rolling board |
US6481741B1 (en) * | 2000-01-28 | 2002-11-19 | Salomon S.A. | Snowboard |
US6386561B1 (en) * | 2000-06-19 | 2002-05-14 | Rolf R. Hanson | Laminated skateboard with protective edge and racing base |
US7234721B2 (en) * | 2000-08-16 | 2007-06-26 | K-2 Corporation | Snowboard with partial sidewall |
US20050077704A1 (en) * | 2001-11-30 | 2005-04-14 | Salomon S.A. | Gliding or rolling board, such as a snowboard or skateboard, or the like |
US6648363B2 (en) * | 2001-12-05 | 2003-11-18 | Shale Gordon | Composite sports board such as a skateboard deck |
US20030102650A1 (en) * | 2001-12-05 | 2003-06-05 | Shale Gordon | Composite sports board such as a skateboard deck |
US20060119077A1 (en) * | 2002-08-13 | 2006-06-08 | Stefan Rott | Multilayer film for constructing skis |
US7393001B2 (en) * | 2002-08-13 | 2008-07-01 | Leonhard Kurz Gmbh & Co., Kg | Multilayer film for constructing skis |
US20040084878A1 (en) * | 2002-10-03 | 2004-05-06 | Salomon S.A. | Gliding or rolling board |
US20040135347A1 (en) * | 2002-12-19 | 2004-07-15 | Salomon S.A. | Gliding or rolling board |
US7275755B2 (en) * | 2002-12-19 | 2007-10-02 | Salomon S.A. | Gliding or rolling board |
US7338066B2 (en) * | 2004-01-30 | 2008-03-04 | Atomic Austria Gmbh | Method for producing a board-like gliding device, and a board-like gliding device |
US20070170694A1 (en) * | 2006-01-25 | 2007-07-26 | Salomon S.A. | Gliding or rolling board |
US20070252362A1 (en) * | 2006-04-28 | 2007-11-01 | Scott Burwell | Hybrid skateboard deck |
US7506880B2 (en) * | 2006-04-28 | 2009-03-24 | Scott Burwell | Bamboo core hybrid skateboard deck |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070252362A1 (en) * | 2006-04-28 | 2007-11-01 | Scott Burwell | Hybrid skateboard deck |
US20100327560A1 (en) * | 2009-06-26 | 2010-12-30 | Salomon S.A.S. | Gliding board |
US8240697B2 (en) | 2009-06-26 | 2012-08-14 | Salomon S.A.S. | Gliding board |
US10137357B1 (en) * | 2018-02-02 | 2018-11-27 | Lithe Industries, Llc | Skateboard decks and methods for constructing skateboard decks |
CN109795182A (en) * | 2019-01-24 | 2019-05-24 | 国际竹藤中心 | A kind of glass web enhancing bamboo fibre molding slide plate and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
ATE552895T1 (en) | 2012-04-15 |
FR2916983B1 (en) | 2010-08-13 |
EP2000180A1 (en) | 2008-12-10 |
EP2000180B1 (en) | 2012-04-11 |
FR2916983A1 (en) | 2008-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080305330A1 (en) | Gliding or rolling board | |
US6502850B1 (en) | Core for a gliding board | |
US6105991A (en) | Core for a gliding board | |
CA2709276C (en) | Snow glider with elevated chatter-absorbing rider deck | |
US5855389A (en) | Torsionally reinforced snowboard | |
US5573264A (en) | Snowboard | |
US6612605B2 (en) | Integrated modular glide board | |
US9327180B2 (en) | Gliding or rolling board | |
US9669284B2 (en) | Sports board having deformable base feature | |
US20080272575A1 (en) | Snowboard | |
US8465044B2 (en) | Sports board with an interlocking structure | |
JP3050760U (en) | Sliding board for snow surfing | |
US6082747A (en) | Process for making a snow board and snow board thus obtained | |
US6406054B1 (en) | Gliding board used for alpine skiing or snowboarding | |
JP2007512925A (en) | Planing board with vibration absorbing layer | |
US20040150190A1 (en) | Gliding or rolling board | |
US7219916B2 (en) | Snowboard | |
US20190329121A1 (en) | Ski with composite structure having arcuate fibers | |
US20050077704A1 (en) | Gliding or rolling board, such as a snowboard or skateboard, or the like | |
US20050121881A1 (en) | Ski core | |
JP5442870B2 (en) | Sliding board with modified bending properties in adjacent binding attachment area | |
EP3088061A1 (en) | Skate frame, roller-ski comprising said frame and method for manufacturing a skate frame | |
US8764044B2 (en) | Gliding board with modified bending characteristics and edge features adjacent binding mounting regions | |
US20110272922A1 (en) | Board for sliding on snow with sidewalls of variable width | |
EP3335771A1 (en) | Winter sports equipment comprising an equipment body and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SALOMON S.A., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RANCON, HENRI;REEL/FRAME:021198/0034 Effective date: 20080618 |
|
AS | Assignment |
Owner name: SALOMON S.A.S.,FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:SALOMON S.A.;REEL/FRAME:024563/0157 Effective date: 20100202 Owner name: SALOMON S.A.S., FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:SALOMON S.A.;REEL/FRAME:024563/0157 Effective date: 20100202 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |