US20080177202A1 - Blood drawing device with flash detection - Google Patents
Blood drawing device with flash detection Download PDFInfo
- Publication number
- US20080177202A1 US20080177202A1 US12/071,820 US7182008A US2008177202A1 US 20080177202 A1 US20080177202 A1 US 20080177202A1 US 7182008 A US7182008 A US 7182008A US 2008177202 A1 US2008177202 A1 US 2008177202A1
- Authority
- US
- United States
- Prior art keywords
- porous
- cannula
- blood
- central body
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
- A61B5/154—Devices using pre-evacuated means
- A61B5/1545—Devices using pre-evacuated means comprising means for indicating vein or arterial entry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/15003—Source of blood for venous or arterial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150213—Venting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150351—Caps, stoppers or lids for sealing or closing a blood collection vessel or container, e.g. a test-tube or syringe barrel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150389—Hollow piercing elements, e.g. canulas, needles, for piercing the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150473—Double-ended needles, e.g. used with pre-evacuated sampling tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150572—Pierceable protectors, e.g. shields, caps, sleeves or films, e.g. for hygienic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150732—Needle holders, for instance for holding the needle by the hub, used for example with double-ended needle and pre-evacuated tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/15074—Needle sets comprising wings, e.g. butterfly type, for ease of handling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0693—Flashback chambers
Definitions
- the present invention relates to an apparatus for drawing bodily fluids, and particularly blood, from an animal.
- Intravenous blood collection assemblies have long been used to draw bodily fluids, such as blood, from patients.
- bodily fluids such as blood
- the vessel or lumen from which the blood is drawn is often rather small and or not visible. If the needle tip is not in communication with the interior of the blood vessel during the procedure, the procedure is likely to be unsuccessful, causing error, undermining the integrity of the specimen, and the patient may be harmed additionally by the penetration of delicate underlying structures. Accordingly, confirmation of accurate placement of the needle tip into a blood vessel is desirable for blood drawing procedures.
- Past intravenous blood collection assemblies have included mechanisms for indicating when a needle tip is in communication with the interior of a blood vessel. These needle kits have included a transparent portion in the needle body from which the presence of blood can be observed. The observation of blood in the needle body is known as “flash.” Flash detection has been less than satisfactory for many such collection assemblies. In some instances, the flow of blood into the transparent portion of the needle body is impeded by air backpressure in the needle, and thus flash confirmation is not visible or delayed. This delay can impede the determination of the precise moment at which the needle tip enters the blood vessel, which may cause the healthcare worker inserting the needle to miss or perforate the vessel and penetrate into delicate surrounding structures.
- Applicant has developed an innovative device for drawing fluid from a lumen, comprising: a central body having an outer wall and an inner fluid passage; a front cannula communicating with the inner fluid passage; a rear cannula communicating with the inner fluid passage; a transparent or translucent sleeve surrounding at least a tip portion of the rear cannula; and a means for venting air disposed between the sleeve and an ambient.
- Applicant has further developed an innovative device for drawing blood from a blood vessel, comprising: a central body; a front cannula extending into the central body; a rear cannula having a tip portion, said rear cannula extending into the central body and communicating with the front cannula; a transparent or translucent flexible sleeve surrounding the rear cannula tip portion and defining an air space between the rear cannula tip portion and the flexible sleeve; and a venting member disposed between the air space and an ambient.
- FIG. 1 is an exploded pictorial side view of a first embodiment of the present invention.
- FIG. 2 is a side view in cross-section of the first embodiment of the present invention prior to the insertion of a sample collection tube.
- FIG. 3 is a side view in cross-section of the rear cannula portion of the first embodiment of the present invention.
- FIG. 4 is a side view in cross-section of the first embodiment of the present invention after the insertion of a sample collection tube.
- FIG. 5A is a side view in cross-section of a second embodiment of the present invention incorporated into a Luer-type blood drawing device in combination with a standard hypodermic needle or I.V. infusion set (“butterfly needle”).
- FIG. 5B is a side view in cross-section of an alternative Luer-type hub for use with the Luer-type blood drawing device shown in FIG. 5A .
- FIG. 6 is a side view in cross-section of a third embodiment of the present invention.
- FIG. 7 is a side view in cross-section of the rear cannula portion of a fourth embodiment of the present invention.
- FIG. 8 is a side view in cross-section of the rear cannula portion of a fifth embodiment of the present invention.
- FIG. 9 is a side view of a flexible sleeve constructed in accordance with a sixth embodiment of the present invention.
- FIG. 10 is a pictorial view of the venting member and porous spacer shown in FIG. 8 .
- FIG. 11 is a pictorial view of a seventh embodiment of the present invention.
- FIG. 12 is a pictorial view of the porous collar shown in FIG. 11 .
- FIG. 13 is a side view in cross-section of a blood flow control mechanism that may be used with various embodiments of the present invention and/or independently in accordance with an eighth embodiment of the invention.
- FIG. 14 is a side view in cross-section of a rear cannula portion of a ninth embodiment of the present invention.
- the blood-drawing device 10 includes a front cannula 130 , a central body 100 , a venting member 160 , a rear cannula 140 , and a flexible sleeve 150 .
- a guide tube 116 may be connected to the central body 100 .
- the front cannula 130 and the rear cannula 140 may each have a generally elongated cylindrical body defining an elongated fluid passage extending from one end of the cannula to the other end.
- the front cannula 130 may extend from the front end of the central body 100 and terminate at a tapered or pointed end 132 , which is adapted to be inserted into a lumen.
- the rear cannula 140 may extend from the rear of the central body 100 and terminate at a tapered or pointed end 142 .
- the sleeve 150 may isolate the rear cannula 140 from the ambient, wherein the ambient includes any space outside of the sleeve 150 , irrespective of whether or not the space is contained within the guide tube 116 or any other structure.
- the central body 100 may include one or more constituent elements, such as a threaded connector 112 , which may be integrally formed with, or connected to the central body using adhesive, male-female interfaces, threaded interfaces, or any other connection means.
- the central body 100 may include an annular ring 104 , radiating fins 105 , or like features, extending from the central body and which may be adapted to aid a user in handling the device 10 .
- a fluid passage 110 within the central body 100 may communicate with, and in the embodiment shown, be connected to, the inner portion 134 of the front cannula 130 and the inner portion 144 of the rear cannula 140 , respectively, using adhesive, threaded interfaces, pressure fit, or other connection means.
- the central body 100 may be integrally formed with the front and/or rear cannulae 130 and 140 . It is also appreciated that the front and/or rear cannulae may be transparent or translucent, in whole or part, to provide flash detection in alternative embodiments of the present invention.
- the fluid passage 110 may be defined by the opening within the central body between the front and rear cannulae when the cannulae are directly connected to the central body.
- the fluid passage 110 may be adapted to receive a sufficient amount of fluid to allow observation of the fluid (i.e., “flash”) from outside the blood-drawing device 10 .
- the fluid passage 110 may have a sufficiently small volume so as to rapidly fill with fluid during the use of the blood-drawing device.
- the central body 100 may be constructed of plastic material suitable for medical use. Further, in the first embodiment of the present invention, all, or portions, of the central body 100 may be transparent, translucent, connected to transparent or translucent I.V. tubing, or otherwise adapted to permit detection of fluids passing through the central body and/or I.V. tubing from a vantage point outside of the blood-drawing device 10 .
- the central body 100 may include a transparent wall that is adapted to permit the observation of “flash” when it occurs.
- the side wall of the central body 100 also may be adapted to magnify or otherwise enhance the detection of fluid passing through the central body, although it is appreciated that a magnifying or enhancement feature is not necessarily required.
- the venting member 160 i.e., a means for venting air
- the venting member 160 may be inserted over the rear cannula 140 and pressed against or near to the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140 ).
- the venting member 160 may form a seal against the rear cannula that is sufficient to prevent blood from escaping past the venting member.
- the venting member 160 may be gas, and particularly air, permeable, but at least partially impermeable to a liquid, such as blood.
- the venting member 160 may be substantially porous for gas constituents less than about 5 microns in size, and substantially non-porous for liquid constituents about 5 microns or greater in size, however, it is appreciated that these approximate sizes should not be limiting for the invention.
- the venting member 160 may be constructed of any of a number of materials that provide the desired level of porosity, which may include, but are not limited to sintered, layered, rolled, foamed, perforated, or impregnated, hydrophyllic/hydrophobic compositions, porous polyethylene, porous polypropylene, porous polyfluorocarbon, absorbent paper, materials impregnated with dilute Russell Viper venom molded fiber, fiberglass, felt, granular starch, cellulose, polyacrylamide gel, hydrogel, a molded admixture of porous hydrophobic/hydrophyllic granules and sufficiently low density silicone, molded open cell polyurethane, and like polymeric materials.
- venting member 160 examples include a base portion nearest the central body 100 , a tapered portion furthest from the central body, and an annular recess in between the tapered portion and the central body.
- the tapered portion may facilitate the insertion of the flexible sleeve 150 over the venting member 160 and the annular recess may facilitate retention of the flexible sleeve after it is so inserted.
- the venting member 160 may have any shape in alternative embodiments, be it cylindrical, spherical, tapered, irregular, or other.
- the rear cannula 140 may communicate with, and in the embodiment shown, extend out of, the central body 100 , and through the venting member 160 .
- the rear cannula 140 may terminate at a tapered or pointed end 142 , which is adapted to be inserted into a fluid sample tube (shown in FIG. 4 ), or connected to a fluid collection reservoir.
- a flexible sleeve 150 may be disposed over and around the rear cannula 140 .
- the flexible sleeve 150 may be stretched over the tapered portion on the end of the venting member 160 , or in alternate embodiments, otherwise contact the venting member 160 .
- the flexible sleeve 150 may be made of a shape memory material, such as elastic rubber or elastomeric silicone or latex, or the like, which will return to the shape shown in FIG. 2 as long as no other structure obstructs it. Examples of materials that may be used to construct the flexible sleeve 150 are discussed in U.S. Pat. No. 3,877,465 to Miyake, U.S. Pat. No. 5,086,780 to Schmitt, U.S. Pat. No. 6,110,160 to Farber, U.S. Pat. No. 6,533,760 to Leong, U.S. Patent Pub. No. US 2002/0004647 A1 to Leong, and U.S. Patent Pub. No. US 2003/0078544 A1 to Chen, each of which is hereby incorporated by reference. It is appreciated that any suitable material may be used for the flexible sleeve without departing from the intended scope of the present invention.
- a shape memory material such as elastic rubber or elastomeric silicone or latex
- a generally cylindrical guide tube 116 may be connected to the threaded connector 112 by interlocking threads 114 and 120 , respectively.
- the guide tube 116 When connected to the central body 100 , the guide tube 116 may have an open end 118 adapted to receive a fluid sample container (shown in FIG. 4 ).
- the guide tube 116 may extend coaxially with the rear cannula 140 sufficiently beyond the tapered end 142 of the rear cannula to provide some degree of protection against inadvertent “needle sticks” by a user of the blood-drawing device 10 as well as to guide the reception of a fluid sample container.
- the tapered end 132 of the front cannula 130 may be inserted into a fluid containing body lumen prior to the insertion of a fluid sample container into the guide tube 116 .
- the front cannula 130 is inserted into a lumen containing a visually detectable fluid, such as blood.
- the internal passages within the blood-drawing device i.e., the passage through the front cannula 130 , the fluid passage 110 , the passage through the rear cannula 140 , and the space inside the flexible sleeve 150
- the front cannula 130 establishes communication with the fluid in the body lumen
- fluid pressure in the lumen may force the fluid through the front cannula 130 towards the fluid passage 110 .
- the flow of fluid 200 through the front cannula may begin to compress the air in the fluid passage 110 , the rear cannula 140 , and the space between the rear cannula and the flexible sleeve 150 , driving the air towards the venting member 160 .
- venting member 160 i.e., be vented
- flash may be detected at any point along the device that includes a transparent or translucent member, which may include, but not be limited to, a transparent or translucent cannula, central body, I.V. tubing, flexible sleeve, or other constituent member.
- a transparent or translucent member which may include, but not be limited to, a transparent or translucent cannula, central body, I.V. tubing, flexible sleeve, or other constituent member.
- the blood drawing device 10 may provide for detection of “flash” when the front cannula 130 is inserted into a body lumen (such as a vein) containing fluid (such as blood) to be withdrawn prior to the insertion of a fluid sample container into the guide tube 116 and the penetration of the rear cannula into the fluid sample container.
- a body lumen such as a vein
- fluid such as blood
- a fluid sample container 170 may be used to collect a sample of the fluid flowing from the body lumen.
- the fluid sample container 170 may have a generally cylindrical outer wall, which is preferably, but not necessarily, transparent.
- the outer wall may define a collection chamber 174 , which is preferably maintained in a vacuum condition prior to use of the container 170 .
- a stopper 172 may be used to seal the open end of the container 170 so as to prevent air leakage into the collection chamber 174 prior to use of the container.
- a commercially available vacuum container that may be used with various embodiments of the invention is a Vacutainer sold by Becton Dickinson & Co. of Franklin Lakes, N.J. Construction of vacuum containers, such as the one noted above, and the selection of materials therefore, are well known in the art.
- the container 170 may be slid into the guide tube 116 through the opening 118 until it contacts the flexible sleeve 150 .
- the tapered end 142 of the rear cannula presses into and pierces both the flexible sleeve 150 and the stopper 172 .
- the flexible sleeve is pushed down towards, and may gather around, the venting member 160 , as shown in FIG. 4 .
- the pressurized fluid in the body lumen may readily flow through the blood-drawing device 10 to the vacuum space in the collection chamber 174 .
- a first container 170 After a first container 170 is full of fluid, it may be removed from the blood drawing device 10 for replacement by a second container. As the first container 170 is withdrawn from the guide tube 116 , the flexible sleeve 150 may follow until it regains its original shape because it is constructed of shape memory material. The openings in the stopper 172 and the flexible sleeve 150 , which were created by the rear cannula 140 , may collapse or “heal” when the rear cannula is removed due to the nature of the material used to construct the stopper and the flexible sleeve. As a result, the fluid sample in the first container 170 may be sealed within it, and the fluid within the flexible sleeve 150 may be prevented from substantially leaking out of it. Thereafter, a second container 170 may be inserted into the guide tube 116 for collection of a fluid sample in the manner described above.
- FIG. 5A A second embodiment of the present invention is shown in an exploded side view in FIG. 5A .
- a Luer-type blood-drawing device is provided with a venting member 160 .
- the central body 100 may be provided with an enlarged fluid passage 110 which may improve flash visibility.
- the enlarged fluid passage could have any of a number of different shapes and sizes, which may be uniform or non-uniform over the length of the passage.
- the fluid passage 110 in each embodiment of the invention described herein could have any of a variety of shapes and sizes without departing from the intended scope of the invention.
- the butterfly needle 180 may be connected to the Luer-type hub 102 via a butterfly connection tube 182 .
- the butterfly needle 180 may include a butterfly (i.e., front) cannula 184 and one or more wings 186 .
- the butterfly cannula 184 may be inserted directly into the body lumen for blood collection. Flash may be observed in the transparent or translucent butterfly connection tube 182 , in which case the central body 100 need not be transparent or translucent (although it could be).
- known butterfly needles may use a butterfly connection tube 182 approximately 12 or more inches in length. This length of tubing is used so as to provide a sufficiently long column of air to permit flash observation when the blood-drawing device 10 is not provided with an air vent.
- the flow of fluid through the butterfly needle may compress the volume of air in the butterfly connection tube 182 , the fluid passage 110 , the rear cannula 140 , and the space between the rear cannula and the flexible sleeve 150 . Because there is no vent provided, as blood flows into the device, the air in the device exerts an increasing level of backpressure on the blood, which may prevent blood flow and flash detection.
- butterfly connection tube approximately 12 inches in length or greater increases the relative volume of air in the blood collection device.
- the increased volume of air in the device may permit flash detection before the air backpressure in the device rises to a level that prevents further blood flow into the device and could frustrate flash detection.
- Butterfly connection tubes of this length may be coiled in packaging, and retain some coil memory after they are removed from their packaging.
- Previously coiled butterfly connection tubes may resist being straightened for use and have an inherent bias towards returning to their coiled shape. Accordingly, manipulation of a butterfly needle attached to a previously coiled butterfly connection tube may be difficult due to the connection tube's tendency to recoil. This action can be the cause of accidental needle sticks for the healthcare worker and the patient.
- the coil memory of the tubing may make handling generally difficult for lumen insertion, and/or maintenance of the needle in the lumen.
- the butterfly connection tube 182 used in the device shown in FIG. 5A may be less than approximately 12 inches in length, and more preferably, may be only a few inches in length as a result of the inclusion of a venting member 160 in the blood-drawing device 10 .
- the inclusion of the venting member 160 may obviate the need for a relatively long column of air in the butterfly connection tube that otherwise may be needed to indicate flash.
- the use of a shortened butterfly connection tube 182 may also obviate the need to coil the tube prior to use, thereby eliminating the issues associated with coil memory in the tube, as well as make it possible to use rigid or semi-rigid connection tubes that may better enable placement of the front cannula into the body lumen.
- a butterfly needle 180 may optionally be provided with a blood flow control member 190 .
- the blood flow control member 190 may include a slideable control valve 188 surrounding the distal end of the butterfly connection tube 182 and the butterfly cannula 184 .
- the slideable control valve 188 may include an inner convex boss 189 adapted to restrict flow through the butterfly cannula 184 when positioned near the inner butterfly cannula end 185 .
- Flow through the butterfly cannula 184 may be controlled by manually sliding the control valve 188 so that the inner convex boss 189 is nearer to or more removed from the inner butterfly cannula end 185 .
- the slideable control valve 188 may completely or partially shield the distal end of the butterfly cannula 184 when it is positioned to block or restrict flow through the butterfly cannula. Control over blood flow through the butterfly cannula 184 may be used to avoid collapsing small or low pressure lumens (typical of children and the elderly) during negative pressure conditions experience during blood drawing procedures. It is appreciated that the blood flow control member 190 could optionally be used with other embodiments of the present invention that do not incorporate a butterfly needle. It is also appreciated that the flow control member 190 may be used with any conventional I.V. infusion or fluid drawing device. It is further appreciated that alternative control valve 188 designs are known in the art and may be substituted for the afore-described design without departing from the intended scope of the present invention.
- the butterfly needle 180 may be modified to eliminate the butterfly wings 186 without departing from the intended scope of the invention. More specifically, the embodiment shown in FIG. 5A could be modified so that the butterfly cannula 184 is replaced by a conventional front cannula, which may be connected to the central body 100 by any elements, including but not limited to a flexible tube, rigid tube, or semi-rigid tube, any one of which may be constructed of transparent or translucent material to indicate flash.
- FIG. 5B A variation of the embodiment of the present invention shown in FIG. 5A is shown in FIG. 5B , in which the butterfly needle 180 is replaced by a front cannula 130 connected directly to the Luer-type hub 102 .
- the Luer-type hub 102 is adapted to connect to the Luer-type central body 100 in accordance with known methods.
- FIG. 6 A third embodiment of the present invention is shown in FIG. 6 .
- a porous member 160 may be inserted over the rear cannula 140 and slightly separated from the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140 ), leaving a small space 161 between the central body and the porous member.
- the porous member 160 itself, and/or the seal it forms against the rear cannula, may not completely prevent blood from escaping past the porous member.
- the porous member 160 may be constructed of material that is porous to gas (air) and somewhat, but not perfectly, non-porous to blood.
- the porous member 160 may preferably include a tapered portion, however, it is appreciated that the porous member may have any alternative shape, such as cylindrical, spherical, irregular, or the like, without departing from the intended scope of the invention.
- a gas or air porous and/or liquid absorbent spacer 168 may be inserted behind the porous member 160 in the space 161 .
- the porous spacer 168 may be constructed of any of a number of materials that are porous to gas (air), and partially, substantially, or completely non-porous to liquids such as blood, and/or partially or completely absorbent of such liquids.
- the porous spacer 168 may be constructed of sintered, layered, rolled, foamed, perforated, or impregnated hydrophyllic/hydrophobic compositions, porous polyethylene, porous polypropylene, absorbent paper, molded fiber fiberglass, felt, granular starch, cellulose, polyacrylamide gel, hydrogel, or the like. It is appreciated that in some embodiments the porous spacer 168 may permit some blood seepage past it, however, it is expected that the porous spacer may reduce or slow such seepage.
- the flexible sleeve 150 may be stretched over the porous member 160 and a portion, or none, of the porous spacer 168 , so long as at least of portion of the porous spacer remains in communication with the ambient.
- FIG. 7 A fourth embodiment of the present invention is shown in FIG. 7 .
- a rear cannula 140 , non-porous member 162 , and air space 161 arrangement similar to that shown in FIG. 6 , are used.
- the flexible sleeve 150 is modified from that shown in earlier embodiments to include a side tubulation 154 and a porous insert 152 .
- the porous insert 152 may be any size and may be constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like. It is appreciated that in some embodiments the porous insert 152 may permit some blood seepage past it, however, it is expected that the porous insert may reduce or slow such seepage.
- FIGS. 8 and 10 A fifth embodiment of the present invention is shown in FIGS. 8 and 10 .
- a non-porous venting member 166 may be inserted over the rear cannula 140 and slightly separated from the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140 ), by a porous spacer 168 between the central body and the non-porous venting member.
- the non-porous venting member 166 may form a seal against the rear cannula that is sufficient to prevent blood from escaping past the non-porous venting member along its surface in contact with the rear cannula.
- the non-porous venting member 166 may be constructed of material, such as plastic suitable for medical use, which is non-porous to both gas (air) and blood.
- the outer surface of the non-porous venting member 166 may include one or more grooves, channels, bumps, or like features 167 (collectively “venting features 167 ”) that permit the passage of air. It is appreciated that the venting features 167 may be very small (of a size capable of permitting the passage of air molecules). Such small venting features may inherently restrict the passage of blood molecules, which typically may be larger that air molecules.
- the non-porous venting member 166 may preferably have a tapered tip and adapted to receive a flexible sleeve 150 stretched over it.
- a porous spacer 168 may be inserted between the non-porous venting member 166 and the central body 100 .
- the porous spacer may be constructed of any of a number of materials that are porous to gas (air), and partially, substantially, or completely non-porous to liquids such as blood.
- the porous spacer 168 may be constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like. It is appreciated that in some embodiments the porous spacer 168 may permit some blood seepage past it, however, it is expected that the porous spacer may reduce or slow such seepage.
- the flexible sleeve 150 may be stretched over the non-porous venting collar 166 and at least a portion of the porous spacer 168 such that at least of portion of the porous spacer remains in direct communication with the ambient.
- Air in the blood drawing device may vent from the interior of the sleeve 150 past the venting features 167 on the non-porous venting member 166 and through the porous spacer 168 to the ambient when the device is used to draw blood.
- Blood within the sleeve 150 may be prevented however, at least initially, from passing the porous spacer 168 as a result of the nature of the material in the porous spacer and the relatively small passageways provided by the venting features 167 .
- FIG. 9 A sixth embodiment of the present invention is shown in FIG. 9 .
- an air-permeable, completely or partially blood-impermeable flexible sleeve 151 is provided.
- the air-permeable sleeve 151 may be used in conjunction with or independently of the above-referenced embodiments of the present invention.
- a known flexible sleeve is described in U.S. Pat. No. 3,877,465 to Miyake, incorporated by reference above.
- the elastic sheath material making up the wall of the sleeve 151 may be constructed of a material that is largely air-permeable, but partially, largely or entirely impermeable to blood.
- the air-permeable sleeve 151 may be used to isolate the rear cannula 140 of a blood drawing device from the ambient in the same manner as conventional sleeve may isolate rear cannulae.
- blood from a lumen may be slowed or prevented from entering the device due to air back pressure in the device. In these devices the air in the device may be trapped because there is no vent provided.
- an air-permeable sleeve 151 replaces a conventional sleeve on the blood drawing device.
- the air-permeable sleeve 151 may provide a pathway to vent air from the device interior, through the sleeve wall, to the ambient. As the air is vented, the blood filling the device may contact the air-permeable sleeve 151 . However, the air-permeable sleeve 151 may prevent or retard the flow of blood through its wall because the pore size of the air-permeable sleeve may be large enough to allow the passage of air, but too small to allow much or any blood to pass. This air passage-blood blockage may permit blood to fill the needle and/or the sleeve 151 more readily because there is reduced or no air back pressure inhibiting the flow of blood into the blood drawing device.
- a blood drawing device equipped with the air-permeable sleeve 151 may indicate flash (the visual indication of blood flow into the needle) more readily.
- the air-permeable sleeve 151 may be used with conventional needle drawing or infusion sets (such as butterfly needles), hypodermic needles, or the like, to enhance flash indication.
- the air-permeable sleeve 151 may be made of any suitable material that is completely or at least partially air-permeable and substantially blood impermeable, such as for example, low density polyethylene or low density rubber.
- suitable material such as for example, low density polyethylene or low density rubber.
- One example of a method of making such material is described in U.S. Pat. No. 5,641,442.
- a second example may be made of crumbed material of sufficiently low density/high flexibility to allow the required flexibility in spite of the use of thermal binders like polyethylene.
- Low density material such as low density silicone may be sifted using a #80 mesh and mixed with #100 mesh low density polyethylene. This mixture may be heated at approximately 280° F. and injected into a cavity mold to form the selectively porous sleeve 151 .
- An air-permeable sleeve may be constructed of porous material formed from the combination of a hydrophobic porous material with a hydrophilic porous agent.
- the hydrophobic porous material for example, may be a polymeric matrix of either thermoplastic resins such as polyvinyl chloride or copolymers thereof, or synthetic or natural thermosetting rubber-like polymers.
- the polymeric matrix may be rubber-like polymers combined with additives such as anti-degradants, cross-linking agents, cure inhibitors, platinum and other type catalysts, inert fillers, or like materials used to compound thermosetting compounds, and intimately mixed with a hydrophilic porous agent such as silica hydrogel, precipitated hydrated silica, for example such as that sold under the trademark Hi-Sil from PPG Industries, or polyacrylamide gel, cross-linked homopolymer of acrylamide, for example such as that sold under the trademark Agrosoake from Agrosoake International, inert fillers and/or water or solvent soluble porosics.
- additives such as anti-degradants, cross-linking agents, cure inhibitors, platinum and other type catalysts, inert fillers, or like materials used to compound thermosetting compounds, and intimately mixed with a hydrophilic porous agent such as silica hydrogel, precipitated hydrated silica, for example such as that sold under the trademark Hi-Sil from PPG Industries, or
- the polymeric matrix may be made of a synthetic or natural thermosetting polymer or copolymer, such as those that may be made in accordance with the methods disclosed in U.S. Pat. No. 4,548,835 to Takahashi, et al. and U.S. Pat. No. 4,153,760 to Sundberg et al, for example, each of which is hereby incorporated by reference.
- the porous agent may be prepared by polymerizing acrylamide in the presence of an aqueous sodium carbonate to produce a partially hydrolyzed, lightly cross-linked, polyacrylamide gel in accordance with the method disclosed in U.S. Pat. No. 3,022,279 to Proffitt, for example, which is hereby incorporated by reference.
- the polyacrylamide gel may be produced in bead or granular form using an inverse suspension polymerization method for water-soluble monomer, which is disclosed in U.S. Pat. No. 2,982,749 to Friedrich et al., for example, and which is hereby incorporated by reference.
- the hydrophilic granules may be added to the hydrophobic material in sufficient quantities to create a hydrophilic/hydrophobic porous material.
- the porosity of the hydrophobic material may be manifested by a network of voids/pores extending throughout the matrix or binder, between neighboring particles of the dispersed filler and portions of the polymeric matrix, which may be achieved by the shrinking of the swollen hydrophilic granules during the dehydration/curing phase.
- the resultant degree of porosity may be controlled by the amount of water or water substitute added to the polymeric matrix binder material during the mixing phase, the vulcanization of the polymeric matrix (such as for example, under hydrostatic conditions in a steam autoclave to a state of cure using the pressurized steam as a source of heat), the proportion and size of the hydrophilic granules added, the duration of the mixing phase, and the wall thickness of the elastomeric sleeve.
- the hydrophilic granules may be mixed with a normally hydrophobic binder (and water or a water substitute may be added to control porosity) in a mixing type extruder.
- this material When this material is formed into an air-permeable flexible sleeve 151 , water-based liquids such as blood may rapidly soak into the pores/voids containing the granular material, causing the granules to swell and seal the pores/voids contained within the polymeric matrix.
- the air-permeable flexible sleeve which is initially permeable to air, may become relatively impermeable to liquids, such as blood, due to the swelling of the moisture reactive granules entrapped within the pores/voids within the polymeric matrix.
- FIGS. 11 and 12 A seventh embodiment of the present invention is shown in FIGS. 11 and 12 .
- a flexible sleeve 150 may be provided with one or more openings or perforations 156 extending through the wall of the sleeve.
- the openings 156 may be relatively small, only needing to be capable of permitting the passage of air molecules.
- a porous collar 157 constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like, may be provided over the openings 156 .
- the flexible sleeve 150 may be stretched over the non-porous member inserted over the rear cannula, (such as non-porous member 162 shown in FIG. 7 ).
- Air in the blood drawing device may vent from the interior of the sleeve 150 past the openings 156 in the flexible sleeve wall and through the porous collar 157 to the ambient when the device is used to draw blood. Blood within the sleeve 150 is prevented however, at least initially, from passing the porous collar 157 as a result of the nature of the material making up the porous collar and potentially by the relatively small passageways provided by the openings 156 .
- FIG. 14 An alternative embodiment of the present invention is shown in FIG. 14 , in which the venting member 160 is spaced from the central body 100 and the flexible sleeve 150 envelopes the entire side wall of the venting member. A portion of the base end wall of the venting member 160 is exposed to the ambient to permit air to vent.
- a porous spacer 168 may be disposed in the air space 161 to block or absorb any blood seepage past the venting member.
- Each of the embodiments of the present invention shown in all of the afore-noted figures may also utilize a transparent or translucent flexible sleeve 150 to provide flash detection.
- a transparent sleeve is disclosed in U.S. Pat. No. 3,886,930 to Ryan, which is hereby incorporated by reference.
- Use of a transparent or translucent sleeve 150 may make it unnecessary for the central body 100 or other elements of the device to be constructed of transparent or translucent material because the flash may be detected through the wall of the sleeve itself and thereby allow for the retrofitting of known blood-drawing devices to provide air venting and flash detection without other modification of the device.
- a transparent or translucent sleeve 150 may also obviate the need to have discreet front and rear cannulae 130 and 140 .
- the front and rear cannulae may be constructed from a single integral piece of material because in this embodiment of the invention there may be no need to view flash in the central body 100 .
- porous member 160 FIGS. 1-6
- porous collar 157 FIGS. 11-12
- porous insert 152 FIG. 7
- porous spacer 168 FIGS. 6 , 8 and 10
- Such materials include absorbent pleated or rolled paper, molded fiber or fiberglass, felt, sintered compositions of hydrophilic/hydrophobic materials such as polyethylene and polyacrylamide gel, and/or any other material capable of venting air but impeding the passage of liquids.
- hydrophilic and/or hydrophobic substances such as polyethylene and granular starch, cellulose, polyacrylamide gel, or the like may be used.
- Such substances are known in the art, and may be used to permit gas (e.g., air) to flow through them, but absorb or block liquid substances.
- a porous member, collar, insert, or spacer, comprised of these materials may be used to permit the air in a blood drawing device to vent past it until it is contacted by a liquid, such as blood, at which time the blood may be absorbed.
- glass powder or fiber may be used to simulate clotting, or a clotting agent, such as dilute Russell Viper Venom, may be used to permit air venting with little or reduced blood seepage.
- Russell Viper Venom is known in the art as a clotting agent.
- a porous member, collar, insert, or spacer impregnated with a clotting agent or simulating clotting agent may be used to permit the air in a blood drawing device to vent until it is contacted by blood, at which time the blood may clot or act as clotted and reduce further blood seepage through the porous member, collar, insert or spacer.
- use of hydrophilic and/or clotting agents in the previously described porous member, collar, insert, or spacer may permit improved blood flow into a blood drawing device and flash detection.
- various embodiments of the invention may include any type of means for venting air disposed between a flexible sleeve covering the rear cannula of a blood drawing device and an ambient, including, but not limited to one or more air porous materials provided individually or in combination, and/or combinations of air porous and non-air porous materials.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Vascular Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
- The present invention relates to an apparatus for drawing bodily fluids, and particularly blood, from an animal.
- Intravenous blood collection assemblies have long been used to draw bodily fluids, such as blood, from patients. With respect to drawing blood in particular, the vessel or lumen from which the blood is drawn is often rather small and or not visible. If the needle tip is not in communication with the interior of the blood vessel during the procedure, the procedure is likely to be unsuccessful, causing error, undermining the integrity of the specimen, and the patient may be harmed additionally by the penetration of delicate underlying structures. Accordingly, confirmation of accurate placement of the needle tip into a blood vessel is desirable for blood drawing procedures.
- Past intravenous blood collection assemblies have included mechanisms for indicating when a needle tip is in communication with the interior of a blood vessel. These needle kits have included a transparent portion in the needle body from which the presence of blood can be observed. The observation of blood in the needle body is known as “flash.” Flash detection has been less than satisfactory for many such collection assemblies. In some instances, the flow of blood into the transparent portion of the needle body is impeded by air backpressure in the needle, and thus flash confirmation is not visible or delayed. This delay can impede the determination of the precise moment at which the needle tip enters the blood vessel, which may cause the healthcare worker inserting the needle to miss or perforate the vessel and penetrate into delicate surrounding structures. In other instances, while flash occurs, the visual indication of flash is not easily detected because the amount of flash is small or obscured due to the positioning of the collection assembly. Accordingly, there is a need for a blood-drawing device that provides flash relatively rapidly and to an extent that a user may readily detect it.
- Responsive to the foregoing challenges, Applicant has developed an innovative device for drawing fluid from a lumen, comprising: a central body having an outer wall and an inner fluid passage; a front cannula communicating with the inner fluid passage; a rear cannula communicating with the inner fluid passage; a transparent or translucent sleeve surrounding at least a tip portion of the rear cannula; and a means for venting air disposed between the sleeve and an ambient.
- Applicant has further developed an innovative device for drawing blood from a blood vessel, comprising: a central body; a front cannula extending into the central body; a rear cannula having a tip portion, said rear cannula extending into the central body and communicating with the front cannula; a transparent or translucent flexible sleeve surrounding the rear cannula tip portion and defining an air space between the rear cannula tip portion and the flexible sleeve; and a venting member disposed between the air space and an ambient.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
- In order to assist the understanding of this invention, reference will now be made to the appended drawings, in which like reference characters refer to like elements.
-
FIG. 1 is an exploded pictorial side view of a first embodiment of the present invention. -
FIG. 2 is a side view in cross-section of the first embodiment of the present invention prior to the insertion of a sample collection tube. -
FIG. 3 is a side view in cross-section of the rear cannula portion of the first embodiment of the present invention. -
FIG. 4 is a side view in cross-section of the first embodiment of the present invention after the insertion of a sample collection tube. -
FIG. 5A is a side view in cross-section of a second embodiment of the present invention incorporated into a Luer-type blood drawing device in combination with a standard hypodermic needle or I.V. infusion set (“butterfly needle”). -
FIG. 5B is a side view in cross-section of an alternative Luer-type hub for use with the Luer-type blood drawing device shown inFIG. 5A . -
FIG. 6 is a side view in cross-section of a third embodiment of the present invention. -
FIG. 7 is a side view in cross-section of the rear cannula portion of a fourth embodiment of the present invention. -
FIG. 8 is a side view in cross-section of the rear cannula portion of a fifth embodiment of the present invention. -
FIG. 9 is a side view of a flexible sleeve constructed in accordance with a sixth embodiment of the present invention. -
FIG. 10 is a pictorial view of the venting member and porous spacer shown inFIG. 8 . -
FIG. 11 is a pictorial view of a seventh embodiment of the present invention. -
FIG. 12 is a pictorial view of the porous collar shown inFIG. 11 . -
FIG. 13 is a side view in cross-section of a blood flow control mechanism that may be used with various embodiments of the present invention and/or independently in accordance with an eighth embodiment of the invention. -
FIG. 14 is a side view in cross-section of a rear cannula portion of a ninth embodiment of the present invention. - Reference will now be made in detail to a first embodiment of the present invention, an example of which is illustrated in the accompanying drawings. With reference to
FIG. 1 , an exploded pictorial view of a blood-drawing device 10 is shown. The blood-drawing device 10 includes afront cannula 130, acentral body 100, aventing member 160, arear cannula 140, and aflexible sleeve 150. Aguide tube 116 may be connected to thecentral body 100. Thefront cannula 130 and therear cannula 140 may each have a generally elongated cylindrical body defining an elongated fluid passage extending from one end of the cannula to the other end. Thefront cannula 130 may extend from the front end of thecentral body 100 and terminate at a tapered orpointed end 132, which is adapted to be inserted into a lumen. Therear cannula 140 may extend from the rear of thecentral body 100 and terminate at a tapered orpointed end 142. Thesleeve 150 may isolate therear cannula 140 from the ambient, wherein the ambient includes any space outside of thesleeve 150, irrespective of whether or not the space is contained within theguide tube 116 or any other structure. - With reference to
FIGS. 1 and 2 , thecentral body 100 may include one or more constituent elements, such as a threadedconnector 112, which may be integrally formed with, or connected to the central body using adhesive, male-female interfaces, threaded interfaces, or any other connection means. Thecentral body 100 may include anannular ring 104, radiatingfins 105, or like features, extending from the central body and which may be adapted to aid a user in handling thedevice 10. Afluid passage 110 within thecentral body 100 may communicate with, and in the embodiment shown, be connected to, theinner portion 134 of thefront cannula 130 and theinner portion 144 of therear cannula 140, respectively, using adhesive, threaded interfaces, pressure fit, or other connection means. Alternatively, thecentral body 100 may be integrally formed with the front and/orrear cannulae fluid passage 110 may be defined by the opening within the central body between the front and rear cannulae when the cannulae are directly connected to the central body. Thefluid passage 110 may be adapted to receive a sufficient amount of fluid to allow observation of the fluid (i.e., “flash”) from outside the blood-drawing device 10. At the same time, thefluid passage 110 may have a sufficiently small volume so as to rapidly fill with fluid during the use of the blood-drawing device. - Preferably, the
central body 100 may be constructed of plastic material suitable for medical use. Further, in the first embodiment of the present invention, all, or portions, of thecentral body 100 may be transparent, translucent, connected to transparent or translucent I.V. tubing, or otherwise adapted to permit detection of fluids passing through the central body and/or I.V. tubing from a vantage point outside of the blood-drawing device 10. For example, with particular reference toFIG. 1 , thecentral body 100 may include a transparent wall that is adapted to permit the observation of “flash” when it occurs. In an alternate embodiment of the present invention, the side wall of thecentral body 100 also may be adapted to magnify or otherwise enhance the detection of fluid passing through the central body, although it is appreciated that a magnifying or enhancement feature is not necessarily required. - With particular reference to
FIG. 2 , the venting member 160 (i.e., a means for venting air) may be inserted over therear cannula 140 and pressed against or near to the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140). Theventing member 160 may form a seal against the rear cannula that is sufficient to prevent blood from escaping past the venting member. In the first embodiment of the present invention, the ventingmember 160 may be gas, and particularly air, permeable, but at least partially impermeable to a liquid, such as blood. Preferably, the ventingmember 160 may be substantially porous for gas constituents less than about 5 microns in size, and substantially non-porous for liquid constituents about 5 microns or greater in size, however, it is appreciated that these approximate sizes should not be limiting for the invention. The ventingmember 160 may be constructed of any of a number of materials that provide the desired level of porosity, which may include, but are not limited to sintered, layered, rolled, foamed, perforated, or impregnated, hydrophyllic/hydrophobic compositions, porous polyethylene, porous polypropylene, porous polyfluorocarbon, absorbent paper, materials impregnated with dilute Russell Viper venom molded fiber, fiberglass, felt, granular starch, cellulose, polyacrylamide gel, hydrogel, a molded admixture of porous hydrophobic/hydrophyllic granules and sufficiently low density silicone, molded open cell polyurethane, and like polymeric materials. Examples of materials that may be used to construct the venting (i.e., porous)member 160 are discussed in U.S. Pat. No. 4,207,870 to Eldridge, and U.S. Pat. No. 4,340,068 to Kaufman, each of which are hereby incorporated by reference. The ventingmember 160 shown inFIG. 2 includes a base portion nearest thecentral body 100, a tapered portion furthest from the central body, and an annular recess in between the tapered portion and the central body. The tapered portion may facilitate the insertion of theflexible sleeve 150 over the ventingmember 160 and the annular recess may facilitate retention of the flexible sleeve after it is so inserted. It is also appreciated that the ventingmember 160 may have any shape in alternative embodiments, be it cylindrical, spherical, tapered, irregular, or other. - The
rear cannula 140 may communicate with, and in the embodiment shown, extend out of, thecentral body 100, and through the ventingmember 160. Therear cannula 140 may terminate at a tapered orpointed end 142, which is adapted to be inserted into a fluid sample tube (shown inFIG. 4 ), or connected to a fluid collection reservoir. Aflexible sleeve 150 may be disposed over and around therear cannula 140. Theflexible sleeve 150 may be stretched over the tapered portion on the end of the ventingmember 160, or in alternate embodiments, otherwise contact the ventingmember 160. Theflexible sleeve 150 may be made of a shape memory material, such as elastic rubber or elastomeric silicone or latex, or the like, which will return to the shape shown inFIG. 2 as long as no other structure obstructs it. Examples of materials that may be used to construct theflexible sleeve 150 are discussed in U.S. Pat. No. 3,877,465 to Miyake, U.S. Pat. No. 5,086,780 to Schmitt, U.S. Pat. No. 6,110,160 to Farber, U.S. Pat. No. 6,533,760 to Leong, U.S. Patent Pub. No. US 2002/0004647 A1 to Leong, and U.S. Patent Pub. No. US 2003/0078544 A1 to Chen, each of which is hereby incorporated by reference. It is appreciated that any suitable material may be used for the flexible sleeve without departing from the intended scope of the present invention. - A generally
cylindrical guide tube 116 may be connected to the threadedconnector 112 by interlockingthreads central body 100, theguide tube 116 may have anopen end 118 adapted to receive a fluid sample container (shown inFIG. 4 ). Theguide tube 116 may extend coaxially with therear cannula 140 sufficiently beyond thetapered end 142 of the rear cannula to provide some degree of protection against inadvertent “needle sticks” by a user of the blood-drawingdevice 10 as well as to guide the reception of a fluid sample container. - The function of the first embodiment of the blood-drawing
device 10 will now be described with reference toFIGS. 2-4 . With reference toFIG. 2 , thetapered end 132 of the front cannula 130 (or some extension thereof) may be inserted into a fluid containing body lumen prior to the insertion of a fluid sample container into theguide tube 116. In a preferred embodiment of the present invention, thefront cannula 130 is inserted into a lumen containing a visually detectable fluid, such as blood. At the time that thefront cannula 130 is inserted into the body lumen, it is assumed that the internal passages within the blood-drawing device (i.e., the passage through thefront cannula 130, thefluid passage 110, the passage through therear cannula 140, and the space inside the flexible sleeve 150) may be filled with atmospheric air or some other gas. When thefront cannula 130 establishes communication with the fluid in the body lumen, fluid pressure in the lumen may force the fluid through thefront cannula 130 towards thefluid passage 110. - With reference to
FIG. 3 , the flow offluid 200 through the front cannula may begin to compress the air in thefluid passage 110, therear cannula 140, and the space between the rear cannula and theflexible sleeve 150, driving the air towards the ventingmember 160. As blood flows into the device, all or a portion of the air in the device may flow through venting member 160 (i.e., be vented) because the venting member is gas permeable. As a result, there may be insufficient air pressure within thefluid passage 110 to resist the flow of the fluid 200 into thefluid passage 110, where it may be detected or observed as “flash” by a user. It is appreciated that “flash” may be detected at any point along the device that includes a transparent or translucent member, which may include, but not be limited to, a transparent or translucent cannula, central body, I.V. tubing, flexible sleeve, or other constituent member. After fluid fills theblood drawing device 10 and reaches the ventingmember 160, fluid leakage past the venting member may be prevented or reduced because the venting member may be at least partially impermeable to liquids, such as blood. As a result, theblood drawing device 10 may provide for detection of “flash” when thefront cannula 130 is inserted into a body lumen (such as a vein) containing fluid (such as blood) to be withdrawn prior to the insertion of a fluid sample container into theguide tube 116 and the penetration of the rear cannula into the fluid sample container. - With reference to
FIG. 4 , after the detection of “flash” within thefluid passage 110, afluid sample container 170 may be used to collect a sample of the fluid flowing from the body lumen. Thefluid sample container 170 may have a generally cylindrical outer wall, which is preferably, but not necessarily, transparent. The outer wall may define acollection chamber 174, which is preferably maintained in a vacuum condition prior to use of thecontainer 170. Astopper 172 may be used to seal the open end of thecontainer 170 so as to prevent air leakage into thecollection chamber 174 prior to use of the container. One example of a commercially available vacuum container that may be used with various embodiments of the invention is a Vacutainer sold by Becton Dickinson & Co. of Franklin Lakes, N.J. Construction of vacuum containers, such as the one noted above, and the selection of materials therefore, are well known in the art. - In order to collect a fluid sample, the
container 170 may be slid into theguide tube 116 through theopening 118 until it contacts theflexible sleeve 150. As thecontainer 170 is pushed further into theguide tube 116, thetapered end 142 of the rear cannula presses into and pierces both theflexible sleeve 150 and thestopper 172. The flexible sleeve is pushed down towards, and may gather around, the ventingmember 160, as shown inFIG. 4 . When thetapered end 142 of therear cannula 140 is past thestopper 172, the pressurized fluid in the body lumen may readily flow through the blood-drawingdevice 10 to the vacuum space in thecollection chamber 174. - After a
first container 170 is full of fluid, it may be removed from theblood drawing device 10 for replacement by a second container. As thefirst container 170 is withdrawn from theguide tube 116, theflexible sleeve 150 may follow until it regains its original shape because it is constructed of shape memory material. The openings in thestopper 172 and theflexible sleeve 150, which were created by therear cannula 140, may collapse or “heal” when the rear cannula is removed due to the nature of the material used to construct the stopper and the flexible sleeve. As a result, the fluid sample in thefirst container 170 may be sealed within it, and the fluid within theflexible sleeve 150 may be prevented from substantially leaking out of it. Thereafter, asecond container 170 may be inserted into theguide tube 116 for collection of a fluid sample in the manner described above. - A second embodiment of the present invention is shown in an exploded side view in
FIG. 5A . With reference toFIG. 5A , a Luer-type blood-drawing device is provided with a ventingmember 160. Thecentral body 100 may be provided with anenlarged fluid passage 110 which may improve flash visibility. It is appreciated that the enlarged fluid passage could have any of a number of different shapes and sizes, which may be uniform or non-uniform over the length of the passage. It is further appreciated that thefluid passage 110 in each embodiment of the invention described herein, could have any of a variety of shapes and sizes without departing from the intended scope of the invention. - The
butterfly needle 180 may be connected to the Luer-type hub 102 via abutterfly connection tube 182. Thebutterfly needle 180 may include a butterfly (i.e., front) cannula 184 and one ormore wings 186. Thebutterfly cannula 184 may be inserted directly into the body lumen for blood collection. Flash may be observed in the transparent or translucentbutterfly connection tube 182, in which case thecentral body 100 need not be transparent or translucent (although it could be). - With continued reference to
FIG. 5A , known butterfly needles may use abutterfly connection tube 182 approximately 12 or more inches in length. This length of tubing is used so as to provide a sufficiently long column of air to permit flash observation when the blood-drawingdevice 10 is not provided with an air vent. Specifically, when a butterfly connection tube is used without an air vent, the flow of fluid through the butterfly needle may compress the volume of air in thebutterfly connection tube 182, thefluid passage 110, therear cannula 140, and the space between the rear cannula and theflexible sleeve 150. Because there is no vent provided, as blood flows into the device, the air in the device exerts an increasing level of backpressure on the blood, which may prevent blood flow and flash detection. The inclusion of a butterfly connection tube approximately 12 inches in length or greater increases the relative volume of air in the blood collection device. The increased volume of air in the device may permit flash detection before the air backpressure in the device rises to a level that prevents further blood flow into the device and could frustrate flash detection. Butterfly connection tubes of this length may be coiled in packaging, and retain some coil memory after they are removed from their packaging. Previously coiled butterfly connection tubes may resist being straightened for use and have an inherent bias towards returning to their coiled shape. Accordingly, manipulation of a butterfly needle attached to a previously coiled butterfly connection tube may be difficult due to the connection tube's tendency to recoil. This action can be the cause of accidental needle sticks for the healthcare worker and the patient. Furthermore, the coil memory of the tubing may make handling generally difficult for lumen insertion, and/or maintenance of the needle in the lumen. - The
butterfly connection tube 182 used in the device shown inFIG. 5A may be less than approximately 12 inches in length, and more preferably, may be only a few inches in length as a result of the inclusion of a ventingmember 160 in the blood-drawingdevice 10. The inclusion of the ventingmember 160 may obviate the need for a relatively long column of air in the butterfly connection tube that otherwise may be needed to indicate flash. The use of a shortenedbutterfly connection tube 182 may also obviate the need to coil the tube prior to use, thereby eliminating the issues associated with coil memory in the tube, as well as make it possible to use rigid or semi-rigid connection tubes that may better enable placement of the front cannula into the body lumen. - With reference to
FIG. 13 , abutterfly needle 180, such as shown inFIG. 5A , may optionally be provided with a bloodflow control member 190. The bloodflow control member 190 may include aslideable control valve 188 surrounding the distal end of thebutterfly connection tube 182 and thebutterfly cannula 184. Theslideable control valve 188 may include an innerconvex boss 189 adapted to restrict flow through thebutterfly cannula 184 when positioned near the innerbutterfly cannula end 185. Flow through thebutterfly cannula 184 may be controlled by manually sliding thecontrol valve 188 so that the innerconvex boss 189 is nearer to or more removed from the innerbutterfly cannula end 185. Theslideable control valve 188 may completely or partially shield the distal end of thebutterfly cannula 184 when it is positioned to block or restrict flow through the butterfly cannula. Control over blood flow through thebutterfly cannula 184 may be used to avoid collapsing small or low pressure lumens (typical of children and the elderly) during negative pressure conditions experience during blood drawing procedures. It is appreciated that the bloodflow control member 190 could optionally be used with other embodiments of the present invention that do not incorporate a butterfly needle. It is also appreciated that theflow control member 190 may be used with any conventional I.V. infusion or fluid drawing device. It is further appreciated thatalternative control valve 188 designs are known in the art and may be substituted for the afore-described design without departing from the intended scope of the present invention. - It is further appreciated that in an alternative embodiment of the present invention shown in
FIG. 5A , thebutterfly needle 180 may be modified to eliminate thebutterfly wings 186 without departing from the intended scope of the invention. More specifically, the embodiment shown inFIG. 5A could be modified so that thebutterfly cannula 184 is replaced by a conventional front cannula, which may be connected to thecentral body 100 by any elements, including but not limited to a flexible tube, rigid tube, or semi-rigid tube, any one of which may be constructed of transparent or translucent material to indicate flash. - A variation of the embodiment of the present invention shown in
FIG. 5A is shown inFIG. 5B , in which thebutterfly needle 180 is replaced by afront cannula 130 connected directly to the Luer-type hub 102. The Luer-type hub 102 is adapted to connect to the Luer-typecentral body 100 in accordance with known methods. - A third embodiment of the present invention is shown in
FIG. 6 . With reference toFIG. 6 , aporous member 160 may be inserted over therear cannula 140 and slightly separated from the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140), leaving asmall space 161 between the central body and the porous member. Theporous member 160, itself, and/or the seal it forms against the rear cannula, may not completely prevent blood from escaping past the porous member. In such instances, theporous member 160 may be constructed of material that is porous to gas (air) and somewhat, but not perfectly, non-porous to blood. Theporous member 160 may preferably include a tapered portion, however, it is appreciated that the porous member may have any alternative shape, such as cylindrical, spherical, irregular, or the like, without departing from the intended scope of the invention. - In embodiments in which the
porous member 160 is not completely non-porous to blood, a gas or air porous and/or liquidabsorbent spacer 168 may be inserted behind theporous member 160 in thespace 161. Theporous spacer 168 may be constructed of any of a number of materials that are porous to gas (air), and partially, substantially, or completely non-porous to liquids such as blood, and/or partially or completely absorbent of such liquids. For example, theporous spacer 168 may be constructed of sintered, layered, rolled, foamed, perforated, or impregnated hydrophyllic/hydrophobic compositions, porous polyethylene, porous polypropylene, absorbent paper, molded fiber fiberglass, felt, granular starch, cellulose, polyacrylamide gel, hydrogel, or the like. It is appreciated that in some embodiments theporous spacer 168 may permit some blood seepage past it, however, it is expected that the porous spacer may reduce or slow such seepage. After theporous spacer 168 is positioned in theair space 161, theflexible sleeve 150 may be stretched over theporous member 160 and a portion, or none, of theporous spacer 168, so long as at least of portion of the porous spacer remains in communication with the ambient. - A fourth embodiment of the present invention is shown in
FIG. 7 . With reference toFIG. 7 , arear cannula 140,non-porous member 162, andair space 161 arrangement, similar to that shown inFIG. 6 , are used. Theflexible sleeve 150 is modified from that shown in earlier embodiments to include aside tubulation 154 and aporous insert 152. Theporous insert 152 may be any size and may be constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like. It is appreciated that in some embodiments theporous insert 152 may permit some blood seepage past it, however, it is expected that the porous insert may reduce or slow such seepage. As a result of the inclusion of theporous insert 152 between the interior of thesleeve 150 and the ambient, air in the blood-drawingdevice 10 may vent from the interior of the sleeve through theporous insert 152 when the device is used to draw blood. Blood within thesleeve 150 may be prevented however, at least initially, from passing theporous insert 152. - A fifth embodiment of the present invention is shown in
FIGS. 8 and 10 . With reference toFIGS. 8 and 10 , anon-porous venting member 166 may be inserted over therear cannula 140 and slightly separated from the rear portion of the central body 100 (i.e., the portion proximate to the rear cannula 140), by aporous spacer 168 between the central body and the non-porous venting member. Thenon-porous venting member 166 may form a seal against the rear cannula that is sufficient to prevent blood from escaping past the non-porous venting member along its surface in contact with the rear cannula. Thenon-porous venting member 166 may be constructed of material, such as plastic suitable for medical use, which is non-porous to both gas (air) and blood. The outer surface of thenon-porous venting member 166 may include one or more grooves, channels, bumps, or like features 167 (collectively “venting features 167”) that permit the passage of air. It is appreciated that the venting features 167 may be very small (of a size capable of permitting the passage of air molecules). Such small venting features may inherently restrict the passage of blood molecules, which typically may be larger that air molecules. Thenon-porous venting member 166 may preferably have a tapered tip and adapted to receive aflexible sleeve 150 stretched over it. - A
porous spacer 168 may be inserted between thenon-porous venting member 166 and thecentral body 100. The porous spacer may be constructed of any of a number of materials that are porous to gas (air), and partially, substantially, or completely non-porous to liquids such as blood. For example, theporous spacer 168 may be constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like. It is appreciated that in some embodiments theporous spacer 168 may permit some blood seepage past it, however, it is expected that the porous spacer may reduce or slow such seepage. - With continued reference to
FIGS. 8 and 10 , theflexible sleeve 150 may be stretched over thenon-porous venting collar 166 and at least a portion of theporous spacer 168 such that at least of portion of the porous spacer remains in direct communication with the ambient. Air in the blood drawing device may vent from the interior of thesleeve 150 past the venting features 167 on thenon-porous venting member 166 and through theporous spacer 168 to the ambient when the device is used to draw blood. Blood within thesleeve 150 may be prevented however, at least initially, from passing theporous spacer 168 as a result of the nature of the material in the porous spacer and the relatively small passageways provided by the venting features 167. - A sixth embodiment of the present invention is shown in
FIG. 9 . With reference toFIG. 9 , an air-permeable, completely or partially blood-impermeableflexible sleeve 151 is provided. The air-permeable sleeve 151 may be used in conjunction with or independently of the above-referenced embodiments of the present invention. A known flexible sleeve is described in U.S. Pat. No. 3,877,465 to Miyake, incorporated by reference above. In the present embodiment of the invention, the elastic sheath material making up the wall of thesleeve 151 may be constructed of a material that is largely air-permeable, but partially, largely or entirely impermeable to blood. The air-permeable sleeve 151 may be used to isolate therear cannula 140 of a blood drawing device from the ambient in the same manner as conventional sleeve may isolate rear cannulae. During a blood drawing procedure using a device not equipped with a means for venting air from the sleeve, blood from a lumen may be slowed or prevented from entering the device due to air back pressure in the device. In these devices the air in the device may be trapped because there is no vent provided. In the present embodiment, an air-permeable sleeve 151 replaces a conventional sleeve on the blood drawing device. The air-permeable sleeve 151 may provide a pathway to vent air from the device interior, through the sleeve wall, to the ambient. As the air is vented, the blood filling the device may contact the air-permeable sleeve 151. However, the air-permeable sleeve 151 may prevent or retard the flow of blood through its wall because the pore size of the air-permeable sleeve may be large enough to allow the passage of air, but too small to allow much or any blood to pass. This air passage-blood blockage may permit blood to fill the needle and/or thesleeve 151 more readily because there is reduced or no air back pressure inhibiting the flow of blood into the blood drawing device. As a result, a blood drawing device equipped with the air-permeable sleeve 151 may indicate flash (the visual indication of blood flow into the needle) more readily. The air-permeable sleeve 151 may be used with conventional needle drawing or infusion sets (such as butterfly needles), hypodermic needles, or the like, to enhance flash indication. - The air-
permeable sleeve 151 may be made of any suitable material that is completely or at least partially air-permeable and substantially blood impermeable, such as for example, low density polyethylene or low density rubber. One example of a method of making such material is described in U.S. Pat. No. 5,641,442. A second example may be made of crumbed material of sufficiently low density/high flexibility to allow the required flexibility in spite of the use of thermal binders like polyethylene. Low density material such as low density silicone may be sifted using a #80 mesh and mixed with #100 mesh low density polyethylene. This mixture may be heated at approximately 280° F. and injected into a cavity mold to form the selectivelyporous sleeve 151. - An air-permeable sleeve may be constructed of porous material formed from the combination of a hydrophobic porous material with a hydrophilic porous agent. The hydrophobic porous material, for example, may be a polymeric matrix of either thermoplastic resins such as polyvinyl chloride or copolymers thereof, or synthetic or natural thermosetting rubber-like polymers. In a second example, the polymeric matrix may be rubber-like polymers combined with additives such as anti-degradants, cross-linking agents, cure inhibitors, platinum and other type catalysts, inert fillers, or like materials used to compound thermosetting compounds, and intimately mixed with a hydrophilic porous agent such as silica hydrogel, precipitated hydrated silica, for example such as that sold under the trademark Hi-Sil from PPG Industries, or polyacrylamide gel, cross-linked homopolymer of acrylamide, for example such as that sold under the trademark Agrosoake from Agrosoake International, inert fillers and/or water or solvent soluble porosics. In a third example, the polymeric matrix may be made of a synthetic or natural thermosetting polymer or copolymer, such as those that may be made in accordance with the methods disclosed in U.S. Pat. No. 4,548,835 to Takahashi, et al. and U.S. Pat. No. 4,153,760 to Sundberg et al, for example, each of which is hereby incorporated by reference.
- The porous agent may be prepared by polymerizing acrylamide in the presence of an aqueous sodium carbonate to produce a partially hydrolyzed, lightly cross-linked, polyacrylamide gel in accordance with the method disclosed in U.S. Pat. No. 3,022,279 to Proffitt, for example, which is hereby incorporated by reference. The polyacrylamide gel may be produced in bead or granular form using an inverse suspension polymerization method for water-soluble monomer, which is disclosed in U.S. Pat. No. 2,982,749 to Friedrich et al., for example, and which is hereby incorporated by reference.
- In one embodiment, for example, the hydrophilic granules may be added to the hydrophobic material in sufficient quantities to create a hydrophilic/hydrophobic porous material. The porosity of the hydrophobic material may be manifested by a network of voids/pores extending throughout the matrix or binder, between neighboring particles of the dispersed filler and portions of the polymeric matrix, which may be achieved by the shrinking of the swollen hydrophilic granules during the dehydration/curing phase. The resultant degree of porosity may be controlled by the amount of water or water substitute added to the polymeric matrix binder material during the mixing phase, the vulcanization of the polymeric matrix (such as for example, under hydrostatic conditions in a steam autoclave to a state of cure using the pressurized steam as a source of heat), the proportion and size of the hydrophilic granules added, the duration of the mixing phase, and the wall thickness of the elastomeric sleeve. The hydrophilic granules may be mixed with a normally hydrophobic binder (and water or a water substitute may be added to control porosity) in a mixing type extruder.
- When this material is formed into an air-permeable
flexible sleeve 151, water-based liquids such as blood may rapidly soak into the pores/voids containing the granular material, causing the granules to swell and seal the pores/voids contained within the polymeric matrix. Thus, the air-permeable flexible sleeve, which is initially permeable to air, may become relatively impermeable to liquids, such as blood, due to the swelling of the moisture reactive granules entrapped within the pores/voids within the polymeric matrix. - A seventh embodiment of the present invention is shown in
FIGS. 11 and 12 . With reference toFIGS. 11 and 12 , aflexible sleeve 150 may be provided with one or more openings orperforations 156 extending through the wall of the sleeve. Theopenings 156 may be relatively small, only needing to be capable of permitting the passage of air molecules. Aporous collar 157 constructed of sintered polyethylene, perforated plastic, porous fiber, rolled fiber, or the like, may be provided over theopenings 156. Theflexible sleeve 150 may be stretched over the non-porous member inserted over the rear cannula, (such asnon-porous member 162 shown inFIG. 7 ). Air in the blood drawing device may vent from the interior of thesleeve 150 past theopenings 156 in the flexible sleeve wall and through theporous collar 157 to the ambient when the device is used to draw blood. Blood within thesleeve 150 is prevented however, at least initially, from passing theporous collar 157 as a result of the nature of the material making up the porous collar and potentially by the relatively small passageways provided by theopenings 156. - An alternative embodiment of the present invention is shown in
FIG. 14 , in which the ventingmember 160 is spaced from thecentral body 100 and theflexible sleeve 150 envelopes the entire side wall of the venting member. A portion of the base end wall of the ventingmember 160 is exposed to the ambient to permit air to vent. In a further alternative, aporous spacer 168 may be disposed in theair space 161 to block or absorb any blood seepage past the venting member. - Each of the embodiments of the present invention shown in all of the afore-noted figures may also utilize a transparent or translucent
flexible sleeve 150 to provide flash detection. An example of a transparent sleeve is disclosed in U.S. Pat. No. 3,886,930 to Ryan, which is hereby incorporated by reference. Use of a transparent ortranslucent sleeve 150 may make it unnecessary for thecentral body 100 or other elements of the device to be constructed of transparent or translucent material because the flash may be detected through the wall of the sleeve itself and thereby allow for the retrofitting of known blood-drawing devices to provide air venting and flash detection without other modification of the device. Use of a transparent ortranslucent sleeve 150 may also obviate the need to have discreet front andrear cannulae central body 100. - Each of the embodiments of the invention described above may also be modified such that the porous member 160 (
FIGS. 1-6 ), the porous collar 157 (FIGS. 11-12 ), the porous insert 152 (FIG. 7 ), or the porous spacer 168 (FIGS. 6 , 8 and 10) includes or is constructed of any one or more of a number of substances that may permit air venting, and limit and reduce blood seepage, but not completely prevent blood seepage through the particular porous structure. Such materials include absorbent pleated or rolled paper, molded fiber or fiberglass, felt, sintered compositions of hydrophilic/hydrophobic materials such as polyethylene and polyacrylamide gel, and/or any other material capable of venting air but impeding the passage of liquids. - For example, hydrophilic and/or hydrophobic substances such as polyethylene and granular starch, cellulose, polyacrylamide gel, or the like may be used. Such substances are known in the art, and may be used to permit gas (e.g., air) to flow through them, but absorb or block liquid substances. Accordingly, a porous member, collar, insert, or spacer, comprised of these materials may be used to permit the air in a blood drawing device to vent past it until it is contacted by a liquid, such as blood, at which time the blood may be absorbed.
- Similarly, glass powder or fiber may be used to simulate clotting, or a clotting agent, such as dilute Russell Viper Venom, may be used to permit air venting with little or reduced blood seepage. Russell Viper Venom is known in the art as a clotting agent. A porous member, collar, insert, or spacer impregnated with a clotting agent or simulating clotting agent may be used to permit the air in a blood drawing device to vent until it is contacted by blood, at which time the blood may clot or act as clotted and reduce further blood seepage through the porous member, collar, insert or spacer. As a result, use of hydrophilic and/or clotting agents in the previously described porous member, collar, insert, or spacer may permit improved blood flow into a blood drawing device and flash detection.
- A multitude of different means for venting air are described above. It is appreciated that various embodiments of the invention may include any type of means for venting air disposed between a flexible sleeve covering the rear cannula of a blood drawing device and an ambient, including, but not limited to one or more air porous materials provided individually or in combination, and/or combinations of air porous and non-air porous materials.
- It will be apparent to those skilled in the art that variations and modifications of the present invention can be made without departing from the scope or spirit of the invention. For example, the shape, size, and material selection for the various components of the blood-drawing device may be changed without departing from the intended scope of the invention and appended claims. It is further appreciated that forming one or more elements of the apparatus embodiments of the present invention integrally as opposed to separately is intended to fall within the scope of the invention and appended claims.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/071,820 US20080177202A1 (en) | 2004-05-03 | 2008-02-27 | Blood drawing device with flash detection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/836,232 US7396343B2 (en) | 2004-05-03 | 2004-05-03 | Blood drawing device with flash detection |
US12/071,820 US20080177202A1 (en) | 2004-05-03 | 2008-02-27 | Blood drawing device with flash detection |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,232 Continuation US7396343B2 (en) | 2004-05-03 | 2004-05-03 | Blood drawing device with flash detection |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080177202A1 true US20080177202A1 (en) | 2008-07-24 |
Family
ID=35188045
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,232 Expired - Fee Related US7396343B2 (en) | 2004-05-03 | 2004-05-03 | Blood drawing device with flash detection |
US12/071,820 Abandoned US20080177202A1 (en) | 2004-05-03 | 2008-02-27 | Blood drawing device with flash detection |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,232 Expired - Fee Related US7396343B2 (en) | 2004-05-03 | 2004-05-03 | Blood drawing device with flash detection |
Country Status (2)
Country | Link |
---|---|
US (2) | US7396343B2 (en) |
WO (1) | WO2005110522A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090227953A1 (en) * | 2008-03-07 | 2009-09-10 | Becton, Dickinson And Company | Flashback Blood Collection Needle |
US20110178427A1 (en) * | 2008-03-07 | 2011-07-21 | Becton, Dickinson And Company | Flashback Blood Collection Needle |
US20120232424A1 (en) * | 2009-10-22 | 2012-09-13 | Medigard Limited | Blood flash needle |
US8795198B2 (en) | 2008-03-07 | 2014-08-05 | Becton, Dickinson And Company | Flashback blood collection needle |
US8888713B2 (en) | 2007-03-07 | 2014-11-18 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US9095288B2 (en) | 2007-03-07 | 2015-08-04 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG121744A1 (en) | 2002-11-06 | 2006-05-26 | Becton Dickinson Co | Flashback blood collection needle with needle shield |
US20100010372A1 (en) * | 2004-05-03 | 2010-01-14 | Clearview Patient Safety Technologies, Llc | Porous multiple sample sleeve and blood drawing device for flash detection |
US20080086085A1 (en) * | 2004-05-03 | 2008-04-10 | Leroy Brown | Blood drawing device with flash detection |
US20060258957A1 (en) * | 2005-05-10 | 2006-11-16 | Deleon Luis | Blood drawing system |
US20070088278A1 (en) * | 2005-07-26 | 2007-04-19 | Ming-Jeng Shue | Intravenous catheter introducing device with a flashback member |
US8197420B2 (en) | 2006-12-18 | 2012-06-12 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
DE102007031799B3 (en) * | 2007-07-07 | 2008-10-16 | Haindl, Hans, Dr. med. | Needle device for the removal of spinal fluid (cerebrospinal fluid) |
CA2639654A1 (en) | 2007-09-27 | 2009-03-27 | Tyco Healthcare Group Lp | Blood collection needle assembly |
AU2009229000B2 (en) * | 2008-03-28 | 2015-01-29 | Orion Diagnostica Oy | Sampling and dispensing device |
US8979828B2 (en) | 2008-07-21 | 2015-03-17 | The Spectranetics Corporation | Tapered liquid light guide |
US9421065B2 (en) | 2008-04-02 | 2016-08-23 | The Spectranetics Corporation | Liquid light-guide catheter with optically diverging tip |
WO2009148969A1 (en) | 2008-06-02 | 2009-12-10 | Sta-Med, Llc | Needle cover assembly for a syringe |
US8617085B2 (en) * | 2008-08-14 | 2013-12-31 | Antonio Moran, JR. | Bone tissue extracting device and method |
US9320647B2 (en) | 2010-03-31 | 2016-04-26 | Ocuject, Llc | Device and method for intraocular drug delivery |
US9408746B2 (en) | 2010-03-31 | 2016-08-09 | Ocuject, Llc | Device and method for intraocular drug delivery |
US8162882B2 (en) | 2010-06-23 | 2012-04-24 | Sta-Med, Llc | Automatic-locking safety needle covers and methods of use and manufacture |
WO2012141748A1 (en) * | 2011-04-11 | 2012-10-18 | Upstream Peripheral Technologies | Needle and guidewire holder |
WO2012141747A2 (en) | 2011-04-11 | 2012-10-18 | Upstream Peripheral Technologies | Hypotube based support catheter |
WO2012166746A1 (en) | 2011-05-31 | 2012-12-06 | Sta-Med, Llc | Blood collection safety devices and methods of use and manufacture |
US8535241B2 (en) | 2011-10-13 | 2013-09-17 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US8864684B2 (en) | 2011-10-13 | 2014-10-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
ITMI20120154A1 (en) * | 2012-02-06 | 2013-08-07 | Enrico Gianluca Bergamaschi | SPINAL ANESTHESIA DEVICE |
US9421129B2 (en) | 2012-04-02 | 2016-08-23 | Ocuject, Llc | Intraocular delivery devices and methods therefor |
US9504603B2 (en) * | 2012-04-02 | 2016-11-29 | Ocuject, Llc | Intraocular delivery devices and methods therefor |
US9060724B2 (en) | 2012-05-30 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9022950B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
WO2014022275A1 (en) | 2012-08-01 | 2014-02-06 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
EP3318295B1 (en) | 2012-10-11 | 2021-04-14 | Magnolia Medical Technologies, Inc. | System for delivering a fluid to a patient with reduced contamination |
ES2877185T3 (en) | 2012-11-30 | 2021-11-16 | Magnolia Medical Technologies Inc | Syringe-based fluid diversion mechanism for sampling of body fluids |
JP6335186B2 (en) | 2012-12-04 | 2018-05-30 | マグノリア メディカル テクノロジーズ,インコーポレイテッド | Sterile fluid collection device |
US10772548B2 (en) | 2012-12-04 | 2020-09-15 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US20140276578A1 (en) | 2013-03-12 | 2014-09-18 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
JP6898734B2 (en) * | 2013-10-07 | 2021-07-07 | オクジェクト, リミテッド ライアビリティー カンパニーOcuject, Llc | Needle assembly |
WO2015134431A1 (en) | 2014-03-03 | 2015-09-11 | Magnolia Medical Technologies, Inc. | Apparatus and methods for disinfection of a specimen container |
EP3307359B1 (en) | 2015-06-12 | 2020-07-01 | Gregory J. Bullington | Apparatus for syringe-based fluid transfer for bodily-fluid sampling |
US9820682B2 (en) | 2015-07-24 | 2017-11-21 | Kurin, Inc. | Blood sample optimization system and blood contaminant sequestration device and method |
WO2017041087A1 (en) | 2015-09-03 | 2017-03-09 | Bullington Gregory J | Apparatus and methods for maintaining sterility of a specimen container |
EP3777684B1 (en) * | 2016-12-27 | 2022-06-29 | Kurin, Inc. | Blood contaminat sequestration device |
US10827964B2 (en) | 2017-02-10 | 2020-11-10 | Kurin, Inc. | Blood contaminant sequestration device with one-way air valve and air-permeable blood barrier with closure mechanism |
US11076787B2 (en) | 2017-09-12 | 2021-08-03 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
EP3721086A4 (en) | 2017-12-07 | 2021-11-10 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
AU2020218544A1 (en) | 2019-02-08 | 2021-09-16 | Magnolia Medical Technologies, Inc. | Devices and methods for bodily fluid collection and distribution |
AU2020234829A1 (en) | 2019-03-11 | 2021-10-28 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082899A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US20050245870A1 (en) * | 2004-05-03 | 2005-11-03 | Leroy Brown | Porous multiple sample sleeve and blood drawing device for flash detection |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3382865A (en) * | 1965-10-18 | 1968-05-14 | Ashton L. Worrall Jr. | Device for taking multiple blood samples or the like |
US3469572A (en) * | 1966-08-18 | 1969-09-30 | Becton Dickinson Co | Apparatus for taking multiple fluid samples |
US3585984A (en) * | 1968-04-10 | 1971-06-22 | Parke Davis & Co | Blood transfer device |
GB1256478A (en) * | 1969-09-12 | 1971-12-08 | ||
US3877465A (en) * | 1969-10-17 | 1975-04-15 | Jintan Terumo Co | Fluid collection device |
CA1009110A (en) * | 1971-04-30 | 1977-04-26 | Abbott Laboratories | Blood collecting assembly |
US3883930A (en) * | 1972-02-28 | 1975-05-20 | Safety Snap Pin Corp | Safety pin |
US3817240A (en) * | 1972-06-28 | 1974-06-18 | Becton Dickinson Co | Multiple sample needle assembly with one-way valve and blood flow indicator |
US3874367A (en) * | 1972-06-29 | 1975-04-01 | Becton Dickinson Co | Valved blood sampling needle assembly |
US4108175A (en) * | 1977-01-28 | 1978-08-22 | Orton Dale W | Catheter insertion apparatus |
US4106497A (en) * | 1977-02-04 | 1978-08-15 | Becton, Dickinson And Company | Multiple sample needle assembly with indicator means |
US4296759A (en) * | 1977-06-27 | 1981-10-27 | Sherwood Medical Industries Inc. | Blood collection device and method with anti-backflow means |
US4166450A (en) * | 1977-07-22 | 1979-09-04 | Metatech Corporation | Device and procedure for collecting a succession of intravenous blood samples |
US4140108A (en) * | 1977-08-10 | 1979-02-20 | Becton, Dickinson And Company | Blood collection assembly |
US4154229A (en) * | 1977-08-10 | 1979-05-15 | Becton, Dickinson And Company | Blood collection system with venipuncture indicator |
US4207870A (en) * | 1978-06-15 | 1980-06-17 | Becton, Dickinson And Company | Blood sampling assembly having porous vent means vein entry indicator |
US4307731A (en) * | 1978-06-15 | 1981-12-29 | Becton, Dickinson And Company | Multiple sampling needle having one-way valve |
US4193400A (en) * | 1978-06-16 | 1980-03-18 | The Deseret Company | Intravenous needle assembly with air bleed plug |
US4269186A (en) * | 1978-06-16 | 1981-05-26 | The Deseret Company | Intravenous needle assembly with air bleed plug |
US4317456A (en) * | 1980-03-10 | 1982-03-02 | Becton, Dickinson And Company | Multiple sample needle with anti-backflow valve |
US4326541A (en) * | 1980-03-24 | 1982-04-27 | Arnold M. Heyman | Blood sample taking device |
US4317445A (en) * | 1980-03-31 | 1982-03-02 | Baxter Travenol Laboratories, Inc. | Catheter insertion unit with separate flashback indication for the cannula |
US4340068A (en) * | 1980-06-18 | 1982-07-20 | Becton, Dickinson And Company | Multiple sample needle with vein entry indicator |
US4312362A (en) * | 1980-10-02 | 1982-01-26 | Becton, Dickinson And Company | Single sample needle with vein entry indicator |
US4436098A (en) * | 1981-03-16 | 1984-03-13 | Becton Dickinson Company | Needle assembly with vein entry indicator |
US4416291A (en) * | 1981-07-20 | 1983-11-22 | Becton Dickinson And Company | Multiple sample needle assembly with vein entry indicator |
US4412548A (en) * | 1981-07-30 | 1983-11-01 | Becton Dickinson And Company | Multiple sample needle assembly |
US4409990A (en) * | 1981-10-13 | 1983-10-18 | Mileikowsky Gil N | Fluid sampling needle assembly and method of use thereof |
US4398544A (en) * | 1981-10-15 | 1983-08-16 | Becton Dickinson And Company | Single and multiple sample needle assembly with vein entry indicator |
US4444203A (en) * | 1982-03-26 | 1984-04-24 | Lab-A-Cath, Inc. | Intravenous catheter placing and specimen gathering device |
US4416290A (en) * | 1982-08-30 | 1983-11-22 | Becton Dickinson And Company | Multiple sample needle assembly with vein indication |
US4886072A (en) * | 1983-12-16 | 1989-12-12 | Becton, Dickinson And Company | Multiple sample needle assembly with vein indicator |
US4679571A (en) * | 1984-08-31 | 1987-07-14 | Becton, Dickinson And Company | Blood sample needle assembly with vein indicator |
US4865592A (en) * | 1986-02-20 | 1989-09-12 | Becton, Dickinson And Company | Container and needle assembly |
US4841985A (en) * | 1986-04-21 | 1989-06-27 | Thomas Wanamaker | Blood drawing apparatus |
AU7431787A (en) * | 1986-05-14 | 1987-12-01 | Lamberto Roberti | Needle for multiple vacuum blood sample devices |
DE3750585T2 (en) * | 1986-12-11 | 1995-04-13 | Terumo Corp | BLOOD COLLECTION TUBE. |
SE462464B (en) * | 1987-01-14 | 1990-07-02 | Broden Bengt Inge | EQUIPMENT FOR SAMPLING ON PATIENTS |
US4788986A (en) * | 1987-03-16 | 1988-12-06 | Harris Jim C | Holder for blood collecting needle |
JPS63315033A (en) * | 1987-06-18 | 1988-12-22 | Terumo Corp | Method and apparatus for collecting blood specimen |
DK162628C (en) * | 1988-05-02 | 1992-04-13 | Bjoern Nielsen | COLLECTION, CANNEL, HOLDER AND VACUUM GLASS |
US4894052A (en) * | 1988-08-22 | 1990-01-16 | Becton, Dickinson And Company | Flash detection in an over the needle catheter with a restricted needle bore |
JPH02297342A (en) * | 1988-09-28 | 1990-12-07 | Terumo Corp | Blood drawing and/or injection device using both cutter needle-shaped medical needle and holder, and the same medical needle and holder |
JPH02139656U (en) * | 1989-01-18 | 1990-11-21 | ||
US4964854A (en) * | 1989-01-23 | 1990-10-23 | Luther Medical Products, Inc. | Intravascular catheter assembly incorporating needle tip shielding cap |
US4971068A (en) * | 1989-07-07 | 1990-11-20 | Bio-Plexus, Inc. | Blood vessel locating needle assembly with thermochromic indicator |
US5092845A (en) * | 1989-07-10 | 1992-03-03 | Critikon, Inc. | Catheter with needle gasket |
DE4000968C1 (en) * | 1990-01-16 | 1991-06-20 | Dieter 2090 Drage De Wendelborn | Blood sampling apparatus - has blood observation chamber mounted in sampling vessel stopper |
US5086780A (en) * | 1990-05-21 | 1992-02-11 | Abbott Laboratories | Blood collection device |
US5122121A (en) * | 1990-08-30 | 1992-06-16 | E-Z-Em, Inc. | Safety needle assembly |
US5222502A (en) * | 1990-09-26 | 1993-06-29 | Terumo Kabushiki Kaisha | Blood collecting needle |
US5030207A (en) * | 1990-11-02 | 1991-07-09 | Becton, Dickinson And Company | Instantaneous vein entry indicator for intravenous needle |
US5133362A (en) * | 1990-12-28 | 1992-07-28 | Gerald Moss | Needle for use with vacuum test tube blood sampling systems |
US5032116A (en) * | 1991-01-09 | 1991-07-16 | Becton, Dickinson And Company | Flashback plug |
US5290246A (en) * | 1991-01-18 | 1994-03-01 | Terumo Kabushiki Kaisha | Piercing needle |
JPH0613744Y2 (en) * | 1991-01-18 | 1994-04-13 | テルモ株式会社 | Puncture needle |
US5112312A (en) * | 1991-03-14 | 1992-05-12 | Luther Medical Products, Inc. | Vascular/venous access device and method of utilizing and forming the same |
US5120317A (en) * | 1991-03-14 | 1992-06-09 | Luther Medical Products, Inc. | Vascular/venous access device and method of utilizing and forming the same |
US5273540A (en) * | 1991-04-26 | 1993-12-28 | Luther Medical Products | Nonreusable needle and catheter assembly |
US5120319A (en) * | 1991-06-26 | 1992-06-09 | Critikon, Inc. | Flash tube for intravenous catheter |
US5295969A (en) * | 1992-04-27 | 1994-03-22 | Cathco, Inc. | Vascular access device with air-tight blood containment capability |
US5306259A (en) * | 1992-08-10 | 1994-04-26 | Cathco, Inc. | Vascular access needle having an extended length body |
JPH07379A (en) * | 1993-02-22 | 1995-01-06 | Issei Suzuki | Vacuum blood collecting needle |
DE4402690C2 (en) * | 1994-01-29 | 1996-09-12 | Sarstedt Walter Geraete | Blood collection device |
DE9405166U1 (en) * | 1994-03-26 | 1994-05-26 | Krebs, Peter, Dr., 78048 Villingen-Schwenningen | Spinal cannula with transparent handle |
US5450856A (en) * | 1994-04-25 | 1995-09-19 | Norris; Wendal A. | Phlebotomy needle attachable to a vacuum container with a vent to preclude blood flashback |
US5531701A (en) * | 1994-06-06 | 1996-07-02 | Luther Medical Products, Inc. | Over-the-needle catheter |
GB9426379D0 (en) * | 1994-12-23 | 1995-03-01 | Oxford Biosciences Ltd | Particle delivery |
US5697914A (en) * | 1995-03-16 | 1997-12-16 | Becton Dickinson And Company | Control forward/flashback forward one hand introducer needle and catheter assembly |
US5542932A (en) * | 1995-07-20 | 1996-08-06 | Daugherty; Charles W. | Bloodless flashback vent |
DE19617000C1 (en) * | 1996-04-27 | 1998-01-22 | Sarstedt Walter Geraete | Blood collection device with a holder having a cannula |
US5913848A (en) * | 1996-06-06 | 1999-06-22 | Luther Medical Products, Inc. | Hard tip over-the-needle catheter and method of manufacturing the same |
US5830190A (en) * | 1996-06-11 | 1998-11-03 | Becton Dickinson And Company | Protected needle catheter placement device having needle placement visualization features and method for its use |
DE19645514C2 (en) * | 1996-11-05 | 2000-04-13 | Sarstedt Ag & Co | Method and device for disposing of the cannula of a blood collection device |
US5893844A (en) * | 1997-01-17 | 1999-04-13 | Misawa Medical Industry Co., Ltd. | Indwelling needle set |
EP0989872A4 (en) * | 1997-06-17 | 2000-08-30 | Injectimed Inc | Method and apparatus for introducing an intravenous catheter |
WO1999004705A1 (en) * | 1997-07-25 | 1999-02-04 | Tsui Ban C H | Devices, systems and methods for determining proper placement of epidural catheters |
CN1273084C (en) | 1997-11-12 | 2006-09-06 | Mdc投资控股公司 | Fluid collection device with captured roctractable needle |
US5984895A (en) * | 1998-01-15 | 1999-11-16 | Merit Medical Systems, Inc. | Vascular blood flashback containment device with improved sealing capability |
FR2782627B1 (en) * | 1998-09-01 | 2001-02-09 | Vygon | ARTERIAL PUNCTURE NEEDLE |
US6500157B2 (en) * | 1998-09-03 | 2002-12-31 | Ronald B. Luther | Intravenous infusion needle with soft body |
JP2001056527A (en) | 1999-08-19 | 2001-02-27 | Fuji Photo Film Co Ltd | Heat developable image recording material |
US6595954B1 (en) * | 2000-03-13 | 2003-07-22 | Luther Research Partners, Llc | Insertion needle and soft catheter system with tip protector |
US6533760B2 (en) * | 2000-05-02 | 2003-03-18 | Becton, Dickinson And Company | Flashback blood collection needle |
JP3674946B2 (en) | 2001-03-01 | 2005-07-27 | ニプロ株式会社 | Blood collection needle |
US6712792B2 (en) * | 2001-05-02 | 2004-03-30 | Becton, Dickinson And Company | Flashback blood collection needle |
US6805689B2 (en) * | 2001-10-23 | 2004-10-19 | Wei Chen | Safety blood collector device |
SG121744A1 (en) * | 2002-11-06 | 2006-05-26 | Becton Dickinson Co | Flashback blood collection needle with needle shield |
WO2005001521A2 (en) * | 2003-06-02 | 2005-01-06 | Infocus Corporation | Locking device for a projector component |
US7160267B2 (en) * | 2004-05-03 | 2007-01-09 | Clear View Patent Safety Products, Llc | Blood drawing device with flash detection |
-
2004
- 2004-05-03 US US10/836,232 patent/US7396343B2/en not_active Expired - Fee Related
-
2005
- 2005-04-11 WO PCT/US2005/012212 patent/WO2005110522A2/en active Application Filing
-
2008
- 2008-02-27 US US12/071,820 patent/US20080177202A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082899A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US20050245870A1 (en) * | 2004-05-03 | 2005-11-03 | Leroy Brown | Porous multiple sample sleeve and blood drawing device for flash detection |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9687184B2 (en) | 2007-03-07 | 2017-06-27 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US9615783B2 (en) | 2007-03-07 | 2017-04-11 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US10588558B2 (en) | 2007-03-07 | 2020-03-17 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US8888713B2 (en) | 2007-03-07 | 2014-11-18 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US10085680B2 (en) | 2007-03-07 | 2018-10-02 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US9271668B2 (en) | 2007-03-07 | 2016-03-01 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US10349880B2 (en) | 2007-03-07 | 2019-07-16 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US9095288B2 (en) | 2007-03-07 | 2015-08-04 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US11020033B2 (en) | 2007-03-07 | 2021-06-01 | Becton, Dickinson And Company | Safety blood collection assembly with indicator |
US8585653B2 (en) | 2008-03-07 | 2013-11-19 | Becton, Dickinson And Company | Flashback blood collection needle |
US8603009B2 (en) | 2008-03-07 | 2013-12-10 | Becton, Dickinson And Company | Flashback blood collection needle |
US9167996B2 (en) | 2008-03-07 | 2015-10-27 | Becton, Dickinson And Company | Flashback blood collection needle |
US8282605B2 (en) | 2008-03-07 | 2012-10-09 | Becton, Dickinson And Company | Flashback blood collection needle |
US7766879B2 (en) | 2008-03-07 | 2010-08-03 | Becton, Dickinson And Company | Flashback blood collection needle |
US20090227953A1 (en) * | 2008-03-07 | 2009-09-10 | Becton, Dickinson And Company | Flashback Blood Collection Needle |
US20110178427A1 (en) * | 2008-03-07 | 2011-07-21 | Becton, Dickinson And Company | Flashback Blood Collection Needle |
US20100262038A1 (en) * | 2008-03-07 | 2010-10-14 | Becton, Dickinson And Company | Flashback Blood Collection Needle |
US8795198B2 (en) | 2008-03-07 | 2014-08-05 | Becton, Dickinson And Company | Flashback blood collection needle |
US9615782B2 (en) * | 2009-10-22 | 2017-04-11 | Medigard Limited | Blood flash needle |
US20120232424A1 (en) * | 2009-10-22 | 2012-09-13 | Medigard Limited | Blood flash needle |
Also Published As
Publication number | Publication date |
---|---|
US20050245885A1 (en) | 2005-11-03 |
WO2005110522A3 (en) | 2007-05-31 |
WO2005110522A2 (en) | 2005-11-24 |
US7396343B2 (en) | 2008-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7396343B2 (en) | Blood drawing device with flash detection | |
EP2196228B1 (en) | Blood drawing device | |
US20080086085A1 (en) | Blood drawing device with flash detection | |
US7530967B2 (en) | Porous multiple sample sleeve and blood drawing device for flash detection | |
US20100010372A1 (en) | Porous multiple sample sleeve and blood drawing device for flash detection | |
WO2011162772A1 (en) | Blood drawing device with flash detection | |
US7766879B2 (en) | Flashback blood collection needle | |
JP5502763B2 (en) | Flashback blood collection needle | |
WO2009113999A2 (en) | Flashback blood collection needle | |
JPS58188460A (en) | Medical needle for blood sampling and syringe | |
JP3981978B2 (en) | Blood collection needle | |
JP4007218B2 (en) | Blood collection needle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FLASH SAFETY PRODUCTS, LLC, HAWAII Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROWN, LEROY;REEL/FRAME:022470/0936 Effective date: 20040517 Owner name: CLEARVIEW PATIENT SAFETY TECHNOLOGIES, LLC, HAWAII Free format text: CHANGE OF NAME;ASSIGNOR:CLEAR VIEW PATIENT SAFETY PRODUCTS, LLC;REEL/FRAME:022474/0929 Effective date: 20080310 Owner name: CLEAR VIEW PATIENT SAFETY PRODUCTS, LLC, HAWAII Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FLASH SAFETY PRODUCTS, LLC;REEL/FRAME:022470/0951 Effective date: 20060629 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |