US20070292462A1 - Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant - Google Patents
Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant Download PDFInfo
- Publication number
- US20070292462A1 US20070292462A1 US11/716,599 US71659907A US2007292462A1 US 20070292462 A1 US20070292462 A1 US 20070292462A1 US 71659907 A US71659907 A US 71659907A US 2007292462 A1 US2007292462 A1 US 2007292462A1
- Authority
- US
- United States
- Prior art keywords
- trehalose
- fatty acid
- cosmetic composition
- surfactant
- acid ester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 239000002537 cosmetic Substances 0.000 title claims abstract description 36
- 239000002502 liposome Substances 0.000 title abstract description 46
- 239000004094 surface-active agent Substances 0.000 title abstract description 28
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims abstract description 114
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims abstract description 108
- 239000000194 fatty acid Substances 0.000 claims abstract description 89
- 238000003860 storage Methods 0.000 claims abstract description 16
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 11
- 125000002252 acyl group Chemical group 0.000 claims abstract description 9
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 32
- 239000006071 cream Substances 0.000 claims description 15
- 239000000839 emulsion Substances 0.000 claims description 13
- 235000015110 jellies Nutrition 0.000 claims description 7
- 239000002884 skin cream Substances 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 239000008274 jelly Substances 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920001525 carrageenan Polymers 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 235000010493 xanthan gum Nutrition 0.000 claims description 3
- 239000000230 xanthan gum Substances 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 229940082509 xanthan gum Drugs 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 230000001804 emulsifying effect Effects 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 57
- 229930195729 fatty acid Natural products 0.000 abstract description 57
- -1 trehalose fatty acid ester Chemical class 0.000 abstract description 52
- 230000001953 sensory effect Effects 0.000 abstract description 18
- 239000012528 membrane Substances 0.000 abstract description 16
- 230000007774 longterm Effects 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 14
- 230000007794 irritation Effects 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 8
- 229920006395 saturated elastomer Polymers 0.000 abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 4
- 125000001424 substituent group Chemical group 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 45
- 239000000306 component Substances 0.000 description 34
- 238000003756 stirring Methods 0.000 description 21
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 20
- 238000009472 formulation Methods 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 150000004665 fatty acids Chemical class 0.000 description 17
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 14
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 229930006000 Sucrose Natural products 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 239000005720 sucrose Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 235000011187 glycerol Nutrition 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 229940057995 liquid paraffin Drugs 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 235000013336 milk Nutrition 0.000 description 8
- 210000004080 milk Anatomy 0.000 description 8
- 239000002304 perfume Substances 0.000 description 8
- 239000008213 purified water Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229960000541 cetyl alcohol Drugs 0.000 description 7
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 7
- 239000002540 palm oil Substances 0.000 description 7
- 229940032094 squalane Drugs 0.000 description 7
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 6
- 229940113120 dipropylene glycol Drugs 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 239000006188 syrup Substances 0.000 description 6
- 235000020357 syrup Nutrition 0.000 description 6
- BONDRAOAQXIYSR-UHFFFAOYSA-N CC1OC(OC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O Chemical compound CC1OC(OC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O BONDRAOAQXIYSR-UHFFFAOYSA-N 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 235000012000 cholesterol Nutrition 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000004006 olive oil Substances 0.000 description 5
- 235000008390 olive oil Nutrition 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000002296 dynamic light scattering Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- KISVAASFGZJBCY-UHFFFAOYSA-N methyl undecenate Chemical compound COC(=O)CCCCCCCCC=C KISVAASFGZJBCY-UHFFFAOYSA-N 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 235000019482 Palm oil Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 235000013871 bee wax Nutrition 0.000 description 3
- 239000012166 beeswax Substances 0.000 description 3
- 244000309464 bull Species 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 239000011505 plaster Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 239000002453 shampoo Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 244000061458 Solanum melongena Species 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- HDTRYLNUVZCQOY-BTLHAWITSA-N alpha,beta-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-BTLHAWITSA-N 0.000 description 2
- HDTRYLNUVZCQOY-NCFXGAEVSA-N beta,beta-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-NCFXGAEVSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 2
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 2
- 229940093541 dicetylphosphate Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 229940075507 glyceryl monostearate Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- KDQIFKKWPMBNOH-UHFFFAOYSA-N methyl 16-methylheptadecanoate Chemical compound COC(=O)CCCCCCCCCCCCCCC(C)C KDQIFKKWPMBNOH-UHFFFAOYSA-N 0.000 description 2
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 description 2
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 2
- ZAZKJZBWRNNLDS-UHFFFAOYSA-N methyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC ZAZKJZBWRNNLDS-UHFFFAOYSA-N 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011076 safety test Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229940042585 tocopherol acetate Drugs 0.000 description 2
- 125000000647 trehalose group Chemical group 0.000 description 2
- 229940099259 vaseline Drugs 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- QYIXCDOBOSTCEI-QCYZZNICSA-N (5alpha)-cholestan-3beta-ol Chemical compound C([C@@H]1CC2)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CCCC(C)C)[C@@]2(C)CC1 QYIXCDOBOSTCEI-QCYZZNICSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 239000001149 (9Z,12Z)-octadeca-9,12-dienoate Substances 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- DVWSXZIHSUZZKJ-UHFFFAOYSA-N 18:3n-3 Natural products CCC=CCC=CCC=CCCCCCCCC(=O)OC DVWSXZIHSUZZKJ-UHFFFAOYSA-N 0.000 description 1
- DGSZGZSCHSQXFV-UHFFFAOYSA-N 2,3-bis(2-ethylhexanoyloxy)propyl 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OCC(OC(=O)C(CC)CCCC)COC(=O)C(CC)CCCC DGSZGZSCHSQXFV-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- QHJNAXBIYFQFSY-UHFFFAOYSA-N C=CCCCCCCCCC(=O)OCC1OC(OC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O Chemical compound C=CCCCCCCCCC(=O)OCC1OC(OC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O QHJNAXBIYFQFSY-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 244000124209 Crocus sativus Species 0.000 description 1
- 235000015655 Crocus sativus Nutrition 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 208000003468 Ehrlich Tumor Carcinoma Diseases 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 235000000072 L-ascorbyl-6-palmitate Nutrition 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Chemical class 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- QYIXCDOBOSTCEI-UHFFFAOYSA-N alpha-cholestanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 QYIXCDOBOSTCEI-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical compound [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- WODOUQLMOIMKAL-FJSYBICCSA-L disodium;(2s)-2-(octadecanoylamino)pentanedioate Chemical compound [Na+].[Na+].CCCCCCCCCCCCCCCCCC(=O)N[C@H](C([O-])=O)CCC([O-])=O WODOUQLMOIMKAL-FJSYBICCSA-L 0.000 description 1
- YVIGPQSYEAOLAD-UHFFFAOYSA-L disodium;dodecyl phosphate Chemical compound [Na+].[Na+].CCCCCCCCCCCCOP([O-])([O-])=O YVIGPQSYEAOLAD-UHFFFAOYSA-L 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229940099578 hydrogenated soybean lecithin Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960004232 linoleic acid Drugs 0.000 description 1
- 229940040452 linolenate Drugs 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-M linolenate Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC([O-])=O DTOSIQBPPRVQHS-PDBXOOCHSA-M 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- QSQLTHHMFHEFIY-UHFFFAOYSA-N methyl behenate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OC QSQLTHHMFHEFIY-UHFFFAOYSA-N 0.000 description 1
- DVWSXZIHSUZZKJ-YSTUJMKBSA-N methyl linolenate Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(=O)OC DVWSXZIHSUZZKJ-YSTUJMKBSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- LAQFLZHBVPULPL-UHFFFAOYSA-N methyl(phenyl)silicon Chemical compound C[Si]C1=CC=CC=C1 LAQFLZHBVPULPL-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 229940114937 microcrystalline wax Drugs 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 229940098695 palmitic acid Drugs 0.000 description 1
- 229940056211 paraffin Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 239000005426 pharmaceutical component Substances 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Chemical class 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Chemical class 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229940066675 ricinoleate Drugs 0.000 description 1
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 239000004248 saffron Substances 0.000 description 1
- 235000013974 saffron Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical class [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
- JDSVWTAJRNTSSL-UHFFFAOYSA-M sodium;dodecyl hydrogen phosphate Chemical compound [Na+].CCCCCCCCCCCCOP(O)([O-])=O JDSVWTAJRNTSSL-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 235000015961 tonic Nutrition 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 229960000716 tonics Drugs 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003625 trehaloses Chemical class 0.000 description 1
- 229940075466 undecylenate Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000008307 w/o/w-emulsion Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
- A61K8/062—Oil-in-water emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/14—Liposomes; Vesicles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/60—Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/34—Higher-molecular-weight carboxylic acid esters
Definitions
- the present invention relates to a surfactant which has excellent surface activity and safety.
- the invention also relates to a detergent with excellent safety, containing the surfactant.
- the invention further relates to an emulsion-type cosmetic composition with excellent emulsion stability, safety to skin and sensory properties, containing the surfactant.
- surfactants A number of compounds are known as surfactants and used in many applications. However, most of those surfactants irritate skin when they are used in cosmetics, such as shampoos, rinses, soaps and other cosmetic compositions, which contact with a human body directly. Therefore, lower irritating surfactants have been desired.
- nonionic surfactants having a polyoxyethylene chain anionic surfactants such as fatty acid soaps, cationic surfactants or ampholytic surfactants.
- anionic surfactants such as fatty acid soaps, cationic surfactants or ampholytic surfactants.
- emulsion-type cosmetic compositions with those synthetic surfactants generally tend to irritate skin.
- nonionic surfactants which are said to be less irritating most of them fit poorly to skin because of their polyoxyethylene chains.
- alkylesterified sugars are nonionic surfactants which have been used widely in foods, cosmetics and the like.
- sucrose alkylesters in which sucrose constitutes a sugar skeleton are used widely and seen in many publications (Japanese Patent Application Laid Open No. 56-55306/1981).
- those are insufficient in sensory properties and long-term storage stability.
- it is known to use, as a surfactant, trehalose-6,6′-dialkylester in which a trehalose derivative constitutes a sugar skeleton Japanese Patent Application Laid Open Nos. 60-258195/1985 and 62-91236/1987. Those are insufficient in emulsifiability.
- An emulsion-type anti-tumor agent in which a specific emulsifier composition is combined with trehalose-6,6′-difatty acid ester as an anti-tumor agent in order to solve a disadvantage that the ester is difficult to dissolve in water (Japanese Patent Application Laid Open No. 61-289038/1986).
- glucose fatty acid monoester is reported in Japanese Patent Application Laid Open No. 03-157349/1991.
- this has a disadvantage that a stable emulsion can not be obtained due to its weak hydrophilicity.
- a purpose of the invention is to provide a surfactant that has excellent surface activity and safety.
- Another purpose of the invention is to provide a detergent that has excellent safety.
- a further purpose of the invention is to provide an emulsion-type cosmetic that has low irritation to skin, long-term storage stability, excellent sensory properties and beautiful appearance with fine surface texture.
- the present invention is a surfactant containing one or more of trehalose-6-fatty acid esters represented by the following formula:
- R represents a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl group.
- One preferred embodiment of the invention is a surfactant containing 6-(10-undecylenyl)-trehalose represented by the following formula:
- Another preferred embodiment of the invention is a surfactant containing 6-lauroyl-trehalose.
- Another preferred embodiment of the invention is a surfactant containing 6-stearoyl-trehalose.
- the invention is a detergent characterized in that it contains a surfactant containing one or more of trehalose-6-fatty acid esters represented by the following formula:
- R is a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl group.
- the invention is an emulsion-type cosmetic composition characterized in that it contains one or more of trehalose-6-fatty acid esters represented by the following formula:
- R is a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl;
- the trehalose-6-fatty acid ester of the invention can be obtained by a condensation reaction of trehalose with a fatty acid or by an ester interchange reaction between trehalose and a fatty acid ester.
- fatty acid or fatty acid ester which can be used in the invention include synthetic fatty acids and esters thereof, natural fatty acids, such as soybean fatty acid, beef tallow, cotton seed oil, olive oil, palm oil and so forth, and fatty acid esters thereof with lower alkyl groups, which esters are obtained in any conventional method.
- Trehalose which can be used in the invention may be ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose or mixtures thereof.
- the trehalose-6-fatty acid of the invention can be obtained in any usual method of producing sucrose alkyl esters, as described in U.S. Pat. Nos. 2,893,990 and 3,963,699, Japanese Patent Application Laid Openlaid Nos. 36-21717/1961 and 53-6130/1978, all of which are incorporated herein by reference.
- the trehalose-6-fatty acid ester is obtained as a main reaction product in these methods. In some cases, there are contained small amounts of unreacted trehalose and trehalose-6,6′-fatty acid diester as a side-reaction product.
- the trehalose-6-fatty acid ester may be purified in a conventional manner before used, if desired. However, the trehalose-6-fatty acid may be used together with small amounts of unreacted trehalose and trehalose-6,6′-fatty acid diester, because the trehalose-6-fatty acid can exhibit surface activity even in the presence of them.
- the trehalose-6-fatty acid ester used in the invention is preferably those in which a fatty acid radical, i.e. an acyl group, has a linear or branched, saturated alkyl or alkenyl group having 8-22 carbon atoms.
- Examples of those include trehalose monocaprylate, trehalose monononanoate, trehalose monocaprate, trehalose monoundecanoate, trehalose monolaurate, trehalose monomyristate, trehalose monopalmitate, trehalose monostearate, trehalose monoarachidate, trehalose monobehenate, trehalose monoundecylenate, trehalose monooleate, trehalose monolinoleate, trehalose monolinolenate, trehalose monoisostearate, trehalose monohydroxystearate, and trehalose monoricinoleate.
- One or more from these trehalose-6-fatty acid esters can be used in the invention.
- the surfactant of the invention preferably contains one or more selected from 6-(10-undecylenyl)-trehalose, 6-lauroyl-trehalose and 6-stearoyl-trehalose.
- the surfactant of the invention has excellent surface activity and safety to skin and also may be used as an emulsifier in foods.
- the skin or hair washing agent detergent of the invention preferably contains one or more of the trehalose-6-fatty acid ester in an amount of 1-50 wt. %, particularly 10-35 wt. %. It may further contain other surfactants.
- the cosmetic composition of the invention contains one or more of the above trehalose-6-fatty acid ester and a water-soluble polymer.
- the content of the above trehalose-6-fatty acid ester in the cosmetic composition is preferably 0.01-20 wt. %, particularly 0.1-10 wt. %, based on the total weight of the cosmetic composition. If the content is less than 0.01 wt. %, the emulsion stability of the cosmetic composition tends to decrease during its storage. On the other hand, if it is more than 20 wt. %, it is difficult to obtain fine feeling in use.
- the water-soluble polymer used in the invention may be generally any of those used in cosmetic compositions or pharmaceutical bases.
- the water-soluble polymer include guar gum, roastbean gum, queensseed, carageenan, galactan, arabic gum, tragacanth, pectin, mannan, starch, xanthan gum, dextrin, succinoglucan, curdlan, gelatin, casein, albumin, collagen, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, methylhydroxypropyl cellulose, soluble starch, carboxymethyl starch, methyl starch, propyleneglycol alginate, salts of alginic acid, polyvinylalcohol, polyvinylpyrrolidone, polyvinylmethylether, carboxyvinyl polymers, sodium polyacrylate, polyethyleneglycol, ethylene oxide/propylene oxide copolymers, cationated cellulose
- the content of the above water-soluble polymer is preferably 0.001-40 wt. %, particularly 0.01-20 wt. %, on the basis of the total weight of the cosmetic composition. If the content is less than 0.001 wt. %, the emulsion stability of the cosmetic composition tends to decrease during its storage. On the other hand, if it is more than 40 wt. %, it is difficult to obtain fine feeling in use.
- the cosmetic composition of the invention may contain one or more oil substances that can usually be used in cosmetic compositions or pharmaceutical bases, if necessary, such as hydrocarbons, such as liquid paraffin, squalane, vaseline and microcrystalline wax; ester oils, such as isopropylmyristate, cetyl-2-ethylhexalate, glyceryl-tri-2-ethylhexanoate, vitamin C palmitate, vitamin C stearate, vitamin C sulfate and vitamin E acetate; waxes, such as beeswax and spermaceti; vegetable oils, such as avocado oil, almond oil, rice bran oil, olive oil, castor oil, rapeseed oil, saffron oil, corn oil, wheat germ oil, soybean oil, cotton-seed oil, tea-seed oil and jojoba oil; animal oils, such as turtle oil, mink oil and yolk oil; higher alcohols, such as cetyl alcohol, stearyl alcohol, oleyl alcohol, o
- the cosmetic composition of the invention may contain polyvalent alcohols, such as ethyleneglycol, propyleneglycol, 1,3-butyleneglycol, dipropyleneglycol, glycerin, and polyglycerins such as diglycerin, triglycerin, tetraglycerin, pentaglycerin and hexaglycerin; trimethylolpropane, 1,2,6-hexatriol, glucose, maltose, maltitol, sucrose, fructose, xylitol, mannitol, sorbitol, maltotriose, threitol, sorbitan, starch-decomposed sugar and starch decompoed reducing alcohol, alone or in combination thereof.
- polyvalent alcohols such as ethyleneglycol, propyleneglycol, 1,3-butyleneglycol, dipropyleneglycol, glycerin, and polyglycerins such as diglycerin
- the cosmetic composition of the invention may contain any ingredients customarily used in cosmetics and pharmaceutical bases, such as humectants, active ingredients, fragrances, preservatives, colorants, UV absorbents, astringents, synthetic surfactants, pigments (e.g., kaolin, mica, sericite, talc, yellow iron oxide, red iron oxide and titanium oxide) and water.
- ingredients customarily used in cosmetics and pharmaceutical bases such as humectants, active ingredients, fragrances, preservatives, colorants, UV absorbents, astringents, synthetic surfactants, pigments (e.g., kaolin, mica, sericite, talc, yellow iron oxide, red iron oxide and titanium oxide) and water.
- the cosmetic composition of the invention includes massage creams, cleansing creams, skin creams, foundation creams, makeup bases, hair creams, massage jellys, and medicinal jellys, but is not limited to those.
- the precipitate were washed with 100 ml of n-butanol, and the washing liquid was combined with the above filtrate.
- the filtrate was distilled in vacuum to obtain a yellowish viscous syrup.
- a fraction containing the desired substance was distilled in vacuum to obtain 24.3 g of a yellowish viscous syrup.
- Example 1a The procedures of Example 1a) were repeated with the exception that 62.5 g of methyl laurate was used instead of 52.4 g of methyl 10-undecylenate. 27.3 g of a white solid were obtained.
- the resultant white solid was analyzed by 13 C-NMR spectroscopy. Signals were confirmed for a carbonyl group at 175.5 ppm, and 6- and 6′-positions of trehalose at 64.4 and 62.64 ppm. The solid was analyzed by FAB-MS spectrometry with NaI and a peak at 547 (M(molecular weight of the parent peak)+23) was confirmed. These indicate the formation of 6-lauroyl-trehalose.
- Example 1a The procedures of Example 1a) were repeated with the exception that 87.1 g of methyl stearate was used instead of 52.4 g of methyl 10-undecylenate. 32.1 g of a white solid was obtained. The resultant white solid was analyzed by FAB-MS spectrometry with NaI and a peak at 631 (M(molecular weight of the parent peak)+23) was confirmed. This indicates the formation of 6-stearoyl-trehalose.
- the precipitates were washed with 100 ml of n-butanol, and the washing liquid was combined with the above filtrate.
- the filtrate was distilled in vacuum to obtain 41.6 g of trehalose-6-soybean fatty acid ester as a yellowish viscous syrup, which contained 6-linoleyl-trehalose as a primary component.
- Example 4 The procedures of Example 4 were repeated with the exception that 60 g of a methylester of palm oil fatty acid were used instead of 60 g of methylester of soybean fatty acid to obtain 34.9 g of trehalose-6-palm oil fatty acid ester as a yellowish viscous syrup, which contained 6-lauroyl-trehalose as a primary component.
- the trehalose-6-fatty acid ester of the invention has no irritation to skin and has excellent safety to skin.
- Liquid skin washing agents having the compositions shown in Table 2 were prepared using the 6-(10-undecylenyl)-trehalose, 6-laurolyl-trehalose, trehalose-6-palm oil fatty acid ester prepared above. These washing agents were used to wash face. Soil was removed completely and the feeling was fine. TABLE 2 Example 6 Example 7 Example 8 Component wt. % wt. % wt.
- Hair washing agents having the compositions shown in Table 3 were prepared using the 6-(10-undecylenyl)-trehalose or 6-laurolyl-trehalose prepared above. These washing agents were used to wash hair. Foaming was excellent and the feeling was fine. TABLE 3 Example 9 Example 10 Component wt. % wt. % 6-(10-Undecylenyl)- 20.0 — trehalose 6-Laurolyl-trehalose — 20.0 Palm oil fatty acid 5.0 5.0 diethanol amide Cationated cellulose 0.5 0.5 Perfume (fresh floral 0.5 0.5 composition) Water 74.0 74.0
- Oil-in-water skin creams having the compositions shown in Table 4 were prepared using the above-prepared 6-(10-undecylenyl)-trehalose, 6-stearoly-trehalose or trehalose-6-soybean fatty acid ester. These creams showed extremely good emulsification, and had fine adaptation to skin without stickiness. TABLE 4 Example 11 Example 12 Example 13 Component wt. % wt. % wt.
- the sensory properties were evaluated as a whole for feeling on application (adaptation to skin) and finishing after application (dampish) by three examiners.
- the skin surface texture and beauty were evaluated by the naked eye.
- a patch test adhesive plaster which was impregnated with the sample composition was put on 20 subjects for 24 hours, and then irritation was evaluated 24 or 48 hours after the detachment of the adhesive plaster. Individuals who showed clear erythema were regarded as positive. The result is indicated as a ratio of the positives.
- Skin milks were prepared with the formulations shown in Table 5 using the above-prepared 6-luroyl-trehalose as the trehalose-6-fatty acid ester in the following manner.
- Components 1-5 in Table 5 were mixed and dissolved homogeneously at about 80° C. (Solution 1).
- Components 6-10 and 12 in the Table were mixed and dissolved homogeneously at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and then the mixture was cooled to room temperature under stirring.
- Component 11 was added at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- the skin milks of Examples 14-17 had excellent long-term stability, sensory properties and appearance, and also had no irritation to skin.
- Skin milks were prepared with the formulations shown in Table 6 as in Examples 14-17.
- Comparative Example 1 which lacked trehalose-6-fatty acid ester and Comparative Example 2 which lacked a water-soluble polymer had problems in the long-term stability, sensory properties and appearance.
- Comparative Example 3 which contained sucrose fatty acid ester which is an emulsifier usually used for cosmetics had a problem in the irritation to skin.
- Skin milks were prepared with the formulations shown in Table 7 using the above-prepared 6-stearoyl-trehalose as the trehalose-6-fatty acid ester in the following manner.
- Components 1-7 in Table 7 were mixed and dissolved homogeneously at about 80° C. (Solution 1).
- Components 7-9 and 11 in the Table were mixed and dissolved homogeneously at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and subsequently the mixture was cooled to room temperature under stirring.
- Component 10 was added at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- a makeup base was prepared with the following formulation.
- Trehalose monoisostearate used in this example was synthesized from trehalose and methyl isostearate as in Example 1.
- xthantan gum 1.0
- titanium oxide 0.5
- the oil components 1-6 in the above formulation were mixed and dissolved at about 80° C. (Solution 1).
- the aqueous components 7-10 and 14 were mixed and melted at about 80° C. (Solution 2).
- Component 12 was dispersed in Component 11 (Dispersion).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them. Subsequently, Dispersion 1 was added to the mixture and stirred. The mixture was cooled to room temperature under stirring. During the cooling, Component 13 was added at a time when the temperature become 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- the makeup base thus prepared was an oil-in-water emulsion. After 4-month storage in a thermostat bath at 45° C., it had extremely good stability and also had good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- a hair cream was prepared with the following formulation.
- Trehalose monodocosanate used in this example was synthesized from trehalose and methyl docosanate as in Example 1.
- the oil components 1-7 in the above formulation were mixed and dissolved at about 80° C. (Solution 1).
- the aqueous components 8-14 and 16 were mixed and melted at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and cooled to room temperature under stirring. During the cooling, Component 15 was added just at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- the hair cream thus obtained had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- a cleansing cream was prepared with the following formulation.
- the trehalose monolinoleate and the trehalose monocaprateused in this Example were synthesized from trehalose and methyl linolenate or methyl caprate as in Example 1.
- trehalose monolinoleate 3.0 9.
- trehalose monocaprate 3.0 10. sodium N-stearoyl-L-glutamate 2.0 11.
- the oil components 1-8 in the above formulation were mixed and dissolved at about 80° C. (Solution 1).
- the aqueous components 9-15 were mixed and melted at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and cooled to room temperature under stirring. After that, the stirring was stopped.
- the cleansing cream thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- a massage jelly was prepared with the following formulation.
- the oil components 1-6 in the above formulation were mixed and dissolved at about 80° C. (Solution 1).
- the aqueous components 7-11 were mixed and melted at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer, and the mixture was cooled to room temperature under stirring. After that, the stirring was stopped.
- the massage jelly thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- the cleansing gel was prepared with the following formulation.
- Trehalose monomyristate used in this Example was synthesized from trehalose and methyl myristate as in Example 1.
- glycerin 20.0 6.
- trehalose monomyristate 2.0 8. polyoxyethylenesorbitan monolaurate(20 E.O.) 2.0 9. carboxyvinyl polymer 0.7 10. purified water balance
- the oil components 1-4 in the above formulation were mixed and dissolved at about 80° C. (Solution 1).
- the aqueous components 5-10 were mixed and melted at about 80° C. (Solution 2).
- the above Solution 2 was then added to Solution 1 under stirring with a homomixer, and the mixture was cooled to room temperature under stirring. After that, the stirring was stopped.
- the cleansing gel thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- the present invention relates also to a liposome which is characterized in that it has a wall membrane formed from trehalose fatty acid ester and which is useful in drugs, quasi-drugs, cosmetics and so forth.
- Liposome is a closed vesicle whose wall membrane is composed of a lipid bilayer. Natural biomembrane is said to have lipid dyad membrane structure. The liposome has biomembrane-like structure. Therefore, it is expected that the liposome has high affinity with biocell membrane and has high potential as a drug carrier. Recently, the development of liposome formulations aiming at a drug delivery system has been desired not only in the fields of pharmaceuticals, but in cosmetics.
- Phospholipid lecithin
- Phospholipid has been used as a liposome forming agent. This is excellent in safety, but is hardly used in practical applications because of its poor chemical and physical stabilities. In other words, chemical changes such as changes of color and smell occur in long-term storage in the case where liposome is prepared with phospholipid. Also, physical changes such as aggregation and precipitation occur after long-term storage or by rehydration after freeze-drying. Because of these problems, liposomes from phospholipid have not been put to practical use.
- dialkyl-type cationic surfactants such as o dialkyldimethylammonium, bromide (Kunitake et al. J. Am. Chem. Soc., vol 99, p 3860, 1977), POE-type nonionic surfactants such as polyoxyethylene cured castor oil (Japanese Patent Application Laid Open No. 52-6375/1977, and No. 59-16534/1984).
- sucrose fatty acid esters Japanese Patent Application Laid Open No. 61-207324/1986
- glucose fatty acid esters Japanese Patent Application Laid Open No. 4-300820/1992
- glucose alkylether Japanese Patent Application Laid Open No. 59-106423/1984
- a further object of the invention is to provide a liposome which has excellent chemical and physical stabilities such as storage stability.
- the present invention is a liposome, characterized in that it has membrane wall composed of a trehalose fatty acid ester.
- the present invention is a liposome, characterized in that it has membrane wall composed of trehalose difatty acid ester.
- the trehalose fatty acid ester used in the invention can be obtained from trehalose and a fatty acid or ester thereof in a known synthesis method, such as by ester exchange reaction between trehalose and a lower alkyl ester of a fatty acid.
- the trehalose fatty acid ester can be produced, for example, in a method for the preparation of sucrose fatty acid esters disclosed in U.S. Pat. Nos. 2,893,990 and 3,963,699, Japanese Patent Application Laid Open No 36-21717/1961 and No. 53-6130/1978, all of which are incorporated herein by reference.
- Trehalose may be any of ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose or ⁇ , ⁇ -trehalose or mixtures of two or more of them.
- reaction products a mixture of mono-fatty acid ester, di-fatty acid ester and tri- or more fatty acid ester of trehalose are obtained as reaction products. These products can be isolated by any conventional purification methods. However, the mixture of trehalose fatty acid ester can be used without any purification.
- trehalose fatty acid ester preferred are trehalose poly-fatty acid esters, particularly diesters.
- the fatty acid to compose the trehalose fatty acid ester is preferably those having 8-22 carbon atoms, particularly saturated or unsaturated higher fatty acids having 10-18 carbon atoms.
- Examples of those include trehalose caprylate, trehalose nonanate, trehalose caprate, trehalose undecanate, trehalose laurate, trehalose myristate, trehalose palmitate, trehalose stearate, trehalose arachidonaeate, trehalose docosanate, trehalose undecylenate, trehalose oleate, trehalose linolate, trehalose linolenate, trehalose isostearate, trehalose monohydroxystearate, and trehalose ricinoleate.
- These fatty acids may be used alone or as a mixture.
- the diesters are not required to be of high purity, and the content of the diesters is preferably 30 wt. % or more, based on the total weight of the trehalose fatty acid ester.
- the liposome of the invention may contain unreacted raw materials, i.e. trehalose and fatty acid esters in such an amount as not to adversely affect the liposome formation.
- the liposome of the invention may be composed of a single species of trehalose fatty acid ester or a mixture of two or more species.
- the liposome of the invention may contain sterols, such as cholesterol and cholestanol, as a membrane stabilizer; dicetylphosphate, phosphatidic acid, ganglioside, stearylamine and so forth, as a charged substance; and ⁇ -tocopherol as an antioxidant. These substances may be added preferably in amounts of about 0.01 to about 2.0 weight parts per weight part of the trehalose fatty acid ester, but not limited to such a range.
- any conventional methods for preparing a liposome can be used in the invention.
- a vortexing method, a sonication method, a pre-vesicle method, an ethanol injection method, a French press method, an ether injection method, an annealing method, a W/O/W emulsion method, a reverse phase evaporation method and so forth can be mentioned. Any of them or any combination of them can be used, but not limited to these.
- a trehalose fatty acid ester and a membrane stabilizer and any optional substances are dissolved in an organic solvent, preferably chloroform, and the organic solvent was evaporated out to form a thin membrane composed of the trehalose fatty acid ester.
- An organic solvent preferably chloroform
- a buffer solution in which a water-soluble component, etc. were dissolved was added, and was vortexed at or above its phase transition temperature to strip off the membrane. At this point of time, a polylayer liposome (MLV) was formed. Then, a single layer liposome (SUV) was obtained by sonication, if desired.
- the liposome of the invention may contain ordinary pharmaceutical components such as water-soluble polymers, polyvalent alcohols, preservatives and chelating agents.
- trehalose dilaurate was charged in a 50 ml volume eggplant type flask, and dissolved by adding 5 ml of chloroform. Then, this flask was set on a rotary evaporator, and the solvent was evaporated out slowly so that a thin membrane of trehalose dilaurate was formed on the inner wall of the flask. The inside of the flask was then evacuated by a vacuum pump to be dried for additional 3 hours. Four millilitres of distilled water were added and shaked at 60° C. to strip off the thin membrane. Thus, an aqueous cloudy liquid was obtained.
- Liposomes were prepared in accordance with the procedures of Example A except that a 100 mM aqueous carboxyfluorescein (CF) solution was substituted for distilled water. After MLV's were formed, a liposome solution was gel filtrated to remove CF present in the exterior phase (i.e., not contained in liposomes). Then, liposomes were destroyed by adding an aqueous Triton X-100 solution. By measuring the fluorescence intensities before and after the addition of the aqueous Triton X-100 solution, it was confirmed that CF was trapped in the interior phase (inside the liposomes). The retaining efficiency was 15.5%.
- CF carboxyfluorescein
- Liposomes were prepared in accordance with the procedures of Example A except that trehalose dipalmitate was substituted for trehalose dilaurate. In observation by an electron microscope, it was confirmed that MLV's and SUV's were formed.
- a mixture of 20 mg of trehalose monomyristate, 60 mg of trehalose distearate and 20 mg of trehalose tri- or more stearate was added to 8 ml of ethanol and dissolved by heating at 50° C.
- the solution was pressure injected into distilled water heated at 60° C. by a syringe.
- an aquous translucent solution was obtained.
- an electron microscope as in Example A it was confirmed that SUV's were formed.
- the liposome of the invention was compared with the liposome of prior art for stability.
- Trehalose diundecylenate 0.5 g of cholesterol and 0.2 g of dicetylphosphate were charged in a 200 ml volume eggplant type flask and dissolved by adding 10 ml of chloroform. Then, this flask was set on a rotary evaporator, and the solvent was evaporated out slowly so that a thin membrane was formed on the inner wall of the flask. The inside of the flask was then evacuated by a vacuum pump to be dried for additional 3 hours. One hundred millilitres of distilled water were added and shaked at 60° C. to strip off the thin membrane. Then, this solution was sonicated by a probe-type sonicator for 10 min. at 60° C. to prepare SUV's. In observation by a dynamic light scattering method, the particle diameter was 62 nm.
- a mixture of 0.2 g of trehalose monomyristate, 0.6 g of trehalose distearate and 0.2 g of trehalose tri- or more stearate was added to 10 ml of ethanol and dissolved by heating at 50° C.
- the solution was pressure injected into distilled water heated at 60° C. by a syringe to prepare SUV's.
- the particle diameter was 73 nm.
- SUV's were prepared in accordance with the procedures of Example E except that hydrogenated soybean lecithin was substituted for trehalose diundecylenate. In observation by a dynamic light scattering method, the particle diameter was 59 nm.
- SUV's were prepared in accordance with the procedures of Example E except that sucrose diundecylenate was substituted for trehalose diundecylenate. In observation by a dynamic light scattering method, the particle diameter was 70 nm.
- Tables A and B show that the liposomes of the invention showed superior stability compared with the liposomes of the prior art prepared from hydrogenated soybean lechitin or sucrose fatty acid ester.
- the liposome of the invention has excellent stability. Also, the liposome of the invention can properly envelop water-soluble or oil-soluble drugs and does not suffer from chemical and physical changes. Therefore, the liposome of the invention is useful in the fields of drugs, quasi-drugs, cosmetics and so forth, and can provide liposome formulations suitable for injection drugs, oral medicines, external medicines, lotions, emulsions, creams, essences, and hair tonics.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Birds (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Cosmetics (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
The invention provides a surfactant comprising at least one trehalose-6-fatty acid ester selected from those represented by the following formula:
wherein R represents a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have a hydroxyl group or other substituents, and an emulsion-type cosmetic composition comprising said surfactant and a water-soluble polymer. The surfactant of the invention has excellent surface activity and safety. Also, the emulsion-type cosmetic composition has excellent long-term storage stability and sensory properties, has no irritation to skin, and gives beautiful appearance with fine surface texture. Further, the invention is a liposome having a membrane wall composed of trehalose fatty acid ester. Said liposome has excellent chemical and physical stabilities such as long-term storage stability.
Description
- The present invention relates to a surfactant which has excellent surface activity and safety.
- The invention also relates to a detergent with excellent safety, containing the surfactant.
- The invention further relates to an emulsion-type cosmetic composition with excellent emulsion stability, safety to skin and sensory properties, containing the surfactant.
- A number of compounds are known as surfactants and used in many applications. However, most of those surfactants irritate skin when they are used in cosmetics, such as shampoos, rinses, soaps and other cosmetic compositions, which contact with a human body directly. Therefore, lower irritating surfactants have been desired.
- In many emulsions use is made of nonionic surfactants having a polyoxyethylene chain, anionic surfactants such as fatty acid soaps, cationic surfactants or ampholytic surfactants. However, there was a problem that emulsion-type cosmetic compositions with those synthetic surfactants generally tend to irritate skin. Also, even with nonionic surfactants which are said to be less irritating, most of them fit poorly to skin because of their polyoxyethylene chains.
- On the other hand, alkylesterified sugars are nonionic surfactants which have been used widely in foods, cosmetics and the like. Among others, sucrose alkylesters in which sucrose constitutes a sugar skeleton are used widely and seen in many publications (Japanese Patent Application Laid Open No. 56-55306/1981). However, those are insufficient in sensory properties and long-term storage stability. Also, it is known to use, as a surfactant, trehalose-6,6′-dialkylester in which a trehalose derivative constitutes a sugar skeleton (Japanese Patent Application Laid Open Nos. 60-258195/1985 and 62-91236/1987). Those are insufficient in emulsifiability.
- Synthesis of trehalose fatty acid ester are reported in Chem. Phar. Bull., 30 (4) pp 1169-1174, (1982), where synthesis of 6-stearoyl-trehalose and 6,6′-distearoyl-trehalose and the analysis of them using NMR, etc. are described. Those esters are reported to have anti-tumor activity against Ehrlich ascites tumor in mice. There is no description or suggestion that they show properties as a surfactant. An emulsion-type anti-tumor agent is known in which a specific emulsifier composition is combined with trehalose-6,6′-difatty acid ester as an anti-tumor agent in order to solve a disadvantage that the ester is difficult to dissolve in water (Japanese Patent Application Laid Open No. 61-289038/1986).
- In consideration of surface activity, foamability, washing ability and so forth for a surfactant, the presence of a single lipophilic moiety is said to be preferred. For example, glucose fatty acid monoester is reported in Japanese Patent Application Laid Open No. 03-157349/1991. However, this has a disadvantage that a stable emulsion can not be obtained due to its weak hydrophilicity.
- A purpose of the invention is to provide a surfactant that has excellent surface activity and safety.
- Another purpose of the invention is to provide a detergent that has excellent safety.
- A further purpose of the invention is to provide an emulsion-type cosmetic that has low irritation to skin, long-term storage stability, excellent sensory properties and beautiful appearance with fine surface texture.
-
- wherein R represents a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl group.
-
- Another preferred embodiment of the invention is a surfactant containing 6-lauroyl-trehalose.
- Further, another preferred embodiment of the invention is a surfactant containing 6-stearoyl-trehalose.
-
- wherein R is a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl group.
-
- wherein R is a saturated or unsaturated acyl group having 8-22 carbon atoms, and may have substituents such as a hydroxyl; and
- a water-soluble polymer.
- The trehalose-6-fatty acid ester of the invention can be obtained by a condensation reaction of trehalose with a fatty acid or by an ester interchange reaction between trehalose and a fatty acid ester.
- Examples of the fatty acid or fatty acid ester which can be used in the invention include synthetic fatty acids and esters thereof, natural fatty acids, such as soybean fatty acid, beef tallow, cotton seed oil, olive oil, palm oil and so forth, and fatty acid esters thereof with lower alkyl groups, which esters are obtained in any conventional method.
- Trehalose which can be used in the invention may be α,α-trehalose, α,β-trehalose, β,β-trehalose or mixtures thereof.
- The trehalose-6-fatty acid of the invention can be obtained in any usual method of producing sucrose alkyl esters, as described in U.S. Pat. Nos. 2,893,990 and 3,963,699, Japanese Patent Application Laid Openlaid Nos. 36-21717/1961 and 53-6130/1978, all of which are incorporated herein by reference.
- The trehalose-6-fatty acid ester is obtained as a main reaction product in these methods. In some cases, there are contained small amounts of unreacted trehalose and trehalose-6,6′-fatty acid diester as a side-reaction product. The trehalose-6-fatty acid ester may be purified in a conventional manner before used, if desired. However, the trehalose-6-fatty acid may be used together with small amounts of unreacted trehalose and trehalose-6,6′-fatty acid diester, because the trehalose-6-fatty acid can exhibit surface activity even in the presence of them.
- The trehalose-6-fatty acid ester used in the invention is preferably those in which a fatty acid radical, i.e. an acyl group, has a linear or branched, saturated alkyl or alkenyl group having 8-22 carbon atoms. Examples of those include trehalose monocaprylate, trehalose monononanoate, trehalose monocaprate, trehalose monoundecanoate, trehalose monolaurate, trehalose monomyristate, trehalose monopalmitate, trehalose monostearate, trehalose monoarachidate, trehalose monobehenate, trehalose monoundecylenate, trehalose monooleate, trehalose monolinoleate, trehalose monolinolenate, trehalose monoisostearate, trehalose monohydroxystearate, and trehalose monoricinoleate. One or more from these trehalose-6-fatty acid esters can be used in the invention.
- The surfactant of the invention preferably contains one or more selected from 6-(10-undecylenyl)-trehalose, 6-lauroyl-trehalose and 6-stearoyl-trehalose.
- The surfactant of the invention has excellent surface activity and safety to skin and also may be used as an emulsifier in foods.
- The skin or hair washing agent detergent of the invention preferably contains one or more of the trehalose-6-fatty acid ester in an amount of 1-50 wt. %, particularly 10-35 wt. %. It may further contain other surfactants.
- The cosmetic composition of the invention contains one or more of the above trehalose-6-fatty acid ester and a water-soluble polymer. The content of the above trehalose-6-fatty acid ester in the cosmetic composition is preferably 0.01-20 wt. %, particularly 0.1-10 wt. %, based on the total weight of the cosmetic composition. If the content is less than 0.01 wt. %, the emulsion stability of the cosmetic composition tends to decrease during its storage. On the other hand, if it is more than 20 wt. %, it is difficult to obtain fine feeling in use.
- The water-soluble polymer used in the invention may be generally any of those used in cosmetic compositions or pharmaceutical bases. Examples of the water-soluble polymer include guar gum, roastbean gum, queensseed, carageenan, galactan, arabic gum, tragacanth, pectin, mannan, starch, xanthan gum, dextrin, succinoglucan, curdlan, gelatin, casein, albumin, collagen, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, methylhydroxypropyl cellulose, soluble starch, carboxymethyl starch, methyl starch, propyleneglycol alginate, salts of alginic acid, polyvinylalcohol, polyvinylpyrrolidone, polyvinylmethylether, carboxyvinyl polymers, sodium polyacrylate, polyethyleneglycol, ethylene oxide/propylene oxide copolymers, cationated cellulose, sodium chondroitin sulfate, and sodium hyaluronate. These water-soluble polymers may be used alone or in combination.
- The content of the above water-soluble polymer is preferably 0.001-40 wt. %, particularly 0.01-20 wt. %, on the basis of the total weight of the cosmetic composition. If the content is less than 0.001 wt. %, the emulsion stability of the cosmetic composition tends to decrease during its storage. On the other hand, if it is more than 40 wt. %, it is difficult to obtain fine feeling in use.
- The cosmetic composition of the invention may contain one or more oil substances that can usually be used in cosmetic compositions or pharmaceutical bases, if necessary, such as hydrocarbons, such as liquid paraffin, squalane, vaseline and microcrystalline wax; ester oils, such as isopropylmyristate, cetyl-2-ethylhexalate, glyceryl-tri-2-ethylhexanoate, vitamin C palmitate, vitamin C stearate, vitamin C sulfate and vitamin E acetate; waxes, such as beeswax and spermaceti; vegetable oils, such as avocado oil, almond oil, rice bran oil, olive oil, castor oil, rapeseed oil, saffron oil, corn oil, wheat germ oil, soybean oil, cotton-seed oil, tea-seed oil and jojoba oil; animal oils, such as turtle oil, mink oil and yolk oil; higher alcohols, such as cetyl alcohol, stearyl alcohol, oleyl alcohol, octyldodecanol and behenyl alcohol; higher fatty acids, such as laurylic acid, myristic acid, palmitic acid, stearic acid, oleic acid, linolic acid, linolenic acid, ricinoleic acid and isostearic acid; silicone oils, such as dimethylsilicone, methylphenylsilicone and cyclic silicone; other silicone resins and silicone polymers.
- The cosmetic composition of the invention may contain polyvalent alcohols, such as ethyleneglycol, propyleneglycol, 1,3-butyleneglycol, dipropyleneglycol, glycerin, and polyglycerins such as diglycerin, triglycerin, tetraglycerin, pentaglycerin and hexaglycerin; trimethylolpropane, 1,2,6-hexatriol, glucose, maltose, maltitol, sucrose, fructose, xylitol, mannitol, sorbitol, maltotriose, threitol, sorbitan, starch-decomposed sugar and starch decompoed reducing alcohol, alone or in combination thereof.
- The cosmetic composition of the invention may contain any ingredients customarily used in cosmetics and pharmaceutical bases, such as humectants, active ingredients, fragrances, preservatives, colorants, UV absorbents, astringents, synthetic surfactants, pigments (e.g., kaolin, mica, sericite, talc, yellow iron oxide, red iron oxide and titanium oxide) and water.
- The cosmetic composition of the invention includes massage creams, cleansing creams, skin creams, foundation creams, makeup bases, hair creams, massage jellys, and medicinal jellys, but is not limited to those.
- The invention will be explained further in detail in reference to the following Examples, but shall not be limited to those.
- a) One hundred grams of α,α-trehalose were dissolved in 400 ml of dimethylformamide, to which added were 52.4 g of methyl 10-undecylenate and 1.0 g of potassium hydroxide, heated to 100° C. and then stirred for 12 hours. After this reaction solution was cooled, unreacted methyl 10-undecylenate was removed by extracting the solution with 400 ml of hexane three times. The dimethylformamide solution containing the desired substance was concentrated to about 200 ml in vacuum, to which, then, 1,000 ml of acetone was added to precipitate unreacted trehalose which was subsequently filtered out. The precipitate were washed with 100 ml of n-butanol, and the washing liquid was combined with the above filtrate. The filtrate was distilled in vacuum to obtain a yellowish viscous syrup. This viscous syrup was subjected to silica gel chromatography (developing solvent: chloroform/methanol=4/1) so as to remove remaining unreacted substances. A fraction containing the desired substance was distilled in vacuum to obtain 24.3 g of a yellowish viscous syrup.
- b) The resultant syrup was analyzed by 13C-NMR spectroscopy.
- Signals were confirmed for a carbonyl group at 175.5 ppm, terminal methylene group at 140.11 and 114.73 ppm, and 6- and 6′-positions of trehalose at 64.4 and 62.64 ppm. This indicates the formation of 6-(10-undecylenyl)-trehalose.
- The procedures of Example 1a) were repeated with the exception that 62.5 g of methyl laurate was used instead of 52.4 g of methyl 10-undecylenate. 27.3 g of a white solid were obtained.
- The resultant white solid was analyzed by 13C-NMR spectroscopy. Signals were confirmed for a carbonyl group at 175.5 ppm, and 6- and 6′-positions of trehalose at 64.4 and 62.64 ppm. The solid was analyzed by FAB-MS spectrometry with NaI and a peak at 547 (M(molecular weight of the parent peak)+23) was confirmed. These indicate the formation of 6-lauroyl-trehalose.
- The procedures of Example 1a) were repeated with the exception that 87.1 g of methyl stearate was used instead of 52.4 g of methyl 10-undecylenate. 32.1 g of a white solid was obtained. The resultant white solid was analyzed by FAB-MS spectrometry with NaI and a peak at 631 (M(molecular weight of the parent peak)+23) was confirmed. This indicates the formation of 6-stearoyl-trehalose.
- One hundred grams of α,α-trehalose were dissolved in 400 ml of dimethylformamide. To this solution added were 60 g of a methyester of soybean fatty acid and 1.0 g of potassium hydroxide, heated to 100° C., and then stirred for 18 hours. After this reaction solution was cooled, the unreacted methylester of soybean fatty acid was removed by extracting the reaction solution with 400 ml of hexane five times. The dimethylformamide solution containing the desired substance was concentrated to about 200 ml in vacuum, to which 1,500 ml of acetone was added to precipitate unreacted trehalose which was subsequently filtered off. The precipitates were washed with 100 ml of n-butanol, and the washing liquid was combined with the above filtrate. The filtrate was distilled in vacuum to obtain 41.6 g of trehalose-6-soybean fatty acid ester as a yellowish viscous syrup, which contained 6-linoleyl-trehalose as a primary component.
- The procedures of Example 4 were repeated with the exception that 60 g of a methylester of palm oil fatty acid were used instead of 60 g of methylester of soybean fatty acid to obtain 34.9 g of trehalose-6-palm oil fatty acid ester as a yellowish viscous syrup, which contained 6-lauroyl-trehalose as a primary component.
- Safety Test
- As a safety test on the above trehalose-6-fatty acid esters, irritation to skin was examinaed in accordance with the following procedures.
- An adhesive plaster for patch test which had been impregnated with 1 ml of a 0.2% solution of the surfactant was put on 20 subjects for 24 hours. Irritaion was evaluated 24 hours after removing the patch. The result was rated by percentage of positive subjects who showed an clear erythema. The results are as shown in Table 1. Sodium laurylphosphate used as a control is a surfactant which is usually used in shampoos, body shampoos and the like.
TABLE 1 Irritation to skin, Sample (0.1% solution) positive, % 6-(10-Undecylenyl)-trehalose 0 6-Lauroyl-trehalose 0 6-Stearoyl-trehalose 0 Trehalose-6-soybean fatty acid ester 0 Trehalose-6-palm fatty acid ester 0 Control 0.5 (Monosodium lauryl phosphate) - As seen from Table 1, the trehalose-6-fatty acid ester of the invention has no irritation to skin and has excellent safety to skin.
- Liquid skin washing agents having the compositions shown in Table 2 were prepared using the 6-(10-undecylenyl)-trehalose, 6-laurolyl-trehalose, trehalose-6-palm oil fatty acid ester prepared above. These washing agents were used to wash face. Soil was removed completely and the feeling was fine.
TABLE 2 Example 6 Example 7 Example 8 Component wt. % wt. % wt. % 6-(10-Undecylenyl)- 25.0 — — trehalose 6-Laurolyl-trehalose — 15.0 — Trehalose-6-palm oil — — 25.0 fatty acid ester Miranol C2M 5.0 5.0 5.0 (Miranol) Glycerine 10.0 10.0 10.0 Carboxyvinyl polymer 0.6 0.6 0.6 Perfume (citrus 0.4 0.4 0.4 type composition) Water 59.0 69.0 59.0 - Hair washing agents having the compositions shown in Table 3 were prepared using the 6-(10-undecylenyl)-trehalose or 6-laurolyl-trehalose prepared above. These washing agents were used to wash hair. Foaming was excellent and the feeling was fine.
TABLE 3 Example 9 Example 10 Component wt. % wt. % 6-(10-Undecylenyl)- 20.0 — trehalose 6-Laurolyl-trehalose — 20.0 Palm oil fatty acid 5.0 5.0 diethanol amide Cationated cellulose 0.5 0.5 Perfume (fresh floral 0.5 0.5 composition) Water 74.0 74.0 - Oil-in-water skin creams having the compositions shown in Table 4 were prepared using the above-prepared 6-(10-undecylenyl)-trehalose, 6-stearoly-trehalose or trehalose-6-soybean fatty acid ester. These creams showed extremely good emulsification, and had fine adaptation to skin without stickiness.
TABLE 4 Example 11 Example 12 Example 13 Component wt. % wt. % wt. % 6-(10-Undecylenyl)- 1.5 — — trehalose 6-Stearoly-trehalose — 1.5 — Trehalose-6-soybean — — 1.5 fatty acid ester Glycerol monostearate 2.4 2.4 2.4 Cetylalcohol 4.0 4.0 4.0 Solid paraffin 5.0 5.0 5.0 Squalane 10.0 10.0 15.0 Octyldodecyl 5.0 5.0 — myristearate Glycerine 5.0 5.0 5.0 Perfume (floral 0.1 0.1 0.1 composition) Water 67.0 67.0 67.0
Preparation of Cosmetic Compositions - The evaluation for various properties of the cosmetic compositions was performed in accordance with the following method.
- (1) Long-Term Stability Test
- Each sample was placed in a thermostat bath at 45° C. for 1-6 months, and then its appearance was evaluated by the naked eye.
- (2) Sensory Properties Test
- The sensory properties were evaluated as a whole for feeling on application (adaptation to skin) and finishing after application (dampish) by three examiners.
- (3) Appearance Testing
- The skin surface texture and beauty were evaluated by the naked eye.
- (4) Skin Irritating Test
- A patch test adhesive plaster which was impregnated with the sample composition was put on 20 subjects for 24 hours, and then irritation was evaluated 24 or 48 hours after the detachment of the adhesive plaster. Individuals who showed clear erythema were regarded as positive. The result is indicated as a ratio of the positives.
- Skin milks were prepared with the formulations shown in Table 5 using the above-prepared 6-luroyl-trehalose as the trehalose-6-fatty acid ester in the following manner. Components 1-5 in Table 5 were mixed and dissolved homogeneously at about 80° C. (Solution 1). Components 6-10 and 12 in the Table were mixed and dissolved homogeneously at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and then the mixture was cooled to room temperature under stirring. During the cooling, Component 11 was added at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- Properties of the resultant skin milks are as shown in Table 5.
TABLE 5 Ex. 14 Ex. 15 Ex. 16 Ex. 17 Component glyceryl monostearate 1.0 1.0 1.0 1.0 (selfemulsification type) liquid paraffin 10.0 10.0 10.0 10.0 squalane 1.0 1.0 1.0 1.0 cholesterol 0.5 0.5 0.5 0.5 cetylalcohol 0.1 0.1 0.1 0.1 dipropyleneglycol 5.0 5.0 5.0 5.0 glycerine 1.0 1.0 1.0 1.0 carboxyvinyl polymer 0.3 0.3 0.3 0.3 6-lauroyl-trehalose 0.1 0.5 1.0 5.0 methyl para- 0.2 0.2 0.2 0.2 hydrooxybenzoate perfume 0.2 0.2 0.2 0.2 purified water balance balance balance balance Properties long-term stability good good good good (45° C., 4 months) sensory properties (adapting to skin) good good good good (dampish feeling) good good good good appearance good good good good irritation to skin 0 0 0 0 (positive, %) - As seen from this Table, the skin milks of Examples 14-17 had excellent long-term stability, sensory properties and appearance, and also had no irritation to skin.
- Skin milks were prepared with the formulations shown in Table 6 as in Examples 14-17.
- The properties of the resultant skin milks are as shown in Table 6.
TABLE 6 Comp. Ex. 1 Comp. Ex. 2 Comp. Ex. 3 Component glyceryl-monostearate 1.0 1.0 1.0 (selfemulsification type) liquid paraffin 10.0 10.0 10.0 squalane 1.0 1.0 1.0 cholesterol 0.5 0.5 0.5 cetylalcohol 0.1 0.1 0.1 dipropyleneglycol 5.0 5.0 5.0 glycerine 1.0 1.0 1.0 carboxyvinyl polymer 0.3 — 0.3 6-lauroyl-trehalose — 1.0 — sucrose fatty acid ester — — 1.0 methyl para-hydroxybenzoate 0.2 0.2 0.2 perfume 0.2 0.2 0.2 purified water balance balance balance Properties long-term stability separated separated good (45° C., 4 months) sensory properties (adapting to skin) bad bad good (dampish feeling) inferior inferior good appearance bad inferior good irritation to skin 0 0 0.5 (positive, %) - As seen from this Table, Comparative Example 1 which lacked trehalose-6-fatty acid ester and Comparative Example 2 which lacked a water-soluble polymer had problems in the long-term stability, sensory properties and appearance. On the other hand, Comparative Example 3 which contained sucrose fatty acid ester which is an emulsifier usually used for cosmetics had a problem in the irritation to skin.
- Preparation of Skin Creams
- Skin milks were prepared with the formulations shown in Table 7 using the above-prepared 6-stearoyl-trehalose as the trehalose-6-fatty acid ester in the following manner.
- Components 1-7 in Table 7 were mixed and dissolved homogeneously at about 80° C. (Solution 1). Components 7-9 and 11 in the Table were mixed and dissolved homogeneously at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and subsequently the mixture was cooled to room temperature under stirring. During the cooling, Component 10 was added at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- Properties of the resultant skin creams are as shown in Table 7.
TABLE 7 Ex. 18 Ex. 19 Ex. 20 Comp. 4 Comp. 5 Component Olive oil 5.0 5.0 5.0 5.0 5.0 liquid paraffin 15.0 15.0 15.0 15.0 15.0 beeswax 2.0 2.0 2.0 2.0 2.0 cetylalcohol 8.0 8.0 8.0 8.0 8.0 glycelyl 3.0 3.0 3.0 3.0 3.0 monostearate white vaseline 3.0 3.0 3.0 3.0 3.0 6-stearoly- 1.0 1.0 1.0 1.0 — trehalose xanthan gum 0.01 0.5 1.0 — 10.0 methyl 0.3 0.3 0.3 0.3 0.3 para- hydroxybenzoate perfume 0.1 0.1 0.1 0.1 0.1 purified water balance balance balance balance balance Properties long-term stability good good good separated separated (45° C., 6 months) sensory properties (adapting to skin) good good good good bad (dampish feeling) good good good good inferior appearance property good good good good bad irritation to skin 0 0 0 0 0 (positive, %) - As seen from this Table, the skin creams of Examples 18-20 had excellent long-term stability, sensory properties and appearance, and also had no irritation to skin. On the other hand, Comparative Example 5 which lacked trehalose-6-fatty acid ester had problems in long-term stability, sensory properties and appearance. Comparative Example 4 which lacked a water-soluble polymer had a problem in long-term stability.
- A makeup base was prepared with the following formulation. Trehalose monoisostearate used in this example was synthesized from trehalose and methyl isostearate as in Example 1.
Formulation: Component 1. liquid paraffin 12.0 2. squalane 3.0 3. glycelol monostearate 1.5 4. cholesterol 0.2 5. cetylalcohol 0.5 6. trehalose monoisostearate 1.5 7. glycerin 5.0 8. carageenan 0.5 9. methyl para-hydoxybenzoate 0.3 10. xthantan gum 1.0 11. dipropyleneglycol 0.8 12. titanium oxide 0.5 13. perfume 0.1 14. purified water balance - The oil components 1-6 in the above formulation were mixed and dissolved at about 80° C. (Solution 1). The aqueous components 7-10 and 14 were mixed and melted at about 80° C. (Solution 2). Also, Component 12 was dispersed in Component 11 (Dispersion). The above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them. Subsequently, Dispersion 1 was added to the mixture and stirred. The mixture was cooled to room temperature under stirring. During the cooling, Component 13 was added at a time when the temperature become 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- The makeup base thus prepared was an oil-in-water emulsion. After 4-month storage in a thermostat bath at 45° C., it had extremely good stability and also had good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- A hair cream was prepared with the following formulation. Trehalose monodocosanate used in this example was synthesized from trehalose and methyl docosanate as in Example 1.
Formulation: Component 1. stearic acid 0.5 2. squalane 2.0 3. liquid paraffin 40.0 4. glycelol monostearate 0.5 5. dimethylpolysiloxane 1.0 6. butyl para-hydoxybenzoate 0.1 7. trehalose monodocosanate 2.0 8. propyleneglycol 2.0 9. sorbitol 3.0 10. glycerin 3.0 11. methylcellulose 0.3 12. tetra-sodium edetate 0.1 13. methyl para-hydoxybenzoate 0.2 14. sodium chondroitin sulfate 0.3 15. perfume 0.3 16. purified water balance - The oil components 1-7 in the above formulation were mixed and dissolved at about 80° C. (Solution 1). The aqueous components 8-14 and 16 were mixed and melted at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and cooled to room temperature under stirring. During the cooling, Component 15 was added just at a time when the temperature became 70° C., and further the mixture was cooled to room temperature before stopping the stirring.
- The hair cream thus obtained had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- A cleansing cream was prepared with the following formulation. The trehalose monolinoleate and the trehalose monocaprateused in this Example were synthesized from trehalose and methyl linolenate or methyl caprate as in Example 1.
Formulation: Component 1. beeswax 5.0 2. cetylalcohol 2.0 3. liquid paraffin 15.0 4. vaseline 17.0 5. glycelol monostearate 3.0 6. dimethylpolysiloxane 3.0 7. butyl para-hydoxybenzoate 0.1 8. trehalose monolinoleate 3.0 9. trehalose monocaprate 3.0 10. sodium N-stearoyl-L-glutamate 2.0 11. glycerin 4.0 12. methyl para-hydoxybenzoate 0.3 13. dipropyleneglycol 2.0 14. polyvinylpyrrolidon 2.0 15. purified water balance - The oil components 1-8 in the above formulation were mixed and dissolved at about 80° C. (Solution 1). The aqueous components 9-15 were mixed and melted at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer to emulsify them, and cooled to room temperature under stirring. After that, the stirring was stopped.
- The cleansing cream thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- A massage jelly was prepared with the following formulation.
Formulation: Component 1. squalane 10.0 2. olive oil 4.0 3. vitamin E acetate 0.2 4. liquid paraffin 8.0 5. polyoxyethylene cetylether(2 E.O) 2.0 6. trehalose monolaurate 2.0 7. glycerin 35.0 8. dipropyleneglycol 20.0 9. polyvinylalcohol 18.0 10. dipotassium glycyrrhizeinate 0.1 11. purified water balance - The oil components 1-6 in the above formulation were mixed and dissolved at about 80° C. (Solution 1). The aqueous components 7-11 were mixed and melted at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer, and the mixture was cooled to room temperature under stirring. After that, the stirring was stopped.
- The massage jelly thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- The cleansing gel was prepared with the following formulation. Trehalose monomyristate used in this Example was synthesized from trehalose and methyl myristate as in Example 1.
Formulation: Component 1. 2-ethyl hexanoic acid triglyceride 5.0 2. olive oil 41.0 3. liquid paraffin 15.0 4. dimethylpolysiloxan 2.0 5. glycerin 20.0 6. trehalose monolaurate 7.0 7. trehalose monomyristate 2.0 8. polyoxyethylenesorbitan monolaurate(20 E.O.) 2.0 9. carboxyvinyl polymer 0.7 10. purified water balance - The oil components 1-4 in the above formulation were mixed and dissolved at about 80° C. (Solution 1). The aqueous components 5-10 were mixed and melted at about 80° C. (Solution 2). The above Solution 2 was then added to Solution 1 under stirring with a homomixer, and the mixture was cooled to room temperature under stirring. After that, the stirring was stopped.
- The cleansing gel thus prepared had extremely good stability after 6-month storage in a thermostat bath at 45° C. It had also good sensory properties (adapting to skin, dampish feeling) and good appearance (surface texture).
- The present invention relates also to a liposome which is characterized in that it has a wall membrane formed from trehalose fatty acid ester and which is useful in drugs, quasi-drugs, cosmetics and so forth.
- Liposome is a closed vesicle whose wall membrane is composed of a lipid bilayer. Natural biomembrane is said to have lipid dyad membrane structure. The liposome has biomembrane-like structure. Therefore, it is expected that the liposome has high affinity with biocell membrane and has high potential as a drug carrier. Recently, the development of liposome formulations aiming at a drug delivery system has been desired not only in the fields of pharmaceuticals, but in cosmetics.
- Phospholipid (lecithin) has been used as a liposome forming agent. This is excellent in safety, but is hardly used in practical applications because of its poor chemical and physical stabilities. In other words, chemical changes such as changes of color and smell occur in long-term storage in the case where liposome is prepared with phospholipid. Also, physical changes such as aggregation and precipitation occur after long-term storage or by rehydration after freeze-drying. Because of these problems, liposomes from phospholipid have not been put to practical use.
- It was tried to find other substance which has liposome-forming activity to solve these problems. For example, there are publications on dialkyl-type cationic surfactants such as o dialkyldimethylammonium, bromide (Kunitake et al. J. Am. Chem. Soc., vol 99, p 3860, 1977), POE-type nonionic surfactants such as polyoxyethylene cured castor oil (Japanese Patent Application Laid Open No. 52-6375/1977, and No. 59-16534/1984). Also, there are reported sucrose fatty acid esters (Japanese Patent Application Laid Open No. 61-207324/1986), glucose fatty acid esters (Japanese Patent Application Laid Open No. 4-300820/1992), and glucose alkylether (Japanese Patent Application Laid Open No. 59-106423/1984), in which sugars are used as a hydrophilic group. However, the stability of these liposomes is not satisfactory.
- Also, in order to improve the stability of liposome, sugars such as trehalose are added to liposome (Japanese Patent Application Laid Open No. 62-500102/1987, and No. 62-501631/1987). However, there is no report in which trehalose fatty acid ester is used as a liposome forming agent.
- Meanwhile, there are some report on trehalose fatty acid ester, such as a report on its synthesis (Chem. Pharm. Bull, 30(4), pp 1169-1174(1982), a report aiming to use trehalose difatty acid ester as a surfactant (Japanese Patent Application Laid Open No. 60-258195/1985 and No. 62-91236/1987), and a report aiming to use it as an antitumor agent (Japanese Patent Application Laid Open No. 61-289038/1986, Chem. Pharm. Bull., vol 25(7), pp 1717-1724). However, there is no report which discloses or suggests the liposome forming activity.
- A further object of the invention is to provide a liposome which has excellent chemical and physical stabilities such as storage stability.
- The present invention is a liposome, characterized in that it has membrane wall composed of a trehalose fatty acid ester.
- The present invention is a liposome, characterized in that it has membrane wall composed of trehalose difatty acid ester.
- The present invention will be explained further in details below.
- The trehalose fatty acid ester used in the invention can be obtained from trehalose and a fatty acid or ester thereof in a known synthesis method, such as by ester exchange reaction between trehalose and a lower alkyl ester of a fatty acid.
- The trehalose fatty acid ester can be produced, for example, in a method for the preparation of sucrose fatty acid esters disclosed in U.S. Pat. Nos. 2,893,990 and 3,963,699, Japanese Patent Application Laid Open No 36-21717/1961 and No. 53-6130/1978, all of which are incorporated herein by reference.
- Trehalose may be any of α,α-trehalose, α,β-trehalose or β,β-trehalose or mixtures of two or more of them.
- In these methods, a mixture of mono-fatty acid ester, di-fatty acid ester and tri- or more fatty acid ester of trehalose are obtained as reaction products. These products can be isolated by any conventional purification methods. However, the mixture of trehalose fatty acid ester can be used without any purification.
- As the trehalose fatty acid ester, preferred are trehalose poly-fatty acid esters, particularly diesters. The fatty acid to compose the trehalose fatty acid ester is preferably those having 8-22 carbon atoms, particularly saturated or unsaturated higher fatty acids having 10-18 carbon atoms. Examples of those include trehalose caprylate, trehalose nonanate, trehalose caprate, trehalose undecanate, trehalose laurate, trehalose myristate, trehalose palmitate, trehalose stearate, trehalose arachidonaeate, trehalose docosanate, trehalose undecylenate, trehalose oleate, trehalose linolate, trehalose linolenate, trehalose isostearate, trehalose monohydroxystearate, and trehalose ricinoleate. These fatty acids may be used alone or as a mixture. The diesters are not required to be of high purity, and the content of the diesters is preferably 30 wt. % or more, based on the total weight of the trehalose fatty acid ester.
- The liposome of the invention may contain unreacted raw materials, i.e. trehalose and fatty acid esters in such an amount as not to adversely affect the liposome formation.
- The liposome of the invention may be composed of a single species of trehalose fatty acid ester or a mixture of two or more species.
- The liposome of the invention may contain sterols, such as cholesterol and cholestanol, as a membrane stabilizer; dicetylphosphate, phosphatidic acid, ganglioside, stearylamine and so forth, as a charged substance; and α-tocopherol as an antioxidant. These substances may be added preferably in amounts of about 0.01 to about 2.0 weight parts per weight part of the trehalose fatty acid ester, but not limited to such a range.
- Any conventional methods for preparing a liposome can be used in the invention. For example, a vortexing method, a sonication method, a pre-vesicle method, an ethanol injection method, a French press method, an ether injection method, an annealing method, a W/O/W emulsion method, a reverse phase evaporation method and so forth can be mentioned. Any of them or any combination of them can be used, but not limited to these.
- Preparation in a vortexing method or sonication method will be explained below.
- A trehalose fatty acid ester and a membrane stabilizer and any optional substances are dissolved in an organic solvent, preferably chloroform, and the organic solvent was evaporated out to form a thin membrane composed of the trehalose fatty acid ester. A buffer solution in which a water-soluble component, etc. were dissolved was added, and was vortexed at or above its phase transition temperature to strip off the membrane. At this point of time, a polylayer liposome (MLV) was formed. Then, a single layer liposome (SUV) was obtained by sonication, if desired.
- The liposome of the invention may contain ordinary pharmaceutical components such as water-soluble polymers, polyvalent alcohols, preservatives and chelating agents.
- This invention will be explained further in details in the following Examples, but not limited to those.
- One hundred mg of trehalose dilaurate was charged in a 50 ml volume eggplant type flask, and dissolved by adding 5 ml of chloroform. Then, this flask was set on a rotary evaporator, and the solvent was evaporated out slowly so that a thin membrane of trehalose dilaurate was formed on the inner wall of the flask. The inside of the flask was then evacuated by a vacuum pump to be dried for additional 3 hours. Four millilitres of distilled water were added and shaked at 60° C. to strip off the thin membrane. Thus, an aqueous cloudy liquid was obtained. In observation by a polarizing microscope (x 400), particles of 1-10 μm in diameter were seen with “closed lamella structure” which is characteristic of MLV. This aqueous liquid was stained with phosphotungstic acid. In observation by a transmission electron microscope (×100,000), closed vesicles having about five- to nine-layer membrane structure, i.e., liposomes, were observed. Then, this aqueous liquid was sonicated by a probe-type sonicator for 10 min. at 60° C. In observation by a transmission electron microscope as above, SUV's of 50-80 nm in particle diameter were observed.
- Liposomes were prepared in accordance with the procedures of Example A except that a 100 mM aqueous carboxyfluorescein (CF) solution was substituted for distilled water. After MLV's were formed, a liposome solution was gel filtrated to remove CF present in the exterior phase (i.e., not contained in liposomes). Then, liposomes were destroyed by adding an aqueous Triton X-100 solution. By measuring the fluorescence intensities before and after the addition of the aqueous Triton X-100 solution, it was confirmed that CF was trapped in the interior phase (inside the liposomes). The retaining efficiency was 15.5%.
- Liposomes were prepared in accordance with the procedures of Example A except that trehalose dipalmitate was substituted for trehalose dilaurate. In observation by an electron microscope, it was confirmed that MLV's and SUV's were formed.
- A mixture of 20 mg of trehalose monomyristate, 60 mg of trehalose distearate and 20 mg of trehalose tri- or more stearate was added to 8 ml of ethanol and dissolved by heating at 50° C. The solution was pressure injected into distilled water heated at 60° C. by a syringe. As a result, an aquous translucent solution was obtained. In observation by an electron microscope as in Example A, it was confirmed that SUV's were formed.
- The results of Examples A-D showed that trehalose fatty acid esters could form liposomes.
- In the following, the liposome of the invention was compared with the liposome of prior art for stability.
- One gram of Trehalose diundecylenate, 0.5 g of cholesterol and 0.2 g of dicetylphosphate were charged in a 200 ml volume eggplant type flask and dissolved by adding 10 ml of chloroform. Then, this flask was set on a rotary evaporator, and the solvent was evaporated out slowly so that a thin membrane was formed on the inner wall of the flask. The inside of the flask was then evacuated by a vacuum pump to be dried for additional 3 hours. One hundred millilitres of distilled water were added and shaked at 60° C. to strip off the thin membrane. Then, this solution was sonicated by a probe-type sonicator for 10 min. at 60° C. to prepare SUV's. In observation by a dynamic light scattering method, the particle diameter was 62 nm.
- A mixture of 0.2 g of trehalose monomyristate, 0.6 g of trehalose distearate and 0.2 g of trehalose tri- or more stearate was added to 10 ml of ethanol and dissolved by heating at 50° C. The solution was pressure injected into distilled water heated at 60° C. by a syringe to prepare SUV's. In observation by a dynamic light scattering method, the particle diameter was 73 nm.
- SUV's were prepared in accordance with the procedures of Example E except that hydrogenated soybean lecithin was substituted for trehalose diundecylenate. In observation by a dynamic light scattering method, the particle diameter was 59 nm.
- SUV's were prepared in accordance with the procedures of Example E except that sucrose diundecylenate was substituted for trehalose diundecylenate. In observation by a dynamic light scattering method, the particle diameter was 70 nm.
- After storing the liposomes which were prepared in Examples E and F and Comparative Examples A and B for 3 months at 40° C., the changes of color, smell and particle diameter were examined. The results are as shown in Table A.
- Further, the liposomes were each freeze-dried and re-hydrated, and then their particle diameters were measured. The results are as shown in Table B.
TABLE A Conditions after 3 Month-Storage at 40° C. particle diameter, color change foul smell nm Example E no no 75 Example F no no 80 Comp. Ex. A yellowish egg smell 159 Comp. Ex. B no no 142 -
TABLE B Particle Diameter After Freeze-Drying and Re-Hydration particle diameter, nm Example E 72 Example F 77 Comp. Ex. A 189 Comp. Ex. B 112 - Tables A and B show that the liposomes of the invention showed superior stability compared with the liposomes of the prior art prepared from hydrogenated soybean lechitin or sucrose fatty acid ester.
- The results of Examples E and F were better than those of Comparative Example B. The reason of these results is considerably that the molecular structure of trehalose diundecylenate is more symmetrical than that of sucrose diundecylenate, which contributes to the stability of the liposomes.
- The liposome of the invention has excellent stability. Also, the liposome of the invention can properly envelop water-soluble or oil-soluble drugs and does not suffer from chemical and physical changes. Therefore, the liposome of the invention is useful in the fields of drugs, quasi-drugs, cosmetics and so forth, and can provide liposome formulations suitable for injection drugs, oral medicines, external medicines, lotions, emulsions, creams, essences, and hair tonics.
Claims (5)
1. A method of preparing an emulsion cosmetic composition, comprising emulsifying a mixture of 0.1 to 10% by weight of at least one trehalose-6-fatty acid monoester, the at least one trehalose-6-fatty acid monoester represented by the following formula:
wherein R is selected from a group consisting of saturated acyl groups having 10-18 carbon atoms; unsaturated acyl groups having 10-18 carbon atoms, saturated acyl groups having 10-18 carbon atoms and a hydroxyl group substituent, and unsaturated acyl groups having 10-18 carbon atoms and a hydroxyl group substituent; 0.01 to 20% by weight of a water-soluble polymer; an aqueous component; and an oil component; wherein the emulsion cosmetic composition exhibits stability during storage.
2. A method of preparing an emulsion cosmetic composition as claimed in claim 1 , wherein said trehalose-6-fatty acid monoester is one or more trehalose-6-fatty acid monoester selected from the group consisting of 6-(10-undecylenyl)-trehalose, 6-lauroyl-trehalose, 6-stearoyl-trehalose, trehalose monoisostearate, trehalose monodocosanate, trehalose monolinolenate, trehalose monocaprate, and trehalose monomyristate.
3. A method of preparing an emulsion cosmetic composition as claimed in claim 1 , wherein said water-soluble polymer is one or more of water-soluble polymers selected from the group consisting of xanthan gum, carageenan, carboxyvinyl polymer, methyl cellulose, polyvinylalcohol and polyvinylpyrrolidone.
4. A method of preparing an emulsion cosmetic composition as claimed in claim 1 , wherein said trehalose-6-fatty acid monoester is present in an amount of 0.1 to 5 wt % and said water-soluble polymer is present in an amount of 0.01 to 18 wt %.
5. A method of preparing an emulsion cosmetic composition as claimed in claim 1 , wherein said emulsion cosmetic composition is a massage cream, a cleansing cream, a skin cream, a foundation cream, a makeup base, a hair cream, a massage jelly or a medicinal jelly.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/716,599 US20070292462A1 (en) | 1993-10-07 | 2007-03-12 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US12/325,646 US20090098172A1 (en) | 1993-10-07 | 2008-12-01 | Surfactant, and emulsion cosmetic and liposome each containing the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5/277653 | 1993-10-07 | ||
JP27765393A JP3187622B2 (en) | 1993-10-07 | 1993-10-07 | Liposome |
PCT/JP1994/000874 WO1995009692A1 (en) | 1993-10-07 | 1994-05-31 | Surfactant, and emulsion cosmetic and liposome each containing the same |
US08/628,674 US6497898B1 (en) | 1993-10-07 | 1994-05-31 | Surfactant, and an emulsion-type cosmetic composition and a lipsome containing said surfactant |
US10/246,431 US20040022819A1 (en) | 1993-10-07 | 2002-09-18 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US11/716,599 US20070292462A1 (en) | 1993-10-07 | 2007-03-12 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/246,431 Division US20040022819A1 (en) | 1993-10-07 | 2002-09-18 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/325,646 Continuation US20090098172A1 (en) | 1993-10-07 | 2008-12-01 | Surfactant, and emulsion cosmetic and liposome each containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070292462A1 true US20070292462A1 (en) | 2007-12-20 |
Family
ID=17586431
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/628,674 Expired - Lifetime US6497898B1 (en) | 1993-10-07 | 1994-05-31 | Surfactant, and an emulsion-type cosmetic composition and a lipsome containing said surfactant |
US10/246,431 Abandoned US20040022819A1 (en) | 1993-10-07 | 2002-09-18 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US11/716,870 Abandoned US20070160556A1 (en) | 1993-10-07 | 2007-03-12 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US11/716,599 Abandoned US20070292462A1 (en) | 1993-10-07 | 2007-03-12 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US12/325,646 Abandoned US20090098172A1 (en) | 1993-10-07 | 2008-12-01 | Surfactant, and emulsion cosmetic and liposome each containing the same |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/628,674 Expired - Lifetime US6497898B1 (en) | 1993-10-07 | 1994-05-31 | Surfactant, and an emulsion-type cosmetic composition and a lipsome containing said surfactant |
US10/246,431 Abandoned US20040022819A1 (en) | 1993-10-07 | 2002-09-18 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
US11/716,870 Abandoned US20070160556A1 (en) | 1993-10-07 | 2007-03-12 | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/325,646 Abandoned US20090098172A1 (en) | 1993-10-07 | 2008-12-01 | Surfactant, and emulsion cosmetic and liposome each containing the same |
Country Status (5)
Country | Link |
---|---|
US (5) | US6497898B1 (en) |
EP (1) | EP0729781B1 (en) |
JP (1) | JP3187622B2 (en) |
DE (1) | DE69431163T2 (en) |
WO (1) | WO1995009692A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090098171A1 (en) * | 2007-09-26 | 2009-04-16 | Lvmh Recherche | Cosmetic composition in the form of an emulsion comprising a continuous aqueous phase and a dispersed fatty phase, and method for its preparation |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067212A1 (en) * | 1998-03-11 | 2004-04-08 | Kabushiki Kaisha Soken | Skin conditioner |
US6710038B1 (en) | 1999-12-14 | 2004-03-23 | Kibun Food Chemifa Co., Ltd. | Emulsification method using propylene glycol hyaluronate |
US20040180031A1 (en) * | 2002-03-07 | 2004-09-16 | Kabushiki Kaisha Soken | Skin conditioner |
TW200413018A (en) * | 2002-12-26 | 2004-08-01 | Shiseido Co Ltd | Oil-in-water type emulsified cosmetic |
JP5192804B2 (en) * | 2005-11-30 | 2013-05-08 | 日清オイリオグループ株式会社 | Trehalose fatty acid ester composition |
CN101687167B (en) * | 2007-07-02 | 2012-10-03 | 日清奥利友集团株式会社 | W/O/W emulsion composition |
US20130310467A1 (en) * | 2012-03-06 | 2013-11-21 | The Nisshin Oillio Group, Ltd. | Trehalose fatty acid ester composition |
SI3421997T1 (en) * | 2012-12-28 | 2020-10-30 | Cellestis Limited | A cell mediated immune response assay |
KR101648958B1 (en) * | 2015-01-21 | 2016-08-17 | 김형준 | Cap and coupling tool mounted to the same |
KR101734981B1 (en) * | 2015-08-28 | 2017-05-24 | (주)피앤지코퍼레이션 | The device detachable of the word or the logo |
WO2019032771A1 (en) * | 2017-08-09 | 2019-02-14 | University Of Cincinnati | Undecylenic acid-based nanocarriers for targeted drug delivery |
EP4433646A1 (en) * | 2021-11-19 | 2024-09-25 | Chemstone, Inc. | Water insoluble, high melting point saccharide fatty acid esters (sfae) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558597A (en) * | 1967-08-04 | 1971-01-26 | Cassella Farbwerke Mainkur Ag | Process for the production of sugar esters |
US3637461A (en) * | 1968-02-01 | 1972-01-25 | Kyowa Hakko Kogyo Kk | Process for producing fatty acid esters of sugars |
US4327183A (en) * | 1979-04-05 | 1982-04-27 | Mitsui Toatsu Chemicals, Inc. | Method for purifying fatty acid esters of saccharide |
US4379755A (en) * | 1978-08-10 | 1983-04-12 | Nihon Surfactant Industry Co., Ltd. | Gelatinizing agent composition, and gel and aqueous emulsion prepared therefrom |
USRE32393E (en) * | 1967-09-01 | 1987-04-07 | Kabivitrum Ab | Composition for enhancing the administration of pharmacologically active agents |
US4994281A (en) * | 1986-11-12 | 1991-02-19 | Sanraku Incorporated | Polylactic acid microspheres and process for producing the same |
US5358667A (en) * | 1992-04-15 | 1994-10-25 | Helene Curtis, Inc. | Conditioning shampoo composition and method of preparing and using the same |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL111638C (en) | 1955-12-12 | |||
US2893900A (en) * | 1956-01-09 | 1959-07-07 | Eugene S Machlin | Process of condensing polytetrafluoroethylene vapors onto a substrate and sintering the condensate |
US3558667A (en) * | 1968-11-01 | 1971-01-26 | Sterling Drug Inc | Benzofurans from o-phenyl ketoximes |
GB1399927A (en) * | 1971-09-11 | 1975-07-02 | Dai Ichi Kogyo Seiyaku Co Ltd | Detergent compositions |
US3963699A (en) | 1974-01-10 | 1976-06-15 | The Procter & Gamble Company | Synthesis of higher polyol fatty acid polyesters |
FR2315991A1 (en) | 1975-06-30 | 1977-01-28 | Oreal | METHOD OF MANUFACTURING AQUEOUS DISPERSIONS OF LIPID SPHERULES AND CORRESPONDING NEW COMPOSITIONS |
JPS536130A (en) | 1976-07-05 | 1978-01-20 | Hitachi Seiko Kk | Device for detecting location of paper |
JPS6025183B2 (en) | 1979-06-07 | 1985-06-17 | 株式会社資生堂 | Oil-in-polyhydric alcohol emulsion composition |
DE3163411D1 (en) * | 1980-10-16 | 1984-06-07 | Unilever Nv | Stable liquid detergent suspensions |
JPS5916534A (en) | 1982-07-19 | 1984-01-27 | Lion Corp | Vesicular dispersion of nonionic surface active agent |
JPS59106423A (en) | 1982-12-08 | 1984-06-20 | Hiroshi Kiwada | Liposome |
JPS60258195A (en) | 1984-06-05 | 1985-12-20 | Ss Pharmaceut Co Ltd | Alpha,alpha-trehalose fatty acid diester derivative and its preparation |
US4880635B1 (en) | 1984-08-08 | 1996-07-02 | Liposome Company | Dehydrated liposomes |
DK175432B1 (en) * | 1984-10-30 | 2004-10-18 | Otsuka Pharma Co Ltd | Agent for enhancing the anticancer effect of anticancer compounds |
WO1986003938A1 (en) | 1985-01-11 | 1986-07-17 | The Regents Of The University Of California | Method for preserving liposomes |
JPS61207324A (en) * | 1985-03-11 | 1986-09-13 | Agency Of Ind Science & Technol | Liposome |
JPS61289038A (en) | 1985-06-14 | 1986-12-19 | Ss Pharmaceut Co Ltd | Anticancer |
JPS6475421A (en) | 1987-09-17 | 1989-03-22 | Sawai Seiyaku Kk | Freeze-dried preparation of liposome containing alpha,alpha-trehalose trimycolic acid ester |
JPH0278623A (en) | 1988-09-14 | 1990-03-19 | Sawai Seiyaku Kk | Interferon inducer |
JPH03157349A (en) | 1989-11-14 | 1991-07-05 | Lion Corp | Emulsified composition |
FR2668930B1 (en) | 1990-11-09 | 1995-02-17 | Oreal | COSMETIC, PHARMACEUTICAL OR FOOD COMPOSITION COMPRISING AN AQUEOUS DISPERSION OF LIPID VESICLES. |
US5168893A (en) * | 1991-11-08 | 1992-12-08 | Ingersoll-Rand Company | Block and bleed valve |
JP2983360B2 (en) | 1991-11-19 | 1999-11-29 | 鐘紡株式会社 | Surfactant |
JP3093016B2 (en) | 1991-12-19 | 2000-10-03 | 鐘紡株式会社 | Surfactant |
JPH0616688A (en) | 1992-06-30 | 1994-01-25 | Nippon Oil & Fats Co Ltd | Fatty acid sugar ester |
JPH06291236A (en) | 1993-03-30 | 1994-10-18 | Hitachi Cable Ltd | Semiconductor device |
US5744155A (en) * | 1993-08-13 | 1998-04-28 | Friedman; Doron | Bioadhesive emulsion preparations for enhanced drug delivery |
-
1993
- 1993-10-07 JP JP27765393A patent/JP3187622B2/en not_active Expired - Fee Related
-
1994
- 1994-05-31 DE DE69431163T patent/DE69431163T2/en not_active Expired - Lifetime
- 1994-05-31 US US08/628,674 patent/US6497898B1/en not_active Expired - Lifetime
- 1994-05-31 EP EP95904334A patent/EP0729781B1/en not_active Expired - Lifetime
- 1994-05-31 WO PCT/JP1994/000874 patent/WO1995009692A1/en active IP Right Grant
-
2002
- 2002-09-18 US US10/246,431 patent/US20040022819A1/en not_active Abandoned
-
2007
- 2007-03-12 US US11/716,870 patent/US20070160556A1/en not_active Abandoned
- 2007-03-12 US US11/716,599 patent/US20070292462A1/en not_active Abandoned
-
2008
- 2008-12-01 US US12/325,646 patent/US20090098172A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558597A (en) * | 1967-08-04 | 1971-01-26 | Cassella Farbwerke Mainkur Ag | Process for the production of sugar esters |
USRE32393E (en) * | 1967-09-01 | 1987-04-07 | Kabivitrum Ab | Composition for enhancing the administration of pharmacologically active agents |
USRE32393F1 (en) * | 1967-09-01 | 1990-05-29 | Composition for enhancing the administration of pharmacologically active agents | |
US3637461A (en) * | 1968-02-01 | 1972-01-25 | Kyowa Hakko Kogyo Kk | Process for producing fatty acid esters of sugars |
US4379755A (en) * | 1978-08-10 | 1983-04-12 | Nihon Surfactant Industry Co., Ltd. | Gelatinizing agent composition, and gel and aqueous emulsion prepared therefrom |
US4327183A (en) * | 1979-04-05 | 1982-04-27 | Mitsui Toatsu Chemicals, Inc. | Method for purifying fatty acid esters of saccharide |
US4994281A (en) * | 1986-11-12 | 1991-02-19 | Sanraku Incorporated | Polylactic acid microspheres and process for producing the same |
US5358667A (en) * | 1992-04-15 | 1994-10-25 | Helene Curtis, Inc. | Conditioning shampoo composition and method of preparing and using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090098171A1 (en) * | 2007-09-26 | 2009-04-16 | Lvmh Recherche | Cosmetic composition in the form of an emulsion comprising a continuous aqueous phase and a dispersed fatty phase, and method for its preparation |
Also Published As
Publication number | Publication date |
---|---|
US20040022819A1 (en) | 2004-02-05 |
EP0729781B1 (en) | 2002-08-07 |
EP0729781A1 (en) | 1996-09-04 |
WO1995009692A1 (en) | 1995-04-13 |
EP0729781A4 (en) | 1998-02-04 |
JP3187622B2 (en) | 2001-07-11 |
US6497898B1 (en) | 2002-12-24 |
DE69431163T2 (en) | 2002-12-12 |
DE69431163D1 (en) | 2002-09-12 |
US20090098172A1 (en) | 2009-04-16 |
US20070160556A1 (en) | 2007-07-12 |
JPH07108166A (en) | 1995-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070292462A1 (en) | Surfactant, and an emulsion-type cosmetic composition and a liposome containing said surfactant | |
KR100220546B1 (en) | Lipophilic carrier preparations | |
JP3355458B2 (en) | Cosmetic, pharmaceutical or food compound containing an aqueous dispersion of lipid vesicles | |
DE69110070T2 (en) | Composition for the cosmetic and / or pharmaceutical treatment of the uppermost epidermis layer by topical application on the skin and the corresponding manufacturing process. | |
US6528043B2 (en) | Composition containing sapogenin | |
DE69131709T2 (en) | Vaccine Compositions Containing Liposomes | |
DE19640092A1 (en) | Structures with lipid double membranes, in the lipophilic area of which longer-chain molecules are immersed or which are docked to such molecules through hydrophobic interactions | |
JPH06183949A (en) | Composition for treatment of acne containing salicylic acid dedivative | |
EP0763354B1 (en) | Oil/water mixture composition | |
US6224853B1 (en) | Aqueous compositions comprising a lipid and a lanolin-derived surfactant, and their use | |
KR20120006722A (en) | Cosmetic composition comprising double-shell nano-structure | |
RU2392921C2 (en) | Advanced skin-effective agent delivery | |
CN112891248A (en) | Water-oil insoluble ceramide transparent oil solution and preparation method thereof | |
KR102138733B1 (en) | Cosmetic composition for wrinkle improvement containing phospholipid nano-structure | |
EP1486202B1 (en) | Water-in-oil emulsified composition comprising a sphingosine and a fatty acid | |
JPH078333B2 (en) | Oil-in-water emulsion composition and polyhydric alcohol-in-oil emulsion composition | |
KR100789628B1 (en) | Capsule Containing Retinoid to be Easily Absorbed by Skin , Method for Preparing the Capsule, Cosmetic Composition Having Anti-Wrinkle Effect Containing the Capsule, and Method for Preparing the Composition | |
JPH0616536A (en) | Composition for make-up or dermatological drug containing vesicle consisting of mixture of phospholipid/glycolipid | |
JP2001316243A (en) | Composition having w/o-type emulsion configuration and cosmetic use of the same | |
JP3088870B2 (en) | Emulsion type skin cosmetic | |
JP3326059B2 (en) | Skin cosmetics | |
KR100517728B1 (en) | Cosmetic Composition Comprising Triple-Stabilized Tocopherol and Method for Preparing the Same | |
US20060067893A1 (en) | UV-absorbing lipid vesicles | |
JP3285619B2 (en) | External preparation for skin | |
JPS63119844A (en) | Water-in-oil type emulsion composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |