Nothing Special   »   [go: up one dir, main page]

US20070261838A1 - Heating device for drinkalbe liquid - Google Patents

Heating device for drinkalbe liquid Download PDF

Info

Publication number
US20070261838A1
US20070261838A1 US11/431,077 US43107706A US2007261838A1 US 20070261838 A1 US20070261838 A1 US 20070261838A1 US 43107706 A US43107706 A US 43107706A US 2007261838 A1 US2007261838 A1 US 2007261838A1
Authority
US
United States
Prior art keywords
heat
liquid
storage module
temperature
drinkable liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/431,077
Inventor
Chien-Jung Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yen Sun Technology Corp
Original Assignee
Yen Sun Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yen Sun Technology Corp filed Critical Yen Sun Technology Corp
Priority to US11/431,077 priority Critical patent/US20070261838A1/en
Assigned to YEN SUN TECHNOLOGY CORP. reassignment YEN SUN TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHIEN-JUNG
Publication of US20070261838A1 publication Critical patent/US20070261838A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0022Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heating device for a drinkable liquid. More particularly, the present invention relates to a heating device utilizing a heat-storage module that stores heat energy for increasing temperature of a drinkable liquid in a short period of time.
  • FIG. 1 illustrates a conventional heating device for a drinkable liquid.
  • the heating device comprises a housing 81 and a heater unit 82 .
  • the housing 81 is preferably made of aluminum alloy or stainless steel.
  • the housing 81 receives a drinkable liquid.
  • the heater unit 82 is mounted around the housing 81 for heating the housing 81 .
  • the housing 81 includes an inlet 811 , an outlet 812 , and a vent 813 .
  • the inlet 811 is defined in a higher portion of the housing 81 and in communication with a tank (not shown) in which a drinkable liquid is stored. The drinkable liquid is guided via the inlet 811 into the housing 81 .
  • the outlet 812 is defined in a lower portion of the housing 81 for discharging heated liquid.
  • the vent 813 is located adjacent to the inlet 811 for exhausting gas and for maintaining gas pressure in the housing 81 .
  • drinkable liquid is filled from the tank into the housing 81 via the inlet 811 and the heater unit 82 is then activated to heat the housing 81 for increasing the temperature of the drinkable liquid. And the heated drinkable liquid exits via the outlet 812 .
  • the drinkable liquid in the housing 81 when the drinkable liquid in the housing 81 is heated to a boiling state, the drinkable liquid absorbs a large amount of heat energy and vaporizes. The vapor exits the housing 81 via the vent 813 , leading to a waste in the heat energy. Further, it is difficult to maintain the drinkable liquid in the housing 81 at a high-temperature state, as the drinkable liquid in the vapor phase carries away a large amount of heat energy. Hence, the heater unit 82 must repeatedly heat the housing 81 for maintaining the temperature of the drinkable liquid, resulting in repeated boiling of the drinkable liquid and waste of tremendous energy.
  • FIG. 2 is a schematic diagram illustrating a conventional drinkable water supply device disclosed in, e.g., Taiwan Utility Model No. M282132.
  • the drinkable water supply device comprises a storage tank 91 , a heating tank 92 , a controller 93 , and a outlet 94 .
  • the storage tank 91 is in communication with the heating tank 92 via piping on which a water pump (not labeled) is mounted.
  • the heating tank 92 is preferably made of a material with high conductivity such as aluminum, stainless steel, etc.
  • the heating tank 92 includes a heater (not labeled) for increasing the temperature of the heating tank 92 .
  • the controller 93 controls activation of the heater.
  • the water outlet 94 is in communication with the heating tank 92 via piping and the heated drinkable liquid flows to the outlet 94 .
  • the outlet 94 When in use, the outlet 94 is opened to activate the controller 93 , which, in turn, turns on the pump for conveying the drinkable liquid in the storage tank 91 into the heating tank 92 via the piping. Meanwhile, the controller 93 activates the heater to rapidly increase the temperature of the heating tank 92 in a short period of time.
  • the drinkable liquid flows through the piping and the heating tank 92 to the outlet 94 .
  • the piping inside the heating tank 92 is helical and thus forms a relatively long path for heat-exchange, thereby enhancing the heat exchange efficiency between the drinkable liquid and the heating tank 92 .
  • the heating device momentarily heats the heating tank 92 with a high power to increase the temperature of the heating tank 92 in a short period of time.
  • This high power might cause momentary overload of electricity, leading to limitation on use as well as danger.
  • An object of the present invention is to provide a heating device that utilizes a heat-storage module for storing heat energy and maintaining temperature.
  • a drinkable liquid can be rapidly heated to the predetermined temperature for drinking while reducing waste of energy.
  • Another object of the present invention is to provide a heating device that utilizes at least one temperature sensor and a control valve.
  • the temperature sensor detects the temperature of the heat-storage module to control opening/closing of the control valve, assuring the drinkable liquid is output at the predetermined temperature, thereby improving quality and hygiene.
  • a heating device for a drinkable liquid in accordance with the present invention comprises a pipe adapted to be connected to a liquid-storage unit, a heat-storage module including at least one heater unit for increasing temperature of the heat-storage module, the pipe winding in the heat-storage module, a control valve mounted on the pipe and between the liquid-storage unit and the heat-storage module for controlling flow of the drinkable liquid in the liquid-storage unit to the heat-storage module, a liquid outlet on an end of the pipe, and a control unit including a first temperature sensor for detecting the temperature of the heat-storage module, the first temperature sensor being electrically connected to the control valve.
  • the first temperature sensor detects the temperature of the heat-storage module to control operation of the heater unit for maintaining the temperature of the heat-storage module not lower than a predetermined temperature.
  • the control unit is operable to control opening of the control valve to allow the drinkable liquid in the liquid-storage unit to flow through the heat-storage module along the pipe for heat exchange, allowing the temperature of the drinkable liquid to reach the predetermined temperature in a short period of time.
  • the heat-storage module includes a first portion for receiving the heater unit and for storing heat energy generated by the heater unit.
  • the heat-storage module further includes a second portion adjacent to the first portion, and the pipe winds along the second portion.
  • the heat-storage module includes at least one heat-resistant groove between the first portion and the second portion for regulating heat transfer between the first portion and the second portion.
  • the heater unit may be a thermoelectric chip achieving Peltier effect or a heat pipe.
  • the liquid-storage unit may be a container or a pipe of a filter.
  • a second temperature sensor is mounted to the second portion of the heat-storage module and electrically connected to the control unit.
  • control unit further includes a level sensor mounted in the liquid-storage unit for detecting a remaining amount of drinkable liquid in the liquid-storage unit.
  • a control member is provided for controlling opening and closing of the liquid outlet.
  • the control member is electrically connected to the control unit to control opening and closing of the control valve.
  • the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
  • the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
  • the control unit stops heating operation of the heater unit.
  • the control unit closes the control valve.
  • the control valve may be an electromagnetic valve or a pump.
  • FIG. 1 is a schematic sectional of a conventional heating device for a drinkable liquid
  • FIG. 2 is a schematic diagram illustrating a conventional drinkable water supply device
  • FIG. 3 is a sectional view of a first embodiment of a heating device for a drinkable liquid in accordance with the present invention
  • FIG. 4 is a sectional view taken along plane 4 - 4 in FIG. 3 ;
  • FIG. 5 is a sectional view of a second embodiment of the heating device for a drinkable liquid in accordance with the present invention.
  • a first embodiment of a heating device for a drinkable liquid in accordance with the present invention comprises a liquid-storage unit 1 , a heat-storage module 2 , a control unit 3 , a control valve 4 , and a liquid outlet 5 .
  • the liquid-storage unit 1 may be a tank or container for receiving a drinkable liquid.
  • the liquid-storage unit 1 is in communication with the heat-storage module 2 via a pipe 6 for guiding the drinkable liquid into the heat-storage module 2 .
  • the heat-storage module 2 is preferably made of a material of high conductivity such as aluminum, copper, or alloys thereof.
  • the heat-storage module 2 severs to store heat energy and maintains at a predetermined temperature.
  • the control unit 3 includes an electronic control circuit for controlling conduction and operation of the elements.
  • the control valve 4 is preferably an electromagnetic valve or a pump and electrically connected to the control unit 3 for controlling opening/closing of the pipe 6 .
  • the liquid outlet 5 is provided on an end of the pipe 6 for discharging the drinkable liquid for drinking purposes.
  • the heat-storage module 2 of the first embodiment includes a first portion 21 , a second portion 22 , at least one heat-resistant groove 23 , and at least one heater unit 24 .
  • the first portion 21 is located in a center of the heat-storage module 2 for accumulating heat energy.
  • the second portion 22 surrounds the first portion 21 and the pipe 6 extends along the second portion 22 in a winding manner. Hence, the drinkable liquid may flow through the heat-storage module 2 .
  • the heat-resistant groove 23 is defined between the first portion 21 and the second portion 22 for regulating the heat-transfer rate between the first portion 21 and the second portion 22 , thereby creating a temperature difference between the first portion 21 and the second portion 22 .
  • the heater unit 24 is preferably a thermoelectric chip achieving Peltier effect or a heat pipe.
  • the heater unit 24 is electrically connected to the control unit 3 and mounted in the first portion 21 for heating the heat-storage module 2 .
  • the control unit 3 of the first embodiment includes a level sensor 31 , a first temperature sensor 32 , and a second temperature sensor 33 .
  • the level sensor 31 is mounted in the liquid-storage unit 1 for detecting the remaining amount of drinkable liquid in the liquid-storage unit 1 .
  • the first temperature sensor 32 is mounted to the first portion 21 of the heat-storage module 2 for detecting the instant temperature of the first portion 21 .
  • the second temperature sensor 33 is mounted to the second portion 22 of the heat-storage module 2 or adjacent to an outlet of the pipe 6 of the heat-storage module 2 for detecting the instant temperature of the second portion 22 or the pipe 6 .
  • the liquid outlet 5 is controlled by a control member 51 that controls output of the drinkable liquid.
  • the control member 51 is electrically connected to the control unit 3 .
  • the control member 51 sends a command signal to the control unit 3 for selectively opening or closing the control valve 4 .
  • a power source (not shown) is turned on to allow the heater unit 24 to heat the first portion 21 and the second portion 22 of the heat-storage module 2 until the temperature of the first portion 21 reaches a predetermined value.
  • the first temperature sensor 31 of the control unit 3 detects that the temperature of the first portion 21 reaches an upper limit, the first temperature sensor 31 sends a closing signal to the control unit 3 for stopping heating operation of the heater unit 24 , avoiding overheating of the heat-storage module 2 .
  • a large amount of heat energy can be stored in the first portion 21 .
  • the heat-resistant groove 23 is used to control the temperature of the second portion 22 of the heat-storage module 2 . Since the heat-storage module 2 stores heat energy before the drinkable liquid enters the heat-storage module 2 , a low-power heater unit can be used. Hence, it is not required to use a high-power heater unit to proceed with momentary heating. The risk of use of high-power heater is avoided and limitation on use is removed.
  • an opening signal is sent to the control unit 3 .
  • the second temperature sensor 33 detects whether the temperature of the second portion 22 or the pipe 6 reaches a predetermined value. If yes, the control unit 3 transfers the opening signal to the control valve 4 to open the pipe 6 , allowing the drinkable liquid in the liquid-storage unit 1 to flow into the pipe 6 . If no, the control unit 3 eliminates the opening signal, and the control valve 4 remains closed.
  • the first temperature sensor 32 and the second temperature sensor 33 of the control unit 3 continuously detect the temperature of the first portion 21 and the temperature of the second portion 22 , respectively.
  • the control unit 3 will receive a signal from the first temperature sensor 32 or the second temperature sensor 33 , and the heater unit 24 is activated to proceed with heating, thereby maintaining sufficient heat energy in the heat-storage module 2 .
  • the control unit 3 stops heating operation of the heater unit 24 , preventing overheating of the heat-storage module 2 and avoiding waste of energy as well as danger. Further, when the level sensor 31 detects that the remaining amount of drinkable liquid in the liquid-storage unit 1 is insufficient (i.e., below a predetermined level), the level sensor 31 sends a closing signal to the control unit 3 . The control unit 3 transfers the closing signal to the control valve 4 to avoid opening of the control valve 4 .
  • control unit 3 sends out an alarming signal to activate a siren (not shown) or a buzzard (not shown), reminding a user to refill the drinkable liquid into the liquid-storage unit 1 .
  • press of the control member 51 could not obtain the drinkable liquid.
  • FIG. 5 shows a second embodiment of the heating device in accordance with the present invention.
  • the pipe 6 in the second embodiment is connected to the liquid-storage unit 1 that is a filter using reverse osmosis.
  • the level sensor 31 and the second temperature sensor 33 are omitted from the control unit 3 . Namely, only a temperature sensor 32 is mounted to the first portion 21 or the second portion 22 of the heat-storage module 2 for detecting the temperature of the first portion 21 or the second portion 22 .
  • the control unit 3 activates the heater unit 24 to increase the temperature of the heat-storage module 2 and to store heat energy in the first portion 21 . Meanwhile, the control unit 3 temporarily closes the control valve 4 . Hence, even though the control member 51 is operated and an opening signal is sent to the control valve 4 , the control valve 4 still remains closed under the control of the control unit 3 . This avoids the user from drinking drinkable liquid at a temperature below the predetermined value. Further, omission of the level sensor 31 and the second temperature sensor 343 reduces the number of parts and the volume of the heating device, improving assembling flexibility and utility of the heating device.
  • the heating device in accordance with the present invention saves energy and enhances safety while overcoming the problems encountered by the conventional heating devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus For Making Beverages (AREA)

Abstract

A heating device for a drinkable liquid includes a pipe connected to a liquid-storage unit, a heat-storage module including, the pipe mounted in the heat-storage module, a control valve mounted on the pipe and between the liquid-storage unit and the heat-storage module, a liquid outlet on an end of the pipe, and a control unit including a temperature sensor for detecting the temperature of the heat-storage module. The temperature sensor detects the temperature of the heat-storage module to control operation of a heater unit for maintaining the temperature of the heat-storage module not lower than a predetermined temperature. The control unit is operable to control opening of the control valve to allow the drinkable liquid in the liquid-storage unit to flow through the heat-storage module along the pipe for heat exchange, allowing the temperature of the drinkable liquid to reach the predetermined temperature in a short period of time.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a heating device for a drinkable liquid. More particularly, the present invention relates to a heating device utilizing a heat-storage module that stores heat energy for increasing temperature of a drinkable liquid in a short period of time.
  • 2. Description of Related Art
  • FIG. 1 illustrates a conventional heating device for a drinkable liquid. The heating device comprises a housing 81 and a heater unit 82. The housing 81 is preferably made of aluminum alloy or stainless steel. The housing 81 receives a drinkable liquid. The heater unit 82 is mounted around the housing 81 for heating the housing 81.
  • Still referring to FIG. 1, the housing 81 includes an inlet 811, an outlet 812, and a vent 813. The inlet 811 is defined in a higher portion of the housing 81 and in communication with a tank (not shown) in which a drinkable liquid is stored. The drinkable liquid is guided via the inlet 811 into the housing 81. The outlet 812 is defined in a lower portion of the housing 81 for discharging heated liquid. The vent 813 is located adjacent to the inlet 811 for exhausting gas and for maintaining gas pressure in the housing 81. In use, drinkable liquid is filled from the tank into the housing 81 via the inlet 811 and the heater unit 82 is then activated to heat the housing 81 for increasing the temperature of the drinkable liquid. And the heated drinkable liquid exits via the outlet 812.
  • However, when the drinkable liquid in the housing 81 is heated to a boiling state, the drinkable liquid absorbs a large amount of heat energy and vaporizes. The vapor exits the housing 81 via the vent 813, leading to a waste in the heat energy. Further, it is difficult to maintain the drinkable liquid in the housing 81 at a high-temperature state, as the drinkable liquid in the vapor phase carries away a large amount of heat energy. Hence, the heater unit 82 must repeatedly heat the housing 81 for maintaining the temperature of the drinkable liquid, resulting in repeated boiling of the drinkable liquid and waste of tremendous energy.
  • FIG. 2 is a schematic diagram illustrating a conventional drinkable water supply device disclosed in, e.g., Taiwan Utility Model No. M282132. As illustrated in FIG. 2, the drinkable water supply device comprises a storage tank 91, a heating tank 92, a controller 93, and a outlet 94. The storage tank 91 is in communication with the heating tank 92 via piping on which a water pump (not labeled) is mounted. The heating tank 92 is preferably made of a material with high conductivity such as aluminum, stainless steel, etc. The heating tank 92 includes a heater (not labeled) for increasing the temperature of the heating tank 92. The controller 93 controls activation of the heater. The water outlet 94 is in communication with the heating tank 92 via piping and the heated drinkable liquid flows to the outlet 94.
  • When in use, the outlet 94 is opened to activate the controller 93, which, in turn, turns on the pump for conveying the drinkable liquid in the storage tank 91 into the heating tank 92 via the piping. Meanwhile, the controller 93 activates the heater to rapidly increase the temperature of the heating tank 92 in a short period of time. The drinkable liquid flows through the piping and the heating tank 92 to the outlet 94. The piping inside the heating tank 92 is helical and thus forms a relatively long path for heat-exchange, thereby enhancing the heat exchange efficiency between the drinkable liquid and the heating tank 92.
  • However, the heating device momentarily heats the heating tank 92 with a high power to increase the temperature of the heating tank 92 in a short period of time. This high power might cause momentary overload of electricity, leading to limitation on use as well as danger. Further, it is difficult to control the rise of the heating tank 92 from a normal temperature to a high temperature.
  • OBJECTS OF THE INVENTION
  • An object of the present invention is to provide a heating device that utilizes a heat-storage module for storing heat energy and maintaining temperature. Thus, a drinkable liquid can be rapidly heated to the predetermined temperature for drinking while reducing waste of energy.
  • Another object of the present invention is to provide a heating device that utilizes at least one temperature sensor and a control valve. The temperature sensor detects the temperature of the heat-storage module to control opening/closing of the control valve, assuring the drinkable liquid is output at the predetermined temperature, thereby improving quality and hygiene.
  • SUMMARY OF THE INVENTION
  • A heating device for a drinkable liquid in accordance with the present invention comprises a pipe adapted to be connected to a liquid-storage unit, a heat-storage module including at least one heater unit for increasing temperature of the heat-storage module, the pipe winding in the heat-storage module, a control valve mounted on the pipe and between the liquid-storage unit and the heat-storage module for controlling flow of the drinkable liquid in the liquid-storage unit to the heat-storage module, a liquid outlet on an end of the pipe, and a control unit including a first temperature sensor for detecting the temperature of the heat-storage module, the first temperature sensor being electrically connected to the control valve.
  • The first temperature sensor detects the temperature of the heat-storage module to control operation of the heater unit for maintaining the temperature of the heat-storage module not lower than a predetermined temperature. The control unit is operable to control opening of the control valve to allow the drinkable liquid in the liquid-storage unit to flow through the heat-storage module along the pipe for heat exchange, allowing the temperature of the drinkable liquid to reach the predetermined temperature in a short period of time.
  • Preferably, the heat-storage module includes a first portion for receiving the heater unit and for storing heat energy generated by the heater unit.
  • Preferably, the heat-storage module further includes a second portion adjacent to the first portion, and the pipe winds along the second portion.
  • Preferably, the heat-storage module includes at least one heat-resistant groove between the first portion and the second portion for regulating heat transfer between the first portion and the second portion.
  • The heater unit may be a thermoelectric chip achieving Peltier effect or a heat pipe.
  • The liquid-storage unit may be a container or a pipe of a filter.
  • Preferably, a second temperature sensor is mounted to the second portion of the heat-storage module and electrically connected to the control unit.
  • Preferably, the control unit further includes a level sensor mounted in the liquid-storage unit for detecting a remaining amount of drinkable liquid in the liquid-storage unit.
  • Preferably, a control member is provided for controlling opening and closing of the liquid outlet. The control member is electrically connected to the control unit to control opening and closing of the control valve.
  • Preferably, when the temperature of the first portion of the heat-storage module detected by the first temperature sensor is below a lower limit, the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
  • Preferably, when the temperature of the second portion of the heat-storage module detected by the second temperature sensor is below a lower limit, the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
  • Preferably, when the temperature of the heat-storage module detected by the first temperature sensor and the second temperature sensor is above an upper limit, the control unit stops heating operation of the heater unit.
  • Preferably, when a level of the drinkable liquid in the liquid-storage unit is below a predetermined level, the control unit closes the control valve.
  • The control valve may be an electromagnetic valve or a pump.
  • Other objects, advantages and novel features of this invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic sectional of a conventional heating device for a drinkable liquid;
  • FIG. 2 is a schematic diagram illustrating a conventional drinkable water supply device;
  • FIG. 3 is a sectional view of a first embodiment of a heating device for a drinkable liquid in accordance with the present invention;
  • FIG. 4 is a sectional view taken along plane 4-4 in FIG. 3; and
  • FIG. 5 is a sectional view of a second embodiment of the heating device for a drinkable liquid in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 3, a first embodiment of a heating device for a drinkable liquid in accordance with the present invention comprises a liquid-storage unit 1, a heat-storage module 2, a control unit 3, a control valve 4, and a liquid outlet 5. The liquid-storage unit 1 may be a tank or container for receiving a drinkable liquid. The liquid-storage unit 1 is in communication with the heat-storage module 2 via a pipe 6 for guiding the drinkable liquid into the heat-storage module 2. The heat-storage module 2 is preferably made of a material of high conductivity such as aluminum, copper, or alloys thereof. The heat-storage module 2 severs to store heat energy and maintains at a predetermined temperature.
  • The control unit 3 includes an electronic control circuit for controlling conduction and operation of the elements. The control valve 4 is preferably an electromagnetic valve or a pump and electrically connected to the control unit 3 for controlling opening/closing of the pipe 6. The liquid outlet 5 is provided on an end of the pipe 6 for discharging the drinkable liquid for drinking purposes.
  • Referring to FIGS. 3 and 4, the heat-storage module 2 of the first embodiment includes a first portion 21, a second portion 22, at least one heat-resistant groove 23, and at least one heater unit 24. The first portion 21 is located in a center of the heat-storage module 2 for accumulating heat energy. The second portion 22 surrounds the first portion 21 and the pipe 6 extends along the second portion 22 in a winding manner. Hence, the drinkable liquid may flow through the heat-storage module 2. The heat-resistant groove 23 is defined between the first portion 21 and the second portion 22 for regulating the heat-transfer rate between the first portion 21 and the second portion 22, thereby creating a temperature difference between the first portion 21 and the second portion 22. The heater unit 24 is preferably a thermoelectric chip achieving Peltier effect or a heat pipe. The heater unit 24 is electrically connected to the control unit 3 and mounted in the first portion 21 for heating the heat-storage module 2.
  • Still referring to FIG. 3, the control unit 3 of the first embodiment includes a level sensor 31, a first temperature sensor 32, and a second temperature sensor 33. The level sensor 31 is mounted in the liquid-storage unit 1 for detecting the remaining amount of drinkable liquid in the liquid-storage unit 1. The first temperature sensor 32 is mounted to the first portion 21 of the heat-storage module 2 for detecting the instant temperature of the first portion 21. The second temperature sensor 33 is mounted to the second portion 22 of the heat-storage module 2 or adjacent to an outlet of the pipe 6 of the heat-storage module 2 for detecting the instant temperature of the second portion 22 or the pipe 6. The liquid outlet 5 is controlled by a control member 51 that controls output of the drinkable liquid. The control member 51 is electrically connected to the control unit 3. The control member 51 sends a command signal to the control unit 3 for selectively opening or closing the control valve 4.
  • Still referring to FIGS. 3 and 4, in use of the first embodiment of the heating device in accordance with the present invention, a power source (not shown) is turned on to allow the heater unit 24 to heat the first portion 21 and the second portion 22 of the heat-storage module 2 until the temperature of the first portion 21 reaches a predetermined value. When the first temperature sensor 31 of the control unit 3 detects that the temperature of the first portion 21 reaches an upper limit, the first temperature sensor 31 sends a closing signal to the control unit 3 for stopping heating operation of the heater unit 24, avoiding overheating of the heat-storage module 2. Thus, a large amount of heat energy can be stored in the first portion 21. Meanwhile, the heat-resistant groove 23 is used to control the temperature of the second portion 22 of the heat-storage module 2. Since the heat-storage module 2 stores heat energy before the drinkable liquid enters the heat-storage module 2, a low-power heater unit can be used. Hence, it is not required to use a high-power heater unit to proceed with momentary heating. The risk of use of high-power heater is avoided and limitation on use is removed.
  • Still referring to FIGS. 3 and 4, when the control member 51 is operated, an opening signal is sent to the control unit 3. Meanwhile, the second temperature sensor 33 detects whether the temperature of the second portion 22 or the pipe 6 reaches a predetermined value. If yes, the control unit 3 transfers the opening signal to the control valve 4 to open the pipe 6, allowing the drinkable liquid in the liquid-storage unit 1 to flow into the pipe 6. If no, the control unit 3 eliminates the opening signal, and the control valve 4 remains closed.
  • Still referring to FIGS. 3 and 4, when the drinkable liquid flows along the pipe 6 into the heat-storage module 2, the drinkable liquid flows along the pipe 6 that winds in the second portion 22. Since a large amount of heat energy has been stored in the first portion 21 of the heat-storage module 2, this heat energy is continuously transferred to the second portion 22 and then to the drinkable liquid via heat exchange. Thus, the drinkable liquid is rapidly heated to the predetermined temperature in a short period of time. And the pipe 6 guides the drinkable liquid to the liquid outlet 5 for drinking purposes.
  • Still referring to FIGS. 3 and 4, when the heating device is not in use, the first temperature sensor 32 and the second temperature sensor 33 of the control unit 3 continuously detect the temperature of the first portion 21 and the temperature of the second portion 22, respectively. When the temperature of the first portion 21 or the temperature of the second portion 22 is lower than a predetermined valve, the control unit 3 will receive a signal from the first temperature sensor 32 or the second temperature sensor 33, and the heater unit 24 is activated to proceed with heating, thereby maintaining sufficient heat energy in the heat-storage module 2. On the other hand, when the temperature of the first portion 21 or the temperature of the second portion 22 is above a predetermined upper limit, the control unit 3 stops heating operation of the heater unit 24, preventing overheating of the heat-storage module 2 and avoiding waste of energy as well as danger. Further, when the level sensor 31 detects that the remaining amount of drinkable liquid in the liquid-storage unit 1 is insufficient (i.e., below a predetermined level), the level sensor 31 sends a closing signal to the control unit 3. The control unit 3 transfers the closing signal to the control valve 4 to avoid opening of the control valve 4. Meanwhile, the control unit 3 sends out an alarming signal to activate a siren (not shown) or a buzzard (not shown), reminding a user to refill the drinkable liquid into the liquid-storage unit 1. At this time, press of the control member 51 could not obtain the drinkable liquid.
  • FIG. 5 shows a second embodiment of the heating device in accordance with the present invention. Compared to the first embodiment, the pipe 6 in the second embodiment is connected to the liquid-storage unit 1 that is a filter using reverse osmosis. The level sensor 31 and the second temperature sensor 33 are omitted from the control unit 3. Namely, only a temperature sensor 32 is mounted to the first portion 21 or the second portion 22 of the heat-storage module 2 for detecting the temperature of the first portion 21 or the second portion 22.
  • Still referring to FIG. 5, when the temperature of the first portion 21 is lower than a lower limit, the control unit 3 activates the heater unit 24 to increase the temperature of the heat-storage module 2 and to store heat energy in the first portion 21. Meanwhile, the control unit 3 temporarily closes the control valve 4. Hence, even though the control member 51 is operated and an opening signal is sent to the control valve 4, the control valve 4 still remains closed under the control of the control unit 3. This avoids the user from drinking drinkable liquid at a temperature below the predetermined value. Further, omission of the level sensor 31 and the second temperature sensor 343 reduces the number of parts and the volume of the heating device, improving assembling flexibility and utility of the heating device.
  • According to the above description, it is noted that the heating device in accordance with the present invention saves energy and enhances safety while overcoming the problems encountered by the conventional heating devices.
  • While the principles of this invention have been disclosed in connection with specific embodiments, it should be understood by those skilled in the art that these descriptions are not intended to limit the scope of the invention, and that any modification and variation without departing the spirit of the invention is intended to be covered by the scope of this invention defined only by the appended claims.

Claims (15)

1. A heating device for a drinkable liquid, comprising:
a pipe adapted to be connected to a liquid-storage unit;
a heat-storage module including at least one heater unit for increasing temperature of the heat-storage module, the pipe winding in the heat-storage module;
a control valve mounted on the pipe and between the liquid-storage unit and the heat-storage module for controlling flow of the drinkable liquid in the liquid-storage unit to the heat-storage module;
a liquid outlet on an end of the pipe; and
a control unit including a first temperature sensor for detecting the temperature of the heat-storage module, the first temperature sensor being electrically connected to the control valve;
wherein the first temperature sensor detects the temperature of the heat-storage module to control operation of the heater unit for maintaining the temperature of the heat-storage module not lower than a predetermined temperature, the control unit is operable to control opening of the control valve to allow the drinkable liquid in the liquid-storage unit to flow through the heat-storage module along the pipe for heat exchange, allowing the temperature of the drinkable liquid to reach the predetermined temperature in a short period of time.
2. The heating device for a drinkable liquid as claimed in claim 1, wherein the heat-storage module includes a first portion for receiving the heater unit and for storing heat energy generated by the heater unit.
3. The heating device for a drinkable liquid as claimed in claim 2, wherein the heat-storage module further includes a second portion adjacent to the first portion, and wherein the pipe winds along the second portion.
4. The heating device for a drinkable liquid as claimed in claim 3, wherein the heat-storage module includes at least one heat-resistant groove between the first portion and the second portion for regulating heat transfer between the first portion and the second portion.
5. The heating device for a drinkable liquid as claimed in claim 1, wherein the heater unit is a thermoelectric chip or a heat pipe.
6. The heating device for a drinkable liquid as claimed in claim 1, wherein the liquid-storage unit is a container or a pipe of a filter.
7. The heating device for a drinkable liquid as claimed in claim 3, wherein the control unit further includes a second temperature sensor mounted to the second portion of the heat-storage module and electrically connected to the control unit.
8. The heating device for a drinkable liquid as claimed in claim 1, wherein the control unit further includes a second temperature sensor mounted to the second portion of the heat-storage module and electrically connected to the control unit.
9. The heating device for a drinkable liquid as claimed in claim 1, wherein the control unit further includes a level sensor mounted in the liquid-storage unit for detecting a remaining amount of drinkable liquid in the liquid-storage unit.
10. The heating device for a drinkable liquid as claimed in claim 1, further including a control member for controlling opening and closing of the liquid outlet, the control member being electrically connected to the control unit to control opening and closing of the control valve.
11. The heating device for a drinkable liquid as claimed in claim 1, wherein when the temperature of the first portion of the heat-storage module detected by the first temperature sensor is below a lower limit, the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
12. The heating device for a drinkable liquid as claimed in claim 7, wherein when the temperature of the second portion of the heat-storage module detected by the second temperature sensor is below a lower limit, the control unit activates the heater unit to proceed with heating and closes the control valve, avoiding the drinkable liquid to enter the heat-storage module via the pipe.
13. The heating device for a drinkable liquid as claimed in claim 7, wherein when the temperature of the heat-storage module detected by the first temperature sensor and the second temperature sensor is above an upper limit, the control unit stops heating operation of the heater unit.
14. The heating device for a drinkable liquid as claimed in claim 9, wherein when a level of the drinkable liquid in the liquid-storage unit is below a predetermined level, the control unit closes the control valve.
15. The heating device for a drinkable liquid as claimed in claim 1, wherein the control valve is an electromagnetic valve or a pump.
US11/431,077 2006-05-10 2006-05-10 Heating device for drinkalbe liquid Abandoned US20070261838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/431,077 US20070261838A1 (en) 2006-05-10 2006-05-10 Heating device for drinkalbe liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/431,077 US20070261838A1 (en) 2006-05-10 2006-05-10 Heating device for drinkalbe liquid

Publications (1)

Publication Number Publication Date
US20070261838A1 true US20070261838A1 (en) 2007-11-15

Family

ID=38684029

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/431,077 Abandoned US20070261838A1 (en) 2006-05-10 2006-05-10 Heating device for drinkalbe liquid

Country Status (1)

Country Link
US (1) US20070261838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143852A (en) * 2019-03-07 2020-09-10 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage device
EP4036490A1 (en) * 2021-02-01 2022-08-03 Brita GmbH Method for controlling a temperature of a liquid in a liquid container

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276381A (en) * 1938-12-29 1942-03-17 Faeber Murray Hot water boiler
US3563211A (en) * 1969-03-18 1971-02-16 Lloyd H Hornbostel Jr Gas-fired boilers or the like
US4155506A (en) * 1977-11-11 1979-05-22 Tekram Associates Method and apparatus for conservation of energy in a hot water heating system
US4158291A (en) * 1977-06-20 1979-06-19 Sunterra Corporation Environmentally assisted heating and cooling system
US4978833A (en) * 1989-01-27 1990-12-18 Bunn-O-Matic Corporation Hot water dispenser having improved water temperature control system
US5203500A (en) * 1989-09-19 1993-04-20 Gas-Fired Products, Inc. Apparatus and method for converting an electric water heater to use gas
US5678734A (en) * 1993-03-25 1997-10-21 Walker; David Macallister Instant hot water dispenser
US6167921B1 (en) * 1998-10-01 2001-01-02 Oasis Corporation Mounting adapter and related bottle cap for a bottled water cooler
US6207046B1 (en) * 1997-12-26 2001-03-27 Suntory Limited Drinking water dispenser
US6276200B1 (en) * 1998-12-23 2001-08-21 Michael L. Cazden Liquid level controller
US6619511B2 (en) * 2001-02-08 2003-09-16 Oasis Corporation Feed tube adapter for a bottled water cooler
US20050006405A1 (en) * 2003-07-08 2005-01-13 Tang Chang Kuei Bottled type water dispenser
US6986797B1 (en) * 1999-05-03 2006-01-17 Nuvera Fuel Cells Inc. Auxiliary reactor for a hydrocarbon reforming system
US7079759B2 (en) * 2000-07-11 2006-07-18 Sakura Seiki Co., Ltd. Saturated steam generator, steam sterilizer, and steam sterilization method
US20060172238A1 (en) * 2005-02-01 2006-08-03 Ronnie Cook Method, apparatus and system for controlling a gas-fired heater
US7334596B1 (en) * 2005-12-29 2008-02-26 Thomas Peter Chesters Pendulous control valve system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276381A (en) * 1938-12-29 1942-03-17 Faeber Murray Hot water boiler
US3563211A (en) * 1969-03-18 1971-02-16 Lloyd H Hornbostel Jr Gas-fired boilers or the like
US4158291A (en) * 1977-06-20 1979-06-19 Sunterra Corporation Environmentally assisted heating and cooling system
US4155506A (en) * 1977-11-11 1979-05-22 Tekram Associates Method and apparatus for conservation of energy in a hot water heating system
US4978833A (en) * 1989-01-27 1990-12-18 Bunn-O-Matic Corporation Hot water dispenser having improved water temperature control system
US5203500A (en) * 1989-09-19 1993-04-20 Gas-Fired Products, Inc. Apparatus and method for converting an electric water heater to use gas
US5678734A (en) * 1993-03-25 1997-10-21 Walker; David Macallister Instant hot water dispenser
US6207046B1 (en) * 1997-12-26 2001-03-27 Suntory Limited Drinking water dispenser
US6167921B1 (en) * 1998-10-01 2001-01-02 Oasis Corporation Mounting adapter and related bottle cap for a bottled water cooler
US6276200B1 (en) * 1998-12-23 2001-08-21 Michael L. Cazden Liquid level controller
US6986797B1 (en) * 1999-05-03 2006-01-17 Nuvera Fuel Cells Inc. Auxiliary reactor for a hydrocarbon reforming system
US7079759B2 (en) * 2000-07-11 2006-07-18 Sakura Seiki Co., Ltd. Saturated steam generator, steam sterilizer, and steam sterilization method
US6619511B2 (en) * 2001-02-08 2003-09-16 Oasis Corporation Feed tube adapter for a bottled water cooler
US20050006405A1 (en) * 2003-07-08 2005-01-13 Tang Chang Kuei Bottled type water dispenser
US20060172238A1 (en) * 2005-02-01 2006-08-03 Ronnie Cook Method, apparatus and system for controlling a gas-fired heater
US7334596B1 (en) * 2005-12-29 2008-02-26 Thomas Peter Chesters Pendulous control valve system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143852A (en) * 2019-03-07 2020-09-10 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage device
JP7205312B2 (en) 2019-03-07 2023-01-17 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage device
EP4036490A1 (en) * 2021-02-01 2022-08-03 Brita GmbH Method for controlling a temperature of a liquid in a liquid container
WO2022161920A1 (en) * 2021-02-01 2022-08-04 Brita Gmbh Method for controlling a temperature of a liquid in a liquid container

Similar Documents

Publication Publication Date Title
EP3330633B1 (en) Phase-change heat storage-type electric water heater
US20180135886A1 (en) Phase change heat storage-type electrical water heater
CN101073475B (en) Beverage heating method and heater
US7567750B2 (en) Instantaneous water heater with a heating tube
AU2018200746B2 (en) A boiling water heater system and method of heating water in same
US20070261838A1 (en) Heating device for drinkalbe liquid
CN107091526B (en) Instant boiling hot water system
CN202209784U (en) Water supply device temperature control system
KR101491633B1 (en) Instantaneous hot water generator
US7703378B2 (en) Beverage heating method and beverage heater apparatus using the same
JP2009003844A (en) Hot-water supply heating system of vending machine
KR200457673Y1 (en) Potable Water Heating Device
CN201046060Y (en) Beverage heater
CN208844043U (en) A kind of fruit wine ultra high temperature short time sterilization machine
JP3123800U (en) Beverage heating device
JP2007293756A (en) Cup-type vending machine
CN212755276U (en) Electric heating kettle
CN202537175U (en) Reverse osmosis air-source heat pump water dispenser
CN201806517U (en) Electric water boiler bottle applicable to plateaus
CN208065047U (en) Large-water-volume low-power instant heating water purifying and boiling machine
CN208301500U (en) A kind of economizer line water dispenser
CN211204008U (en) Steam generating device for laboratory
CN216984540U (en) Quick-open type drinking water equipment capable of continuously discharging water
CN203168871U (en) Instant-heating water dispenser with flow compensation
WO2010121452A1 (en) Instantaneous heating electric water boiler

Legal Events

Date Code Title Description
AS Assignment

Owner name: YEN SUN TECHNOLOGY CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, CHIEN-JUNG;REEL/FRAME:017886/0734

Effective date: 20060508

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION