US20070251883A1 - Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface - Google Patents
Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface Download PDFInfo
- Publication number
- US20070251883A1 US20070251883A1 US11/380,776 US38077606A US2007251883A1 US 20070251883 A1 US20070251883 A1 US 20070251883A1 US 38077606 A US38077606 A US 38077606A US 2007251883 A1 US2007251883 A1 US 2007251883A1
- Authority
- US
- United States
- Prior art keywords
- branched
- polymer
- alkylene oxide
- polymers
- peo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 150
- 229920000233 poly(alkylene oxides) Polymers 0.000 title claims abstract description 40
- 238000001223 reverse osmosis Methods 0.000 title description 25
- 230000003373 anti-fouling effect Effects 0.000 title description 11
- 229920000642 polymer Polymers 0.000 claims abstract description 84
- 239000002131 composite material Substances 0.000 claims abstract description 20
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 18
- 239000004952 Polyamide Substances 0.000 claims abstract description 14
- 229920002647 polyamide Polymers 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 8
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 3
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- 125000003118 aryl group Chemical group 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 20
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 20
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 claims description 16
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 claims description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 238000004132 cross linking Methods 0.000 claims description 11
- 239000003999 initiator Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 10
- 150000003254 radicals Chemical class 0.000 claims description 9
- 238000007334 copolymerization reaction Methods 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 5
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 4
- 239000012267 brine Substances 0.000 claims description 3
- IOLQWGVDEFWYNP-UHFFFAOYSA-N ethyl 2-bromo-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)Br IOLQWGVDEFWYNP-UHFFFAOYSA-N 0.000 claims description 3
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 3
- VWXZFDWVWMQRQR-UHFFFAOYSA-N 3-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC(C=C)=C1 VWXZFDWVWMQRQR-UHFFFAOYSA-N 0.000 claims description 2
- IWYRWIUNAVNFPE-UHFFFAOYSA-N Glycidaldehyde Chemical compound O=CC1CO1 IWYRWIUNAVNFPE-UHFFFAOYSA-N 0.000 claims description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 2
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000011033 desalting Methods 0.000 claims description 2
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 claims 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims 1
- 239000003505 polymerization initiator Substances 0.000 claims 1
- 239000008213 purified water Substances 0.000 claims 1
- 230000007774 longterm Effects 0.000 abstract description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 87
- 239000010410 layer Substances 0.000 description 32
- 230000004907 flux Effects 0.000 description 27
- -1 polyethylene terephthalate Polymers 0.000 description 20
- 150000003839 salts Chemical class 0.000 description 20
- 239000000178 monomer Substances 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 13
- 229940018564 m-phenylenediamine Drugs 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 101710141544 Allatotropin-related peptide Proteins 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000012695 Interfacial polymerization Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- DUDCYUDPBRJVLG-UHFFFAOYSA-N ethoxyethane methyl 2-methylprop-2-enoate Chemical compound CCOCC.COC(=O)C(C)=C DUDCYUDPBRJVLG-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000013545 self-assembled monolayer Substances 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229920001427 mPEG Polymers 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- XXSPGBOGLXKMDU-UHFFFAOYSA-M 2-bromo-2-methylpropanoate Chemical compound CC(C)(Br)C([O-])=O XXSPGBOGLXKMDU-UHFFFAOYSA-M 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical group COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000032770 biofilm formation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 230000009061 membrane transport Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
- B01D67/00931—Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
- B01D69/1251—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- a number of RO membranes have been coated with either with polyvinyl alcohol (PVA) or a vinyl acetate homopolymer with self-crosslinking functionality (e.g., VinacTM available from Air Products Polymers, L.P.).
- PVA polyvinyl alcohol
- VinacTM available from Air Products Polymers, L.P.
- a number of membranes, particularly nanofiltration membranes have been prepared with polymer additives that presumably have been incorporated in the membrane.
- Important improvements to the membrane resulting from modification of the exterior surface of the discriminating layer include stabilizing the discriminating layer during long-term operations, and balancing the improvement of rejection against the loss of flow due to the alteration of the membrane transport characteristics.
- the RO TFC membrane is usually employed in one or two different configurations, i.e., flat panel or spiral wound.
- the flat panel configuration is simply the membrane, or more typically a plurality of membranes separated from one another by a porous spacer sheet, stacked upon one another and disposed as a panel between a feed solution and a permeate discharge.
- the spiral wound configuration is shown schematically in FIG. 2 , and it is simply a membrane/spacer stack coiled about a central feed tube. Both configurations are well known in the art.
- the kinetically modified version based on MPD/TMC interfacial polymerization results in modification in surface morphology and variation in the polymer chain organization during formation of the thin film.
- the combined effect is to increase the rejection of the membrane and to allow the use of other process variables to influence the rate of reaction and therefore the membrane performance.
- This approach allows for an increase to the membrane flux by over 100% in certain products, e.g., FilmTec's XLE membranes, due to the reduced residual acid chloride after interfacial polymerization and improved swelling ability of the resulting thin film, and it gives the possibility of compensating for flow loss in future post-treatment of thin-film surfaces.
- FIG. 5 is a graph reporting flux and salt passage of several membranes prepared by surface modification with branched PLO polymers.
- Permeate means the purified product water produced by a membrane system.
- Flow means the rate of feedwater introduced to the membrane element or membrane system, usually measured in gallon per minute (gpm) or cubic meters per hour (m 3 /h). Concentrate flow is the rate of flow of non-permeated feedwater that exits the membrane element or membrane system. This concentrate contains most of the dissolved constituents originally carried into the element or into the system from the feed source. It is usually measured in gpm or m 3 /h.
- a PEO macromonomer e.g., C 1 -PEO-MA
- C 1 -PEO-MA see Scheme 1
- Polymer brushes are more fully described by Zhang, M. and Muller, A. H. E. in Cylindrical Polymer Brushes , J. Polym. Sci. Part A: Polym. Chem.: 43 (2005), pp. 3461-3481.
- the composite membranes of this invention include a porous (sometimes called a microporous) support and a relatively thin crosslinked polyamide discriminating layer.
- a porous (sometimes called a microporous) support and a relatively thin crosslinked polyamide discriminating layer.
- linear PEO groups are grafted to the surface of the crosslinked polyamide discriminating layer.
- these PAO groups are in the structure of a branched, preferably a highly branched, polymer, e.g., a comb or brush, and are crosslinked either with surface functional groups or through inter or intra macromolecule reactions.
- the branched architecture of the film obtained from polymerization of PEO methacrylate is particularly interesting in cases where protein adsorption is to be avoided since this architecture combines both high-density grafting and high PEO segment mobility.
- Table 1 summarizes the properties of various PEO macromonomers useful for the synthesis of branched, e.g., comb or brush, polymers. All the monomers are widely available from commercial sources. Both the ⁇ and ⁇ groups as well as the polymer chain length can be modified to meet various requirements and performance.
- 2-isopropenyl-2-oxazoline IP
- IP 2-isopropenyl-2-oxazoline
- the oxazoline functionality is capable of both polymerization under acid catalysis and facile coupling via a ring-opening reaction with carboxylic acid.
- the oxazoline group serves as a crosslinkable group on the external surface of the discriminating layer of the membrane because many TFC RO membranes contain many carboxylic acid functionalities on this surface.
- ATRP Compared to AIBN polymerization, ATRP provided good control of the molecular weight and polydispersities (less than 2.0 in most cases). The rate of polymerization in aqueous ATRP at 20 C is markedly faster than conventional ATRP (bulk or in organic solvent) at elevated temperature (65 C). Moreover, under ATRP conditions, high conversion is achieved while residual glycidyl methacrylate at less than 0.05% in most cases after polymerization.
- XLE BW RO membranes were obtained from FilmTec Corporation. Aqueous treatment solutions were prepared by heating the appropriate quantity of water at 75 C unless otherwise noted, followed by the addition of an appropriate quantity of either poly(ethylene oxide) (PEO) brushes with different weight average molecular weights (Mw). The membranes were submerged in the PEO brush solution for a given time. The membranes were then tested utilizing an aqueous test solution containing approximately 2,000 ppm at a cross-membrane pressure of 150 psi.
- PEO poly(ethylene oxide)
- FIGS. 4 and 5 The performance of various polyamide membranes based on surface modification from PEO brushes are shown in FIGS. 4 and 5 , and all the membranes were made using FilmTec's pilot plant technology.
- FIG. 4 shows the performance (flux and NaCl passage at 0.2, 0.4 and 0.6% aqueous solution concentrations) of an uncoated membrane (XLE Control), a standard brackish water membrane coated with PVA (BW Standard), two membranes coated with linear PEO macromers (PEO Macromers with Mn of 475 and 1100, respectively), and a membrane coated with a brush made by the copolymerization of a PEO macromer (Mn of 1100) with an IPO monomer (14 wt %).
- FIG. 5 shows the flux and NaCl passage at 0.2, 0.4 and 0.6% aqueous solution concentrations of several other membranes prepared by surface modification of PEO brushes.
- High flux is observed in the case of the XLE control, as expected.
- the XLE control membrane is coated with a PEO brush, the flux decreased dramatically, and it reached the flux level of a standard BW membrane.
- the salt passage of these coated membranes was at the level of 0.3% at 150 psi tested pressure and 2000 ppm NaCl that is only 1 ⁇ 3 of the BW membrane.
- the SW Standard membrane has essentially similar flux but a much lower salt passage based on the surface modification of high flux XLE membranes. Given the similar repeat units of PEO brushes, longer chain PEO brushes offer improvement of salt passage but decrease of flux.
- crosslinked aromatic polyamides made from the in situ interfacial polymerization of MPD in the aqueous phase and TMC in the organic phase are of considerable importance in the development of commercial composite membranes.
- the salt passage and flux of such XLE membranes can be adjusted by controlling the MPD and TMC concentrations and the ratio of TMC to TBP. This can reduce or eliminate the flow effect on fouling evaluation. For example, by increasing the MPD concentration from the standard 2.4% to 5.0%, the flux can be adjusted from the standard XLE level to half of that level, a level very close to the level of PEO modified membranes.
- both the commercial LE and 517-LE membranes were without an extra layer of coating. However, the fluxes were different since 5.0% of MPD was used during the preparation of 517-LE, thus making 517-LE a non-coating standard for direct comparison.
- PEO brushes Polymer design for the surface modification of RO membranes for reduced membrane fouling is important.
- These PEO brushes which have a comb or brush like architecture, are very efficient in preventing the formation of biofilms, and such novel PEO-based antifouling polymers can provide long-term control of surface biofouling in the physiologic, marine and industrial environments.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Polyethers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Composite membranes that exhibit long-term resistance to biofouling comprise a porous support and a crosslinked polyamide discriminating layer having an external surface, the discriminating layer comprising a branched poly(alkylene oxide) (PAO) polymer attached to its external surface. The branched PAO polymer typically has the structure of a molecular comb or brush, and is made by polymerization of a PAO macromonomer of the following formula:
RO—[(CHR′)n—O]m-V
in which R is hydrogen or a C1-20 aliphatic or aromatic group, V is any group containing a polymerizable site, each R′ is independently hydrogen or a short chain alkyl group, n is an integer of 1-6, and m is an integer of 1 to about 200. The α end group can be either polymerized or copolymerized.
RO—[(CHR′)n—O]m-V
in which R is hydrogen or a C1-20 aliphatic or aromatic group, V is any group containing a polymerizable site, each R′ is independently hydrogen or a short chain alkyl group, n is an integer of 1-6, and m is an integer of 1 to about 200. The α end group can be either polymerized or copolymerized.
Description
- This invention relates to membranes. In one aspect, the invention relates to reverse osmosis (RO) membranes while in another aspect, the invention relates to thin-film-composite (TFC)RO membranes. In still another aspect, the invention relates to TFC RO membranes comprising a porous support and a discriminating layer in which the exterior surface of the discriminating layer is chemically modified to reduce or prevent fouling of the membrane during operation. In yet other aspects, the invention is a method of modifying the exterior surface of the discriminating layer of the TFC RO, and a method of using the modified TFC RO.
- Aromatic polyamide TFC RO membranes are ubiquitous in our daily lives finding application in many industrial areas such as desalting of brine, ultra-pure water production, environmental pollution treatment, and the like. The trend for the next generation of such membranes is to require more sophisticated and specified functions of the polymeric materials from which they are constructed to provide for an overall enhanced performance of the membrane. This, in turn, drives the need for so-called “tailor fit” materials whose functions and properties are precisely tuned for the intended application of the membrane.
- Tailor fit materials for RO TFC membranes are available through either (i) design and synthesis of totally new polymers forming the thin film discriminating layer of the RO membranes, or (ii) the physical and/or chemical modification of the thin-film. The former approach has produced TFC RO membranes of enhanced water flux but with an accompanying considerable loss of salt rejection, or vice versa. The latter approach results from one of two routes that involve either (i) the post-treatment of the thin-film surface of the membrane with various chemicals, or (ii) the use of additives during the formation of the thin film.
- Regarding posttreatment, a number of RO membranes have been coated with either with polyvinyl alcohol (PVA) or a vinyl acetate homopolymer with self-crosslinking functionality (e.g., Vinac™ available from Air Products Polymers, L.P.). Regarding the use of additives, a number of membranes, particularly nanofiltration membranes, have been prepared with polymer additives that presumably have been incorporated in the membrane. Important improvements to the membrane resulting from modification of the exterior surface of the discriminating layer include stabilizing the discriminating layer during long-term operations, and balancing the improvement of rejection against the loss of flow due to the alteration of the membrane transport characteristics.
-
FIG. 1 is a schematic representation of a cross-section of a commercially successful RO TFC membrane, e.g., an FT-30 TFC RO membrane by FilmTec Corporation of Edina, Minn. The first or top layer is an ultra-thin barrier or discriminating layer typically comprising a crosslinked polyamide of 10-100 nanometers (nm) in thickness. One method of preparing this layer is by the interfacial polymerization of m-phenylenediamine (MPD) in the aqueous phase and trimesoyl trichloride (TMC) in the organic phase. - The second or middle layer typically comprises an engineering plastic, such as polysulfone, and it typically has a thickness of about 40 microns (μm). This second layer provides a hard, smooth (relative to the third layer) surface for the top layer, and it enables the top layer to perform under high operating pressure, e.g., 10 to 2,000 psi.
- The third or bottom layer is typically nonwoven polyester, e.g., a polyethylene terephthalate (PET) web, with a thickness typically of about 120 μm. This third or bottom layer is typically too porous and irregular to provide a proper, direct support for the top layer, and thus the need for the second or middle layer.
- The RO TFC membrane is usually employed in one or two different configurations, i.e., flat panel or spiral wound. The flat panel configuration is simply the membrane, or more typically a plurality of membranes separated from one another by a porous spacer sheet, stacked upon one another and disposed as a panel between a feed solution and a permeate discharge. The spiral wound configuration is shown schematically in
FIG. 2 , and it is simply a membrane/spacer stack coiled about a central feed tube. Both configurations are well known in the art. - From the viewpoint of performance efficiency, TFC membranes are usually required to have dramatically enhanced water permeability without sacrificing salt separability. Such aromatic polyamide TFC membranes with excellent water flux and reasonable salt rejection characteristics are formed by the interfacial reaction of MPD/TMC that have been kinetically altered with organo-metals and non-metals to form complexes of the TMC as taught in U.S. Pat. No. 6,337,018. This (i) reduces the rate of the reaction of the TMC by reducing the diffusion coefficient and use steric hindrance to block MPD from the acid chloride sites, and (ii) complexes the TMC to block water from hydrolyzing the acid chlorides.
- Unlike the chemically analogous FT-30 membrane, the kinetically modified version based on MPD/TMC interfacial polymerization results in modification in surface morphology and variation in the polymer chain organization during formation of the thin film. The combined effect is to increase the rejection of the membrane and to allow the use of other process variables to influence the rate of reaction and therefore the membrane performance. This approach allows for an increase to the membrane flux by over 100% in certain products, e.g., FilmTec's XLE membranes, due to the reduced residual acid chloride after interfacial polymerization and improved swelling ability of the resulting thin film, and it gives the possibility of compensating for flow loss in future post-treatment of thin-film surfaces.
- Many applications using membrane processes could benefit from the availability of a wide range of polymer chemistries, e.g., they could exhibit better performance, more robustness and less fouling, and they could use less expense polymers. However, due to the uncertainty of new chemistry and the reluctance of companies to invest in the development of new polymers, alternate approaches such as the surface modification of widely used polymers have increased in importance.
- One of the goals of research and industry in the RO membrane field is to enhance, or at least maintain, water flux without sacrificing salt rejection over a long period of time in order to increase the efficiency and reduce the cost of the operation. Nevertheless, the main difficulty in accomplishing this goal is fouling that produces a serious flux decline over the operational time of the membrane.
- The principal types of fouling are crystalline fouling (mineral scaling, or deposit of minerals due to an excess in the solution product), organic fouling (deposition of dissolved humic acid, oil, grease, etc.), particle and colloid fouling (deposition of clay, silt, particulate humic substances, debris and silica), and microbial fouling (biofouling, adhesion and accumulation of microorganisms, and the formation of biofilms). Various approaches to reducing fouling have been used, and these usually involve pretreatment of the feed solution, modification of the membrane surface properties (e.g., the attachment of hydrophobic or hydrophilic, and/or electronegative or electropositive groups), optimization of module arrangement and process conditions, and periodic cleaning. However, these methods vary widely in applicability and efficiency and this, in turn, has required continuous, on-going efforts to solve these problems.
- For polyamide RO TFC membranes, fouling from the formation of biofilm on the surface caused by microorganisms has been regarded as of the uppermost importance. Microorganisms, such as bacteria and viruses, in the water to be filtered, as well as other microscopic material, e.g., protein, adhere to membrane surfaces and grow at the expense of nutrients accumulated from the water phase. The attached microorganisms excrete an extra-cellular polymeric substance (EPS), and this, in combination with the microorganism and protein, form a biofilm. Biofilm formation is believed related to the depletion of residual disinfectant concentration, and that biofilm is not formed from disinfectant-treated water, such as chlorinated water containing a residual of 0.04-0.05 milligrams per liter (mg/L) of free chlorine. However, chlorination, although effective for the destruction of microorganisms, generates harmful byproducts such as trihalomethanes and other carcinogens.
- Protein, cell and bacterial fouling of the membrane surface occur spontaneously upon exposure of the membrane surface, i.e., the external surface of the discriminating layer, to physiologic fluids and tissues. In many cases, biofouling is an adverse event that can impair the function of RO membranes. Common strategies for inhibiting biofouling include grafting antifouling polymers or self-assembled monolayers onto the membrane surfaces. Many synthetic polymers have been investigated as antifouling coatings, and these have met with variable success in antifouling tests.
- One common and prominent example of a material used to render a surface inert to nonspecific protein adsorption in medical devices is poly(ethylene oxide) (PEO), a linear, flexible, hydrophilic and water-soluble polyether. Self-assembled monolayers (SAMS) presenting oligo(ethylene glycol) (OEG) groups (as in HS(CH2)11(EG)nOH)) on a gold surface also prevent the adsorption of proteins, even if the number of ethylene glycol (EC) units present is as low as three. Anti-fouling membranes based on grafted, linear polyalkylene oxide oligomers are known, and they provide an improved resistance to fouling while offering excellent flux and salt passage performance (U.S. Pat. No. 6,280,853).
- The present invention provides improved reduced fouling composite membranes and methods for their preparation. In one embodiment, the present invention develops and characterizes new branched poly(alkylene oxide) (PAO) modified TFC RO membranes capable of preventing nonspecific protein adsorption as a means of precluding the formation of biofilms and, hence, reduced fouling. These branched, particularly the highly branched, PAO-modified TFC RO membranes exhibit surprisingly improved stability in fouling, particularly biofouling, environments. Moreover, the membranes of this invention are more thoroughly cleaned under either basic or acidic conditions than linear PAO-modified TFC RO membranes.
- In another embodiment, the invention is a composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached crosslinked and branched poly(alkylene oxide) polymers of a relative weight average molecular weight (before crosslinking), as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, preferably of at least about 10,000, more preferably between about 20,000 and about 1,000,000, and even more preferably between about 100,000 and about 500,000.
- In certain preferred embodiments of the invention, the branched PAO polymers used in the practice of this invention are made from the polymerization of macromonomers of the following formula:
RO—[(CHR′)n—O]m-V (1)
in which V is the α end group, R is the ω end group, each R′ is independently hydrogen or a short chain, e.g., C1-3, alkyl group, n is an integer of 1-6, and m is an integer of 1 to about 200. Polymerization of the macromonomer occurs through the α end group, and it can be either polymerized or copolymerized with comonomer processes through either V or other a end groups. R is typically a C1-20 aliphatic or aromatic group; V is a derivative of any compound containing a polymerizable site, e.g., a group containing a double bond such as a derivative of p- or m-vinyl benzene, or p- or m-vinyl benzoic acid, or methacryloyl chloride, or acryloyl chloride or isopropenyl oxazoline; R′ is preferably hydrogen or methyl; m is an integer preferably of 2 or 3; and n is an integer preferably between about 3 and about 50, more preferably between about 7 and about 25. The macromonomers of formula I include both homo- and copolymers and if a copolymer, then random, block and mixed random/block polymers, e.g., PEO macromonomers, poly(propylene oxide) (PPO) macromonomers, and random and block macromonomers based on both ethylene oxide and propylene oxide units. As here used, “copolymer” means a polymer made from two or more monomers. - The branched PAO polymers exhibit three prominent structural features that impart good protein resistance to the external surface of the discriminating layer, i.e., (i) a hydrophilic repeating unit, i.e., a unit that hydrogen bonds with water and is thus water-soluble (it swells in water), (ii) an oligomer side chain that is very flexible due to aliphatic ether bonds, and (iii) a branched, preferably a highly branched, architecture that forms a dense protective layer for the external surface. The “external surface of the discriminating layer” is the surface of the discriminating layer that is in contact with the material, e.g., solution, dispersion, etc., to be filtered and opposite the surface of the discriminating layer that is in contact with the porous support.
-
FIG. 1 is a schematic cross-section of a thin film composite membrane. -
FIG. 2 is a schematic of a TFC membrane in a spiral wound configuration. -
FIG. 3 is a graph reporting the molecular weight distribution of certain crosslinkable PEO brushes made by radical polymerization of PEO macromers with AIBN. -
FIG. 4 is a graph reporting a comparison of flux and salt passage between a branched PEO-modified membrane (PEO Brush, MA2) and two linear PEO-modified membranes (the PEO Macromers, MA1 and MA2). -
FIG. 5 is a graph reporting flux and salt passage of several membranes prepared by surface modification with branched PLO polymers. -
FIG. 6 is a graph reporting the results of an oil/soap fouling experiment comparing a crosslinked, branched PEO-modified membrane of this invention (571-5 Brush) with four commercially available membranes. -
FIG. 7 is a graph reporting a comparison of the relative productivity of an element made from a crosslinked, branched PEO-modified membrane (571-5) with four commercially available membranes. - “Recovery” means the percentage of membrane system feedwater that emerges from the system as product water or permeate. Membrane system design is based on expected feedwater quality, and recovery is defined through initial adjustment of valves on the concentrate stream. Recovery is often fixed at the highest level that maximizes permeate flow while preventing precipitation of super-saturated salts within the membrane system.
- “Rejection” means the percentage of solute concentration removed from system feedwater by the membrane. In reverse osmosis, a high rejection of total dissolved solids (TDS) is important; while in nanofiltration the solutes of interest are specific, e.g., low rejection for hardness and high rejection for organic matter.
- “Passage” means the opposite of “rejection”. Passage is the percentage of dissolved constituents (contaminants) in the feedwater allowed to pass through the membrane.
- “Permeate” means the purified product water produced by a membrane system.
- “Flow” means the rate of feedwater introduced to the membrane element or membrane system, usually measured in gallon per minute (gpm) or cubic meters per hour (m3/h). Concentrate flow is the rate of flow of non-permeated feedwater that exits the membrane element or membrane system. This concentrate contains most of the dissolved constituents originally carried into the element or into the system from the feed source. It is usually measured in gpm or m3/h.
- “Flux” means the rate of permeate transported per unit of membrane area, usually measured in gallons per square foot per day (gfd) or liters per square meter per hour (l/m2h).
- “Macromonomer” or “macromer” are abbreviations of macromolecular monomer. Macromonomer generally refers to a linear macromolecule possessing a polymerizable group at the chain end. In most cases, the polymerizable group is of a vinyl type; typically a styryl, (meth)acryl, or vinylester group.
- “Branched polymer” and similar terms mean a nonlinear polymacromonomers, i.e., a macromonomer comprising a core chain or backbone with one or more side chains or arms extending from it. Polymerization of macromonomers provides a series of model branched polymers, e.g., comb, brush, star and dendritic. While some fluidity in terms exist, comb polymers typically refer to polymers comprising a backbone and one arm depending from each split point, each arm extending in the same direction (assuming a straight, i.e., untwisted, backbone). Brush polymers typically refer to polymers comprising either a backbone with two arms depending from each split point, or a backbone with one arm extending each from each split point but all the arms not extending in the same general direction. Star polymers typically refer to polymers comprising a backbone with three arms extending from a split point, and dendritic polymers (or dendrimers) typically refer to polymers comprising a multifunctional core molecule with a branched wedge attached to each functional site. The branched wedge is normally built stepwise with a regular monomer leading to a mono-disperse, tree-like or generation structure. Generally, homopolymerization of macromonomers affords regular comb polymers of a well-defined structure. Thus, a PEO macromonomer, e.g., C1-PEO-MA, (see Scheme 1) readily polymerizes to give a polymethacrylate with PEO side chains, which are regularly and densely spaced, each on every repeating unit of methylacrylate backbone. Polymer brushes are more fully described by Zhang, M. and Muller, A. H. E. in Cylindrical Polymer Brushes, J. Polym. Sci. Part A: Polym. Chem.: 43 (2005), pp. 3461-3481.
- “Graft polymers” and like terms mean that a macromonomer was polymerized or copolymerized with other comonomers to form a homogeneous macromolecule. The macromonomers and comonomers are linked via covalent bonds by a free radical mechanism instead of simple blending without reaction.
- “Linear polymers” and like terms mean macromers essentially free of branching. As here used, “branching” and like terms mean an arm or side chain attached to a backbone, and the minimum length of the arm is at least as long as the longest monomer from which the backbone is derived. In
Scheme 1, the arm or branch is the molecular segment derived from PEO, not the methyl group attached to the backbone that forms a part of the methacrylate monomer from which the backbone is derived. - The composite membranes of this invention include a porous (sometimes called a microporous) support and a relatively thin crosslinked polyamide discriminating layer. In some known embodiments, e.g., the composite membranes of U.S. Pat. No. 6,280,853, linear PEO groups are grafted to the surface of the crosslinked polyamide discriminating layer. In this invention, these PAO groups are in the structure of a branched, preferably a highly branched, polymer, e.g., a comb or brush, and are crosslinked either with surface functional groups or through inter or intra macromolecule reactions. The grafting can be accomplished as a post-treatment on a pre-made membrane, e.g., FT-30 available from FilmTec Corporation, or during membrane fabrication, e.g., just after the initiation of the interfacial polymerization of the polyamine and polyfunctional acyl halide reaction that forms the crosslinked discriminating layer. The manufacture of composite membranes and the surface grafting with PAO groups are well known and are described in, among other places, U.S. Pat. No. 6,280,853.
- In one preferred embodiment of this invention, the PAO macromonomer is a macromonomer of PEO. PEO macromonomers with a number average molecular weight (Mn) of about 200 to about 10,000 g/mole are well-known, water-soluble, commercially available nonionic oligomers with a variety of practical applications. They have been the subject of a number of recent publications describing the synthesis of well defined, graft copolymers/brushes by copolymerization with one or more of any of a number of conventional monomers, and regular comb polymers by homopolymerization. One of the most important and interesting features of PEO macromonomers, like other PAO macromonomers, is their amphiphilic nature. These macromonomers are soluble in a very wide range of solvents including water, alcohol, benzene, and even petroleum, depending on the nature of their end groups, R and V, and the PEO chain length m. Such amphiphilicity is not available with conventional monomers, and this makes their polymerization chemistry very facile.
- Polymerization of macromonomers provides a series of model branched polymers. In particular, homopolymerization affords regular comb and brush polymers of a well-defined structure. For example, a PEO methacrylate readily polymerizes with free radical initiators, e.g., azobisisobutyronitrile (AIBN), or atom-transfer radical initiators, e.g., (CuBr/2,2-bipyridine/ethyl 2-bromoisobutyrate) in an organic solvent, in water or in bulk to give a poly(methacrylate) with PEO side chains which are regularly and densely spaced, each on every repeating unit of the methacrylate backbone, as shown in
Scheme 1. - As indicated above, the branched architecture of the film obtained from polymerization of PEO methacrylate is particularly interesting in cases where protein adsorption is to be avoided since this architecture combines both high-density grafting and high PEO segment mobility. Table 1 summarizes the properties of various PEO macromonomers useful for the synthesis of branched, e.g., comb or brush, polymers. All the monomers are widely available from commercial sources. Both the α and ω groups as well as the polymer chain length can be modified to meet various requirements and performance.
TABLE 1 PEO Macromonomers Useful in the Preparation of Branched PEO Polymers α Group (Abbreviation) ω Group Mn (g/mole) Methacryloyl (MA1) Methyl 475 Methacryloyl (MA2) Methyl 1,100 Acryloyl (AA1) Methyl 454 - Although Simple Coatings Such as Linear PVA have been Applied to the External surface of the discriminating layer of TFC RO membranes for the improvement of performance, experience has shown that they often wash out and demonstrate a reduction in performance over time. By incorporating crosslinkable groups into the branched polymers, this deficiency can be reduced or eliminated. One common method for incorporating a pendent crosslinkable group into the polymer is by using dual functional comonomers during polymerization. Monomers that contain dual functionality allow for the preparation of unique polymeric structures. One such monomer is 2-isopropenyl-2-oxazoline (IPO), which readily copolymerizes with most commercially useful monomers such as PEO methacrylate via the isopropenyl group, while the oxazoline functionality is capable of both polymerization under acid catalysis and facile coupling via a ring-opening reaction with carboxylic acid. As a consequence, the oxazoline group serves as a crosslinkable group on the external surface of the discriminating layer of the membrane because many TFC RO membranes contain many carboxylic acid functionalities on this surface.
- Another useful crosslinking monomer is glycidyl methacrylate (GMA) that can polymerize with a PAO methacrylate, e.g., PEO methacrylate, under free radical conditions to form a branched PAO polymer with pendent epoxy groups (much in the same manner as the formation of epoxy resins). The reactions between oxirane (glycidyl, epoxy) groups and residual amines (MPD) on the surface of membrane form the basis for crosslinked coatings. Still another useful crosslinking monomer is maleic anhydride (MAH). The anhydride group can react with residual amine groups on the external surface of the discriminating layer to form a crosslinked polymer on the surface of membrane.
- Free radical copolymerization of PAO, e.g., PEO, methyl ether methacrylate with either IPO or glycidyl monomers using AIBN as a radical initiator in dioxane (50% wt of monomers) affords high molecular weight, branched polymers which are still soluble in water. Since IPO and MAH decompose in an aqueous solution, water is not used as polymerization solvent when IPO or MAH are used as the comonomers. The relative molecular weights of branched polymers were measured by size exclusion chromatography (SEC) using narrow poly(ethylene oxide) as a standard, and these are reported in Table 2. The high polydispersity (Table 2 and
FIG. 3 ) of these polymers indicates that they are highly branched. The absolute molecular weight of these macromers could be much higher than reported in Table 2 because such highly branched PEO macromers are more compact in solution than linear PEO macromers.TABLE 2 Characterization of Branched PEO Made by AIBN Initiator Macromonomer Comonomer Mn(g/mole) Mw(g/mole) Mw/Mn MA1 (100% wt) None 13,200 112,000 8.48 MA1 (92% wt) GMA (8%) 13,600 87,500 6.43 MA1 (86% wt) GMA (14%) 15,800 113,000 7.15 MA1 (80% wt) GMA (20%) 14,000 70,500 5.04 MA1 (74% wt) GMA (26%) 17,300 109,000 6.30 MA2 (86% wt) GMA (14%) 26,500 221,000 8.34 AA1 (85% wt) GMA (14%) 13,100 123,000 9.39 MA1 (86% wt) IPO (14%) 7,860 17,500 2.23 MA1 (86% wt) MAH (14%) 32,700 317,000 9.69 - On the other hand, atom transfer radical polymerization (ATKP) of a PAO, e.g., PEO, methyl ether methacrylate can be done in water or in bulk with or without glycidyl methacrylate comonomer. For example, an ATRP formulation in which the transition metal catalyst was CuBr and the ligand was 2,2′-bipyridine was prepared. The initiator 2-bromoisobutyrate is insoluble in water but dissolves in an aqueous PEO methyl ether methacrylate solution at 20 C. Various conditions were examined for this polymerization, and the results are report in Table 3. Compared to AIBN polymerization, ATRP provided good control of the molecular weight and polydispersities (less than 2.0 in most cases). The rate of polymerization in aqueous ATRP at 20 C is markedly faster than conventional ATRP (bulk or in organic solvent) at elevated temperature (65 C). Moreover, under ATRP conditions, high conversion is achieved while residual glycidyl methacrylate at less than 0.05% in most cases after polymerization.
TABLE 3 Preparation of Branched PEO by Atom Transfer Radical Polymerization Using MA1 (89 wt %) and GMA (11 wt %) Mn Mw Temperature/Solvent [M]/[I]* (g/mole)** (g/mole) Mw/Mn 65 C./Bulk 212 41,000 87,700 2.14 65 C./Dioxane (33%) 180 34,900 56,800 1.63 65 C./Water (33%), 197 38,900 84,200 2.16 crude 65 C./Water (33%), 197 43,900 86,300 1.97 purified 20 C./Water (33%) 197 41,200 78,700 1.91 20 C./Water (50%) 212 43,900 102,000 2.32 20 C./Water (33%) 115 24,100 37,600 1.56
*[M]/[I] means monomer/initiator.
**Measured by SEC in dimethylformamide using linear narrow molecular weight PEO as the standard
- In the examples reported below, size exclusion chromatography (SEC) was used to provide relative weight average molecular weight data for the branched PEO polymers. The experimental procedure was as follows:
- Sample Prep: The solutions were prepared by placing approximately 0.04 grams of sample in 10 ml of the N,N-Dimethylformamide containing 0.4 w/v % LiNO3. The target polymer concentration in the final DMF sample solution was 2 mg/mL. The solutions were shaken for about 4 hours and filtered through an Alltech 0.2 micron (μm) Nylon filter with a syringe prior to injection.
- Pump: Waters model 2695 separations module at a nominal flow rate of 1.0 mL/min.
- Eluent: Fisher ACS certified dimethylformamide containing 0.4 w/v % LiNO3, vacuum degassed in line.
- Injector: Waters model 2695 separations module set to inject 50 microliters of sample.
- Columns: Two
Polymer Laboratories 10 μm Mixed-B at 50° C. - Detection: Waters 410 DR1 with a sensitivity of 128, scale factor of 1, and temperature of 50° C.
- Data system: Polymer Laboratories Calibre GPC/SEC, acquisition version 6.0 and re-analysis version 7.04.
- Calibration: The calibration was determined using narrow molecular weight polyethylene oxide standards from Polymer Laboratories over the range of 960 to 1,169,000 g/mole.
Yau, W. W., Kirkland, J. J., and Bly, D. D., Modern Size Exclusion Liquid Chromatography, John Wiley &Sons, NY, 1979 provide a general description of the SEC method. - Preparation of Membranes
- FT-30 reverse osmosis composite membranes were prepared on a FilmTec Corporation pilot coater in a continuous process. First the MPD was applied in water to the pre-made microporous polysulfone support including the backing non-woven fabric, and then the support was drained and nip rolled to remove the excess aqueous solution. The top surface of the support was sprayed with a solution of TMC in Isopar L (available from ExxonMobil Corp.).
- At the oil water interface the polyamide was formed. The first coating was made with a MPD solution of 2.0 to 4.0%, and the second coating was made with a TMC concentration of 0.13% (5 mM). The TMC solution also included a molar stoichiometric ratio of TBP (tributyl phosphate) to TMC of 1:1. The membrane traveled first through a room temperature water bath after application of the second coating, then through a 98 C bath that contained 3.5% of glycerin. At this stage, a layer of PEO brush was coated onto the surface of membrane by contact with a coating roller, and the membranes were dried through an air floatation dryer at a temperature of 95 C. The test was done according to standard test conditions of 150 psi and 2000 ppm NaCl for the BW membranes.
- Post-Treatment of XLE Membranes
- XLE BW RO membranes were obtained from FilmTec Corporation. Aqueous treatment solutions were prepared by heating the appropriate quantity of water at 75 C unless otherwise noted, followed by the addition of an appropriate quantity of either poly(ethylene oxide) (PEO) brushes with different weight average molecular weights (Mw). The membranes were submerged in the PEO brush solution for a given time. The membranes were then tested utilizing an aqueous test solution containing approximately 2,000 ppm at a cross-membrane pressure of 150 psi.
- Synthesis of PEO Brushes by AIBN Initiator
- In a 250 ml round flask was added 34.4 g of poly(ethylene glycol) methyl ether methacrylate (average Mn ˜475), 5.6 g of glycidyl methacrylate, 40 g of dioxane and 1.0 g of AIBN. The resulting mixture was purged with argon for 15 minutes, and then heated under argon for 8 hours at 75 C. SEC analysis confirmed the formation of polymer brushes with an Mw of 113,000 g/mole (Mw/Mn=7.15) based on narrow molecular weight polyethylene glycol standards. This polymer solution was used without purification.
- Synthesis of PEO Brush by ATRP
- In a small ACE Diels-Alder reaction tube was added 29.2 g of poly(ethylene glycol) methyl ether methacrylate (Mn ˜475 g/mole), and 3.6 g of glycidyl methacrylate. The mixture was purged with argon for 5 minutes before 104 mg of CuBr, 226 mg of 2,2′-bipyridine (also know as α,α′-dipyridyl from Aldrich) were added. The solution immediately became brown, indicating formation of Cu(I)-2,2′-dipyridyl complex. With continuing purging of argon, 80 mg of ethyl 2-bromoisobutyrate initiator was added and the solution was sealed with a Teflon cap. After heating the mixture at 65 C for 7 hours in an oil bath, a viscous polymer was obtained. SEC analysis showed that this polymer had a Mn of about 41000 g/mole with a polydispersity of 2.1. Dissolving it in THF and then precipitating into ether isolated the resulting polymer.
- Performance of PEO Brush Modified Membranes:
- The performance of various polyamide membranes based on surface modification from PEO brushes are shown in
FIGS. 4 and 5 , and all the membranes were made using FilmTec's pilot plant technology.FIG. 4 shows the performance (flux and NaCl passage at 0.2, 0.4 and 0.6% aqueous solution concentrations) of an uncoated membrane (XLE Control), a standard brackish water membrane coated with PVA (BW Standard), two membranes coated with linear PEO macromers (PEO Macromers with Mn of 475 and 1100, respectively), and a membrane coated with a brush made by the copolymerization of a PEO macromer (Mn of 1100) with an IPO monomer (14 wt %). The water flux decreased while the salt passage remained essentially level as the PEO macromonomer weight increased. However, when the PEO brush was coated on the membrane surface, the salt passage was greatly improved with a decrease in water flux. This was probably due to the surface coverage of PEO because a high molecular weight polymer tends to stay on the surface longer than does a low molecular weight polymer. Moreover, viscosity plays an important role in the application of the PEO because an increased amount of PEO can be applied to the surface if it has a relatively high viscosity, and this reduces the fraction between the coating roller and the membrane. In addition, PEO macromonomers contain methacrylate as pendent reactive groups while PEO brushes contain IPO as crosslinkable groups, and such a structural difference influences the coverage of the membrane surface. For all the membranes, the BW Standard gave the worst salt passage while the PEO brush membrane gave the best salt passage. -
FIG. 5 shows the flux and NaCl passage at 0.2, 0.4 and 0.6% aqueous solution concentrations of several other membranes prepared by surface modification of PEO brushes. High flux is observed in the case of the XLE control, as expected. When the XLE control membrane is coated with a PEO brush, the flux decreased dramatically, and it reached the flux level of a standard BW membrane. However, the salt passage of these coated membranes was at the level of 0.3% at 150 psi tested pressure and 2000 ppm NaCl that is only ⅓ of the BW membrane. Overall, the SW Standard membrane has essentially similar flux but a much lower salt passage based on the surface modification of high flux XLE membranes. Given the similar repeat units of PEO brushes, longer chain PEO brushes offer improvement of salt passage but decrease of flux. - In addition, the effect of glycidal methacrylate (GMA) concentration on the performance of PEO brush modified BW membranes was evaluated. The results are shown in Table 4 and as reported there, PEO brush with less GMA during polymerization gives better salt passage. More GMA increases the salt passage and reduces the flux. The optimum is around 10% GMA. At the same concentration of comonomers, IPO (oxazoline) containing PEO give worse salt passage than that of GMA containing PEO brush. Compared to standard BW control and XLE control, membranes coated with PEO brushes cut the salt passage by 2 to 5 fold. In order to obtain efficient surface modification, the concentration of PEO brushes has to be around 0.3%. This is also a dramatic decrease given that the concentration of PVA in the surface modification for the preparation of BW membranes is around 1%.
TABLE 4 Effect of GMA on the Performance of PEO Brush Modified Membranes* Sample Name Flux SP (NaCl), % XLE control 32.58 ± 2.59 0.517 ± 0.052 XLE control 34.51 ± 0.81 0.489 ± 0.039 0.3% PEO brush (no GMA) 18.97 ± 1.18 0.264 ± 0.019 0.3% PEO brush (8% GMA) 19.85 ± 1.08 0.256 ± 0.049 0.3% PEO brush (14% GMA) 18.10 ± 1.87 0.252 ± 0.034 0.1% PEO brush (14% GMA) 19.84 ± 0.96 0.318 ± 0.040 0.3% PEO brush (20% GMA) 17.80 ± 1.60 0.304 ± 0.055 0.3% PEO brush (26% GMA) 15.91 ± 0.72 0.307 ± 0.055 0.3% PEO brush (14% IPO) 18.69 ± 1.49 0.315 ± 0.057 BW control 22.93 ± 0.42 1.080 ± 0.027
*The test conditions were 150 psi with 2000 ppm NaCl.
- As discussed above, crosslinked aromatic polyamides made from the in situ interfacial polymerization of MPD in the aqueous phase and TMC in the organic phase are of considerable importance in the development of commercial composite membranes. The salt passage and flux of such XLE membranes can be adjusted by controlling the MPD and TMC concentrations and the ratio of TMC to TBP. This can reduce or eliminate the flow effect on fouling evaluation. For example, by increasing the MPD concentration from the standard 2.4% to 5.0%, the flux can be adjusted from the standard XLE level to half of that level, a level very close to the level of PEO modified membranes. In
FIGS. 6 and 7 , both the commercial LE and 517-LE membranes were without an extra layer of coating. However, the fluxes were different since 5.0% of MPD was used during the preparation of 517-LE, thus making 517-LE a non-coating standard for direct comparison. - Interactions between the membranes and components in the raw water cause a rapid and often irreversible loss of flux through the membrane. Many studies suggest that natural organic matter (NOM) is the most important foulant.
FIG. 6 shows the performance of selected membranes fouled with sodium lauryl sulfate (SLS) and dodecane (a C12 hydrocarbon). The tests were run with real elements made from PEO modified surfaces and some commercial elements. As seen fromFIG. 6 , the percentage of flux retained for PEO brush-modified membranes is much higher than that of the commercial membranes, a clear indication that a PEO surface-modified membrane is capable of resisting NOM fouling. In addition, PEO brush-modified membranes show outstanding performance toward oil/soap fouling and flow recovery after cleaning, while the conventional elements showed very poor performance toward oil/soap fouling. - The ability of PEO modified surfaces to resist bacterial/cell attachment over a long period of time was determined by running the commercial membrane tests under tap water using sodium acetate as bacterial food. The elements were specially designed and fabricated so that all the membranes had similar flux (around 30 gfd at 150 psi and 2000 ppm sodium chloride (NaCl)) thus minimizing the effect of flux.
- As shown in
FIG. 7 , the PEO brush-modified surface exhibited remarkably low levels of cell attachment for over two weeks and thus the flow loss was the lowest among the membranes tested. In contrast, commercial BW membranes show high loss of flow. The flow recovery after membrane cleaning indicates the same trend, i.e., PEO brush membranes perform best due to their antifouling characteristics. Since cell attachment to surfaces is typically mediated by adsorbed extra cellular polysaccharide, the membrane coated with PEO brush has very low extra cellular polysaccharide adsorption throughout the course of experiment. This excellent extra cellular polysaccharide resistance is maintained for several weeks, and it can be directly attributed to the chemical composition of the anchoring (surface-active group (epoxy) and antifouling domains (PEO chain). The epoxy groups are believed to react with the residual amino groups from MPD, forming a robust anchor for the antifouling (PEO chain) portion of the polymer. These groups are stable to strong acid (e.g., a pH of 2.0) and strong base (e.g., pH of 13) cleaning. - Moreover,
FIG. 7 shows that the membranes of this invention can be readily cleaned. The comparison membranes, particularly the membrane surfaced modified with a linear PEG oligomer (571-4, PEG Olig), gave an inferior performance from the start of the test. - The design of the PEO side chain and methacrylate backbone adheres to general principle that effective antifouling surfaces require the presence of hydrogen bond acceptors, lake of hydrogen bond donors, a neutral charge, and water solubility. Additional benefits of PEO brushes include readily available starting PEO macromonomers, easy polymerization or copolymerization using AIBN, and virtually unlimited compositional versatility obtained through both methacrylate functional comonomers and modification of resulting copolymers. These new synthetic PEO brush based antifouling polymers provide long-term control of surface biofouling of membranes in the physiologic, marine and industrial environments.
- Polymer design for the surface modification of RO membranes for reduced membrane fouling is important. The synthesis of PEO brushes from PEO methacrylate and a functional comonomer (epoxy, maleic anhydride, oxazoline, etc.) is a technique that is very well suited for making crosslinkable macromolecules for the hydrophilic coating on FT-30 type membranes. These PEO brushes, which have a comb or brush like architecture, are very efficient in preventing the formation of biofilms, and such novel PEO-based antifouling polymers can provide long-term control of surface biofouling in the physiologic, marine and industrial environments.
- Although the invention has been described in considerable detail, this detail is for the purpose of illustration. Many variations and modifications can be made on the invention as described above without departing from the spirit and scope of the invention as it is described in the appended claims. All U.S. patents and allowed U.S. patent applications are incorporated herein by reference.
Claims (19)
1. A composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached crosslinkced, branched poly(alkylene oxide) (PAO) polymers, the polymers having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000.
2. The composite membrane of claim 1 in which the branched PAO polymers comprise derivatives of PAO macromonomers of the formula:
RO—[(CHR′)n—O]mV (I)
in which R is hydrogen or a C1-20 aliphatic or aromatic group, V is any group containing a polymerizable site, each R′ is independently hydrogen or a short chain alkyl group, n is an integer of 1-6, and m is an integer of 1 to about 200.
3. The composite membrane of claim 2 in which R is a C1-20 alkyl group, V is a derivative of at least one of p- and m-vinyl benzene, p- and m-vinyl benzoic acid, methacryloyl chloride, acryloyl chloride and isopropenyl oxazoline, R′ is hydrogen or methyl, n is 2 or 3, and m is an integer between about 3 and about 50.
4. The composite membrane of claim 3 in which R is a C1-12 alkyl group, V is a derivative of methacryloyl chloride, R′ is hydrogen, n is 2, and m is an integer between about 7 and about 25.
5. The composite membrane of claim 4 in which the relative weight average molecular weight of the PEO brush is at least about 10,000.
6. A branched poly(alkylene oxide) polymer having a relative weight average molecular weight, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, the polymer prepared by the copolymerization of poly(alkylene oxide) and glycidyl methacrylate under atom transfer radical polymerization (ATRP) conditions.
7. The branched polymer of claim 6 in which the ATRP conditions include an organic solvent as the polymerization medium.
8. The branched polymer of claim 6 in which the ATRP conditions include water as the polymerization medium.
9. The branched polymer of claim 6 in which the ATRP conditions include CuBr/2,2′-bipyridine/ethyl 2-bromoisobutyrate as a polymerization initiator.
10. A branched poly(alkylene oxide) polymer having a relative weight average molecular weight, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, the polymer prepared by the copolymerization of poly(alkylene oxide) and glycidyl methacrylate with a free radical initiator.
11. The branched polymer of claim 10 in which the free radical initiator is azobisisobutyronitrile.
12. A branched poly(alkylene oxide) polymer having a relative weight average molecular weight, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, the polymer prepared by the copolymerization of poly(alkylene oxide) and 2-isopropenyl-2-oxazoline under ATRP or free radical initiator conditions.
13. A method of desalting brine, the method comprising passing the brine through a composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached branched, crosslinked poly(alkylene oxide) polymers, the polymers having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000.
14. A method of treating unpurified water to produce purified water, the method comprising passing the unpurified water through a composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached branched, crosslinked poly(alkylene oxide) polymers, the polymers having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000.
15. A method of preparing a branched poly(alkylene oxide) polymer having a relative weight average molecular weight, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, the method comprising copolymerizing poly(alkylene oxide) and glycidyl methacrylate under atom transfer radical polymerization (ATRP) conditions.
16. A method of preparing a composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached branched, crosslinked poly(alkylene oxide) polymers, the method comprising coating the external surface of the discriminating layer with a branched, crosslinked PAO polymer having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000.
17. A method of preparing a composite membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached branched, crosslinked poly(alkylene oxide) polymers, the method comprising coating the external surface of the discriminating layer with a branched PAO polymer having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000, and then subjecting the branched PAO polymer attached to the external surface of the discriminating layer to crosslinking.
18. A composite membrane that exhibits a performance level at least as effective removal of debris accumulated during use in a biofouling environment as before its use in such an environment, the membrane comprising a porous support and a crosslinked polyamide discriminating layer having an external surface to which are attached crosslinked, branched poly(alkylene oxide) polymers, the polymers having a relative weight average molecular weight before crosslinking, as measured by size exclusion chromatography against a linear PEO standard, of at least about 5,000.
19. The membrane of claim 18 in which the crosslinked, branched PAO polymer is a copolymer of PEO and glycidal methacrylate.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/380,776 US20070251883A1 (en) | 2006-04-28 | 2006-04-28 | Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface |
EP07760371A EP2021107A2 (en) | 2006-04-28 | 2007-04-10 | Reverse osmosis membrane with branched poly(alkylene oxide) modified antifouling surface |
JP2009507886A JP2009535201A (en) | 2006-04-28 | 2007-04-10 | Reverse osmosis membrane with branched polyalkylene oxide modified anti-adhesive surface |
KR1020087026433A KR20090006130A (en) | 2006-04-28 | 2007-04-10 | Reverse osmosis membrane with branched poly(alkylene oxide) modified antifouling surface |
PCT/US2007/066298 WO2007127605A2 (en) | 2006-04-28 | 2007-04-10 | Reverse osmosis membrane with branched poly(alkylene oxide) modified antifouling surface |
CN2007800153626A CN101432058B (en) | 2006-04-28 | 2007-04-10 | Reverse osmosis membrane with branched poly(alkylene oxide) modified antifouling surface |
US12/404,642 US7918349B2 (en) | 2006-04-28 | 2009-03-16 | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/380,776 US20070251883A1 (en) | 2006-04-28 | 2006-04-28 | Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/404,642 Division US7918349B2 (en) | 2006-04-28 | 2009-03-16 | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070251883A1 true US20070251883A1 (en) | 2007-11-01 |
Family
ID=38353405
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/380,776 Abandoned US20070251883A1 (en) | 2006-04-28 | 2006-04-28 | Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface |
US12/404,642 Expired - Fee Related US7918349B2 (en) | 2006-04-28 | 2009-03-16 | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/404,642 Expired - Fee Related US7918349B2 (en) | 2006-04-28 | 2009-03-16 | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
Country Status (6)
Country | Link |
---|---|
US (2) | US20070251883A1 (en) |
EP (1) | EP2021107A2 (en) |
JP (1) | JP2009535201A (en) |
KR (1) | KR20090006130A (en) |
CN (1) | CN101432058B (en) |
WO (1) | WO2007127605A2 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080185332A1 (en) * | 2007-02-05 | 2008-08-07 | Dow Global Technologies Inc. | Modified polyamide membrane |
US20090220690A1 (en) * | 2006-04-28 | 2009-09-03 | Niu Q Jason | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
WO2010015599A1 (en) * | 2008-08-05 | 2010-02-11 | Polymers Crc Limited | Functionalized thin film polyamide membranes |
US20100143733A1 (en) * | 2008-12-04 | 2010-06-10 | Mickols William E | Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds |
WO2010117460A1 (en) * | 2009-04-08 | 2010-10-14 | Michigan Molecular Institute | Surface modification of reverse osmosis membranes by hydrophilic dendritic polymers |
US20100314318A1 (en) * | 2009-05-18 | 2010-12-16 | Gartner Charles D | Halogenated amide biocidal compounds and methods for treating water systems at near neutral to high ph |
US20100314316A1 (en) * | 2009-05-18 | 2010-12-16 | Bei Yin | Halogenated amides as biocides for treating water systems containing reducing agents |
US20100314319A1 (en) * | 2009-05-18 | 2010-12-16 | Bei Yin | Halogenated amides as biocides for biofilm control |
US7882963B2 (en) | 2006-05-12 | 2011-02-08 | Dow Global Technologies Inc. | Modified membrane |
US20110036774A1 (en) * | 2008-03-20 | 2011-02-17 | Yale University | Spiral Wound Membrane Module for Forward Osmotic Use |
US20110073540A1 (en) * | 2009-08-24 | 2011-03-31 | Mcginnis Robert | Forward osmosis membranes |
US20110094660A1 (en) * | 2009-10-27 | 2011-04-28 | Mccollam Robert P | Method for applying tape layer to outer periphery of spiral wound module |
WO2011049790A1 (en) | 2009-10-19 | 2011-04-28 | Dow Global Technologies Llc | Method of testing the integrity of spiral wound modules |
US20110170572A1 (en) * | 2010-01-12 | 2011-07-14 | Jons Steven D | Method of testing spiral wound modules by thermal imaging |
WO2011112351A1 (en) | 2010-03-10 | 2011-09-15 | Dow Global Technologies Llc | Polyamide membrane with a coating comprising polyalkylene oxide and acetophenone compounds |
WO2011119280A1 (en) | 2010-03-24 | 2011-09-29 | Dow Global Technologies Llc | Spiral wound filtration module |
WO2011136865A1 (en) | 2010-04-26 | 2011-11-03 | Dow Global Technologies Llc | Polyamide membrane with a coating comprising polyalkylene oxide and triazine compounds |
WO2011149571A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and biguanide compounds |
WO2011149573A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and oxy- substituted phenyl compounds |
WO2011149572A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and imidazol compounds |
WO2012058038A1 (en) | 2010-10-26 | 2012-05-03 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
WO2012097386A2 (en) * | 2011-01-11 | 2012-07-19 | Hydration Systems, Llc | Two-layer membrane |
US20120211414A1 (en) * | 2011-02-18 | 2012-08-23 | Woongjin Chemical Co., Ltd. | Selective membrane having a high fouling resistance |
WO2013016574A1 (en) * | 2011-07-26 | 2013-01-31 | Hydration Systems, Llc | Method to improve forward osmosis membrane performance |
WO2013019812A1 (en) | 2011-08-03 | 2013-02-07 | Oasys Water, Inc. | Systems and methods for improving flux in osmotically driven membrane systems |
CN103240005A (en) * | 2013-04-28 | 2013-08-14 | 泉州索爱膜科技开发有限公司 | Tubular composite nanofiltration membrane and preparation method thereof |
US8709536B2 (en) | 2010-09-01 | 2014-04-29 | International Business Machines Corporation | Composite filtration membranes and methods of preparation thereof |
US8727135B2 (en) | 2010-09-01 | 2014-05-20 | International Business Machines Corporation | Composite filtration membranes and methods of preparation thereof |
WO2014095749A1 (en) | 2012-12-17 | 2014-06-26 | Basf Se | Filtration systems and membranes with enhanced flux and method for their preparation |
US20140183128A1 (en) * | 2012-11-05 | 2014-07-03 | Lg Chem, Ltd. | Polyamide water-treatment separation membrane with improved antifouling properties and manufacturing method thereof |
US9022227B2 (en) | 2011-03-21 | 2015-05-05 | International Business Machines Corporation | Composite membranes and methods of preparation thereof |
US9033159B1 (en) * | 2011-06-07 | 2015-05-19 | Clemson University | Membrane surface modification |
EP2801401A4 (en) * | 2012-01-05 | 2015-08-26 | Lg Chemical Ltd | Outstandingly contamination resistant reverse osmosis membrane and production method therefor |
US9156006B2 (en) | 2009-12-03 | 2015-10-13 | Yale University | High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes |
US9186627B2 (en) | 2009-08-24 | 2015-11-17 | Oasys Water, Inc. | Thin film composite heat exchangers |
US20160258362A1 (en) * | 2015-03-02 | 2016-09-08 | Hamilton Sundstrand Corporation | Lightweight mist eliminator for aircraft fuel tank inerting systems |
US9504967B2 (en) | 2010-07-15 | 2016-11-29 | Globalfoundries Inc. | Composite membrane with multi-layered active layer |
US20170001151A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Antifouling and antimicrobial coatings for thin film composite membranes |
US9561474B2 (en) | 2012-06-07 | 2017-02-07 | International Business Machines Corporation | Composite membrane with multi-layered active layer |
US20170225126A1 (en) * | 2014-08-13 | 2017-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing antifouling coatings made of thin-layer composite membranes for reverse osmosis and nanofiltration, such thin-layer composite membranes, and the use thereof |
US9782727B2 (en) | 2014-07-14 | 2017-10-10 | International Business Machines Corporation | Filtration membranes with functionalized star polymers |
US9931598B2 (en) | 2015-02-16 | 2018-04-03 | International Business Machines Corporation | Anti-fouling coatings with star polymers for filtration membranes |
US10005042B2 (en) | 2015-02-16 | 2018-06-26 | International Business Machines Corporation | Thin film composite forward osmosis membranes with performance enhancing layers |
US10384167B2 (en) | 2013-11-21 | 2019-08-20 | Oasys Water LLC | Systems and methods for improving performance of osmotically driven membrane systems |
US20190291058A1 (en) * | 2016-10-20 | 2019-09-26 | Lg Chem, Ltd. | Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module |
CN112058091A (en) * | 2020-08-31 | 2020-12-11 | 浙江工业大学 | Preparation method of salt-responsive silicon dioxide membrane with adjustable pore size |
WO2022207233A1 (en) * | 2021-03-30 | 2022-10-06 | Fujifilm Manufacturing Europe Bv | Gas-separation membranes |
WO2022207234A1 (en) * | 2021-03-30 | 2022-10-06 | Fujifilm Manufacturing Europe Bv | Gas-separation membranes |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5568835B2 (en) * | 2007-10-01 | 2014-08-13 | 栗田工業株式会社 | Reverse osmosis membrane, reverse osmosis membrane device, and method of hydrophilizing reverse osmosis membrane |
WO2012005698A1 (en) * | 2010-07-09 | 2012-01-12 | National University Of Singapore | Ultra-permeable membranes for gas separation |
ES2524318T3 (en) | 2011-01-24 | 2014-12-05 | Dow Global Technologies Llc | Method for preparing a composite polyamide membrane |
US20130287946A1 (en) | 2011-01-24 | 2013-10-31 | Dow Global Technologies Llc | Composite polyamide membrane |
EP2632577B1 (en) | 2011-01-24 | 2014-10-01 | Dow Global Technologies LLC | Method for making a composite polyamide membrane |
CN102198987A (en) * | 2011-03-29 | 2011-09-28 | 申晓飞 | Redox reverse osmosis membrane module and its redox water purifier |
US8778182B2 (en) | 2011-07-28 | 2014-07-15 | Dow Global Technologies Llc | Spiral wound element and seal assembly |
JP6054968B2 (en) | 2011-08-31 | 2016-12-27 | ダウ グローバル テクノロジーズ エルエルシー | Composite polyamide membranes derived from monomers containing amine-reactive and phosphorus-containing functional groups |
CN102363113B (en) * | 2011-09-09 | 2013-10-23 | 贵阳时代沃顿科技有限公司 | Method for strengthening contamination resistance of reverse osmosis membrane |
IN2014CN02270A (en) * | 2011-09-29 | 2015-06-19 | Dow Global Technologies Llc | |
CN103889563B (en) | 2011-09-29 | 2017-03-29 | 陶氏环球技术有限责任公司 | Composite polyamide membranes derived from carboxylic acid-containing acyl halide monomers |
EP2776146B1 (en) | 2012-01-06 | 2020-05-13 | DDP Specialty Electronic Materials US, Inc. | Method of preparation of a composite polyamide membrane |
AR093737A1 (en) * | 2012-01-31 | 2015-06-24 | Polymers Crc Ltd | ACTIVE MODIFIED ACRYLIC COATINGS FOR RESISTANCE TO IMPROVED BIOLOGICAL POLLUTION OF REVERSE OSMOSIS MEMBRANES |
CN104470627B (en) | 2012-07-19 | 2018-05-11 | 陶氏环球技术有限责任公司 | Composite polyamide membrane |
CN104918687A (en) | 2013-01-14 | 2015-09-16 | 陶氏环球技术有限责任公司 | Composite polyamide membranes made via interfacial polymerization using blends of non-polar solvents |
WO2014158660A1 (en) | 2013-03-14 | 2014-10-02 | Dow Global Technologies Llc | Composite polyamide membrane including dissolvable polymer coating |
KR101459884B1 (en) * | 2013-03-15 | 2014-11-07 | 상명대학교서울산학협력단 | Facilitated Transport Membranes for Olefin Separation Using Aluminium Salt |
US9289729B2 (en) | 2013-03-16 | 2016-03-22 | Dow Global Technologies Llc | Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer |
US9051417B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent |
US9051227B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | In-situ method for preparing hydrolyzed acyl halide compound |
WO2014179024A1 (en) | 2013-05-03 | 2014-11-06 | Dow Global Technologies Llc | Composite polyamide membrane derived from an aliphatic acyclic tertiary amine compound |
AU2014269004B2 (en) | 2013-05-22 | 2018-03-15 | Triblue Corporation | Methods of forming a polymer layer on a polymer surface |
WO2015084511A1 (en) | 2013-12-02 | 2015-06-11 | Dow Global Technologies Llc | Composite polyamide membrane post treated with nitrious acid |
EP3077089B1 (en) | 2013-12-02 | 2018-02-28 | Dow Global Technologies LLC | Method of forming a composite polyamide membrane treated with dihyroxyaryl compounds and nitrous acid |
WO2015105630A1 (en) | 2014-01-07 | 2015-07-16 | Dow Global Technologies Llc | Treatment of aqueous mixtures containing anionic surfactants using fouling resistant reverse osmosis membrane |
US20160304363A1 (en) | 2014-01-07 | 2016-10-20 | Dow Global Technologies Llc | Separation of hydrocarbons from aqueous mixture using fouling resistant reverse osmosis membrane |
ES2677994T3 (en) | 2014-01-09 | 2018-08-08 | Dow Global Technologies Llc | Composite polyamide membrane with preferred azo content |
CN105899283A (en) | 2014-01-09 | 2016-08-24 | 陶氏环球技术有限责任公司 | Composite polyamide membrane with azo content and high acid content |
US9616392B2 (en) | 2014-01-09 | 2017-04-11 | Dow Global Technologies Llc | Composite polyamide membrane having high acid content and low azo content |
CN105916573A (en) | 2014-01-31 | 2016-08-31 | 陶氏环球技术有限责任公司 | Composite polyamide membrane including cellulose-based quaternary ammonium coating |
CN106257977B (en) | 2014-04-28 | 2019-10-29 | 陶氏环球技术有限责任公司 | Composite polyamide membrane post-treated with nitrous acid |
CN106232216B (en) | 2014-05-14 | 2019-10-11 | 陶氏环球技术有限责任公司 | Composite polyamide membrane post-treated with nitrous acid |
KR102358648B1 (en) | 2014-05-14 | 2022-02-07 | 다우 글로벌 테크놀로지스 엘엘씨 | Composite polyamide membrane post treated with nitrous acid |
JP6303837B2 (en) * | 2014-06-06 | 2018-04-04 | 栗田工業株式会社 | Anti-contamination treatment method for reverse osmosis membranes |
CN104437110B (en) * | 2014-12-15 | 2016-09-28 | 湖南澳维环保科技有限公司 | A kind of big flux polyamide composite film |
WO2018074767A2 (en) * | 2016-10-20 | 2018-04-26 | 주식회사 엘지화학 | Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module |
CN111787998B (en) * | 2018-02-28 | 2021-08-24 | 东丽株式会社 | Composite semipermeable membrane and composite semipermeable membrane element |
JP7147432B2 (en) * | 2018-09-28 | 2022-10-05 | 東レ株式会社 | composite semipermeable membrane |
DE102018131922A1 (en) * | 2018-12-12 | 2020-06-18 | Carl Freudenberg Kg | Membrane for selective mass transfer |
CN109847724B (en) * | 2019-02-01 | 2021-08-03 | 海南大学 | Semi-interpenetrating network hydrogel film material for extracting uranium from seawater and preparation method thereof |
EP4110511A1 (en) * | 2020-02-28 | 2023-01-04 | The Procter & Gamble Company | Method of using nanofiltration and reverse osmosis to remove chemical contaminants |
CN113413776B (en) * | 2021-06-21 | 2022-11-25 | 东华理工大学 | Preparation method of nanofiltration membrane based on polyamidoxime as boundary layer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5091216A (en) * | 1988-04-13 | 1992-02-25 | E. I. Du Pont De Nemours And Company | Reactive post treatment for gas separation membranes |
US5720969A (en) * | 1993-04-27 | 1998-02-24 | Cytotherapeutics, Inc. | Membrane formed by an acrylonitrile-based polymer |
US6280853B1 (en) * | 1999-06-10 | 2001-08-28 | The Dow Chemical Company | Composite membrane with polyalkylene oxide modified polyamide surface |
US6337018B1 (en) * | 2000-04-17 | 2002-01-08 | The Dow Chemical Company | Composite membrane and method for making the same |
US6616982B2 (en) * | 1995-11-17 | 2003-09-09 | Massachusetts Institute Of Technology | Poly(ethylene oxide) coated surfaces |
US6767961B1 (en) * | 2000-06-19 | 2004-07-27 | Kimberly-Clark Worldwide, Inc. | Blends of poly (vinyl alcohol) and poly (ethylene oxide) and articles made therewith |
US6913694B2 (en) * | 2001-11-06 | 2005-07-05 | Saehan Industries Incorporation | Selective membrane having a high fouling resistance |
US20070039874A1 (en) * | 2005-08-16 | 2007-02-22 | General Electric Company | Membranes and methods of treating membranes |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4277344A (en) | 1979-02-22 | 1981-07-07 | Filmtec Corporation | Interfacially synthesized reverse osmosis membrane |
US4765897A (en) | 1986-04-28 | 1988-08-23 | The Dow Chemical Company | Polyamide membranes useful for water softening |
CA1320006C (en) * | 1986-06-02 | 1993-07-06 | Norio Hidaka | Package for integrated circuit |
US4888116A (en) | 1987-01-15 | 1989-12-19 | The Dow Chemical Company | Method of improving membrane properties via reaction of diazonium compounds or precursors |
NO882144L (en) * | 1988-04-13 | 1989-10-16 | Du Pont | PROCEDURE FOR REACTIVE POSTGRADING OF GAS SEPARATION MEMBRANES. |
US4950404A (en) | 1989-08-30 | 1990-08-21 | Allied-Signal Inc. | High flux semipermeable membranes |
US4964998A (en) | 1989-12-13 | 1990-10-23 | Filmtec Corporation | Use of treated composite polyamide membranes to separate concentrated solute |
JP2841670B2 (en) * | 1990-03-29 | 1998-12-24 | 宇部興産株式会社 | Liquid separation material, liquid absorption separation material and liquid separation method using them |
JP2866981B2 (en) * | 1990-08-10 | 1999-03-08 | 日東電工株式会社 | Composite semipermeable membrane |
JP3098577B2 (en) * | 1991-06-12 | 2000-10-16 | 三井・デュポンポリケミカル株式会社 | Permeation separation membrane |
US5755964A (en) | 1996-02-02 | 1998-05-26 | The Dow Chemical Company | Method of treating polyamide membranes to increase flux |
JP3681214B2 (en) | 1996-03-21 | 2005-08-10 | 日東電工株式会社 | High permeability composite reverse osmosis membrane |
US5658460A (en) | 1996-05-07 | 1997-08-19 | The Dow Chemical Company | Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying |
JP3651195B2 (en) * | 1997-08-05 | 2005-05-25 | 東レ株式会社 | Separation membrane and method for producing the same |
US5876602A (en) | 1997-11-04 | 1999-03-02 | The Dow Chemical Company | Treatment of composite polyamide membranes to improve performance |
GB9808689D0 (en) | 1998-04-23 | 1998-06-24 | Kalsep Ltd | Improved membrane |
FR2796386B1 (en) | 1999-07-15 | 2001-09-07 | Atofina | COMPOSITIONS BASED ON A COPOLYMER OF ETHYLENE AND VINYL ALCOHOL AND POLYPROPYLENE |
KR100444325B1 (en) | 2001-07-16 | 2004-08-16 | 한국과학기술연구원 | Facilitated Olefin Transport Membranes containing Silver Salts having Improved Stability and Production Method for the Same |
DE10228148B4 (en) * | 2002-06-24 | 2006-08-24 | Saehan Industries Inc. | Selective membrane with high fouling resistance |
CN100427189C (en) * | 2002-07-16 | 2008-10-22 | 世韩工业株式会社 | Method for producing selective diffusion barrier with excellent pollution resistibility |
US7862872B2 (en) | 2003-03-21 | 2011-01-04 | Arkema France | Multilayer structure based on polyamides and graft copolymers having polyamide blocks |
EP1459885B1 (en) * | 2003-03-21 | 2012-08-08 | Arkema France | Multilayer structure of polyamides and graft copolymers containing polyamide blocks |
KR20050072921A (en) | 2004-01-08 | 2005-07-13 | 한국과학기술연구원 | Facilitated transport membranes for an alkene hydrocarbon separation |
IL164122A (en) * | 2004-09-19 | 2009-09-22 | Charles Linder | Process for improving membranes |
US7913857B2 (en) | 2006-02-01 | 2011-03-29 | Woongjin Chemical Co., Ltd. | Selective membrane having a high fouling resistance |
US7537697B2 (en) | 2006-02-01 | 2009-05-26 | Woongjin Chemical Co., Ltd. | Selective membrane having a high fouling resistance |
US20070251883A1 (en) | 2006-04-28 | 2007-11-01 | Niu Q Jason | Reverse Osmosis Membrane with Branched Poly(Alkylene Oxide) Modified Antifouling Surface |
-
2006
- 2006-04-28 US US11/380,776 patent/US20070251883A1/en not_active Abandoned
-
2007
- 2007-04-10 JP JP2009507886A patent/JP2009535201A/en active Pending
- 2007-04-10 EP EP07760371A patent/EP2021107A2/en not_active Withdrawn
- 2007-04-10 KR KR1020087026433A patent/KR20090006130A/en not_active Application Discontinuation
- 2007-04-10 CN CN2007800153626A patent/CN101432058B/en not_active Expired - Fee Related
- 2007-04-10 WO PCT/US2007/066298 patent/WO2007127605A2/en active Application Filing
-
2009
- 2009-03-16 US US12/404,642 patent/US7918349B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5091216A (en) * | 1988-04-13 | 1992-02-25 | E. I. Du Pont De Nemours And Company | Reactive post treatment for gas separation membranes |
US5720969A (en) * | 1993-04-27 | 1998-02-24 | Cytotherapeutics, Inc. | Membrane formed by an acrylonitrile-based polymer |
US6616982B2 (en) * | 1995-11-17 | 2003-09-09 | Massachusetts Institute Of Technology | Poly(ethylene oxide) coated surfaces |
US6280853B1 (en) * | 1999-06-10 | 2001-08-28 | The Dow Chemical Company | Composite membrane with polyalkylene oxide modified polyamide surface |
US6337018B1 (en) * | 2000-04-17 | 2002-01-08 | The Dow Chemical Company | Composite membrane and method for making the same |
US6767961B1 (en) * | 2000-06-19 | 2004-07-27 | Kimberly-Clark Worldwide, Inc. | Blends of poly (vinyl alcohol) and poly (ethylene oxide) and articles made therewith |
US6913694B2 (en) * | 2001-11-06 | 2005-07-05 | Saehan Industries Incorporation | Selective membrane having a high fouling resistance |
US20070039874A1 (en) * | 2005-08-16 | 2007-02-22 | General Electric Company | Membranes and methods of treating membranes |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090220690A1 (en) * | 2006-04-28 | 2009-09-03 | Niu Q Jason | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
US7918349B2 (en) | 2006-04-28 | 2011-04-05 | Dow Global Technologies Llc | Composite polyamide membrane with branched poly(alkylene oxide) modified surface |
US20110155660A1 (en) * | 2006-05-12 | 2011-06-30 | Mickols William E | Modified membrane |
US7882963B2 (en) | 2006-05-12 | 2011-02-08 | Dow Global Technologies Inc. | Modified membrane |
US20090194479A1 (en) * | 2007-02-05 | 2009-08-06 | Niu Q Jason | Modified polyamine membrane |
US20080185332A1 (en) * | 2007-02-05 | 2008-08-07 | Dow Global Technologies Inc. | Modified polyamide membrane |
US8002120B2 (en) | 2007-02-05 | 2011-08-23 | Dow Global Technologies Llc | Modified polyamide membrane |
US20110120942A1 (en) * | 2007-02-05 | 2011-05-26 | Niu Q Jason | Modified polyamide membrane |
US7905361B2 (en) | 2007-02-05 | 2011-03-15 | Dow Global Technologies Llc | Modified polyamide membrane |
US20110036774A1 (en) * | 2008-03-20 | 2011-02-17 | Yale University | Spiral Wound Membrane Module for Forward Osmotic Use |
US8815091B2 (en) | 2008-03-20 | 2014-08-26 | Yale University | Spiral wound membrane module for forward osmotic use |
US20110189469A1 (en) * | 2008-08-05 | 2011-08-04 | Polymers Crc Limited | Functionalized thin film polyamide membranes |
AU2009279188B2 (en) * | 2008-08-05 | 2016-05-26 | Polymers Crc Limited | Functionalized thin film polyamide membranes |
WO2010015599A1 (en) * | 2008-08-05 | 2010-02-11 | Polymers Crc Limited | Functionalized thin film polyamide membranes |
US8544658B2 (en) | 2008-08-05 | 2013-10-01 | Polymers Crc Limited | Functionalized thin film polyamide membranes |
CN102112214A (en) * | 2008-08-05 | 2011-06-29 | 聚合物华润有限公司 | Functionalized thin film polyamide membranes |
US7815987B2 (en) | 2008-12-04 | 2010-10-19 | Dow Global Technologies Inc. | Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds |
US20100143733A1 (en) * | 2008-12-04 | 2010-06-10 | Mickols William E | Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds |
US20120024789A1 (en) * | 2009-04-08 | 2012-02-02 | Michigan Molecular Institute | Surface Modification of Polyamide Reverse Osmosis Membranes |
WO2010117460A1 (en) * | 2009-04-08 | 2010-10-14 | Michigan Molecular Institute | Surface modification of reverse osmosis membranes by hydrophilic dendritic polymers |
US8505743B2 (en) * | 2009-04-08 | 2013-08-13 | Michigan Molecular Institute | Surface modification of polyamide reverse osmosis membranes |
US20100314318A1 (en) * | 2009-05-18 | 2010-12-16 | Gartner Charles D | Halogenated amide biocidal compounds and methods for treating water systems at near neutral to high ph |
US20100314319A1 (en) * | 2009-05-18 | 2010-12-16 | Bei Yin | Halogenated amides as biocides for biofilm control |
US20100314316A1 (en) * | 2009-05-18 | 2010-12-16 | Bei Yin | Halogenated amides as biocides for treating water systems containing reducing agents |
EA026762B1 (en) * | 2009-08-24 | 2017-05-31 | Оасис Уотер, Инк. | Forward osmosis membrane |
US8460554B2 (en) | 2009-08-24 | 2013-06-11 | Oasys Water, Inc. | Forward osmosis membranes |
CN102574071A (en) * | 2009-08-24 | 2012-07-11 | Oasys水有限公司 | Forward osmosis membranes |
US8181794B2 (en) | 2009-08-24 | 2012-05-22 | Oasys Water, Inc. | Forward osmosis membranes |
WO2011028541A3 (en) * | 2009-08-24 | 2011-06-16 | Oasys Water, Inc. | Forward osmosis membranes |
US9463422B2 (en) | 2009-08-24 | 2016-10-11 | Oasys Water, Inc. | Forward osmosis membranes |
US9186627B2 (en) | 2009-08-24 | 2015-11-17 | Oasys Water, Inc. | Thin film composite heat exchangers |
US20110073540A1 (en) * | 2009-08-24 | 2011-03-31 | Mcginnis Robert | Forward osmosis membranes |
WO2011049790A1 (en) | 2009-10-19 | 2011-04-28 | Dow Global Technologies Llc | Method of testing the integrity of spiral wound modules |
US20110094660A1 (en) * | 2009-10-27 | 2011-04-28 | Mccollam Robert P | Method for applying tape layer to outer periphery of spiral wound module |
WO2011053452A1 (en) | 2009-10-27 | 2011-05-05 | Dow Global Technologies Llc | Method for applying tape layer to outer periphery of spiral wound module |
US8142588B2 (en) | 2009-10-27 | 2012-03-27 | Dow Global Technologies Llc | Method for applying tape layer to outer periphery of spiral wound module |
US9156006B2 (en) | 2009-12-03 | 2015-10-13 | Yale University | High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes |
US8348499B2 (en) | 2010-01-12 | 2013-01-08 | Dow Global Technologies Llc | Method of testing spiral wound modules by thermal imaging |
WO2011087536A1 (en) | 2010-01-12 | 2011-07-21 | Dow Global Technologies Llc | Method of testing spiral wound modules by thermal imaging |
US20110170572A1 (en) * | 2010-01-12 | 2011-07-14 | Jons Steven D | Method of testing spiral wound modules by thermal imaging |
US20110220569A1 (en) * | 2010-03-10 | 2011-09-15 | Mickols William E | Composite membrane including coating of polyalkylene oxide and acetophenone compounds |
US8721942B2 (en) * | 2010-03-10 | 2014-05-13 | Dow Global Technologies Llc | Composite membrane including coating of polyalkylene oxide and acetophenone compounds |
WO2011112351A1 (en) | 2010-03-10 | 2011-09-15 | Dow Global Technologies Llc | Polyamide membrane with a coating comprising polyalkylene oxide and acetophenone compounds |
US20110232061A1 (en) * | 2010-03-24 | 2011-09-29 | Jons Steven D | Spiral wound filtration module |
WO2011119280A1 (en) | 2010-03-24 | 2011-09-29 | Dow Global Technologies Llc | Spiral wound filtration module |
US8991027B2 (en) * | 2010-03-24 | 2015-03-31 | Dow Global Technologies Llc | Spiral wound filtration module |
US8661648B2 (en) * | 2010-03-24 | 2014-03-04 | Dow Global Technologies Llc | Spiral wound filtration module |
WO2011136865A1 (en) | 2010-04-26 | 2011-11-03 | Dow Global Technologies Llc | Polyamide membrane with a coating comprising polyalkylene oxide and triazine compounds |
US8640886B2 (en) | 2010-04-26 | 2014-02-04 | Dow Global Technologies Llc | Composite membrane including coating of polyalkylene oxide and triazine compounds |
US8646616B2 (en) | 2010-05-24 | 2014-02-11 | Dow Global Technologies Llc | Composite membrane with coating comprising polyalkylene oxide and imidazol compounds |
WO2011149571A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and biguanide compounds |
US8733558B2 (en) | 2010-05-24 | 2014-05-27 | Dow Global Technologies Llc | Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds |
US8757396B2 (en) | 2010-05-24 | 2014-06-24 | Dow Global Technologies Llc | Composite membrane with coating comprising polyalkylene oxide and oxy-substituted phenyl compounds |
WO2011149573A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and oxy- substituted phenyl compounds |
WO2011149572A1 (en) | 2010-05-24 | 2011-12-01 | Dow Global Technologies Llc | Polyamide membrane with coating comprising polyalkylene oxide and imidazol compounds |
US9504967B2 (en) | 2010-07-15 | 2016-11-29 | Globalfoundries Inc. | Composite membrane with multi-layered active layer |
US9352286B2 (en) | 2010-09-01 | 2016-05-31 | Globalfoundries Inc. | Composite filtration membranes and methods of preparation thereof |
US8709536B2 (en) | 2010-09-01 | 2014-04-29 | International Business Machines Corporation | Composite filtration membranes and methods of preparation thereof |
US8727135B2 (en) | 2010-09-01 | 2014-05-20 | International Business Machines Corporation | Composite filtration membranes and methods of preparation thereof |
US8496825B1 (en) | 2010-10-26 | 2013-07-30 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
WO2012058038A1 (en) | 2010-10-26 | 2012-05-03 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
WO2012097386A3 (en) * | 2011-01-11 | 2014-01-23 | Hydration Systems, Llc | Two-layer membrane |
WO2012097386A2 (en) * | 2011-01-11 | 2012-07-19 | Hydration Systems, Llc | Two-layer membrane |
CN103906559A (en) * | 2011-01-11 | 2014-07-02 | 水合系统有限责任公司 | Two-layer membrane |
US20120211414A1 (en) * | 2011-02-18 | 2012-08-23 | Woongjin Chemical Co., Ltd. | Selective membrane having a high fouling resistance |
US9089820B2 (en) * | 2011-02-18 | 2015-07-28 | Woongjin Chemical Co., Ltd. | Selective membrane having a high fouling resistance |
US9022227B2 (en) | 2011-03-21 | 2015-05-05 | International Business Machines Corporation | Composite membranes and methods of preparation thereof |
US9579608B2 (en) | 2011-03-21 | 2017-02-28 | Globalfoundries Inc. | Composite membranes and methods of preparation thereof |
US9033159B1 (en) * | 2011-06-07 | 2015-05-19 | Clemson University | Membrane surface modification |
WO2013016574A1 (en) * | 2011-07-26 | 2013-01-31 | Hydration Systems, Llc | Method to improve forward osmosis membrane performance |
WO2013019812A1 (en) | 2011-08-03 | 2013-02-07 | Oasys Water, Inc. | Systems and methods for improving flux in osmotically driven membrane systems |
EP2801401A4 (en) * | 2012-01-05 | 2015-08-26 | Lg Chemical Ltd | Outstandingly contamination resistant reverse osmosis membrane and production method therefor |
US10384172B2 (en) | 2012-06-07 | 2019-08-20 | International Business Machines Corporation | Composite membrane with multi-layered active layer |
US9561474B2 (en) | 2012-06-07 | 2017-02-07 | International Business Machines Corporation | Composite membrane with multi-layered active layer |
US20140183128A1 (en) * | 2012-11-05 | 2014-07-03 | Lg Chem, Ltd. | Polyamide water-treatment separation membrane with improved antifouling properties and manufacturing method thereof |
US9649597B2 (en) * | 2012-11-05 | 2017-05-16 | Lg Chem, Ltd. | Polyamide water-treatment separation membrane with improved antifouling properties and manufacturing method thereof |
WO2014095753A1 (en) * | 2012-12-17 | 2014-06-26 | Basf Se | Membranes with improved flux and method for their preparation |
WO2014095749A1 (en) | 2012-12-17 | 2014-06-26 | Basf Se | Filtration systems and membranes with enhanced flux and method for their preparation |
US20150274891A1 (en) * | 2012-12-17 | 2015-10-01 | Basf Se | Membranes with improved flux and method for their preparation |
CN103240005A (en) * | 2013-04-28 | 2013-08-14 | 泉州索爱膜科技开发有限公司 | Tubular composite nanofiltration membrane and preparation method thereof |
US10384167B2 (en) | 2013-11-21 | 2019-08-20 | Oasys Water LLC | Systems and methods for improving performance of osmotically driven membrane systems |
US10906007B2 (en) | 2014-07-14 | 2021-02-02 | International Business Machines Corporation | Filtration membranes with functionalized star polymers |
US9782727B2 (en) | 2014-07-14 | 2017-10-10 | International Business Machines Corporation | Filtration membranes with functionalized star polymers |
US20170225126A1 (en) * | 2014-08-13 | 2017-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing antifouling coatings made of thin-layer composite membranes for reverse osmosis and nanofiltration, such thin-layer composite membranes, and the use thereof |
US10561990B2 (en) * | 2014-08-13 | 2020-02-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing antifouling coatings made of thin-layer composite membranes for reverse osmosis and nanofiltration |
US9931598B2 (en) | 2015-02-16 | 2018-04-03 | International Business Machines Corporation | Anti-fouling coatings with star polymers for filtration membranes |
US20180178168A1 (en) * | 2015-02-16 | 2018-06-28 | International Business Machines Corporation | Anti-fouling coatings with star polymers for filtration membranes |
US10695724B2 (en) * | 2015-02-16 | 2020-06-30 | International Business Machines Corporation | Anti-fouling coatings with star polymers for filtration membranes |
US10005042B2 (en) | 2015-02-16 | 2018-06-26 | International Business Machines Corporation | Thin film composite forward osmosis membranes with performance enhancing layers |
US10654002B2 (en) | 2015-02-16 | 2020-05-19 | International Business Machines Corporation | Thin film composite forward osmosis membranes with performance enhancing layers |
US20160258362A1 (en) * | 2015-03-02 | 2016-09-08 | Hamilton Sundstrand Corporation | Lightweight mist eliminator for aircraft fuel tank inerting systems |
US9926854B2 (en) * | 2015-03-02 | 2018-03-27 | Hamilton Sundstrand Corporation | Lightweight mist eliminator for aircraft fuel tank inerting systems |
US20170001151A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Antifouling and antimicrobial coatings for thin film composite membranes |
US10293308B2 (en) * | 2015-06-30 | 2019-05-21 | International Business Machines Corporation | Antifouling and antimicrobial coatings for thin film composite membranes |
US10086338B2 (en) * | 2015-06-30 | 2018-10-02 | International Business Machines Corporation | Antifouling and antimicrobial coatings for thin film composite membranes |
US20190291058A1 (en) * | 2016-10-20 | 2019-09-26 | Lg Chem, Ltd. | Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module |
US11577971B2 (en) * | 2016-10-20 | 2023-02-14 | Lg Chem, Ltd. | Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module |
CN112058091A (en) * | 2020-08-31 | 2020-12-11 | 浙江工业大学 | Preparation method of salt-responsive silicon dioxide membrane with adjustable pore size |
WO2022207233A1 (en) * | 2021-03-30 | 2022-10-06 | Fujifilm Manufacturing Europe Bv | Gas-separation membranes |
WO2022207234A1 (en) * | 2021-03-30 | 2022-10-06 | Fujifilm Manufacturing Europe Bv | Gas-separation membranes |
Also Published As
Publication number | Publication date |
---|---|
CN101432058A (en) | 2009-05-13 |
EP2021107A2 (en) | 2009-02-11 |
US20090220690A1 (en) | 2009-09-03 |
JP2009535201A (en) | 2009-10-01 |
WO2007127605A2 (en) | 2007-11-08 |
US7918349B2 (en) | 2011-04-05 |
CN101432058B (en) | 2012-06-27 |
WO2007127605A3 (en) | 2008-01-24 |
KR20090006130A (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7918349B2 (en) | Composite polyamide membrane with branched poly(alkylene oxide) modified surface | |
Gohil et al. | A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination | |
Bengani et al. | Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity | |
US9579608B2 (en) | Composite membranes and methods of preparation thereof | |
Ni et al. | Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement | |
US20170014776A1 (en) | Anti-fouling membranes | |
Zou et al. | Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach | |
Asatekin et al. | Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers | |
Ma et al. | Fabrication of antifouling reverse osmosis membranes by incorporating zwitterionic colloids nanoparticles for brackish water desalination | |
AU611474B2 (en) | Polyamide reverse osmosis membranes | |
EP3283201B1 (en) | Processes for reducing the fouling of surfaces | |
Choi et al. | Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly (oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance | |
US20140217014A1 (en) | Composite filtration membranes and methods of preparation thereof | |
JP6625114B2 (en) | Thin film composite membrane containing functional star polymer and method for producing the same | |
Lei et al. | Macroinitiator-mediated photoreactive coating of membrane surfaces with antifouling hydrogel layers | |
Le et al. | Zwitterionic triamine monomer for the fabrication of thin-film composite membranes | |
CN114080267A (en) | Method for manufacturing membrane system | |
US20240367112A1 (en) | Amphiphilic polyampholytes and related membranes | |
Shahkaramipour | Antifouling Membranes by Surface Modification Using Hydrophilic Polymers | |
Asatekin Alexiou | Improved filtration membranes through self-organizing amphiphilic comb copolymers | |
CN118076563A (en) | Amphiphilic polyampholytes and related membranes | |
Huang et al. | Development of Antifouling Pressure Retarded Osmosis Membranes | |
최형우 | Antifouling characteristics of reverse osmosis membrane modified with zwitterion polymer | |
Desta et al. | Systematic Alteration of Nanofiltration Membrane Charge and Hydrophilicity to Increase Carbamazepine Separation During Wastewater Reclamation | |
Laghmari El Moussati | Development of a polyzwitterionic hydrogel coating for RO membranes by concentration polarization-enhanced in situ click reaction which can be applied in modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DOW GLOBAL TECHNOLOGIES INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIU, Q. JASON;MICKOLS, WILLIAM E.;REEL/FRAME:020770/0436 Effective date: 20080318 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |