Nothing Special   »   [go: up one dir, main page]

US20070196854A1 - Method for producing polymers - Google Patents

Method for producing polymers Download PDF

Info

Publication number
US20070196854A1
US20070196854A1 US11/785,505 US78550507A US2007196854A1 US 20070196854 A1 US20070196854 A1 US 20070196854A1 US 78550507 A US78550507 A US 78550507A US 2007196854 A1 US2007196854 A1 US 2007196854A1
Authority
US
United States
Prior art keywords
nucleic acid
synthesis
dna
sequence
building blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/785,505
Inventor
Peer Stahler
Cord Stahler
Manfred Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NECKARBURG 66 V V GmbH
Febit AG
Febit Holding GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27438924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070196854(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19940752A external-priority patent/DE19940752A1/en
Priority claimed from DE19957116A external-priority patent/DE19957116A1/en
Priority to US11/785,505 priority Critical patent/US20070196854A1/en
Application filed by Individual filed Critical Individual
Publication of US20070196854A1 publication Critical patent/US20070196854A1/en
Assigned to FEBIT BIOTECH GMBH reassignment FEBIT BIOTECH GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NECKARBURG 66. V V GMBH
Assigned to FEBIT AG reassignment FEBIT AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FEBIT FERRARIUS BIOTECHNOLOGY GMBH
Assigned to FEBIT HOLDING GMBH reassignment FEBIT HOLDING GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FEBIT BIOTECH GMBH
Assigned to NECKARBURG 66. V V GMBH reassignment NECKARBURG 66. V V GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TECHNOSTART CONSULTING FIRM FOR INVESTMENT FUNDS MBH
Assigned to TECHNOSTART CONSULTING FIRM FOR INVESTMENT FUNDS MBH reassignment TECHNOSTART CONSULTING FIRM FOR INVESTMENT FUNDS MBH ASSETS PURCHASE Assignors: SEAGON, CHRISTOPHER, ESQ., MR.
Assigned to SEAGON, CHRISTOPHER, ESQ., MR. reassignment SEAGON, CHRISTOPHER, ESQ., MR. COURT APPOINTMENT OF TRUSTEE Assignors: FEBIT AG
Priority to US12/400,493 priority patent/US9568839B2/en
Priority to US15/426,860 priority patent/US20170147748A1/en
Assigned to MIDCAP FUNDING IV TRUST reassignment MIDCAP FUNDING IV TRUST SECURITY AGREEMENT SUPPLEMENT (REVOLVING) Assignors: ETONBIO, INC., Telesis Bio Inc.
Assigned to MIDCAP FINANCIAL TRUST reassignment MIDCAP FINANCIAL TRUST SECURITY AGREEMENT SUPPLEMENT (TERM) Assignors: ETONBIO, INC., Telesis Bio Inc.
Assigned to ETONBIO, INC., TELESIS BIO INC. (FORMERLY KNOWN AS CODEX DNA, INC.) reassignment ETONBIO, INC. RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (TERM) Assignors: MIDCAP FINANCIAL TRUST
Assigned to TELESIS BIO INC. (FORMERLY KNOWN AS CODEX DNA, INC.), ETONBIO, INC. reassignment TELESIS BIO INC. (FORMERLY KNOWN AS CODEX DNA, INC.) RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (REVOLVING) Assignors: MIDCAP FUNDING IV TRUST
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00439Maskless processes using micromirror arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00441Maskless processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00448Maskless processes using microlens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00675In-situ synthesis on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00704Processes involving means for analysing and characterising the products integrated with the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support

Definitions

  • the invention relates to a method for producing polymers, in particular synthetic nucleic acid double strands of optional sequence.
  • Manipulation and construction of genetic elements such as, for example, gene fragments, whole genes or regulatory regions through the development of DNA recombination technology, which is often also referred to as genetic engineering, led to a particular need for genetic engineering methods and further development thereof in the areas of gene therapy, molecular medicine (basic research, vector development, vaccines, regeneration, etc.).
  • Important areas of application are also the development of active substances, production of active substances in the context of the development of pharmaceuticals, combinatorial biosynthesis (antibodies, effectors such as growth factors, neural transmitters, etc.), biotechnology (e.g.
  • DNA elements isolated genomic DNA, plasmids, amplicons, viral or bacterial genomes, vectors
  • DNA elements are first cut into fragments with defined ends by appropriate restriction enzymes.
  • restriction enzymes Depending on the composition of these ends, it is possible to recombine the fragments formed and to link them to form larger DNA elements (likewise enzymatically).
  • this is frequently carried out in a plasmid acting as cloning vector.
  • the recombinant DNA normally has to be propagated clonally in suitable organisms (cloning) and, after this time-consuming step and isolation by appropriate methods, is again available for manipulations such as, for example, recombinations.
  • the restriction enzyme cleavage sites are a limiting factor in this method: each enzyme recognizes a specific sequence on the (double-stranded) DNA, which is between three and twelve nucleotide bases in length, depending on the particular enzyme, and therefore, according to statistical distribution, a particular number of cleavage sites at which the DNA strand is cut is present on each DNA element. Cutting the treated DNA into defined fragments, which can subsequently be combined to give the desired sequence, is important for recombination.
  • Recombination by homologous recombination in cells is known, too.
  • identical sequence sections are present on the elements to be recombined, it is possible to newly assemble and manipulate relatively large DNA elements by way of the natural process of homologous recombination.
  • These recombination events are substantially more indirect than in the case of the restriction enzyme method and, moreover, more difficult to control. They often give distinctly poorer yields than the above-described recombination using restriction enzymes.
  • PCR polymerase chain reaction
  • flanking regions must be known and be specific for the region lying in between.
  • polymerases also incorporate wrong nucleotides, with a frequency depending on the particular enzyme, so that there is always the danger of a certain distortion of the starting sequence. For some applications, this gradual distortion can be very disturbing.
  • sequences such as, for example, the above-described restriction cleavage sites can be incorporated into the primers. This allows (limited) manipulation of the complete sequence.
  • the multiplied region can now be in the region of approx. 30 kbp, but most of this DNA molecule is the copy of a DNA already present.
  • the primers are prepared using automated solid phase synthesis and are widely available, but the configuration of all automatic synthesizers known to date leads to the production of amounts of primer DNA ( ⁇ mol-range reaction mixtures) which are too large and not required for PCR, while the variety in variants remains limited.
  • Double-stranded DNA is synthesized from short oligonucleotides according to two methods (see Holowachuk et al., PCR Methods and Applications, Cold Spring Harbor Laboratory Press): on the one hand, the complete double strand is synthesized by synthesizing single-stranded nucleic acids (with suitable sequence), attaching complementary regions by hybridization and linking the molecular backbone by, for example, ligase. On the other hand, there is also the possibility of synthesizing regions overlapping at the edges as single-stranded nucleic acids, attachment by hybridization, filling in the single-stranded regions via enzymes (polymerases) and linking the backbone.
  • the total length of the genetic element is restricted to only a few thousand nucleotide bases due to, on the one hand, the expenditure and production costs of nucleic acids in macroscopic column synthesis and, on the other hand, the logistics of nucleic acids being prepared separately in macroscopic column synthesis and then combined.
  • the same size range as in DNA recombination technology is covered.
  • the prior art can be described as a procedure in which, in analogy to logical operations, the available matter (in this case genetic material in the form of nucleic acids) is studied and combined (recombination). The result of recombination experiments of this kind is then studied and allows conclusions, inter alia about the elements employed and their combined effect.
  • the procedure may therefore be described as (selectively) analytical and combinatorial.
  • the invention therefore relates to a method for producing polymers, in which a plurality of oligomeric building blocks is synthesized on a support by parallel synthesis steps, is detached from the support and is brought into contact with one another to synthesize the polymer.
  • Preference is given to synthesizing double-stranded nucleic acid polymers of at least 300 bp, in particular at least 1000 bp in length.
  • the nucleic acid polymers are preferably selected from genes, gene clusters, chromosomes, viral and bacterial genomes or sections thereof.
  • the oligomeric building blocks used for synthesizing the polymer are preferably 5-150, particularly preferably 5-30, monomer units in length.
  • oligonucleotide building blocks In successive steps, it is possible to detach in each case partially complementary oligonucleotide building blocks from the support and to bring them into contact with one another or with the polymer intermediate under hybridization conditions.
  • suitable polymers are nucleic acid analogs and proteins.
  • FIG. 1 shows a vertical section of a reaction support 30 which is orthogonal to the microchannels 33 present thereon, which are separated from one another by walls 32.
  • the bottom 31 of the reaction support is transparent.
  • a single-stranded nucleic acid 10 with the designation of the 5′ and 3′ ends according to convention is depicted diagrammatically. These are depicted as 10 a with the 3′ end covalently bound to the reaction support 30 by solid-phase synthesis.
  • a light source matrix 20 with a light source and a controllable illumination exit facing the reaction support 30 is likewise depicted.
  • FIG. 2 shows a top view of reaction support 30 with reaction areas 12 and the walls 32 between the microchannels 33.
  • the arrows indicate the direction of flow.
  • FIG. 3 shows, similar to FIG. 1 , a vertical section through the reaction support 30, with the single-stranded nucleic acids in the microchannel 33 being detached.
  • FIG. 4 again depicts a top view of the reaction support 30, with the single-stranded nucleic acids in the microchannel 33 being detached.
  • FIG. 5 shows a top view of the arrangement of microchannels with fluidic reaction spaces 50, which contain the individual reaction areas, and reaction chambers, where a part sequence is assembled.
  • reaction space 54 all microchannels within a reaction support are brought together.
  • the final synthesis product is assembled there, too, and is removed through exit 55.
  • the reference numbers 51a and 51b indicate the representations of a reaction chamber which are shown in enlarged form in FIG. 6 and FIG. 7 and FIG. 8 .
  • the arrows again signal the direction of flow.
  • FIG. 6 shows an enlarged representation of a reaction chamber 51a after a microchannel with detached single-stranded nucleic acids.
  • FIG. 7 shows an enlarged representation of a reaction chamber 51a after a microchannel with a double-stranded hybrid 60 composed of two attached complementary nucleic acid single strands.
  • FIG. 8 shows an enlarged representation of a reaction chamber 51b after bringing together two microchannels with an assembled double-stranded nucleic acid hybrid 62, enzyme 63 (e.g. ligases) for the covalent linkage of the building blocks of the nucleic acid hybrid 85, a linear covalently linked nucleic acid double strand 65 and a circular closed nucleic acid double strand 66 (e.g. vector).
  • enzyme 63 e.g. ligases
  • the reference number 64 represents a reaction of the enzymes with the nucleic acid hybrid.
  • the invention relates to a method for producing synthetic DNA of any optional sequence and thus any known or novel functional genetic elements which are contained in said sequence. This method comprises the steps
  • the base sequences of the nucleic acid fragments synthesized in individual reaction areas are preferably chosen such that they can assemble to form a nucleic acid double strand hybrid.
  • the nucleic acid fragments can then be detached in step (c) in one or more steps under conditions such that a plurality, i.e. at least some of the detached nucleic acid fragments assemble to form a nucleic acid double strand hybrid.
  • the nucleic acid fragments forming one strand of the nucleic acid double strand hybrid can at least partially be linked covalently to one another. This may be carried out by enzymatic treatment, for example using ligase, or/and filling in gaps in the strands using DNA polymerase.
  • the method comprises within the framework of a modular system the synthesis of very many individual nucleic acid strands which serve as building blocks and, as a result, a double-stranded nucleic acid sequence which can be more than 100,000 base pairs in length is generated, for example in a microfluidic reaction support.
  • the highly complex synthetic nucleic acid which preferably consists of DNA is produced according to the method and according to the following principle: first, relatively short DNA strands are synthesized in a multiplicity of reaction areas on a reaction support by in situ synthesis. This may take place, for example, using the supports described in the patent applications DE 19924 327.1, DE 19940 749.5, PCT/EP99/06316 and PCT/EP99/06317. In this connection, each reaction area is suitable for the individual and specific synthesis of an individual given DNA sequence of approx. 10-100 nucleotides in length. These DNA strands form the building blocks for the specific synthesis of very long DNA molecules.
  • the fluidic microprocessor used here may carry reaction spaces specially designed for the application.
  • the DNA synthesis itself is thus carried out by following the automated solid phase synthesis but with some novel aspects: the “solid phase” in this case is an individual reaction area on the surface of the support, for example the wall of the reaction space, i.e. it is not particles introduced into the reaction space as is the case in a conventional synthesizer. Integration of the synthesis in a microfluidic reaction support (e.g. a structure with optionally branched channels and reaction spaces) makes it possible to introduce the reagents and other components such as enzymes.
  • a microfluidic reaction support e.g. a structure with optionally branched channels and reaction spaces
  • the synthesized building blocks are detached from said reaction areas. This detachment process may be carried out location- or/and time-specifically for individual, several or all DNA strands.
  • reaction areas to be established and utilized within a fluidic space or compartment so that the DNA strands synthesized therein can be detached in one operation step and taken away from the compartment which fluidically connects the reaction areas.
  • Single-stranded or/and double-stranded building blocks are then assembled, for example, within a reaction space which may comprise one or more reaction areas for the synthesis.
  • the sequence of the individual building blocks is chosen such that, when bringing the individual building blocks into contact with one another, regions complementary to one another are available at the two ends brought together, in order to make possible specific attachment of further DNA strands by hybridizing said regions. As a result, longer DNA hybrids are formed.
  • the phosphorus diester backbone of these DNA hybrids may be covalently closed, for example by ligases, and possible gaps in the double strand may be filled in in a known manner enzymatically by means of polymerases.
  • Single-stranded regions which may be present may be filled in by enzymes (e.g. Klenow fragment) with the addition of suitable nucleotides.
  • enzymes e.g. Klenow fragment
  • suitable nucleotides e.g. Klenow fragment
  • the amount of individual building blocks which is required for a long synthetic DNA molecule is dealt with in the reaction support by parallel synthesis of the building blocks in a location- or/and time-resolved synthesis process.
  • this parallel synthesis is carried out by light-dependent location- or/and time-resolved DNA synthesis in a fluidic microprocessor which is also described in the patent applications DE 199 24 327.1, DE 199 40 749.5, PCT/EP99/06316 and PCT/EP99/06317.
  • the miniaturized reaction support here causes a reduction in the amount of starting substances by at least a factor of 1000 compared with a conventional DNA synthesizer. At the same time, an extremely high number of nucleic acid double strands of defined sequence is produced. Only in this way is it possible to generate a very large variety of individual building blocks, which is required for the synthesis of long DNA molecules, by using an economically sensible amount of resources.
  • the synthesis of a sequence of 100,000 base pairs, composed of overlapping building blocks of 20 nucleotides in length, requires 10,000 individual building blocks. This can be achieved using appropriately miniaturized equipment in a highly parallel synthesis process.
  • the sequence of the individual building blocks can be selected efficiently, taking into account biochemical and functional parameters.
  • an algorithm makes out suitable overlapping regions.
  • different amounts of target sequences can be produced, either within one reaction support or spread over a plurality of reaction supports.
  • the hybridization conditions for formation of the hybrids such as, for example, temperature, salt concentrations, etc., are adjusted to the available overlap regions by an appropriate algorithm.
  • maximum attachment specificity is ensured.
  • the products generated may in turn be introduced optionally into appropriately automated processes, for example into cloning in suitable target cells.
  • Synthesis in stages by synthesizing the individual DNA strands in reaction areas within enclosed reaction spaces also allows the synthesis of difficult sequences, for example those with internal repeats of sequence sections, which occur, for example, in retroviruses and corresponding retroviral vectors.
  • the controlled detachment of building blocks within the fluidic reaction spaces makes a synthesis of any sequence possible, without problems being generated by assigning the overlapping regions on the individual building blocks.
  • the high quality requirements necessary for synthesizing very long DNA molecules can be met inter alia by using real-time quality control. This comprises monitoring the location-resolved building block synthesis, likewise detachment and assembly up to production of the final sequence. Then all processes take place in a transparent reaction support. In addition, the possibility to follow reactions and fluidic processes in transmitted light mode, for example by CCD detection, is created.
  • the miniaturized reaction support is preferably designed such that a detachment process is possible in the individual reaction spaces and thus the DNA strands synthesized on the reaction areas located within these reaction spaces are detached individually or in clusters.
  • the reaction support it is possible to assemble the building blocks in reaction spaces in a process in stages and also to remove building blocks, part sequences or the final product or else to sort or fractionate the molecules.
  • the target sequence after its completion, may be introduced as integrated genetic element into cells by transfer and thereby be cloned and studied in functional studies. Another possibility is to firstly further purify or analyze the synthesis product, a possible example of said analysis being sequencing.
  • the sequencing process may also be initiated by direct coupling using an appropriate apparatus, for example using a device described in the patent applications DE 199 24 327.1, DE 199 40 749.5, PCT/EP99/06316 and PCT/EP99/06317 for the integrated synthesis and analysis of polymers. It is likewise conceivable to isolate and analyze the generated target sequences after cloning.
  • the method of the invention provides via the integrated genetic elements generated therewith a tool which, for the further development of molecular biology, includes biological variety in a systematic process.
  • the generation of DNA molecules with desired genetic information is thus no longer the bottleneck of molecular biological work, since all molecules, from small plasmids via complex vectors to mini chromosomes, can be generated synthetically and are available for further work.
  • the production method allows generation of numerous different nucleic acids and thus a systematic approach for questions concerning regulatory elements, DNA binding sites for regulators, signal cascades, receptors, effect and interactions of growth factors, etc.
  • the synthetic DNA molecules are in each stage of the development of the method described here fully compatible with the available recombination technology.
  • “traditional” molecular biological applications it is also possible to provide integrated genetic elements, for example by appropriate vectors. Incorporation of appropriate cleavage sites even of enzymes little used so far is not a limiting factor for integrated genetic elements.
  • Modifications of the sequence for optimizing functional parameters of the transcript for example splicing, regulation at the mRNA level, regulation at the translation level, and, moreover, the optimization of functional parameters of the gene product, such as, for example, the amino acid sequence (e.g. antibodies, growth factors, receptors, channels, pores, transporters, etc.) are likewise made possible.
  • the amino acid sequence e.g. antibodies, growth factors, receptors, channels, pores, transporters, etc.
  • the system created by the method is extremely flexible and allows in a manner previously not available the programmed production of genetic material under greatly reduced amounts of time, materials and work needed.
  • the method of the invention leads to a considerable shortening up to the last stage of cloning a gene: the gene or the genes are synthesized as DNA molecule and then (after suitable preparation such as purification, etc.) introduced directly into target cells and the result is studied.
  • the multi-stage cloning process which is mostly carried out in microorganisms such as E. coli (e.g. DNA isolation, purification, analysis, recombination, cloning in bacteria, isolation, analysis, etc.) is thus reduced to the last transfer of the DNA molecule into the final effector cells.
  • E. coli e.g. DNA isolation, purification, analysis, recombination, cloning in bacteria, isolation, analysis, etc.
  • Another considerable improvement is the reduction in time and the reduction in operational steps to after the sequencing of genetic material, with potential genes found being verified as such and cloned.
  • probes are used (e.g. by means of PCR) to search in cDNA libraries for appropriate clones which, however, need not contain the whole sequence of the mRNA originally used in their production.
  • an expression gene library is searched by means of an antibody (screening). Both methods can be shortened very substantially using the method of the invention: if a gene sequence determined “in silico” is present (i.e. after detection of an appropriate pattern in a DNA sequence by the computer) or after decoding a protein sequence, an appropriate vector with the sequence or variants thereof can be generated directly via programmed synthesis of an integrated genetic element and introduced into suitable target cells.
  • the method leads to integration of the synthesis, detachment of synthesis products and assembly to a DNA molecule being carried out in one system.
  • Using production methods of microsystem technology it is possible to integrate all necessary functions and process steps up to the purification of the final product in a miniaturized reaction support. These may be synthesis areas, detachment areas (clusters), reaction spaces, feeding channels, valves, pumps, concentrators, fractionation areas, etc.
  • Plasmids and expression vectors may be prepared directly for sequenced proteins or corresponding part sequences and the products may be analyzed biochemically and functionally, for example by using suitable regulatory elements. This omits the search for clones in a gene library.
  • ORFs from sequencing work e.g. Human Genome Project
  • ORFs from sequencing work can be programmed directly into appropriate vectors and be combined with desired genetic elements.
  • An identification of clones, for example by complicated screening of cDNA libraries, is removed.
  • an appropriate vector including the putative gene can be synthesized and made available.
  • the method according to the invention is distinguished by a small amount of material needed.
  • a microfluidic system needs markedly fewer starting substances for an individual DNA oligomer than a conventional solid-phase synthesis apparatus (when using a single column).
  • microliters compare with the consumption of milliliters, i.e. a factor of 1000.
  • the present invention requires the provision of a large number of nucleic acid molecules, usually DNA, whose sequence can be freely determined.
  • These building blocks must have virtually 100% identical sequences within one building block species (analogously to the synthesis performance of conventional synthesizers). Only highly parallel synthesis methods are suitable for generating the required variance.
  • the method is preferably carried out in a microfluidic system within which the individual sequences are produced in a determinable form.
  • synthesis is carried out in a microfluidic reaction support.
  • the design of this reaction support may provide in the system for the bringing together in stages the detached synthesis products, i.e. building blocks, by collecting the nucleic acid strands, after detaching them, in appropriate reaction areas and the assembly taking place there. Groups of such assembly areas may then for their part be brought into contact again with one another so that during the course of a more or less long cascade the final synthesis products are produced: genetic information carriers in the form of DNA molecules.
  • the following variants are suitable here:
  • Either synthesis, detachment and assembly are carried out chronologically but spatially integrated in a microfluidic reaction support or synthesis, detachment and assembly are carried out partially in parallel in one or more microfluidic reaction supports. It is furthermore possible that the microfluidic reaction support contains only reaction areas for the programmed synthesis and that subsequently detachment and elution into a reaction vessel for the assembly are carried out.
  • condensation strategies which prevent break-up of the molecules. This includes, for example, the use of histones (nuclear proteins which make condensation of the chromosomes in the nucleus possible in eukaryotes), the use of topoisomerases (enzymes for twisting DNA in eukaryotes and prokaryotes) or the addition of other DNA-binding, stabilizing and condensing agents or proteins. Depending on the design of the reaction support, this may take place by integrating the condensation reaction in another reaction chamber provided therefor or by addition during the combination and assembly in stages of the building blocks.
  • sequence is of essential importance for the controlled and efficient building block assembly in stages to the final product.
  • overlapping complementary ends influences the specificity of the assembly and the overall biochemical conditions (salt concentration, temperature, etc.).
  • the provided sequence is fragmented into suitable building blocks which are then synthesized in the required number of reaction supports.
  • the fragments or their overlap regions to be hybridized are chosen such that the conditions for hybridizing are as similar as possible (inter alia GC:AT ratio, melting points, etc.).
  • Said elements may be, for example, methods in which the final double-stranded DNA after its synthesis using fluorescent synthons must have a particular total fluorescence.
  • these proteins may also carry a fluorescent label which is preferably detectable separately (reference signal). It is then possible to sort the mixture of final reaction product in the reaction support structures according to fluorescence (see Chou et al., Proceedings of the National Academy of Science PNAS 96:11-13, 1999). Thus a sufficient quality is achieved in order to directly provide a product for further work.
  • Information from sequencing projects may be studied for genes fully automatically (computer-assisted).
  • Identified or putative genes are converted into completely synthetic DNA which may contain, where appropriate, regulatory and other genetic elements which seem suitable, so that, for example, one or more vectors are generated.
  • the product is either made available (e.g. as pure DNA) or directly introduced to functional studies, inter alia by transfer into suitable target cells.
  • the information may come from public databases, from work of decentralized users or from other sources, for example the method described in the patent applications DE 199 24 327.1 and DE 199 40 749.5.
  • a variance of randomized sequence occurs at a particular site or sites of the target sequence.
  • An example is the testing of variants of a binding site into which, for example over an area of 20 amino acids, i.e. 60 nucleotides, random variations of nucleotides were incorporated. This may take place in an embodiment in that during the synthesis process, after activating a reaction area, a mixture of synthons is added so that all added synthons can hybridize in a statistically distributed manner.
  • a modification of this process may provide for DNA building blocks of different length to be used at a particular position of the target sequence, for example by producing different building blocks on different reaction areas, which show the same sequence for overlapping and hybridization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Bioethics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a method for producing polymers, in particular synthetic nucleic acid double strands of optional sequence, comprising the steps: (a) provision of a support having a surface area which contains a plurality of individual reaction areas, (b) location-resolved synthesis of nucleic acid fragments having in each case different base sequences in several of the individual reaction areas, and (c) detachment of the nucleic acid fragments from individual reaction areas.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional of application Ser. No. 10/455,369 filed on 6 Jun. 2003, which in turn is a divisional of application Ser. No. 09/869,332 filed on 26 Jul. 2001, now U.S. Pat. No. 6,586,211, which in turn is a national stage filing under 35 U.S.C. §371 of PCT/EP00/01356 filed on 18 Feb. 2000, which claims priority to German patent application No. 199 57 116.3 filed on 26 Nov. 1999, International patent application No. PCT/EP99/06316 filed on 27 Aug. 1999, German patent application No. 199 40 752.5 filed on 27 Aug. 1999, German patent application No. 199 28 843.7 filed on 24 Jun. 1999 and German patent application No. 199 07 080.6 filed on 19 Feb. 1999.
  • The invention relates to a method for producing polymers, in particular synthetic nucleic acid double strands of optional sequence.
  • TECHNICAL BACKGROUND OF THE INVENTION
  • Manipulation and construction of genetic elements such as, for example, gene fragments, whole genes or regulatory regions through the development of DNA recombination technology, which is often also referred to as genetic engineering, led to a particular need for genetic engineering methods and further development thereof in the areas of gene therapy, molecular medicine (basic research, vector development, vaccines, regeneration, etc.). Important areas of application are also the development of active substances, production of active substances in the context of the development of pharmaceuticals, combinatorial biosynthesis (antibodies, effectors such as growth factors, neural transmitters, etc.), biotechnology (e.g. enzyme design, pharming, biological production methods, bioreactors, etc.), diagnostics (BioChips, receptors/antibodies, enzyme design, etc.) and environmental technology (specialized or custom microorganisms, production processes, cleaning-up, sensors, etc.).
  • PRIOR ART
  • Numerous methods, first and foremost enzyme-based methods, allow specific manipulation of DNA for different purposes.
  • All of said methods have to use available genetic material. Said material is, on the one hand, well-defined to a large extent but allows, on the other hand, in a kind of “construction kit system” only a limited amount of possible combinations of the particular available and slightly modified elements.
  • In this connection, completely synthetic DNA has so far played only a minor part in the form of one of these combinatorial elements, with the aid of which specific modifications of the available genetic material are possible.
  • The known methods share the large amount of work required, combined with a certain duration of appropriate operations, since the stages of molecular biological and in particular genetic experiments such as DNA isolation, manipulation, transfer into suitable target cells, propagation, renewed isolation, etc. usually have to be repeated several times. Many of the operations which come up can only insufficiently be automated and accelerated so that the corresponding work remains time-consuming and labor-intensive. For the isolation of genes, which must precede functional study and characterization of the gene product, the flow of information is in most cases from isolated RNA (mRNA) via cDNA and appropriate gene libraries via complicated screening methods to a single clone. The desired DNA which has been cloned in said clone is frequently incomplete, so that further screening processes follow.
  • Finally, the above-described recombination of DNA fragments has only limited flexibility and allows, together with the described amount of work required, only few opportunities for optimization. In view of the variety and complexity in genetics, functional genomics and proteomics, i.e. the study of gene product actions, such optimizations in particular are a bottleneck for the further development of modem biology.
  • A common method is recombination by enzymatic methods (in vitro): here, DNA elements (isolated genomic DNA, plasmids, amplicons, viral or bacterial genomes, vectors) are first cut into fragments with defined ends by appropriate restriction enzymes. Depending on the composition of these ends, it is possible to recombine the fragments formed and to link them to form larger DNA elements (likewise enzymatically). For DNA propagation purposes, this is frequently carried out in a plasmid acting as cloning vector.
  • The recombinant DNA normally has to be propagated clonally in suitable organisms (cloning) and, after this time-consuming step and isolation by appropriate methods, is again available for manipulations such as, for example, recombinations. However, the restriction enzyme cleavage sites are a limiting factor in this method: each enzyme recognizes a specific sequence on the (double-stranded) DNA, which is between three and twelve nucleotide bases in length, depending on the particular enzyme, and therefore, according to statistical distribution, a particular number of cleavage sites at which the DNA strand is cut is present on each DNA element. Cutting the treated DNA into defined fragments, which can subsequently be combined to give the desired sequence, is important for recombination. Sufficiently different and specific enzymes are available for recombination technology up to a limit of 10-30 kilo base pairs (kbp) of the DNA to be cut. In addition, preliminary work and commercial suppliers provide corresponding vectors which take up the recombinant DNA and allow cloning (and thus propagation and selection). Such vectors contain suitable cleavage sites for efficient recombination and integration.
  • With increasing length of the manipulated DNA, however, the rules of statistics give rise to the problem of multiple and unwanted cleavage sites. The statistical average for an enzyme recognition sequence of 6 nucleotide bases is one cleavage site per 4000 base pairs (46) and for 8 nucleotide bases it is one cleavage site per 65,000 (48) Recombination using restriction enzymes therefore is not particularly suitable for manipulating relatively large DNA elements (e.g. viral genomes, chromosomes, etc.).
  • Recombination by homologous recombination in cells is known, too. Here, if identical sequence sections are present on the elements to be recombined, it is possible to newly assemble and manipulate relatively large DNA elements by way of the natural process of homologous recombination. These recombination events are substantially more indirect than in the case of the restriction enzyme method and, moreover, more difficult to control. They often give distinctly poorer yields than the above-described recombination using restriction enzymes.
  • A second substantial disadvantage is restriction to the identical sequence sections mentioned which, on the one hand, have to be present in the first place and, on the other hand, are very specific for the particular system. The specific introduction of appropriate sequences itself then causes considerable difficulties.
  • An additional well-known method is the polymerase chain reaction (PCR) which allows enzymatic DNA synthesis (including high multiplication) due to the bordering regions of the section to be multiplied indicating a DNA replication start by means of short, completely synthetic DNA oligomers (“primers”). For this purpose, however, these flanking regions must be known and be specific for the region lying in between. When replicating the strand, however, polymerases also incorporate wrong nucleotides, with a frequency depending on the particular enzyme, so that there is always the danger of a certain distortion of the starting sequence. For some applications, this gradual distortion can be very disturbing. During chemical synthesis, sequences such as, for example, the above-described restriction cleavage sites can be incorporated into the primers. This allows (limited) manipulation of the complete sequence. The multiplied region can now be in the region of approx. 30 kbp, but most of this DNA molecule is the copy of a DNA already present.
  • The primers are prepared using automated solid phase synthesis and are widely available, but the configuration of all automatic synthesizers known to date leads to the production of amounts of primer DNA (μmol-range reaction mixtures) which are too large and not required for PCR, while the variety in variants remains limited.
  • Synthetic DNA Elements
  • Since the pioneering work of Khorana (inter alia in: Shabarova: Advanced Organic Chemistry of Nucleic Acids, VCH Weinheim;) in the 1960s, approaches in order to assemble double-stranded DNA with genetic or coding sequences from chemically synthesized DNA molecules have repeatedly been described. State of the art here is genetic elements of up to approx. 2 kbp in length which are synthesized from nucleic acids. Chemical solid phase synthesis of nucleic acids and peptides has been automated. Appropriate methods and devices have been described, for example, in U.S. Pat. No. 4,353,989 and U.S. Pat. No. 5,112,575.
  • Double-stranded DNA is synthesized from short oligonucleotides according to two methods (see Holowachuk et al., PCR Methods and Applications, Cold Spring Harbor Laboratory Press): on the one hand, the complete double strand is synthesized by synthesizing single-stranded nucleic acids (with suitable sequence), attaching complementary regions by hybridization and linking the molecular backbone by, for example, ligase. On the other hand, there is also the possibility of synthesizing regions overlapping at the edges as single-stranded nucleic acids, attachment by hybridization, filling in the single-stranded regions via enzymes (polymerases) and linking the backbone.
  • In both methods, the total length of the genetic element is restricted to only a few thousand nucleotide bases due to, on the one hand, the expenditure and production costs of nucleic acids in macroscopic column synthesis and, on the other hand, the logistics of nucleic acids being prepared separately in macroscopic column synthesis and then combined. Thus, the same size range as in DNA recombination technology is covered.
  • To summarize, the prior art can be described as a procedure in which, in analogy to logical operations, the available matter (in this case genetic material in the form of nucleic acids) is studied and combined (recombination). The result of recombination experiments of this kind is then studied and allows conclusions, inter alia about the elements employed and their combined effect. The procedure may therefore be described as (selectively) analytical and combinatorial.
  • The prior art thus does not allow any systematic studies of any combinations whatsoever. The modification of the combined elements is almost impossible. Systematic testing of modifications is impossible.
  • SUBJECT OF THE INVENTION AND OBJECT ACHIEVED THEREWITH
  • It is intended to provide a method for directly converting digital genetic information (target sequence, databases, etc.) into biochemical genetic information (nucleic acids) without making use of nucleic acid fragments already present.
  • The invention therefore relates to a method for producing polymers, in which a plurality of oligomeric building blocks is synthesized on a support by parallel synthesis steps, is detached from the support and is brought into contact with one another to synthesize the polymer. Preference is given to synthesizing double-stranded nucleic acid polymers of at least 300 bp, in particular at least 1000 bp in length. The nucleic acid polymers are preferably selected from genes, gene clusters, chromosomes, viral and bacterial genomes or sections thereof. The oligomeric building blocks used for synthesizing the polymer are preferably 5-150, particularly preferably 5-30, monomer units in length. In successive steps, it is possible to detach in each case partially complementary oligonucleotide building blocks from the support and to bring them into contact with one another or with the polymer intermediate under hybridization conditions. Further examples of suitable polymers are nucleic acid analogs and proteins.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a vertical section of a reaction support 30 which is orthogonal to the microchannels 33 present thereon, which are separated from one another by walls 32. The bottom 31 of the reaction support is transparent. Furthermore, a single-stranded nucleic acid 10 with the designation of the 5′ and 3′ ends according to convention is depicted diagrammatically. These are depicted as 10 a with the 3′ end covalently bound to the reaction support 30 by solid-phase synthesis. A light source matrix 20 with a light source and a controllable illumination exit facing the reaction support 30 is likewise depicted.
  • FIG. 2 shows a top view of reaction support 30 with reaction areas 12 and the walls 32 between the microchannels 33. The arrows indicate the direction of flow.
  • FIG. 3 shows, similar to FIG. 1, a vertical section through the reaction support 30, with the single-stranded nucleic acids in the microchannel 33 being detached.
  • FIG. 4 again depicts a top view of the reaction support 30, with the single-stranded nucleic acids in the microchannel 33 being detached.
  • FIG. 5 shows a top view of the arrangement of microchannels with fluidic reaction spaces 50, which contain the individual reaction areas, and reaction chambers, where a part sequence is assembled. In the reaction space 54 all microchannels within a reaction support are brought together. The final synthesis product is assembled there, too, and is removed through exit 55. The reference numbers 51a and 51b indicate the representations of a reaction chamber which are shown in enlarged form in FIG. 6 and FIG. 7 and FIG. 8. The arrows again signal the direction of flow.
  • FIG. 6 shows an enlarged representation of a reaction chamber 51a after a microchannel with detached single-stranded nucleic acids.
  • FIG. 7 shows an enlarged representation of a reaction chamber 51a after a microchannel with a double-stranded hybrid 60 composed of two attached complementary nucleic acid single strands.
  • FIG. 8 shows an enlarged representation of a reaction chamber 51b after bringing together two microchannels with an assembled double-stranded nucleic acid hybrid 62, enzyme 63 (e.g. ligases) for the covalent linkage of the building blocks of the nucleic acid hybrid 85, a linear covalently linked nucleic acid double strand 65 and a circular closed nucleic acid double strand 66 (e.g. vector).
  • The reference number 64 represents a reaction of the enzymes with the nucleic acid hybrid.
  • DESCRIPTION OF THE INVENTION
  • In a particularly preferred embodiment, the invention relates to a method for producing synthetic DNA of any optional sequence and thus any known or novel functional genetic elements which are contained in said sequence. This method comprises the steps
      • (a) provision of a support having a surface area which contains a plurality of individual reaction areas,
      • (b) location-resolved synthesis of nucleic acid fragments having in each case different base sequences in several of the individual reaction areas, and
      • (c) detachment of the nucleic acid fragments from individual reaction areas.
  • The base sequences of the nucleic acid fragments synthesized in individual reaction areas are preferably chosen such that they can assemble to form a nucleic acid double strand hybrid. The nucleic acid fragments can then be detached in step (c) in one or more steps under conditions such that a plurality, i.e. at least some of the detached nucleic acid fragments assemble to form a nucleic acid double strand hybrid. Subsequently, the nucleic acid fragments forming one strand of the nucleic acid double strand hybrid can at least partially be linked covalently to one another. This may be carried out by enzymatic treatment, for example using ligase, or/and filling in gaps in the strands using DNA polymerase.
  • The method comprises within the framework of a modular system the synthesis of very many individual nucleic acid strands which serve as building blocks and, as a result, a double-stranded nucleic acid sequence which can be more than 100,000 base pairs in length is generated, for example in a microfluidic reaction support.
  • The highly complex synthetic nucleic acid which preferably consists of DNA is produced according to the method and according to the following principle: first, relatively short DNA strands are synthesized in a multiplicity of reaction areas on a reaction support by in situ synthesis. This may take place, for example, using the supports described in the patent applications DE 19924 327.1, DE 19940 749.5, PCT/EP99/06316 and PCT/EP99/06317. In this connection, each reaction area is suitable for the individual and specific synthesis of an individual given DNA sequence of approx. 10-100 nucleotides in length. These DNA strands form the building blocks for the specific synthesis of very long DNA molecules. The fluidic microprocessor used here may carry reaction spaces specially designed for the application.
  • The DNA synthesis itself is thus carried out by following the automated solid phase synthesis but with some novel aspects: the “solid phase” in this case is an individual reaction area on the surface of the support, for example the wall of the reaction space, i.e. it is not particles introduced into the reaction space as is the case in a conventional synthesizer. Integration of the synthesis in a microfluidic reaction support (e.g. a structure with optionally branched channels and reaction spaces) makes it possible to introduce the reagents and other components such as enzymes.
  • After synthesis, the synthesized building blocks are detached from said reaction areas. This detachment process may be carried out location- or/and time-specifically for individual, several or all DNA strands.
  • In a preferred variant of the method it is provided for a plurality of reaction areas to be established and utilized within a fluidic space or compartment so that the DNA strands synthesized therein can be detached in one operation step and taken away from the compartment which fluidically connects the reaction areas.
  • Subsequently, suitable combinations of the detached DNA strands are formed. Single-stranded or/and double-stranded building blocks are then assembled, for example, within a reaction space which may comprise one or more reaction areas for the synthesis. Expediently, the sequence of the individual building blocks is chosen such that, when bringing the individual building blocks into contact with one another, regions complementary to one another are available at the two ends brought together, in order to make possible specific attachment of further DNA strands by hybridizing said regions. As a result, longer DNA hybrids are formed. The phosphorus diester backbone of these DNA hybrids may be covalently closed, for example by ligases, and possible gaps in the double strand may be filled in in a known manner enzymatically by means of polymerases. Single-stranded regions which may be present may be filled in by enzymes (e.g. Klenow fragment) with the addition of suitable nucleotides. Thus longer DNA molecules are formed. By bringing together clusters of DNA strands synthesized in this way within reaction spaces it is in turn possible to generate longer part sequences of the final DNA molecule. This may be done in stages, and the part sequences are put together to give ever longer DNA molecules. In this way it is possible to generate very long DNA sequences as completely synthetic molecules of more than 100,000 base pairs in length.
  • The amount of individual building blocks which is required for a long synthetic DNA molecule is dealt with in the reaction support by parallel synthesis of the building blocks in a location- or/and time-resolved synthesis process. In the preferred embodiment, this parallel synthesis is carried out by light-dependent location- or/and time-resolved DNA synthesis in a fluidic microprocessor which is also described in the patent applications DE 199 24 327.1, DE 199 40 749.5, PCT/EP99/06316 and PCT/EP99/06317.
  • The miniaturized reaction support here causes a reduction in the amount of starting substances by at least a factor of 1000 compared with a conventional DNA synthesizer. At the same time, an extremely high number of nucleic acid double strands of defined sequence is produced. Only in this way is it possible to generate a very large variety of individual building blocks, which is required for the synthesis of long DNA molecules, by using an economically sensible amount of resources. The synthesis of a sequence of 100,000 base pairs, composed of overlapping building blocks of 20 nucleotides in length, requires 10,000 individual building blocks. This can be achieved using appropriately miniaturized equipment in a highly parallel synthesis process.
  • For efficient processing of genetic molecules and systematic inclusion of all possible variants it is necessary to produce the individual building block sequences in a flexible and economic way. This is achieved by the method preferably by using a programmable light source matrix for the light-dependent location- or/and time-resolved in situ synthesis of the DNA strands, which in turn can be used as building blocks for the synthesis of longer DNA strands. This flexible synthesis allows free programming of the individual building block sequences and thus also generation of any variants of the part sequences or the final sequence, without the need for substantial modifications of system components (hardware). This programmed synthesis of the building blocks and thus the final synthesis products makes it possible to systematically process the variety of genetic elements. At the same time, the use of computer-controlled programmable synthesis allows automation of the entire process including communication with appropriate databases.
  • With a given target sequence, the sequence of the individual building blocks can be selected efficiently, taking into account biochemical and functional parameters. After putting in the target sequence (e.g. from a database), an algorithm makes out suitable overlapping regions. Depending on the task, different amounts of target sequences can be produced, either within one reaction support or spread over a plurality of reaction supports. The hybridization conditions for formation of the hybrids, such as, for example, temperature, salt concentrations, etc., are adjusted to the available overlap regions by an appropriate algorithm. Thus, maximum attachment specificity is ensured. In a fully automatic version, it is also possible to take target sequence data directly from public or private databases and convert them into appropriate target sequences. The products generated may in turn be introduced optionally into appropriately automated processes, for example into cloning in suitable target cells.
  • Synthesis in stages by synthesizing the individual DNA strands in reaction areas within enclosed reaction spaces also allows the synthesis of difficult sequences, for example those with internal repeats of sequence sections, which occur, for example, in retroviruses and corresponding retroviral vectors. The controlled detachment of building blocks within the fluidic reaction spaces makes a synthesis of any sequence possible, without problems being generated by assigning the overlapping regions on the individual building blocks.
  • The high quality requirements necessary for synthesizing very long DNA molecules can be met inter alia by using real-time quality control. This comprises monitoring the location-resolved building block synthesis, likewise detachment and assembly up to production of the final sequence. Then all processes take place in a transparent reaction support. In addition, the possibility to follow reactions and fluidic processes in transmitted light mode, for example by CCD detection, is created.
  • The miniaturized reaction support is preferably designed such that a detachment process is possible in the individual reaction spaces and thus the DNA strands synthesized on the reaction areas located within these reaction spaces are detached individually or in clusters. In a suitable embodiment of the reaction support it is possible to assemble the building blocks in reaction spaces in a process in stages and also to remove building blocks, part sequences or the final product or else to sort or fractionate the molecules.
  • The target sequence, after its completion, may be introduced as integrated genetic element into cells by transfer and thereby be cloned and studied in functional studies. Another possibility is to firstly further purify or analyze the synthesis product, a possible example of said analysis being sequencing. The sequencing process may also be initiated by direct coupling using an appropriate apparatus, for example using a device described in the patent applications DE 199 24 327.1, DE 199 40 749.5, PCT/EP99/06316 and PCT/EP99/06317 for the integrated synthesis and analysis of polymers. It is likewise conceivable to isolate and analyze the generated target sequences after cloning.
  • The method of the invention provides via the integrated genetic elements generated therewith a tool which, for the further development of molecular biology, includes biological variety in a systematic process. The generation of DNA molecules with desired genetic information is thus no longer the bottleneck of molecular biological work, since all molecules, from small plasmids via complex vectors to mini chromosomes, can be generated synthetically and are available for further work.
  • The production method allows generation of numerous different nucleic acids and thus a systematic approach for questions concerning regulatory elements, DNA binding sites for regulators, signal cascades, receptors, effect and interactions of growth factors, etc.
  • The integration of genetic elements into a fully synthetic complete nucleic acid makes it possible to further utilize known genetic tools such as plasmids and vectors and thus to build on the relevant experience. On the other hand, this experience will change rapidly as a result of the intended optimization of available vectors, etc. The mechanisms which, for example, make a plasmid suitable for propagation in a particular cell type can be studied efficiently for the first time on the basis of the method of the invention.
  • This efficient study of large numbers of variants makes it possible to detect the entire combination space of genetic elements. Thus, in addition to the at the moment rapidly developing highly parallel analysis (inter alia on DNA arrays or DNA chips), the programmed synthesis of integrated genetic elements is created as a second important element. Only both elements together can form the foundation of an efficient molecular biology.
  • The programmed synthesis of appropriate DNA molecules makes possible not only random composition of the coding sequences and functional elements but also adaptation of the intermediate regions. This may rapidly lead to minimal vectors and minimal genomes, whose small size in turn generates advantages. As a result, transfer vehicles such as, for example, viral vectors can be made more efficient, for example when using retroviral or adenoviral vectors.
  • In addition to the combination of known genetic sequences, it is possible to develop novel genetic elements which can build on the function of available elements. Especially for such developmental work, the flexibility of the system is of enormous value.
  • The synthetic DNA molecules are in each stage of the development of the method described here fully compatible with the available recombination technology. For “traditional” molecular biological applications it is also possible to provide integrated genetic elements, for example by appropriate vectors. Incorporation of appropriate cleavage sites even of enzymes little used so far is not a limiting factor for integrated genetic elements.
  • Improvements in Comparison with Prior Art
  • This method makes it possible to integrate all desired functional elements as “genetic modules” such as, for example, genes, parts of genes, regulatory elements, viral packaging signals, etc. into the synthesized nucleic acid molecule as carrier of genetic information. This integration leads to inter alia the following advantages:
  • It is possible to develop therewith extremely functionally integrated DNA molecules, unnecessary DNA regions being removed (minimal genes, minimal genomes).
  • The free combination of the genetic elements and also modifications of the sequence such as, for example, for adaptation to the expressing organism or cell type (codon usage) are made possible as well as modifications of the sequence for optimizing functional genetic parameters such as, for example, gene regulation.
  • Modifications of the sequence for optimizing functional parameters of the transcript, for example splicing, regulation at the mRNA level, regulation at the translation level, and, moreover, the optimization of functional parameters of the gene product, such as, for example, the amino acid sequence (e.g. antibodies, growth factors, receptors, channels, pores, transporters, etc.) are likewise made possible.
  • On the whole, the system created by the method is extremely flexible and allows in a manner previously not available the programmed production of genetic material under greatly reduced amounts of time, materials and work needed.
  • Using the available methods, it has been almost impossible to specifically manipulate relatively large DNA molecules of several hundred kbp, such as chromosomes for example. Even more complex (i.e. larger) viral genomes of more than 30 kbp (e.g. adenoviruses) are difficult to handle and to manipulate using the classical methods of gene technology.
  • The method of the invention leads to a considerable shortening up to the last stage of cloning a gene: the gene or the genes are synthesized as DNA molecule and then (after suitable preparation such as purification, etc.) introduced directly into target cells and the result is studied. The multi-stage cloning process which is mostly carried out in microorganisms such as E. coli (e.g. DNA isolation, purification, analysis, recombination, cloning in bacteria, isolation, analysis, etc.) is thus reduced to the last transfer of the DNA molecule into the final effector cells. For synthetically produced genes or gene fragments clonal propagation in an intermediate host (usually E. coli) is no longer required. This avoids the danger of the gene product destined for the target cell exerting a toxic action on the intermediate host. This is distinctly different from the toxicity of some gene products, which, when using classical plasmid vectors, frequently leads to considerable problems for cloning of the appropriate nucleic acid fragments.
  • Another considerable improvement is the reduction in time and the reduction in operational steps to after the sequencing of genetic material, with potential genes found being verified as such and cloned. Normally, after finding interesting patterns, which are possible open reading frames (ORF), probes are used (e.g. by means of PCR) to search in cDNA libraries for appropriate clones which, however, need not contain the whole sequence of the mRNA originally used in their production. In other methods, an expression gene library is searched by means of an antibody (screening). Both methods can be shortened very substantially using the method of the invention: if a gene sequence determined “in silico” is present (i.e. after detection of an appropriate pattern in a DNA sequence by the computer) or after decoding a protein sequence, an appropriate vector with the sequence or variants thereof can be generated directly via programmed synthesis of an integrated genetic element and introduced into suitable target cells.
  • The synthesis taking place in this way of DNA molecules of up to several 100 kbp allows the direct complete synthesis of viral genomes, for example adenoviruses. These are an important tool in basic research (inter alia gene therapy) but, due to the size of their genome (approx. 40 kbp), are difficult to handle using classical genetic engineering methods. As a result, the rapid and economic generation of variants for optimization in particular is greatly limited. This limitation is removed by the method of the invention.
  • The method leads to integration of the synthesis, detachment of synthesis products and assembly to a DNA molecule being carried out in one system. Using production methods of microsystem technology, it is possible to integrate all necessary functions and process steps up to the purification of the final product in a miniaturized reaction support. These may be synthesis areas, detachment areas (clusters), reaction spaces, feeding channels, valves, pumps, concentrators, fractionation areas, etc.
  • Plasmids and expression vectors may be prepared directly for sequenced proteins or corresponding part sequences and the products may be analyzed biochemically and functionally, for example by using suitable regulatory elements. This omits the search for clones in a gene library. Correspondingly, ORFs from sequencing work (e.g. Human Genome Project) can be programmed directly into appropriate vectors and be combined with desired genetic elements. An identification of clones, for example by complicated screening of cDNA libraries, is removed. Thus, the flow of information from sequence analysis to function analysis has been greatly reduced, because on the same day on which an ORF is present in the computer due to analysis of primary data, an appropriate vector including the putative gene can be synthesized and made available.
  • Compared with conventional solid-phase synthesis for obtaining synthetic DNA, the method according to the invention is distinguished by a small amount of material needed. In order to produce thousands of different building blocks for generating a complex integrated genetic element of several 100,000 kbp in length, in an appropriately parallelized format and with appropriate miniaturization (see exemplary embodiments), a microfluidic system needs markedly fewer starting substances for an individual DNA oligomer than a conventional solid-phase synthesis apparatus (when using a single column). Here, microliters compare with the consumption of milliliters, i.e. a factor of 1000.
  • Taking into account the newest findings in immunology, the presented method allows an extremely efficient and rapid vaccine design (DNA vaccines). Exemplary Embodiments
  • To carry out the method, the present invention requires the provision of a large number of nucleic acid molecules, usually DNA, whose sequence can be freely determined. These building blocks must have virtually 100% identical sequences within one building block species (analogously to the synthesis performance of conventional synthesizers). Only highly parallel synthesis methods are suitable for generating the required variance. In order for the system to be able to work flexibly and, despite the necessary multiplicity of different building blocks to be synthesized, to require as little space and as few reagents as possible, the method is preferably carried out in a microfluidic system within which the individual sequences are produced in a determinable form. Two types of programmed synthesis are suitable for systems of this kind, which are also described in the patent applications DE 199 24 327.1, DE 199 40 749.5, PCT/EP99/06316 and PCT/EP99/06317: these are first the synthesis by programmable fluidic individualization of the reaction areas and, secondly, the synthesis by programmable light-dependent individualization of the reaction areas.
  • In both variants, synthesis is carried out in a microfluidic reaction support. The design of this reaction support may provide in the system for the bringing together in stages the detached synthesis products, i.e. building blocks, by collecting the nucleic acid strands, after detaching them, in appropriate reaction areas and the assembly taking place there. Groups of such assembly areas may then for their part be brought into contact again with one another so that during the course of a more or less long cascade the final synthesis products are produced: genetic information carriers in the form of DNA molecules. The following variants are suitable here:
  • Either synthesis, detachment and assembly are carried out chronologically but spatially integrated in a microfluidic reaction support or synthesis, detachment and assembly are carried out partially in parallel in one or more microfluidic reaction supports. It is furthermore possible that the microfluidic reaction support contains only reaction areas for the programmed synthesis and that subsequently detachment and elution into a reaction vessel for the assembly are carried out.
  • In the case of very large DNA molecules, synthesis, detachment and assembly can be supplemented by condensation strategies which prevent break-up of the molecules. This includes, for example, the use of histones (nuclear proteins which make condensation of the chromosomes in the nucleus possible in eukaryotes), the use of topoisomerases (enzymes for twisting DNA in eukaryotes and prokaryotes) or the addition of other DNA-binding, stabilizing and condensing agents or proteins. Depending on the design of the reaction support, this may take place by integrating the condensation reaction in another reaction chamber provided therefor or by addition during the combination and assembly in stages of the building blocks.
  • The free choice of sequence is of essential importance for the controlled and efficient building block assembly in stages to the final product. For the choice of overlapping complementary ends influences the specificity of the assembly and the overall biochemical conditions (salt concentration, temperature, etc.). When providing a sequence for the gene of interest and after automatic or manual selection of the other genetic elements (regulatory regions, resistance genes for cloning, propagation signals, etc.) for determination of the final product (e.g. a plasmid vector), the provided sequence is fragmented into suitable building blocks which are then synthesized in the required number of reaction supports. The fragments or their overlap regions to be hybridized are chosen such that the conditions for hybridizing are as similar as possible (inter alia GC:AT ratio, melting points, etc.).
  • Further extension of the system provides for elements for purification and isolation of the product forming, which are likewise designed by microfluidics or microsystem technology. Said elements may be, for example, methods in which the final double-stranded DNA after its synthesis using fluorescent synthons must have a particular total fluorescence. When using proteins with condensing action, these proteins, where appropriate, may also carry a fluorescent label which is preferably detectable separately (reference signal). It is then possible to sort the mixture of final reaction product in the reaction support structures according to fluorescence (see Chou et al., Proceedings of the National Academy of Science PNAS 96:11-13, 1999). Thus a sufficient quality is achieved in order to directly provide a product for further work.
  • Information from sequencing projects, which is present in databases, may be studied for genes fully automatically (computer-assisted). Identified or putative genes (ORFs) are converted into completely synthetic DNA which may contain, where appropriate, regulatory and other genetic elements which seem suitable, so that, for example, one or more vectors are generated. The product is either made available (e.g. as pure DNA) or directly introduced to functional studies, inter alia by transfer into suitable target cells. The information may come from public databases, from work of decentralized users or from other sources, for example the method described in the patent applications DE 199 24 327.1 and DE 199 40 749.5.
  • It may be of interest that a variance of randomized sequence occurs at a particular site or sites of the target sequence. An example is the testing of variants of a binding site into which, for example over an area of 20 amino acids, i.e. 60 nucleotides, random variations of nucleotides were incorporated. This may take place in an embodiment in that during the synthesis process, after activating a reaction area, a mixture of synthons is added so that all added synthons can hybridize in a statistically distributed manner. A modification of this process may provide for DNA building blocks of different length to be used at a particular position of the target sequence, for example by producing different building blocks on different reaction areas, which show the same sequence for overlapping and hybridization.

Claims (28)

1. Method for synthesizing a minimal genome or a section thereof, characterized in that a plurality of oligomeric building blocks is synthesized on a support by parallel synthesis steps, is detached from the support and is brought into contact with one another to synthesize the minimal genome or section thereof.
2. Method according to claim 1 characterized in that nucleic acid polymers selected from the group consisting of genes, minimal genes, gene clusters, chromosomes or sections thereof are synthesized and are brought into contact with one another to synthesize the minimal genome or section thereof.
3. Method according to claim 1 characterized in that the minimal genome is a viral or bacterial genome.
4. Method according to claim 1 characterized in that a double-stranded nucleic acid polymer with a length at least 100,000 bp is synthesized.
5. Method according to claim 1 characterized in that the oligomeric building blocks are from 5 to 150, preferably 5 to 30 monomer units in length.
6. Method according to claim 1 characterized in that in successive steps in each case partially complementary oligonucleotide building blocks are detached from the support and are brought into contact with one another or with the polymer intermediate under hybridization conditions.
7. Method according to claim 1 for producing synthetic nucleic acid double strands, comprising the steps:
(a) provision of a support having a surface area which contains a plurality of individual reaction areas,
(b) location-resolved synthesis of nucleic acid fragments having in each case different base sequences in several of the individual reaction areas, and
(c) detachment of the nucleic acid fragments from individual reaction areas.
8. Method according to claim 7 characterized in that the base sequences of the nucleic acid fragments synthesized in individual reaction areas are chosen such that they can assemble to form a nucleic acid double strand hybrid.
9. Method according to claim 7 characterized in that the nucleic acid fragments according to step (c) are detached in one or more steps under conditions such that a plurality of the detached nucleic acid fragments assemble to form a nucleic acid double strand hybrid.
10. Method according to claim 9 characterized in that several nucleic acid fragments which form one strand of the nucleic acid double strand hybrid are linked covalently to one another.
11. Method according to claim 10 characterized in that the covalent linking includes treatment with ligase or/and filing in gaps in the strands using DNA polymerase.
12. Method according to claim 7 characterized in that the sequence comprises at one or more positions recognition sequences for specific interaction with molecules such as proteins, nucleic acids, peptides, pharmaceuticals, saccharides, lipids, hormones, or/and organic compounds.
13. Method according to claim 7 characterized in that the sequence of the nucleic acid double strands is a naturally occurring sequence, a not naturally occurring sequence or a combination of these two.
14. Method according to claim 7 characterized in that the sequence is taken from a database, a sequencing experiment or a device for the integrated synthesis and analysis of polymers.
15. Method according to claim 1 characterized in that the oligomeric building blocks are synthesized by location- or/and time-resolved illumination by means of a programmable light source matrix.
16. Method according to claim 1 characterized in that a location- or/and time-resolved synthesis of the oligomeric building blocks takes place in a microfluidic reaction support having one or more fluidic reaction compartments and one or more reaction areas within a fluidic reaction compartment.
17. Method according to claim 1 characterized in that the synthesis building blocks contain nucleotides occurring in nature, modified nucleotides or mixtures thereof
18. Method according to claim 1 characterized in that modified synthesis building blocks are used for labelling and subsequent detection of the assembled nucleic acid double strands.
19. Method according to claim 18 characterized in that the labelling groups used are molecules which are to be detected in a light-dependent manner.
20. Use of a nucleic acid double strand produced according to the method according to claim 1 for therapeutic or pharmacological purposes.
21. Use of a nucleic acid double strand produced according to the method according to claim 1 for diagnostic purposes.
22. Use according to claim 20 comprising direct application to the intended purpose.
23. Use according to claim 21 comprising direct application to the intended purpose.
24. Use according to claim 20 comprising a conversion in effector cells.
25. Use according to claim 21 comprising a conversion in effector cells.
26. Use of a nucleic acid double strand produced according to the method according to claim 1, where said nucleic acid double strand is stabilized, condensed or/and topologically manipulated during or following the combination and assembly in stages.
27. Use according to claim 26, where stabilization, condensation or/and topological manipulation is carried out by functional molecules such as histones or topoisomerases.
28. Use of a nucleic acid double strand produced according to the method according to claim 1 as propagatable cloning vector, where the propagatable cloning vector may serve for transcription, expression of the transcribed sequence, and, where appropriate, production of expressed gene products in suitable target cells.
US11/785,505 1999-02-19 2007-04-18 Method for producing polymers Abandoned US20070196854A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/785,505 US20070196854A1 (en) 1999-02-19 2007-04-18 Method for producing polymers
US12/400,493 US9568839B2 (en) 1999-02-19 2009-03-09 Method for producing polymers
US15/426,860 US20170147748A1 (en) 1999-02-19 2017-02-07 Method for producing polymers

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
DE19907080.6 1999-02-19
DE19907080 1999-02-19
DE19928843.7 1999-06-24
DE19928843 1999-06-24
DE19940752A DE19940752A1 (en) 1998-08-28 1999-08-27 Use of an illumination matrix that can be controlled to generate a freely adjustable illumination pattern to produce a microchip
DE19940752.5 1999-08-27
EPPCT/EP99/06316 1999-08-27
PCT/EP1999/006316 WO2000013017A2 (en) 1998-08-28 1999-08-27 Method and device for producing and/or analyzing biochemical reaction supporting materials
DE19957116A DE19957116A1 (en) 1999-06-24 1999-11-26 Synthesis of polymers, especially nucleic acids, useful e.g. for therapy or diagnosis, by parallel synthesis of many oligomers on a carrier then sequential release and assembly
DE19957116.3 1999-11-26
PCT/EP2000/001356 WO2000049142A1 (en) 1999-02-19 2000-02-18 Method for producing polymers
US09/869,332 US6586211B1 (en) 1999-02-19 2000-02-18 Method for producing polymers
US10/455,369 US7790369B2 (en) 1999-02-19 2003-06-06 Method for producing polymers
US11/785,505 US20070196854A1 (en) 1999-02-19 2007-04-18 Method for producing polymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/455,369 Division US7790369B2 (en) 1999-02-19 2003-06-06 Method for producing polymers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/400,493 Continuation US9568839B2 (en) 1999-02-19 2009-03-09 Method for producing polymers

Publications (1)

Publication Number Publication Date
US20070196854A1 true US20070196854A1 (en) 2007-08-23

Family

ID=27438924

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/869,332 Expired - Lifetime US6586211B1 (en) 1999-02-19 2000-02-18 Method for producing polymers
US10/455,369 Expired - Lifetime US7790369B2 (en) 1999-02-19 2003-06-06 Method for producing polymers
US11/785,505 Abandoned US20070196854A1 (en) 1999-02-19 2007-04-18 Method for producing polymers
US12/400,493 Expired - Fee Related US9568839B2 (en) 1999-02-19 2009-03-09 Method for producing polymers
US15/426,860 Abandoned US20170147748A1 (en) 1999-02-19 2017-02-07 Method for producing polymers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/869,332 Expired - Lifetime US6586211B1 (en) 1999-02-19 2000-02-18 Method for producing polymers
US10/455,369 Expired - Lifetime US7790369B2 (en) 1999-02-19 2003-06-06 Method for producing polymers

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/400,493 Expired - Fee Related US9568839B2 (en) 1999-02-19 2009-03-09 Method for producing polymers
US15/426,860 Abandoned US20170147748A1 (en) 1999-02-19 2017-02-07 Method for producing polymers

Country Status (8)

Country Link
US (5) US6586211B1 (en)
EP (3) EP2175021B1 (en)
JP (1) JP2002536977A (en)
AT (2) ATE456652T1 (en)
AU (1) AU767606B2 (en)
CA (1) CA2362939C (en)
DE (2) DE50015858D1 (en)
WO (1) WO2000049142A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403141B2 (en) 2013-08-05 2016-08-02 Twist Bioscience Corporation De novo synthesized gene libraries
US9677067B2 (en) 2015-02-04 2017-06-13 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US10053688B2 (en) 2016-08-22 2018-08-21 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US10696965B2 (en) 2017-06-12 2020-06-30 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US10844373B2 (en) 2015-09-18 2020-11-24 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US10907274B2 (en) 2016-12-16 2021-02-02 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US10936953B2 (en) 2018-01-04 2021-03-02 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US11377676B2 (en) 2017-06-12 2022-07-05 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11407837B2 (en) 2017-09-11 2022-08-09 Twist Bioscience Corporation GPCR binding proteins and synthesis thereof
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
US11492665B2 (en) 2018-05-18 2022-11-08 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11492728B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117996B1 (en) * 1998-08-28 2010-09-15 febit holding GmbH Method for producing biochemical reaction supporting materials
DE50015858D1 (en) * 1999-02-19 2010-03-18 Febit Holding Gmbh Process for the preparation of polymers
ATE542916T1 (en) 1999-08-18 2012-02-15 Illumina Inc METHODS FOR GENERATING OLIGONUCLEOTIDE SOLUTIONS
DE10051396A1 (en) 2000-10-17 2002-04-18 Febit Ferrarius Biotech Gmbh An integrated synthesis and identification of an analyte, comprises particles immobilized at a carrier to be coupled to receptors in a structured pattern to give receptor arrays for biochemical reactions
ES2309175T3 (en) * 2001-01-19 2008-12-16 Centocor, Inc. ASSEMBLY DIRECTED BY COMPUTER OF A POLINUCLEOTIDE THAT CODIFIES A DIANA POLYPEPTIDE.
US20020160427A1 (en) * 2001-04-27 2002-10-31 Febit Ag Methods and apparatuses for electronic determination of analytes
CA2447240C (en) * 2001-05-18 2013-02-19 Wisconsin Alumni Research Foundation Method for the synthesis of dna sequences
US10539561B1 (en) 2001-08-30 2020-01-21 Customarray, Inc. Enzyme-amplified redox microarray detection process
DE10149947A1 (en) * 2001-10-10 2003-04-17 Febit Ferrarius Biotech Gmbh Isolating target molecules, useful for separating e.g. nucleic acids for therapy or diagnosis, comprises passing the molecules through a microfluidics system that carries specific receptors
WO2003033718A1 (en) * 2001-10-17 2003-04-24 Global Genomics Ab Synthesis of oligonucleotides on solid support and assembly into doublestranded polynucleotides
IL163788A0 (en) * 2002-02-28 2005-12-18 Wisconsin Alumni Res Found Method of error reduction in nucleic acid populations
US7563600B2 (en) * 2002-09-12 2009-07-21 Combimatrix Corporation Microarray synthesis and assembly of gene-length polynucleotides
US20050106590A1 (en) * 2003-05-22 2005-05-19 Lathrop Richard H. Method for producing a synthetic gene or other DNA sequence
CA2526648A1 (en) * 2003-05-22 2004-12-29 Richard H. Lathrop Method for producing a synthetic gene or other dna sequence
US8133670B2 (en) * 2003-06-13 2012-03-13 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
DE10353887A1 (en) * 2003-11-18 2005-06-16 Febit Ag Highly parallel matrix-based DNA synthesizer
CA2558749A1 (en) * 2004-02-27 2005-09-29 President And Fellows Of Harvard College Polynucleotide synthesis
AU2005254972B2 (en) 2004-06-09 2010-11-04 Wisconsin Alumni Research Foundation Rapid production of oligonucleotides
US7378259B2 (en) * 2004-07-15 2008-05-27 Applera Corporation Fluid processing device
US20070122817A1 (en) * 2005-02-28 2007-05-31 George Church Methods for assembly of high fidelity synthetic polynucleotides
WO2006044956A1 (en) * 2004-10-18 2006-04-27 Codon Devices, Inc. Methods for assembly of high fidelity synthetic polynucleotides
US20060102471A1 (en) 2004-11-18 2006-05-18 Karl Maurer Electrode array device having an adsorbed porous reaction layer
US7560417B2 (en) * 2005-01-13 2009-07-14 Wisconsin Alumni Research Foundation Method and apparatus for parallel synthesis of chain molecules such as DNA
US20070034513A1 (en) 2005-03-25 2007-02-15 Combimatrix Corporation Electrochemical deblocking solution for electrochemical oligomer synthesis on an electrode array
US9394167B2 (en) 2005-04-15 2016-07-19 Customarray, Inc. Neutralization and containment of redox species produced by circumferential electrodes
EP1888780A4 (en) * 2005-05-06 2009-11-11 Applera Corp Multiple capillary device and method for synthesis and dispensing
WO2006122317A2 (en) * 2005-05-11 2006-11-16 The Regents Of The University Of California Nanofabrication processes and devices for the controlled assembly of functionalized nanostructures
US20070196834A1 (en) * 2005-09-09 2007-08-23 Francesco Cerrina Method and system for the generation of large double stranded DNA fragments
US20070065877A1 (en) 2005-09-19 2007-03-22 Combimatrix Corporation Microarray having a base cleavable succinate linker
US20070231805A1 (en) * 2006-03-31 2007-10-04 Baynes Brian M Nucleic acid assembly optimization using clamped mismatch binding proteins
US20070298503A1 (en) * 2006-05-04 2007-12-27 Lathrop Richard H Analyzing traslational kinetics using graphical displays of translational kinetics values of codon pairs
US20090087840A1 (en) * 2006-05-19 2009-04-02 Codon Devices, Inc. Combined extension and ligation for nucleic acid assembly
DE102006039479A1 (en) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmable oligonucleotide synthesis
WO2008027558A2 (en) * 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
WO2008115632A2 (en) * 2007-02-09 2008-09-25 The Regents Of The University Of California Method for recombining dna sequences and compositions related thereto
WO2010070295A1 (en) 2008-12-18 2010-06-24 Iti Scotland Limited Method for assembly of polynucleic acid sequences
EP2398915B1 (en) 2009-02-20 2016-08-24 Synthetic Genomics, Inc. Synthesis of sequence-verified nucleic acids
WO2011056872A2 (en) 2009-11-03 2011-05-12 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
EP3085791A1 (en) 2009-11-25 2016-10-26 Gen9, Inc. Methods and apparatuses for chip-based dna error reduction
WO2011066185A1 (en) 2009-11-25 2011-06-03 Gen9, Inc. Microfluidic devices and methods for gene synthesis
US9217144B2 (en) 2010-01-07 2015-12-22 Gen9, Inc. Assembly of high fidelity polynucleotides
WO2011090793A2 (en) 2010-01-20 2011-07-28 Customarray, Inc. Multiplex microarray of serially deposited biomolecules on a microarray
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
DE102010018678B4 (en) 2010-04-28 2017-06-29 Sartorius Stedim Biotech Gmbh Bioreactor arrangement, shaker and method for irradiating a medium in a bioreactor
US9187777B2 (en) 2010-05-28 2015-11-17 Gen9, Inc. Methods and devices for in situ nucleic acid synthesis
GB2481425A (en) 2010-06-23 2011-12-28 Iti Scotland Ltd Method and device for assembling polynucleic acid sequences
EP4039363A1 (en) 2010-11-12 2022-08-10 Gen9, Inc. Protein arrays and methods of using and making the same
LT3360963T (en) * 2010-11-12 2020-02-25 Gen9, Inc. Methods and devices for nucleic acids synthesis
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
LT2944693T (en) * 2011-08-26 2019-08-26 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
WO2013119948A1 (en) * 2012-02-10 2013-08-15 Wisconsin Alumni Research Foundation Rna-mediated gene assembly from dna oligonucleotides
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
AU2013251701A1 (en) 2012-04-24 2014-10-30 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
CA2877823A1 (en) 2012-06-25 2014-01-03 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
WO2017010375A1 (en) 2015-07-10 2017-01-19 ヤマト科学株式会社 Tissue sample analysis device and tissue sample analysis system
SG11201811025VA (en) * 2016-06-10 2019-01-30 Twist Bioscience Corp Systems and methods for automated annotation and screening of biological sequences
GB2566986A (en) 2017-09-29 2019-04-03 Evonetix Ltd Error detection during hybridisation of target double-stranded nucleic acid
TW201940695A (en) 2018-01-12 2019-10-16 英商卡美納生物科學公司 Compositions and methods for template-free geometric enzymatic nucleic acid synthesis
US11548938B2 (en) 2018-08-21 2023-01-10 Quidel Corporation DbpA antibodies and uses thereof
WO2021127547A2 (en) 2019-12-19 2021-06-24 Quidel Corporation Monoclonal antibody fusions
US20210327539A1 (en) * 2020-04-17 2021-10-21 Raytheon Bbn Technologies Corp. Generating subsequence catalogs for nucleic acid synthesis
US20240299945A1 (en) 2021-09-03 2024-09-12 Elegen Corporation Multi-way bead-sorting devices, systems, and methods of use thereof using pressure sources
WO2024175780A1 (en) 2023-02-23 2024-08-29 Micropep Technologies S.A. Micropeptides to improve plant immunity and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689405A (en) * 1983-01-20 1987-08-25 Gesellschaft Fur Biotechnologische Forschung Mbh (Gbf) Process for the simultaneous synthesis of several oligonucleotides on a solid phase
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5624711A (en) * 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US6348353B1 (en) * 1995-06-07 2002-02-19 Case Western Reserve University Artificial mammalian chromosome
US6586211B1 (en) * 1999-02-19 2003-07-01 Febit Ferrarius Biotechnology Gmbh Method for producing polymers

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342832A (en) 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
SE8303626D0 (en) 1983-06-23 1983-06-23 Kabigen Ab A RECOMBINANT PLASMID AND A TRANSFORMANT MICROORGANISM, A POLYDOXYREBONUCLEOTIDE SEGMENT, A PROCESS FOR PRODUCING A BIOLOGICALLY ACTIVE PROTEIN, AND THE PROTEIN THUS PRODUCED
EP0316018A3 (en) * 1985-03-29 1989-07-26 Cetus Oncology Corporation Modification of dna sequences
AU3869289A (en) 1988-07-14 1990-02-05 Baylor College Of Medicine Solid phase assembly and reconstruction of biopolymers
DE69028725T2 (en) 1989-02-28 1997-03-13 Canon Kk Partially double-stranded oligonucleotide and method for its formation
JP3939338B2 (en) 1991-11-22 2007-07-04 アフィメトリックス, インコーポレイテッド Combinatorial strategies for polymer synthesis.
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
WO1994012632A1 (en) * 1992-11-27 1994-06-09 University College London Improvements in nucleic acid synthesis by pcr
US5368823A (en) 1993-02-11 1994-11-29 University Of Georgia Research Foundation, Inc. Automated synthesis of oligonucleotides
DE4343591A1 (en) 1993-12-21 1995-06-22 Evotec Biosystems Gmbh Process for the evolutionary design and synthesis of functional polymers based on shape elements and shape codes
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5723320A (en) 1995-08-29 1998-03-03 Dehlinger; Peter J. Position-addressable polynucleotide arrays
US6238884B1 (en) * 1995-12-07 2001-05-29 Diversa Corporation End selection in directed evolution
US6013440A (en) * 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
US6020481A (en) * 1996-04-01 2000-02-01 The Perkin-Elmer Corporation Asymmetric benzoxanthene dyes
US5851804A (en) * 1996-05-06 1998-12-22 Apollon, Inc. Chimeric kanamycin resistance gene
EP1015576B1 (en) 1997-09-16 2005-05-04 Egea Biosciences, LLC Method for the complete chemical synthesis and assembly of genes and genomes
US6177558B1 (en) 1997-11-13 2001-01-23 Protogene Laboratories, Inc. Method and composition for chemical synthesis using high boiling point organic solvents to control evaporation
EP1117996B1 (en) 1998-08-28 2010-09-15 febit holding GmbH Method for producing biochemical reaction supporting materials
JP2002538790A (en) 1999-03-08 2002-11-19 プロトジーン・ラボラトリーズ・インコーポレーテッド Methods and compositions for economically synthesizing and assembling long DNA sequences

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689405A (en) * 1983-01-20 1987-08-25 Gesellschaft Fur Biotechnologische Forschung Mbh (Gbf) Process for the simultaneous synthesis of several oligonucleotides on a solid phase
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5624711A (en) * 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US6348353B1 (en) * 1995-06-07 2002-02-19 Case Western Reserve University Artificial mammalian chromosome
US6586211B1 (en) * 1999-02-19 2003-07-01 Febit Ferrarius Biotechnology Gmbh Method for producing polymers

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632445B2 (en) 2013-08-05 2020-04-28 Twist Bioscience Corporation De novo synthesized gene libraries
US9409139B2 (en) 2013-08-05 2016-08-09 Twist Bioscience Corporation De novo synthesized gene libraries
US9555388B2 (en) 2013-08-05 2017-01-31 Twist Bioscience Corporation De novo synthesized gene libraries
US11452980B2 (en) 2013-08-05 2022-09-27 Twist Bioscience Corporation De novo synthesized gene libraries
US9833761B2 (en) 2013-08-05 2017-12-05 Twist Bioscience Corporation De novo synthesized gene libraries
US9839894B2 (en) 2013-08-05 2017-12-12 Twist Bioscience Corporation De novo synthesized gene libraries
US9889423B2 (en) 2013-08-05 2018-02-13 Twist Bioscience Corporation De novo synthesized gene libraries
US11559778B2 (en) 2013-08-05 2023-01-24 Twist Bioscience Corporation De novo synthesized gene libraries
US11185837B2 (en) 2013-08-05 2021-11-30 Twist Bioscience Corporation De novo synthesized gene libraries
US9403141B2 (en) 2013-08-05 2016-08-02 Twist Bioscience Corporation De novo synthesized gene libraries
US10272410B2 (en) 2013-08-05 2019-04-30 Twist Bioscience Corporation De novo synthesized gene libraries
US10773232B2 (en) 2013-08-05 2020-09-15 Twist Bioscience Corporation De novo synthesized gene libraries
US10384188B2 (en) 2013-08-05 2019-08-20 Twist Bioscience Corporation De novo synthesized gene libraries
US10639609B2 (en) 2013-08-05 2020-05-05 Twist Bioscience Corporation De novo synthesized gene libraries
US10583415B2 (en) 2013-08-05 2020-03-10 Twist Bioscience Corporation De novo synthesized gene libraries
US10618024B2 (en) 2013-08-05 2020-04-14 Twist Bioscience Corporation De novo synthesized gene libraries
US11697668B2 (en) 2015-02-04 2023-07-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US9677067B2 (en) 2015-02-04 2017-06-13 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US10744477B2 (en) 2015-04-21 2020-08-18 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11691118B2 (en) 2015-04-21 2023-07-04 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11807956B2 (en) 2015-09-18 2023-11-07 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US10844373B2 (en) 2015-09-18 2020-11-24 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US10987648B2 (en) 2015-12-01 2021-04-27 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US10384189B2 (en) 2015-12-01 2019-08-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
US10053688B2 (en) 2016-08-22 2018-08-21 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10975372B2 (en) 2016-08-22 2021-04-13 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
US11263354B2 (en) 2016-09-21 2022-03-01 Twist Bioscience Corporation Nucleic acid based data storage
US10754994B2 (en) 2016-09-21 2020-08-25 Twist Bioscience Corporation Nucleic acid based data storage
US11562103B2 (en) 2016-09-21 2023-01-24 Twist Bioscience Corporation Nucleic acid based data storage
US12056264B2 (en) 2016-09-21 2024-08-06 Twist Bioscience Corporation Nucleic acid based data storage
US10907274B2 (en) 2016-12-16 2021-02-02 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US11377676B2 (en) 2017-06-12 2022-07-05 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US10696965B2 (en) 2017-06-12 2020-06-30 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11332740B2 (en) 2017-06-12 2022-05-17 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11407837B2 (en) 2017-09-11 2022-08-09 Twist Bioscience Corporation GPCR binding proteins and synthesis thereof
US11745159B2 (en) 2017-10-20 2023-09-05 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US10936953B2 (en) 2018-01-04 2021-03-02 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US12086722B2 (en) 2018-01-04 2024-09-10 Twist Bioscience Corporation DNA-based digital information storage with sidewall electrodes
US11732294B2 (en) 2018-05-18 2023-08-22 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11492665B2 (en) 2018-05-18 2022-11-08 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
US11492728B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2

Also Published As

Publication number Publication date
DE50013228D1 (en) 2006-09-07
WO2000049142A1 (en) 2000-08-24
AU767606B2 (en) 2003-11-20
US20170147748A1 (en) 2017-05-25
ATE456652T1 (en) 2010-02-15
EP2175021B1 (en) 2013-06-19
JP2002536977A (en) 2002-11-05
US20090170802A1 (en) 2009-07-02
US7790369B2 (en) 2010-09-07
EP1153127B1 (en) 2006-07-26
ATE334197T1 (en) 2006-08-15
DE50015858D1 (en) 2010-03-18
CA2362939A1 (en) 2000-08-24
US9568839B2 (en) 2017-02-14
US20030198948A1 (en) 2003-10-23
EP2175021A2 (en) 2010-04-14
EP1153127A1 (en) 2001-11-14
CA2362939C (en) 2010-07-27
EP1728860B1 (en) 2010-01-27
EP2175021A3 (en) 2011-11-30
US6586211B1 (en) 2003-07-01
AU3157000A (en) 2000-09-04
EP1728860A1 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US6586211B1 (en) Method for producing polymers
US8173368B2 (en) Programmable oligonucleotide synthesis
US10876110B2 (en) Synthesis of sequence-verified nucleic acids
AU2018278929B2 (en) Methods for Sorting Nucleic Acids and Multiplexed Preparative in Vitro Cloning
US20070087349A1 (en) Highly parallel template-based dna synthesizer
EP1021563A2 (en) Collections of uniquely tagged molecules
JP2005519641A (en) Method for constructing polynucleotide encoding target polypeptide
EP1385950A2 (en) Computer-directed assembly of a polynucleotide encoding a target polypeptide
EP3209777A1 (en) Methods for nucleic acid assembly
Stähler et al. Another side of genomics: synthetic biology as a means for the exploitation of whole-genome sequence information
AU2002311757A1 (en) Computer-directed assembly of a polynucleotide encoding a target polypeptide

Legal Events

Date Code Title Description
AS Assignment

Owner name: FEBIT AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:FEBIT FERRARIUS BIOTECHNOLOGY GMBH;REEL/FRAME:020695/0488

Effective date: 20010504

Owner name: FEBIT BIOTECH GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:NECKARBURG 66. V V GMBH;REEL/FRAME:020690/0442

Effective date: 20050418

Owner name: SEAGON, CHRISTOPHER, ESQ., MR., GERMANY

Free format text: COURT APPOINTMENT OF TRUSTEE;ASSIGNOR:FEBIT AG;REEL/FRAME:020690/0345

Effective date: 20040701

Owner name: TECHNOSTART CONSULTING FIRM FOR INVESTMENT FUNDS M

Free format text: ASSETS PURCHASE;ASSIGNOR:SEAGON, CHRISTOPHER, ESQ., MR.;REEL/FRAME:020690/0353

Effective date: 20040924

Owner name: NECKARBURG 66. V V GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TECHNOSTART CONSULTING FIRM FOR INVESTMENT FUNDS MBH;REEL/FRAME:020690/0393

Effective date: 20050418

Owner name: FEBIT HOLDING GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:FEBIT BIOTECH GMBH;REEL/FRAME:020690/0429

Effective date: 20070806

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MIDCAP FUNDING IV TRUST, MARYLAND

Free format text: SECURITY AGREEMENT SUPPLEMENT (REVOLVING);ASSIGNORS:TELESIS BIO INC.;ETONBIO, INC.;REEL/FRAME:066372/0761

Effective date: 20240116

Owner name: MIDCAP FINANCIAL TRUST, MARYLAND

Free format text: SECURITY AGREEMENT SUPPLEMENT (TERM);ASSIGNORS:TELESIS BIO INC.;ETONBIO, INC.;REEL/FRAME:066372/0745

Effective date: 20240116

AS Assignment

Owner name: ETONBIO, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (REVOLVING);ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:068390/0001

Effective date: 20240716

Owner name: TELESIS BIO INC. (FORMERLY KNOWN AS CODEX DNA, INC.), CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (REVOLVING);ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:068390/0001

Effective date: 20240716

Owner name: ETONBIO, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (TERM);ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:068390/0070

Effective date: 20240716

Owner name: TELESIS BIO INC. (FORMERLY KNOWN AS CODEX DNA, INC.), CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (TERM);ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:068390/0070

Effective date: 20240716