US20070169501A1 - Condensate pan internal corner design - Google Patents
Condensate pan internal corner design Download PDFInfo
- Publication number
- US20070169501A1 US20070169501A1 US11/337,107 US33710706A US2007169501A1 US 20070169501 A1 US20070169501 A1 US 20070169501A1 US 33710706 A US33710706 A US 33710706A US 2007169501 A1 US2007169501 A1 US 2007169501A1
- Authority
- US
- United States
- Prior art keywords
- pan
- condensate pan
- condensate
- coil
- rib
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F13/222—Means for preventing condensation or evacuating condensate for evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/14—Collecting or removing condensed and defrost water; Drip trays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
Definitions
- the present invention relates to a condensate pan for an evaporator assembly. More particularly, the present invention relates to a condensate pan design that is configured to prevent condensation blow-off in an evaporator assembly.
- a compressor compresses a refrigerant and delivers the compressed refrigerant to a downstream condenser. From the condenser, the refrigerant passes through an expansion device, and subsequently, to an evaporator. The refrigerant from the evaporator is returned to the compressor.
- the condenser may be known as an outdoor heat exchanger and the evaporator as an indoor heat exchanger, when the system operates in a cooling mode. In a heating mode, their functions are reversed.
- the evaporator is typically a part of an evaporator assembly coupled with a furnace.
- a typical evaporator assembly includes an evaporator coil (e.g., a coil shaped like an “A”, which is referred to as an “A-frame coil”) and a condensate pan disposed within a casing.
- An A-frame coil is typically referred to as a “multi-poise” coil because it may be oriented either horizontally or vertically in the casing of the evaporator assembly.
- an evaporator assembly including a vertically oriented A-frame coil may be an up flow or a down flow arrangement. In an up flow arrangement, air circulated upwards, from beneath the evaporator coil assembly, whereas in a down flow arrangement, air is circulated downward, from above the evaporator coil assembly.
- Refrigerant is enclosed in piping that is used to form the evaporator coil. If the temperature of the evaporator coil surface is lower than the dew point of air passing over it, the evaporator coil removes moisture from the air. Specifically, as air passes over the evaporator coil, water vapor condenses on the evaporator coil. The condensate pan of the evaporator assembly collects the condensed water as it drips off of the evaporator coil. The collected condensation then typically drains out of the condensate pan through a drain hole in the condensate pan.
- the present invention is an internal corner design of a condensate pan that is configured to prevent condensation blow-off in an evaporator assembly.
- FIG. 1A is a perspective view of an evaporator assembly, which includes an evaporator coil and condensate pan disposed within a casing.
- FIG. 1B is an exploded perspective view of the evaporator assembly of is FIG. 1A .
- FIG. 2A is an exploded perspective view of an evaporator coil slab and the condensate pan of FIG. 1A .
- FIG. 2B is a perspective view of an alternative embodiment of an evaporator coil slab exploded from the condensate pan.
- FIG. 3 is a cross-sectional view of the evaporator assembly of FIGS. 1A and 1B .
- FIG. 4 is a top view of the condensate pan.
- FIG. 5 is a cross-sectional view of a corner section of the evaporator assembly shown in FIG. 3 .
- FIG. 6 is a perspective view of a bottom side of the condensate pan.
- FIG. 7A is a perspective view of a shield.
- FIG. 7B is a side view of the shield of FIG. 7A .
- FIGS. 8A-8B illustrate a first step of attaching the shield onto a bottom of a coil slab.
- FIGS. 9A-9B illustrate a second step of attaching the shield onto the bottom of the coil slab.
- FIGS. 10A-10B illustrate a third step of attaching the shield onto the bottom of the coil slab.
- FIG. 11A is a perspective view of an alternative embodiment of a shield.
- FIG. 11B is a side view of the shield of FIG. 11A .
- FIGS. 12A-12B show the shield of FIG. 11A attached onto a bottom of a coil slab.
- FIG. 13 is a cross-sectional view of the shield of FIG. 11A attached to a coil slab having three rows of coils.
- FIG. 14 is a perspective view of a condensate pan insert for the evaporator assembly.
- FIG. 15A is an enlarged perspective view of the evaporator assembly showing the condensate pan and pan insert.
- FIG. 15B is a sectional view showing the condensate pan insert secured to a front pan member of the condensate pan.
- FIG. 16 is a perspective view of a corner section of the evaporator assembly showing a delta plate prior to insertion into a first corner groove of the condensate pan.
- FIG. 17 is a side view of a corner portion of the delta plate coupled to a coil slab.
- FIG. 18 is a side view of the corner section of the evaporator assembly shown and described above in reference to FIG. 16 after the delta plate has been inserted into the first corner groove.
- FIG. 19A is a front view of a vertical condensate pan.
- FIG. 19B is a front view of the vertical condensate pan of FIG. 19A coupled to a horizontal condensate pan.
- FIG. 20 is a perspective view of a corner portion of the vertical condensate pan coupled to the horizontal condensate pan.
- FIGS. 1A-1B The Evaporator Assembly ( FIGS. 1A-1B )
- FIG. 1A is a perspective view of evaporator assembly 2 , which includes casing 4 , A-frame evaporator coil (“coil”) 6 , coil brace 8 , first delta plate 10 , second delta plate 12 , horizontal condensate pan 14 , drain holes 15 , vertical condensate pan 16 , drain holes 17 , first cover 18 , input refrigerant line 20 , and output refrigerant line 22 .
- evaporator assembly 2 is typically mounted above an air handler.
- the air handler includes a blower that cycles air through evaporator assembly 2 .
- the blower In a down flow application, the blower circulates air in a downward direction (indicated by arrow 24 ) through casing 4 and over coil 6 . In an up flow application, the blower circulates air in an upward direction (indicated by arrow 26 ) through casing 4 .
- Coil 6 , condensate pan 14 , and condensate pan 16 are disposed within casing 4 , which is preferably a substantially airtight space for receiving and cooling air. That is, casing 4 is preferably substantially airtight except for openings 4 A and 4 B (shown in FIG. 1B ). In a down flow application, air is introduced into evaporator assembly 2 through opening 4 A and exits through opening 4 B. In an up flow application, air is introduced into evaporator assembly 2 through opening 4 B and exits through opening 4 A.
- casing 4 is constructed of a single piece of sheet metal that is folded into a three-sided configuration, and may also be referred to as a “wrapper”. In alternate embodiments, casing 4 may be any suitable shape and configuration and/or formed of multiple panels of material.
- Coil 6 is a multi-poise A-frame coil, and may be oriented either horizontally or vertically. The vertical orientation is shown in FIGS. 1A and 1B . In a horizontal orientation, casing 4 is rotated 90° in a counterclockwise direction. Coil brace 8 is connected to air seal 28 and helps support coil 6 when coil 6 is in its horizontal orientation.
- Coil 6 includes first slab 6 A and second slab 6 B connected by air seal 28 .
- a gasket may be positioned between air seal 28 and first and second slabs 6 A and 6 B, respectively, to provide an interface between air seal 28 and slabs 6 A and 6 B that is substantially impermeable to water.
- First and second delta plates 10 and 12 are positioned between first and second slabs 6 A and 6 B, respectively.
- First slab 6 A includes multiple turns of piping 30 A with a series of thin, parallel plate fins 32 mounted on piping 30 A.
- second slab 6 B includes multiple turns of piping 30 B with a similar series of thin, parallel fins mounted on piping 30 B.
- Tube sheet 29 A is positioned at an edge of slab 6 A
- tube sheet 29 B is positioned at an edge of slab 6 B.
- Delta plates 10 and 12 , and air seal 28 may be attached to tube sheets 29 A and 29 B.
- coil 6 is a two-row coil. However, in alternate embodiments, coil 6 may include any suitable number of rows, such as three, as known in the art.
- Refrigerant is cycled through piping 30 A and 30 B, which are in fluidic communication with one another (through piping system 62 , shown in FIG. 1B ).
- coil 6 includes input and output lines 20 and 22 , respectively, which are used to recycle refrigerant to and from a compressor (which is typically located in a separate unit from evaporator assembly 2 ).
- Refrigerant input and output lines 20 and 22 extend through first cover 18 .
- Evaporator assembly 2 also includes access cover 38 (shown in FIG.1B ) adjacent to first cover 18 , and together, first cover 18 and access cover 38 fully cover the front face of evaporator assembly 2 (i.e., the face which includes first cover 18 ). Access cover 38 will be described in further detail in reference to FIG. 1B .
- evaporator assembly 2 includes horizontal condensate pan 14 and vertical condensate pan 16 , evaporator assembly 2 is configured for applications involving a horizontal or vertical orientation of coil 6 .
- evaporator assembly 2 is modified to be applicable to only a vertical orientation of coil 6 , in which case horizontal condensate pan 14 and brace 8 are absent from evaporator assembly 2 .
- evaporator assembly 2 excludes vertical condensate pan 16 such that evaporator assembly 2 is only applicable to horizontal orientations of coil 6 .
- FIG. 1B is an exploded perspective view of evaporator assembly 2 of FIG. 1A .
- Front deck 39 and upper angle 40 are each connected to casing 4 with screws 41 .
- Another suitable method of connecting front deck 39 and upper angle 40 to casing 4 may also be used, such as welding, an adhesive, or rivets.
- Front deck 39 and upper angle 40 provide structural integrity for casing 4 and provide a means for connecting front cover 18 and access cover 38 to casing 4 .
- Screw 43 attaches brace 8 (and thereby, air seal 28 ) to condensate pan 14 .
- other suitable means of attachment may be used in alternate embodiments.
- air splitter 44 is positioned between first slab 6 A and second slab 6 B of coil 6 and is attached by tabs on tube sheets 29 A and 29 B of coil 6 .
- Horizontal and vertical condensate pans 14 and 16 are typically formed of a plastic, such as polyester, but may also be formed of any material that may be casted, such as metal (e.g., aluminum).
- Horizontal condensate pan 14 slides into casing 4 and is secured in position by pan supports 46 .
- Tabs 46 A of pan supports 46 define a space for condensate pan 14 to slide into.
- coil 6 is positioned above horizontal condensate pan 14 so that condensation flows from coil 6 into horizontal condensate pan 14 .
- Air splitter 44 and splash guards 45 A and 45 B also help guide condensation from coil 6 into horizontal condensate pan 14 .
- Gasket 52 A is positioned around drain holes 15 prior to positioning first cover 18 over drain holes 15 in order to help provide a substantially airtight seal between drain holes 15 and first cover 18 .
- First cover 18 includes opening 53 A, which corresponds to and is configured to fit over drain holes 15 and gasket 52 A. The substantially airtight seal helps prevent air from escaping from casing 4 , and thereby increases the efficiency of evaporator assembly 2 .
- Caps 56 A may be positioned over one or more drain holes 15 , such as when evaporator assembly 2 is used in an application in which coil 6 is vertically oriented.
- Condensate pan 16 slides into casing 4 and is supported, at least in part, by flange 48 , which is formed by protruding sheet metal on three-sides of casing 4 and top surface 39 A of front deck 39 . Specifically, bottom surface 16 A of condensate pan 16 rests on flange 48 and top surface 39 A of front deck 39 . Condensate pan 16 includes outer perimeter 49 , insert 50 , drain holes 17 , which are sealed by gasket 52 , and plurality of ribs 54 .
- One or more channels are positioned about outer perimeter 49 of vertical condensate pan 16 for receiving condensation from coil 6 .
- coil 6 is positioned above vertical condensate pan 16 to allow condensation to flow along one slab 6 A or 6 B and eventually into one or more of the channels along outer perimeter 49 of vertical condensate pan 16 . In this way, condensation collects in condensate pan 16 .
- insert 50 is positioned in condensate pan 16 to help shield coil 6 from condensate blow-off from condensate pan 16 .
- Evaporator assembly 2 includes features, such as ribs 54 and shield 58 , that are configured to help direct condensation into the one or more channels along outer perimeter 49 of vertical condensate pan 16 (when coil 6 is vertically oriented).
- Shield 58 is attached to tube sheet 29 A and is configured to both guide condensation into a channel along outer perimeter 49 of condensate pan 16 and help protect coil 6 from condensation blow-off, which occurs when condensation that is collected in condensate pan 16 is blown into the air stream moving through evaporator assembly 2 .
- a similar shield is attached to tube sheet 29 B.
- Gasket 52 B is positioned around drain holes 17 prior to positioning first cover 18 over drain holes 17 in order to help provide a substantially airtight seal between drain holes 17 and first cover 18 .
- First cover 18 includes opening 53 B, which corresponds to and is configured to fit over drain holes 17 and gasket 52 B. The airtight seal helps prevent air from escaping from casing 4 , and thereby increases the efficiency of evaporator assembly 2 .
- Cap 56 B may be positioned over one or more drain holes 17 .
- Piping system 62 fluidically connects piping 30 A of first slab 6 A and piping 30 B of second slab 6 B.
- Refrigerant flows through piping 32 and 30 B, and is recirculated from and to a compressor through inlet and outlet tubes 20 and 22 , respectively.
- refrigerant is introduced into piping 30 A and 30 B through inlet 20 and exits piping 30 A and 30 B through outlet 22 .
- refrigerant inlet 20 includes rubber plug 64
- refrigerant outlet 22 includes strainer 66 and rubber plug 68 .
- Inlet 20 protrudes through opening 70 in first cover 18 and outlet 22 protrudes through opening 72 in first cover 18 .
- inlet 20 and outlet 22 may be connected to refrigerant lines that are fed from and to the compressor, respectively.
- Gasket 74 is positioned around inlet 20 in order to provide a substantially airtight seal around opening 70 .
- gasket 76 is positioned around outlet 22 .
- First cover 18 is attached to casing 4 with screws 78 .
- other means of attachment are used, such as welding, an adhesive, or rivets.
- Further covering a front face of evaporator assembly 2 is access cover 38 , which is abutted with first cover 18 .
- joint 81 between first cover 18 and access cover 38 is substantially airtight.
- a substantially airtight connection may be formed by, for example, placing a gasket at joint 81 .
- Access cover 38 is attached to casing 4 with screws 82 . However, in alternate embodiments, any means of removably attaching access cover 38 to casing 4 are used. Access cover 38 is preferably removably attached in order to provide access to coil 6 , condensate pan 16 , and other components inside casing 4 for maintenance purposes.
- One or more labels 84 such as warning labels, may be placed on first cover 18 and/or access cover 38 .
- FIG. 2A is an exploded perspective view of evaporator coil 6 and condensate pan 16 of FIG. 1A in a vertical orientation. As shown in FIG. 2A , coil slab 6 B is removed for purposes of clarity and discussion. FIG. 2A also includes shield 58 A and tube sheet 29 A, which is attached to an edge of slab 6 A. A similar tube sheet is also attached on an opposing edge of slab 6 A.
- Shield 58 A includes a plurality of apertures 88 aligned to be offset from a plurality of primary channels 90 disposed between ribs 54 of condensate pan 16 .
- Apertures 88 are configured to help direct the condensation from coil slab 6 A onto ribs 54 and then into primary channels 90 .
- a similar plurality of primary channels 92 are located on an opposing side of condensate pan 16 . The condensation in primary channels 90 is then directed into one of the channels along outer perimeter 49 of condensate pan 16 , and eventually drained out of condensate pan 16 through drain holes 17 .
- condensate pan 16 there are eight ribs 54 on each side of condensate pan 16 .
- a condensate pan that includes more or less ribs is possible.
- FIG. 2A refers to coil slab 6 A merely for purposes of example.
- FIG. 2B is a perspective view of an alternative embodiment of an evaporator coil exploded from condensate pan 16 .
- coil slab 6 A′ has three rows of coils, and shield 58 A′ is configured to engage with the wider three row coil slab.
- condensation formed on coil slab 6 A′ is collected in condensate pan 16 in a similar manner as described above in reference to FIG. 2A .
- an evaporator coil slab having any number of coils may be incorporated into evaporator assembly 2 .
- FIG. 3 is a cross-sectional view of evaporator assembly 2 showing coil 6 coupled to condensate pan 16 .
- shield 58 A is coupled to tube sheet 29 A
- shield 58 B (which is similar to shield 58 A) is coupled to tube sheet 29 B.
- First coil slab 6 A and second coil slab 6 B engage with and are supported by ribs 54 of condensate pan 16 such that slabs 6 A and 6 B form an angle A with condensate pan 16 .
- the angled position of coil 6 allows condensation to drip down a side of a slab, as indicated by arrow 94 on first slab 6 A.
- shields 58 A and 58 B are configured to catch and drain the condensation as it drips or flows down slabs 6 A and 6 B. Shields 58 A and 58 B will be discussed in more detail below, starting with reference to FIG. 7A .
- Condensate pan 16 is supported by flanges 48 of casing 4 .
- flanges 48 create an air pocket P to prevent streams of unconditioned air flowing in direction 26 (an upflow direction) from coming into contact with one or more channels located along outer perimeter 49 , as will be discussed in more detail below.
- FIG. 4 is a top view of vertical condensate pan 16 shown and described above in reference to FIGS. 1A and 1B .
- Condensate pan 16 includes right pan member 100 , left pan member 102 , front pan member 104 , and rear pan member 106 .
- right pan member 100 and left pan member 102 are positioned substantially parallel to each other.
- right pan member 100 and left pan member 102 are substantially perpendicular to both front pan member 104 and rear pan member 106 .
- pan members 100 - 106 form a generally rectangular structure with an open center portion.
- right pan member 100 and front pan member 104 intersect to form first internal corner 101 ; left pan member 102 and front pan member 104 intersect to form second internal corner 103 ; right pan member 100 and rear pan member 106 intersect to form third internal corner 105 ; and left pan member 102 and rear pan member 106 intersect to form fourth internal corner 107 .
- Outer perimeter 49 of condensate pan 16 includes secondary channel 108 disposed along outer wall 110 of right pan member 100 , secondary channel 112 disposed along outer wall 114 of left pan member 102 , and drain channel 116 disposed along front side 118 of front pan member 104 .
- Secondary channels 108 and 112 are configured to receive condensation from primary channels 90 and 92 , respectively.
- secondary channels 108 and 112 are connected to drain channel 116 , which allows condensation collected in secondary channels 108 and 112 to flow into drain channel 116 for disposal through condensate drain holes 17 .
- drain holes 17 are positioned along front side 118 of front pan member 104 , although drain holes 17 may be positioned anywhere that enables condensation to exit condensate pan 16 .
- a rear pan member may be designed to also include a channel to catch condensation from coil 6 .
- Rear pan member 106 shown in FIG. 4 is an example of such a pan member.
- a rear pan member may not include a channel, it is still an important component of a condensate pan for other reasons including, but not limited to, providing rigidity to the pan and providing a surface capable of receiving and supporting a delta plate.
- condensate pan 16 also includes first corner groove 120 , second corner groove 122 , third corner groove 124 , and fourth corner groove 126 .
- First corner groove 120 and second corner groove 122 are each configured to receive a portion of delta plate 12
- third corner groove 124 and fourth corner groove 126 are each configured to receive a portion of a second delta plate similar to delta plate 12 .
- condensate pan 16 includes a first plurality of delta plate supports 125 A disposed within front pan member 104 , and a second plurality of delta plate supports 125 B disposed within rear pan member 106 . Delta plate supports 125 A and 125 B help to align and provide support for their respective delta plates when inserted into condensate pan 16 .
- FIG. 4 shows condensate pan 16 with five delta plate supports 125 A and five delta plate supports 125 B, a condensate pan with any number of delta plate supports is possible.
- sweat from the cold condensation forms on an underside of a condensate pan because streams of unconditioned air being blown through an evaporator assembly are at a higher temperature than the cool condensation collected in the condensate pan. If the unconditioned air is allowed to contact a surface of the pan that contains the cool condensation (such as the secondary channels), heat will transfer from the warmer unconditioned air to the cool pan surface, causing sweat to form on the condensate pan. Thus, in order to reduce sweat from an underside of the condensate pan, condensation must be quickly re-directed away from streams of unconditioned air that are contacting the underside of the pan.
- FIG. 5 is a cross-sectional view of a corner section of the evaporator assembly shown in FIG. 3 .
- right pan member 100 further includes inner wall 127 , outer air pocket wall 128 , and inner air pocket wall 130 .
- Outer air pocket wall 128 and inner air pocket wall 130 extend in a downward direction from bottom side 132 of right pan member 100 along a longitudinal length of right pan member 100 .
- secondary channel 108 is open to streams of unconditioned air U.
- flange 48 mates with outer air pocket wall 128 and inner air pocket wall 130 to create air pocket P.
- flange 48 creates a barrier between streams of unconditioned air U and secondary channel 108 .
- primary channels 90 are sloped toward secondary channel 108 from inner wall 127 to outer wall 110 of right pan member 100 .
- the condensation is directed into right pan member 100 by shield 58 A.
- the apertures in shield 58 A are configured to provide a path for the condensation into primary channels 90 .
- the sloped primary channels 90 quickly direct the condensation toward outer wall 100 and into secondary channel 108 , as indicated by a condensation path depicted by arrows 134 . As a result, a pool of cold condensation C is created in secondary channel 108 .
- FIG. 5 primary channels 90 are sloped toward secondary channel 108 from inner wall 127 to outer wall 110 of right pan member 100 .
- secondary channel 108 is sloped toward front pan member 104 to quickly direct cold condensation into drain channel 116 .
- drain channel 116 is also sloped in a downward direction from right pan member 100 to left pan member 102 to direct the condensation toward drain holes 17 . By providing a series of sloped channels, the condensation may be quickly removed from condensate pan 16 .
- condensate pan 16 reduces the formation of sweat on an underside of condensate pan 16 by quickly re-directing the condensation toward secondary channel 108 along outer wall 100 , and providing air pocket P between streams of unconditioned air U and the pool of cold condensation C.
- flange 48 of casing 4 prevents streams of unconditioned air U from reaching secondary channel 108 .
- Air pocket P prevents (or at least slows down) the transfer of heat from the warmer streams of unconditioned air to the cooler surface of secondary channel 108 caused by cold condensation C present in channel 108 .
- left pan member 102 includes similar features to reduce the formation of sweat on condensate pan 16 .
- the discussion above applies in the same manner (except for the element numbers) to left pan member 102 as well.
- FIG. 6 is a perspective view of a bottom side of one embodiment of condensate pan 16 .
- the bottom side of right pan member 100 further includes a plurality of support members 138 perpendicular to and extending between inner air pocket wall 130 and outer wall 110 .
- a bottom side of left pan member 102 includes a similar plurality of support members.
- Support members 138 provide rigidity to right pan member 100 , and are configured to mate with flange 48 in casing 4 to support condensate pan 16 and prevent a stream of unconditioned air from contacting a bottom side of secondary channel 108 .
- condensate pan 16 may also be used with coil slabs containing more than two rows of coils.
- a preferred material for the construction of condensate pan 16 is a plastic, such as polyester, other materials such as metals may also be used.
- Shields 58 A and 58 B are useful in both down flow and up flow arrangements of evaporator assembly 2 ; however, shields 58 A and 58 B are of particular benefit in a down flow arrangement in which air is circulated downward (indicated by arrow 24 in FIG. 1A ) from above evaporator assembly 2 .
- Water (i.e., condensate) blow-off from coil 6 is more likely in a down flow arrangement of evaporator assembly 2 .
- Shields 58 A and 58 B are configured to help address potential problems attributable to water blow-off by substantially enclosing condensation that drips off of coil 6 , and directing the condensation into condensate pan 16 .
- FIG. 7A is a perspective view of shield 58 A of FIG. 2A .
- Shield 58 A is configured to wrap around a bottom of coil slab 6 A and couple with tube sheet 29 A.
- Shield 58 A includes bottom member 150 having inside bottom portion 151 and outside bottom portion 152 , inside extension member 154 , and outside extension member 156 .
- Inside bottom portion 151 includes apertures 88 described above in reference to FIG. 2A .
- Outside extension member 156 includes lip 158 having tabs 159 A and 159 B extending from opposing ends.
- Apertures 88 are spaced apart along inside bottom portion 151 , and are configured to allow the condensation to drain through bottom member 150 of shield 58 A.
- apertures 88 are slots that extend across inside bottom portion 151 ; however, it is recognized that shield 58 A could be designed with various other types of apertures or openings formed on bottom member 150 of shield 58 A.
- shield 58 A has nine apertures 88 . However, shield 58 A may be designed with more or less apertures.
- Bottom portion 150 is configured to be positioned under a bottom end of coil slab 6 A.
- Inside extension member 154 is configured to be positioned on an inside surface of coil slab 6 A.
- Outside extension member 156 is configured to be positioned on an outside surface of coil slab 6 A.
- Tabs 159 A and 159 B, extending from lip 158 of outside extension member 156 are configured to engage with tube sheet 29 A and a similar tube sheet on an opposing edge of coil slab 6 A.
- FIG. 7B is a side view of shield 58 A of FIG. 7A showing bottom member 150 , inside extension member 154 and outside extension member 156 including lip 158 .
- inside bottom portion 151 is oriented at a slight angle relative to outside bottom portion 152 , such that inside bottom portion 151 slopes downward toward inside extension member 154 .
- FIGS. 8A-10B illustrate general steps in one system and method for attaching shield 58 A onto a bottom of coil slab 6 A.
- FIG. 8A shows tube sheet 29 A, which is attached to an edge of coil slab 6 A, and positioned above shield 58 A.
- FIG. 8B is a rotated view of FIG. 8A showing coil slab 6 A (including fins 32 A and piping 30 A) and shield 58 A (including outside extension member 156 and tabs 159 A and 159 B).
- FIGS. 8A and 8B depict a first step of attaching shield 58 A onto a bottom surface of coil slab 6 A.
- shield 58 A is initially positioned below a bottom of coil slab 6 A.
- Shield 58 A is then moved upward toward coil slab 6 A, as indicated by arrows 164 .
- FIGS. 9A and 9B depict a second step of attaching shield 58 A onto coil slab 6 A.
- shield 58 A has moved upward such that inside extension member 154 is slid onto an inner side of coil slab 6 A, and outside extension member 156 has moved upward such that lip 158 is near notch 166 on tube sheet 29 A.
- Notch 166 on tube sheet 29 A is configured to receive tab 159 A extending from lip 158 .
- a similar notch on the opposing tube sheet is similarly configured to receive tab 159 B extending from the other end of lip 158 .
- FIGS. 10A and 10B depict a third step of attaching shield 58 A onto coil slab 6 A.
- shield 58 A has been moved upward such that the bottom surface of coil slab 6 A is resting on outside bottom portion 152 of shield 58 A.
- Outside extension member 156 is positioned such that lip 158 contacts fins 32 A and tab 159 A of lip 158 is received through notch 166 on tube sheet 29 A.
- tab 159 B is received through the notch on the opposing tube sheet.
- Inside extension member 154 is contacting a set of fins, similar to fins 32 A, on the inside surface of coil slab 6 A. As described above in reference to FIG.
- inside bottom portion 151 is angled relative to outside bottom portion 152 .
- inside bottom portion 151 is angled relative to the bottom surface of slab 6 A, as shown in FIG. 10A .
- apertures 88 of shield 58 A are visible in FIG. 10B .
- Shield 58 A is designed to spring-fit onto coil slab 6 A such that inside extension member 154 and outside extension member 156 open up and then spring back toward their original configuration once shield 58 A is attached on coil slab 6 A.
- shield 58 A is attachable to coil slab 6 A without requiring any fasteners.
- shield 58 A and coil slab 6 A may be designed to incorporate other suitable means of attaching shield 58 A to coil slab 6 A using, for example, screws, rivets or other types of fasteners.
- coil slab 6 A and shield 58 A are shown coupled to condensate pan 16 .
- coil slab 6 A and shield 58 A are supported by ribs 54 of condensate pan 16 such that coil slab 6 A and shield 58 A are oriented at an angle relative to condensate pan 16 .
- apertures 88 on inside bottom portion 151 of shield 58 A are aligned with ribs 54 of condensate pan 16 .
- bottom member 150 is substantially flat, despite inside bottom portion 151 being originally configured at a slight angle relative to outside bottom portion 152 , as shown in FIG. 7B .
- Shield 58 A is typically formed from a thin, single sheet of metal. In one embodiment, shield 58 A is made from aluminum to prevent corrosion. However, other materials may be used without diminishing the functionality of shield 58 A.
- Shield 58 B shown in FIG. 3 , is similar to shield 58 A and is attachable to second coil slab 6 B in a similar manner to how shield 58 A is attachable to coil slab 6 A. Shield 58 B is configured to drain condensation from second coil slab 6 B into primary channels 92 on an opposing side of condensate pan 16 (see FIG. 4 ).
- FIG. 11A is a perspective view of shield 58 A′, which is an alternative embodiment of shield 58 A of FIG. 7A .
- Shield 58 A′ is shown in FIG. 2B and is configured to engage with coil slab 6 A′ which is a wider three row coil slab.
- Shield 58 A′ similarly includes bottom member 150 ′ having inside bottom portion 151 ′ and outside bottom portion 152 ′, inside extension member 154 ′, and outside extension member 156 ′.
- Lip 158 ′ is connected to outside extension member 156 ′ and includes tabs 159 A′ and 159 B′ extending from opposing ends.
- bottom member 150 ′ of shield 58 A′ includes apertures 88 ′.
- Apertures 88 ′ are spaced apart along inside bottom portion 151 ′ and each aperture 88 ′ extends across inside bottom portion 151 ′.
- a different type of aperture is used, as compared to shield 58 A, to direct the condensation toward inside extension member 154 ′ and then out through bottom member 150 ′.
- apertures 88 ′ formed on inside bottom portion 151 ′ of shield 58 A′ comprise a plurality of shield channels. As shown in FIG. 2B , when shield 58 A′ is assembled on coil slab 6 A′, the shield channels are aligned with primary channels 90 of condensate pan 16 and are configured to drain the condensation out of shield 58 A′ and into condensate pan 16 . It should be understood that shield channels are merely one example of an aperture design that may be used to direct condensation from a coil slab into a condensate pan. Moreover, shield 58 A′ of FIG. 1A is shown with eight shield channels formed on inside bottom portion 151 ; however, it is recognized that more or less shield channels may incorporated into shield 58 A′.
- FIG. 11B is a side view of shield 58 A′ of FIG. 11A showing bottom member 150 ′, inside extension member 154 ′, outside extension member 156 ′, and lip 158 ′.
- apertures 88 ′ are shield channels and are configured to extend below bottom member 150 ′.
- FIGS. 12A and 12B show shield 58 A′ attached onto a bottom surface of coil slab 6 A′.
- Shield 58 A′ is attached onto coil slab 6 A′ in a similar manner as described above under FIGS. 8A-10B in reference to attachment of shield 58 A onto coil slab 6 A.
- FIGS. 12A and 12B tab 159 A′ on lip 158 ′ is inserted through notch 166 ′ on tube sheet 29 A′.
- Tab 159 B′ is inserted through a similar notch on an opposing tube sheet.
- FIG. 13 is a cross-sectional view of shield 58 A′ of FIG. 11A attached to coil slab 6 A′ and coupled to condensate pan 16 .
- shield 58 A′ is configured such that the condensation that drains into shield 58 A′ is directed toward inside extension portion 154 ′ and then through apertures 88 ′.
- Apertures 88 ′ are aligned with primary channels 90 of condensate pan 16 such that the condensation drains is through apertures 88 ′ into primary channels 90 . The condensation is then drained out of condensate pan 16 in the same manner as described above.
- a shield similar to shield 58 A′ is attachable to a second coil slab of evaporator assembly 2 in a similar manner.
- shield 58 A is configured to be attached to a coil slab with two rows of coils
- shield 58 A′ is configured to be attached to a coil slab with three rows of coils.
- apertures 88 of shield 58 A are described as being configured to align with ribs 54 of condensate pan 16
- apertures 88 ′ of shield 58 A′ are described as being configured to align with primary channels 90 of condensate pan 16 .
- either embodiment of shields 58 A and 58 A′ could be used with a coil having any suitable number of rows.
- either shield design could be configured to align with either ribs 54 or primary channels 90 of condensate pan 16 .
- the shields described above are configured to be used with multiple coil sizes.
- FIG. 14 is a perspective view of a representative embodiment of condensate pan insert 50 , which includes cover member 170 , pan wall member 172 , snap member 174 , first wing member 176 , and second wing member 178 .
- Cover member 170 has first end 180 , second end 182 , front side 184 , and rear side 186 .
- pan wall member 172 is positioned at front side 184
- first wing member 176 is positioned at first end 180
- second wing member 178 is positioned at second end 182 of cover member 170 .
- condensate pan insert 50 When inserted into condensate pan 16 as shown in FIG. 1B , condensate pan insert 50 is configured to cover an open top of drain channel 116 , thereby enclosing drain channel 116 to prevent a stream of air from contacting the condensation collected in condensate pan 16 .
- evaporator assembly 2 Without condensate pan insert 50 positioned within condensate pan 16 , evaporator assembly 2 is more susceptible to condensation blow-off. Condensation blow-off occurs when condensation that is collected in condensate pan 16 is blown into the air stream moving through evaporator assembly 2 . As a result, condensation may be blown into the furnace or surrounding duct-work, potentially leading to problems such as moisture build-up or mold.
- FIGS. 1A and 1B depict evaporator assembly 2 having coil 6 with only two rows of coils
- condensate pan insert 50 is particularly useful in an embodiment where coil 6 has three or more rows of coils.
- a larger number of coil rows correlates with a larger velocity of a stream of air circulated by the blower in the downward direction (as indicated by arrow 24 in FIG. 1A ).
- the stream of air will hit drain channel 116 and prevent accumulated condensation from flowing properly from secondary channels 108 and 112 into drain channel 116 , thereby leading to condensation blow-off.
- first air gap is formed between first coil slab 6 A and secondary channel 108 when evaporator assembly 2 is fully assembled.
- a second air gap is formed between second coil slab 6 B and secondary channel 112 when evaporator assembly 2 is fully assembled.
- first wing member 176 and second wing member 178 are configured to be inserted into the first and second air gaps, respectively. Once inserted into the air gaps, first wing member 176 and second wing member 178 function with cover member 170 to prevent a stream of air from entering secondary channel 108 , secondary channel 112 , or drain channel 116 during a down flow application of evaporator system 2 .
- first wing member 176 and second wing member 178 act together with cover member 170 to prevent condensation blow-off during a down flow application of evaporator system 2 .
- the coil slabs and the secondary channels may couple with each other in such a way that the first and second air gaps are eliminated, thereby preventing a stream of air from entering the secondary channels without the need for the wing members. Therefore, in such embodiments, first wing member 176 and second wing member 178 are not a necessary part of condensate pan insert 50 .
- front side 118 of front pan member 104 includes a recess 192 along a top edge 194 .
- pan wall member 172 mates with recess 192 in front pan member 104 to form a portion of front side 118 .
- angled contour 188 of pan wall member 172 mates with an angled contour of recess 192 to create a substantially smooth and continuous top edge 194 on front side 118 of front pan member 104 .
- condensate pan insert 50 may include one or more raised arch portions 190 as shown in FIG. 14 .
- drain holes 17 may extend higher (closer toward top edge 194 of front pan member 104 ) along front side 118 than drain channel 116 . As a result, a portion of drain holes 17 would not be protected by cover member 170 of condensate pan insert 50 .
- raised arch portions 190 are positioned along front side 184 of cover member 170 and are configured to receive and provide a cover for drain holes 17 .
- FIG. 15B is a side view of condensate pan insert 50 secured to front pan member 104 .
- cover member 170 extends between front side 118 and surface 196 of front pan member 104 to enclose an otherwise open side of drain channel 116 .
- Condensate pan insert 50 thus forms a barrier between a stream of air A above cover member 170 and condensation C collected in drain channel 116 below cover member 170 .
- Snap member 174 further comprises lip 198 that engages with bottom edge 200 of front side 118 to secure condensate pan insert 50 to front pan member 104 .
- Lip 198 ensures that condensate pan insert 50 remains securely fastened to front pan member 104 during shipment and operation of evaporator assembly 2 .
- lip 198 engages with another feature of front side 118 other than bottom edge 200 .
- front pan member 104 may include a slot configured to receive lip 198 to securely fasten condensate pan insert 50 to condensate pan 16 .
- Other means of attachment are also available for securing condensate pan insert 50 to condensate pan 16 .
- Cover member 170 of condensate pan insert 50 may include top surface 202 that is sloped in a downward direction between front side 118 and rear side 204 of front pan member 104 .
- a sloped top surface 202 directs condensation that drips onto cover member 170 during the operation of evaporator assembly 2 (such as from blow-off as discussed above) toward rear side 204 of front pan member 104 , as indicated by arrow 205 .
- cover member 170 may be designed such that when cover member 170 engages with surface 196 of front pan member 104 , gap 206 is formed.
- Gap 206 allows condensation that dripped onto cover member 170 and was directed toward rear side 204 (as shown by arrow 205 ) to be re-directed onto surface 196 , which may be sloped in a downward direction toward drain channel 116 . As a result, the condensation eventually flows into drain channel 116 , as indicated by arrow 208 .
- sloped top surface 202 and gap 206 are not a necessary component of condensate pan insert 50 , they provide an additional benefit that increases the effectiveness of the insert. For instance, in an embodiment that does not incorporate sloped top surface 202 and gap 206 , condensation that drips onto cover member 170 may end up being blown into the furnace or duct-work, resulting in problems such as those previously discussed.
- condensate pan insert 50 is a plastic, such as polycarbonate.
- condensate pan insert 50 may be formed from other materials, such as various types of metal including sheet metal or aluminum.
- condensate pan insert 50 is preferably injection molded to form a single part.
- the various components of condensate pan insert 50 may be formed as separate parts and secured together by means such as welding or gluing.
- a gap is formed on the four internal corners of the condensate pan where the delta plate and the coil slab engage with the condensate pan. These gaps are generally due to round radii on the internal corners of the condensate pan to improve strength.
- streams of high velocity air pass by the gap, with some of these high velocity streams entering the gap. This poses a problem because the air streams may get in between the coil slab and the condensate pan. As a result, condensation on the coil slab or condensate pan may get caught-up in the streams of high velocity air between the slab and the pan and end up being blown-off of those surfaces.
- Condensation blow-off due to high velocity air entering these gaps is undesirable because the condensation that is blown-off of the coil slab or condensate pan cannot be controlled, and as a result, it may be carried into the furnace or duct-work by the air streams. Among other things, blown-off condensation may harm the furnace components or result in moisture build-up or mold formation in the furnace or duct-work.
- the design of condensate pan 16 reduces condensation blow-off by placing a corner groove member in each of the internal pan corners in order to eliminate the gap and prevent streams of high velocity air from getting in between the coil slab and condensate pan.
- FIG. 16 is a perspective view of a corner section of evaporator assembly 2 showing delta plate 12 prior to insertion into first corner groove 120 .
- First corner groove 120 includes first rib 220 and second rib 222 .
- First rib 220 and second rib 222 are spaced apart and configured to receive delta plate 12 .
- first corner groove 120 forms a portion of one of ribs 54 near first internal corner 101 .
- condensate pan 16 includes aperture 224 configured to receive tab 226 of delta plate 12 .
- Tab 226 of delta plate 12 is configured to be inserted into aperture 224 to secure delta plate 12 to condensate pan 16 .
- Delta plate supports 125 A are configured to align delta plate 12 within condensate pan 16 and provide support so that tab 226 is not inadvertently removed from aperture 224 .
- delta plate supports 125 A may be configured to support delta plate 12 so that an inner surface of delta plate 12 remains substantially flush with inner wall 204 .
- FIG. 16 focuses on first corner groove 120
- the other corner grooves of condensate pan 16 also include a pair of ribs spaced apart and configured to receive a portion of a delta plate to reduce condensation blow-off.
- third corner groove 124 and fourth corner groove 126 each include a pair of ribs configured to receive a delta plate similar to delta plate 12 .
- all of the corner grooves are constructed from the same material as condensate pan 16 .
- other materials may be used to create corner grooves 120 - 126 .
- FIG. 17 is a side view of a corner portion of delta plate 12 and coil slab 6 A.
- Delta plate 12 further includes bottom edge 228 and corner 230 .
- bottom edge 228 of delta plate 12 extends below a bottom edge 232 of coil slab 6 A. Positioning bottom edge 228 below coil slab 6 A allows corner 230 and a portion of bottom edge 228 to be inserted into first corner groove 120 between first rib 220 and second rib 222 , as will be shown in the following figure.
- FIG. 18 is a side view of the corner section of evaporator assembly 2 shown and described above in reference to FIG. 16 .
- coil 6 has been coupled to condensate pan 16 such that coil slab 6 A is resting on and being supported by ribs 54 , and a portion of delta plate 12 is positioned within first corner groove 120 .
- first corner groove 120 is configured to receive delta plate 12 in such a way that corner 230 and a portion of bottom edge 228 are disposed within first corner groove 120 , as indicated by the broken lines within rib 54 .
- delta plate 12 is properly positioned within first corner groove 120 , all major gaps or openings are eliminated in first internal corner 101 of condensate pan 16 .
- Non-Modifying Slope Attachment of Condensate Pan 14 to Condensate Pan 16 ( FIGS. 19A, 19B , and 20 )
- a horizontal condensate pan is used to collect condensation coming off of an evaporator coil during a horizontal application of an evaporator assembly
- a vertical condensate pan is used to collect condensation coming off of the coil during a vertical application of the evaporator assembly.
- the horizontal and vertical condensate pans form an “L” when they are assembled together within a casing of the evaporator assembly.
- FIG. 19A is a front view of vertical condensate pan 16 of evaporator assembly 2 resting on surface S.
- a bottom side of left pan member 102 includes notch 240 .
- Notch 240 extends along the bottom side of left pan member 102 , and is configured to receive a bottom wall of horizontal condensate pan 14 when evaporator assembly 2 is assembled to include both pans 14 and 16 within casing 4 .
- notch 240 is about 3 millimeters wide, which correlates with a typical thickness of a condensate pan wall.
- FIG. 19B is a front view of vertical condensate pan 16 coupled to horizontal condensate pan 14 .
- pan 14 is configured to receive condensate pan 16 such that a portion of left pan member 102 is resting on an inner pan wall within bottom portion 242 of condensate pan 14 .
- Recess 244 is configured to allow condensate pan 16 to nest within condensate pan 14 in such a way that right side 246 of pan 14 does not interfere with drain holes 17 .
- pan 16 remains in the exact same position relative to surface S as it did prior to being coupled with pan 14 ( FIG. 19A ).
- This is an improvement over prior art designs in which coupling a vertical condensate pan with a horizontal condensate pan results in a bottom surface of the vertical condensate pan being angled relative to a surface below.
- An angled position of the prior art condensate pan modifies the slopes of channels within the pan, potentially creating drainage problems such as stagnation or accumulation of the collected condensation.
- Evaporator assembly 2 is designed in such a way that horizontal condensate pan 14 and vertical condensate pan 16 may be coupled together without changing the slope of any condensate pan channels.
- vertical condensate pan 16 is designed for minimum condensation retention and quick drainage in vertical applications of coil 6 .
- primary channels 90 and 92 are configured to direct condensation into secondary channels 108 and 112 , respectively, which are then sloped toward front pan member 104 to direct the condensation into drain channel 116 .
- Drain channel 116 is sloped in a downward direction from right pan member 100 to left pan member 102 to direct the condensation toward drain holes 17 . These sloped channels are designed to optimize the flow of condensation through condensate pan 16 and out of drain holes 17 .
- condensate pan 16 functions to properly drain condensation when evaporator assembly 2 is operating in a vertical configuration regardless of whether both pans are coupled together within casing 4 .
- condensate pan 16 since condensate pan 16 remains in the exact same position relative to surface S whether or not it is coupled with condensate pan 14 , the position of drain holes 17 also remains constant. Thus, unlike prior art designs, it is not necessary to enlarge opening 53 B of first cover 18 in order to accommodate changing locations of drain holes 17 . As a result, opening 53 B is designed to provide a tighter fit around drain holes 17 which, when combined with gasket 52 B (as described above in reference to FIG. 1B ), provides an improved airtight seal that increases the efficiency of evaporator assembly 2 . In addition, the tighter fit of opening 53 B around drain holes 17 is beneficial in shipping because first cover 18 is also configured to secure condensate pan 16 in position within casing 4 , thereby decreasing movement of pan 16 during shipping and handling of evaporator assembly 2 .
- FIG. 20 is a perspective view of horizontal condensate pan 14 coupled with vertical condensate pan 16 .
- horizontal condensate pan 14 includes support member 250 on rear side 252 .
- Support member 250 is configured to rest on top edge 254 of rear pan member 106 when horizontal condensate pan 14 is coupled with vertical condensate pan 16 .
- Support member 250 functions to provide many important benefits to evaporator assembly 2 .
- One benefit provided by support member 250 is a tight and rigid connection between condensate pans 14 and 16 .
- Another benefit provided by support member 250 is a means for securing condensate pan 14 to condensate pan 16 such that the bottom wall of pan 14 remains within notch 240 , as shown and described above in reference to FIG. 19B .
- notch 240 is merely one example of a support feature that may help provide a secure and rigid connection between horizontal condensate pan 14 and vertical condensate pan 16 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
Abstract
Description
- The following application is filed on the same day as the following co-pending applications: “METHOD AND SYSTEM FOR HORIZONTAL COIL CONDENSATE DISPOSAL” by inventors Arturo Rios, Floyd J. Frenia, Jason Michael Thomas, Michael V. Hubbard, and Thomas K. Rembold (attorney docket number U75.12-003); “CASING ASSEMBLY SUITABLE FOR USE IN A HEAT EXCHANGE ASSEMBLY” by inventors Floyd J. Frenia, Arturo Rios, Thomas K. Rembold, Michael V. Hubbard, Jason Michael Thomas, and Stephen R. Carlisle (attorney docket number U75.12-004); “CONDENSATE PAN INSERT” by inventors Jason Michael Thomas, Floyd J. Frenia, Thomas K. Rembold, Arturo Rios, Michael V. Hubbard, and Dale R. Bennett (attorney docket number U75.12-005); “METHOD AND SYSTEM FOR VERTICAL COIL CONDENSATE DISPOSAL” by inventors Thomas K. Rembold, Arturo Rios, Jason Michael Thomas, and Michael V. Hubbard (attorney docket number U75.12-006); “CASING ASSEMBLY SUITABLE FOR USE IN A HEAT EXCHANGE ASSEMBLY” by inventors Arturo Rios, Thomas K. Rembold, Jason Michael Thomas, Stephen R. Carlisle, and Floyd J. Frenia (attorney docket number U75.12-007); “LOW-SWEAT CONDENSATE PAN” by inventors Arturo Rios, Floyd J. Frenia, Thomas K. Rembold, Michael V. Hubbard, and Jason Michael Thomas (attorney docket number U75.12-008); “VERTICAL CONDENSATE PAN WITH NON-MODIFYING SLOPE ATTACHMENT TO HORIZONTAL PAN FOR MULTI-POISE FURNACE COILS” by inventor Arturo Rios (attorney docket number U75.12-010); “CONDENSATE SHIELD WITH FASTENER-FREE ATTACHMENT FOR MULTI-POISE FURNACE COILS” by inventor Arturo Rios (attorney docket number U75.12-011); and “SPLASH GUARD WITH FASTENER-FREE ATTACHMENT FOR MULTI-POISE FURNACE COILS” by inventor Arturo Rios (attorney docket number U75.12-012), which are incorporated herein by reference.
- The present invention relates to a condensate pan for an evaporator assembly. More particularly, the present invention relates to a condensate pan design that is configured to prevent condensation blow-off in an evaporator assembly.
- In a conventional refrigerant cycle, a compressor compresses a refrigerant and delivers the compressed refrigerant to a downstream condenser. From the condenser, the refrigerant passes through an expansion device, and subsequently, to an evaporator. The refrigerant from the evaporator is returned to the compressor. In a split system heating and/or cooling system, the condenser may be known as an outdoor heat exchanger and the evaporator as an indoor heat exchanger, when the system operates in a cooling mode. In a heating mode, their functions are reversed.
- In the split system, the evaporator is typically a part of an evaporator assembly coupled with a furnace. However, some cooling systems are capable of operating independent of a furnace. A typical evaporator assembly includes an evaporator coil (e.g., a coil shaped like an “A”, which is referred to as an “A-frame coil”) and a condensate pan disposed within a casing. An A-frame coil is typically referred to as a “multi-poise” coil because it may be oriented either horizontally or vertically in the casing of the evaporator assembly.
- During a cooling mode operation, a furnace blower circulates air into the casing of the evaporator coil assembly, where the air cools as it passes over the evaporator coil. The blower then circulates the air to a space to be cooled. Depending on the particular application, an evaporator assembly including a vertically oriented A-frame coil may be an up flow or a down flow arrangement. In an up flow arrangement, air circulated upwards, from beneath the evaporator coil assembly, whereas in a down flow arrangement, air is circulated downward, from above the evaporator coil assembly.
- Refrigerant is enclosed in piping that is used to form the evaporator coil. If the temperature of the evaporator coil surface is lower than the dew point of air passing over it, the evaporator coil removes moisture from the air. Specifically, as air passes over the evaporator coil, water vapor condenses on the evaporator coil. The condensate pan of the evaporator assembly collects the condensed water as it drips off of the evaporator coil. The collected condensation then typically drains out of the condensate pan through a drain hole in the condensate pan.
- The present invention is an internal corner design of a condensate pan that is configured to prevent condensation blow-off in an evaporator assembly.
-
FIG. 1A is a perspective view of an evaporator assembly, which includes an evaporator coil and condensate pan disposed within a casing. -
FIG. 1B is an exploded perspective view of the evaporator assembly of isFIG. 1A . -
FIG. 2A is an exploded perspective view of an evaporator coil slab and the condensate pan ofFIG. 1A . -
FIG. 2B is a perspective view of an alternative embodiment of an evaporator coil slab exploded from the condensate pan. -
FIG. 3 is a cross-sectional view of the evaporator assembly ofFIGS. 1A and 1B . -
FIG. 4 is a top view of the condensate pan. -
FIG. 5 is a cross-sectional view of a corner section of the evaporator assembly shown inFIG. 3 . -
FIG. 6 is a perspective view of a bottom side of the condensate pan. -
FIG. 7A is a perspective view of a shield. -
FIG. 7B is a side view of the shield ofFIG. 7A . -
FIGS. 8A-8B illustrate a first step of attaching the shield onto a bottom of a coil slab.FIGS. 9A-9B illustrate a second step of attaching the shield onto the bottom of the coil slab. -
FIGS. 10A-10B illustrate a third step of attaching the shield onto the bottom of the coil slab. -
FIG. 11A is a perspective view of an alternative embodiment of a shield. -
FIG. 11B is a side view of the shield ofFIG. 11A . -
FIGS. 12A-12B show the shield ofFIG. 11A attached onto a bottom of a coil slab. -
FIG. 13 is a cross-sectional view of the shield ofFIG. 11A attached to a coil slab having three rows of coils. -
FIG. 14 is a perspective view of a condensate pan insert for the evaporator assembly. -
FIG. 15A is an enlarged perspective view of the evaporator assembly showing the condensate pan and pan insert. -
FIG. 15B is a sectional view showing the condensate pan insert secured to a front pan member of the condensate pan. -
FIG. 16 is a perspective view of a corner section of the evaporator assembly showing a delta plate prior to insertion into a first corner groove of the condensate pan. -
FIG. 17 is a side view of a corner portion of the delta plate coupled to a coil slab. -
FIG. 18 is a side view of the corner section of the evaporator assembly shown and described above in reference toFIG. 16 after the delta plate has been inserted into the first corner groove. -
FIG. 19A is a front view of a vertical condensate pan. -
FIG. 19B is a front view of the vertical condensate pan ofFIG. 19A coupled to a horizontal condensate pan. -
FIG. 20 is a perspective view of a corner portion of the vertical condensate pan coupled to the horizontal condensate pan. - The Evaporator Assembly (
FIGS. 1A-1B ) -
FIG. 1A is a perspective view ofevaporator assembly 2, which includescasing 4, A-frame evaporator coil (“coil”) 6,coil brace 8,first delta plate 10,second delta plate 12,horizontal condensate pan 14, drain holes 15,vertical condensate pan 16, drain holes 17,first cover 18, inputrefrigerant line 20, and outputrefrigerant line 22. When evaporatorassembly 2 is integrated into a heating and/or cooling system,evaporator assembly 2 is typically mounted above an air handler. The air handler includes a blower that cycles air throughevaporator assembly 2. In a down flow application, the blower circulates air in a downward direction (indicated by arrow 24) throughcasing 4 and overcoil 6. In an up flow application, the blower circulates air in an upward direction (indicated by arrow 26) throughcasing 4. -
Coil 6,condensate pan 14, andcondensate pan 16 are disposed withincasing 4, which is preferably a substantially airtight space for receiving and cooling air. That is, casing 4 is preferably substantially airtight except foropenings FIG. 1B ). In a down flow application, air is introduced intoevaporator assembly 2 throughopening 4A and exits throughopening 4B. In an up flow application, air is introduced intoevaporator assembly 2 throughopening 4B and exits throughopening 4A. In the embodiment shown inFIGS. 1A and 1B ,casing 4 is constructed of a single piece of sheet metal that is folded into a three-sided configuration, and may also be referred to as a “wrapper”. In alternate embodiments, casing 4 may be any suitable shape and configuration and/or formed of multiple panels of material. -
Coil 6 is a multi-poise A-frame coil, and may be oriented either horizontally or vertically. The vertical orientation is shown inFIGS. 1A and 1B . In a horizontal orientation,casing 4 is rotated 90° in a counterclockwise direction.Coil brace 8 is connected toair seal 28 and helps supportcoil 6 whencoil 6 is in its horizontal orientation. -
Coil 6 includesfirst slab 6A andsecond slab 6B connected byair seal 28. A gasket may be positioned betweenair seal 28 and first andsecond slabs air seal 28 andslabs second delta plates second slabs First slab 6A includes multiple turns of piping 30A with a series of thin,parallel plate fins 32 mounted onpiping 30A. Similarly,second slab 6B includes multiple turns of piping 30B with a similar series of thin, parallel fins mounted on piping 30B.Tube sheet 29A is positioned at an edge ofslab 6A, andtube sheet 29B is positioned at an edge ofslab 6B.Delta plates air seal 28, may be attached totube sheets - In the embodiment shown in
FIG. 1A ,coil 6 is a two-row coil. However, in alternate embodiments,coil 6 may include any suitable number of rows, such as three, as known in the art. Refrigerant is cycled through piping 30A and 30B, which are in fluidic communication with one another (throughpiping system 62, shown inFIG. 1B ). AsFIG. 1A illustrates,coil 6 includes input andoutput lines output lines first cover 18.Evaporator assembly 2 also includes access cover 38 (shown inFIG.1B ) adjacent tofirst cover 18, and together,first cover 18 and access cover 38 fully cover the front face of evaporator assembly 2 (i.e., the face which includes first cover 18).Access cover 38 will be described in further detail in reference toFIG. 1B . - As discussed in the Background section, if the temperature of
coil 6 surface is lower than the dew point of the air moving acrosscoil 6, water vapor condenses oncoil 6. Ifcoil 6 is horizontally oriented, condensation fromcoil 6 drips intocondensate pan 14, and drains out ofcondensate pan 14 through drain holes 15, which are typically located at the bottom ofcondensate pan 14. Ifcoil 6 is vertically oriented,condensate pan 16 collects the condensed water fromcoil 6, and drains the condensation through drain holes 17, which are typically located at the bottom ofcondensate pan 16. - Because
evaporator assembly 2 includeshorizontal condensate pan 14 andvertical condensate pan 16,evaporator assembly 2 is configured for applications involving a horizontal or vertical orientation ofcoil 6. In an alternate embodiment,evaporator assembly 2 is modified to be applicable to only a vertical orientation ofcoil 6, in which casehorizontal condensate pan 14 andbrace 8 are absent fromevaporator assembly 2. In another alternate embodiment,evaporator assembly 2 excludesvertical condensate pan 16 such thatevaporator assembly 2 is only applicable to horizontal orientations ofcoil 6. -
FIG. 1B is an exploded perspective view ofevaporator assembly 2 ofFIG. 1A .Front deck 39 andupper angle 40 are each connected tocasing 4 withscrews 41. Another suitable method of connectingfront deck 39 andupper angle 40 tocasing 4 may also be used, such as welding, an adhesive, or rivets.Front deck 39 andupper angle 40 provide structural integrity forcasing 4 and provide a means for connectingfront cover 18 and access cover 38 tocasing 4.Screw 43 attaches brace 8 (and thereby, air seal 28) tocondensate pan 14. Of course, other suitable means of attachment may be used in alternate embodiments. In addition toair seal 28,air splitter 44 is positioned betweenfirst slab 6A andsecond slab 6B ofcoil 6 and is attached by tabs ontube sheets coil 6. - Horizontal and vertical condensate pans 14 and 16 are typically formed of a plastic, such as polyester, but may also be formed of any material that may be casted, such as metal (e.g., aluminum).
Horizontal condensate pan 14 slides intocasing 4 and is secured in position by pan supports 46.Tabs 46A of pan supports 46 define a space forcondensate pan 14 to slide into. Whencoil 6 is in a horizontal orientation (andcasing 4 is rotated about 90° in a counterclockwise direction),coil 6 is positioned abovehorizontal condensate pan 14 so that condensation flows fromcoil 6 intohorizontal condensate pan 14.Air splitter 44 andsplash guards coil 6 intohorizontal condensate pan 14. - Condensation that accumulates in
horizontal condensate pan 14 eventually drains out ofhorizontal condensate pan 14 through drain holes 15.Gasket 52A is positioned around drain holes 15 prior to positioningfirst cover 18 over drain holes 15 in order to help provide a substantially airtight seal between drain holes 15 andfirst cover 18.First cover 18 includesopening 53A, which corresponds to and is configured to fit over drain holes 15 andgasket 52A. The substantially airtight seal helps prevent air from escaping fromcasing 4, and thereby increases the efficiency ofevaporator assembly 2.Caps 56A may be positioned over one or more drain holes 15, such as whenevaporator assembly 2 is used in an application in whichcoil 6 is vertically oriented. -
Vertical condensate pan 16 slides intocasing 4 and is supported, at least in part, byflange 48, which is formed by protruding sheet metal on three-sides ofcasing 4 andtop surface 39A offront deck 39. Specifically,bottom surface 16A ofcondensate pan 16 rests onflange 48 andtop surface 39A offront deck 39.Condensate pan 16 includesouter perimeter 49, insert 50, drain holes 17, which are sealed by gasket 52, and plurality ofribs 54. - One or more channels are positioned about
outer perimeter 49 ofvertical condensate pan 16 for receiving condensation fromcoil 6. In the vertical orientation ofcoil 6 illustrated inFIGS. 1A and 1B ,coil 6 is positioned abovevertical condensate pan 16 to allow condensation to flow along oneslab outer perimeter 49 ofvertical condensate pan 16. In this way, condensation collects incondensate pan 16. In some applications, such as whencoil 6 includes three rows of coils, insert 50 is positioned incondensate pan 16 to help shieldcoil 6 from condensate blow-off fromcondensate pan 16. -
Evaporator assembly 2 includes features, such asribs 54 andshield 58, that are configured to help direct condensation into the one or more channels alongouter perimeter 49 of vertical condensate pan 16 (whencoil 6 is vertically oriented).Shield 58 is attached totube sheet 29A and is configured to both guide condensation into a channel alongouter perimeter 49 ofcondensate pan 16 and help protectcoil 6 from condensation blow-off, which occurs when condensation that is collected incondensate pan 16 is blown into the air stream moving throughevaporator assembly 2. A similar shield is attached totube sheet 29B. - Condensation that accumulates in
vertical condensate pan 16 eventually drains out ofvertical condensate pan 16 through drain holes 17.Gasket 52B is positioned around drain holes 17 prior to positioningfirst cover 18 over drain holes 17 in order to help provide a substantially airtight seal between drain holes 17 andfirst cover 18.First cover 18 includesopening 53B, which corresponds to and is configured to fit over drain holes 17 andgasket 52B. The airtight seal helps prevent air from escaping fromcasing 4, and thereby increases the efficiency ofevaporator assembly 2.Cap 56B may be positioned over one or more drain holes 17. -
Piping system 62 fluidically connects piping 30A offirst slab 6A and piping 30B ofsecond slab 6B. Refrigerant flows through piping 32 and 30B, and is recirculated from and to a compressor through inlet andoutlet tubes piping inlet 20 and exits piping 30A and 30B throughoutlet 22. As known in the art,refrigerant inlet 20 includesrubber plug 64, andrefrigerant outlet 22 includesstrainer 66 andrubber plug 68.Inlet 20 protrudes through opening 70 infirst cover 18 andoutlet 22 protrudes through opening 72 infirst cover 18. By protruding throughfirst cover 18 and out ofcasing 4,inlet 20 andoutlet 22 may be connected to refrigerant lines that are fed from and to the compressor, respectively.Gasket 74 is positioned aroundinlet 20 in order to provide a substantially airtight seal aroundopening 70. Similarly,gasket 76 is positioned aroundoutlet 22. -
First cover 18 is attached tocasing 4 withscrews 78. However, in alternate embodiments, other means of attachment are used, such as welding, an adhesive, or rivets. Further covering a front face ofevaporator assembly 2 isaccess cover 38, which is abutted withfirst cover 18. Again, in order to help increase the efficiency ofevaporator assembly 2, it is preferred that joint 81 betweenfirst cover 18 and access cover 38 is substantially airtight. A substantially airtight connection may be formed by, for example, placing a gasket at joint 81. -
Access cover 38 is attached tocasing 4 withscrews 82. However, in alternate embodiments, any means of removably attachingaccess cover 38 tocasing 4 are used.Access cover 38 is preferably removably attached in order to provide access tocoil 6,condensate pan 16, and other components insidecasing 4 for maintenance purposes. One ormore labels 84, such as warning labels, may be placed onfirst cover 18 and/oraccess cover 38. - The Condensation Collection Process (
FIGS. 2A and 2B ) -
FIG. 2A is an exploded perspective view ofevaporator coil 6 andcondensate pan 16 ofFIG. 1A in a vertical orientation. As shown inFIG. 2A ,coil slab 6B is removed for purposes of clarity and discussion.FIG. 2A also includesshield 58A andtube sheet 29A, which is attached to an edge ofslab 6A. A similar tube sheet is also attached on an opposing edge ofslab 6A. - When the temperature of
coil slab 6A is lower than the dew point of the air moving acrossslab 6A, water vapor will condense onslab 6A. The condensation flows in a downward direction, due to gravity, alongcoil slab 6A towardshield 58A, as indicated byarrow 86.Shield 58A includes a plurality ofapertures 88 aligned to be offset from a plurality ofprimary channels 90 disposed betweenribs 54 ofcondensate pan 16.Apertures 88 are configured to help direct the condensation fromcoil slab 6A ontoribs 54 and then intoprimary channels 90. A similar plurality ofprimary channels 92 are located on an opposing side ofcondensate pan 16. The condensation inprimary channels 90 is then directed into one of the channels alongouter perimeter 49 ofcondensate pan 16, and eventually drained out ofcondensate pan 16 through drain holes 17. - In the embodiment shown in
FIG. 2A , there are eightribs 54 on each side ofcondensate pan 16. However, a condensate pan that includes more or less ribs is possible. - Although the above discussion focused on condensation draining from
coil slab 6A,coil slab 6B is positioned withinevaporator assembly 2 to allow condensation formed onslab 6B to drain in a similar manner. Thus,FIG. 2A refers tocoil slab 6A merely for purposes of example. -
FIG. 2B is a perspective view of an alternative embodiment of an evaporator coil exploded fromcondensate pan 16. As shown inFIG. 2B ,coil slab 6A′ has three rows of coils, and shield 58A′ is configured to engage with the wider three row coil slab. However, condensation formed oncoil slab 6A′ is collected incondensate pan 16 in a similar manner as described above in reference toFIG. 2A . It should be understood that an evaporator coil slab having any number of coils may be incorporated intoevaporator assembly 2. - Low-Sweat Condensate Pan 16 (
FIGS. 3-6 ) -
FIG. 3 is a cross-sectional view ofevaporator assembly 2showing coil 6 coupled tocondensate pan 16. InFIG. 3 ,shield 58A is coupled totube sheet 29A, and shield 58B (which is similar to shield 58A) is coupled totube sheet 29B.First coil slab 6A andsecond coil slab 6B engage with and are supported byribs 54 ofcondensate pan 16 such thatslabs condensate pan 16. The angled position ofcoil 6 allows condensation to drip down a side of a slab, as indicated byarrow 94 onfirst slab 6A. As discussed above, shields 58A and 58B are configured to catch and drain the condensation as it drips or flows downslabs Shields FIG. 7A . -
Condensate pan 16 is supported byflanges 48 ofcasing 4. In addition to providing support forcondensate pan 16,flanges 48 create an air pocket P to prevent streams of unconditioned air flowing in direction 26 (an upflow direction) from coming into contact with one or more channels located alongouter perimeter 49, as will be discussed in more detail below. -
FIG. 4 is a top view ofvertical condensate pan 16 shown and described above in reference toFIGS. 1A and 1B .Condensate pan 16 includesright pan member 100, leftpan member 102,front pan member 104, andrear pan member 106. As shown inFIG. 4 ,right pan member 100 and leftpan member 102 are positioned substantially parallel to each other. Furthermore,right pan member 100 and leftpan member 102 are substantially perpendicular to bothfront pan member 104 andrear pan member 106. Thus, pan members 100-106 form a generally rectangular structure with an open center portion. In addition,right pan member 100 andfront pan member 104 intersect to form firstinternal corner 101;left pan member 102 andfront pan member 104 intersect to form secondinternal corner 103;right pan member 100 andrear pan member 106 intersect to form thirdinternal corner 105; and leftpan member 102 andrear pan member 106 intersect to form fourthinternal corner 107. -
Outer perimeter 49 ofcondensate pan 16 includessecondary channel 108 disposed alongouter wall 110 ofright pan member 100,secondary channel 112 disposed alongouter wall 114 ofleft pan member 102, anddrain channel 116 disposed alongfront side 118 offront pan member 104.Secondary channels primary channels secondary channels channel 116, which allows condensation collected insecondary channels drain channel 116 for disposal through condensate drain holes 17. To direct the flow of condensation fromsecondary channels drain channel 116,secondary channels front pan member 104. As shown inFIG. 4 , drain holes 17 are positioned alongfront side 118 offront pan member 104, although drain holes 17 may be positioned anywhere that enables condensation to exitcondensate pan 16. - Although placing a secondary or drain channel in
rear pan member 106 is not necessary to properly drain the condensation inevaporator assembly 2, a rear pan member may be designed to also include a channel to catch condensation fromcoil 6.Rear pan member 106 shown inFIG. 4 is an example of such a pan member. However, even though a rear pan member may not include a channel, it is still an important component of a condensate pan for other reasons including, but not limited to, providing rigidity to the pan and providing a surface capable of receiving and supporting a delta plate. - As shown in
FIG. 4 ,condensate pan 16 also includesfirst corner groove 120,second corner groove 122,third corner groove 124, andfourth corner groove 126.First corner groove 120 andsecond corner groove 122 are each configured to receive a portion ofdelta plate 12, whilethird corner groove 124 andfourth corner groove 126 are each configured to receive a portion of a second delta plate similar todelta plate 12. In addition,condensate pan 16 includes a first plurality of delta plate supports 125A disposed withinfront pan member 104, and a second plurality of delta plate supports 125B disposed withinrear pan member 106. Delta plate supports 125A and 125B help to align and provide support for their respective delta plates when inserted intocondensate pan 16. AlthoughFIG. 4 showscondensate pan 16 with five delta plate supports 125A and five delta plate supports 125B, a condensate pan with any number of delta plate supports is possible. - Typically, sweat from the cold condensation forms on an underside of a condensate pan because streams of unconditioned air being blown through an evaporator assembly are at a higher temperature than the cool condensation collected in the condensate pan. If the unconditioned air is allowed to contact a surface of the pan that contains the cool condensation (such as the secondary channels), heat will transfer from the warmer unconditioned air to the cool pan surface, causing sweat to form on the condensate pan. Thus, in order to reduce sweat from an underside of the condensate pan, condensation must be quickly re-directed away from streams of unconditioned air that are contacting the underside of the pan.
-
FIG. 5 is a cross-sectional view of a corner section of the evaporator assembly shown inFIG. 3 . As shown inFIG. 5 ,right pan member 100 further includesinner wall 127, outerair pocket wall 128, and innerair pocket wall 130. Outerair pocket wall 128 and innerair pocket wall 130 extend in a downward direction frombottom side 132 ofright pan member 100 along a longitudinal length ofright pan member 100. Whencondensate pan 16 is removed fromevaporator assembly 2, such as inFIG. 1B ,secondary channel 108 is open to streams of unconditioned air U. However, when properly positioned withincasing 4 as shown inFIG. 5 ,flange 48 mates with outerair pocket wall 128 and innerair pocket wall 130 to create air pocket P. Thus,flange 48 creates a barrier between streams of unconditioned air U andsecondary channel 108. - In the embodiment shown in
FIG. 5 ,primary channels 90 are sloped towardsecondary channel 108 frominner wall 127 toouter wall 110 ofright pan member 100. As condensation fromfirst coil slab 6A drips in a downward direction towardcondensate pan 16, the condensation is directed intoright pan member 100 byshield 58A. As discussed above in reference toFIG. 2A , the apertures inshield 58A are configured to provide a path for the condensation intoprimary channels 90. The slopedprimary channels 90 quickly direct the condensation towardouter wall 100 and intosecondary channel 108, as indicated by a condensation path depicted byarrows 134. As a result, a pool of cold condensation C is created insecondary channel 108. As discussed above in reference toFIG. 4 ,secondary channel 108 is sloped towardfront pan member 104 to quickly direct cold condensation intodrain channel 116. Furthermore,drain channel 116 is also sloped in a downward direction fromright pan member 100 to leftpan member 102 to direct the condensation toward drain holes 17. By providing a series of sloped channels, the condensation may be quickly removed fromcondensate pan 16. - The design of
condensate pan 16 reduces the formation of sweat on an underside ofcondensate pan 16 by quickly re-directing the condensation towardsecondary channel 108 alongouter wall 100, and providing air pocket P between streams of unconditioned air U and the pool of cold condensation C. In particular,flange 48 ofcasing 4 prevents streams of unconditioned air U from reachingsecondary channel 108. Air pocket P prevents (or at least slows down) the transfer of heat from the warmer streams of unconditioned air to the cooler surface ofsecondary channel 108 caused by cold condensation C present inchannel 108. As a result of quickly directing condensation toward an outer portion ofcondensate pan 16 that is shielded from warm streams of unconditioned air, the formation of sweat oncondensate pan 16 is reduced. - Although the above discussion in reference to
FIG. 5 focused onright pan member 100, leftpan member 102 includes similar features to reduce the formation of sweat oncondensate pan 16. Thus, it should be understood that the discussion above applies in the same manner (except for the element numbers) to leftpan member 102 as well. -
FIG. 6 is a perspective view of a bottom side of one embodiment ofcondensate pan 16. In the embodiment shown inFIG. 6 , the bottom side ofright pan member 100 further includes a plurality ofsupport members 138 perpendicular to and extending between innerair pocket wall 130 andouter wall 110. A bottom side ofleft pan member 102 includes a similar plurality of support members.Support members 138 provide rigidity toright pan member 100, and are configured to mate withflange 48 incasing 4 to supportcondensate pan 16 and prevent a stream of unconditioned air from contacting a bottom side ofsecondary channel 108. - Although the above discussion has focused on a condensate pan for use with coil slabs containing two rows of coils, the condensate pan may also be used with coil slabs containing more than two rows of coils. Furthermore, although a preferred material for the construction of
condensate pan 16 is a plastic, such as polyester, other materials such as metals may also be used. -
Shields FIGS. 7A-13 ) -
Shields evaporator assembly 2; however, shields 58A and 58B are of particular benefit in a down flow arrangement in which air is circulated downward (indicated byarrow 24 inFIG. 1A ) from aboveevaporator assembly 2. Water (i.e., condensate) blow-off fromcoil 6 is more likely in a down flow arrangement ofevaporator assembly 2.Shields coil 6, and directing the condensation intocondensate pan 16. -
FIG. 7A is a perspective view ofshield 58A ofFIG. 2A .Shield 58A is configured to wrap around a bottom ofcoil slab 6A and couple withtube sheet 29A.Shield 58A includesbottom member 150 having insidebottom portion 151 andoutside bottom portion 152, insideextension member 154, andoutside extension member 156. Insidebottom portion 151 includesapertures 88 described above in reference toFIG. 2A .Outside extension member 156 includeslip 158 havingtabs shield 58A is coupled to a bottom ofcoil slab 6A,slab 6A and shield 58A are angled such that, as the condensation drains intoshield 58A, it is directed towardinside extension member 154 and drains throughapertures 88. -
Apertures 88 are spaced apart along insidebottom portion 151, and are configured to allow the condensation to drain throughbottom member 150 ofshield 58A. In the embodiment shown inFIG. 7A ,apertures 88 are slots that extend across insidebottom portion 151; however, it is recognized thatshield 58A could be designed with various other types of apertures or openings formed onbottom member 150 ofshield 58A. As shown inFIG. 7A ,shield 58A has nineapertures 88. However, shield 58A may be designed with more or less apertures. -
Bottom portion 150 is configured to be positioned under a bottom end ofcoil slab 6A.Inside extension member 154 is configured to be positioned on an inside surface ofcoil slab 6A.Outside extension member 156 is configured to be positioned on an outside surface ofcoil slab 6A.Tabs lip 158 ofoutside extension member 156, are configured to engage withtube sheet 29A and a similar tube sheet on an opposing edge ofcoil slab 6A. -
FIG. 7B is a side view ofshield 58A ofFIG. 7A showingbottom member 150, insideextension member 154 andoutside extension member 156 includinglip 158. As shown inFIG. 7B , insidebottom portion 151 is oriented at a slight angle relative tooutside bottom portion 152, such that insidebottom portion 151 slopes downward towardinside extension member 154.FIGS. 8A-10B illustrate general steps in one system and method for attachingshield 58A onto a bottom ofcoil slab 6A.FIG. 8A showstube sheet 29A, which is attached to an edge ofcoil slab 6A, and positioned aboveshield 58A.FIG. 8B is a rotated view ofFIG. 8A showingcoil slab 6A (includingfins 32A and piping 30A) and shield 58A (includingoutside extension member 156 andtabs - Specifically,
FIGS. 8A and 8B depict a first step of attachingshield 58A onto a bottom surface ofcoil slab 6A. As shown inFIGS. 8A and 8B ,shield 58A is initially positioned below a bottom ofcoil slab 6A.Shield 58A is then moved upward towardcoil slab 6A, as indicated byarrows 164. -
FIGS. 9A and 9B depict a second step of attachingshield 58A ontocoil slab 6A. As shown inFIGS. 9A and 9B ,shield 58A has moved upward such thatinside extension member 154 is slid onto an inner side ofcoil slab 6A, andoutside extension member 156 has moved upward such thatlip 158 is nearnotch 166 ontube sheet 29A.Notch 166 ontube sheet 29A is configured to receivetab 159A extending fromlip 158. A similar notch on the opposing tube sheet is similarly configured to receivetab 159B extending from the other end oflip 158. -
FIGS. 10A and 10B depict a third step of attachingshield 58A ontocoil slab 6A. As shown inFIGS. 10A and 10B ,shield 58A has been moved upward such that the bottom surface ofcoil slab 6A is resting onoutside bottom portion 152 ofshield 58A.Outside extension member 156 is positioned such thatlip 158contacts fins 32A andtab 159A oflip 158 is received throughnotch 166 ontube sheet 29A. Similarly,tab 159B is received through the notch on the opposing tube sheet.Inside extension member 154 is contacting a set of fins, similar tofins 32A, on the inside surface ofcoil slab 6A. As described above in reference toFIG. 7B , insidebottom portion 151 is angled relative tooutside bottom portion 152. Thus, insidebottom portion 151 is angled relative to the bottom surface ofslab 6A, as shown inFIG. 10A . As such,apertures 88 ofshield 58A are visible inFIG. 10B . -
Inside extension member 154 andoutside extension member 156 are configured to flex during attachment ontocoil slab 6A, particularly during steps two and three described above underFIGS. 9A-9B and 10A-10B.Shield 58A is designed to spring-fit ontocoil slab 6A such thatinside extension member 154 andoutside extension member 156 open up and then spring back toward their original configuration onceshield 58A is attached oncoil slab 6A. - In the preferred embodiment of
shield 58A described above,shield 58A is attachable tocoil slab 6A without requiring any fasteners. However, it is recognized thatshield 58A andcoil slab 6A may be designed to incorporate other suitable means of attachingshield 58A tocoil slab 6A using, for example, screws, rivets or other types of fasteners. - Referring back to
FIG. 5 ,coil slab 6A and shield 58A are shown coupled tocondensate pan 16. As explained above in reference toFIG. 3 ,coil slab 6A and shield 58A are supported byribs 54 ofcondensate pan 16 such thatcoil slab 6A and shield 58A are oriented at an angle relative tocondensate pan 16. As explained above in reference toFIG. 2A , apertures 88 oninside bottom portion 151 ofshield 58A are aligned withribs 54 ofcondensate pan 16. InFIG. 5 ,bottom member 150 is substantially flat, despite insidebottom portion 151 being originally configured at a slight angle relative tooutside bottom portion 152, as shown inFIG. 7B . Whencoil slab 6A and shield 58A are coupled to pan 16, insidebottom portion 151 is brought closer into alignment withoutside bottom portion 152 due to contact withribs 54. - Due to the angle of
coil slab 6A and shield 58A relative tocondensate pan 16, as the condensation drips downslab 6A and intoshield 58A, the condensation is directed towardinside extension member 154 and then throughapertures 88. After the condensation drains throughapertures 88 ofinside bottom portion 151, the condensation flows ontoribs 54 and intoprimary channels 90. -
Primary channels 90 are sloped downward such that the condensation will automatically flow intosecondary channel 108 disposed alongouter wall 110 ofright pan member 100.Shield 58A is typically formed from a thin, single sheet of metal. In one embodiment,shield 58A is made from aluminum to prevent corrosion. However, other materials may be used without diminishing the functionality ofshield 58A. -
Shield 58B, shown inFIG. 3 , is similar to shield 58A and is attachable tosecond coil slab 6B in a similar manner to howshield 58A is attachable tocoil slab 6A.Shield 58B is configured to drain condensation fromsecond coil slab 6B intoprimary channels 92 on an opposing side of condensate pan 16 (seeFIG. 4 ). -
FIG. 11A is a perspective view ofshield 58A′, which is an alternative embodiment ofshield 58A ofFIG. 7A .Shield 58A′ is shown inFIG. 2B and is configured to engage withcoil slab 6A′ which is a wider three row coil slab.Shield 58A′ similarly includesbottom member 150′ having insidebottom portion 151′ andoutside bottom portion 152′, insideextension member 154′, andoutside extension member 156′.Lip 158′ is connected tooutside extension member 156′ and includestabs 159A′ and 159B′ extending from opposing ends. - Similar to shield 58A,
bottom member 150′ ofshield 58A′ includesapertures 88′.Apertures 88′ are spaced apart along insidebottom portion 151′ and eachaperture 88′ extends across insidebottom portion 151′. However, inshield 58A′, a different type of aperture is used, as compared to shield 58A, to direct the condensation towardinside extension member 154′ and then out throughbottom member 150′. - In this embodiment,
apertures 88′ formed on insidebottom portion 151′ ofshield 58A′ comprise a plurality of shield channels. As shown inFIG. 2B , whenshield 58A′ is assembled oncoil slab 6A′, the shield channels are aligned withprimary channels 90 ofcondensate pan 16 and are configured to drain the condensation out ofshield 58A′ and intocondensate pan 16. It should be understood that shield channels are merely one example of an aperture design that may be used to direct condensation from a coil slab into a condensate pan. Moreover, shield 58A′ ofFIG. 1A is shown with eight shield channels formed on insidebottom portion 151; however, it is recognized that more or less shield channels may incorporated intoshield 58A′. -
FIG. 11B is a side view ofshield 58A′ ofFIG. 11A showingbottom member 150′, insideextension member 154′,outside extension member 156′, andlip 158′. As described above,apertures 88′ are shield channels and are configured to extend belowbottom member 150′. -
FIGS. 12A and 12B show shield 58A′ attached onto a bottom surface ofcoil slab 6A′.Shield 58A′ is attached ontocoil slab 6A′ in a similar manner as described above underFIGS. 8A-10B in reference to attachment ofshield 58A ontocoil slab 6A. - As shown in
FIGS. 12A and 12B ,tab 159A′ onlip 158′ is inserted throughnotch 166′ ontube sheet 29A′.Tab 159B′ is inserted through a similar notch on an opposing tube sheet. Whenshield 58A′ is attached oncoil slab 6A, a bottom surface ofcoil slab 6A′ rests onbottom portion 150′.Apertures 88′ are configured to extend belowbottom member 150′ ofshield 58A′.FIG. 13 is a cross-sectional view ofshield 58A′ ofFIG. 11A attached tocoil slab 6A′ and coupled tocondensate pan 16. Again, shield 58A′ is configured such that the condensation that drains intoshield 58A′ is directed towardinside extension portion 154′ and then throughapertures 88′.Apertures 88′ are aligned withprimary channels 90 ofcondensate pan 16 such that the condensation drains is throughapertures 88′ intoprimary channels 90. The condensation is then drained out ofcondensate pan 16 in the same manner as described above. - A shield similar to shield 58A′ is attachable to a second coil slab of
evaporator assembly 2 in a similar manner. - In the preferred embodiments described above,
shield 58A is configured to be attached to a coil slab with two rows of coils, and shield 58A′ is configured to be attached to a coil slab with three rows of coils. Moreover,apertures 88 ofshield 58A are described as being configured to align withribs 54 ofcondensate pan 16, whereasapertures 88′ ofshield 58A′ are described as being configured to align withprimary channels 90 ofcondensate pan 16. However, it is recognized that either embodiment ofshields ribs 54 orprimary channels 90 ofcondensate pan 16. Additionally, the shields described above are configured to be used with multiple coil sizes. - Condensate Pan Insert 50 (
FIGS. 14, 15A , and 15B) -
FIG. 14 is a perspective view of a representative embodiment ofcondensate pan insert 50, which includescover member 170,pan wall member 172,snap member 174,first wing member 176, andsecond wing member 178.Cover member 170 hasfirst end 180,second end 182,front side 184, andrear side 186. As shown inFIG. 14 ,pan wall member 172 is positioned atfront side 184,first wing member 176 is positioned atfirst end 180, andsecond wing member 178 is positioned atsecond end 182 ofcover member 170. - When inserted into
condensate pan 16 as shown inFIG. 1B ,condensate pan insert 50 is configured to cover an open top ofdrain channel 116, thereby enclosingdrain channel 116 to prevent a stream of air from contacting the condensation collected incondensate pan 16. Withoutcondensate pan insert 50 positioned withincondensate pan 16,evaporator assembly 2 is more susceptible to condensation blow-off. Condensation blow-off occurs when condensation that is collected incondensate pan 16 is blown into the air stream moving throughevaporator assembly 2. As a result, condensation may be blown into the furnace or surrounding duct-work, potentially leading to problems such as moisture build-up or mold. - Although
FIGS. 1A and 1B depictevaporator assembly 2 havingcoil 6 with only two rows of coils,condensate pan insert 50 is particularly useful in an embodiment wherecoil 6 has three or more rows of coils. In general, whenevaporator assembly 2 is operating in a down flow application, a larger number of coil rows correlates with a larger velocity of a stream of air circulated by the blower in the downward direction (as indicated byarrow 24 inFIG. 1A ). As a result of the increased velocity, there is a greater chance that the stream of air will hitdrain channel 116 and prevent accumulated condensation from flowing properly fromsecondary channels drain channel 116, thereby leading to condensation blow-off. - A first air gap is formed between
first coil slab 6A andsecondary channel 108 whenevaporator assembly 2 is fully assembled. Similarly, a second air gap is formed betweensecond coil slab 6B andsecondary channel 112 whenevaporator assembly 2 is fully assembled. Whencondensate pan insert 50 is properly secured tofront pan member 104,first wing member 176 andsecond wing member 178 are configured to be inserted into the first and second air gaps, respectively. Once inserted into the air gaps,first wing member 176 andsecond wing member 178 function withcover member 170 to prevent a stream of air from enteringsecondary channel 108,secondary channel 112, ordrain channel 116 during a down flow application ofevaporator system 2. Thus, in the embodiment shown inFIG. 14 ,first wing member 176 andsecond wing member 178 act together withcover member 170 to prevent condensation blow-off during a down flow application ofevaporator system 2. - In other embodiments of
evaporator system 2, the coil slabs and the secondary channels may couple with each other in such a way that the first and second air gaps are eliminated, thereby preventing a stream of air from entering the secondary channels without the need for the wing members. Therefore, in such embodiments,first wing member 176 andsecond wing member 178 are not a necessary part ofcondensate pan insert 50. - As shown in
FIG. 15A ,front side 118 offront pan member 104 includes arecess 192 along atop edge 194. When properly secured tofront pan member 104 ofcondensate pan 16,pan wall member 172 mates withrecess 192 infront pan member 104 to form a portion offront side 118. In particular,angled contour 188 ofpan wall member 172 mates with an angled contour ofrecess 192 to create a substantially smooth and continuoustop edge 194 onfront side 118 offront pan member 104. - Furthermore,
condensate pan insert 50 may include one or more raisedarch portions 190 as shown inFIG. 14 . In some embodiments ofcondensate pan 16, drain holes 17 may extend higher (closer towardtop edge 194 of front pan member 104) alongfront side 118 thandrain channel 116. As a result, a portion of drain holes 17 would not be protected bycover member 170 ofcondensate pan insert 50. Thus, raisedarch portions 190 are positioned alongfront side 184 ofcover member 170 and are configured to receive and provide a cover for drain holes 17. -
FIG. 15B is a side view ofcondensate pan insert 50 secured tofront pan member 104. As shown inFIG. 15B , when properly positioned withincondensate pan 16,cover member 170 extends betweenfront side 118 andsurface 196 offront pan member 104 to enclose an otherwise open side ofdrain channel 116.Condensate pan insert 50 thus forms a barrier between a stream of air A abovecover member 170 and condensation C collected indrain channel 116 belowcover member 170. -
Snap member 174 further compriseslip 198 that engages withbottom edge 200 offront side 118 to securecondensate pan insert 50 tofront pan member 104.Lip 198 ensures thatcondensate pan insert 50 remains securely fastened tofront pan member 104 during shipment and operation ofevaporator assembly 2. In other embodiments,lip 198 engages with another feature offront side 118 other thanbottom edge 200. For example,front pan member 104 may include a slot configured to receivelip 198 to securely fastencondensate pan insert 50 tocondensate pan 16. Other means of attachment are also available for securingcondensate pan insert 50 tocondensate pan 16. -
Cover member 170 ofcondensate pan insert 50 may includetop surface 202 that is sloped in a downward direction betweenfront side 118 andrear side 204 offront pan member 104. A slopedtop surface 202 directs condensation that drips ontocover member 170 during the operation of evaporator assembly 2 (such as from blow-off as discussed above) towardrear side 204 offront pan member 104, as indicated byarrow 205. Additionally,cover member 170 may be designed such that whencover member 170 engages withsurface 196 offront pan member 104,gap 206 is formed.Gap 206 allows condensation that dripped ontocover member 170 and was directed toward rear side 204 (as shown by arrow 205) to be re-directed ontosurface 196, which may be sloped in a downward direction towarddrain channel 116. As a result, the condensation eventually flows intodrain channel 116, as indicated byarrow 208. Although slopedtop surface 202 andgap 206 are not a necessary component ofcondensate pan insert 50, they provide an additional benefit that increases the effectiveness of the insert. For instance, in an embodiment that does not incorporate slopedtop surface 202 andgap 206, condensation that drips ontocover member 170 may end up being blown into the furnace or duct-work, resulting in problems such as those previously discussed. - A preferred material for manufacturing
condensate pan insert 50 is a plastic, such as polycarbonate. However,condensate pan insert 50 may be formed from other materials, such as various types of metal including sheet metal or aluminum. In addition,condensate pan insert 50 is preferably injection molded to form a single part. Alternatively, the various components of condensate pan insert 50 (such asright pan member 100, leftpan member 102,front pan member 104, and rear pan member 106) may be formed as separate parts and secured together by means such as welding or gluing. - Internal Corner Feature of Condensate Pan 16 (
FIGS. 16-18 ) - In typical evaporator assemblies, a gap is formed on the four internal corners of the condensate pan where the delta plate and the coil slab engage with the condensate pan. These gaps are generally due to round radii on the internal corners of the condensate pan to improve strength. In down flow applications, streams of high velocity air pass by the gap, with some of these high velocity streams entering the gap. This poses a problem because the air streams may get in between the coil slab and the condensate pan. As a result, condensation on the coil slab or condensate pan may get caught-up in the streams of high velocity air between the slab and the pan and end up being blown-off of those surfaces. Condensation blow-off due to high velocity air entering these gaps is undesirable because the condensation that is blown-off of the coil slab or condensate pan cannot be controlled, and as a result, it may be carried into the furnace or duct-work by the air streams. Among other things, blown-off condensation may harm the furnace components or result in moisture build-up or mold formation in the furnace or duct-work. The design of
condensate pan 16 reduces condensation blow-off by placing a corner groove member in each of the internal pan corners in order to eliminate the gap and prevent streams of high velocity air from getting in between the coil slab and condensate pan. -
FIG. 16 is a perspective view of a corner section ofevaporator assembly 2 showingdelta plate 12 prior to insertion intofirst corner groove 120.First corner groove 120 includesfirst rib 220 andsecond rib 222.First rib 220 andsecond rib 222 are spaced apart and configured to receivedelta plate 12. As shown inFIG. 16 ,first corner groove 120 forms a portion of one ofribs 54 near firstinternal corner 101. Onceevaporator assembly 2 is assembled as shown inFIG. 1A , a portion ofdelta plate 12 will be positioned withinfirst corner groove 120, thereby preventing the formation of a gap near firstinternal corner 101. - As shown in
FIG. 16 ,condensate pan 16 includesaperture 224 configured to receivetab 226 ofdelta plate 12.Tab 226 ofdelta plate 12 is configured to be inserted intoaperture 224 to securedelta plate 12 tocondensate pan 16. Delta plate supports 125A are configured to aligndelta plate 12 withincondensate pan 16 and provide support so thattab 226 is not inadvertently removed fromaperture 224. Furthermore, delta plate supports 125A may be configured to supportdelta plate 12 so that an inner surface ofdelta plate 12 remains substantially flush withinner wall 204. - Although
FIG. 16 focuses onfirst corner groove 120, the other corner grooves ofcondensate pan 16 also include a pair of ribs spaced apart and configured to receive a portion of a delta plate to reduce condensation blow-off. For instance,third corner groove 124 andfourth corner groove 126 each include a pair of ribs configured to receive a delta plate similar todelta plate 12. In a preferred embodiment, all of the corner grooves are constructed from the same material ascondensate pan 16. However, in the alternative, other materials may be used to create corner grooves 120-126. -
FIG. 17 is a side view of a corner portion ofdelta plate 12 andcoil slab 6A.Delta plate 12 further includesbottom edge 228 andcorner 230. As shown inFIG. 17 ,bottom edge 228 ofdelta plate 12 extends below abottom edge 232 ofcoil slab 6A. Positioningbottom edge 228 belowcoil slab 6A allowscorner 230 and a portion ofbottom edge 228 to be inserted intofirst corner groove 120 betweenfirst rib 220 andsecond rib 222, as will be shown in the following figure. -
FIG. 18 is a side view of the corner section ofevaporator assembly 2 shown and described above in reference toFIG. 16 . As shown inFIG. 18 ,coil 6 has been coupled tocondensate pan 16 such thatcoil slab 6A is resting on and being supported byribs 54, and a portion ofdelta plate 12 is positioned withinfirst corner groove 120. In particular,first corner groove 120 is configured to receivedelta plate 12 in such a way thatcorner 230 and a portion ofbottom edge 228 are disposed withinfirst corner groove 120, as indicated by the broken lines withinrib 54. Whendelta plate 12 is properly positioned withinfirst corner groove 120, all major gaps or openings are eliminated in firstinternal corner 101 ofcondensate pan 16. Thus, because the gaps and openings are eliminated, streams of high velocity air are no longer able to bypassdelta plate 12 and get in betweencoil slab 6A andcondensate pan 16. As a result, condensation blow-off from the internal corners ofcondensate pan 16 is reduced or eliminated. - Non-Modifying Slope Attachment of
Condensate Pan 14 to Condensate Pan 16 (FIGS. 19A, 19B , and 20) - In a multi-poise A-coil such as that shown and described above in reference to
FIGS. 1A and 1B , a horizontal condensate pan is used to collect condensation coming off of an evaporator coil during a horizontal application of an evaporator assembly, and a vertical condensate pan is used to collect condensation coming off of the coil during a vertical application of the evaporator assembly. In general, the horizontal and vertical condensate pans form an “L” when they are assembled together within a casing of the evaporator assembly. Although evaporator assemblies may be assembled to include only a horizontal or a vertical condensate pan (as discussed in reference toFIG. 1A ), assembling the evaporator assembly with both condensate pans makes the assembly more universal by allowing use in both vertical and horizontal applications. -
FIG. 19A is a front view ofvertical condensate pan 16 ofevaporator assembly 2 resting on surface S. As shown inFIG. 19A , a bottom side ofleft pan member 102 includesnotch 240.Notch 240 extends along the bottom side ofleft pan member 102, and is configured to receive a bottom wall ofhorizontal condensate pan 14 whenevaporator assembly 2 is assembled to include bothpans casing 4. In a preferred embodiment ofcondensate pan 16,notch 240 is about 3 millimeters wide, which correlates with a typical thickness of a condensate pan wall. -
FIG. 19B is a front view ofvertical condensate pan 16 coupled tohorizontal condensate pan 14. As shown by the broken lines withinbottom portion 242 ofcondensate pan 14,pan 14 is configured to receivecondensate pan 16 such that a portion ofleft pan member 102 is resting on an inner pan wall withinbottom portion 242 ofcondensate pan 14.Recess 244 is configured to allowcondensate pan 16 to nest withincondensate pan 14 in such a way thatright side 246 ofpan 14 does not interfere with drain holes 17. - As shown in
FIG. 19B , when condensate pans 14 and 16 are coupled together, pan 16 remains in the exact same position relative to surface S as it did prior to being coupled with pan 14 (FIG. 19A ). This is an improvement over prior art designs in which coupling a vertical condensate pan with a horizontal condensate pan results in a bottom surface of the vertical condensate pan being angled relative to a surface below. An angled position of the prior art condensate pan modifies the slopes of channels within the pan, potentially creating drainage problems such as stagnation or accumulation of the collected condensation. -
Evaporator assembly 2 is designed in such a way thathorizontal condensate pan 14 andvertical condensate pan 16 may be coupled together without changing the slope of any condensate pan channels. As discussed previously in reference toFIGS. 3-6 ,vertical condensate pan 16 is designed for minimum condensation retention and quick drainage in vertical applications ofcoil 6. In particular,primary channels secondary channels front pan member 104 to direct the condensation intodrain channel 116.Drain channel 116 is sloped in a downward direction fromright pan member 100 to leftpan member 102 to direct the condensation toward drain holes17. These sloped channels are designed to optimize the flow of condensation throughcondensate pan 16 and out of drain holes 17. Therefore, by allowingcondensate pan 14 to couple withcondensate pan 16 without changing the slope of any channels,condensate pan 16 functions to properly drain condensation whenevaporator assembly 2 is operating in a vertical configuration regardless of whether both pans are coupled together withincasing 4. - In addition, since
condensate pan 16 remains in the exact same position relative to surface S whether or not it is coupled withcondensate pan 14, the position of drain holes 17 also remains constant. Thus, unlike prior art designs, it is not necessary to enlarge opening 53B offirst cover 18 in order to accommodate changing locations of drain holes 17. As a result,opening 53B is designed to provide a tighter fit around drain holes 17 which, when combined withgasket 52B (as described above in reference toFIG. 1B ), provides an improved airtight seal that increases the efficiency ofevaporator assembly 2. In addition, the tighter fit of opening 53B around drain holes 17 is beneficial in shipping becausefirst cover 18 is also configured to securecondensate pan 16 in position withincasing 4, thereby decreasing movement ofpan 16 during shipping and handling ofevaporator assembly 2. -
FIG. 20 is a perspective view ofhorizontal condensate pan 14 coupled withvertical condensate pan 16. As shown inFIG. 20 ,horizontal condensate pan 14 includessupport member 250 onrear side 252.Support member 250 is configured to rest ontop edge 254 ofrear pan member 106 whenhorizontal condensate pan 14 is coupled withvertical condensate pan 16.Support member 250 functions to provide many important benefits toevaporator assembly 2. One benefit provided bysupport member 250 is a tight and rigid connection between condensate pans 14 and 16. Another benefit provided bysupport member 250 is a means for securingcondensate pan 14 tocondensate pan 16 such that the bottom wall ofpan 14 remains withinnotch 240, as shown and described above in reference toFIG. 19B . It should be understood thatnotch 240 is merely one example of a support feature that may help provide a secure and rigid connection betweenhorizontal condensate pan 14 andvertical condensate pan 16. - The terminology used herein is for the purpose of description, not limitation. Specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as bases for teaching one skilled in the art to variously employ the present invention. Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/337,107 US20070169501A1 (en) | 2006-01-20 | 2006-01-20 | Condensate pan internal corner design |
CA002574421A CA2574421A1 (en) | 2006-01-20 | 2007-01-17 | Condensate pan internal corner design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/337,107 US20070169501A1 (en) | 2006-01-20 | 2006-01-20 | Condensate pan internal corner design |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070169501A1 true US20070169501A1 (en) | 2007-07-26 |
Family
ID=38283440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/337,107 Abandoned US20070169501A1 (en) | 2006-01-20 | 2006-01-20 | Condensate pan internal corner design |
Country Status (2)
Country | Link |
---|---|
US (1) | US20070169501A1 (en) |
CA (1) | CA2574421A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120031134A1 (en) * | 2010-08-04 | 2012-02-09 | Mitsubishi Electric Corporation | Indoor unit of air-conditioning apparatus and air-conditioning apparatus |
US20120151953A1 (en) * | 2010-12-17 | 2012-06-21 | Advanced Distributor Products Llc | Drain pan rail for use in a heating ventilation air conditioning system |
JP2013221687A (en) * | 2012-04-17 | 2013-10-28 | Hitachi Appliances Inc | Air conditioner |
EP2672215A1 (en) * | 2012-06-08 | 2013-12-11 | Alfa Laval Corporate AB | Plate heat exchanger |
US20140131024A1 (en) * | 2012-11-15 | 2014-05-15 | Mitsubishi Electric Corporation | Outdoor unit for air conditioner |
US20150090349A1 (en) * | 2013-09-27 | 2015-04-02 | Diversitech Corporation | Condensate Overflow Detection Device |
US20150135507A1 (en) * | 2011-09-20 | 2015-05-21 | Hamilton Sundstrand Corporation | Protective leakage shield for liquid to air heat exchanger |
US20150153064A1 (en) * | 2013-12-04 | 2015-06-04 | Carrier Corporation | Multi-poise condensate drain pan |
US20150153094A1 (en) * | 2013-12-04 | 2015-06-04 | Carrier Corporation | Multi-poise condensate drain pan |
USD769430S1 (en) * | 2014-11-19 | 2016-10-18 | Mitsubishi Electric Corporation | Drain pan for heat exchanger |
US20170108230A1 (en) * | 2014-05-22 | 2017-04-20 | Mitsubishi Electric Corporation | Heat exchange unit and air-conditioning apparatus |
US20170254559A1 (en) * | 2014-11-27 | 2017-09-07 | Mitsubishi Electric Corporation | Heat exchange unit and air-conditioning apparatus |
US20180094860A1 (en) * | 2016-09-30 | 2018-04-05 | Daikin Industries, Ltd. | Heat exchange unit |
US20180106506A1 (en) * | 2015-12-18 | 2018-04-19 | Friedrich Air Conditioning, Llc | Variable refrigerant package |
US20190003729A1 (en) * | 2017-06-29 | 2019-01-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Air-conditioning outdoor machine |
USD840008S1 (en) * | 2014-11-19 | 2019-02-05 | Mitsubishi Electric Corporation | Drain pan for heat exchanger |
US20190133341A1 (en) * | 2015-03-03 | 2019-05-09 | Killion Industries, Inc. | Refrigerated Case with a Self-Contained Condensate Removal System |
US20200011550A1 (en) * | 2018-07-05 | 2020-01-09 | Therma-Stor LLC | Drainage System for a Portable Dehumidifier |
US10871306B2 (en) | 2019-01-02 | 2020-12-22 | Johnson Controls Technology Company | Modular drain pans for HVAC systems |
US20210010726A1 (en) * | 2019-07-10 | 2021-01-14 | Dometic Sweden Ab | Compressor Cooling Aggregate for a Refrigerator or a Cooler |
US20210222908A1 (en) * | 2018-05-15 | 2021-07-22 | Patrice Bastiand | Air handling unit |
US11221151B2 (en) * | 2019-01-15 | 2022-01-11 | Johnson Controls Technology Company | Hot gas reheat systems and methods |
US20220032767A1 (en) * | 2018-09-27 | 2022-02-03 | Valeo Systemes Thermiques | Heat exchanger module for a motor vehicle |
US11530829B2 (en) * | 2018-11-14 | 2022-12-20 | Rheem Manufacturing Company | Overflow sensor assembly in temperature control systems |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2746262A (en) * | 1954-01-11 | 1956-05-22 | Albert M Gallo | Ice making machine |
US3097506A (en) * | 1961-08-14 | 1963-07-16 | Sr George R Blakesley | Air conditioner apparatus |
US3203199A (en) * | 1963-12-10 | 1965-08-31 | Gen Motors Corp | Refrigerating apparatus |
US3470945A (en) * | 1966-08-27 | 1969-10-07 | Friedrich H Schmidt | Air conditioning apparatus |
US3620039A (en) * | 1969-12-22 | 1971-11-16 | Carrier Corp | Evaporator coil package |
US3831670A (en) * | 1973-10-15 | 1974-08-27 | Gen Electric | A-coil with improved air deflector |
US4000779A (en) * | 1975-11-28 | 1977-01-04 | General Electric Company | Blowoff baffle |
US4129013A (en) * | 1977-09-01 | 1978-12-12 | Westinghouse Electric Corp. | Air-conditioning unit with multi-position coil |
US5152154A (en) * | 1991-11-12 | 1992-10-06 | Sullivan John T | Fan coil unit |
US5207074A (en) * | 1991-01-08 | 1993-05-04 | Rheem Manufacturing Company | Refrigerant coil apparatus and associated condensate drain pan structure |
US5613554A (en) * | 1995-06-23 | 1997-03-25 | Heatcraft Inc. | A-coil heat exchanger |
US5715697A (en) * | 1996-12-11 | 1998-02-10 | Carrier Corporation | Condensate pan with minimal residual condensate |
US5904053A (en) * | 1996-12-11 | 1999-05-18 | International Comfort Products | Drainage management system for refrigeration coil |
US5987909A (en) * | 1998-08-31 | 1999-11-23 | Martin, Sr.; Lendell | Air conditioner drain pan |
US6360911B1 (en) * | 2001-03-07 | 2002-03-26 | York International Corporation | Molded drain pan |
US6405552B1 (en) * | 1999-12-30 | 2002-06-18 | Carrier Corporation | Coil support pan for an air handling unit |
US6435265B1 (en) * | 1995-01-17 | 2002-08-20 | Ness Lakdawala | Gravity cooling unit |
US6901766B1 (en) * | 2004-01-08 | 2005-06-07 | Rheem Manufacturing Company | Coil drain pan apparatus |
US6978909B2 (en) * | 2003-11-25 | 2005-12-27 | Advanced Distributor Products Llc | Condensate drain pan for air conditioning system |
-
2006
- 2006-01-20 US US11/337,107 patent/US20070169501A1/en not_active Abandoned
-
2007
- 2007-01-17 CA CA002574421A patent/CA2574421A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2746262A (en) * | 1954-01-11 | 1956-05-22 | Albert M Gallo | Ice making machine |
US3097506A (en) * | 1961-08-14 | 1963-07-16 | Sr George R Blakesley | Air conditioner apparatus |
US3203199A (en) * | 1963-12-10 | 1965-08-31 | Gen Motors Corp | Refrigerating apparatus |
US3470945A (en) * | 1966-08-27 | 1969-10-07 | Friedrich H Schmidt | Air conditioning apparatus |
US3620039A (en) * | 1969-12-22 | 1971-11-16 | Carrier Corp | Evaporator coil package |
US3831670A (en) * | 1973-10-15 | 1974-08-27 | Gen Electric | A-coil with improved air deflector |
US4000779A (en) * | 1975-11-28 | 1977-01-04 | General Electric Company | Blowoff baffle |
US4129013A (en) * | 1977-09-01 | 1978-12-12 | Westinghouse Electric Corp. | Air-conditioning unit with multi-position coil |
US5207074A (en) * | 1991-01-08 | 1993-05-04 | Rheem Manufacturing Company | Refrigerant coil apparatus and associated condensate drain pan structure |
US5152154A (en) * | 1991-11-12 | 1992-10-06 | Sullivan John T | Fan coil unit |
US6435265B1 (en) * | 1995-01-17 | 2002-08-20 | Ness Lakdawala | Gravity cooling unit |
US5613554A (en) * | 1995-06-23 | 1997-03-25 | Heatcraft Inc. | A-coil heat exchanger |
US5904053A (en) * | 1996-12-11 | 1999-05-18 | International Comfort Products | Drainage management system for refrigeration coil |
US5964370A (en) * | 1996-12-11 | 1999-10-12 | Carrier Corporation | Condensate pan with minimal residual condensate |
US5715697A (en) * | 1996-12-11 | 1998-02-10 | Carrier Corporation | Condensate pan with minimal residual condensate |
US5987909A (en) * | 1998-08-31 | 1999-11-23 | Martin, Sr.; Lendell | Air conditioner drain pan |
US6405552B1 (en) * | 1999-12-30 | 2002-06-18 | Carrier Corporation | Coil support pan for an air handling unit |
US6360911B1 (en) * | 2001-03-07 | 2002-03-26 | York International Corporation | Molded drain pan |
US6978909B2 (en) * | 2003-11-25 | 2005-12-27 | Advanced Distributor Products Llc | Condensate drain pan for air conditioning system |
US6901766B1 (en) * | 2004-01-08 | 2005-06-07 | Rheem Manufacturing Company | Coil drain pan apparatus |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8973390B2 (en) * | 2010-08-04 | 2015-03-10 | Mitsubishi Electric Corporation | Indoor unit of air-conditioning apparatus and air-conditioning apparatus |
CN102374587A (en) * | 2010-08-04 | 2012-03-14 | 三菱电机株式会社 | Indoor unit of air-conditioning apparatus and air-conditioning apparatus |
US20120031134A1 (en) * | 2010-08-04 | 2012-02-09 | Mitsubishi Electric Corporation | Indoor unit of air-conditioning apparatus and air-conditioning apparatus |
US20120151953A1 (en) * | 2010-12-17 | 2012-06-21 | Advanced Distributor Products Llc | Drain pan rail for use in a heating ventilation air conditioning system |
US20150135507A1 (en) * | 2011-09-20 | 2015-05-21 | Hamilton Sundstrand Corporation | Protective leakage shield for liquid to air heat exchanger |
JP2013221687A (en) * | 2012-04-17 | 2013-10-28 | Hitachi Appliances Inc | Air conditioner |
KR20150006013A (en) * | 2012-06-08 | 2015-01-15 | 알파 라발 코포레이트 에이비 | Plate heat exchanger |
CN104350353A (en) * | 2012-06-08 | 2015-02-11 | 阿尔法拉瓦尔股份有限公司 | Plate heat exchanger |
WO2013182370A1 (en) * | 2012-06-08 | 2013-12-12 | Alfa Laval Corporate Ab | Plate heat exchanger |
EP2672215A1 (en) * | 2012-06-08 | 2013-12-11 | Alfa Laval Corporate AB | Plate heat exchanger |
KR101667133B1 (en) | 2012-06-08 | 2016-10-17 | 알파 라발 코포레이트 에이비 | Plate heat exchanger |
US20140131024A1 (en) * | 2012-11-15 | 2014-05-15 | Mitsubishi Electric Corporation | Outdoor unit for air conditioner |
US9470424B2 (en) * | 2012-11-15 | 2016-10-18 | Mitsubishi Electric Corporation | Outdoor unit for air conditioner |
US20150090349A1 (en) * | 2013-09-27 | 2015-04-02 | Diversitech Corporation | Condensate Overflow Detection Device |
US9249981B2 (en) * | 2013-09-27 | 2016-02-02 | Diversitech Corporation | Condensate overflow detection device |
US9671127B2 (en) * | 2013-12-04 | 2017-06-06 | Carrier Corporation | Multi-poise condensate drain pan |
US20150153064A1 (en) * | 2013-12-04 | 2015-06-04 | Carrier Corporation | Multi-poise condensate drain pan |
US20150153094A1 (en) * | 2013-12-04 | 2015-06-04 | Carrier Corporation | Multi-poise condensate drain pan |
US9664461B2 (en) * | 2013-12-04 | 2017-05-30 | Carrier Corporation | Multi-poise condensate drain pan |
US20170108230A1 (en) * | 2014-05-22 | 2017-04-20 | Mitsubishi Electric Corporation | Heat exchange unit and air-conditioning apparatus |
USD769430S1 (en) * | 2014-11-19 | 2016-10-18 | Mitsubishi Electric Corporation | Drain pan for heat exchanger |
USD840008S1 (en) * | 2014-11-19 | 2019-02-05 | Mitsubishi Electric Corporation | Drain pan for heat exchanger |
US20170254559A1 (en) * | 2014-11-27 | 2017-09-07 | Mitsubishi Electric Corporation | Heat exchange unit and air-conditioning apparatus |
US10126013B2 (en) * | 2014-11-27 | 2018-11-13 | Mitsubishi Electric Corporation | Heat exchange unit and air-conditioning apparatus |
US10750882B2 (en) * | 2015-03-03 | 2020-08-25 | Killion Industries, Inc. | Self-contained refrigerated case with a self-contained condensate removal system |
US20190133341A1 (en) * | 2015-03-03 | 2019-05-09 | Killion Industries, Inc. | Refrigerated Case with a Self-Contained Condensate Removal System |
US10663197B2 (en) * | 2015-12-18 | 2020-05-26 | Friedrich Air Conditioning, Llc | Variable refrigerant package |
US20180106506A1 (en) * | 2015-12-18 | 2018-04-19 | Friedrich Air Conditioning, Llc | Variable refrigerant package |
CN108603670A (en) * | 2015-12-18 | 2018-09-28 | 弗里德里希空调有限公司 | Variable refrigerant encapsulates |
US20180094860A1 (en) * | 2016-09-30 | 2018-04-05 | Daikin Industries, Ltd. | Heat exchange unit |
US10527356B2 (en) * | 2016-09-30 | 2020-01-07 | Daikin Industries, Ltd. | Heat exchange unit |
US20190003729A1 (en) * | 2017-06-29 | 2019-01-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Air-conditioning outdoor machine |
US10816228B2 (en) * | 2017-06-29 | 2020-10-27 | Beijing Xiaomi Mobile Software Co., Ltd. | Air-conditioning outdoor machine |
US20210222908A1 (en) * | 2018-05-15 | 2021-07-22 | Patrice Bastiand | Air handling unit |
US20200011550A1 (en) * | 2018-07-05 | 2020-01-09 | Therma-Stor LLC | Drainage System for a Portable Dehumidifier |
US10753625B2 (en) * | 2018-07-05 | 2020-08-25 | Therma-Stor LLC | Drainage system for a portable dehumidifier |
US20220032767A1 (en) * | 2018-09-27 | 2022-02-03 | Valeo Systemes Thermiques | Heat exchanger module for a motor vehicle |
US11530829B2 (en) * | 2018-11-14 | 2022-12-20 | Rheem Manufacturing Company | Overflow sensor assembly in temperature control systems |
US11906183B2 (en) | 2018-11-14 | 2024-02-20 | Rheem Manufacturing Company | Overflow sensor assembly in temperature control systems |
US10871306B2 (en) | 2019-01-02 | 2020-12-22 | Johnson Controls Technology Company | Modular drain pans for HVAC systems |
US11221151B2 (en) * | 2019-01-15 | 2022-01-11 | Johnson Controls Technology Company | Hot gas reheat systems and methods |
US20210010726A1 (en) * | 2019-07-10 | 2021-01-14 | Dometic Sweden Ab | Compressor Cooling Aggregate for a Refrigerator or a Cooler |
Also Published As
Publication number | Publication date |
---|---|
CA2574421A1 (en) | 2007-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7418827B2 (en) | Vertical condensate pan with non-modifying slope attachment to horizontal pan for multi-poise furnace coils | |
US7418826B2 (en) | Low-sweat condensate pan | |
US7669641B2 (en) | Method and system for vertical coil condensate disposal | |
US20070169501A1 (en) | Condensate pan internal corner design | |
US20070169493A1 (en) | Condensate shield with fastener-free attachment for multi-poise furnace coils | |
US7793514B2 (en) | Method and system for horizontal coil condensate disposal | |
US7370489B2 (en) | Casing assembly suitable for use in a heat exchange assembly | |
US20070169497A1 (en) | Splash guard with fastener-free attachment for multi-poise furnace coils | |
US20070169495A1 (en) | Condensate pan insert | |
US20080314375A1 (en) | Condensate pan with condensate trap | |
US20070170827A1 (en) | Casing assembly suitable for use in a heat exchange assembly | |
US20100199700A1 (en) | Indoor unit for air conditioner | |
US6901766B1 (en) | Coil drain pan apparatus | |
CN106196332B (en) | Outdoor unit of air conditioner | |
JP2017040393A (en) | Indoor unit for air conditioner | |
US8579015B2 (en) | Insertable dual-pass cooling coils | |
JP2021055853A (en) | Outdoor unit of air conditioner | |
KR20010024626A (en) | Condensate drain outlet for an air conditioner | |
EP1046875B1 (en) | Finned pack heat exchanger provided with side stiffening and reinforcing section members for refrigerating, conditioning and heating apparatus | |
US20210222910A1 (en) | Air handling unit | |
WO2018020536A1 (en) | Outdoor unit for air conditioner | |
US11774137B1 (en) | Coil assembly for an air conditioner and method for assembling the same | |
EP3794290B1 (en) | Air handling unit | |
KR100945627B1 (en) | Air conditioner evaporator unit and fan coil | |
JP5430527B2 (en) | Air conditioner indoor unit and air conditioner equipped with the indoor unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIOS, ARTURO;REEL/FRAME:017670/0359 Effective date: 20060314 |
|
AS | Assignment |
Owner name: CARRIER CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:018801/0006 Effective date: 20070112 Owner name: CARRIER CORPORATION,CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:018801/0006 Effective date: 20070112 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |