US20070085930A1 - Method and apparatus for improving image quality - Google Patents
Method and apparatus for improving image quality Download PDFInfo
- Publication number
- US20070085930A1 US20070085930A1 US11/522,418 US52241806A US2007085930A1 US 20070085930 A1 US20070085930 A1 US 20070085930A1 US 52241806 A US52241806 A US 52241806A US 2007085930 A1 US2007085930 A1 US 2007085930A1
- Authority
- US
- United States
- Prior art keywords
- video signal
- frame
- frequency components
- low frequency
- high frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000003111 delayed effect Effects 0.000 claims description 26
- 239000000284 extract Substances 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 16
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000005070 sampling Methods 0.000 description 12
- 206010047571 Visual impairment Diseases 0.000 description 11
- 230000002123 temporal effect Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 10
- 230000002207 retinal effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000001914 filtration Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
- H04N5/205—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
- H04N5/208—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
- G06T5/75—Unsharp masking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0261—Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
Definitions
- the present invention relates to a method and apparatus for improving the image quality of a display apparatus which may have a low response speed, such as a liquid crystal display apparatus.
- the response time of a liquid crystal panel is preferably limited to one frame period (16 ms) or shorter.
- Some systems utilize an overdrive or an OCB (Optically Compensated Bend) liquid crystal technique in order to accomplish such a reduced response time.
- OCB Optically Compensated Bend
- the response time of the liquid crystal panel is generally represented by the sum of the time required to change the display state from a fully black image to a fully white image, and the time required to change the display state from a fully white image to a fully black image.
- the employment of the overdrive and OCB liquid crystal techniques has resulted in the provision of liquid crystal panels which have a response time that is less than 16 ms.
- a blur of a moving image caused by a retinal after-image refers to a phenomenon in which, when a rapidly moving image is displayed, the moving image appears to be a blurred moving image because a retinal after-image of an image of a current frame is overlaid on an image of the next frame.
- This blur in a moving image due to retinal after-images is particularly conspicuous in a hold-type drive display apparatus which holds an image through one frame period.
- a panel driving apparatus for controlling the blur in a moving image due to the retinal after-image.
- This is a pseudo-impulse liquid crystal panel driving system in which a period of time, in which a panel is not illuminated with lights, is set in a period during which one frame is displayed. Details of the pseudo-impulse liquid crystal driving system are described in JP-A-2003-270669 (hereinafter called “Patent Document 1), and “Special Feature: Flat Panel Wars—Second Part,” Nikkei Electronics, No. 2002/11/18, pp. 110-118 (hereinafter called “Non-Patent Document 1”). According to this pseudo-impulse liquid crystal panel driving system, a fully black image is inserted into a frame period to reduce a retinal after-image and to restrain the blur in a moving image.
- Non-Patent Document 1 describes a solution for the problem of reduced luminance by increasing the numerical aperture of the panel, such a solution, involving a modification to the structure of the panel, will be expensive.
- the image quality improving apparatus of the present invention is configured to extract high frequency components associated with a video signal of an n-th frame (n being a natural number), and to add the extracted high frequency components to a video signal of an (n+m)th frame (m being a natural number).
- a rapidly moving portion of an image may blur (e.g., halation of a moving image) due to a reduction in high frequency components of the moving image.
- high frequency components associated with the video signal of an n-th frame for example, are added to a video signal of an (n+1)th frame, so that the high frequency components of the video signal of the (n+1)th frame may be increased by the added high frequency components of the video signal of the n-th frame. In this way, the sense of halation may be restrained in a moving image.
- the present invention is advantageous in that the sense of halation in a moving image can be restrained by a simple configuration without requiring any solution which involves a modification to the design of devices for increasing the numerical aperture and the like.
- the present invention need not create a time zone in which a panel does not emit light during a period in which one frame is displayed, as does a pseudo-impulse liquid crystal panel driving scheme.
- the luminance is higher than that of the pseudo-impulse liquid crystal driving scheme by a fraction that results from the elimination of the time zone in which the panel does not emit light.
- FIG. 1 is a block diagram illustrating the general configuration of an image quality improving apparatus according to one exemplary embodiment of the present invention
- FIG. 2A is a graph representing the frequency characteristic of an input signal
- FIG. 2B is a graph representing the frequency characteristic of the output of a two-dimensional low-pass filter shown in FIG. 1 ;
- FIG. 2C is a graph representing the frequency characteristic of the output of a subtractor shown in FIG. 1 ;
- FIG. 2D is a graph representing the frequency characteristic of the output of a multiplier shown in FIG. 1 ;
- FIG. 2E is a graph representing the frequency characteristic of the output of an adder shown in FIG. 1 ;
- FIG. 3A is a waveform chart of an input signal
- FIG. 3B is a waveform chart representing the output of the two-dimensional low-pass filter shown in FIG. 1 ;
- FIG. 3C is a waveform chart representing the output of the subtractor shown in FIG. 1 ;
- FIG. 3D is a waveform chart representing the output of the adder shown in FIG. 1 ;
- FIG. 4 is a schematic diagram describing how an amplitude is adjusted by the multiplier shown in FIG. 1 ;
- FIG. 5 is a diagram describing a frequency characteristic in a temporal direction in the three-dimensional frequency characteristics of an image
- FIG. 6 is a diagram describing the frequency characteristic in the temporal direction of an image when an input video signal is displayed after three-dimensional high frequency components are added thereto;
- FIG. 7 is a flow chart illustrating a signal processing procedure performed in the image quality improving apparatus illustrated in FIG. 1 for delaying an image in frames;
- FIG. 8 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a first example of the present invention.
- FIG. 9 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a second example of the present invention.
- FIG. 10 is a block diagram illustrating the configuration of an infinite impulse response (IIR) filter
- FIG. 11 is a graph representing an impulse response of the IIR filter illustrated in FIG. 10 ;
- FIG. 12A is a waveform chart of an input signal
- FIG. 12B is a waveform chart representing a signal waveform when the signal waveform shown in FIG. 12A has undergone IIR filtering processing;
- FIG. 12C is a waveform chart representing a signal waveform when the signal waveform shown in FIG. 12B has undergone a time base inversion;
- FIG. 12D is a waveform chart representing a signal waveform when the signal waveform shown in FIG. 12C has undergone IIR filtering processing;
- FIG. 13A is a schematic diagram for describing an operation for writing data into a frame memory in a time base inverting operation using the frame memory;
- FIG. 13B is a schematic diagram for describing an operation for writing data from the frame memory in the time base inverting operation using the frame memory.
- FIG. 14 is a block diagram illustrating the configuration of a display apparatus to which the image quality improving apparatus of an exemplary aspect of the present invention is applied.
- FIGS. 1-14 there are shown exemplary embodiments of the method and apparatus of the present invention.
- FIG. 1 is a block diagram generally illustrating the configuration of an image quality improving apparatus according to an exemplary embodiment of the present invention.
- the image quality improving apparatus of this exemplary embodiment may include frame memory 11 , two-dimensional low-pass filter 12 , subtractor 13 , multiplier 14 , and adder 15 .
- Video signal S fed from input terminal IN is supplied to frame memory 11 , subtractor 13 , and an adder 15 , respectively.
- the video signal supplied to frame memory 11 is designated by reference S 1 ;
- the video signal supplied to subtractor 13 is designated by reference S 2 ;
- the video signal supplied to adder 15 is designated by reference S 3 .
- Frame memory 11 delays video signal S 1 supplied from input terminal IN in units of frames.
- Frame memory 11 can delay video signal S 1 by n (n being a natural number) frames.
- Video signal S 1 is supplied to two-dimensional low-pass filter 12 after it has been delayed by frame memory 11 .
- Two-dimensional low-pass filter 12 which may include a linear phase finite impulse response (FIR) filter or an infinite impulse response (IIR) filter, cuts high frequency components of video signal S 1 delayed by n frames in each of the horizontal direction and vertical directions to extract two-dimensional low frequency components.
- the two-dimensional low frequency components extracted by two-dimensional low-pass filter 12 are supplied to subtractor 13 .
- the vertical direction and horizontal direction of a video signal correspond to a horizontal direction and a vertical direction of an image displayed by the video signal.
- Subtractor 13 subtracts the two-dimensional low frequency components extracted from video signal S 1 , which has been delayed by n frames, supplied from two-dimensional low-pass filter 12 from video signal S 2 supplied from input terminal IN, to extract three-dimensional high frequency components.
- the three-dimensional high frequency components include three elements which consist of a horizontal component, a vertical component, and a temporal component.
- the three-dimensional high frequency components extracted by subtractor 13 are supplied to adder 15 through multiplier 14 .
- Multiplier 14 adjusts the amplitude of the output (three-dimensional high frequency components) of subtractor 13 in accordance with a control signal supplied from an external controller (not shown).
- Adder 15 adds the three-dimensional high frequency components, the amplitude of which has been adjusted by multiplier 14 , to video signal S 3 supplied from input terminal IN.
- the amount of the three-dimensional high frequency components added to video signal S 3 can be freely adjusted by a control signal supplied to multiplier 14 .
- the amount by which the amplitude is adjusted in multiplier 14 can be set as appropriate by the user through an input device of the external controller, not shown.
- FIGS. 2A-2E illustrate the frequency characteristic of the output of each of two-dimensional low-pass filter 12 , subtractor 13 , multiplier 14 , and adder 15 .
- Video signal S fed from input terminal IN has a constant gain over the range which extends from low frequencies to high frequencies, as shown in FIG. 2A .
- Two-dimensional low-pass filter 12 cuts a high frequency band of the input video signal to pass therethrough only a low frequency band, as shown in FIG. 2B .
- Subtractor 13 cuts a low frequency band of the input video signal to pass a high frequency band, as shown in FIG. 2C .
- Multiplier 14 gives a substantially constant gain in a high frequency band, as shown in FIG. 2D .
- Adder 15 adds the gain provided by multiplier 14 to the input video signal in the high frequency band, as shown in FIG. 2E .
- FIGS. 3A-3D illustrate the output waveform of each of two-dimensional low-pass filter 12 , subtractor 13 , and adder 15 .
- FIG. 3A is a signal waveform of video signal S fed from input terminal IN in the horizontal or vertical direction.
- a displayed image has, for example, a rectangular white area at the center, and a black area around the white area.
- a leading edge and a falling edge of the input signal waveform in FIG. 3A represent boundaries between the white area and black areas on the displayed image.
- two-dimensional filter 12 passes only low frequency components as shown in FIG. 2B , its output waveform has blunted edges of the input signal waveform shown in FIG. 3A (e.g., signal waveform of low frequency 10 components), as shown in FIG. 3B .
- subtractor 13 subtracts the output waveform of two-dimensional low-pass filter 12 shown in FIG. 3B from the input signal waveform shown in FIG. 3A , the resulting output waveform appears to be an edge signal waveform (e.g., a signal waveform of high frequency components) for emphasizing the leading edge and falling edge of the input video signal.
- adder 15 adds the edge signal waveform shown in FIG. 3C to the input signal waveform shown in FIG. 3A , the resulting output waveform emphasizes the leading edge and failing edge of the input video signal, as shown in FIG. 3D .
- sharpness is improved at the boundaries between the white area and the black area on the displayed image.
- the output waveform (e.g., edge signal) of subtractor 13 is adjusted in amplitude by multiplier 14 .
- FIG. 4 schematically shows how the amplitude is adjusted by multiplier 14 .
- multiplier 14 adjusts the amplitude of the output waveform (edge signal) of subtractor 13 in accordance with a control signal from the outside.
- the edges are emphasized more on the output waveform of adder 15 .
- the sharpness is better improved for the edges on the displayed image.
- the edges are less emphasized in the output waveform of adder 15 , so that the sharpness is less improved for the edges on the displayed image.
- the image quality improving apparatus of this embodiment which is characterized by taking advantage of the principle of the aforementioned sharpness improving effect to reduce the sense of halation in a moving image, has a high-frequency component extractor for extracting three-dimensional high frequency components which includes blocks including frame memory 11 , two-dimensional low-pass filter 12 , and subtractor 13 as a construction for obtaining such a sharpness improving effect.
- two-dimensional filter 12 extracts two-dimensional (e.g., horizontal/vertical) low frequency components from video signal S 1 which has been delayed by n frames by frame memory 11 , and subtractor 13 subtracts the two-dimensional low frequency components subtracted by two-dimensional low pass filter 12 from video signal S 2 to extract three-dimensional high frequency components. Since video signal S 1 is delayed by n frames with respect to video signal S 2 , subtractor 13 subtracts the two-dimensional low frequency components, which are extracted from the video signal of a current frame, from a video signal which is supplied n frames after the current frame.
- two-dimensional filter 12 extracts two-dimensional (e.g., horizontal/vertical) low frequency components from video signal S 1 which has been delayed by n frames by frame memory 11 , and subtractor 13 subtracts the two-dimensional low frequency components subtracted by two-dimensional low pass filter 12 from video signal S 2 to extract three-dimensional high frequency components. Since video signal S 1 is delayed by n frames with respect to video signal S 2 , subtractor 13 subtracts the two-dimensional low
- subtractor 13 subtracts two-dimensional low frequency components, extracted from a video signal of an n-th frame, from a video signal of an (n+1)th frame. In this way, the three-dimensional high frequency components are extracted.
- the three-dimensional high frequency components extracted by the high-frequency component extractor are adjusted in amplitude by multiplier 14 , and then the adjusted three-dimensional high frequency components are added to video signal S 3 in adder 15 . Since video signal S 1 is delayed by n frames with respect to video signal S 3 , adder 15 adds the three-dimensional high frequency components to video signal S 3 which is supplied with n frames after video signal S 1 .
- adder 15 adds the three-dimensional high frequency components extracted by subtractor 13 to the video signal of the (n+1)th frame.
- the addition of the three-dimensional high frequency components to the video signal results in a reduction in the blur in a moving image due to retinal after-images.
- FIG. 5 shows the frequency characteristic in the temporal direction of three dimensional frequency characteristics of an image.
- the aperture effect causes a reduction in response by ⁇ 3.92 dB at frequency of 30 Hz.
- the aperture effect refers to a phenomenon in digital signal processing in which the high frequency characteristic is reduced because the output waveform of a D/A converter, which converts an impulse response to a digital signal, is in a step-shaped waveform that results from a convolution of a rectangular wave into the impulse.
- the three-dimensional high frequency components extracted by the nigh-frequency component extractor are added to the input video signal by adder 15 .
- FIG. 6 shows the frequency characteristic of an image in the temporal direction when the input video signal, to which the three-dimensional high frequency components have been added, is displayed.
- the addition of the three-dimensional frequency components to the input video signal acts to be in opposite phase to retinal after-image components, thereby restraining the reduction in the high frequency characteristic due to the aperture effect.
- the frequency characteristic of an image in the temporal direction differs depending on the number of frames by which the input video signal is delayed.
- the addition of the three-dimensional frequency components to the input video signal acts to prevent a reduction in the high frequency characteristic that is caused by the aperture effect, i.e., restrain the occurrence of a blur in a moving image.
- FIG. 7 is a flow chart illustrating the signal processing procedure when an input video signal is delayed by one frame.
- two-dimensional low-pass filter 12 may extract two-dimensional low frequency components from a video signal of an n-th frame (step 101 ).
- subtractor 13 subtracts the two-dimensional low frequency components extracted by two-dimensional filter 12 from a video signal of an (n+1)th frame to extract three-dimensional high frequency components (step 102 ). Then, after multiplier 14 adjusts the amplitude of the three-dimensional high frequency components extracted by subtractor 13 (step 103 ), adder 15 adds the amplitude adjusted three-dimensional high frequency components to the video signal of the (n+1)th frame (step 104 ).
- subtractor 13 subtracts two-dimensional low frequency components extracted by two-dimensional low-pass filter 12 from a video signal of an (n+2)th frame to extract three dimensional high frequency components at step 102 , and adder 15 adds the amplitude adjusted three-dimensional high frequency components to the video signal of the (n+2)th frame at step 104 .
- An input video signal may be delayed by any number of frames in frame memory 11 .
- the larger the number of frames delayed in frame memory 11 the slower the movement with regard to an object that will experience a reduced blur effect in the moving image. Accordingly, when the blur reduction effect is desired for rapid movements, the input video signal must be delayed by a smaller number of frames.
- the image quality improving apparatus of this embodiment described above is an example of the present invention, and may be designed in any configuration as long as it can extract high frequency components associated with a video signal of an n-th (n is a natural number) frame, and as long as it can add the extracted high frequency components to a video signal of an (n+m)th (m is a natural number) of frame.
- frame memory 11 which serves as delay means, may be disposed on the output side of two-dimensional low-pass filter 12 .
- three-dimensional high frequency components are also added to an input video signal in the manner described above.
- frame memory 11 may be disposed between subtractor 13 and multiplier 14 or may be disposed on the output side of multiplier 14 .
- subtractor 13 extracts two-dimensional high frequency components, and the extracted two-dimensional high frequency components are delayed by the number of frames in frame memory 11 . This operation will be described below giving an example in which the two-dimensional high frequency components are delayed by one frame.
- two-dimensional low-pass filter 12 extracts two-dimensional low frequency components from a video signal of an n-th frame.
- subtractor 13 subtracts the two-dimensional low frequency components, extracted by two-dimensional low-pass filter 12 , from the video signal of the n-th frame to extract two-dimensional high frequency components.
- multiplier 14 adjusts the amplitude of the two-dimensional high frequency components extracted by subtractor 13
- adder 15 adds the amplitude adjusted high frequency components to a video signal of an (n+1)th frame.
- high frequency components are extracted for both the horizontal and vertical directions, but high frequency components may be extracted for either the horizontal or vertical direction.
- a blur in a moving image can be restrained in either the horizontal or the vertical direction.
- the correction may be omitted on the positive side (white level side) or negative side (e.g., black level side).
- the image may be processed only with a correction on the negative side (black level side) while omitting a correction on the positive side (white level side).
- the low-frequency component extractor which may include frame memory 11 and low-pass filter 12 , of the image quality improving apparatus according to the foregoing embodiment.
- FIG. 8 is a block diagram illustrating the configuration of part of the image quality improving apparatus according to a first example of the present invention.
- the configuration illustrated in FIG. 8 may correspond to the configuration which includes frame memory 11 and two-dimensional low-pass filter 12 shown in FIG. 1 , and includes horizontal low-pass filter 21 , down-sampler 22 , frame memory 23 , vertical low-pass filter 24 , and up-sampler 25 .
- Horizontal low-pass filter 21 extracts horizontal low frequency components from a video signal supplied from input terminal IN.
- a video signal which includes the horizontal low frequency components extracted by horizontal low-pass filter 21 is supplied to down-sampler 22 .
- Down-sampler 22 reduces the sampling rate of the video signal. Specifically, in down-sampler 22 , when reducing the sampling rate to one half, frequency bands are limited by a low-pass filter such that the frequency components of the input signal fall within the reduced band, and then, data is alternately deleted (e.g., pruning of data). This results in a doubled data interval time, and the sampling frequency is reduced to one half.
- the video signal down-sampled by down-sampler 22 is supplied to frame memory 23 .
- Frame memory 23 delays the down-sampled video signal in units of frames.
- the video signal delayed by a number of frames by frame memory 23 is supplied to vertical low-pass filter 24 .
- Vertical low-pass filter 24 extracts vertical low frequency components of the video signal delayed in units of frames.
- the video signal comprised of the vertical low frequency components extracted by vertical low-pass filter 24 is supplied to up-sampler 25 .
- Up-sampler 25 returns the down-sampled video signal supplied from vertical low-pass filter 24 to the original sampling rate.
- the video signal up-sampled by up-sampler 25 (e.g., which may correspond to a video signal of two-dimensional frequency components extracted from the video signal delayed in units of frames) is supplied to subtractor 13 shown in FIG. 1 .
- the subsequent operation may be similar to (e.g., the same as) that in the configuration illustrated in FIG. 1 .
- horizontal low-pass filter 21 additionally provides the function of an aliasing distortion removing filter which may be required to down-sample a video signal in down-sampler 22 .
- the aliasing distortion removing filter is a low-pass filter for blocking high frequency components such that frequency components of an input signal fall within the band after the down-sampling.
- Horizontal low-pass filter 21 may be required to have a high-frequency blocking characteristic needed for the down-sampling.
- down-sampler 22 is disposed on the input side of frame memory 23 and frame memory 23 delays a video signal down-sampled by down-sampler 22 in units of frames.
- frame memory 23 can be reduced in memory capacity by a reduction in the sampling rate.
- frame memory 23 since a lower sampling rate results in a lower operating frequency of frame memory 23 , design constraints, which may be required due to a high operating frequency, are mitigated. In addition, when frame memory 23 is shared by other circuits, frame memory 23 is occupied for a shorter time at a lower sampling rate, thus permitting other circuits to use frame memory 23 for a longer time.
- vertical low-pass filter 24 extracts vertical low frequency components of the down-sampled video signal, the circuit size of vertical low-pass filter 24 can be reduced by a reduction in the sampling rate.
- horizontal low-pass filter 21 and vertical low-pass filter 24 may change places with each other.
- frame memory 23 may be disposed on the output side of vertical low-pass filter 24 .
- FIG. 9 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a second exemplary aspect of the present invention.
- the configuration illustrated in FIG. 9 may correspond to the configuration which includes frame memory 11 and two-dimensional low-pass filter 12 shown in FIG. 1 , and may include IIR filters 31 , 33 and frame inverters 32 , 34 .
- IIR filters 31 , 33 may include (e.g., may each include) a general low-pass filter which includes a circular filter.
- FIG. 10 illustrates a configuration of an IIR filter, and FIG. 11 shows the impulse response thereof.
- the IIR filter comprises two coefficient multipliers 41 , 42 , adder 43 , and delay element 44 .
- the output of coefficient multiplier 41 is supplied to one input of adder 43 .
- the output of adder 43 is branched into two, one of which provides output OUT, and the other of which is supplied to delay element 44 .
- the output of delay element 44 is supplied to the other input of adder 42 through coefficient multiplier 42 .
- delay element 44 When the IIR filter is applied to processing in the horizontal direction, delay element 44 is treated as a delay element in units of sampling pixels. On the other hand, when the IIR filter is applied to processing in the vertical direction, delay element 44 is treated as a line memory in units of horizontal lines.
- the impulse response of the IIR is not in linear phase as shown in FIG. 11 (the impulse response is not in bilateral symmetry), so that the filter can be operated only in a temporally delaying direction. Accordingly, by inverting the video signal in a time-axis direction, the IIR filter can be forced to operate equivalently in the forward and backward temporal directions.
- FIGS. 12A-12D schematically shows processing when the IIR filter is forced to operate equivalently in the forward and backward temporal directions.
- IIR filtering is applied to a rectangular input signal as shown in FIG. 12A , corruptions in the waveform are produced in a temporally delaying direction on a leading and a falling edge of the rectangular wave, as shown in FIG. 12B .
- the corrupted waveform is reversed in a time-axis direction to obtain a waveform as shown in FIG. 12C .
- a waveform as shown in FIG. 12D is produced, thus making it possible to accomplish a linear phase.
- IIR filter 31 extracts low frequency components of an input video signal supplied on a frame-by-frame basis; frame inverter 32 inverts, in a time-axis direction, the video signal which has the low frequency components extracted by IIR filter 31 ; IIR filter 33 extracts low frequency components of the video signal which is reversed by frame inverter 31 in a time-axis direction; and frame inverter 34 inverts, in a time-axis direction, the video signal which has the low frequency components extracted by IIR filter 33 .
- IIR filters 31 , 33 perform filtering in the horizontal direction or vertical direction, or in both the horizontal and vertical directions.
- filtering in both the horizontal and vertical directions can be accomplished by connecting a horizontal IIR filter and a vertical IIR filter in cascade.
- frame inverter 32 the inversion of the video signal in a time-axis direction is performed by inverting the vertical direction and horizontal direction of the video signal using a frame memory.
- frame inverter 34 the time base inverted by frame inverter 32 is returned to the former state by inverting the vertical direction and horizontal direction of the video signal using a frame memory.
- FIG. 13 schematically shows a time-axis inverting operation using a frame memory.
- the time-axis can be inverted by reading the data that is stored in the frame memory from the write end position to the write start position as shown in FIG. 13B . Since the time-axis is inverted in frame inverter 32 in this manner, IIR filter 33 performs the filtering in the direction opposite to the temporal direction in which the filtering is performed in IIR filter 31 .
- this example since the frame inversion is performed twice, the video signal is delayed by two frames. Generally, in moving images, few scenes switch from one frame to another, but the subject moves continuously over several frames or more in most cases. Therefore, this example can also restrain the blur in a moving image.
- the image quality improving apparatus of the present invention described above can be applied to ordinary display apparatuses, and can be particularly used in hold-type drive display apparatuses, more specifically, liquid crystal display apparatuses, in which a blur in a moving image is conspicuously generated due to retinal after-images.
- FIG. 14 illustrates the configuration of a display apparatus to which the image improving apparatus of an exemplary aspect of the present invention is applied.
- the display apparatus which is a hold-type drive display device, may include display device 44 illuminated by light from lamp 43 ; lens 45 for projecting images formed by display device 44 onto a screen, not shown; video signal processing circuit 40 for processing an input signal; image quality improving circuit 41 ; and display device driving circuit 42 for driving display device 44 .
- Image quality improving circuit 41 is implemented by the image quality improving apparatus of the present invention, and the remaining components may include existing devices.
- a video signal is supplied from video signal processing circuit 40 to image quality improving circuit 41 which in turn improves the input video signal in image quality.
- display device driving circuit 42 drives display device 44 based on the video signal supplied from image quality improving circuit 41 .
- the present invention can also be applied to an interlace scheme in which a frame is made up of odd-numbered fields and even-numbered fields.
- the operation can be described by replacing “frame” with “field” in the foregoing description.
- the present invention may provide a low-cost image quality improving apparatus which is capable of restraining a blur in a moving image without reducing the luminance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Liquid Crystal Display Device Control (AREA)
- Television Systems (AREA)
Abstract
A method (and apparatus) of improving an image quality of a video signal which is supplied on a frame-by-frame basis, includes extracting high frequency components associated with a video signal of an n-th frame (where n is a natural number), and adding the extracted high frequency components to a video signal of an (n+m)th frame (where m is a natural number).
Description
- This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2005-302935 filed in Japan Patent Office on Oct. 18, 2005, the contents of which are hereby incorporated by reference.
- (1) Field of the Invention
- The present invention relates to a method and apparatus for improving the image quality of a display apparatus which may have a low response speed, such as a liquid crystal display apparatus.
- (2) Description of the Related Art
- For displaying a moving image on a liquid crystal display apparatus, the response time of a liquid crystal panel is preferably limited to one frame period (16 ms) or shorter. Some systems utilize an overdrive or an OCB (Optically Compensated Bend) liquid crystal technique in order to accomplish such a reduced response time.
- The response time of the liquid crystal panel is generally represented by the sum of the time required to change the display state from a fully black image to a fully white image, and the time required to change the display state from a fully white image to a fully black image. The employment of the overdrive and OCB liquid crystal techniques has resulted in the provision of liquid crystal panels which have a response time that is less than 16 ms.
- However, even if the response time of the liquid crystal panel can be reduced to 16 ms or less, a retinal after-image phenomenon causes a blurred moving image. A blur of a moving image caused by a retinal after-image refers to a phenomenon in which, when a rapidly moving image is displayed, the moving image appears to be a blurred moving image because a retinal after-image of an image of a current frame is overlaid on an image of the next frame. This blur in a moving image due to retinal after-images is particularly conspicuous in a hold-type drive display apparatus which holds an image through one frame period.
- Therefore, a panel driving apparatus has been provided for controlling the blur in a moving image due to the retinal after-image. This is a pseudo-impulse liquid crystal panel driving system in which a period of time, in which a panel is not illuminated with lights, is set in a period during which one frame is displayed. Details of the pseudo-impulse liquid crystal driving system are described in JP-A-2003-270669 (hereinafter called “Patent Document 1), and “Special Feature: Flat Panel Wars—Second Part,” Nikkei Electronics, No. 2002/11/18, pp. 110-118 (hereinafter called “Non-Patent
Document 1”). According to this pseudo-impulse liquid crystal panel driving system, a fully black image is inserted into a frame period to reduce a retinal after-image and to restrain the blur in a moving image. - However, in the pseudo-impulse liquid crystal panel driving system as described in
Patent Document 1 and Non-PatentDocument 1, since the panel does not emit light during the black display duration, a problem arises that the luminance is correspondingly reduced. While Non-PatentDocument 1 describes a solution for the problem of reduced luminance by increasing the numerical aperture of the panel, such a solution, involving a modification to the structure of the panel, will be expensive. - It is a purpose of the present invention to provide a low-cost image quality improving apparatus which is capable of solving the aforementioned problem, and of restraining a blur in a moving image without reducing the luminance.
- To achieve the above purpose, the image quality improving apparatus of the present invention is configured to extract high frequency components associated with a video signal of an n-th frame (n being a natural number), and to add the extracted high frequency components to a video signal of an (n+m)th frame (m being a natural number).
- In a hold-type drive display apparatus, a rapidly moving portion of an image may blur (e.g., halation of a moving image) due to a reduction in high frequency components of the moving image. In the present invention, however, high frequency components associated with the video signal of an n-th frame, for example, are added to a video signal of an (n+1)th frame, so that the high frequency components of the video signal of the (n+1)th frame may be increased by the added high frequency components of the video signal of the n-th frame. In this way, the sense of halation may be restrained in a moving image.
- As described above, the present invention is advantageous in that the sense of halation in a moving image can be restrained by a simple configuration without requiring any solution which involves a modification to the design of devices for increasing the numerical aperture and the like.
- Also, the present invention need not create a time zone in which a panel does not emit light during a period in which one frame is displayed, as does a pseudo-impulse liquid crystal panel driving scheme. Advantageously, the luminance is higher than that of the pseudo-impulse liquid crystal driving scheme by a fraction that results from the elimination of the time zone in which the panel does not emit light.
- The above and other purposes, features, and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings which illustrate examples of the present invention.
- The foregoing and other exemplary purposes, aspects and advantages will be better understood from the following detailed description of an exemplary embodiment of the invention with reference to the drawings, in which:
-
FIG. 1 is a block diagram illustrating the general configuration of an image quality improving apparatus according to one exemplary embodiment of the present invention; -
FIG. 2A is a graph representing the frequency characteristic of an input signal; -
FIG. 2B is a graph representing the frequency characteristic of the output of a two-dimensional low-pass filter shown inFIG. 1 ; -
FIG. 2C is a graph representing the frequency characteristic of the output of a subtractor shown inFIG. 1 ; -
FIG. 2D is a graph representing the frequency characteristic of the output of a multiplier shown inFIG. 1 ; -
FIG. 2E is a graph representing the frequency characteristic of the output of an adder shown inFIG. 1 ; -
FIG. 3A is a waveform chart of an input signal; -
FIG. 3B is a waveform chart representing the output of the two-dimensional low-pass filter shown inFIG. 1 ; -
FIG. 3C is a waveform chart representing the output of the subtractor shown inFIG. 1 ; -
FIG. 3D is a waveform chart representing the output of the adder shown inFIG. 1 ; -
FIG. 4 is a schematic diagram describing how an amplitude is adjusted by the multiplier shown inFIG. 1 ; -
FIG. 5 is a diagram describing a frequency characteristic in a temporal direction in the three-dimensional frequency characteristics of an image; -
FIG. 6 is a diagram describing the frequency characteristic in the temporal direction of an image when an input video signal is displayed after three-dimensional high frequency components are added thereto; -
FIG. 7 is a flow chart illustrating a signal processing procedure performed in the image quality improving apparatus illustrated inFIG. 1 for delaying an image in frames; -
FIG. 8 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a first example of the present invention; -
FIG. 9 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a second example of the present invention; -
FIG. 10 is a block diagram illustrating the configuration of an infinite impulse response (IIR) filter; -
FIG. 11 is a graph representing an impulse response of the IIR filter illustrated inFIG. 10 ; -
FIG. 12A is a waveform chart of an input signal; -
FIG. 12B is a waveform chart representing a signal waveform when the signal waveform shown inFIG. 12A has undergone IIR filtering processing; -
FIG. 12C is a waveform chart representing a signal waveform when the signal waveform shown inFIG. 12B has undergone a time base inversion; -
FIG. 12D is a waveform chart representing a signal waveform when the signal waveform shown inFIG. 12C has undergone IIR filtering processing; -
FIG. 13A is a schematic diagram for describing an operation for writing data into a frame memory in a time base inverting operation using the frame memory; -
FIG. 13B is a schematic diagram for describing an operation for writing data from the frame memory in the time base inverting operation using the frame memory; and -
FIG. 14 is a block diagram illustrating the configuration of a display apparatus to which the image quality improving apparatus of an exemplary aspect of the present invention is applied. - Referring now to the drawings, and more particularly to
FIGS. 1-14 , there are shown exemplary embodiments of the method and apparatus of the present invention. -
FIG. 1 is a block diagram generally illustrating the configuration of an image quality improving apparatus according to an exemplary embodiment of the present invention. Referring toFIG. 1 , the image quality improving apparatus of this exemplary embodiment may includeframe memory 11, two-dimensional low-pass filter 12,subtractor 13,multiplier 14, andadder 15. - Video signal S fed from input terminal IN is supplied to frame
memory 11,subtractor 13, and anadder 15, respectively. Here, the video signal supplied to framememory 11 is designated by reference S1; the video signal supplied tosubtractor 13 is designated by reference S2; and the video signal supplied to adder 15 is designated by reference S3. -
Frame memory 11 delays video signal S1 supplied from input terminal IN in units of frames.Frame memory 11 can delay video signal S1 by n (n being a natural number) frames. Video signal S1 is supplied to two-dimensional low-pass filter 12 after it has been delayed byframe memory 11. - Two-dimensional low-
pass filter 12, which may include a linear phase finite impulse response (FIR) filter or an infinite impulse response (IIR) filter, cuts high frequency components of video signal S1 delayed by n frames in each of the horizontal direction and vertical directions to extract two-dimensional low frequency components. The two-dimensional low frequency components extracted by two-dimensional low-pass filter 12 are supplied tosubtractor 13. Here, the vertical direction and horizontal direction of a video signal correspond to a horizontal direction and a vertical direction of an image displayed by the video signal. -
Subtractor 13 subtracts the two-dimensional low frequency components extracted from video signal S1, which has been delayed by n frames, supplied from two-dimensional low-pass filter 12 from video signal S2 supplied from input terminal IN, to extract three-dimensional high frequency components. Here, the three-dimensional high frequency components include three elements which consist of a horizontal component, a vertical component, and a temporal component. The three-dimensional high frequency components extracted bysubtractor 13 are supplied to adder 15 throughmultiplier 14. -
Multiplier 14 adjusts the amplitude of the output (three-dimensional high frequency components) ofsubtractor 13 in accordance with a control signal supplied from an external controller (not shown).Adder 15 adds the three-dimensional high frequency components, the amplitude of which has been adjusted bymultiplier 14, to video signal S3 supplied from input terminal IN. - The amount of the three-dimensional high frequency components added to video signal S3 can be freely adjusted by a control signal supplied to
multiplier 14. The amount by which the amplitude is adjusted inmultiplier 14 can be set as appropriate by the user through an input device of the external controller, not shown. - Next, a specific description will be given of the operation of each component in the image quality improving apparatus of this exemplary embodiment. First, the operation of two-dimensional low-
pass filter 12,subtractor 13,multiplier 14, andadder 15 will be described as a basic operation in the image quality improving apparatus which does not haveframe memory 11. -
FIGS. 2A-2E illustrate the frequency characteristic of the output of each of two-dimensional low-pass filter 12,subtractor 13,multiplier 14, andadder 15. Video signal S fed from input terminal IN has a constant gain over the range which extends from low frequencies to high frequencies, as shown inFIG. 2A . Two-dimensional low-pass filter 12 cuts a high frequency band of the input video signal to pass therethrough only a low frequency band, as shown inFIG. 2B . -
Subtractor 13 cuts a low frequency band of the input video signal to pass a high frequency band, as shown inFIG. 2C .Multiplier 14 gives a substantially constant gain in a high frequency band, as shown inFIG. 2D .Adder 15 adds the gain provided bymultiplier 14 to the input video signal in the high frequency band, as shown inFIG. 2E . -
FIGS. 3A-3D illustrate the output waveform of each of two-dimensional low-pass filter 12,subtractor 13, andadder 15.FIG. 3A is a signal waveform of video signal S fed from input terminal IN in the horizontal or vertical direction. When a video signal represented by such a signal waveform is displayed, a displayed image has, for example, a rectangular white area at the center, and a black area around the white area. A leading edge and a falling edge of the input signal waveform inFIG. 3A represent boundaries between the white area and black areas on the displayed image. - Since two-
dimensional filter 12 passes only low frequency components as shown inFIG. 2B , its output waveform has blunted edges of the input signal waveform shown inFIG. 3A (e.g., signal waveform of low frequency 10 components), as shown inFIG. 3B . Sincesubtractor 13 subtracts the output waveform of two-dimensional low-pass filter 12 shown inFIG. 3B from the input signal waveform shown inFIG. 3A , the resulting output waveform appears to be an edge signal waveform (e.g., a signal waveform of high frequency components) for emphasizing the leading edge and falling edge of the input video signal. - Since
adder 15 adds the edge signal waveform shown inFIG. 3C to the input signal waveform shown inFIG. 3A , the resulting output waveform emphasizes the leading edge and failing edge of the input video signal, as shown inFIG. 3D . By thus emphasizing the edges of the input video signal, sharpness is improved at the boundaries between the white area and the black area on the displayed image. - The output waveform (e.g., edge signal) of
subtractor 13 is adjusted in amplitude bymultiplier 14.FIG. 4 schematically shows how the amplitude is adjusted bymultiplier 14. As shown inFIG. 4 ,multiplier 14 adjusts the amplitude of the output waveform (edge signal) ofsubtractor 13 in accordance with a control signal from the outside. As the amplitude is increased, the edges are emphasized more on the output waveform ofadder 15. As a result, the sharpness is better improved for the edges on the displayed image. Conversely, as the amplitude is reduced, the edges are less emphasized in the output waveform ofadder 15, so that the sharpness is less improved for the edges on the displayed image. - The image quality improving apparatus of this embodiment, which is characterized by taking advantage of the principle of the aforementioned sharpness improving effect to reduce the sense of halation in a moving image, has a high-frequency component extractor for extracting three-dimensional high frequency components which includes blocks including
frame memory 11, two-dimensional low-pass filter 12, andsubtractor 13 as a construction for obtaining such a sharpness improving effect. - In the high-frequency component extractor, two-
dimensional filter 12 extracts two-dimensional (e.g., horizontal/vertical) low frequency components from video signal S1 which has been delayed by n frames byframe memory 11, andsubtractor 13 subtracts the two-dimensional low frequency components subtracted by two-dimensionallow pass filter 12 from video signal S2 to extract three-dimensional high frequency components. Since video signal S1 is delayed by n frames with respect to video signal S2,subtractor 13 subtracts the two-dimensional low frequency components, which are extracted from the video signal of a current frame, from a video signal which is supplied n frames after the current frame. - For example, when video signal S1 is delayed by one frame with respect to video signal S2 in
frame memory 11,subtractor 13 subtracts two-dimensional low frequency components, extracted from a video signal of an n-th frame, from a video signal of an (n+1)th frame. In this way, the three-dimensional high frequency components are extracted. - The three-dimensional high frequency components extracted by the high-frequency component extractor are adjusted in amplitude by
multiplier 14, and then the adjusted three-dimensional high frequency components are added to video signal S3 inadder 15. Since video signal S1 is delayed by n frames with respect to video signal S3,adder 15 adds the three-dimensional high frequency components to video signal S3 which is supplied with n frames after video signal S1. - For example, when video signal S1 is delayed by one frame with respect to video signal S3 in
frame memory 11, wheresubtractor 13 subtracts two-dimensional low frequency components, extracted from a video signal of an n-th frame, from a video signal of an (n+1)th frame to extract three-dimensional high frequency components,adder 15 adds the three-dimensional high frequency components extracted bysubtractor 13 to the video signal of the (n+1)th frame. In this way, the addition of the three-dimensional high frequency components to the video signal results in a reduction in the blur in a moving image due to retinal after-images. - Next, a description will be given of the principle of reducing the blur in a moving image due to retinal after-images.
- Taking into consideration the blur in a moving image in terms of the frequency characteristic in the temporal direction, when the frame frequency is 60 Hz, sampling frequency fs in the temporal direction is determined to be 60 Hz, and the frequency of the most rapidly moving image that can be represented is determined to be fs/2 (=30 Hz). In this event, the hold-type drive display apparatus experiences a reduction in the high frequency characteristic due to the aperture effect. This reduction in the high frequency characteristic is observed as a blur in a moving image (see “Introduction to Digital Signal Processing,” CQ Publishing, first edited in 1989, p. 75).
-
FIG. 5 shows the frequency characteristic in the temporal direction of three dimensional frequency characteristics of an image. Referring toFIG. 5 , it can be seen that the aperture effect causes a reduction in response by −3.92 dB at frequency of 30 Hz. Here, the aperture effect refers to a phenomenon in digital signal processing in which the high frequency characteristic is reduced because the output waveform of a D/A converter, which converts an impulse response to a digital signal, is in a step-shaped waveform that results from a convolution of a rectangular wave into the impulse. - In this embodiment, the three-dimensional high frequency components extracted by the nigh-frequency component extractor are added to the input video signal by
adder 15.FIG. 6 shows the frequency characteristic of an image in the temporal direction when the input video signal, to which the three-dimensional high frequency components have been added, is displayed. The addition of the three-dimensional frequency components to the input video signal acts to be in opposite phase to retinal after-image components, thereby restraining the reduction in the high frequency characteristic due to the aperture effect. - The frequency characteristic of an image in the temporal direction differs depending on the number of frames by which the input video signal is delayed. When the input video signal is delayed by one frame, the frequency characteristic has a peak that is near one half of the frame frequency (=30 Hz), and when the input signal is delayed by two frames, the frequency characteristic has a peak that is near one quarter of the frame frequency (=15 Hz), as shown in
FIG. 6 . In any case, the addition of the three-dimensional frequency components to the input video signal acts to prevent a reduction in the high frequency characteristic that is caused by the aperture effect, i.e., restrain the occurrence of a blur in a moving image. - Next, a signal processing procedure in the image quality improving apparatus of this embodiment will be described, giving an example in which an input video signal is delayed by one frame.
FIG. 7 is a flow chart illustrating the signal processing procedure when an input video signal is delayed by one frame. Referring toFIG. 7 , two-dimensional low-pass filter 12 may extract two-dimensional low frequency components from a video signal of an n-th frame (step 101). - Next,
subtractor 13 subtracts the two-dimensional low frequency components extracted by two-dimensional filter 12 from a video signal of an (n+1)th frame to extract three-dimensional high frequency components (step 102). Then, aftermultiplier 14 adjusts the amplitude of the three-dimensional high frequency components extracted by subtractor 13 (step 103),adder 15 adds the amplitude adjusted three-dimensional high frequency components to the video signal of the (n+1)th frame (step 104). - When an input video signal is delayed by two frames,
subtractor 13 subtracts two-dimensional low frequency components extracted by two-dimensional low-pass filter 12 from a video signal of an (n+2)th frame to extract three dimensional high frequency components atstep 102, andadder 15 adds the amplitude adjusted three-dimensional high frequency components to the video signal of the (n+2)th frame atstep 104. - An input video signal may be delayed by any number of frames in
frame memory 11. The larger the number of frames delayed inframe memory 11, the slower the movement with regard to an object that will experience a reduced blur effect in the moving image. Accordingly, when the blur reduction effect is desired for rapid movements, the input video signal must be delayed by a smaller number of frames. - The image quality improving apparatus of this embodiment described above is an example of the present invention, and may be designed in any configuration as long as it can extract high frequency components associated with a video signal of an n-th (n is a natural number) frame, and as long as it can add the extracted high frequency components to a video signal of an (n+m)th (m is a natural number) of frame.
- For example,
frame memory 11, which serves as delay means, may be disposed on the output side of two-dimensional low-pass filter 12. In this modification, three-dimensional high frequency components are also added to an input video signal in the manner described above. - Alternatively,
frame memory 11 may be disposed betweensubtractor 13 andmultiplier 14 or may be disposed on the output side ofmultiplier 14. In this modification,subtractor 13 extracts two-dimensional high frequency components, and the extracted two-dimensional high frequency components are delayed by the number of frames inframe memory 11. This operation will be described below giving an example in which the two-dimensional high frequency components are delayed by one frame. - First, two-dimensional low-
pass filter 12 extracts two-dimensional low frequency components from a video signal of an n-th frame. Next,subtractor 13 subtracts the two-dimensional low frequency components, extracted by two-dimensional low-pass filter 12, from the video signal of the n-th frame to extract two-dimensional high frequency components. Then, aftermultiplier 14 adjusts the amplitude of the two-dimensional high frequency components extracted bysubtractor 13,adder 15 adds the amplitude adjusted high frequency components to a video signal of an (n+1)th frame. - Also, in this embodiment, high frequency components are extracted for both the horizontal and vertical directions, but high frequency components may be extracted for either the horizontal or vertical direction. In this modification, a blur in a moving image can be restrained in either the horizontal or the vertical direction.
- Also, in the output signal of subtractor 13 (see the output waveform in
FIG. 3C ), the correction may be omitted on the positive side (white level side) or negative side (e.g., black level side). For example, when an after-image is conspicuously observed as a white blurred image on the black screen, the image may be processed only with a correction on the negative side (black level side) while omitting a correction on the positive side (white level side). - Next, a description will be given of examples of the low-frequency component extractor, which may include
frame memory 11 and low-pass filter 12, of the image quality improving apparatus according to the foregoing embodiment. -
FIG. 8 is a block diagram illustrating the configuration of part of the image quality improving apparatus according to a first example of the present invention. The configuration illustrated inFIG. 8 may correspond to the configuration which includesframe memory 11 and two-dimensional low-pass filter 12 shown inFIG. 1 , and includes horizontal low-pass filter 21, down-sampler 22,frame memory 23, vertical low-pass filter 24, and up-sampler 25. - Horizontal low-
pass filter 21 extracts horizontal low frequency components from a video signal supplied from input terminal IN. A video signal which includes the horizontal low frequency components extracted by horizontal low-pass filter 21 is supplied to down-sampler 22. - Down-
sampler 22 reduces the sampling rate of the video signal. Specifically, in down-sampler 22, when reducing the sampling rate to one half, frequency bands are limited by a low-pass filter such that the frequency components of the input signal fall within the reduced band, and then, data is alternately deleted (e.g., pruning of data). This results in a doubled data interval time, and the sampling frequency is reduced to one half. The video signal down-sampled by down-sampler 22 is supplied to framememory 23. -
Frame memory 23 delays the down-sampled video signal in units of frames. The video signal delayed by a number of frames byframe memory 23 is supplied to vertical low-pass filter 24. Vertical low-pass filter 24 extracts vertical low frequency components of the video signal delayed in units of frames. The video signal comprised of the vertical low frequency components extracted by vertical low-pass filter 24 is supplied to up-sampler 25. - Up-
sampler 25 returns the down-sampled video signal supplied from vertical low-pass filter 24 to the original sampling rate. The video signal up-sampled by up-sampler 25 (e.g., which may correspond to a video signal of two-dimensional frequency components extracted from the video signal delayed in units of frames) is supplied tosubtractor 13 shown inFIG. 1 . The subsequent operation may be similar to (e.g., the same as) that in the configuration illustrated inFIG. 1 . - In this example, horizontal low-
pass filter 21 additionally provides the function of an aliasing distortion removing filter which may be required to down-sample a video signal in down-sampler 22. Here, the aliasing distortion removing filter is a low-pass filter for blocking high frequency components such that frequency components of an input signal fall within the band after the down-sampling. Horizontal low-pass filter 21 may be required to have a high-frequency blocking characteristic needed for the down-sampling. - Further, in this example, down-
sampler 22 is disposed on the input side offrame memory 23 andframe memory 23 delays a video signal down-sampled by down-sampler 22 in units of frames. Thus,frame memory 23 can be reduced in memory capacity by a reduction in the sampling rate. - Further, since a lower sampling rate results in a lower operating frequency of
frame memory 23, design constraints, which may be required due to a high operating frequency, are mitigated. In addition, whenframe memory 23 is shared by other circuits,frame memory 23 is occupied for a shorter time at a lower sampling rate, thus permitting other circuits to useframe memory 23 for a longer time. - In addition, since vertical low-
pass filter 24 extracts vertical low frequency components of the down-sampled video signal, the circuit size of vertical low-pass filter 24 can be reduced by a reduction in the sampling rate. - The configuration of the example described above is an example, and can be modified as appropriate. For example, horizontal low-
pass filter 21 and vertical low-pass filter 24 may change places with each other. Further,frame memory 23 may be disposed on the output side of vertical low-pass filter 24. -
FIG. 9 is a block diagram illustrating the configuration of part of an image quality improving apparatus according to a second exemplary aspect of the present invention. The configuration illustrated inFIG. 9 may correspond to the configuration which includesframe memory 11 and two-dimensional low-pass filter 12 shown inFIG. 1 , and may include IIR filters 31, 33 andframe inverters - IIR filters 31, 33 may include (e.g., may each include) a general low-pass filter which includes a circular filter.
FIG. 10 illustrates a configuration of an IIR filter, andFIG. 11 shows the impulse response thereof. As illustrated inFIG. 10 , the IIR filter comprises twocoefficient multipliers adder 43, and delayelement 44. - The output of
coefficient multiplier 41 is supplied to one input ofadder 43. The output ofadder 43 is branched into two, one of which provides output OUT, and the other of which is supplied to delayelement 44. The output ofdelay element 44 is supplied to the other input ofadder 42 throughcoefficient multiplier 42. - When the IIR filter is applied to processing in the horizontal direction,
delay element 44 is treated as a delay element in units of sampling pixels. On the other hand, when the IIR filter is applied to processing in the vertical direction,delay element 44 is treated as a line memory in units of horizontal lines. - In the IIR filter configured as described above, the impulse response of the IIR is not in linear phase as shown in
FIG. 11 (the impulse response is not in bilateral symmetry), so that the filter can be operated only in a temporally delaying direction. Accordingly, by inverting the video signal in a time-axis direction, the IIR filter can be forced to operate equivalently in the forward and backward temporal directions. -
FIGS. 12A-12D schematically shows processing when the IIR filter is forced to operate equivalently in the forward and backward temporal directions. When IIR filtering is applied to a rectangular input signal as shown inFIG. 12A , corruptions in the waveform are produced in a temporally delaying direction on a leading and a falling edge of the rectangular wave, as shown inFIG. 12B . - The corrupted waveform is reversed in a time-axis direction to obtain a waveform as shown in
FIG. 12C . When the IIR filtering is again applied to the waveform, which is reversed in a time-axis direction, a waveform as shown inFIG. 12D is produced, thus making it possible to accomplish a linear phase. - This example may utilize processing as shown in
FIGS. 12A-12D . Specifically,IIR filter 31 extracts low frequency components of an input video signal supplied on a frame-by-frame basis;frame inverter 32 inverts, in a time-axis direction, the video signal which has the low frequency components extracted byIIR filter 31;IIR filter 33 extracts low frequency components of the video signal which is reversed byframe inverter 31 in a time-axis direction; andframe inverter 34 inverts, in a time-axis direction, the video signal which has the low frequency components extracted byIIR filter 33. - IIR filters 31, 33 perform filtering in the horizontal direction or vertical direction, or in both the horizontal and vertical directions. Here, filtering in both the horizontal and vertical directions can be accomplished by connecting a horizontal IIR filter and a vertical IIR filter in cascade.
- In
frame inverter 32, the inversion of the video signal in a time-axis direction is performed by inverting the vertical direction and horizontal direction of the video signal using a frame memory. On the other hand, inframe inverter 34, the time base inverted byframe inverter 32 is returned to the former state by inverting the vertical direction and horizontal direction of the video signal using a frame memory. -
FIG. 13 schematically shows a time-axis inverting operation using a frame memory. When data is written into the frame memory on a line-by-line basis from upper left to lower right as shown inFIG. 13A , the time-axis can be inverted by reading the data that is stored in the frame memory from the write end position to the write start position as shown inFIG. 13B . Since the time-axis is inverted inframe inverter 32 in this manner,IIR filter 33 performs the filtering in the direction opposite to the temporal direction in which the filtering is performed inIIR filter 31. - In this example, since the frame inversion is performed twice, the video signal is delayed by two frames. Generally, in moving images, few scenes switch from one frame to another, but the subject moves continuously over several frames or more in most cases. Therefore, this example can also restrain the blur in a moving image.
- The image quality improving apparatus of the present invention described above can be applied to ordinary display apparatuses, and can be particularly used in hold-type drive display apparatuses, more specifically, liquid crystal display apparatuses, in which a blur in a moving image is conspicuously generated due to retinal after-images.
-
FIG. 14 illustrates the configuration of a display apparatus to which the image improving apparatus of an exemplary aspect of the present invention is applied. Referring toFIG. 14 , the display apparatus, which is a hold-type drive display device, may includedisplay device 44 illuminated by light fromlamp 43;lens 45 for projecting images formed bydisplay device 44 onto a screen, not shown; videosignal processing circuit 40 for processing an input signal; imagequality improving circuit 41; and displaydevice driving circuit 42 for drivingdisplay device 44. - Image
quality improving circuit 41 is implemented by the image quality improving apparatus of the present invention, and the remaining components may include existing devices. In this display apparatus, a video signal is supplied from videosignal processing circuit 40 to imagequality improving circuit 41 which in turn improves the input video signal in image quality. Then, displaydevice driving circuit 42 drives displaydevice 44 based on the video signal supplied from imagequality improving circuit 41. - While the foregoing description has been given in connection with the non-interlace scheme by way of example, the present invention can also be applied to an interlace scheme in which a frame is made up of odd-numbered fields and even-numbered fields. When the present invention is applied to the interlace scheme, the operation can be described by replacing “frame” with “field” in the foregoing description.
- With its unique and novel features, the present invention may provide a low-cost image quality improving apparatus which is capable of restraining a blur in a moving image without reducing the luminance.
- While exemplary embodiments of the present invention have been described using specific terms, such description is for illustrates purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
- Further, Applicant's intent is to encompass the equivalents of all claim elements, and no amendment to any claim in the present application should be construed as a disclaimer of any interest in or right to an equivalent of any element or feature of the amended claim.
Claims (18)
1. A method of improving an image quality of a video signal which is supplied on a frame-by-frame basis, comprising:
extracting high frequency components associated with a video signal of an n-th frame, where n is a natural number; and
adding the extracted high frequency components to a video signal of an (n+m)th frame, where m is a natural number.
2. The image quality improving method according to claim 1 , further comprising:
extracting low frequency components from the video signal of the n-th frame; and
subtracting the extracted low frequency components from the video signal of the (n+m)th frame to produce the high frequency components.
3. The image quality improving method according to claim 2 , further comprising:
extracting the low frequency components from the video signal of the n-th frame in at least one of a horizontal direction of an image displayed by the video signal, and a vertical direction of an image displayed by the video signal.
4. The image quality improving method according to claim 1 , further comprising:
extracting low frequency components from the video signal of the n-th frame; and
subtracting the extracted low frequency components from the video signal of the n-th frame to produce the high frequency components.
5. The image quality improving method according to claim 4 , further comprising:
extracting the low frequency components from the video signal of the n-th frame in at least one of a horizontal direction of an image displayed by the video signal, and a vertical direction of an image displayed by the video signal.
6. An apparatus for improving an image quality of an input video signal which is supplied on a frame-by-frame basis, comprising:
a high frequency component extractor that extracts high frequency components associated with a video signal of an n-th frame, where n is a natural number; and
an adder that adds the high frequency components extracted by said high frequency component extractor to a video signal of an (n+m)th frame, where m is a natural number.
7. The image quality improving apparatus according to claim 6 , wherein said high frequency component extractor comprises:
a low frequency component extractor that extracts low frequency components from the video signal of the n-th frame; and
a subtractor that subtracts the low frequency components extracted by said low frequency component extractor from the input video signal to extract the high frequency components.
8. The image quality improving apparatus according to claim 7 , wherein said subtractor subtracts the low frequency components extracted by said low frequency component extractor from the video signal of the (n+m)th frame to extract the high frequency components.
9. The image quality improving apparatus according to claim 8 , wherein said low frequency component extractor comprises:
a frame memory to delay the input video signal supplied on a frame-by-frame basis in units of frames; and
a low-pass filter that extracts low frequency components from the video signal delayed by said frame memory.
10. The image quality improving apparatus according to claim 9 , wherein said low-pass filter extracts the low frequency components from the video signal delayed by said frame memory in at least one of a horizontal direction of an image displayed by the video signal, and a vertical direction of an image displayed by the video signal.
11. The image quality improving apparatus according to claim 8 , wherein said low frequency component extractor comprises:
a horizontal low-pass filter that extracts low frequency components of the input video signal supplied on a frame-by-frame basis in a horizontal direction of an image displayed by the video signal;
a down-sampler that reduces the number of samples in a video signal that has the low frequency components in the horizontal direction that have been extracted by said horizontal low-pass filter;
a frame memory to delay the video signal down-sampled by said down-sampler in units of frames;
a vertical low-pass filter that extracts low frequency components from the video signal delayed by said frame memory in a vertical direction of the displayed image; and
an up-sampler that returns the number of samples in a video signal that has the low frequency components in the vertical direction that have been extracted by said vertical low-pass filter to the original number of samples.
12. The image quality improving apparatus according to claim 8 , wherein said low frequency component extractor comprises:
a first infinite impulse response (IIR) filter that extracts low frequency components from the input video signal supplied on a frame-by-frame basis in at least one of a horizontal direction of the input video signal, and a vertical direction of the input video signal;
a first frame inverter that inverts a time-axis of a video signal that has the low frequency components that have been extracted by said first IIR filter;
a second IIR filter that extracts low frequency components from the video signal, the time-axis of which has been inverted by said first frame inverter, in at least one of a horizontal direction of the video signal, and a vertical direction of the video signal; and
a second frame inverter that inverts the time-axis of a video signal that has the low frequency components that have been extracted by said second IIR filter.
13. The image quality improving apparatus according to claim 7 , wherein said subtractor subtracts the low frequency components extracted by said low frequency component extractor from the video signal of the n-th frame to extract the high frequency components.
14. The image quality improving apparatus according to claim 13 , wherein said low frequency component extractor extracts the low frequency components from the video signal of the n-th frame in at least one of a horizontal direction of an image displayed by the video signal, and a vertical direction of an image displayed by the video signal.
15. The image quality improving apparatus according to claim 6 , further comprising:
a multiplier that adjusts the amplitude of a high frequency component signal supplied from said high frequency component extractor.
16. A display apparatus comprising:
the image quality improving apparatus according to claim 6;
a display device; and
a driving circuit that drives said display device based on a video signal supplied from said image quality improving apparatus.
17. A method of improving an image quality of a video signal which is supplied on a frame-by-frame basis, comprising the steps of:
a step for extracting high frequency components associated with a video signal of an n-th frame, where n is a natural number; and
a step for adding the extracted high frequency components to a video signal of an (n+m)th frame, where m is a natural number.
18. An apparatus for improving an image quality of an input video signal which is supplied on a frame-by-frame basis, comprising:
means for extracting high frequency components associated with a video signal of an n-th frame, where n is a natural number; and
means for adding the high frequency components extracted by said high frequency component extractor to a video signal of an (n+m)th frame, where m is a natural number.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/486,855 US8692939B2 (en) | 2005-10-18 | 2012-06-01 | Method and apparatus for improving image quality |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005302935A JP4555207B2 (en) | 2005-10-18 | 2005-10-18 | Image quality improving apparatus and image quality improving method |
JP2005-302935 | 2005-10-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/486,855 Division US8692939B2 (en) | 2005-10-18 | 2012-06-01 | Method and apparatus for improving image quality |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070085930A1 true US20070085930A1 (en) | 2007-04-19 |
Family
ID=37570205
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/522,418 Abandoned US20070085930A1 (en) | 2005-10-18 | 2006-09-18 | Method and apparatus for improving image quality |
US13/486,855 Active US8692939B2 (en) | 2005-10-18 | 2012-06-01 | Method and apparatus for improving image quality |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/486,855 Active US8692939B2 (en) | 2005-10-18 | 2012-06-01 | Method and apparatus for improving image quality |
Country Status (4)
Country | Link |
---|---|
US (2) | US20070085930A1 (en) |
EP (1) | EP1777656B1 (en) |
JP (1) | JP4555207B2 (en) |
CN (2) | CN1953508B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110081095A1 (en) * | 2009-10-06 | 2011-04-07 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
CN108932696A (en) * | 2017-05-26 | 2018-12-04 | 杭州海康威视数字技术股份有限公司 | The Halation inhibition method and device of signal lamp |
US11601626B2 (en) | 2017-03-09 | 2023-03-07 | Sony Corporation | Image processing apparatus and method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4555207B2 (en) * | 2005-10-18 | 2010-09-29 | Necディスプレイソリューションズ株式会社 | Image quality improving apparatus and image quality improving method |
JP4453777B2 (en) | 2008-07-15 | 2010-04-21 | 日本ビクター株式会社 | Image quality improving apparatus and method |
US8705627B2 (en) * | 2008-07-25 | 2014-04-22 | Sony Corporation | Image processing apparatus and method |
JP5324391B2 (en) * | 2009-10-22 | 2013-10-23 | キヤノン株式会社 | Image processing apparatus and control method thereof |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107340A (en) * | 1988-03-30 | 1992-04-21 | Kabushiki Kaisha Toshiba | Digital video signal noise-reduction apparatus with high pass and low pass filter |
US5115313A (en) * | 1988-11-22 | 1992-05-19 | Matsushita Electric Industrial Co., Ltd. | Picture signal processing apparatus having a temporal filter and a picture-in-picture function |
US5224483A (en) * | 1992-05-19 | 1993-07-06 | Hewlett-Packard Company | Adaptive contrast enhancement for scanned ultrasonic image |
US5278648A (en) * | 1991-05-30 | 1994-01-11 | Comsat | Mixed field time-multiplexed video transmission system and method |
US5534935A (en) * | 1993-10-29 | 1996-07-09 | Kabushiki Kaisha Toshiba | Processing apparatus for progressive scan generation of a television signal |
US5646697A (en) * | 1994-01-19 | 1997-07-08 | Sony Corporation | Special effects video processor |
US5712691A (en) * | 1995-12-05 | 1998-01-27 | Philips Electronics North America Corporation | Method and apparatus for area dependent dynamic blue de-focusing |
US5822008A (en) * | 1995-06-30 | 1998-10-13 | Mitsubishi Denki Kabushiki Kaisha | Scan conversion apparatus with improved vertical resolution and flicker reduction apparatus |
US5892551A (en) * | 1996-10-23 | 1999-04-06 | Nec Corporation | Circuit and method for reducing flicker |
US5903680A (en) * | 1996-02-05 | 1999-05-11 | U.S. Philips Corporation | Image data recursive noise filter with reduced temporal filtering of higher spatial frequencies |
US6442201B2 (en) * | 1997-08-13 | 2002-08-27 | Lg Electronics Inc. | Down conversion decoding device of digital television |
US20020149685A1 (en) * | 2001-03-23 | 2002-10-17 | Nec Viewtechnology, Ltd. | Method of and apparatus for improving picture quality |
US20030007100A1 (en) * | 2000-03-24 | 2003-01-09 | Ojo Olukayode Anthony | Electronic circuit and method for enhancing an image |
US6570673B2 (en) * | 1996-11-22 | 2003-05-27 | Sony Corporation | Video processing apparatus for processing pixel for generating high-picture-quality image, method thereof, and video printer to which they are applied |
US6650792B1 (en) * | 1998-11-10 | 2003-11-18 | Fujitsu General Limited | Image processor |
US20040017343A1 (en) * | 2000-03-29 | 2004-01-29 | Takako Adachi | Liquid crystal display device |
US20040218834A1 (en) * | 2003-04-30 | 2004-11-04 | Microsoft Corporation | Patch-based video super-resolution |
US20050094890A1 (en) * | 2003-10-30 | 2005-05-05 | Samsung Electronics Co., Ltd. | Method and apparatus for image detail enhancement without zigzagged edge artifact |
US20050162566A1 (en) * | 2004-01-02 | 2005-07-28 | Trumpion Microelectronic Inc. | Video system with de-motion-blur processing |
US20060098122A1 (en) * | 2004-10-27 | 2006-05-11 | Nec Viewtechnology, Ltd. | Picture quality improvement device and picture quality improvement method |
US20060119617A1 (en) * | 2004-12-02 | 2006-06-08 | Seiko Epson Corporation | Image display method, image display device, and projector |
US7061546B2 (en) * | 2001-04-20 | 2006-06-13 | Bts Media Solutions Gmbh | Arrangement for processing video signals |
US20060164555A1 (en) * | 2002-05-24 | 2006-07-27 | Klompenhouwer Michiel A | Unit for and method of calculating a sharpened edge |
US20070274397A1 (en) * | 2004-05-18 | 2007-11-29 | Koninklijke Philips Electronics N.V. | Algorithm for Reducing Artifacts in Decoded Video |
US7518660B2 (en) * | 2004-11-16 | 2009-04-14 | Nec Viewtechnology, Ltd. | Picture quality improvement device and picture quality improvement method |
US7538822B2 (en) * | 2004-05-04 | 2009-05-26 | Samsung Electronics Co., Ltd. | Apparatus and method for filtering digital image signal |
US7570306B2 (en) * | 2005-09-27 | 2009-08-04 | Samsung Electronics Co., Ltd. | Pre-compensation of high frequency component in a video scaler |
US7602447B2 (en) * | 2006-01-26 | 2009-10-13 | Vestel Elecktronik Sanayi Ve | Method and apparatus for adjusting the contrast of an image |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296880A (en) | 1985-06-25 | 1986-12-27 | Nec Home Electronics Ltd | Device for improving picture quality of television |
JPH02226883A (en) * | 1989-02-28 | 1990-09-10 | Toshiba Corp | Additional signal multiplexer |
JPH05328172A (en) * | 1992-05-27 | 1993-12-10 | Hitachi Denshi Ltd | Picture display device |
JPH08331421A (en) | 1995-03-30 | 1996-12-13 | Victor Co Of Japan Ltd | Picture quality enhancer |
AU6766096A (en) | 1995-08-04 | 1997-03-05 | Microsoft Corporation | Method and system for rendering graphical objects to image chunks and combining image layers into a display image |
TWI280547B (en) | 2000-02-03 | 2007-05-01 | Samsung Electronics Co Ltd | Liquid crystal display and driving method thereof |
JP4084062B2 (en) | 2002-03-18 | 2008-04-30 | 東芝松下ディスプレイテクノロジー株式会社 | Liquid crystal display |
US7016415B2 (en) * | 2002-07-16 | 2006-03-21 | Broadcom Corporation | Modifying motion control signals based on input video characteristics |
JP4555207B2 (en) * | 2005-10-18 | 2010-09-29 | Necディスプレイソリューションズ株式会社 | Image quality improving apparatus and image quality improving method |
-
2005
- 2005-10-18 JP JP2005302935A patent/JP4555207B2/en active Active
-
2006
- 2006-09-12 EP EP06019115.2A patent/EP1777656B1/en not_active Ceased
- 2006-09-18 US US11/522,418 patent/US20070085930A1/en not_active Abandoned
- 2006-10-17 CN CN2006101356023A patent/CN1953508B/en active Active
- 2006-10-18 CN CNU2006201493628U patent/CN200973139Y/en not_active Expired - Lifetime
-
2012
- 2012-06-01 US US13/486,855 patent/US8692939B2/en active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107340A (en) * | 1988-03-30 | 1992-04-21 | Kabushiki Kaisha Toshiba | Digital video signal noise-reduction apparatus with high pass and low pass filter |
US5115313A (en) * | 1988-11-22 | 1992-05-19 | Matsushita Electric Industrial Co., Ltd. | Picture signal processing apparatus having a temporal filter and a picture-in-picture function |
US5278648A (en) * | 1991-05-30 | 1994-01-11 | Comsat | Mixed field time-multiplexed video transmission system and method |
US5224483A (en) * | 1992-05-19 | 1993-07-06 | Hewlett-Packard Company | Adaptive contrast enhancement for scanned ultrasonic image |
US5534935A (en) * | 1993-10-29 | 1996-07-09 | Kabushiki Kaisha Toshiba | Processing apparatus for progressive scan generation of a television signal |
US5646697A (en) * | 1994-01-19 | 1997-07-08 | Sony Corporation | Special effects video processor |
US5822008A (en) * | 1995-06-30 | 1998-10-13 | Mitsubishi Denki Kabushiki Kaisha | Scan conversion apparatus with improved vertical resolution and flicker reduction apparatus |
US5712691A (en) * | 1995-12-05 | 1998-01-27 | Philips Electronics North America Corporation | Method and apparatus for area dependent dynamic blue de-focusing |
US5903680A (en) * | 1996-02-05 | 1999-05-11 | U.S. Philips Corporation | Image data recursive noise filter with reduced temporal filtering of higher spatial frequencies |
US5892551A (en) * | 1996-10-23 | 1999-04-06 | Nec Corporation | Circuit and method for reducing flicker |
US6570673B2 (en) * | 1996-11-22 | 2003-05-27 | Sony Corporation | Video processing apparatus for processing pixel for generating high-picture-quality image, method thereof, and video printer to which they are applied |
US6442201B2 (en) * | 1997-08-13 | 2002-08-27 | Lg Electronics Inc. | Down conversion decoding device of digital television |
US6650792B1 (en) * | 1998-11-10 | 2003-11-18 | Fujitsu General Limited | Image processor |
US7009662B2 (en) * | 2000-03-24 | 2006-03-07 | Koninklijke Philips Electronics N.V. | Electronic circuit and method for enhancing an image |
US20030007100A1 (en) * | 2000-03-24 | 2003-01-09 | Ojo Olukayode Anthony | Electronic circuit and method for enhancing an image |
US20040017343A1 (en) * | 2000-03-29 | 2004-01-29 | Takako Adachi | Liquid crystal display device |
US20020149685A1 (en) * | 2001-03-23 | 2002-10-17 | Nec Viewtechnology, Ltd. | Method of and apparatus for improving picture quality |
US7061546B2 (en) * | 2001-04-20 | 2006-06-13 | Bts Media Solutions Gmbh | Arrangement for processing video signals |
US20060164555A1 (en) * | 2002-05-24 | 2006-07-27 | Klompenhouwer Michiel A | Unit for and method of calculating a sharpened edge |
US20040218834A1 (en) * | 2003-04-30 | 2004-11-04 | Microsoft Corporation | Patch-based video super-resolution |
US20050094890A1 (en) * | 2003-10-30 | 2005-05-05 | Samsung Electronics Co., Ltd. | Method and apparatus for image detail enhancement without zigzagged edge artifact |
US20050162566A1 (en) * | 2004-01-02 | 2005-07-28 | Trumpion Microelectronic Inc. | Video system with de-motion-blur processing |
US7538822B2 (en) * | 2004-05-04 | 2009-05-26 | Samsung Electronics Co., Ltd. | Apparatus and method for filtering digital image signal |
US20070274397A1 (en) * | 2004-05-18 | 2007-11-29 | Koninklijke Philips Electronics N.V. | Algorithm for Reducing Artifacts in Decoded Video |
US7505084B2 (en) * | 2004-10-27 | 2009-03-17 | Nec Viewtechnology, Ltd. | Picture quality improvement device and picture quality improvement method |
US20060098122A1 (en) * | 2004-10-27 | 2006-05-11 | Nec Viewtechnology, Ltd. | Picture quality improvement device and picture quality improvement method |
US7518660B2 (en) * | 2004-11-16 | 2009-04-14 | Nec Viewtechnology, Ltd. | Picture quality improvement device and picture quality improvement method |
US20060119617A1 (en) * | 2004-12-02 | 2006-06-08 | Seiko Epson Corporation | Image display method, image display device, and projector |
US20090207186A1 (en) * | 2004-12-02 | 2009-08-20 | Seiko Epson Corporation | Image display method, image display device, and projector |
US7570306B2 (en) * | 2005-09-27 | 2009-08-04 | Samsung Electronics Co., Ltd. | Pre-compensation of high frequency component in a video scaler |
US7602447B2 (en) * | 2006-01-26 | 2009-10-13 | Vestel Elecktronik Sanayi Ve | Method and apparatus for adjusting the contrast of an image |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110081095A1 (en) * | 2009-10-06 | 2011-04-07 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US8447131B2 (en) | 2009-10-06 | 2013-05-21 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US11601626B2 (en) | 2017-03-09 | 2023-03-07 | Sony Corporation | Image processing apparatus and method |
CN108932696A (en) * | 2017-05-26 | 2018-12-04 | 杭州海康威视数字技术股份有限公司 | The Halation inhibition method and device of signal lamp |
Also Published As
Publication number | Publication date |
---|---|
CN1953508A (en) | 2007-04-25 |
JP4555207B2 (en) | 2010-09-29 |
EP1777656A1 (en) | 2007-04-25 |
US20120242903A1 (en) | 2012-09-27 |
CN1953508B (en) | 2012-06-06 |
JP2007114269A (en) | 2007-05-10 |
CN200973139Y (en) | 2007-11-07 |
US8692939B2 (en) | 2014-04-08 |
EP1777656B1 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8692939B2 (en) | Method and apparatus for improving image quality | |
KR101197977B1 (en) | Enhancing video sharpness and contrast by luminance and chrominance transient improvement | |
US6259489B1 (en) | Video noise reducer | |
JP2002351382A (en) | Display device | |
US7738044B2 (en) | Method and apparatus for adjusting a chrominance signal | |
US7092582B2 (en) | Systems and methods for multi-dimensional enhancement using fictional border data | |
WO1990003704A1 (en) | Slow motion video signal generation | |
JP3879543B2 (en) | Image processing device | |
JPH0654302A (en) | Motion-compensatory image-signal interpolation device | |
KR960009766A (en) | Motion Adaptive Video Noise Reduction System | |
RU2222873C2 (en) | Image processor | |
JP2006304352A (en) | Image processor | |
US6717621B2 (en) | Method and apparatus for reducing flicker in a video image sequence | |
JP4768510B2 (en) | Image quality improving apparatus and image quality improving method | |
US20100289928A1 (en) | Video Signal Processing Unit and Display Unit | |
US8107760B2 (en) | Systems and methods for image enhancement in multiple dimensions | |
JP4913978B2 (en) | Flicker noise reduction device | |
US5021884A (en) | Noise reducer circuit for video signal | |
JP4474525B2 (en) | Smooth interpolated video signal supply apparatus and method | |
JP2002190968A (en) | Vertical contour correcting device | |
JPS6363285A (en) | Video signal processing circuit | |
JP2005073027A (en) | Image signal processor, viewfinder, display device, image signal processing method, recording medium and program | |
JP2000099719A (en) | Image display device | |
JP3237556B2 (en) | Video processing device | |
JP4329722B2 (en) | Video camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC VIEWTECHNOLOGY, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, MICHIO;KOBAYASHI, REIICHI;REEL/FRAME:018321/0545 Effective date: 20060906 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NEC DISPLAY SOLUTIONS, LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC VIEWTECHNOLOGY, LTD.;REEL/FRAME:035509/0782 Effective date: 20070401 |