US20070016105A1 - Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators - Google Patents
Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators Download PDFInfo
- Publication number
- US20070016105A1 US20070016105A1 US11/475,425 US47542506A US2007016105A1 US 20070016105 A1 US20070016105 A1 US 20070016105A1 US 47542506 A US47542506 A US 47542506A US 2007016105 A1 US2007016105 A1 US 2007016105A1
- Authority
- US
- United States
- Prior art keywords
- wire
- clip
- applicator
- electromagnet
- handles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010002329 Aneurysm Diseases 0.000 title claims abstract description 84
- 238000003780 insertion Methods 0.000 title claims abstract description 82
- 230000037431 insertion Effects 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000007769 metal material Substances 0.000 claims abstract description 9
- 230000003213 activating effect Effects 0.000 claims abstract description 8
- 230000006872 improvement Effects 0.000 claims abstract description 5
- 238000002583 angiography Methods 0.000 claims description 38
- 238000013016 damping Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 20
- 239000004033 plastic Substances 0.000 description 11
- 229920003023 plastic Polymers 0.000 description 11
- 210000002105 tongue Anatomy 0.000 description 11
- 229920000049 Carbon (fiber) Polymers 0.000 description 7
- 239000004917 carbon fiber Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000006223 plastic coating Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229920006335 epoxy glue Polymers 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M25/09041—Mechanisms for insertion of guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09116—Design of handles or shafts or gripping surfaces thereof for manipulating guide wires
Definitions
- Angiography procedures often use catheters manipulated with the assistance of wires such as shaped wires, micro wires and glide wires.
- wires such as shaped wires, micro wires and glide wires.
- Such wires allow a practitioner (e.g., a physician, surgeon, or nurse) to guide a catheter within vasculature of a patient being imaged (e.g., to guide the catheter into an appropriate blood vessel). Manipulating such wires may be difficult with gloved hands.
- One task that may be difficult to perform is threading a shaped wire into a catheter. This task may be required at the beginning of a procedure, or when a procedure requires removal and re-insertion of the wire.
- an insertion tool resembles a short, hollow cylinder: a wire is loaded into the cylinder and pushed through it into the catheter.
- loading the wire involves pushing a proximal (e.g., patient) end of the wire into the cylinder.
- wires have a curved proximal end that does not easily insert into the cylinder; in these cases, a distal end of the wire is threaded into a proximal end of the cylinder, and the device is manipulated along the full length of the wire to insert the curved end of the wire into an open end of the catheter. Once insertion is complete, the device is manipulated along the full length of the wire and removed. Guide wires may be over 100 cm in length, so threading the insertion device on, off and along the wire may consume enough time that this time has to be factored into a practitioner's decision to remove and re-engage the wire during a procedure. Re-insertion also provides an unwanted opportunity to drop or contaminate the wire. Also, threading a full length of the wire increases risk of damaging or stripping special coatings (e.g., coatings that allow them to move smoothly within the catheter) of certain wires.
- a wire Once a wire is installed in a catheter, the practitioner may need to push, pull and/or twist the wire to direct the wire and the catheter within the subject.
- Existing torque devices may be helpful in directing the wire, but as with the insertion tool, the torque device must be threaded onto the distal (straight) end of the wire, which may also be time consuming.
- FIG. 1A shows a perspective view of one prior art device 10 for manipulating a wire (not shown).
- Device 10 is made of plastic and has a cap 20 and a handle element 30 , as shown.
- Handle element 30 has a handle 40 coupled with a cylindrical element 50 and segmented cylinder elements 60 ( 1 )- 60 ( 4 ).
- Cylindrical element 50 has threads 55 .
- Handle element 30 forms a central hole (see FIG. 1B ) about a wire path 5 .
- Cap 20 has a cylindrical portion 70 and a conical portion 72 .
- Cap 20 forms a central hole 74 along wire path 5 . Threads 55 engage corresponding threads inside cap 20 , such that cap 20 can screw onto handle element 30 .
- Handle 40 and/or cylindrical portion 70 may have gripping features 45 , as shown.
- FIG. 1B shows an end view of handle element 30 , as seen from cap 20 .
- Each of segmented cylinder elements 60 ( 1 )- 60 ( 4 ) is separated from two other such elements by a slot 75 , as shown.
- Wire path 5 (not labeled in FIG. 1B ) passes through a central hole 15 .
- a practitioner threads a wire through hole 15 and hole 74 and then screws cap 20 onto handle element 30 , forcing elements 60 ( 1 )- 60 ( 4 ) into conical portion 72 and squeezing elements 60 ( 1 )- 60 ( 4 ) together about the wire. This holds the wire in place so that the practitioner can manipulate the wire by manipulating handle 40 .
- An aneurysm is a localized dilation of a blood vessel caused by disease or weakening of the vessel wall, and may form a “balloon” shape projecting from the vessel. Rupture of a cerebral aneurysm may cause a stroke. Aneurysm clips are sometimes used to close off an aneurysm to prevent its rupture. Diagnosis and post-treatment assessment of aneurysms may utilize angiography.
- FIG. 2A shows a top view of one prior art aneurysm clip 80 .
- Clip 80 is made of titanium, for example.
- Clip 80 has a spring 82 that biases jaws 86 ( 1 ) and 86 ( 2 ) into a closed position.
- a practitioner applying clip 80 uses an aneurysm clip applicator (e.g., as shown in FIG. 3A and FIG. 3B , or FIG. 18A and FIG. 18B ) to squeeze clip 80 at points 84 , forcing jaws 86 ( 1 ) and 86 ( 2 ) apart so that they may be positioned about a base of an aneurysm.
- aneurysm clip applicator e.g., as shown in FIG. 3A and FIG. 3B , or FIG. 18A and FIG. 18B
- FIG. 2B shows a side view of clip 80 ; relative to FIG. 2A , clip 80 is rolled towards the viewer so that jaw 86 ( 1 ) is in front of, and blocks view of, jaw 86 ( 2 ).
- aneurysm clip 80 is made of metal, it may introduce unwanted “flare” and other artifacts into computerized tomography (“CT”) and CT angiography images made after its installation. Such artifacts may obscure important details in the images (for example, details relating to residual aneurysm) and generally interfere with interpretation of the images.
- clip 80 if manufactured of certain materials (e.g., cobalt alloy steel) may be moved by a strong magnetic field such as the 3 Tesla field of magnetic resonance (“MR”) systems currently being installed in clinical practices. Movement of clip 80 presents a risk of injury or death to a patient.
- MR magnetic resonance
- FIG. 3A and FIG. 3B show a prior art aneurysm clip applicator 1210 in “open” and “closed” positions respectively.
- Applicator 1210 has handles 1260 ( 1 ) and 1260 ( 2 ) that a practitioner compresses to “open” an aneurysm clip 1205 .
- Applicator 1210 also has a flat spring 1275 , and latch portions 1220 ( 1 ) and 1220 ( 2 ) (attached to handles 1260 ( 1 ) and 1260 ( 2 ) respectively).
- FIG. 1 handles 1260 ( 1 ) and 1260 ( 2 ) that a practitioner compresses to “open” an aneurysm clip 1205 .
- Applicator 1210 also has a flat spring 1275 , and latch portions 1220 ( 1 ) and 1220 ( 2 ) (attached to handles 1260 ( 1 ) and 1260 ( 2 ) respectively).
- handles 1260 ( 1 ) and 1260 ( 2 ) and spring 1275 are not compressed, and applicator 1210 is in an “open” position with jaws 1240 ( 1 ) and 1240 ( 2 ) in a position to grab and manipulate clip 1205 (which is in a “closed” position).
- Pivot points 1230 and 1250 allow movement of applicator 1210 from the “open” position shown in FIG. 3A to the “closed” position shown in FIG. 3B .
- Latch portions 1220 ( 1 ) and 1220 ( 2 ) are disengaged while applicator 1210 is in the “open” position.
- handles 1260 ( 1 ) and 1260 ( 2 ), and spring 1275 have been compressed by a practitioner, placing jaws 1240 ( 1 ) and 1240 ( 2 ) in the “closed” position, and clip 1205 in the “open” position.
- jaws 1240 ( 1 ) and 1240 ( 2 ) are in the “closed” position, the practitioner may engage latch portions 1220 ( 1 ) and 1220 ( 2 ), as shown, to keep them in the “closed” position without the practitioner having to maintain pressure on handles 1260 ( 1 ) and 1260 ( 2 ).
- clip 1205 When clip 1205 is in a final position for clipping an aneurysm, the practitioner must compress handles 1260 ( 1 ) and 1260 ( 2 ) in order to disengage latch portion 1220 ( 1 ) from 1220 ( 2 ) to close clip 1205 .
- the additional compression motion required by the practitioner to disengage latch portions 1220 ( 1 ) and 1220 ( 2 ) may be disadvantageous because it may “jiggle” clip 1205 , potentially causing clip 1205 to be misplaced relative to its intended placement.
- latch portions 1220 ( 1 ) and/or 1220 ( 2 ) are bent off, the practitioner must maintain pressure on handles 1260 ( 1 ) and 1260 ( 2 ) to keep them in the “closed” position, which may impair the practitioner's ability to maneuver clip 1205 and may again result in misplacement of clip 1205 .
- a wire torque apparatus in one embodiment, includes a handle element and a cap.
- the handle element includes a handle and at least two segmented cylinder elements, and the handle forms a lengthwise slot.
- the cap can engage the handle element, and forms a conical cavity and a lengthwise slot.
- the lengthwise slots of the handle and cap are configured to allow a wire to pass through when the slots are aligned, and the segmented cylinder elements are configured to grip the wire within the conical cavity when the cap engages the handle element.
- a wire torque apparatus in one embodiment, includes a block forming (a) a first slot, bounded by a first surface and a second surface, that extends lengthwise through the block, and (b) a second slot that extends from one side of the block through the first surface.
- a cam rotates within the second slot about an axle.
- the first slot is configured to accommodate a length of wire, and the cam is operable to grip the wire against the second surface.
- a method of engaging a wire torque apparatus about a wire includes rotating a cam in a first direction so that a gripping surface of the cam withdraws from a surface of the apparatus.
- the wire positions into a slot between the gripping surface and the surface of the apparatus.
- the cam rotates in a direction opposite the first direction so that the gripping surface engages the wire against the surface of the apparatus.
- a wire torque apparatus in one embodiment, includes a first block forming (a) a lengthwise slot and (b) a tapered internally threaded cavity; and a second block forming (a) a lengthwise slot and (b) at least two tapered externally threaded elements.
- the lengthwise slots are configured to allow a wire to pass through when the slots are aligned, and the threaded elements are configured to screw into the cavity to engage the wire.
- an improved wire torque apparatus is of a type that is configured to clamp a length of wire therein, and includes structure of the apparatus forming a lengthwise slot configured to allow the wire to pass through such that the apparatus can clamp onto the wire without threading an end of the wire through the apparatus.
- a method of engaging a wire torque apparatus about a wire includes aligning at least two portions of the apparatus such that slots in each portion align. The wire positions into each of the slots. The portions are manipulated so that the apparatus engages the wire.
- a wire insertion device in one embodiment, includes a triangular base with side walls, and an insertion sleeve that forms a lengthwise slit.
- the base and side walls are configured to facilitate positioning of an angiography wire within the insertion sleeve.
- a method of inserting a wire into a catheter includes placing a proximal end of the wire between side walls of a wire insertion device. The proximal end is manipulated against the side walls so that the proximal end passes through a slot into an insertion sleeve. The insertion sleeve is inserted into the catheter, and the wire is pushed through the insertion sleeve into the catheter.
- a wire insertion device in one embodiment, includes first and second wire threading elements forming a groove therebetween.
- the first and second elements have an open position configured to receive a wire and a closed position configured to facilitate insertion of the wire into a catheter.
- a method of inserting a wire into a catheter includes separating wire threading elements of a wire insertion device. A portion of the wire is placed between the threading elements, which close about the portion of the wire. A tip formed by portions of the threading elements is placed into a catheter. The wire is pushed through the threading elements into the catheter.
- an improved aneurysm clip utilizes non-metallic material.
- an improvement to an aneurysm clip applicator tool includes a power supply to power an electromagnet, an adjustable counter element that is attracted to the electromagnet when the electromagnet is magnetized, and a switch to disengage the electromagnet.
- a power supply to power an electromagnet
- an adjustable counter element that is attracted to the electromagnet when the electromagnet is magnetized
- a switch to disengage the electromagnet.
- a method of applying an aneurysm clip includes squeezing handles of an applicator into a closed position with jaws of the applicator squeezing an aneurysm clip into an open position. Activating a switch holds the applicator in the closed position and the clip in the open position. The clip is positioned, and the switch is activated to release the handles so that the jaws of the applicator release the clip.
- FIG. 4A shows a perspective view of one angiography apparatus 110 for manipulating a wire.
- FIG. 4B shows an end view of a handle element of the angiography apparatus of FIG. 4A .
- FIG. 5A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment.
- FIG. 5B shows a cross-sectional view of the angiography wire torque apparatus of FIG. 5A , with a cam in an “open” position.
- FIG. 5C shows a cross-sectional view of the angiography wire torque apparatus of FIG. 5A , with the cam in a “gripping” position.
- FIG. 6A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment.
- FIG. 6B is a side view of two blocks of the angiography wire torque apparatus of FIG. 6A .
- FIG. 6C is an end view of one of the blocks of the angiography wire torque apparatus of FIG. 6A .
- FIG. 7A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment.
- FIG. 7B is a side view of two blocks of the angiography wire torque apparatus of FIG. 7A .
- FIG. 7C , FIG. 7D , and FIG. 7E are cross-sectional views of one block of the angiography wire torque apparatus of FIG. 7A .
- FIG. 8A is a top view of a wire insertion device, in accord with an embodiment.
- FIG. 8B is a side view of the wire insertion device of FIG. 8A .
- FIG. 8C is an end view of the wire insertion device of FIG. 8A .
- FIG. 9A , FIG. 9B and FIG. 9C illustrate use of the wire insertion device of FIG. 8A with an angiography wire.
- FIG. 10A is a side view of a wire insertion device, in accord with an embodiment.
- FIG. 10B and FIG. 10C are a front view and a side view, respectively, of the wire insertion device of FIG. 10A .
- FIG. 10D is a side view of the wire insertion device of FIG. 10A in an open position.
- FIG. 10E is an enlarged detail of a wire threading element and a handle of the wire insertion device of FIG. 10A .
- FIG. 11 shows a side view of a wire insertion device, in accord with an embodiment.
- FIG. 12A is a side view of a wire insertion device.
- FIG. 12B shows an enlarged end view of a region of the wire insertion device of FIG. 12A .
- FIG. 12C is a perspective view illustrating the wire insertion device of FIG. 12A during use.
- FIG. 13A shows a wire insertion device.
- FIG. 13B is a top view of the wire insertion device of FIG. 13A .
- FIG. 13C shows the wire insertion device of FIG. 13A in an open position.
- FIG. 14A shows an aneurysm clip.
- FIG. 14B shows a side view of the aneurysm clip of FIG. 14A .
- FIG. 15A through FIG. 15D show aneurysm clips.
- FIG. 15E and FIG. 15F are cross-sections of non-metallic blades of the aneurysm clip of FIG. 15D .
- FIG. 16A through FIG. 16E demonstrate the reduced “flare” in angiographic images produced by aneurysm clips of FIG. 14A or FIG. 15A through 15D , as compared to prior art clips.
- FIG. 17 shows a CT image reformatted from the stack of images from which FIG. 16A through FIG. 16E were selected.
- FIG. 18A and FIG. 18B show an aneurysm clip applicator in “open” and “closed” positions respectively.
- FIG. 19A shows an aneurysm clip applicator with a distal portion in an “open” position.
- FIG. 19B shows an actuator portion that may be form part of the aneurysm clip applicator of FIG. 19A .
- FIG. 19C is an exploded diagram illustrating how an actuator portion and the distal portion of FIG. 19A may cooperate to form an aneurysm clip applicator, according to an embodiment.
- FIG. 4A shows a perspective view of one angiography wire torque apparatus 110 , in accord with an embodiment, for manipulating a wire (not shown).
- FIG. 4A may not be drawn to scale.
- Device 110 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings).
- Device 110 includes a cap 120 and a handle element 130 , as shown.
- Handle element 130 has a diameter 132 , and has a handle 140 that couples with a cylindrical element 150 and with segmented cylinder elements 160 ( 1 )- 160 ( 4 ).
- Cylindrical element 150 has threads 155 .
- Handle element 130 forms a slot 135 (also see FIG. 4B ) about a wire path 105 .
- Cap 120 has a cylindrical portion 170 and a conical portion 172 .
- Inside cylindrical portion 170 hidden in the view of FIG. 4A ) are threads that mate with threads 155 of handle element 30 ; an inside surface of conical portion 172 forms a conical cavity.
- Cap 120 forms a slot 125 along wire path 105 . Threads 155 engage corresponding threads inside cap 120 , such that cap 120 can screw onto handle element 130 .
- Each of handle 140 and cylindrical portion 170 may have gripping features 145 , as shown.
- FIG. 4B shows an end view of handle element 130 , as seen from cap 120 .
- FIG. 4B may not be drawn to scale.
- Each of segmented cylinder elements 160 ( 1 )- 160 ( 4 ) is separated from two other such elements by slots 135 or 175 , as shown.
- Wire path 105 (not labeled in FIG. 4B ) passes through slot 135 .
- a practitioner positions a wire into wire path 105 through slots 125 and 135 , and engages cap 120 onto handle element 130 (by, for example, screwing threads 155 into corresponding threads in cap 120 ), forcing segmented cylinder elements 160 ( 1 )- 160 ( 4 ) into conical portion 180 .
- Slots 125 and 135 allow positioning of the wire along wire path 105 along any part of the wire that is accessible, so that the wire need not thread through apparatus 110 from an end of the wire.
- wire torque apparatus 110 need not pass over the full length of the wire to disengage from the wire; the practitioner can disengage cap 120 from handle element 130 , and pass the wire out of cap 120 and handle element 130 through slots 125 and 135 .
- a diameter 132 of torque apparatus 110 may vary to suit the preference of a practitioner. Certain practitioners may find that a diameter 132 of less than 5 mm is too small to grasp effectively with gloves, that a diameter 132 of 20 mm or more is unnecessarily large and awkward, and that a diameter 132 of 7 mm to 9 mm is large enough to grip securely yet small enough to use with precision. Similar issues of practitioner preference may also apply to a type and size of gripping features 145 , as discussed below with respect to gripping features of other devices.
- torque apparatus 110 is shown with four segmented cylinder elements 160 , a wire torque apparatus may utilize fewer or more of such elements.
- torque apparatus 110 is shown with threads 155 for engaging cap 120 to handle element 130
- a wire torque apparatus may utilize other mechanisms, such as protrusions that fit into mating slots, or elements that snap together, for engaging cap 120 to handle element 130 .
- FIG. 5A is a perspective view of one angiography wire torque apparatus 210 , in accord with an embodiment.
- Apparatus 210 includes a block 212 that forms a slot 215 for an angiography wire 205 .
- Block 212 is hexagonal in cross section, and presents faces 250 ( 1 )- 250 ( 6 ) that may be useful for gripping apparatus 210 ; however, it will be appreciated that block 212 may have a different shape and/or texture for gripping.
- Block 212 forms buttons 240 at an outer edge of slot 215 ; buttons 240 are sized such that wire 205 snaps past buttons 240 as it passes into and out of slot 215 .
- a cam 220 with a gripping element 222 and a handle 224 rotates within a slot 218 about an axle 230 .
- Slot 218 extends from top surface 250 ( 5 ) of block 212 through top surface 216 of slot 215 .
- Axle 230 is shown in FIG. 5A (and FIG. 5B and FIG. 5C ) as an element that is separate from cam 220 ; however axle 230 and cam 220 may be a single structure (e.g., a single piece of molded plastic).
- Gripping element 222 rotates eccentrically about axle 230 .
- Rotating handle 224 in the direction of arrow A increases clearance between gripping element 222 and a bottom surface 217 of block 212 by moving a large portion 222 ′ of gripping element 222 away from surface 217 and lowering a smaller portion 222 ′′ towards surface 217 .
- Rotating handle 224 in the opposite direction of arrow A decreases clearance between gripping element 222 and surface 217 until gripping element 222 contacts surface 217 .
- FIG. 5B shows a cross-sectional view of apparatus 210 taken along plane 4 B- 4 B indicated in FIG. 5A , with cam 220 rotated in the direction of arrow A; in this configuration, cam 220 is in an “open” position.
- FIG. 5B may not be drawn to scale.
- Angiography wire 205 is shown within slot 215 adjacent to bottom surface 217 .
- Cam 220 has a concave gripping surface 223 that clears wire 25 when cam 220 is in the open position shown in FIG. 5B .
- a practitioner uses apparatus 210 as follows.
- the practitioner first opens cam 220 by rotating it about axle 230 in the direction of arrow A, so that gripping element 222 clears bottom surface 217 of slot 215 , as shown in FIG. 5B .
- the practitioner snaps angiography wire 205 past buttons 240 into slot 215 and rotates cam 220 about axle 230 into a “closed” position, gripping wire 205 between gripping element 222 and surface 217 of block 212 .
- FIG. 5C shows a cross-sectional view of apparatus 210 taken along plane 4 B- 4 B indicated in FIG. 5A , with cam 220 rotated in the opposite direction of arrow A, such that cam 220 grips wire 205 against bottom surface 217 , forming the closed position.
- Wire 205 nestles within concave gripping surface 223 and may compress gripping surface 223 and bottom surface 217 .
- the practitioner can manipulate wire 5 by manipulating apparatus 210 .
- Manipulation of apparatus 210 may be easier and more precise than manipulating wire 205 by itself.
- inserting and removing wire 205 through slot 215 may be easier and faster than threading wire 205 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures.
- Buttons 240 provide tactile feedback to the practitioner when inserting wire 205 into slot 215 . Buttons 240 may also serve to hold apparatus 210 loosely onto wire 205 when cam 220 is in the open position, so that once wire 205 snaps within buttons 240 , the practitioner can use apparatus 210 without concern that apparatus 210 will fall if dropped.
- FIG. 6A is a perspective view of one angiography wire torque apparatus 310 , in accord with an embodiment.
- Apparatus 310 includes two blocks 320 and 330 forming slots 325 and 335 , respectively.
- Apparatus 310 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings).
- blocks 320 and 330 are hexagonal in cross section; it will be appreciated that blocks 320 and 330 may have shapes other than the hexagonal shape shown.
- FIG. 6A shows blocks 320 and 330 engaged about wire 305 by rotating block 330 in the direction of arrow C relative to block 320 , so that apparatus 310 is in a “closed” position, as discussed below.
- FIG. 6B is a side view of blocks 320 and 330 of apparatus 310 disengaged from each other (i.e., in an “open” position).
- Block 330 includes segmented threaded elements 340 ( 1 )- 340 ( 4 ). Threaded elements 340 ( 1 )- 340 ( 4 ) (similar to segmented cylindrical elements 160 ( 1 )- 160 ( 4 ) of FIG. 4B ) are separated by slots; three of the slots extend only through elements 340 ( 1 )- 340 ( 4 ); the fourth slot is slot 335 , which extends to the other end of block 330 , as shown.
- Block 320 includes a threaded receptacle 350 having a steeply tapered region 352 , that intersects slot 325 .
- FIG. 6C is an end view of block 330 of apparatus 310 , as seen from block 320 .
- FIG. 6C may not be drawn to scale. Threaded elements 340 ( 1 )- 340 ( 4 ) and slot 335 are shown in FIG. 6C .
- a practitioner positions wire 305 into slots 325 and 335 , and screws elements 340 ( 1 )- 340 ( 4 ) of block 330 into receptacle 350 of block 320 (by rotating block 330 in the direction of arrow C, FIG. 6A ).
- elements 340 ( 1 )- 340 ( 4 ) progress into receptacle 350 and tapered region 352 , they squeeze together to hold wire 305 in place (i.e., in the closed position) so that the practitioner can manipulate wire 305 by manipulating apparatus 310 .
- Manipulation of apparatus 310 may be easier and more precise than manipulation of wire 305 by itself.
- inserting and removing wire 305 through slots 325 and 335 may be easier and faster than threading wire 305 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures.
- FIG. 7A is a perspective view of one angiography wire torque apparatus 410 , in accord with an embodiment.
- Apparatus 410 includes two blocks 420 and 430 forming slots 425 and 435 , respectively.
- Apparatus 410 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings).
- blocks 420 and 430 are hexagonal in cross section; it will be appreciated that blocks 420 and 430 may have different shapes.
- FIG. 7A shows blocks 420 and 430 engaged about wire 405 by rotating block 430 in the direction of arrow D relative to block 420 , so that apparatus 410 is in a closed position, as discussed below.
- FIG. 7B is a side view of blocks 420 and 430 of apparatus 410 disengaged from each other (i.e., in an open position).
- FIG. 7B may not be drawn to scale.
- Block 430 includes a threaded element 440 with a tongue 445 ; a slot 435 extends through element 440 and to the other end of block 330 , as shown.
- Block 420 includes a partially threaded receptacle 450 that intersects slot 425 , as shown.
- a practitioner positions wire 405 into slots 425 and 435 , and screws element 440 of block 430 into receptacle 450 of block 420 (by rotating block 430 in the direction of arrow D, FIG. 7A ).
- tongue 445 jams wire 405 against block 420 to hold wire 405 in place (i.e., in a closed position) so that the practitioner can manipulate wire 405 by manipulating apparatus 410 .
- FIG. 7C , FIG. 7D , and FIG. 7E are cross-sectional views of block 420 taken at the planes indicated by dashed lines 6 C- 6 C, 6 D- 6 D and 6 E- 6 E, respectively, in FIG. 7B .
- FIG. 7C , FIG. 7D , and FIG. 7E may not be drawn to scale.
- FIG. 7C , FIG. 7D , and FIG. 7E show a cross-section of wire 405 and tongue 445 (at a plane E-E shown in FIG. 7B ) as tongue 445 advances into block 420 .
- tongue 445 has just entered a nonthreaded portion 450 ′ of receptacle 450 .
- FIG. 7C tongue 445 has just entered a nonthreaded portion 450 ′ of receptacle 450 .
- FIG. 7D shows tongue 445 blocking wire 405 from slot 425 (e.g., a closed position).
- FIG. 7E shows tongue 445 blocking wire 405 from slot 425 (e.g., a closed position).
- Manipulation of apparatus 410 may be easier and more precise than manipulating wire 405 by itself. Furthermore, inserting and removing wire 405 through slots 425 and 435 may be easier and faster than threading wire 405 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures.
- angiography wire torque apparatus 410 may be cylindrical instead of cone shaped, and a corresponding threaded receptacle may also be cylindrical.
- a wire torque apparatus like apparatus 410 may have other numbers of tongues besides the single tongue 445 shown in FIG. 7B , FIG. 7C , FIG. 7D and FIG. 7E ; for example, from one to four of such tongues may be utilized.
- FIG. 8A is a top view of a wire insertion device 510 , in accord with an embodiment.
- Wire insertion device 510 has a triangular base 530 , side walls 540 ( 1 ) and 540 ( 2 ), and an insertion sleeve 520 , as shown.
- Side walls 540 ( 1 ) and 540 ( 2 ) are separated from each other by a slot 550 .
- Insertion sleeve 520 has a lengthwise slot 515 that meets slot 550 where sleeve 520 meets base 530 , as shown.
- An end 522 of sleeve 550 is sized for insertion into a catheter.
- FIG. 8B is a side view of wire insertion device 510 , showing how sidewalls 540 ( 1 ) and 540 ( 2 ) may slope near slot 550 .
- FIG. 8C is an end view of wire insertion device 510 , looking from the open side of base 530 toward sleeve 520 .
- FIG. 9A , FIG. 9B and FIG. 9C illustrate use of wire insertion device 510 with an angiography wire 505 .
- a proximal end 507 e.g., a patient end
- wire 505 is inserted into sleeve 520 through slot 550 in the direction of arrow E.
- Base 530 and side walls 540 ( 1 )- 540 ( 2 ) provide surfaces which a practitioner may push wire 505 against to urge it into slot 550 , which may be especially helpful when proximal end 507 has bends that make wire 505 resist straightening (e.g., to facilitate insertion of wire 505 into sleeve 520 ).
- FIG. 9A a proximal end 507 (e.g., a patient end) of wire 505 is inserted into sleeve 520 through slot 550 in the direction of arrow E.
- Base 530 and side walls 540 ( 1 )- 540 ( 2 ) provide surfaces which a
- FIG. 9B illustrates the removal of wire 505 from wire insertion device 510 .
- proximal end 507 is within catheter 560
- wire insertion device 510 is withdrawn from catheter 560
- wire 505 is in the position labeled 505 ( a ).
- a practitioner lifts wire 505 upwards (e.g., in the direction of arrows F) through slot 550 and slit 515 (not visible in this view of device 510 ) until wire 505 is in the position labeled 505 ( b ), so that wire 505 is clear of device 510 yet remains inside catheter 560 .
- Wire insertion device 510 may thus be removed from wire 505 along any section of wire 505 .
- the entire wire 505 need not be threaded through device 510 for removal of the device at a distal end of wire 505 .
- FIG. 10A is a side view of a wire insertion device 610 , in accord with an embodiment.
- Wire insertion device 610 has two wire threading elements 620 ( 1 ) and 620 ( 2 ) that mount on handles 640 ( 1 ) and 640 ( 2 ) respectively; between elements 620 ( 1 ) and 620 ( 2 ) is a channel 615 .
- Each of handles 640 ( 1 ) and 640 ( 2 ) has a grip element, 650 ( 1 ) and 650 ( 2 ), respectively, that may include one or more gripping features 655 .
- Gripping features 655 are shown as indentations for fingers; but it will be appreciated that gripping features 655 may also be other shapes, or may be surface textures adapted for gripping (e.g., by a gloved hand).
- Handles 640 ( 1 ) and 640 ( 2 ) couple with a crossbar 630 , as shown.
- Crossbar 630 is a relatively stiff but flexible element that biases handles 640 ( 1 ) and 640 ( 2 ) in a closed position (e.g., with wire threading elements 620 ( 1 ) and 620 ( 2 ) touching except for channel 615 ).
- device 610 may be made of plastic, metal, or combinations of plastic and metal (e.g., plastic molded about a metal spring that is within crossbar 630 and handles 640 ( 1 ) and 640 ( 2 )).
- FIG. 10B is a front view of wire insertion device 610 ; this view shows wire threading elements 620 ( 1 ) and 620 ( 2 ) tapering to tips 622 ( 1 ) and 622 ( 2 ), respectively, that are sized for insertion into a catheter. It will be appreciated that a shape and taper of tips 622 may be different from the shape and taper shown in FIG. 10B ; for example, tips that taper to a finer point may be used to handle narrower wires.
- FIG. 10C is a top view of device 610 ; handle 640 ( 1 ), crossbar 630 and wire threading element 620 ( 1 ) are hidden in this view.
- FIG. 10D shows device 610 in an open position that forms when handles 640 ( 1 ) and 640 ( 2 ) are squeezed together; that is, the handles move in the direction of arrows G.
- FIG. 10E is an enlarged detail of wire threading element 620 ( 1 ) and handle 640 ( 1 ), as seen from above (i.e., as seen from wire threading element 620 ( 2 ) when device 610 is in the open position), showing a longitudinal groove 617 ( 1 ) extending through wire grasping element 620 ( 1 ).
- An angiography wire 605 is within groove 617 ( 1 ).
- Longitudinal groove 617 ( 1 ) and corresponding longitudinal groove 617 ( 2 ) in wire threading element 620 ( 2 ) form channel 615 when device 610 is in the closed position (see FIG. 10A ).
- a practitioner squeezes handles 640 ( 1 ) and 640 ( 2 ) together, as shown in FIG. 10D , and places angiography wire 605 within groove 617 ( 1 ), as shown in FIG. 10E .
- the orientation of device 610 is arbitrary; for example, device 610 may be turned upside down from the position shown in FIG. 10D , and wire 605 may be placed within groove 617 ( 2 ) instead.
- the practitioner releases handles 640 ( 1 ) and 640 ( 2 ) to close wire 605 in channel 615 .
- the practitioner withdraws wire 605 by pulling it in the direction opposite of arrow H, shown in FIG.
- wire insertion device 610 may thus be used without having to manipulate the device to a distal end of a wire after use.
- FIG. 11 shows a side view of a wire insertion device 710 , in accord with an embodiment.
- Wire insertion device 710 has wire threading elements 720 ( 1 ) and 720 ( 2 ) that mount on handles 740 ( 1 ) and 740 ( 2 ), respectively; between elements 720 ( 1 ) and 720 ( 2 ) is a channel 715 .
- Wire threading elements 720 ( 1 ) and 720 ( 2 ) are like wire threading elements 620 ( 1 ) and 620 ( 2 ) of wire insertion device 610 , except that wire threading element 720 ( 1 ) has a beveled surface 722 ( 1 ) that facilitates alignment of a wire within channel 715 .
- Wire threading element 720 ( 2 ) has a corresponding beveled surface 722 ( 2 ) such that surfaces 722 ( 1 ) and 722 ( 2 ) can close completely about a wire.
- An axle 730 pivotably joins handles 740 ( 1 ) and 740 ( 2 ).
- Each of handles 740 ( 1 ) and 740 ( 2 ) has a gripping feature, 755 ( 1 ) and 755 ( 2 ), respectively, that is a loop adapted for use with fingers.
- Each of handles 740 ( 1 ) and 740 ( 2 ) also has a closure element, 745 ( 1 ) and 745 ( 2 ), respectively, that have teeth 743 for latching device 710 closed (e.g., elements 745 ( 1 ) and 745 ( 2 ) and teeth 743 act like the closure elements of a hemostat).
- Wire threading elements 720 ( 1 ) and 720 ( 2 ) are biased towards each other, into the closed position shown in FIG. 11 , by an elastic element 750 (e.g., a spring, but other devices such as elastic or rubber bands may also be used).
- wire insertion device 710 is used much like wire insertion device 610 , except that the action of axle 730 requires spreading of the gripping elements to open the device.
- a practitioner may spread gripping elements 755 ( 1 ) and 755 ( 2 ) apart to open device 710 .
- a wire (not shown) is then placed in channel 715 and handles 740 ( 1 ) and 740 ( 2 ) are released to close elements 720 ( 1 ) and 720 ( 2 ) about the wire, optionally engaging teeth 743 .
- the wire may be partially withdrawn so that a proximal tip of the wire is within channel 715 . Tips of elements 720 ( 1 ) and 720 ( 2 ) are inserted into a catheter.
- the wire is inserted into the catheter.
- the practitioner may withdraw elements 720 ( 1 ) and 720 ( 2 ) from the catheter and, alternatively, open device 710 to remove it from the wire, or leave device 710 closed about the wire (e.g., with teeth 743 engaged).
- FIG. 12A is a side view of a wire insertion device 810 , in accord with an embodiment.
- Wire insertion device 810 includes two side elements 840 ( 1 ) (shown) and 840 ( 2 ) (hidden behind element 840 ( 1 ) in this view) that are joined by a hinge element 830 and that form a channel 815 , as shown in FIG. 12B .
- Device 810 forms a tip 820 and a tip surface 822 that are adapted for insertion into a catheter.
- Device 810 may be made out of metal and/or plastic.
- FIG. 12B shows an enlarged end view of a region I of wire insertion device 810 .
- Channel 815 forms where side elements 840 ( 1 ) and 840 ( 2 ) connect via hinge element 830 .
- Hinge element 830 may be, for example, a plastic hinge formed concurrently with side elements 840 ( 1 ) and 840 ( 2 ) (e.g., device 810 may be molded as one piece).
- tip surface 822 and hinge element 830 may be made of metal, for example, and side elements 840 ( 1 ) and 840 ( 2 ) may be plastic elements molded about portions of the metal.
- FIG. 12C is a perspective view illustrating device 810 during use.
- Device 810 is in an open position; that is, side elements 840 ( 1 ) and 840 ( 2 ) are positioned away from each other to allow access to channel 815 .
- a practitioner places a midsection of an angiography wire 805 within channel 815 , as shown.
- the practitioner can (1) close device 810 about wire 805 by pushing side elements 840 ( 1 ) and 840 ( 2 ) together, (2) draw wire 805 back through channel 815 so that any curves in proximal tip 807 of wire 805 straighten within channel 815 , (3) insert tip 820 of device 810 in a catheter, (4) push wire 805 into the catheter to a sufficient length, (5) withdraw device 810 from the catheter, and (6) release side elements 840 ( 1 ) and 840 ( 2 ) so that device 810 can be removed from wire 805 .
- wire insertion devices like device 810 may take various forms.
- device 810 is shown with flat side elements 840 ( 1 ) and 840 ( 2 ), side elements of other wire insertion devices may be thicker or form different shapes that practitioners may prefer.
- a closure e.g., a snap or a latch
- Device 810 may include embedded springs, or hinge element 830 may act as a living hinge, to bias the device open.
- Device 810 may have a relatively long, narrow tip (e.g., region I of FIG. 12A ) which may be, for example, a metal cylinder with an opening that adjoins channel 815 , suitable for threading a micro wire into a catheter to a sufficient distance that a curved end does not curl up before the walls of the catheter can constrain it from curling up.
- a relatively long, narrow tip e.g., region I of FIG. 12A
- a metal cylinder with an opening that adjoins channel 815 , suitable for threading a micro wire into a catheter to a sufficient distance that a curved end does not curl up before the walls of the catheter can constrain it from curling up.
- FIG. 13A shows a wire insertion device 910 , in accord with an embodiment.
- Wire insertion device 910 has side elements 920 ( 1 ) and 920 ( 2 ) that hingedly couple with handles 940 ( 1 ) and 940 ( 2 ), respectively, at points labeled J in FIG. 13A .
- Between elements 920 ( 1 ) and 920 ( 2 ) is a channel 915 .
- An axle 930 pivotably joins handles 940 ( 1 ) and 940 ( 2 ).
- Each of handles 940 ( 1 ) and 940 ( 2 ) has a gripping feature, 955 ( 1 ) and 955 ( 2 ) respectively, that is a loop adapted for use with fingers.
- Side elements 920 ( 1 ) and 920 ( 2 ) are biased towards each other, into the closed position shown in FIG. 13 A, by an elastic element 950 (e.g., a spring, but other devices such as elastic or rubber bands may also be used).
- an elastic element 950
- FIG. 13B is a top view of wire insertion device 910 .
- Side elements 920 ( 1 ) and 920 ( 2 ) are shaped like side elements 820 ( 1 ) and 820 ( 2 ) of wire insertion device 810 ; channel 915 extends between side elements 920 ( 1 ) and 920 ( 2 ) inside hinge element 930 .
- FIG. 13C shows wire insertion device 910 in an open position.
- the open position forms when gripping elements 955 ( 1 ) and 955 ( 2 ) are spread apart from each other, thus spreading handles 940 ( 1 ) and 940 ( 2 ), and pulling side elements 920 ( 1 ) and 920 ( 2 ) at points J.
- wire insertion device 910 is used much like wire insertion devices 710 and 810 .
- a practitioner may place a midsection of an angiography wire (not shown) within channel 915 and close device 910 about the wire by releasing gripping elements 955 ( 1 ) and 955 ( 2 ).
- the practitioner can draw the wire back through channel 915 so that any curves in a proximal tip of the wire straighten within channel 915 .
- Tip 920 of device 910 is then inserted into a catheter and the wire is pushed into the catheter to a sufficient length.
- the practitioner may withdraw device 910 from the catheter and spread gripping elements 955 ( 1 ) and 955 ( 2 ) so that device 910 can be removed from the wire.
- FIG. 14A shows an aneurysm clip 980 ( 1 ).
- Clip 980 has a spring 982 ( 1 ) that biases jaws 986 ( 1 ) and 986 ( 2 ) into a closed position.
- a practitioner applying clip 980 ( 1 ) uses an applicator tool (not shown) to squeeze clip 980 ( 1 ) at points 984 , forcing jaws 986 ( 1 ) and 986 ( 2 ) apart so that they may be positioned about a base of an aneurysm.
- the applicator tool may be the same tool used to apply prior art aneurysm clip 80 , FIG. 2A and FIG. 2B .
- jaws 986 ( 1 ) and 986 ( 2 ) include stubs 988 ( 1 ) and 988 ( 2 ) and non-metallic blades 990 ( 1 ) and 990 ( 2 ), respectively.
- Non-metallic blades 990 ( 1 ) and 990 ( 2 ) may be made of, for example, polymethylmethacrylate, poly(etheretherketone), or carbon fiber.
- Non-metallic blades 990 ( 1 ) and 990 ( 2 ) do not introduce “flare” in angiographic images in the way that an equivalent metal element does (as demonstrated in FIG. 16A through FIG. 16E ).
- Spring 982 ( 1 ) and stubs 988 ( 1 ) and 988 ( 2 ) may be made of titanium, for example.
- Elements 990 ( 1 ) and 990 ( 2 ) mount over stubs 988 ( 1 ) and 988 ( 2 ); each such element 990 may bond to a corresponding stub 988 with an adhesive (e.g., epoxy glue) or may be press-fitted over stub 988 .
- FIG. 14B shows a side view of clip 980 ( 1 ); relative to the view shown in FIG. 14A , clip 980 ( 1 ) is rolled towards the viewer so that jaw 986 ( 1 ) is in front of, and blocks view of, jaw 986 ( 2 ).
- non-metallic material for elements of an aneurysm clip may enable fabrication of complex contours and/or surface textures that may not be easily fabricated in metallic elements. Such contours may (a) decrease deflection of an aneurysm clip's jaws (e.g., jaws 986 ( 1 )- 986 ( 10 ), see also FIG. 15A - FIG. 15D ) as compared to jaws of aneurysm clips that are made entirely of metal, and (b) allow fabrication of curves and angles suitable for clipping aneurysms of unusual shapes and/or locations. It is appreciated that non-metallic material may also be used for other parts of an aneurysm clip; for example, a spring or an entire aneurysm clip may be made from non-metallic material.
- FIG. 15A through 15C show aneurysm clips 980 ( 2 ) through 980 ( 4 ).
- FIG. 15A shows aneurysm clip 980 ( 2 ) that has spring 982 ( 2 ) which biases jaws 986 ( 3 ) and 986 ( 4 ) into a closed position.
- jaws 986 ( 3 ) and 986 ( 4 ) include stubs 988 ( 3 ) and 988 ( 4 ) and non-metallic blades 990 ( 3 ) and 990 ( 4 ), respectively.
- Stubs 988 ( 3 ) and 988 ( 4 ) are longer than stubs 988 ( 1 ) and 988 ( 2 ) shown in FIG. 14A and FIG.
- FIG. 15B shows aneurysm clip 980 ( 3 ) that has spring 982 ( 3 ) which biases jaws 986 ( 5 ) and 986 ( 6 ) into a closed position.
- non-metallic blades 990 ( 5 ) and 990 ( 6 ) attach to spring 982 ( 3 ) via non-metallic stubs 994 ( 1 ) and 994 ( 2 ) that are attached to cup fittings 992 ( 1 ) and 992 ( 2 ) with adhesive or by press-fitting.
- FIG. 15C shows aneurysm clip 980 ( 4 ) that has spring 982 ( 4 ) that biases jaws 986 ( 7 ) and 986 ( 8 ) into a closed position.
- non-metallic blades 990 ( 7 ) and 990 ( 8 ) attach to spring 982 ( 4 ) via metal clamping elements 996 ( 1 ) and 996 ( 2 ) and pins 998 that extend partially through non-metallic blades 990 ( 7 ) and 990 ( 8 ).
- FIG. 15D shows an aneurysm clip 980 ( 5 ) that has spring 982 ( 5 ) that biases jaws 986 ( 9 ) and 986 ( 10 ) into a closed position.
- jaws 986 ( 9 ) and 986 ( 10 ) include stubs 988 ( 5 ) and 988 ( 6 ) and non-metallic blades 990 ( 9 ) and 990 ( 10 ), respectively.
- Non-metallic blades 990 ( 9 ) and 990 ( 10 ) are sized and shaped to reduce deflection, as compared to similarly sized metal elements, but produce less “flare” in angiographic images of clip 980 ( 5 ) than is produced by a metallic aneurysm clip of similar dimensions.
- FIG. 15E is an enlarged cross-section of non-metallic blades 990 ( 9 ) and 990 ( 10 ) of aneurysm clip 980 ( 5 ), taken along line 15 E- 15 E of FIG. 15D .
- the use of non-metallic material in blades 990 ( 9 ) and 990 ( 10 ) facilitates fabrication of complex shapes such as those shown in FIG.
- FIG. 15E is an enlarged cross-section of non-metallic blades 990 ( 9 )′ and 990 ( 10 )′ that can be used as blades 990 ( 9 ) and 990 ( 10 ) of clip 980 ( 5 ), illustrating another advantageous shape that may be fabricated of non-metallic material.
- FIG. 16A through FIG. 16E demonstrate the reduced “flare” in angiographic images produced by aneurysm clips according to the present disclosure (e.g., any of clips 980 ( 1 ) through 980 ( 5 )) as compared to prior art clips.
- a prior art aneurysm clip and an aneurysm clip with carbon fiber jaws were attached to a tube filled with angiographic contrast medium; the tube and the clips were suspended in a vessel of water for imaging.
- a stack of images was taken, each image corresponding to a different depth in the water;
- FIG. 16A through FIG. 16E are selected images from the stack of images.
- FIG. 16B show images with artifacts caused by the prior art aneurysm clip (e.g., like clip 80 , FIG. 2 ).
- FIG. 16D and FIG. 16E show images with reduced artifacts due to the carbon fiber jaws. More particularly, in FIG. 16A , artifact 1002 is produced by tips of metallic jaws of the prior art clip, image 1004 is an image of the tube, and artifact 1006 is produced by a metallic spring.
- FIG. 16B is taken at a depth where jaws of the prior art clip clamp the tube; artifact 1008 produced by the prior art clip obscures the tube entirely.
- FIG. 16C shows an image 1010 of the tube alone (taken at a depth between the depths where the images of FIGS.
- FIG. 16D shows an image 1012 of the tube and an artifact 1014 created by a metallic spring of the aneurysm clip, which corresponds to the maximum flare seen in any image at a depth corresponding to the aneurysm clip.
- FIG. 16E shows an image 1016 of the tube; artifacts 1018 ( 1 ) and 1018 ( 2 ) of carbon fiber jaws of the clip, and an artifact 1020 corresponding to the metallic spring of the clip. It is seen that FIG. 16D and FIG. 16E show reduction in the “flare” produced by metallic portions of a prior art clip, as compared to the images shown in FIG. 16A and FIG. 16B .
- image 1016 (of the tube, analogous to a blood vessel imaged during angiography) is clearly visible within FIG. 16E , but a corresponding image in FIG. 16B is obscured by “flare” produced by the prior art clip.
- FIG. 17 shows a CT image reformatted from the stack of images from which FIG. 16A through FIG. 16E were selected.
- a tube 1100 is filled with angiographic contrast medium.
- Arrow 1110 points to a location where tube 1100 is pinched by carbon fiber jaws of the aneurysm clip of the present disclosure (the carbon fiber jaws are not visible in the CT image).
- Arrow 1120 points to “flare” introduced by metal of the prior art aneurysm clip, and arrow 1130 points to reduced “flare” introduced by metal forming the spring of the aneurysm clip having carbon fiber jaws.
- FIG. 18A and FIG. 18B show an aneurysm clip applicator 1310 , according to an embodiment, in “open” and “closed” positions respectively.
- FIG. 18A and FIG. 18B may not be drawn to scale.
- Applicator 1310 includes handles 1360 ( 1 ) and 1360 ( 2 ) that a practitioner uses to operate jaws 1340 ( 1 ) and 1340 ( 2 ), which in turn operate an aneurysm clip 1305 .
- An optional spring 1375 may be configured to bias handles 1360 ( 1 ) and 1360 ( 2 ) in an “open” position;
- FIG. 18A shows spring 1375 as a flat spring (e.g., formed from a strip of spring steel), but it is appreciated that another type of spring may be used as spring 1375 .
- handles 1360 ( 1 ) and 1360 ( 2 ) and spring 1375 are not compressed; applicator 1310 is thus in an “open” position, with jaws 1340 ( 1 ) and 1340 ( 2 ) in position to grasp clip 1305 (which is in a “closed” position).
- Applicator 1310 includes pivot points 1330 and 1350 that allow applicator 1310 to transition from the “open” position shown in FIG. 18A to the “closed” position shown in FIG. 18B .
- Applicator 1310 also includes an electromagnet 1321 , a power supply 1395 and a switch 1390 .
- Wires 1380 connect electromagnet 1321 , power supply 1395 and switch 1390 .
- Electromagnet 1321 is deactivated and disengaged from a counter element 1320 while applicator 1310 is in the “open” position.
- An optional damping mechanism 1365 is also shown in FIG. 18A and is explained below.
- handles 1360 ( 1 ) and 1360 ( 2 ), and spring 1375 have been compressed by the practitioner, placing applicator 1310 into the “closed” position, such that jaws 1340 ( 1 ) and 1340 ( 2 ) force clip 1305 into the “open” position.
- power supply 1395 connects with electromagnet 1321 , activating electromagnet 1321 so that it attracts counter element 1320 , latching applicator 1310 in the “closed” position and clip 1305 in the “open” position.
- Electromagnet 1321 , counter element 1320 , switch 1390 , wires 1380 and power supply 1395 thus form an electromagnetic catch for applicator 1310 .
- Latching applicator 1310 in the “closed” position allows the practitioner to manipulate applicator 1310 without the physical burden of maintaining pressure on handles 1360 ( 1 ) and 1360 ( 2 ).
- Switch 1390 may be advantageously placed on handle 1360 ( 1 ) (or handle 1360 ( 2 )) where it is easily accessible (e.g., by a fingertip of the practitioner).
- Counter element 1320 may be, for example, a ferrous plate, or it may be a magnet of suitable polarity so as to be attracted to electromagnet 1321 when the electromagnet is magnetized.
- clip 1305 When clip 1305 is in a final position for (e.g., in position for clipping an aneurysm), the practitioner may activate switch 1390 to disconnect power source 1395 from electromagnet 1321 . Deactivation of electromagnet 1321 releases it from counter element 1320 so that applicator 1310 can return to the “open” position, closing clip 1305 .
- Optional spring 1375 may assist in returning handles 1360 ( 1 ) and 1360 ( 2 ) to the “open” position. The release of handles 1360 ( 1 ) and 1360 ( 2 ) requires no additional motion by the practitioner, minimizing the risk of misplacing clip 1305 .
- Optional damping mechanism 1365 may help eliminate any sudden jerk that may occur when electromagnet 1321 deactivates, and may control the speed at which handles 1360 ( 1 ) and 1360 ( 2 ) return to the “open” position, further minimizing the risk of misplacing clip 1305 . It is contemplated that damping mechanism 1365 may be a small dashpot, a magnetic damping device or any other type of damping device known in the mechanical arts.
- Position of counter element 1320 relative to handle 1360 ( 2 ), may be adjustable by way of an optional screw 1370 .
- the position of counter element 1320 relates to a distance between counter element 1320 and electromagnet 1321 when applicator 1310 is in the “open” state, which in turn relates to a distance that jaws 1340 ( 1 ) and 1340 ( 2 ) will open when applicator 1310 is in the “closed” state.
- Positioning counter element 1320 further away from handle 1360 ( 2 ) reduces a distance that jaws 1340 ( 1 ) and 1340 ( 2 ) open.
- Use of screw 1370 to adjust this distance allows applicator 1310 to fit multiple clips 1305 , and allows fine adjustments in the distance that clip 1305 opens.
- applicator 1310 may be custom fabricated to include electromagnet 1321 , counter element 1320 , switch 1390 , power supply 1395 and, optionally, screw 1370 , damping mechanism 1365 and/or spring 1375 .
- electromagnet 1321 , counter element 1320 , switch 1390 , power supply 1395 and, optionally, screw 1370 , damping mechanism 1365 and/or spring 1375 may form a retrofit kit that can be installed on an existing applicator to add electromagnetic catch functionality.
- FIG. 19A shows an aneurysm clip applicator 1400 , according to an embodiment, with a distal portion 1410 in an “open” position.
- Distal portion 1410 includes jaws 1440 ( 1 ) and 1440 ( 2 ) configured to engage clip 1405 , and is manufactured of steel or titanium so that it is easily sterilized for reuse.
- An actuator portion 1415 connects to the distal portion 1410 by way of connectors 1420 .
- Connectors 1420 may include male-female devices as shown, latches, or other hardware for locking jaws 1440 ( 1 ) and 1440 ( 2 ) to actuator portion 1415 .
- Actuator portion 1415 may be sterilizable and reusable, or may be manufactured for single use and subsequent disposal.
- FIG. 19B shows an actuator portion 1415 ( 1 ), according to an embodiment, that may be used as actuator portion 1415 of aneurysm clip applicator 1400 .
- Actuator portion 1415 ( 1 ) includes connector elements 1530 (male connector elements are shown), that secure portion 1415 ( 1 ) to distal portion 1410 (see FIG. 19A ).
- Actuator portion 1415 ( 1 ) includes handles 1560 ( 1 ) and 1560 ( 2 ) that a practitioner compresses to operate jaws to open an aneurysm clip.
- Actuator portion 1415 ( 1 ) also includes an optional spring 1575 and a damping mechanism 1565 .
- Electromagnet 1521 and a counter element 1520 disengage while applicator 1400 is in the “open” position.
- the practitioner may activate a switch 1590 to connect a power supply 1595 with an electromagnet 1521 , magnetizing electromagnet 1521 so that it attracts counter element 1520 , latching applicator 1400 in the “closed” position with clip 1405 in an “open” position.
- the practitioner may then activate switch 1590 to disconnect power source 1595 and electromagnet 1521 , releasing electromagnet 1521 from counter element 1520 .
- Spring 1575 may then decompress, returning handles 1560 ( 1 ) and 1560 ( 2 ), and applicator 1400 to the “open” position so that clip 1405 closes.
- Optional damping device 1565 may control the speed at which applicator 1400 returns to the “open” position.
- Position of counter element 1520 relative to handle 1560 ( 2 ), according to one embodiment, is adjustable by way of optional screw 1570 .
- FIG. 19C is an exploded diagram illustrating how an actuator portion 1415 ( 2 ) and distal portion 1410 may cooperate to form an aneurysm clip applicator 1400 ( 1 ), according to an embodiment.
- Actuator portion 1415 ( 2 ) includes connector elements 1630 , (male connector elements are shown), that secure portion 1415 ( 2 ) to distal portion 1410 (see FIG. 19A ).
- Actuator portion 1415 ( 2 ) includes handles 1660 ( 1 ) and 1660 ( 2 ) that a practitioner compresses to operate jaws to open an aneurysm clip.
- Actuator portion 1415 ( 2 ) also includes an optional spring 1675 (shown as a coil spring) and a damping mechanism 1665 .
- Actuator portion 1415 may, for example, include plastic components and be considered disposable; alternatively, actuator portion 1415 may include metal (e.g., steel or titanium) components that can be sterilized and reused.
- an applicator according to the present disclosure could be created (1) by retrofitting electromagnetic catch components to an existing applicator (such as the applicator shown in FIG. 3A and FIG. 3B ), (2) by manufacture of a one-piece applicator, or (3) by manufacture of distal and Actuator portions as shown in FIG. 19A , FIG. 19B and FIG. 19C .
- gripping features of torque devices or wire insertion devices may be protrusions (e.g., like gripping features 145 of FIG. 4A ), facets (e.g., like the hexagonal faces shown in FIG. 5A , FIG. 5B , FIG. 5C , FIG. 6A and FIG. 6B ), finger indentations (e.g., like gripping features 655 of FIG. 10A , FIG. 10B , FIG. 10C and FIG. 10D ), loops (e.g., like gripping elements 755 of FIG.
- a handle with a crossbar like handles 640 ( 1 ), 640 ( 2 ) and crossbar 630 may be used with wire insertion devices like device 810 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Wire torque apparatus and methods for engaging a wire torque apparatus are disclosed. Wire insertion devices and methods for inserting a wire into a catheter are disclosed. An improved aneurysm clip utilizes non-metallic material. An improvement to an aneurysm clip applicator tool includes a power supply to power an electromagnet, an adjustable counter element that is attracted to the electromagnet when the electromagnet is magnetized, and a switch to disengage the electromagnet. When the electromagnet is magnetized and comes within a certain proximity to the counter element, the electromagnet and the counter element attract and cling to one another. They are released by activating a switch.
Description
- This application claims priority to U.S. provisional application Ser. No. 60/694,271, filed Jun. 27, 2005 and hereby incorporated by reference.
- Angiography procedures often use catheters manipulated with the assistance of wires such as shaped wires, micro wires and glide wires. Such wires allow a practitioner (e.g., a physician, surgeon, or nurse) to guide a catheter within vasculature of a patient being imaged (e.g., to guide the catheter into an appropriate blood vessel). Manipulating such wires may be difficult with gloved hands.
- One task that may be difficult to perform is threading a shaped wire into a catheter. This task may be required at the beginning of a procedure, or when a procedure requires removal and re-insertion of the wire. Usually an insertion tool resembles a short, hollow cylinder: a wire is loaded into the cylinder and pushed through it into the catheter. In some cases, loading the wire involves pushing a proximal (e.g., patient) end of the wire into the cylinder. However, some wires have a curved proximal end that does not easily insert into the cylinder; in these cases, a distal end of the wire is threaded into a proximal end of the cylinder, and the device is manipulated along the full length of the wire to insert the curved end of the wire into an open end of the catheter. Once insertion is complete, the device is manipulated along the full length of the wire and removed. Guide wires may be over 100 cm in length, so threading the insertion device on, off and along the wire may consume enough time that this time has to be factored into a practitioner's decision to remove and re-engage the wire during a procedure. Re-insertion also provides an unwanted opportunity to drop or contaminate the wire. Also, threading a full length of the wire increases risk of damaging or stripping special coatings (e.g., coatings that allow them to move smoothly within the catheter) of certain wires.
- Once a wire is installed in a catheter, the practitioner may need to push, pull and/or twist the wire to direct the wire and the catheter within the subject. Existing torque devices may be helpful in directing the wire, but as with the insertion tool, the torque device must be threaded onto the distal (straight) end of the wire, which may also be time consuming.
-
FIG. 1A shows a perspective view of oneprior art device 10 for manipulating a wire (not shown).Device 10 is made of plastic and has acap 20 and ahandle element 30, as shown.Handle element 30 has ahandle 40 coupled with acylindrical element 50 and segmented cylinder elements 60(1)-60(4).Cylindrical element 50 hasthreads 55.Handle element 30 forms a central hole (seeFIG. 1B ) about awire path 5.Cap 20 has acylindrical portion 70 and aconical portion 72.Cap 20 forms acentral hole 74 alongwire path 5.Threads 55 engage corresponding threads insidecap 20, such thatcap 20 can screw ontohandle element 30.Handle 40 and/orcylindrical portion 70 may have grippingfeatures 45, as shown. -
FIG. 1B shows an end view ofhandle element 30, as seen fromcap 20. Each of segmented cylinder elements 60(1)-60(4) is separated from two other such elements by aslot 75, as shown. Wire path 5 (not labeled inFIG. 1B ) passes through acentral hole 15. In use, a practitioner threads a wire throughhole 15 andhole 74 and then screwscap 20 ontohandle element 30, forcing elements 60(1)-60(4) intoconical portion 72 and squeezing elements 60(1)-60(4) together about the wire. This holds the wire in place so that the practitioner can manipulate the wire by manipulatinghandle 40. - Other devices for manipulating a wire are shown in U.S. Pat. No. 6,533,772 to Sherts et al., which is incorporated herein by reference.
- An aneurysm is a localized dilation of a blood vessel caused by disease or weakening of the vessel wall, and may form a “balloon” shape projecting from the vessel. Rupture of a cerebral aneurysm may cause a stroke. Aneurysm clips are sometimes used to close off an aneurysm to prevent its rupture. Diagnosis and post-treatment assessment of aneurysms may utilize angiography.
-
FIG. 2A shows a top view of one priorart aneurysm clip 80.Clip 80 is made of titanium, for example.Clip 80 has aspring 82 that biases jaws 86(1) and 86(2) into a closed position. Apractitioner applying clip 80 uses an aneurysm clip applicator (e.g., as shown inFIG. 3A andFIG. 3B , orFIG. 18A andFIG. 18B ) to squeezeclip 80 atpoints 84, forcing jaws 86(1) and 86(2) apart so that they may be positioned about a base of an aneurysm. The practitioner utilizes the applicator to manipulateclip 80 until the clip is positioned with jaws 86(1) and 86(2) on either side of the aneurysm, whereupon the practitioner releases the applicator frompoints 84, returning jaws 86(1) and 86(2) to the closed position and freeing the applicator fromclip 80.FIG. 2B shows a side view ofclip 80; relative toFIG. 2A ,clip 80 is rolled towards the viewer so that jaw 86(1) is in front of, and blocks view of, jaw 86(2). - Because
aneurysm clip 80 is made of metal, it may introduce unwanted “flare” and other artifacts into computerized tomography (“CT”) and CT angiography images made after its installation. Such artifacts may obscure important details in the images (for example, details relating to residual aneurysm) and generally interfere with interpretation of the images. Furthermore,clip 80, if manufactured of certain materials (e.g., cobalt alloy steel) may be moved by a strong magnetic field such as the 3 Tesla field of magnetic resonance (“MR”) systems currently being installed in clinical practices. Movement ofclip 80 presents a risk of injury or death to a patient. -
FIG. 3A andFIG. 3B show a prior artaneurysm clip applicator 1210 in “open” and “closed” positions respectively.Applicator 1210 has handles 1260(1) and 1260(2) that a practitioner compresses to “open” ananeurysm clip 1205.Applicator 1210 also has aflat spring 1275, and latch portions 1220(1) and 1220(2) (attached to handles 1260(1) and 1260(2) respectively). InFIG. 3A , handles 1260(1) and 1260(2) andspring 1275 are not compressed, andapplicator 1210 is in an “open” position with jaws 1240(1) and 1240(2) in a position to grab and manipulate clip 1205 (which is in a “closed” position). Pivot points 1230 and 1250 allow movement ofapplicator 1210 from the “open” position shown inFIG. 3A to the “closed” position shown inFIG. 3B . Latch portions 1220(1) and 1220(2) are disengaged whileapplicator 1210 is in the “open” position. - In
FIG. 3B , handles 1260(1) and 1260(2), andspring 1275 have been compressed by a practitioner, placing jaws 1240(1) and 1240(2) in the “closed” position, andclip 1205 in the “open” position. When jaws 1240(1) and 1240(2) are in the “closed” position, the practitioner may engage latch portions 1220(1) and 1220(2), as shown, to keep them in the “closed” position without the practitioner having to maintain pressure on handles 1260(1) and 1260(2). Whenclip 1205 is in a final position for clipping an aneurysm, the practitioner must compress handles 1260(1) and 1260(2) in order to disengage latch portion 1220(1) from 1220(2) to closeclip 1205. The additional compression motion required by the practitioner to disengage latch portions 1220(1) and 1220(2) may be disadvantageous because it may “jiggle”clip 1205, potentially causingclip 1205 to be misplaced relative to its intended placement. Some practitioners bend off latch portions 1220(1) and/or 1220(2) in order to avoid such a motion. However, when latch portions 1220(1) and/or 1220(2) are bent off, the practitioner must maintain pressure on handles 1260(1) and 1260(2) to keep them in the “closed” position, which may impair the practitioner's ability to maneuverclip 1205 and may again result in misplacement ofclip 1205. - In one embodiment, a wire torque apparatus includes a handle element and a cap. The handle element includes a handle and at least two segmented cylinder elements, and the handle forms a lengthwise slot. The cap can engage the handle element, and forms a conical cavity and a lengthwise slot. The lengthwise slots of the handle and cap are configured to allow a wire to pass through when the slots are aligned, and the segmented cylinder elements are configured to grip the wire within the conical cavity when the cap engages the handle element.
- In one embodiment, a wire torque apparatus includes a block forming (a) a first slot, bounded by a first surface and a second surface, that extends lengthwise through the block, and (b) a second slot that extends from one side of the block through the first surface. A cam rotates within the second slot about an axle. The first slot is configured to accommodate a length of wire, and the cam is operable to grip the wire against the second surface.
- A method of engaging a wire torque apparatus about a wire includes rotating a cam in a first direction so that a gripping surface of the cam withdraws from a surface of the apparatus. The wire positions into a slot between the gripping surface and the surface of the apparatus. The cam rotates in a direction opposite the first direction so that the gripping surface engages the wire against the surface of the apparatus.
- In one embodiment, a wire torque apparatus includes a first block forming (a) a lengthwise slot and (b) a tapered internally threaded cavity; and a second block forming (a) a lengthwise slot and (b) at least two tapered externally threaded elements. The lengthwise slots are configured to allow a wire to pass through when the slots are aligned, and the threaded elements are configured to screw into the cavity to engage the wire.
- In one embodiment, an improved wire torque apparatus is of a type that is configured to clamp a length of wire therein, and includes structure of the apparatus forming a lengthwise slot configured to allow the wire to pass through such that the apparatus can clamp onto the wire without threading an end of the wire through the apparatus.
- A method of engaging a wire torque apparatus about a wire includes aligning at least two portions of the apparatus such that slots in each portion align. The wire positions into each of the slots. The portions are manipulated so that the apparatus engages the wire.
- In one embodiment, a wire insertion device includes a triangular base with side walls, and an insertion sleeve that forms a lengthwise slit. The base and side walls are configured to facilitate positioning of an angiography wire within the insertion sleeve.
- A method of inserting a wire into a catheter includes placing a proximal end of the wire between side walls of a wire insertion device. The proximal end is manipulated against the side walls so that the proximal end passes through a slot into an insertion sleeve. The insertion sleeve is inserted into the catheter, and the wire is pushed through the insertion sleeve into the catheter.
- In one embodiment, a wire insertion device includes first and second wire threading elements forming a groove therebetween. The first and second elements have an open position configured to receive a wire and a closed position configured to facilitate insertion of the wire into a catheter.
- A method of inserting a wire into a catheter includes separating wire threading elements of a wire insertion device. A portion of the wire is placed between the threading elements, which close about the portion of the wire. A tip formed by portions of the threading elements is placed into a catheter. The wire is pushed through the threading elements into the catheter.
- In one embodiment, an improved aneurysm clip utilizes non-metallic material.
- In one embodiment, an improvement to an aneurysm clip applicator tool includes a power supply to power an electromagnet, an adjustable counter element that is attracted to the electromagnet when the electromagnet is magnetized, and a switch to disengage the electromagnet. When the electromagnet is magnetized and comes within a certain proximity to the counter element, the electromagnet and the counter element attract and cling to one another. They are released by activating a switch.
- A method of applying an aneurysm clip includes squeezing handles of an applicator into a closed position with jaws of the applicator squeezing an aneurysm clip into an open position. Activating a switch holds the applicator in the closed position and the clip in the open position. The clip is positioned, and the switch is activated to release the handles so that the jaws of the applicator release the clip.
-
FIG. 4A shows a perspective view of oneangiography apparatus 110 for manipulating a wire. -
FIG. 4B shows an end view of a handle element of the angiography apparatus ofFIG. 4A . -
FIG. 5A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment. -
FIG. 5B shows a cross-sectional view of the angiography wire torque apparatus ofFIG. 5A , with a cam in an “open” position. -
FIG. 5C shows a cross-sectional view of the angiography wire torque apparatus ofFIG. 5A , with the cam in a “gripping” position. -
FIG. 6A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment. -
FIG. 6B is a side view of two blocks of the angiography wire torque apparatus ofFIG. 6A . -
FIG. 6C is an end view of one of the blocks of the angiography wire torque apparatus ofFIG. 6A . -
FIG. 7A is a perspective view of one angiography wire torque apparatus, in accord with an embodiment. -
FIG. 7B is a side view of two blocks of the angiography wire torque apparatus ofFIG. 7A . -
FIG. 7C ,FIG. 7D , andFIG. 7E are cross-sectional views of one block of the angiography wire torque apparatus ofFIG. 7A . -
FIG. 8A is a top view of a wire insertion device, in accord with an embodiment. -
FIG. 8B is a side view of the wire insertion device ofFIG. 8A . -
FIG. 8C is an end view of the wire insertion device ofFIG. 8A . -
FIG. 9A ,FIG. 9B andFIG. 9C illustrate use of the wire insertion device ofFIG. 8A with an angiography wire. -
FIG. 10A is a side view of a wire insertion device, in accord with an embodiment. -
FIG. 10B andFIG. 10C are a front view and a side view, respectively, of the wire insertion device ofFIG. 10A . -
FIG. 10D is a side view of the wire insertion device ofFIG. 10A in an open position. -
FIG. 10E is an enlarged detail of a wire threading element and a handle of the wire insertion device ofFIG. 10A . -
FIG. 11 shows a side view of a wire insertion device, in accord with an embodiment. -
FIG. 12A is a side view of a wire insertion device. -
FIG. 12B shows an enlarged end view of a region of the wire insertion device ofFIG. 12A . -
FIG. 12C is a perspective view illustrating the wire insertion device ofFIG. 12A during use. -
FIG. 13A shows a wire insertion device. -
FIG. 13B is a top view of the wire insertion device ofFIG. 13A . -
FIG. 13C shows the wire insertion device ofFIG. 13A in an open position. -
FIG. 14A shows an aneurysm clip. -
FIG. 14B shows a side view of the aneurysm clip ofFIG. 14A . -
FIG. 15A throughFIG. 15D show aneurysm clips. -
FIG. 15E andFIG. 15F are cross-sections of non-metallic blades of the aneurysm clip ofFIG. 15D . -
FIG. 16A throughFIG. 16E demonstrate the reduced “flare” in angiographic images produced by aneurysm clips ofFIG. 14A orFIG. 15A through 15D , as compared to prior art clips. -
FIG. 17 shows a CT image reformatted from the stack of images from whichFIG. 16A throughFIG. 16E were selected. -
FIG. 18A andFIG. 18B show an aneurysm clip applicator in “open” and “closed” positions respectively. -
FIG. 19A shows an aneurysm clip applicator with a distal portion in an “open” position. -
FIG. 19B shows an actuator portion that may be form part of the aneurysm clip applicator ofFIG. 19A . -
FIG. 19C is an exploded diagram illustrating how an actuator portion and the distal portion ofFIG. 19A may cooperate to form an aneurysm clip applicator, according to an embodiment. -
FIG. 4A shows a perspective view of one angiographywire torque apparatus 110, in accord with an embodiment, for manipulating a wire (not shown).FIG. 4A may not be drawn to scale.Device 110 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings).Device 110 includes acap 120 and ahandle element 130, as shown.Handle element 130 has adiameter 132, and has ahandle 140 that couples with acylindrical element 150 and with segmented cylinder elements 160(1)-160(4).Cylindrical element 150 hasthreads 155.Handle element 130 forms a slot 135 (also seeFIG. 4B ) about awire path 105.Cap 120 has acylindrical portion 170 and aconical portion 172. Inside cylindrical portion 170 (hidden in the view ofFIG. 4A ) are threads that mate withthreads 155 ofhandle element 30; an inside surface ofconical portion 172 forms a conical cavity.Cap 120 forms aslot 125 alongwire path 105.Threads 155 engage corresponding threads insidecap 120, such thatcap 120 can screw ontohandle element 130. Each ofhandle 140 andcylindrical portion 170 may havegripping features 145, as shown. -
FIG. 4B shows an end view ofhandle element 130, as seen fromcap 120.FIG. 4B may not be drawn to scale. Each of segmented cylinder elements 160(1)-160(4) is separated from two other such elements byslots FIG. 4B ) passes throughslot 135. - When angiography
wire torque apparatus 110 is used, a practitioner positions a wire intowire path 105 throughslots cap 120 onto handle element 130 (by, for example, screwingthreads 155 into corresponding threads in cap 120), forcing segmented cylinder elements 160(1)-160(4) into conical portion 180. This squeezes elements 160(1)-160(4) together about the wire, holding the wire in place so that the practitioner can manipulate the wire by manipulatinghandle 140.Slots wire path 105 along any part of the wire that is accessible, so that the wire need not thread throughapparatus 110 from an end of the wire. Similarly,wire torque apparatus 110 need not pass over the full length of the wire to disengage from the wire; the practitioner can disengage cap 120 fromhandle element 130, and pass the wire out ofcap 120 and handleelement 130 throughslots - It is appreciated that variations on angiography
wire torque apparatus 110 are within the scope of this disclosure. For example, adiameter 132 oftorque apparatus 110 may vary to suit the preference of a practitioner. Certain practitioners may find that adiameter 132 of less than 5 mm is too small to grasp effectively with gloves, that adiameter 132 of 20 mm or more is unnecessarily large and awkward, and that adiameter 132 of 7 mm to 9 mm is large enough to grip securely yet small enough to use with precision. Similar issues of practitioner preference may also apply to a type and size of grippingfeatures 145, as discussed below with respect to gripping features of other devices. Althoughtorque apparatus 110 is shown with foursegmented cylinder elements 160, a wire torque apparatus may utilize fewer or more of such elements. Althoughtorque apparatus 110 is shown withthreads 155 for engagingcap 120 to handleelement 130, a wire torque apparatus may utilize other mechanisms, such as protrusions that fit into mating slots, or elements that snap together, for engagingcap 120 to handleelement 130. -
FIG. 5A is a perspective view of one angiographywire torque apparatus 210, in accord with an embodiment.FIG. 5A may not be drawn to scale.Apparatus 210 includes ablock 212 that forms aslot 215 for anangiography wire 205.Block 212 is hexagonal in cross section, and presents faces 250(1)-250(6) that may be useful forgripping apparatus 210; however, it will be appreciated thatblock 212 may have a different shape and/or texture for gripping.Block 212forms buttons 240 at an outer edge ofslot 215;buttons 240 are sized such thatwire 205 snaps pastbuttons 240 as it passes into and out ofslot 215. Acam 220 with agripping element 222 and ahandle 224 rotates within aslot 218 about anaxle 230.Slot 218 extends from top surface 250(5) ofblock 212 throughtop surface 216 ofslot 215.Axle 230 is shown inFIG. 5A (andFIG. 5B andFIG. 5C ) as an element that is separate fromcam 220; howeveraxle 230 andcam 220 may be a single structure (e.g., a single piece of molded plastic).Gripping element 222 rotates eccentrically aboutaxle 230. Rotatinghandle 224 in the direction of arrow A increases clearance betweengripping element 222 and abottom surface 217 ofblock 212 by moving alarge portion 222′ ofgripping element 222 away fromsurface 217 and lowering asmaller portion 222″ towardssurface 217. Rotatinghandle 224 in the opposite direction of arrow A decreases clearance betweengripping element 222 andsurface 217 until grippingelement 222 contacts surface 217. -
FIG. 5B shows a cross-sectional view ofapparatus 210 taken alongplane 4B-4B indicated inFIG. 5A , withcam 220 rotated in the direction of arrow A; in this configuration,cam 220 is in an “open” position.FIG. 5B may not be drawn to scale.Angiography wire 205 is shown withinslot 215 adjacent tobottom surface 217.Cam 220 has a concavegripping surface 223 that clears wire 25 whencam 220 is in the open position shown inFIG. 5B . - A practitioner uses
apparatus 210 as follows. The practitioner first openscam 220 by rotating it aboutaxle 230 in the direction of arrow A, so thatgripping element 222 clearsbottom surface 217 ofslot 215, as shown inFIG. 5B . The practitioner snapsangiography wire 205past buttons 240 intoslot 215 and rotatescam 220 aboutaxle 230 into a “closed” position, grippingwire 205 betweengripping element 222 andsurface 217 ofblock 212. -
FIG. 5C shows a cross-sectional view ofapparatus 210 taken alongplane 4B-4B indicated inFIG. 5A , withcam 220 rotated in the opposite direction of arrow A, such thatcam 220grips wire 205 againstbottom surface 217, forming the closed position.Wire 205 nestles within concavegripping surface 223 and may compress grippingsurface 223 andbottom surface 217. - With
cam 220gripping wire 205 againstsurface 217, the practitioner can manipulatewire 5 by manipulatingapparatus 210. Manipulation ofapparatus 210 may be easier and more precise than manipulatingwire 205 by itself. Furthermore, inserting and removingwire 205 throughslot 215 may be easier and faster than threadingwire 205 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures.Buttons 240 provide tactile feedback to the practitioner when insertingwire 205 intoslot 215.Buttons 240 may also serve to holdapparatus 210 loosely ontowire 205 whencam 220 is in the open position, so that oncewire 205 snaps withinbuttons 240, the practitioner can useapparatus 210 without concern thatapparatus 210 will fall if dropped. -
FIG. 6A is a perspective view of one angiographywire torque apparatus 310, in accord with an embodiment.FIG. 6A may not be drawn to scale.Apparatus 310 includes twoblocks slots Apparatus 310 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings). Inapparatus 310, blocks 320 and 330 are hexagonal in cross section; it will be appreciated that blocks 320 and 330 may have shapes other than the hexagonal shape shown.FIG. 6A showsblocks wire 305 byrotating block 330 in the direction of arrow C relative to block 320, so thatapparatus 310 is in a “closed” position, as discussed below. -
FIG. 6B is a side view ofblocks apparatus 310 disengaged from each other (i.e., in an “open” position).FIG. 6B may not be drawn to scale.Block 330 includes segmented threaded elements 340(1)-340(4). Threaded elements 340(1)-340(4) (similar to segmented cylindrical elements 160(1)-160(4) ofFIG. 4B ) are separated by slots; three of the slots extend only through elements 340(1)-340(4); the fourth slot isslot 335, which extends to the other end ofblock 330, as shown.Block 320 includes a threaded receptacle 350 having a steeply taperedregion 352, that intersectsslot 325. -
FIG. 6C is an end view ofblock 330 ofapparatus 310, as seen fromblock 320.FIG. 6C may not be drawn to scale. Threaded elements 340(1)-340(4) andslot 335 are shown inFIG. 6C . - When angiography
wire torque apparatus 310 is used, a practitioner positionswire 305 intoslots block 330 into receptacle 350 of block 320 (by rotatingblock 330 in the direction of arrow C,FIG. 6A ). As elements 340(1)-340(4) progress into receptacle 350 and taperedregion 352, they squeeze together to holdwire 305 in place (i.e., in the closed position) so that the practitioner can manipulatewire 305 by manipulatingapparatus 310. Manipulation ofapparatus 310 may be easier and more precise than manipulation ofwire 305 by itself. Furthermore, inserting and removingwire 305 throughslots wire 305 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures. -
FIG. 7A is a perspective view of one angiographywire torque apparatus 410, in accord with an embodiment.FIG. 7A may not be drawn to scale.Apparatus 410 includes twoblocks slots Apparatus 410 may be made of, for example, plastic, metal, or combinations thereof (e.g., metal parts with plastic coatings). Inapparatus 410, blocks 420 and 430 are hexagonal in cross section; it will be appreciated that blocks 420 and 430 may have different shapes.FIG. 7A showsblocks wire 405 byrotating block 430 in the direction of arrow D relative to block 420, so thatapparatus 410 is in a closed position, as discussed below. -
FIG. 7B is a side view ofblocks apparatus 410 disengaged from each other (i.e., in an open position).FIG. 7B may not be drawn to scale.Block 430 includes a threadedelement 440 with atongue 445; aslot 435 extends throughelement 440 and to the other end ofblock 330, as shown.Block 420 includes a partially threadedreceptacle 450 that intersectsslot 425, as shown. - When angiography
wire torque apparatus 410 is used, a practitioner positionswire 405 intoslots element 440 ofblock 430 intoreceptacle 450 of block 420 (by rotatingblock 430 in the direction of arrow D,FIG. 7A ). Aselement 440 advances intoreceptacle 450,tongue 445jams wire 405 againstblock 420 to holdwire 405 in place (i.e., in a closed position) so that the practitioner can manipulatewire 405 by manipulatingapparatus 410. -
FIG. 7C ,FIG. 7D , andFIG. 7E are cross-sectional views ofblock 420 taken at the planes indicated by dashed lines 6C-6C, 6D-6D and 6E-6E, respectively, inFIG. 7B .FIG. 7C ,FIG. 7D , andFIG. 7E may not be drawn to scale. Each ofFIG. 7C ,FIG. 7D , andFIG. 7E show a cross-section ofwire 405 and tongue 445 (at a plane E-E shown inFIG. 7B ) astongue 445 advances intoblock 420. InFIG. 7C ,tongue 445 has just entered anonthreaded portion 450′ ofreceptacle 450. InFIG. 7D , as element 440 (seeFIG. 7B ) screws intoblock 420,tongue 445 advances throughnonthreaded portion 450′ ofreceptacle 450;FIG. 7D showstongue 445blocking wire 405 from slot 425 (e.g., a closed position). InFIG. 7E , aselement 440 screws further intoblock 420,tongue 445 advances pastnonthreaded portion 450′ intoslot 425 and deforms againstblock 420 andwire 405. - Manipulation of
apparatus 410 may be easier and more precise than manipulatingwire 405 by itself. Furthermore, inserting and removingwire 405 throughslots wire 405 through an end of a torque device, saving the practitioner valuable time during angiography or other catheterization procedures. - Certain modifications of angiography
wire torque apparatus 410 are within the scope of the present disclosure. For example, a threaded element likeelement 440 may be cylindrical instead of cone shaped, and a corresponding threaded receptacle may also be cylindrical. A wire torque apparatus likeapparatus 410 may have other numbers of tongues besides thesingle tongue 445 shown inFIG. 7B ,FIG. 7C ,FIG. 7D andFIG. 7E ; for example, from one to four of such tongues may be utilized. - It is contemplated that other existing types of wire torque apparatus that clamp a wire (such as those illustrated in U.S. Pat. No. 6,533,772 to Sherts et al.) may be improved by forming a lengthwise slot through appropriate elements of such devices, so that the device may clamp at a midpoint of the wire (e.g., without having to manipulate the device from an end of the wire to the location being clamped).
-
FIG. 8A is a top view of awire insertion device 510, in accord with an embodiment.Wire insertion device 510 has atriangular base 530, side walls 540(1) and 540(2), and aninsertion sleeve 520, as shown. Side walls 540(1) and 540(2) are separated from each other by aslot 550.Insertion sleeve 520 has alengthwise slot 515 that meetsslot 550 wheresleeve 520 meetsbase 530, as shown. Anend 522 ofsleeve 550 is sized for insertion into a catheter. -
FIG. 8B is a side view ofwire insertion device 510, showing how sidewalls 540(1) and 540(2) may slope nearslot 550.FIG. 8C is an end view ofwire insertion device 510, looking from the open side ofbase 530 towardsleeve 520. -
FIG. 9A ,FIG. 9B andFIG. 9C illustrate use ofwire insertion device 510 with anangiography wire 505. InFIG. 9A , a proximal end 507 (e.g., a patient end) ofwire 505 is inserted intosleeve 520 throughslot 550 in the direction ofarrow E. Base 530 and side walls 540(1)-540(2) provide surfaces which a practitioner may pushwire 505 against to urge it intoslot 550, which may be especially helpful whenproximal end 507 has bends that makewire 505 resist straightening (e.g., to facilitate insertion ofwire 505 into sleeve 520). InFIG. 9B ,wire 505 has been pushed intosleeve 520, andsleeve 520 has been inserted into acatheter 560.Sleeve 520 is stiff enough, and slit 515 is small enough, thatproximal end 507 does not poke out ofsleeve 520 throughslit 515.FIG. 9C illustrates the removal ofwire 505 fromwire insertion device 510. Just prior to removal ofwire 505, proximal end 507 (not shown) is withincatheter 560,wire insertion device 510 is withdrawn fromcatheter 560, andwire 505 is in the position labeled 505(a). A practitioner liftswire 505 upwards (e.g., in the direction of arrows F) throughslot 550 and slit 515 (not visible in this view of device 510) untilwire 505 is in the position labeled 505(b), so thatwire 505 is clear ofdevice 510 yet remains insidecatheter 560.Wire insertion device 510 may thus be removed fromwire 505 along any section ofwire 505. Theentire wire 505 need not be threaded throughdevice 510 for removal of the device at a distal end ofwire 505. -
FIG. 10A is a side view of awire insertion device 610, in accord with an embodiment.Wire insertion device 610 has two wire threading elements 620(1) and 620(2) that mount on handles 640(1) and 640(2) respectively; between elements 620(1) and 620(2) is achannel 615. Each of handles 640(1) and 640(2) has a grip element, 650(1) and 650(2), respectively, that may include one or moregripping features 655. Grippingfeatures 655 are shown as indentations for fingers; but it will be appreciated that grippingfeatures 655 may also be other shapes, or may be surface textures adapted for gripping (e.g., by a gloved hand). Handles 640(1) and 640(2) couple with acrossbar 630, as shown.Crossbar 630 is a relatively stiff but flexible element that biases handles 640(1) and 640(2) in a closed position (e.g., with wire threading elements 620(1) and 620(2) touching except for channel 615). It will be appreciated thatdevice 610 may be made of plastic, metal, or combinations of plastic and metal (e.g., plastic molded about a metal spring that is withincrossbar 630 and handles 640(1) and 640(2)). -
FIG. 10B is a front view ofwire insertion device 610; this view shows wire threading elements 620(1) and 620(2) tapering to tips 622(1) and 622(2), respectively, that are sized for insertion into a catheter. It will be appreciated that a shape and taper oftips 622 may be different from the shape and taper shown inFIG. 10B ; for example, tips that taper to a finer point may be used to handle narrower wires. -
FIG. 10C is a top view ofdevice 610; handle 640(1),crossbar 630 and wire threading element 620(1) are hidden in this view. -
FIG. 10D showsdevice 610 in an open position that forms when handles 640(1) and 640(2) are squeezed together; that is, the handles move in the direction of arrows G.FIG. 10E is an enlarged detail of wire threading element 620(1) and handle 640(1), as seen from above (i.e., as seen from wire threading element 620(2) whendevice 610 is in the open position), showing a longitudinal groove 617(1) extending through wire grasping element 620(1). Anangiography wire 605 is within groove 617(1). Longitudinal groove 617(1) and corresponding longitudinal groove 617(2) in wire threading element 620(2)form channel 615 whendevice 610 is in the closed position (seeFIG. 10A ). - To use
wire insertion device 610, a practitioner squeezes handles 640(1) and 640(2) together, as shown inFIG. 10D , and placesangiography wire 605 within groove 617(1), as shown inFIG. 10E . It will be appreciated that the orientation ofdevice 610 is arbitrary; for example,device 610 may be turned upside down from the position shown inFIG. 10D , andwire 605 may be placed within groove 617(2) instead. The practitioner releases handles 640(1) and 640(2) to closewire 605 inchannel 615. The practitioner withdrawswire 605 by pulling it in the direction opposite of arrow H, shown inFIG. 10E , to withdraw aproximal tip 607 ofwire 605 intochannel 615. Iftip 607 is curved, as shown inFIG. 10E , the act of withdrawingtip 607 intochannel 615 straightenstip 607 for insertion into a catheter. Withdevice 610 still in the closed position, the practitioner inserts tips 622(1) and 622(2) into a catheter (not shown) and pusheswire 605 in the direction of arrow H to insertwire 605 into the catheter. When a sufficient length ofwire 605 is within the catheter, the practitioner withdrawsdevice 610 from the catheter, squeezes handles 640(1) and 640(2) together to opendevice 610, and removesdevice 610 fromwire 605. Likewire insertion device 510,wire insertion device 610 may thus be used without having to manipulate the device to a distal end of a wire after use. -
FIG. 11 shows a side view of awire insertion device 710, in accord with an embodiment.Wire insertion device 710 has wire threading elements 720(1) and 720(2) that mount on handles 740(1) and 740(2), respectively; between elements 720(1) and 720(2) is achannel 715. Wire threading elements 720(1) and 720(2) are like wire threading elements 620(1) and 620(2) ofwire insertion device 610, except that wire threading element 720(1) has a beveled surface 722(1) that facilitates alignment of a wire withinchannel 715. Wire threading element 720(2) has a corresponding beveled surface 722(2) such that surfaces 722(1) and 722(2) can close completely about a wire. Anaxle 730 pivotably joins handles 740(1) and 740(2). Each of handles 740(1) and 740(2) has a gripping feature, 755(1) and 755(2), respectively, that is a loop adapted for use with fingers. Each of handles 740(1) and 740(2) also has a closure element, 745(1) and 745(2), respectively, that have teeth 743 for latchingdevice 710 closed (e.g., elements 745(1) and 745(2) and teeth 743 act like the closure elements of a hemostat). Wire threading elements 720(1) and 720(2) are biased towards each other, into the closed position shown inFIG. 11 , by an elastic element 750 (e.g., a spring, but other devices such as elastic or rubber bands may also be used). It will be appreciated thatwire insertion device 710 is used much likewire insertion device 610, except that the action ofaxle 730 requires spreading of the gripping elements to open the device. For example, a practitioner may spread gripping elements 755(1) and 755(2) apart to opendevice 710. A wire (not shown) is then placed inchannel 715 and handles 740(1) and 740(2) are released to close elements 720(1) and 720(2) about the wire, optionally engaging teeth 743. The wire may be partially withdrawn so that a proximal tip of the wire is withinchannel 715. Tips of elements 720(1) and 720(2) are inserted into a catheter. The wire is inserted into the catheter. The practitioner may withdraw elements 720(1) and 720(2) from the catheter and, alternatively,open device 710 to remove it from the wire, or leavedevice 710 closed about the wire (e.g., with teeth 743 engaged). -
FIG. 12A is a side view of awire insertion device 810, in accord with an embodiment.Wire insertion device 810 includes two side elements 840(1) (shown) and 840(2) (hidden behind element 840(1) in this view) that are joined by ahinge element 830 and that form achannel 815, as shown inFIG. 12B .Device 810 forms atip 820 and atip surface 822 that are adapted for insertion into a catheter.Device 810 may be made out of metal and/or plastic. -
FIG. 12B shows an enlarged end view of a region I ofwire insertion device 810.Channel 815 forms where side elements 840(1) and 840(2) connect viahinge element 830.Hinge element 830 may be, for example, a plastic hinge formed concurrently with side elements 840(1) and 840(2) (e.g.,device 810 may be molded as one piece). Alternatively,tip surface 822 andhinge element 830 may be made of metal, for example, and side elements 840(1) and 840(2) may be plastic elements molded about portions of the metal. -
FIG. 12C is a perspectiveview illustrating device 810 during use.Device 810 is in an open position; that is, side elements 840(1) and 840(2) are positioned away from each other to allow access tochannel 815. A practitioner places a midsection of anangiography wire 805 withinchannel 815, as shown. Afterwire 805 is withinchannel 815, the practitioner can (1)close device 810 aboutwire 805 by pushing side elements 840(1) and 840(2) together, (2)draw wire 805 back throughchannel 815 so that any curves inproximal tip 807 ofwire 805 straighten withinchannel 815, (3)insert tip 820 ofdevice 810 in a catheter, (4)push wire 805 into the catheter to a sufficient length, (5) withdrawdevice 810 from the catheter, and (6) release side elements 840(1) and 840(2) so thatdevice 810 can be removed fromwire 805. - It will be appreciated that wire insertion devices like
device 810 may take various forms. For example, althoughdevice 810 is shown with flat side elements 840(1) and 840(2), side elements of other wire insertion devices may be thicker or form different shapes that practitioners may prefer. A closure (e.g., a snap or a latch) may be provided to keep a wire insertion device loosely closed over a wire during procedures wherein a practitioner may anticipate withdrawal and re-insertion of the wire; the closure may be of a type that is easily removed should the practitioner decide that a subsequent re-insertion is not required. Gripping surfaces or features may be provided.Device 810 may include embedded springs, or hingeelement 830 may act as a living hinge, to bias the device open.Device 810 may have a relatively long, narrow tip (e.g., region I ofFIG. 12A ) which may be, for example, a metal cylinder with an opening that adjoinschannel 815, suitable for threading a micro wire into a catheter to a sufficient distance that a curved end does not curl up before the walls of the catheter can constrain it from curling up. -
FIG. 13A shows awire insertion device 910, in accord with an embodiment.Wire insertion device 910 has side elements 920(1) and 920(2) that hingedly couple with handles 940(1) and 940(2), respectively, at points labeled J inFIG. 13A . Between elements 920(1) and 920(2) is achannel 915. Anaxle 930 pivotably joins handles 940(1) and 940(2). Each of handles 940(1) and 940(2) has a gripping feature, 955(1) and 955(2) respectively, that is a loop adapted for use with fingers. Side elements 920(1) and 920(2) are biased towards each other, into the closed position shown in FIG. 13A, by an elastic element 950 (e.g., a spring, but other devices such as elastic or rubber bands may also be used). -
FIG. 13B is a top view ofwire insertion device 910. Side elements 920(1) and 920(2) are shaped like side elements 820(1) and 820(2) ofwire insertion device 810;channel 915 extends between side elements 920(1) and 920(2) insidehinge element 930. -
FIG. 13C showswire insertion device 910 in an open position. The open position forms when gripping elements 955(1) and 955(2) are spread apart from each other, thus spreading handles 940(1) and 940(2), and pulling side elements 920(1) and 920(2) at points J. It will be appreciated thatwire insertion device 910 is used much likewire insertion devices channel 915 andclose device 910 about the wire by releasing gripping elements 955(1) and 955(2). The practitioner can draw the wire back throughchannel 915 so that any curves in a proximal tip of the wire straighten withinchannel 915.Tip 920 ofdevice 910 is then inserted into a catheter and the wire is pushed into the catheter to a sufficient length. Finally, the practitioner may withdrawdevice 910 from the catheter and spread gripping elements 955(1) and 955(2) so thatdevice 910 can be removed from the wire. -
FIG. 14A shows an aneurysm clip 980(1).Clip 980 has a spring 982(1) that biases jaws 986(1) and 986(2) into a closed position. A practitioner applying clip 980(1) uses an applicator tool (not shown) to squeeze clip 980(1) atpoints 984, forcing jaws 986(1) and 986(2) apart so that they may be positioned about a base of an aneurysm. The applicator tool may be the same tool used to apply priorart aneurysm clip 80,FIG. 2A andFIG. 2B . In clip 980(1), jaws 986(1) and 986(2) include stubs 988(1) and 988(2) and non-metallic blades 990(1) and 990(2), respectively. Non-metallic blades 990(1) and 990(2) may be made of, for example, polymethylmethacrylate, poly(etheretherketone), or carbon fiber. Non-metallic blades 990(1) and 990(2) do not introduce “flare” in angiographic images in the way that an equivalent metal element does (as demonstrated inFIG. 16A throughFIG. 16E ). Spring 982(1) and stubs 988(1) and 988(2) may be made of titanium, for example. Elements 990(1) and 990(2) mount over stubs 988(1) and 988(2); eachsuch element 990 may bond to acorresponding stub 988 with an adhesive (e.g., epoxy glue) or may be press-fitted overstub 988.FIG. 14B shows a side view of clip 980(1); relative to the view shown inFIG. 14A , clip 980(1) is rolled towards the viewer so that jaw 986(1) is in front of, and blocks view of, jaw 986(2). - Use of non-metallic material for elements of an aneurysm clip may enable fabrication of complex contours and/or surface textures that may not be easily fabricated in metallic elements. Such contours may (a) decrease deflection of an aneurysm clip's jaws (e.g., jaws 986(1)-986(10), see also
FIG. 15A -FIG. 15D ) as compared to jaws of aneurysm clips that are made entirely of metal, and (b) allow fabrication of curves and angles suitable for clipping aneurysms of unusual shapes and/or locations. It is appreciated that non-metallic material may also be used for other parts of an aneurysm clip; for example, a spring or an entire aneurysm clip may be made from non-metallic material. -
FIG. 15A through 15C show aneurysm clips 980(2) through 980(4).FIG. 15A shows aneurysm clip 980(2) that has spring 982(2) which biases jaws 986(3) and 986(4) into a closed position. In clip 980(2), jaws 986(3) and 986(4) include stubs 988(3) and 988(4) and non-metallic blades 990(3) and 990(4), respectively. Stubs 988(3) and 988(4) are longer than stubs 988(1) and 988(2) shown inFIG. 14A andFIG. 14B , but are narrower than jaws of aneurysm clips that do not use non-metallic blades 990(3) and 990(4), such that “flare” in angiographic images of clip 980(2) is accordingly reduced.FIG. 15B shows aneurysm clip 980(3) that has spring 982(3) which biases jaws 986(5) and 986(6) into a closed position. In clip 980(3), non-metallic blades 990(5) and 990(6) attach to spring 982(3) via non-metallic stubs 994(1) and 994(2) that are attached to cup fittings 992(1) and 992(2) with adhesive or by press-fitting.FIG. 15C shows aneurysm clip 980(4) that has spring 982(4) that biases jaws 986(7) and 986(8) into a closed position. In clip 980(4), non-metallic blades 990(7) and 990(8) attach to spring 982(4) via metal clamping elements 996(1) and 996(2) and pins 998 that extend partially through non-metallic blades 990(7) and 990(8). -
FIG. 15D shows an aneurysm clip 980(5) that has spring 982(5) that biases jaws 986(9) and 986(10) into a closed position. In clip 980(5),jaws 986(9) and 986(10) include stubs 988(5) and 988(6) and non-metallic blades 990(9) and 990(10), respectively. Non-metallic blades 990(9) and 990(10) are sized and shaped to reduce deflection, as compared to similarly sized metal elements, but produce less “flare” in angiographic images of clip 980(5) than is produced by a metallic aneurysm clip of similar dimensions.FIG. 15E is an enlarged cross-section of non-metallic blades 990(9) and 990(10) of aneurysm clip 980(5), taken alongline 15E-15E ofFIG. 15D . The use of non-metallic material in blades 990(9) and 990(10) facilitates fabrication of complex shapes such as those shown inFIG. 15E , which may provide additional support as compared with cylindrical blades.FIG. 15F is an enlarged cross-section of non-metallic blades 990(9)′ and 990(10)′ that can be used as blades 990(9) and 990(10) of clip 980(5), illustrating another advantageous shape that may be fabricated of non-metallic material. -
FIG. 16A throughFIG. 16E demonstrate the reduced “flare” in angiographic images produced by aneurysm clips according to the present disclosure (e.g., any of clips 980(1) through 980(5)) as compared to prior art clips. A prior art aneurysm clip and an aneurysm clip with carbon fiber jaws were attached to a tube filled with angiographic contrast medium; the tube and the clips were suspended in a vessel of water for imaging. A stack of images was taken, each image corresponding to a different depth in the water;FIG. 16A throughFIG. 16E are selected images from the stack of images.FIG. 16A andFIG. 16B show images with artifacts caused by the prior art aneurysm clip (e.g., likeclip 80,FIG. 2 ).FIG. 16D andFIG. 16E show images with reduced artifacts due to the carbon fiber jaws. More particularly, inFIG. 16A ,artifact 1002 is produced by tips of metallic jaws of the prior art clip,image 1004 is an image of the tube, andartifact 1006 is produced by a metallic spring.FIG. 16B is taken at a depth where jaws of the prior art clip clamp the tube;artifact 1008 produced by the prior art clip obscures the tube entirely.FIG. 16C shows animage 1010 of the tube alone (taken at a depth between the depths where the images ofFIGS. 16A and 16B and the images ofFIG. 16C andFIG. 16D were taken).FIG. 16D shows animage 1012 of the tube and anartifact 1014 created by a metallic spring of the aneurysm clip, which corresponds to the maximum flare seen in any image at a depth corresponding to the aneurysm clip.FIG. 16E shows animage 1016 of the tube; artifacts 1018(1) and 1018(2) of carbon fiber jaws of the clip, and anartifact 1020 corresponding to the metallic spring of the clip. It is seen thatFIG. 16D andFIG. 16E show reduction in the “flare” produced by metallic portions of a prior art clip, as compared to the images shown inFIG. 16A andFIG. 16B . In particular, image 1016 (of the tube, analogous to a blood vessel imaged during angiography) is clearly visible withinFIG. 16E , but a corresponding image inFIG. 16B is obscured by “flare” produced by the prior art clip. -
FIG. 17 shows a CT image reformatted from the stack of images from whichFIG. 16A throughFIG. 16E were selected. Atube 1100 is filled with angiographic contrast medium.Arrow 1110 points to a location wheretube 1100 is pinched by carbon fiber jaws of the aneurysm clip of the present disclosure (the carbon fiber jaws are not visible in the CT image).Arrow 1120 points to “flare” introduced by metal of the prior art aneurysm clip, andarrow 1130 points to reduced “flare” introduced by metal forming the spring of the aneurysm clip having carbon fiber jaws. -
FIG. 18A andFIG. 18B show ananeurysm clip applicator 1310, according to an embodiment, in “open” and “closed” positions respectively.FIG. 18A andFIG. 18B may not be drawn to scale.Applicator 1310 includes handles 1360(1) and 1360(2) that a practitioner uses to operate jaws 1340(1) and 1340(2), which in turn operate ananeurysm clip 1305. Anoptional spring 1375 may be configured to bias handles 1360(1) and 1360(2) in an “open” position;FIG. 18A showsspring 1375 as a flat spring (e.g., formed from a strip of spring steel), but it is appreciated that another type of spring may be used asspring 1375. InFIG. 18A , handles 1360(1) and 1360(2) andspring 1375 are not compressed;applicator 1310 is thus in an “open” position, with jaws 1340(1) and 1340(2) in position to grasp clip 1305 (which is in a “closed” position).Applicator 1310 includespivot points applicator 1310 to transition from the “open” position shown inFIG. 18A to the “closed” position shown inFIG. 18B . -
Applicator 1310 also includes anelectromagnet 1321, apower supply 1395 and aswitch 1390.Wires 1380connect electromagnet 1321,power supply 1395 andswitch 1390.Electromagnet 1321 is deactivated and disengaged from acounter element 1320 whileapplicator 1310 is in the “open” position. An optional dampingmechanism 1365 is also shown inFIG. 18A and is explained below. - In
FIG. 18B , handles 1360(1) and 1360(2), andspring 1375 have been compressed by the practitioner, placingapplicator 1310 into the “closed” position, such that jaws 1340(1) and 1340(2)force clip 1305 into the “open” position. Whenapplicator 1310 is in the “closed” position, and the practitioner activates aswitch 1390,power supply 1395 connects withelectromagnet 1321, activatingelectromagnet 1321 so that it attractscounter element 1320, latchingapplicator 1310 in the “closed” position andclip 1305 in the “open” position. -
Electromagnet 1321,counter element 1320,switch 1390,wires 1380 andpower supply 1395 thus form an electromagnetic catch forapplicator 1310.Latching applicator 1310 in the “closed” position allows the practitioner to manipulateapplicator 1310 without the physical burden of maintaining pressure on handles 1360(1) and 1360(2).Switch 1390 may be advantageously placed on handle 1360(1) (or handle 1360(2)) where it is easily accessible (e.g., by a fingertip of the practitioner).Counter element 1320 may be, for example, a ferrous plate, or it may be a magnet of suitable polarity so as to be attracted toelectromagnet 1321 when the electromagnet is magnetized. - When
clip 1305 is in a final position for (e.g., in position for clipping an aneurysm), the practitioner may activateswitch 1390 to disconnectpower source 1395 fromelectromagnet 1321. Deactivation ofelectromagnet 1321 releases it fromcounter element 1320 so thatapplicator 1310 can return to the “open” position, closingclip 1305.Optional spring 1375 may assist in returning handles 1360(1) and 1360(2) to the “open” position. The release of handles 1360(1) and 1360(2) requires no additional motion by the practitioner, minimizing the risk of misplacingclip 1305. Optional dampingmechanism 1365 may help eliminate any sudden jerk that may occur whenelectromagnet 1321 deactivates, and may control the speed at which handles 1360(1) and 1360(2) return to the “open” position, further minimizing the risk of misplacingclip 1305. It is contemplated that dampingmechanism 1365 may be a small dashpot, a magnetic damping device or any other type of damping device known in the mechanical arts. - Position of
counter element 1320 relative to handle 1360(2), according to one embodiment, may be adjustable by way of anoptional screw 1370. The position ofcounter element 1320 relates to a distance betweencounter element 1320 andelectromagnet 1321 whenapplicator 1310 is in the “open” state, which in turn relates to a distance that jaws 1340(1) and 1340(2) will open whenapplicator 1310 is in the “closed” state.Positioning counter element 1320 further away from handle 1360(2) reduces a distance that jaws 1340(1) and 1340(2) open. Use ofscrew 1370 to adjust this distance allowsapplicator 1310 to fitmultiple clips 1305, and allows fine adjustments in the distance that clip 1305 opens. - It is appreciated that
applicator 1310 may be custom fabricated to includeelectromagnet 1321,counter element 1320,switch 1390,power supply 1395 and, optionally,screw 1370, dampingmechanism 1365 and/orspring 1375. Alternatively,electromagnet 1321,counter element 1320,switch 1390,power supply 1395 and, optionally,screw 1370, dampingmechanism 1365 and/orspring 1375 may form a retrofit kit that can be installed on an existing applicator to add electromagnetic catch functionality. -
FIG. 19A shows ananeurysm clip applicator 1400, according to an embodiment, with adistal portion 1410 in an “open” position.Distal portion 1410 includes jaws 1440(1) and 1440(2) configured to engageclip 1405, and is manufactured of steel or titanium so that it is easily sterilized for reuse. Anactuator portion 1415 connects to thedistal portion 1410 by way ofconnectors 1420.Connectors 1420 may include male-female devices as shown, latches, or other hardware for locking jaws 1440(1) and 1440(2) toactuator portion 1415.Actuator portion 1415 may be sterilizable and reusable, or may be manufactured for single use and subsequent disposal. -
FIG. 19B shows an actuator portion 1415(1), according to an embodiment, that may be used asactuator portion 1415 ofaneurysm clip applicator 1400. Actuator portion 1415(1) includes connector elements 1530 (male connector elements are shown), that secure portion 1415(1) to distal portion 1410 (seeFIG. 19A ). Actuator portion 1415(1) includes handles 1560(1) and 1560(2) that a practitioner compresses to operate jaws to open an aneurysm clip. Actuator portion 1415(1) also includes anoptional spring 1575 and a dampingmechanism 1565. - Once
distal portion 1410 attaches to actuator portion 1415(1) to formapplicator 1400, operation is much like operation ofapplicator 1310,FIG. 18A andFIG. 18B .Electromagnet 1521 and acounter element 1520 disengage whileapplicator 1400 is in the “open” position. The practitioner may activate aswitch 1590 to connect apower supply 1595 with anelectromagnet 1521, magnetizingelectromagnet 1521 so that it attractscounter element 1520, latchingapplicator 1400 in the “closed” position withclip 1405 in an “open” position. The practitioner may then activateswitch 1590 to disconnectpower source 1595 andelectromagnet 1521, releasingelectromagnet 1521 fromcounter element 1520.Spring 1575 may then decompress, returning handles 1560(1) and 1560(2), andapplicator 1400 to the “open” position so thatclip 1405 closes. Optional dampingdevice 1565 may control the speed at whichapplicator 1400 returns to the “open” position. Position ofcounter element 1520 relative to handle 1560(2), according to one embodiment, is adjustable by way ofoptional screw 1570. -
FIG. 19C is an exploded diagram illustrating how an actuator portion 1415(2) anddistal portion 1410 may cooperate to form an aneurysm clip applicator 1400(1), according to an embodiment. Actuator portion 1415(2) includesconnector elements 1630, (male connector elements are shown), that secure portion 1415(2) to distal portion 1410 (seeFIG. 19A ). Actuator portion 1415(2) includes handles 1660(1) and 1660(2) that a practitioner compresses to operate jaws to open an aneurysm clip. Actuator portion 1415(2) also includes an optional spring 1675 (shown as a coil spring) and a dampingmechanism 1665. Oncedistal portion 1410 attaches to actuator portion 1415(2) to formapplicator 1400, operation is much like operation ofapplicator 1310. -
Actuator portion 1415 may, for example, include plastic components and be considered disposable; alternatively,actuator portion 1415 may include metal (e.g., steel or titanium) components that can be sterilized and reused. Thus, for example, an applicator according to the present disclosure could be created (1) by retrofitting electromagnetic catch components to an existing applicator (such as the applicator shown inFIG. 3A andFIG. 3B ), (2) by manufacture of a one-piece applicator, or (3) by manufacture of distal and Actuator portions as shown inFIG. 19A ,FIG. 19B andFIG. 19C . - The changes described above, and others, may be made in the wire torque apparatus, wire insertion devices, aneurysm clips and aneurysm clip applicators described herein without departing from the scope hereof. For example, gripping features of torque devices or wire insertion devices may be protrusions (e.g., like gripping
features 145 ofFIG. 4A ), facets (e.g., like the hexagonal faces shown inFIG. 5A ,FIG. 5B ,FIG. 5C ,FIG. 6A andFIG. 6B ), finger indentations (e.g., like grippingfeatures 655 ofFIG. 10A ,FIG. 10B ,FIG. 10C andFIG. 10D ), loops (e.g., likegripping elements 755 ofFIG. 11 ), grooves, pits, or raised features. A handle with a crossbar, like handles 640(1), 640(2) andcrossbar 630 may be used with wire insertion devices likedevice 810. It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.
Claims (21)
1. Wire torque apparatus, comprising:
a handle element and a cap,
the handle element comprising a handle and a plurality of segmented cylinder elements, and forming a first lengthwise slot,
the cap being capable of engaging the handle element,
the cap forming a conical cavity and a second lengthwise slot;
wherein the first and second lengthwise slots are configured to accommodate passage of a length of wire therethrough when the slots are aligned, and wherein the segmented cylinder elements are configured to grip the wire within the conical cavity when the cap engages the handle element.
2. Wire torque apparatus, comprising:
a block forming (a) a first slot, bounded by a first surface and a second surface, that extends lengthwise through the block, and forming (b) a second slot that extends from one side of the block through the first surface; and
a cam that rotates within the second slot about an axle;
wherein the first slot is configured to accommodate a length of wire, and wherein the cam is operable to grip the wire against the second surface.
3. Wire torque apparatus, comprising
a first block forming (a) a first lengthwise slot and (b) a tapered internally threaded cavity; and
a second block forming (a) a second lengthwise slot and (b) a plurality of tapered externally threaded elements;
wherein the first and second lengthwise slots are configured to accommodate passage of a length of wire therethrough when the slots are aligned, and
wherein the threaded elements are configured to screw into the cavity to engage the wire.
4. An improved wire torque apparatus of a type that is configured to clamp a length of wire therein, the improvement wherein structure of the apparatus forms a lengthwise slot configured to accommodate passage of the wire such that the apparatus can clamp onto the wire without threading an end of the wire through the apparatus.
5. Wire insertion device, comprising a triangular base with side walls, and an insertion sleeve that forms a lengthwise slit, the base and side walls configured to facilitate positioning of an angiography wire within the insertion sleeve.
6. Wire insertion device, comprising first and second wire threading elements forming a groove therebetween, the first and second elements having an open position configured to receive a wire and a closed position configured to facilitate insertion of the wire into a catheter.
7. Improved aneurysm clip, the improvement wherein the clip comprises non-metallic material.
8. Improved aneurysm clip of claim 7 , the clip configured to reduce flare in angiography images of the clip.
9. Improved aneurysm clip of claim 7 , the non-metallic material forming blades of the clip.
10. In an aneurysm clip applicator having handles that operate jaws configured for gripping an aneurysm clip, the improvement comprising:
a power supply;
an electromagnet affixed to a first one of the handles;
a counter element affixed to a second one of the handles; and
a switch;
wherein, alternatively,
the switch supplies current from the power supply to the electromagnet such that the electromagnet attracts the counter element, latching the handles in a closed position and holding the aneurysm clip in an open position, and
the switch disconnects the electromagnet from the power supply, releasing the electromagnet from the counter element, such that the handles return to an open position, releasing the aneurysm clip.
11. Aneurysm clip applicator of claim 10 , the power supply, the electromagnet, the counter element and the switch being retrofittable to the applicator.
12. Aneurysm clip applicator of claim 10 , further comprising a damping mechanism for damping motion of the jaws during closure.
13. Aneurysm clip applicator of claim 10 , wherein the handles, the power supply, the electromagnet, the counter element and the switch form an actuator, and the jaws removably couple with the actuator.
14. Aneurysm clip applicator of claim 13 , the actuator being sterilizable and reusable.
15. Aneurysm clip applicator of claim 13 , the actuator being disposable.
16. Aneurysm clip applicator of claim 10 , wherein one or more of the power supply, the electromagnet, the counter element and the switch are formed integrally with the handles.
17. Aneurysm clip applicator of claim 10 , wherein positioning of the magnet is adjustable.
18. Aneurysm clip applicator of claim 10 , the counter element comprising steel.
19. Aneurysm clip applicator of claim 10 , further comprising a spring for biasing the handles toward the open position.
20. Method of applying an aneurysm clip, the method comprising
squeezing handles of an applicator into a closed position with jaws of the applicator squeezing an aneurysm clip into an open position,
activating a switch to hold the applicator in the closed position and the clip in the open position,
positioning the clip, and
activating the switch to release the handles so that the jaws of the applicator release the clip.
21. Method of claim 20 , wherein the step of activating the switch to hold the applicator in the closed position comprises connecting a power supply, through the switch, to an electromagnet, and the step of activating the switch to release the handles comprises disconnecting the power supply from the electromagnet.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/475,425 US20070016105A1 (en) | 2005-06-27 | 2006-06-27 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
US12/512,772 US8496603B2 (en) | 2005-06-27 | 2009-07-30 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69427105P | 2005-06-27 | 2005-06-27 | |
US11/475,425 US20070016105A1 (en) | 2005-06-27 | 2006-06-27 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/512,772 Division US8496603B2 (en) | 2005-06-27 | 2009-07-30 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070016105A1 true US20070016105A1 (en) | 2007-01-18 |
Family
ID=37662559
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/475,425 Abandoned US20070016105A1 (en) | 2005-06-27 | 2006-06-27 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
US12/512,772 Expired - Fee Related US8496603B2 (en) | 2005-06-27 | 2009-07-30 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/512,772 Expired - Fee Related US8496603B2 (en) | 2005-06-27 | 2009-07-30 | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators |
Country Status (1)
Country | Link |
---|---|
US (2) | US20070016105A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080097465A1 (en) * | 2006-10-21 | 2008-04-24 | Aaron Rollins | Guidewire Manipulation Device |
US20090076417A1 (en) * | 2007-08-08 | 2009-03-19 | Gregory Allen Jones | Glide Clip |
US20100204613A1 (en) * | 2009-02-10 | 2010-08-12 | Aaron Rollins | Method and apparatus for manipulating a surgical guidewire |
US20110022062A1 (en) * | 2009-07-22 | 2011-01-27 | Aesculap Ag | Application instrument for an aneurysm clip |
US20140343527A1 (en) * | 2013-05-17 | 2014-11-20 | Covidien Lp | Torque apparatus for use with a guidewire |
CN105688323A (en) * | 2014-12-10 | 2016-06-22 | 韦伯斯特生物官能(以色列)有限公司 | Guide wire restraint device |
US10080511B1 (en) * | 2017-08-09 | 2018-09-25 | Sean Boutros | Bi-directional oxygenation apparatus for a non-intubated patient |
CN109200433A (en) * | 2018-11-07 | 2019-01-15 | 河南中医药大学 | A kind of guidewire controller that singlehanded can accurately manipulate |
US10226263B2 (en) | 2015-12-23 | 2019-03-12 | Incuvate, Llc | Aspiration monitoring system and method |
US10561440B2 (en) | 2015-09-03 | 2020-02-18 | Vesatek, Llc | Systems and methods for manipulating medical devices |
US11040158B2 (en) * | 2007-04-25 | 2021-06-22 | ResMed Pty Ltd | Connectors for connecting components of a breathing apparatus |
US11285300B2 (en) | 2015-08-12 | 2022-03-29 | Vesatek, Llc | System and method for manipulating an elongate medical device |
EP3932461A4 (en) * | 2019-03-13 | 2022-05-18 | TERUMO Kabushiki Kaisha | Torque device |
US11653945B2 (en) | 2007-02-05 | 2023-05-23 | Walk Vascular, Llc | Thrombectomy apparatus and method |
US11672953B2 (en) * | 2016-03-30 | 2023-06-13 | Philips Image Guided Therapy Corporation | Torque devices for use with intravascular devices and associated systems and methods |
US11678905B2 (en) | 2018-07-19 | 2023-06-20 | Walk Vascular, Llc | Systems and methods for removal of blood and thrombotic material |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013036900A1 (en) | 2011-09-10 | 2013-03-14 | Cook Medical Technologies Llc | Control handles for medical devices |
US10349958B2 (en) | 2012-03-27 | 2019-07-16 | Cook Medical Technologies Llc | Lithotripsy probes and methods for performing lithotripsy |
JP6216031B2 (en) | 2013-03-15 | 2017-10-18 | ジャイラス エーシーエムアイ インク | Electrosurgical device |
CN104994802B (en) | 2013-03-15 | 2017-09-08 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Combined electrosurgical device |
CN105208955B (en) | 2013-03-15 | 2018-11-06 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Combined electrosurgical device |
WO2014143472A1 (en) | 2013-03-15 | 2014-09-18 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Electrosurgical instrument |
EP2974682B1 (en) | 2013-03-15 | 2017-08-30 | Gyrus ACMI, Inc. | Combination electrosurgical device |
US9402979B2 (en) * | 2014-07-10 | 2016-08-02 | King Abdullah International Medical Research Center | Releasable torque device |
US9707028B2 (en) | 2014-08-20 | 2017-07-18 | Gyrus Acmi, Inc. | Multi-mode combination electrosurgical device |
CN107405168B (en) | 2015-03-23 | 2020-05-05 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Medical clamp with blood vessel cutting capability |
US10252035B2 (en) | 2015-12-07 | 2019-04-09 | Cook Medical Techonologies Llc | Rotatable control handles for medical devices and methods of using rotatable control handles |
US11383373B2 (en) | 2017-11-02 | 2022-07-12 | Gyms Acmi, Inc. | Bias device for biasing a gripping device by biasing working arms apart |
US10667834B2 (en) | 2017-11-02 | 2020-06-02 | Gyrus Acmi, Inc. | Bias device for biasing a gripping device with a shuttle on a central body |
US11298801B2 (en) | 2017-11-02 | 2022-04-12 | Gyrus Acmi, Inc. | Bias device for biasing a gripping device including a central body and shuttles on the working arms |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5104397A (en) * | 1989-04-14 | 1992-04-14 | Codman & Shurtleff, Inc. | Multi-position latching mechanism for forceps |
US5653772A (en) * | 1992-06-17 | 1997-08-05 | Nicca Chemical Co., Ltd. | Method of fixing cellulose fibers dyed with a reactive dye |
US6494886B1 (en) * | 2000-06-22 | 2002-12-17 | Granit Medical Innovation, Inc. | Off-set clamp mechanism and associated method for minimally invasive surgery |
US20060089670A1 (en) * | 2004-10-21 | 2006-04-27 | Dylan Hushka | Magnetic closure mechanism for hemostat |
US7322995B2 (en) * | 2002-09-13 | 2008-01-29 | Damage Control Surgical Technologies, Inc. | Method and apparatus for vascular and visceral clipping |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US89670A (en) * | 1869-05-04 | Michael lehmer | ||
US5137288A (en) * | 1991-07-22 | 1992-08-11 | Cordis Corporation | Side loading wire grip |
US5161534A (en) * | 1991-09-05 | 1992-11-10 | C. R. Bard, Inc. | Tool for manipulating a medical guidewire |
US5851189A (en) * | 1996-05-24 | 1998-12-22 | B. Braun Medical, Inc. | Torque device for angioplasty guidewire |
US5851226A (en) * | 1996-10-22 | 1998-12-22 | Medtronic, Inc. | Temporary transvenous endocardial lead |
US6533772B1 (en) * | 2000-04-07 | 2003-03-18 | Innex Corporation | Guide wire torque device |
US7717865B2 (en) * | 2003-09-30 | 2010-05-18 | Boston Scientific Scimed, Inc. | Side loading wire torquing device |
AU2006247600B2 (en) * | 2005-05-12 | 2012-07-05 | Cook Medical Technologies Llc | Wire guide torque device |
-
2006
- 2006-06-27 US US11/475,425 patent/US20070016105A1/en not_active Abandoned
-
2009
- 2009-07-30 US US12/512,772 patent/US8496603B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5104397A (en) * | 1989-04-14 | 1992-04-14 | Codman & Shurtleff, Inc. | Multi-position latching mechanism for forceps |
US5653772A (en) * | 1992-06-17 | 1997-08-05 | Nicca Chemical Co., Ltd. | Method of fixing cellulose fibers dyed with a reactive dye |
US6494886B1 (en) * | 2000-06-22 | 2002-12-17 | Granit Medical Innovation, Inc. | Off-set clamp mechanism and associated method for minimally invasive surgery |
US7322995B2 (en) * | 2002-09-13 | 2008-01-29 | Damage Control Surgical Technologies, Inc. | Method and apparatus for vascular and visceral clipping |
US20060089670A1 (en) * | 2004-10-21 | 2006-04-27 | Dylan Hushka | Magnetic closure mechanism for hemostat |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9050438B2 (en) | 2006-10-21 | 2015-06-09 | Vesatek, Llc | Guidewire manipulation device |
US11534582B2 (en) | 2006-10-21 | 2022-12-27 | Vesatek, Llc | Guidewire manipulation device |
US20080097465A1 (en) * | 2006-10-21 | 2008-04-24 | Aaron Rollins | Guidewire Manipulation Device |
US9119942B1 (en) | 2006-10-21 | 2015-09-01 | Vesatek, Llc | Guidewire manipulation device |
US11653945B2 (en) | 2007-02-05 | 2023-05-23 | Walk Vascular, Llc | Thrombectomy apparatus and method |
US11040158B2 (en) * | 2007-04-25 | 2021-06-22 | ResMed Pty Ltd | Connectors for connecting components of a breathing apparatus |
US20090076417A1 (en) * | 2007-08-08 | 2009-03-19 | Gregory Allen Jones | Glide Clip |
US11660424B2 (en) | 2009-02-10 | 2023-05-30 | Vesatek, Llc | System and method for traversing an arterial occlusion |
US8926529B2 (en) | 2009-02-10 | 2015-01-06 | Vesatek, Llc | Method and apparatus for manipulating a surgical guidewire |
EP2395924A4 (en) * | 2009-02-10 | 2013-08-28 | Vesatek Llc | Method and apparatus for manipulating a surgical guidewire |
US9119941B2 (en) | 2009-02-10 | 2015-09-01 | Vesatek, Llc | Method and apparatus for manipulating a surgical guidewire |
US10682501B2 (en) | 2009-02-10 | 2020-06-16 | Vesatek, Llc | System and method for traversing an arterial occlusion |
EP2395924A2 (en) * | 2009-02-10 | 2011-12-21 | Vesatek, Llc | Method and apparatus for manipulating a surgical guidewire |
US9539416B2 (en) | 2009-02-10 | 2017-01-10 | Vesatek, Llc | System and method for traversing an arterial occlusion |
WO2010093630A2 (en) | 2009-02-10 | 2010-08-19 | Vesatek, Llc | Method and apparatus for manipulating a surgical guidewire |
US20100204613A1 (en) * | 2009-02-10 | 2010-08-12 | Aaron Rollins | Method and apparatus for manipulating a surgical guidewire |
US20110022062A1 (en) * | 2009-07-22 | 2011-01-27 | Aesculap Ag | Application instrument for an aneurysm clip |
US20140343527A1 (en) * | 2013-05-17 | 2014-11-20 | Covidien Lp | Torque apparatus for use with a guidewire |
US9814864B2 (en) * | 2013-05-17 | 2017-11-14 | Covidien Lp | Torque apparatus for use with a guidewire |
US9878131B2 (en) | 2014-12-10 | 2018-01-30 | Biosense Webster (Israel) Ltd. | Guide wire restraint device |
EP3040098A3 (en) * | 2014-12-10 | 2016-10-26 | Biosense Webster (Israel) Ltd. | Guide wire restraint device |
CN105688323A (en) * | 2014-12-10 | 2016-06-22 | 韦伯斯特生物官能(以色列)有限公司 | Guide wire restraint device |
US11285300B2 (en) | 2015-08-12 | 2022-03-29 | Vesatek, Llc | System and method for manipulating an elongate medical device |
US11672561B2 (en) | 2015-09-03 | 2023-06-13 | Walk Vascular, Llc | Systems and methods for manipulating medical devices |
US10561440B2 (en) | 2015-09-03 | 2020-02-18 | Vesatek, Llc | Systems and methods for manipulating medical devices |
US11051832B2 (en) | 2015-12-23 | 2021-07-06 | Incuvate, Llc | Aspiration monitoring system and method |
US10226263B2 (en) | 2015-12-23 | 2019-03-12 | Incuvate, Llc | Aspiration monitoring system and method |
US11771445B2 (en) | 2015-12-23 | 2023-10-03 | Incuvate, Llc | Aspiration monitoring system and method |
US11672953B2 (en) * | 2016-03-30 | 2023-06-13 | Philips Image Guided Therapy Corporation | Torque devices for use with intravascular devices and associated systems and methods |
US10080511B1 (en) * | 2017-08-09 | 2018-09-25 | Sean Boutros | Bi-directional oxygenation apparatus for a non-intubated patient |
US11678905B2 (en) | 2018-07-19 | 2023-06-20 | Walk Vascular, Llc | Systems and methods for removal of blood and thrombotic material |
CN109200433A (en) * | 2018-11-07 | 2019-01-15 | 河南中医药大学 | A kind of guidewire controller that singlehanded can accurately manipulate |
EP3932461A4 (en) * | 2019-03-13 | 2022-05-18 | TERUMO Kabushiki Kaisha | Torque device |
Also Published As
Publication number | Publication date |
---|---|
US20090292291A1 (en) | 2009-11-26 |
US8496603B2 (en) | 2013-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8496603B2 (en) | Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators | |
EP0893969B1 (en) | Malleable clip applier | |
US4763650A (en) | Instrument for inserting a deformable lens into the eye | |
US7727247B2 (en) | Living tissue ligation device | |
US10687822B2 (en) | Thickness-adjustable hemostatic clips, clip appliers, and applications thereof | |
JP6815506B2 (en) | Clip treatment tool | |
US20060264973A1 (en) | Orthopedic implant bender | |
EP3096673A1 (en) | Laparoscopic graspers and systems therefor | |
US6086596A (en) | Magnetically assisted surgical wiring and cabling passer devices | |
JPH0611706U (en) | Surgical clip | |
WO2004017839A1 (en) | Ligating device for biological tissue | |
JP2011206225A (en) | Ligating apparatus | |
CN110769764B (en) | Clamp treatment tool | |
JP2018505753A (en) | Apparatus for holding a flexible elongate medical device firmly and gently | |
US11602455B2 (en) | Cannula tool and method | |
US20190070391A1 (en) | Catheter and guidewire advancement device | |
JP2009022776A (en) | Ligating device of biological tissue | |
JPS60193472A (en) | Drain inserter | |
US20110319914A1 (en) | Surgical staple remover | |
US7909753B1 (en) | Connector for mesh support insertion | |
EP3177213B1 (en) | Reusable delivery devices | |
US9636155B2 (en) | Method and apparatus for an intramudullary implant and method of implantation thereof | |
JP4813531B2 (en) | Biological tissue ligation device | |
JP4755234B2 (en) | Biological tissue ligation device | |
JP4827904B2 (en) | Biological tissue ligation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE TRUSTEES OF DARTMOUTH COLLEGE, NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAMOURIAN, ALEXANDER CHARLES;REEL/FRAME:018353/0901 Effective date: 20060828 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |