Nothing Special   »   [go: up one dir, main page]

US20070014860A1 - Treatment of esophagitis - Google Patents

Treatment of esophagitis Download PDF

Info

Publication number
US20070014860A1
US20070014860A1 US11/525,752 US52575206A US2007014860A1 US 20070014860 A1 US20070014860 A1 US 20070014860A1 US 52575206 A US52575206 A US 52575206A US 2007014860 A1 US2007014860 A1 US 2007014860A1
Authority
US
United States
Prior art keywords
therapeutic composition
host
biocompatible polymer
reverse
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/525,752
Inventor
Gary Rosenthal
Jeffrey Etter
Timothy Rodell
Wren Schauer
Adrian Samaniego
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endo Pharmaceuticals Colorado Inc
Original Assignee
Endo Pharmaceuticals Colorado Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endo Pharmaceuticals Colorado Inc filed Critical Endo Pharmaceuticals Colorado Inc
Priority to US11/525,752 priority Critical patent/US20070014860A1/en
Assigned to RXKINETIX reassignment RXKINETIX ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RODELL, TIMOTHY C., ETTER, JEFFREY B., ROSENTHAL, GARY J., SAMANIEGO, ADRIAN, SCHAUER, WREN H.
Publication of US20070014860A1 publication Critical patent/US20070014860A1/en
Assigned to ENDO PHARMACEUTICALS COLORADO, INC. reassignment ENDO PHARMACEUTICALS COLORADO, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RXKINETIX, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • This invention relates to a therapeutic composition useful for treatment of mucositis and methods for using the therapeutic composition.
  • Mucositis is a serious and often very painful disorder involving inflammation of the mucous membrane, with the inflammation often accompanied by infection and/or ulceration. Mucositis can occur at any of the different mucosal sites in the body.
  • a nonlimiting list of examples of locations where mucositis can occur include mucosal sites in the oral cavity, esophagus, gastrointestinal tract, bladder, vagina, rectum, lung, nasal cavity, ear and orbita.
  • Mucositis often develops as a side effect of cancer therapy, and especially as a side effect of chemotherapy and radiation therapy for the treatment of cancer. While cancerous cells are the primary targets of cancer therapies, other cell types can be damaged as well. Exposure to radiation and/or chemotherapeutics often results in significant disruption of cellular integrity in mucosal epithelium, leading to inflammation, infection and/or ulceration at mucosal sites.
  • oral mucositis is a painful and costly complication of some cancer therapies.
  • the oral cavity is lined with mucosal epithelium, and exposure to radiation and/or chemotherapeutics results in the disruption of cellular integrity leading to the development of ulcerative lesions commonly referred to as oral mucositis.
  • Oral mucositis is most prevalent in patient populations with head and neck malignancies being treated with radiation therapy.
  • Oral mucositis usually occurs after the second week of radiation therapy, with severe symptoms usually resolving within six weeks following completion of therapy.. It has been reported that this condition also affects approximately forty percent of patients undergoing chemotherapy, bone marrow transplantation or combinations thereof.
  • Chemotherapeutic agents likely to cause oral mucositis include bleomycin, dactinomycin, doxorubicin, etoposide, floxuridine, 5-fluorouracil, hydroxyurea, methotrexate, mitomycin, vinblastine, vincristine, and vinorelbine.
  • the risk of developing mucositis is markedly exacerbated when chemotherapeutic agents that typically produce mucosal toxicity are given in high doses, in frequent repetitive schedules, or in combination with ionizing irradiation (e.g., conditioning regimens prior to bone marrow transplant).
  • the lesions induced by chemotherapeutic agents are clinically significant by about a week after treatment and the severity progresses to about day ten through twelve and begins to subside by day fourteen.
  • Oral mucositis appears to be a four-phase process: the primary phase is inflammatory/vascular in nature resulting in a cytokine release from the epithelium brought on by damage caused by radiation and/or chemotherapy.
  • the second phase referred to as the epithelial phase, is signaled by atrophy and ulceration of the mucosal epithelium.
  • the third phase is defined as the ulcerative/bacterial phase represented by ulcerative lesions that are prone to bacterial infection further compromising the patients' immune system. These painful lesions often limit a patient's ability to eat and drink and in some cases require hospitalization. The presence of these lesions can also interrupt scheduled chemotherapy and/or radiation treatments.
  • the last phase is characterized by a proliferation and differentiation of epithelium as well as bacterial control.
  • Routine oral hygiene is extremely important in reducing the incidence and severity of mucositis.
  • Oral hygiene methods include rinsing/irrigation and mechanical plaque removal.
  • allopurinol mouthwash and vitamin E have been cited as agents that may decrease the severity of mucositis.
  • Prophylaxis against fungal infections is commonly employed in an effort to treat oral mucositis and includes use of topical antifingal agents such as nystatin-containing mouthwashes and clotrimazole troches.
  • topical antifungal prophylaxis and treatment may clear superficial oropharyngeal infections
  • topical agents tend not to be well absorbed and have not been demonstrated to be effective against more deeply invasive fungal infections, which typically involve the esophagus and lower gastrointestinal tract. For this reason, systemic agents are indicated for treating all except superficial fungal infections in the oral cavity.
  • Chlorhexidine is a broad spectrum antimicrobial with activity against gram-positive and gram-negative organisms, yeast, and other fungal organisms. It also has the desirable properties of sustained binding to oral surfaces and minimal gastrointestinal (GI) absorption, thereby limiting adverse systemic effects. Its use in the prophylaxis of oral infections shows promise in reducing inflammation and ulceration, as well as in reducing oral microorganisms in high-risk patient groups. Other agents, such as allopurinol, leucovorin, vitamins, and growth factors, have been tried for the prevention of chemotherapy-induced mucositis. Use of a capsaicin-containing candy has also been advocated to desensitize pain receptors in the mouth.
  • Occurrence of mucositis at mucosal sites other than in the oral cavity in association with chemotherapy or radiation therapy are mechanistically similar to the occurrence of oral mucositis.
  • patients undergoing radiation therapy treatment for non-small cell lung cancer frequently develop esophagitis as a side effect of treatment. Esophagitis in this patient population can impede the progress of cancer treatment.
  • the present invention is directed to this need.
  • the present invention provides a therapeutic composition for the treatment of mucositis.
  • treatment of mucositis it is meant that the therapeutic composition is effective to prevent or reduce the incidence, severity and/or duration of the disease.
  • the therapeutic composition comprises at least one pharmaceutical substance that, as formulated in the therapeutic composition, presents therapeutic effect in mammalian hosts, typically human hosts, for the treatment of mucositis, together with at least one biocompatible polymer that aids delivery of the pharmaceutical substance to the targeted mucosal site.
  • One preferred embodiment of the therapeutic composition includes N-acetylcysteine as the pharmaceutical substance and a polyoxyalkylene block copolymer as the biocompatible polymer.
  • the therapeutic composition can be made with or without reverse-thermal viscosity behavior.
  • reverse-thermal viscosity behavior is beneficial to permit administration in a lower viscosity fluid form that tends to convert to a higher viscosity form following administration as the temperature of the therapeutic composition increases in the body. This also facilitates administration at a refrigerated temperature, which is soothing and refreshing to the host in a number of situations, such as for the treatment of mucosal surfaces in the oral cavity or esophagus.
  • the biocompatible polymer will often be a reverse-thermal gelation polymer capable of imparting the desired reverse-thermal viscosity behavior to the therapeutic composition.
  • the therapeutic composition can be made in a variety of product forms, with different product forms being more desirable for targeting treatment to different mucosal sites.
  • the reverse-thermal viscosity behavior can include reverse-thermal gelation, in which case the therapeutic composition converts to a gel form as the temperature of the composition is increased from below to above a reverse-thermal gel transition temperature.
  • the therapeutic composition will preferably have a reverse-thermal gel transition temperature that is no higher than, and even more preferably lower than, the physiological temperature of the host.
  • the therapeutic composition could be administered to the host at a cold temperature at which the therapeutic composition is in the form of a flowable medium, or at a temperature at which the therapeutic composition is in the form of a gel.
  • the therapeutic composition When administered in the form of a gel, the therapeutic composition will often have a thick, pudding-like texture. Inside the body, the gel tends to break down as biological fluids dilute the therapeutic composition. But even with breakdown of the gel, significant amounts of the biocompatible polymer and pharmaceutical substance tend to adhere to mucosal surfaces to promote effective delivery of the pharmaceutical substance to treat the targeted mucosal site.
  • the therapeutic composition When treating for oral mucositis, the therapeutic composition is preferably administered in the form of a flowable medium with sufficient fluidity for use as a mouthwash that can be swished in the oral cavity to promote adhesion of the biocompatible polymer, and therefore also the pharmaceutical substance, to mucosal surfaces in the oral cavity.
  • the therapeutic composition will typically include a carrier liquid (also referred to herein as a liquid vehicle), such as water, and the pharmaceutical substance and the biocompatible polymer are each dissolved or suspended in the carrier liquid when the therapeutic composition is in the flowable medium form for introduction into the oral cavity.
  • the composition When treating for esophagitis, the composition will preferably have a very high viscosity as it is swallowed to promote a long residence time in the esophagus and effective coating of mucosal surfaces in the esophagus.
  • the therapeutic composition is in a thick, pudding-like form, typically a gel form, that can spooned into the mouth and swallowed.
  • the therapeutic composition is introduced into the oral cavity as a flowable medium that undergoes a viscosity increase as it warms and is swallowed.
  • the therapeutic composition when the therapeutic composition is administered as a cold flowable medium, the therapeutic composition preferably has reverse-thermal gelation properties.
  • the therapeutic composition will preferably be in a form so that it can be readily swallowed to coat the mucosal surfaces in the stomach.
  • Preferred embodiments include those noted for treatment of esophagitis.
  • the therapeutic composition be sufficiently fluid so as to be nebulizable or otherwise sprayable to generate a nasal spray of the therapeutic composition that can be introduced into the nasal cavity.
  • the therapeutic composition is at a refrigerated temperature when sprayed and exhibits reverse-thermal viscosity behavior, so that it undergoes an increase in viscosity as it warms in the nasal cavity, thereby promoting adhesion to mucosal surfaces.
  • the therapeutic composition have reverse-thermal gelation properties.
  • the therapeutic composition be sufficiently fluid to be administratable in the form of eye-drops, but the therapeutic composition should preferably not gel following administration of the eye drops.
  • the therapeutic composition is preferably in the form of a viscous gel when at physiological temperature.
  • the therapeutic composition can be formulated to exhibit reverse-thermal viscosity behavior so that it is administrable in a refrigerated form at a lower viscosity and converts to a higher viscosity form, preferably a gel form, as the therapeutic composition warms following administration.
  • the therapeutic composition should be sufficiently fluid immediately prior to administration to permit the therapeutic composition to be aerosolized, such as by a nebulizer, for administration by inhalation of the therapeutic composition in aerosol form.
  • the biocompatible polymer is bioadhesive, so that when the therapeutic composition is contacted with a mucosal surface, at least a portion of the biocompatible polymer readily adheres to the surface.
  • the biocompatible polymer and the pharmaceutical substance are closely associated with each other in the therapeutic composition such that when the biocompatible polymer adheres to a surface inside the oral cavity, the pharmaceutical substance also adheres to the surface along with the biocompatible polymer.
  • the carrier liquid is water and the biocompatible polymer has surfactant properties.
  • the surfactant properties of the biocompatible polymer enhance solubility of the pharmaceutical substance in the carrier liquid.
  • the therapeutic composition includes, in addition to the biocompatible polymer, a separate bioadhesive agent that enhances the bioadhesive properties of the therapeutic composition.
  • the bioadhesive agent is frequently a second polymer having even greater bioadhesive properties.
  • the therapeutic composition may include a penetration enhancer, which aids rapid transport of the pharmaceutical substance across the mucosal epithelium.
  • the therapeutic composition can also include other components that are compatible with the pharmaceutical substance and the biocompatible polymer.
  • the invention involves a therapeutic composition useful for treatment of mucositis at a mucosal site, with the composition comprising a sulfur-containing antioxidant.
  • sulfur-containing anti-oxidants include those in which the sulfur is preferably present in a thiol, thioether, thioester, thiourea, thiocarbamate, disulfide, or sulfonium group.
  • a particularly preferred sulfur-containing antioxidant is N-acetylcysteine.
  • the present invention involves use of the therapeutic composition, in any form and with any formulation, for treatment of mucositis.
  • a method for delivering to a mucosal site a pharmaceutical substance for treatment of mucositis at a mucosal site, involving introduction into a host of a therapeutic composition of the invention.
  • the method involves introducing a therapeutic composition into the host, with the therapeutic composition comprising the pharmaceutical substance and a biocompatible polymer. After the therapeutic composition is introduced into the host, at least a portion of the biocompatible polymer and the pharmaceutical substance adhere to a mucosal surface at the mucosal site.
  • FIG. 1 is a plot of the clinical mucositis scores in the hamster buccal pouch following acute radiation and application of antioxidant-containing formulations.
  • the various formulations (described in Table 1) were applied topically to the buccal pouch of Golden Syrian hamsters for 30 days. One day after beginning the application the buccal pouch was irradiated with one acute dose of radiation. The pouch was examined for mucositis by visually inspecting the pouch and scored for clinical mucositis.
  • NAC N-acetylcysteine
  • biocompatible means not having toxic or injurious effects on biological function in humans.
  • bioadhesive means having the ability to adhere to a biological surface such as mucous membranes or other tissues for an extended period of time.
  • transition temperature or “gel transition temperature” refers to a temperature at which a material, such as the biocompatible polymer or the therapeutic composition as the case may be, changes physical form from a liquid to a gel, or vice versa.
  • reverse-thermal gel transition temperature refers to a temperature at which a material, such as the biocompatible polymer or the therapeutic composition as the case may be, changes physical form from a liquid to a gel as the temperature is increased from below to above the temperature, and changes physical form from a gel to a liquid as the temperature is decreased from above to below the temperature.
  • thermal gelation property refers to a property of a material, such as the biocompatible polymer or the therapeutic composition, as the case may be, to change physical form from a liquid to a gel, or vice versa, due to a change in temperature.
  • reverse-thermal gelation property refers to a property of a material, such as the biocompatible polymer or the therapeutic composition, as the case may be, to change physical form from a liquid to a gel with increasing temperature.
  • the present invention provides a therapeutic composition for delivery of mucositis therapeutics to humans, especially for use when bioadhesion and permeability of the oral mucositis therapeutic(s) are desired.
  • the composition comprises at least one, and optionally more than one, mucositis therapeutic and a biocompatible polymer.
  • Each mucositis therapeutic is a pharmaceutical substance that provides a therapeutic effect for at least one of prevention of mucositis and treatment of mucositis, either alone or in combination with other materials.
  • the therapeutic effect may be due to the direct action of the pharmaceutical substance of the composition, or may be due to one or more other materials activated by the pharmaceutical substance or for which the pharmaceutical substance is a precursor.
  • Nonlimiting examples of mucositis therapeutics useful in the present invention include antioxidants, antibacterials, antiinflammatories, anesthetics, analgesics, proteins, peptides, and cytokines, with antioxidants being particularly preferred.
  • the composition can also comprise a permeability enhancer and/or an active agent in addition to the oral mucositis agent(s).
  • the composition can also include other components to the extent that the presence of the other components is not inconsistent with performance objectives of the composition.
  • the amount of mucositis therapeutic in the therapeutic composition of the present invention varies depending on the nature and potency of the therapeutic. In most situations, however, the amount of oral mucositis therapeutic in the composition will be less than about 20% w/w relative to the total weight of the therapeutic composition.
  • the therapeutic composition of the present invention provides a delivery system for bioadhesion, permeation, or prolonged and sustained action, of the oral mucositis therapeutic, thereby improving the efficacy of the oral mucositis therapeutic upon topical application to mucosal surfaces, a route that may otherwise be an ineffective means of therapy. Furthermore, the delivery system may reduce the frequency and duration of administration of the mucositis therapeutic as part of a treatment.
  • the therapeutic composition of the present invention improves bioadhesion onto and permeation into the mucosa, thus allowing this therapeutic agent to exert its actions more efficaciously at the target mucosal site.
  • the therapeutic composition may reduce or eliminate degradation of the therapeutic agent, again increasing the effectiveness of the therapeutic agent.
  • Stabilizing agents can be incorporated into the composition of the present invention thereby further minimizing the degradation of the mucositis therapeutic, which directly impacts the effectiveness of the agent for treating mucositis and the ability to store or transport the composition.
  • the therapeutic composition can be in any convenient physical form, but is often preferably in the form of a flowable fluid medium at the time of administration.
  • the therapeutic composition when treating for oral mucositis, is preferably sufficiently fluid in character that it can be accepted in the oral cavity and swished in the manner of a mouthwash.
  • the therapeutic composition will typically include as its largest constituent a carrier liquid to impart the flowable fluid properties to the therapeutic composition.
  • the carrier liquid will be water.
  • the biocompatible polymer and mucositis therapeutic are each dissolved in the carrier liquid or suspended in the carrier liquid as a disperse phase.
  • the therapeutic composition can comprise an aqueous solution of the biocompatible polymer, with the mucositis therapeutic also dissolved in the solution and/or suspended as a precipitate in the solution.
  • both of the biocompatible polymer and the mucositis therapeutic are dissolved in the carrier liquid, at least at a temperature at which the therapeutic composition is to be administered to patients. Having the biocompatible polymer and the mucositis therapeutic codissolved in the carrier liquid ensures intimate mixing of the two materials, which promotes adhesion of the mucositis therapeutic to surfaces of the oral cavity along with the biocompatible polymer, thereby effectively using the therapeutic.
  • the biocompatible polymer is selected so that when the biocompatible polymer is incorporated into the therapeutic composition, the rheology of the therapeutic composition is such that the viscosity of the therapeutic composition increases with increasing temperature in the vicinity of physiological temperature, which is typically about 37° C. In this way, the therapeutic composition can be administered as a lower viscosity flowable fluid medium at a cool temperature, and the viscosity of the therapeutic composition will increase as the therapeutic composition is warmed to physiological temperature.
  • the therapeutic composition exhibits reverse-thermal viscosity behavior over at least some range of temperatures between 1° C.
  • the physiological temperature of the host e.g., 37° C. for a human host
  • the therapeutic composition can then be administered to the host in a lower viscosity form at a reduced temperature, typically lower than 20° C. and more typically from 1° C. to 20° C.
  • a refrigerated temperature typically of from 1° C. to 10° C. and more often a refrigerated temperature of from 2° C. to 8° C.
  • the therapeutic composition may be introduced into the oral cavity at a temperature of from about 1° C. to about 20° C., and more preferably a temperature of from about 1° C. to about 10° C.
  • polyethers preferably polyoxyalkylene block copolymers, with more preferred polyoxyalkylene block copoly
  • Pluronic®, Tetronic® and Cremophor® are trademarks of BASF Corporation.
  • Carbopol® is a trademark of B. F. Goodrich.
  • more than one of these exemplary biocompatible polymers may be included in the composition to provide the desired characteristics and other biocompatible polymers or other additives may also be included in the composition to the extent the inclusion is not inconsistent with performance requirements of the composition.
  • biocompatible polymers when the composition is to be administered with the biocompatible polymer in solution form dissolved in a solvent, include cellulosic polymers, glycerin, polyethylene glycol and polyoxyalkylene block copolymers.
  • Reverse-thermal gelation polymers are especially useful for imparting desirable rheological properties to the therapeutic composition.
  • These biocompatible reverse-thermal gelation polymers can be incorporated into the therapeutic composition at concentrations so that the therapeutic composition has reverse-thermal gelation properties, or can be incorporated into the therapeutic composition at a concentration that does not impart reverse-thermal gelation properties to the therapeutic composition, but otherwise provides desired viscosity behavior for a particular application.
  • reverse-thermal viscosity property and “reverse-thermal viscosity behavior” each refer to a property of a component or components, and in particular a biocompatible polymer/water combination, to undergo a viscosity increase with increasing temperature across at least some temperature range.
  • a reverse-thermal gelation property is a one type of reverse-thermal viscosity behavior in which a component or components, and in particular a biocompatible polymer/water combination in the therapeutic composition, change from a liquid form to a gel form as the temperature is raised from below to above a reverse-thermal gel transition temperature.
  • Reverse-thermal gelation polymer refers to a polymer capable of interacting with a liquid vehicle, and particularly water, so that the polymer/liquid vehicle combination exhibits a reverse-thermal gelation property when the polymer and liquid vehicle are combined in at least some proportion. It should be appreciated that, if desired, a reverse-thermal gelation polymer and water can be incorporated into the therapeutic composition in such proportions that the therapeutic composition does not have a reverse-thermal gelation property, or does not even exhibit any reverse-thermal viscosity behavior. For most situations, however, the presence of reverse-thermal viscosity behavior is preferred.
  • the therapeutic composition can be administered to a patient at a cool temperature, as noted above, which provides a beneficial ‘cold’ feeling upon tissue, such as in the oral cavity or esophagus, of the host following administration.
  • the therapeutic composition tends to become more viscous, and possibly even gelatinous depending upon the concentration of biocompatible polymer used, as the therapeutic composition warms to physiological temperature, depending upon the rapidity with which the therapeutic composition is diluted by biological fluids.
  • Such reverse-thermal viscosity behavior does tend to promote greater bioadhesion of the biocompatible polymer and the pharmaceutical substance onto mucosal surfaces, leading to longer contact time of the pharmaceutical substance at the targeted mucosal site.
  • biocompatible polymer and other components of the therapeutic composition may aid in the permeation of a mucosal therapeutic into the mucosa.
  • permeation into the oral mucosa or across oral mucosal cell membranes may aid in placing the therapeutic agent at additional target sites as well as provide for sustained action of the therapeutic agent within the oral mucosa.
  • Non-limiting examples of some biocompatible reverse-thermal gelation polymers include certain polyethers (preferably polyoxyalkylene block copolymers with more preferred polyoxyalkylene block copolymers including polyoxyethylene-polyoxypropylene block copolymers referred to herein as POE-POP block copolymers, such as PluronicTM F68, PluronicTM F127, PluronicTM L121, and PluronicTM L101, and TetronicTM T1501); certain cellulosic polymers, such as ethylhydroxyethyl cellulose; and certain poly (ether-ester) block copolymers (such as those disclosed in U.S. Pat. No.
  • polyethers preferably polyoxyalkylene block copolymers with more preferred polyoxyalkylene block copolymers including polyoxyethylene-polyoxypropylene block copolymers referred to herein as POE-POP block copolymers, such as PluronicTM F68, PluronicTM F127, PluronicTM
  • PluronicTM and TetronicTM are trademarks of BASF Corporation.
  • more than one of these and/or other biocompatible polymers may be included in the therapeutic composition.
  • other polymers and/or other additives may also be included in the therapeutic composition to the extent the inclusion is not inconsistent with the desired characteristics of the therapeutic composition.
  • these polymers may be mixed with other polymers or other additives, such as sugars, to vary the transition temperature, typically in aqueous solutions, at which reverse-thermal gelation occurs.
  • biocompatible polymers may now or hereafter exist that are capable of being used in the therapeutic composition, and such polymers are specifically intended to be within the scope of the present invention when incorporated into the therapeutic composition.
  • Polyoxyalkylene block copolymers are particularly preferred as biocompatible polymers for use in the therapeutic composition.
  • a polyoxyalkylene block copolymer is a polymer including at least one block (i.e. polymer segment) of a first polyoxyalkylene and at least one block of a second polyoxyalkylene, although other blocks may be present as well.
  • POE-POP block copolymers are one class of preferred polyoxyalkylene block copolymers for use as the biocompatible reverse-thermal gelation polymer in the formulated biocompatible polymer.
  • POE-POP block copolymers include at least one block of a polyoxyethylene and at least one block of a polyoxypropylene, although other blocks may be present as well.
  • the polyoxyethylene block may generally be represented by the formula (C 2 H 4 O) b when b is an integer.
  • the polyoxypropylene block may generally be represented by the formula (C 3 H 6 O) a when a is an integer.
  • the polyoxypropylene block could be for example (CH 2 CH 2 CH 2 O) a , or could be
  • POE-POP block copolymers are known to exhibit reverse-thermal gelation properties, and these polymers are particularly preferred for imparting reverse-thermal viscosity and/or reverse-thermal gelation properties to the therapeutic composition.
  • Examples of POE-POP block copolymers include PluronicTM F68, PluronicTM F127, PluronicTM L121, PluronicTM L101, and TetronicTM T1501.
  • Tetronicm T1501 is one example of a POE-POP block copolymer having at least one polymer segment in addition to the polyoxyethylene and polyoxypropylene segments.
  • TetronicTM T1501 is reported by BASF Corporation to be a block copolymer including polymer segments, or blocks, of ethylene oxide, propylene oxide and ethylene diamine.
  • Some preferred POE-POP block copolymers have the formula: HO(C 2 H 4 O) b (C 3 H 6 O) a (C 2 H 4 O) b H I which, in the preferred embodiment, has the property of being liquid at ambient or lower temperatures and existing as a semi-solid gel at mammalian body temperatures wherein a and b are integers in the range of 15 to 80 and 50 to 150, respectively.
  • a particularly preferred POE-POP block copolymer for use with the present invention has the following formula: HO(CH 2 CH 2 O) b (CH 2 (CH 3 )CHO) a (CH 2 CH 2 O) b H II wherein a and b are integers such that the hydrophobe base represented by (CH 2 (CH 3 )CHO) a has a molecular weight of about 4,000, as determined by hydroxyl number; the polyoxyethylene chain constituting about 70 percent of the total number of monomeric units in the molecule and where the copolymer has an average molecular weight of about 12,600.
  • PluronicTM F-127 also known as Poloxamer 407, is such a material.
  • PluronicTM F-68 may also be used.
  • aqueous solutions which form gels or viscous solutions of polyoxyalkylene block copolymer are well known and are disclosed in U.S. Pat. No. 5,861,174, which is incorporated herein by reference in its entirety.
  • the amount of biocompatible polymer and the amount of oral mucositis therapeutic agent are typically selected such that the resulting composition has a reverse-thermal gel transition temperature that is not higher than the physiological temperature of the host (e.g., 37° C. for human hosts). In most situations, the reverse-thermal gel transition temperature will be in a range having a lower limit of about 1°, more typically about 10° C., sometimes about 20° C.
  • the therapeutic composition has reverse-thermal gelation properties is for the reverse-thermal gel transition temperature to be in a range of from about 10° C. to about 25° C. In this situation, the reverse-thermal polymer/liquid vehicle combination will be in a liquid form when stored at normal refrigeration storage temperatures of 2° C. to 8° C.
  • the biocompatible polymer is dissolved in the carrier liquid in the therapeutic composition when the therapeutic composition is in a flowable medium form.
  • the biocompatible polymers useful with the present invention at least some of the polymer will often come out of solution as the therapeutic composition is warmed in the after introduction into the host. This is often, but not always, the case, for example, when the therapeutic composition exhibits a reverse-thermal gel transition temperature at physiological temperature or lower.
  • the therapeutic composition is diluted by saliva in the oral cavity, or other by other biological fluids at other mucosal sites, at such a fast rate and to such an extent so as to entirely prevent gelling from occurring.
  • the biocompatible polymer and mucosal therapeutic polymer will adhere to mucosal surfaces.
  • the therapeutic composition has the property of increasing viscosity with increasing temperature, as discussed above, the increasing viscosity may be accompanied, to some degree, by reduced solubility of the biocompatible polymer in the carrier liquid, which further promotes good adhesion to mucosal surfaces.
  • the biocompatible polymer will be substantially entirely dissolved in the carrier liquid when the temperature of the composition is at a temperature of about 5° C. There are, however, some situations where it may be desirable to have the therapeutic composition be in a gel form even at such low temperatures.
  • the concentration of the biocompatible polymer in the composition will vary depending upon the specific biocompatible polymer and the specific situation. In most situations, however, the biocompatible polymer will comprise from about 1% by weight to about 70% by weight, and more typically from about 5% by weight to about 20% by weight of the therapeutic composition. For example, particularly preferred for use of Pluronic® F-127 in many applications is a range of from about 10% by weight to about 20% by weight of the therapeutic composition.
  • the therapeutic composition of the present invention can also comprise other additives, including polymer or therapeutic agent stabilizers including sucrose, salts, and pH adjusting agents; preservatives including antioxidants such as butylated hydroxytoluene, antiftngals, and antibacterials; and taste masking components.
  • taste masking components are particularly desirable when administration is in the oral cavity, such as for treatment of oral mucositis or esophagitis.
  • taste masking components include fruit flavorings (and particularly citrus flavorings), mint flavorings, salt, or sugars.
  • the taste masking component imparts a citrus flavor, and preferably lemon flavor to the composition, such as when the taste masking component comprises lemon juice or a lemon extract.
  • the therapeutic composition of the present invention can also include a penetration enhancer.
  • a penetration enhancer is any material that, when added to a formulation including an active agent (such as the mucositis therapeutic in the therapeutic composition) enables permeation of the active agent across biological tissues and cells, such as epithelium, thereby increasing the amount of therapeutic at the target site. While the penetration enhancer may also act as a mucositis therapeutic or bioadhesive, the primary purpose of adding the penetration enhancer is to increase the amount or the rate of permeation of the mucositis therapeutic into the mucosa.
  • Exemplary penetration enhancers include various molecular weight chitosans and chitosan derivatives, such as N,O-carboxymethyl chitosan; fatty acids, such as lauric acid, lipoic acid, and those extracted from cod-liver oil, including palmitic and oleic acids; bile salts such as deoxycholate, glycolate, cholate, taurocholate, taurodeoxycholate, and glycodeoxycholate; polyoxyethylenesorbitan such as Tween® 20 and Tween® 80; sodium lauryl sulfate; polyoxyethylene-9-lauryl ether (Laureth®-9); EDTA; citric acid; salicylates; caprylic/capric glycerides; sodium caprylate; sodium caprate; sodium laurate; sodium glycyrrhetinate; dipotassium glycyrrhizinate; glycyrrhetinic acid hydrogen succinate, disodium salt (carbenox
  • the amount of penetration enhancer in the therapeutic composition of the present invention generally varies depending on the particular penetration enhancer used. Typically, however, the amount of penetration enhancer, when used, will be present in the therapeutic composition in an amount from about 0.001% by weight to about 10% by weight of the therapeutic composition, preferably from about 0.01% by weight to about 5% by weight, and more preferably from about 0.01% by weight to about 1.0% by weight. In one particular aspect of the present invention where chitosan is used as the penetration enhancer, the amount of chitosan present in the composition is from about 0.01% by weight to about 10% by weight, preferably from about 0.1% by weight to about 1% by weight, and more preferably from about 0.1% by weight to about 0.5% by weight.
  • the therapeutic composition of the present invention can also include a bioadhesive agent that is different than and in addition to the biocompatible polymer, to further aid in depositing and holding the mucosal therapeutic in the vicinity of the desired mucosal tissue for delivery.
  • a bioadhesive agent may also act as an mucositis therapeutic or penetration enhancer
  • the primary purpose of adding the bioadhesive agent is to increase the duration of contact between the composition and the mucosal tissue.
  • bioadhesive materials include Pluronic® F127, Pluronic® F68, chitosans, salivary or intestinal mucin glycoproteins, trefoil peptides, hydroxypropylmethyl cellulose, and polycarbophils.
  • the therapeutic composition will include at least two polymers, with a first polymer being the biocompatible polymer as discussed above and the second polymer being a bioadhesive agent that is more bioadhesive than the first polymer.
  • the amount of bioadhesive agent in the therapeutic composition will vary depending on the nature and potency of the bioadhesive agent. Typically, however, when included in the therapeutic composition, the amount of the bioadhesive agent is from about 0.01% by weight of the composition to about 70% by weight of the composition, more typically from about 0.1% by weight to about 50% by weight, and most typically from about 0.1% by weight to about 25% by weight.
  • mucositis therapeutics that may be used to make the therapeutic composition of the present invention include antioxidants, antibacterials, antiinflammatories, anesthetics, analgesics, proteins, peptides and cytokines, including those currently available or later developed.
  • the mucositis therapeutic is selected from the group consisting of antioxidants. More preferably the antioxidant is selected from the group consisting of sulfur-containing antioxidants or vitamin antioxidants, with sulfur-containing antioxidants generally being more preferred.
  • the sulfur-containing antioxidant includes sulfur in at least one constituent group selected from thiol, thioether, thioester, thiourea, thiocarbamate, disulfide and sulfonium, with thiol-containing antioxidants (also referred to as sulfhydryl-containing antioxidants) being particularly preferred.
  • thiol-containing antioxidants also referred to as sulfhydryl-containing antioxidants
  • preferred thiol-containing antioxidants include N-acetylcysteine (NAC) and glutathione.
  • Other examples of preferred sulfur-containing antioxidants include S-carboxymethylcysteine and methylmethionine sulfonium chloride.
  • the sulfur-containing antioxidants are precursors for biosynthesis of glutathione in the host, such as by providing cysteine or a precursor for cysteine for glutathione synthesis.
  • the mucosal therapeutic promotes the production of glutathione.
  • antioxidants that are precursors for glutathione biosynthesis include NAC, procysteine, lipoic acid, s-allyl cysteine, and methylmethionine sulfonium chloride.
  • the mucositis therapeutic is NAC.
  • vitamin antioxidants examples include vitamin E, vitamin E mimetics, vitamin E analogs, vitamin C, and vitamin A. Particularly preferred in the vitamin class of antioxidants are water soluble vitamin forms of vitamin E, including Trolox and vitamin E TGPS (d- ⁇ -tocopherol polyethylene glycol 1000 succinate).
  • antioxidants may have a multitude of actions and thus fall under several classes of antioxidants or several classes of therapeutic agents.
  • NAC may directly scavenge free radicals extracellularly and provide cysteine intracellularly as a precursor for intracellular scavenging of free radicals via glutathione biosynthesis and regulation of glutathione-dependent antioxidative enzymes.
  • Another example includes curcumin, which, in addition to its antioxidative action, possesses anti-inflammatory and antiproliferative actions that are beneficial in preventing or alleviating the clinical course of oral mucositis.
  • the antioxidant selected may exert other beneficial effects as a component of the therapeutic composition including bioadhesion as in the case of lipid soluble forms of vitamin E and penetration enhancement as in the case of lipoic acid, curcumin, and vitamin E TGPS.
  • the amount of mucosal therapeutic included in the therapeutic composition of the present invention varies depending on the nature and potency of the particular therapeutic. Typically, however, the amount of mucosal therapeutic present in the therapeutic composition is in a range having a lower limit typically of about 0.001%, more typically about 0.01%, and even more typically about 0.1% by weight of the therapeutic composition, and having an upper limit of typically about 50%, more typically about 25%, and even more typically about 10% by weight of the therapeutic composition.
  • the therapeutic composition of the present invention may be administered to a host (patient) to achieve any desired effect in the clinical outcome of the targeted mucositis.
  • a host is a mammal, and more preferably a human.
  • the therapeutic composition can be administered in a variety of forms adapted to the chosen route of administration.
  • the therapeutic composition When treating for oral mucositis, the therapeutic composition is contacted with the oral mucosa in the oral cavity.
  • Administration in this situation can include, for example, use of a mouthwash, spray, lollipop or other product form of the formulation.
  • the mode of administering the therapeutic composition for treating oral mucositis is a mouthwash which, after being swished in the mouth, may then be spit out or, more preferably, swallowed in order to coat both mucosal surfaces in the mouth and in the esophagus, as well as provide systemic effects upon gastrointestinal absorption.
  • the therapeutic composition is typically prepared in water or a saline solution. Under ordinary conditions of storage and use, these preparations can also contain a preservative to prevent the growth of microorganisms.
  • the therapeutic composition typically is a fluid, i.e., in a liquid form, to the extent that it is palatable and thus, easily tolerated, by the often nauseous cancer patient.
  • the therapeutic composition can be stable under the conditions of manufacture and storage and preferably preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier liquid can be a solvent of dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by maintaining the temperature of the therapeutic composition having reverse-thermal gelation properties below the transition temperature.
  • the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, benzoic acid, alcohol, benzalkonium chloride and the like. In many cases, it will be preferable to include isotonic agents, e.g., sugars, phosphate buffers, sodium benzoate, sodium chloride, or mixtures thereof.
  • the therapeutic composition in the form of a flowable medium when introduced into the host for treatment of a mucosal site. This will often be the case for example for oral mucositis applications in which the therapeutic composition is to be administered as a refrigerated mouthwash.
  • the therapeutic composition has a relatively low viscosity when the therapeutic composition is at a temperature for introduction into the host for treatment.
  • the viscosity of the therapeutic composition when introduced into the host is no larger than 60 cP (centipoises), and more preferably no larger than 50 cP. Because the therapeutic composition is typically administered at a reduced temperature, in this embodiment, the therapeutic composition will preferably have a viscosity at 2° C.
  • the viscosity of the therapeutic composition will preferably exhibit an increase in viscosity from a viscosity of no larger than 60 cP (and more preferably no larger than 50 cP) to a viscosity of at least 70 cP, or even 80 cp or more (and more preferably even larger) as the temperature of the therapeutic composition is increased over at least some range of temperatures between 1° C. and the physiological temperature of the host (e.g., 37° C. for a human host).
  • the viscosity will often increase to a level of 90 cp, or even 100 cP or more with an increase in temperature from below to above the reverse-thermal gel transition temperature.
  • the therapeutic composition can be sublingually placed, such as in the form of a tablet, patch or film.
  • the therapeutic composition is already in the form of a gel when sublingually placed, and the gel then dissipates as it is diluted with biological fluids.
  • the administered gel can have a thick, pudding-like texture and can be spooned or squeezed from a tube into the sublingual location.
  • the therapeutic composition when administered, will typically have a viscosity of at least 70 cP, and more typically a viscosity of at least 80 cP, at least 90 cP or even at least 100 cP.
  • the therapeutic composition can be used as a mouthwash at a temperature below the reverse-thermal gel transition temperature, whereupon the therapeutic composition will ordinarily become more viscous or even gelatinous as it warms inside the mouth.
  • the therapeutic composition may not become more viscous or gelatinous inside the mouth of the host, but the biocompatible polymer will still provide some protection to the oral mucositis therapeutic and enable contact and permeation of the mucositis therapeutic within the oral mucosa.
  • Solutes can be incorporated into the therapeutic composition of the present invention to stabilize the mucositis therapeutic.
  • Stabilizing solutes such as those that modify the pH of the therapeutic composition or a second antioxidant, may aid in protecting and stabilizing the therapeutic by keeping it in a reduced, thus active, form.
  • pH modification, inclusion of an antioxidant (in addition to the mucositis therapeutic), or inclusion of a solute such as sucrose may not only aid in protecting and stabilizing the therapeutic, but also allow the biocompatible polymer to form solutions at suitable viscosities at lower concentrations than needed in water or buffer alone and/or to change the transition temperature at which thermal gelation occurs.
  • the working range of biocompatible polymer concentration can be widened and the transition temperature modified.
  • the transition temperature may be manipulated, while also lowering the concentration of polyoxyethelene-polyoxypropylene block copolymer that is necessary to form a gel.
  • the presence of the mucosal therapeutic, a penetration enhancer and other additives tend to alter the viscosity behavior of the therapeutic composition, often by lowering the concentration of the reverse-thermal gelation polymer required to impart reverse-thermal gelation properties to the therapeutic composition.
  • the therapeutic composition of the present invention is applicable for the prevention and/or treatment of mucosal disorders of the esophagus, vagina, bladder and the entire gastrointestinal tract (for example including stomach, small intestine, large intestine and rectum).
  • mucosal disorders include but are not limited to sinusitis, asthma, inflammatory bowel disease, colitis, cystitis, GERD, proctitis, stomatitis, celiac disease and Crohn's disease.
  • Mucosal disorders at these other locations are mechanistically similar to oral mucositis, and particularly when the disorder is the result of chemotherapy or radiation therapy.
  • patients undergoing radiation therapy treatment for non-small cell lung cancer frequently develop esophagitis as a side effect of treatment. Esophagitis in this patient population can impede the progress of cancer treatment.
  • the pharmaceutical substances described above are also applicable for treatment of mucositis disorders in other regions of the body.
  • the method of delivery to the affected region may be by any convenient technique as suitably adapted for the particular region of the body at issue.
  • the pharmaceutical substance of the present invention can be formulated in different product forms.
  • Some examples of possible product forms for administration of the therapeutic composition include an oral solution, bladder irrigation solution, gel, slurry, mouthwash, lozenge, tablet, film, patch, lollipop, spray, drops or suppository.
  • a gel formulated into a suppository would be one preferred product form for administration to treat mucosal surfaces of either the rectum or the vagina.
  • a tablet, patch or film could be formulated to administer the therapeutic composition sublingually.
  • a slurry or oral solution could be used for treatment of mucosal surfaces in the oral cavity, esophagus and/or gastrointestinal tract.
  • a bladder irrigation solution would be administered to the bladder by catheter.
  • a spray would be advantageous in delivering the present invention to either the nasal cavity or the lungs, while a droplet formulation would be advantageous for delivery to the eye or inner ear.
  • the therapeutic composition When treating for esophagitis, the therapeutic composition could be introduced into the oral cavity in the form of a flowable medium, such as discussed above with respect to treatment for oral mucositis, with the therapeutic composition being swallowed to coat at least a portion of mucosal surfaces in the esophagus.
  • the therapeutic composition could be immediately swallowed after introduction into the oral cavity, or could be swallowed after it has first been swished in the oral cavity.
  • the therapeutic composition is introduced into the oral cavity in a highly viscous form, typically a gel form, that may have a thick, pudding-like texture.
  • the high viscosity form When this highly viscous form is swallowed it moves slowly through the esophagus to promote good coating of esophageal mucosal surfaces.
  • the high viscosity form When introduced into the oral cavity of the host, the high viscosity form will be at a temperature where the viscosity of the therapeutic composition has a viscosity of at least 70 cP, often at least 80 cP, or even at least 90 cP or at least 100 cP or more.
  • the therapeutic composition include a bioadhesive agent, as discussed above, with a preferred bioadhesive agent being a carbophil polymer.
  • the therapeutic composition When treating for mucositis in the gastrointestinal tract, and particularly in the stomach, the therapeutic composition will generally be administered to the oral cavity and swallowed as described with treatment of esophagitis.
  • the product form of the therapeutic composition when introduced into the oral cavity will preferably be of a form as described with respect to treatment for esophagitis.
  • the therapeutic composition When treating for mucositis at a nasal mucosal site, the therapeutic composition is introduced into the nasal cavity to contact mucosal surfaces in the nasal cavity.
  • a preferred method of administration is in the form of a nasal spray, such as is generated by a nasal nebulizer or other spray device.
  • the therapeutic composition have reverse-thermal gelation properties, with a reverse-thermal gel transition temperature that is no higher than the physiological temperature of the host.
  • the therapeutic composition should be at a temperature at which the therapeutic composition is in the form of a flowable medium that can be processed in the nebulizer or other spray device to generate the desired spray.
  • the therapeutic composition When treating for mucositis at a pulmonary mucosal site, the therapeutic composition is typically introduced into the host by inhalation of the therapeutic composition in aerosol form to introduce the therapeutic composition into at least one lung of the host. Considerations are similar to delivery of a nasal spray for nasal applications. For pulmonary applications, however, the aerosol should preferably have smaller and better controlled aerosol particle size, such as could be provided by a pulmonary nebulizer or other inhaler. Again, when generating the aerosol, the therapeutic composition should be at a temperature where the therapeutic composition is in the form of a flowable medium.
  • the therapeutic composition When treating for mucositis at a rectal mucosal site, the therapeutic composition will be introduced into the rectum of the host.
  • the therapeutic composition will be in the form of a gel at least when the therapeutic composition is at the physiological temperature of the host.
  • the therapeutic composition may or may not have reverse-thermal gelation properties, but preferably does have reverse thermal gelation properties and is administrable as a flowable medium below the reverse-thermal gel transition temperature.
  • Considerations for vaginal applications are similar to those for rectal applications, except that the therapeutic composition is introduced into the vagina rather than the rectum.
  • the therapeutic composition When treating for mucositis at a mucosal site in the bladder, the therapeutic composition will typically be introduced into the bladder through a catheter. In this situation, it is preferred that during administration, the therapeutic composition be in the form of a flowable medium that is injectable through the catheter.
  • the therapeutic composition will preferably not have reverse-thermal gelation properties.
  • the therapeutic composition When treating for mucositis at an ocular mucosal site, the therapeutic composition is generally introduced into the orbita, preferably by applying to an eye of the host at least one drop of the therapeutic composition in the form of a flowable medium.
  • the therapeutic composition will preferably not have reverse-thermal gelation properties.
  • the therapeutic composition When treating for mucositis at an aural mucosal site, the therapeutic composition is generally introduced into the ear, and preferably into the inner ear, by administration into the ear of at least one drop of the therapeutic composition in the form of a flowable medium.
  • the therapeutic composition will preferably not have reverse-thermal gelation properties.
  • This example describes the formulation and use of the antioxidant, NAC, within a Pluronic® F127 delivery matrix in the absence and presence of chitosan as a penetration enhancer, for preventing or reducing the clinical outcome of oral mucositis in a hamster model of radiation-induced buccal mucositis.
  • Pluronic® F127 polyxamer 407; BASF Corporation, Washington, N.J.
  • Pluronic® F127 was autoclaved and dissolved in sterile water for injection (Abbott Laboratories, North Chicago, Ill.) at 30% (w/w).
  • Chitosan (medium molecular weight; Sigma-Aldrich, St. Louis, Mo.) was autoclaved and dissolved at 3% (w/w) in sterile filtered water for injection containing 1% (v/v) acetic acid (Fisher Scientific, Fair Lawn, N.J.).
  • NaOH was prepared in sterile water for injection at 4 M and sterile filtered.
  • antioxidant N-acetyl-L-cysteine (NAC; Sigma-Aldrich)
  • NAC N-acetyl-L-cysteine
  • Table 1 The antioxidant, N-acetyl-L-cysteine (NAC; Sigma-Aldrich), was formulated in the various delivery matrices by weighing and mixing the desired components under sterile conditions. The pH was determined by litmus pH paper (Sigma-Aldrich). Examples of antioxidant-containing formulations are described below in Table 1.
  • Oral mucositis was induced using a standardized acute radiation protocol.
  • a single dose of radiation (40 Gy/dose) was administered to all animals on Day 0.
  • Radiation was generated with a 250 kilovolt potential (15-ma) source at a focal distance of 50 cm, hardened with a 0.35 mm Cu filtration system.
  • Irradiation targeted the left buccal pouch mucosa at a rate of 121.5 cGy/minute.
  • This radiation protocol produces ‘peak’ oral mucositis 14 to 18 days after irradiation.
  • Formulation application Each animal was dosed topically 3 times per day by applying 0.25 mL of formulation into the left (irradiated) buccal pouch per application. Dosing was carried out from Day-1 to Day 28.
  • Mucositis evaluation Clinical mucositis was assessed every 2nd day starting on Day 6 to Day 28. Mucositis was evaluated by visual scoring using a validated photographic scale for comparison. Following visual scoring, a photograph of each animal's mucosa was taken so that mucositis could be scored ‘blind’ at the end of the study.
  • Ulcers may have a yellow/gray due to pseudomembrane. Cumulative size of ulcers should equal about 1 ⁇ 4 of the pouch. Severe erythema and vasodilation. 4 Cumulative size of ulcers should equal about 1 ⁇ 2 of the pouch. Loss of pliability. Severe erythema and vasodilation. 5 Virtually all of pouch is ulcerated. Loss of pliability (pouch can only partially be extracted from mouth)
  • a score of 1-2 is considered to represent a mild stage of the disease, whereas a score of 3-5 is considered to indicate moderate to severe mucositis.
  • a photograph was taken of each animal's mucosa using a standardized technique.
  • all film was developed and the photographs randomly numbered.
  • At least two independent trained observers graded the photographs in blinded fashion using the above-described scale (blinded scoring).
  • the water control treatment group exhibited the expected clinical mucositis score (i.e., a score of 3 or 4) at the expected peak mucositis time (i.e., 14 to 18 days post-irradiation). All three NAC formulations reduced the mean clinical mucositis scores relative to the vehicle and water controls, with the NAC formulated in Pluronic® F127 (Tube A2.02) being the most effective. The vehicle appeared to have some beneficial effect in reducing the mean clinical mucositis score at day 14, but this effect was not maintained throughout the peak time of mucositis induction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)

Abstract

A method for treatment of esophagitis is disclosed in which a therapeutic composition is introduced into the esophagus to contact a mucosal surface within the esophagus. The pharmaceutical composition comprises a reverse-thermal gelation polyoxyalkylene block copolymer, a pharmaceutical substance and a pharmaceutical substance selected from the group consisting of glutathione and a precursor for glutathione biosynthesis.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/728,277, filed Dec. 4, 2003, which is a continuation of U.S. patent application Ser. No. 09/993,383 filed Nov. 21, 2001, which is a continuation-in-part of U.S. patent application Ser. No. 09/721,516 filed Nov. 22, 2000, and the entire contents of each of said applications are incorporated herein by reference as if each and every part of said applications were set forth herein in full.
  • FIELD OF THE INVENTION
  • This invention relates to a therapeutic composition useful for treatment of mucositis and methods for using the therapeutic composition.
  • BACKGROUND OF THE INVENTION
  • Mucositis is a serious and often very painful disorder involving inflammation of the mucous membrane, with the inflammation often accompanied by infection and/or ulceration. Mucositis can occur at any of the different mucosal sites in the body. A nonlimiting list of examples of locations where mucositis can occur include mucosal sites in the oral cavity, esophagus, gastrointestinal tract, bladder, vagina, rectum, lung, nasal cavity, ear and orbita. Mucositis often develops as a side effect of cancer therapy, and especially as a side effect of chemotherapy and radiation therapy for the treatment of cancer. While cancerous cells are the primary targets of cancer therapies, other cell types can be damaged as well. Exposure to radiation and/or chemotherapeutics often results in significant disruption of cellular integrity in mucosal epithelium, leading to inflammation, infection and/or ulceration at mucosal sites.
  • As one example, oral mucositis (OM) is a painful and costly complication of some cancer therapies. The oral cavity is lined with mucosal epithelium, and exposure to radiation and/or chemotherapeutics results in the disruption of cellular integrity leading to the development of ulcerative lesions commonly referred to as oral mucositis. Oral mucositis is most prevalent in patient populations with head and neck malignancies being treated with radiation therapy. Oral mucositis usually occurs after the second week of radiation therapy, with severe symptoms usually resolving within six weeks following completion of therapy.. It has been reported that this condition also affects approximately forty percent of patients undergoing chemotherapy, bone marrow transplantation or combinations thereof. Chemotherapeutic agents likely to cause oral mucositis include bleomycin, dactinomycin, doxorubicin, etoposide, floxuridine, 5-fluorouracil, hydroxyurea, methotrexate, mitomycin, vinblastine, vincristine, and vinorelbine. The risk of developing mucositis is markedly exacerbated when chemotherapeutic agents that typically produce mucosal toxicity are given in high doses, in frequent repetitive schedules, or in combination with ionizing irradiation (e.g., conditioning regimens prior to bone marrow transplant). The lesions induced by chemotherapeutic agents are clinically significant by about a week after treatment and the severity progresses to about day ten through twelve and begins to subside by day fourteen.
  • Oral mucositis appears to be a four-phase process: the primary phase is inflammatory/vascular in nature resulting in a cytokine release from the epithelium brought on by damage caused by radiation and/or chemotherapy. The second phase, referred to as the epithelial phase, is signaled by atrophy and ulceration of the mucosal epithelium. The third phase is defined as the ulcerative/bacterial phase represented by ulcerative lesions that are prone to bacterial infection further compromising the patients' immune system. These painful lesions often limit a patient's ability to eat and drink and in some cases require hospitalization. The presence of these lesions can also interrupt scheduled chemotherapy and/or radiation treatments. The last phase, the healing phase, is characterized by a proliferation and differentiation of epithelium as well as bacterial control.
  • Routine oral hygiene is extremely important in reducing the incidence and severity of mucositis. Oral hygiene methods include rinsing/irrigation and mechanical plaque removal. Although not entirely supported by controlled clinical trials, allopurinol mouthwash and vitamin E have been cited as agents that may decrease the severity of mucositis. Prophylaxis against fungal infections is commonly employed in an effort to treat oral mucositis and includes use of topical antifingal agents such as nystatin-containing mouthwashes and clotrimazole troches. Although topical antifungal prophylaxis and treatment may clear superficial oropharyngeal infections, topical agents tend not to be well absorbed and have not been demonstrated to be effective against more deeply invasive fungal infections, which typically involve the esophagus and lower gastrointestinal tract. For this reason, systemic agents are indicated for treating all except superficial fungal infections in the oral cavity.
  • Many different compounds have been evaluated for use as a prophylaxis and treatment of oral mucositis. Current therapies include cryotherapy (ice chips) to reduce pain and inflammation, analgesics to manage pain, and antibiotic therapy to control the opportunistic infection. Analgesics such as lidocaine mouthwashes are effective for short periods of time but within hours the pain and discomfort usually returns.
  • Chlorhexidine is a broad spectrum antimicrobial with activity against gram-positive and gram-negative organisms, yeast, and other fungal organisms. It also has the desirable properties of sustained binding to oral surfaces and minimal gastrointestinal (GI) absorption, thereby limiting adverse systemic effects. Its use in the prophylaxis of oral infections shows promise in reducing inflammation and ulceration, as well as in reducing oral microorganisms in high-risk patient groups. Other agents, such as allopurinol, leucovorin, vitamins, and growth factors, have been tried for the prevention of chemotherapy-induced mucositis. Use of a capsaicin-containing candy has also been advocated to desensitize pain receptors in the mouth. Also, studies utilizing nonsteroidal agents and coating agents, such as sucralfate (Carafate), have had conflicting results. Finally, claims that chlorhexidine (Peridex) reduces mucositis in both irradiated patients and leukemia patients receiving bone marrow transplants have not been verified. To date, none of these approaches has shown a significant impact.
  • Occurrence of mucositis at mucosal sites other than in the oral cavity in association with chemotherapy or radiation therapy are mechanistically similar to the occurrence of oral mucositis. For example, patients undergoing radiation therapy treatment for non-small cell lung cancer frequently develop esophagitis as a side effect of treatment. Esophagitis in this patient population can impede the progress of cancer treatment.
  • Given that a large number of patients suffer mucositis annually and patients undergoing cancer therapy often receive multiple cycles of chemotherapy and/or radiation therapy, there is a significant need for improved treatment of mucositis. The present invention is directed to this need.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides a therapeutic composition for the treatment of mucositis. By treatment of mucositis, it is meant that the therapeutic composition is effective to prevent or reduce the incidence, severity and/or duration of the disease. The therapeutic composition comprises at least one pharmaceutical substance that, as formulated in the therapeutic composition, presents therapeutic effect in mammalian hosts, typically human hosts, for the treatment of mucositis, together with at least one biocompatible polymer that aids delivery of the pharmaceutical substance to the targeted mucosal site. One preferred embodiment of the therapeutic composition includes N-acetylcysteine as the pharmaceutical substance and a polyoxyalkylene block copolymer as the biocompatible polymer.
  • The therapeutic composition can be made with or without reverse-thermal viscosity behavior. For many applications, reverse-thermal viscosity behavior is beneficial to permit administration in a lower viscosity fluid form that tends to convert to a higher viscosity form following administration as the temperature of the therapeutic composition increases in the body. This also facilitates administration at a refrigerated temperature, which is soothing and refreshing to the host in a number of situations, such as for the treatment of mucosal surfaces in the oral cavity or esophagus. The biocompatible polymer will often be a reverse-thermal gelation polymer capable of imparting the desired reverse-thermal viscosity behavior to the therapeutic composition. Also, the therapeutic composition can be made in a variety of product forms, with different product forms being more desirable for targeting treatment to different mucosal sites. Also, in some applications it is desirable that the reverse-thermal viscosity behavior can include reverse-thermal gelation, in which case the therapeutic composition converts to a gel form as the temperature of the composition is increased from below to above a reverse-thermal gel transition temperature. When the therapeutic composition has reverse-thermal gelation properties, the therapeutic composition will preferably have a reverse-thermal gel transition temperature that is no higher than, and even more preferably lower than, the physiological temperature of the host. Depending upon the specific application, the therapeutic composition could be administered to the host at a cold temperature at which the therapeutic composition is in the form of a flowable medium, or at a temperature at which the therapeutic composition is in the form of a gel. When administered in the form of a gel, the therapeutic composition will often have a thick, pudding-like texture. Inside the body, the gel tends to break down as biological fluids dilute the therapeutic composition. But even with breakdown of the gel, significant amounts of the biocompatible polymer and pharmaceutical substance tend to adhere to mucosal surfaces to promote effective delivery of the pharmaceutical substance to treat the targeted mucosal site.
  • When treating for oral mucositis, the therapeutic composition is preferably administered in the form of a flowable medium with sufficient fluidity for use as a mouthwash that can be swished in the oral cavity to promote adhesion of the biocompatible polymer, and therefore also the pharmaceutical substance, to mucosal surfaces in the oral cavity. The therapeutic composition will typically include a carrier liquid (also referred to herein as a liquid vehicle), such as water, and the pharmaceutical substance and the biocompatible polymer are each dissolved or suspended in the carrier liquid when the therapeutic composition is in the flowable medium form for introduction into the oral cavity.
  • When treating for esophagitis, the composition will preferably have a very high viscosity as it is swallowed to promote a long residence time in the esophagus and effective coating of mucosal surfaces in the esophagus. In one embodiment, the therapeutic composition is in a thick, pudding-like form, typically a gel form, that can spooned into the mouth and swallowed. In another preferred embodiment, the therapeutic composition is introduced into the oral cavity as a flowable medium that undergoes a viscosity increase as it warms and is swallowed. For esophageal applications, when the therapeutic composition is administered as a cold flowable medium, the therapeutic composition preferably has reverse-thermal gelation properties.
  • For targeting mucosal surfaces in the stomach, the therapeutic composition will preferably be in a form so that it can be readily swallowed to coat the mucosal surfaces in the stomach. Preferred embodiments include those noted for treatment of esophagitis.
  • For application to nasal mucosal surfaces, it is preferred that the therapeutic composition be sufficiently fluid so as to be nebulizable or otherwise sprayable to generate a nasal spray of the therapeutic composition that can be introduced into the nasal cavity. Preferably, the therapeutic composition is at a refrigerated temperature when sprayed and exhibits reverse-thermal viscosity behavior, so that it undergoes an increase in viscosity as it warms in the nasal cavity, thereby promoting adhesion to mucosal surfaces. For nasal applications, it is preferred that the therapeutic composition have reverse-thermal gelation properties.
  • For application to ocular mucosal surfaces, it is preferred that the therapeutic composition be sufficiently fluid to be administratable in the form of eye-drops, but the therapeutic composition should preferably not gel following administration of the eye drops.
  • For application to rectal or vaginal mucosal surfaces, the therapeutic composition is preferably in the form of a viscous gel when at physiological temperature. The therapeutic composition can be formulated to exhibit reverse-thermal viscosity behavior so that it is administrable in a refrigerated form at a lower viscosity and converts to a higher viscosity form, preferably a gel form, as the therapeutic composition warms following administration.
  • For application to pulmonary mucosal surfaces, the therapeutic composition should be sufficiently fluid immediately prior to administration to permit the therapeutic composition to be aerosolized, such as by a nebulizer, for administration by inhalation of the therapeutic composition in aerosol form.
  • For enhanced performance of the therapeutic composition, it is important that one or more of the components of the therapeutic composition are sufficiently bioadhesive to promote ready adhesion to mucosal surfaces, thereby promoting retention of the pharmaceutical substance adjacent the mucosal surface for effective delivery to the targeted mucosal site. In one preferred embodiment, the biocompatible polymer is bioadhesive, so that when the therapeutic composition is contacted with a mucosal surface, at least a portion of the biocompatible polymer readily adheres to the surface. Preferably, the biocompatible polymer and the pharmaceutical substance are closely associated with each other in the therapeutic composition such that when the biocompatible polymer adheres to a surface inside the oral cavity, the pharmaceutical substance also adheres to the surface along with the biocompatible polymer. This will often be the case when the carrier liquid is water and the biocompatible polymer has surfactant properties. In a preferred embodiment the surfactant properties of the biocompatible polymer enhance solubility of the pharmaceutical substance in the carrier liquid. In one embodiment, the therapeutic composition includes, in addition to the biocompatible polymer, a separate bioadhesive agent that enhances the bioadhesive properties of the therapeutic composition. The bioadhesive agent is frequently a second polymer having even greater bioadhesive properties.
  • In a further enhancement, the therapeutic composition may include a penetration enhancer, which aids rapid transport of the pharmaceutical substance across the mucosal epithelium. The therapeutic composition can also include other components that are compatible with the pharmaceutical substance and the biocompatible polymer.
  • In another aspect, the invention involves a therapeutic composition useful for treatment of mucositis at a mucosal site, with the composition comprising a sulfur-containing antioxidant. Such sulfur-containing anti-oxidants include those in which the sulfur is preferably present in a thiol, thioether, thioester, thiourea, thiocarbamate, disulfide, or sulfonium group. A particularly preferred sulfur-containing antioxidant is N-acetylcysteine.
  • In another aspect, the present invention involves use of the therapeutic composition, in any form and with any formulation, for treatment of mucositis.
  • In another aspect, a method is provided for delivering to a mucosal site a pharmaceutical substance for treatment of mucositis at a mucosal site, involving introduction into a host of a therapeutic composition of the invention. In one embodiment, the method involves introducing a therapeutic composition into the host, with the therapeutic composition comprising the pharmaceutical substance and a biocompatible polymer. After the therapeutic composition is introduced into the host, at least a portion of the biocompatible polymer and the pharmaceutical substance adhere to a mucosal surface at the mucosal site.
  • Both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide explanation of the invention as claimed. Other objects, advantages and novel features will be readily apparent to those skilled in the art from the following detailed description of the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a plot of the clinical mucositis scores in the hamster buccal pouch following acute radiation and application of antioxidant-containing formulations. The various formulations (described in Table 1) were applied topically to the buccal pouch of Golden Syrian hamsters for 30 days. One day after beginning the application the buccal pouch was irradiated with one acute dose of radiation. The pouch was examined for mucositis by visually inspecting the pouch and scored for clinical mucositis.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, “NAC” means N-acetylcysteine.
  • As used herein, “biocompatible” means not having toxic or injurious effects on biological function in humans.
  • As used herein, “bioadhesive” means having the ability to adhere to a biological surface such as mucous membranes or other tissues for an extended period of time.
  • As used herein, “transition temperature” or “gel transition temperature” refers to a temperature at which a material, such as the biocompatible polymer or the therapeutic composition as the case may be, changes physical form from a liquid to a gel, or vice versa.
  • As used herein, “reverse-thermal gel transition temperature” refers to a temperature at which a material, such as the biocompatible polymer or the therapeutic composition as the case may be, changes physical form from a liquid to a gel as the temperature is increased from below to above the temperature, and changes physical form from a gel to a liquid as the temperature is decreased from above to below the temperature.
  • As used herein, “thermal gelation property” refers to a property of a material, such as the biocompatible polymer or the therapeutic composition, as the case may be, to change physical form from a liquid to a gel, or vice versa, due to a change in temperature.
  • As used herein, “reverse-thermal gelation property” refers to a property of a material, such as the biocompatible polymer or the therapeutic composition, as the case may be, to change physical form from a liquid to a gel with increasing temperature.
  • In one aspect, the present invention provides a therapeutic composition for delivery of mucositis therapeutics to humans, especially for use when bioadhesion and permeability of the oral mucositis therapeutic(s) are desired. The composition comprises at least one, and optionally more than one, mucositis therapeutic and a biocompatible polymer. Each mucositis therapeutic is a pharmaceutical substance that provides a therapeutic effect for at least one of prevention of mucositis and treatment of mucositis, either alone or in combination with other materials. In that regard, the therapeutic effect may be due to the direct action of the pharmaceutical substance of the composition, or may be due to one or more other materials activated by the pharmaceutical substance or for which the pharmaceutical substance is a precursor.
  • Nonlimiting examples of mucositis therapeutics useful in the present invention include antioxidants, antibacterials, antiinflammatories, anesthetics, analgesics, proteins, peptides, and cytokines, with antioxidants being particularly preferred. Optionally, the composition can also comprise a permeability enhancer and/or an active agent in addition to the oral mucositis agent(s). The composition can also include other components to the extent that the presence of the other components is not inconsistent with performance objectives of the composition.
  • The amount of mucositis therapeutic in the therapeutic composition of the present invention varies depending on the nature and potency of the therapeutic. In most situations, however, the amount of oral mucositis therapeutic in the composition will be less than about 20% w/w relative to the total weight of the therapeutic composition.
  • The therapeutic composition of the present invention provides a delivery system for bioadhesion, permeation, or prolonged and sustained action, of the oral mucositis therapeutic, thereby improving the efficacy of the oral mucositis therapeutic upon topical application to mucosal surfaces, a route that may otherwise be an ineffective means of therapy. Furthermore, the delivery system may reduce the frequency and duration of administration of the mucositis therapeutic as part of a treatment.
  • Not to be bound by theory but to aid in the understanding of the invention, it is believed that the therapeutic composition of the present invention improves bioadhesion onto and permeation into the mucosa, thus allowing this therapeutic agent to exert its actions more efficaciously at the target mucosal site. In addition, it is believed that the therapeutic composition may reduce or eliminate degradation of the therapeutic agent, again increasing the effectiveness of the therapeutic agent. Stabilizing agents can be incorporated into the composition of the present invention thereby further minimizing the degradation of the mucositis therapeutic, which directly impacts the effectiveness of the agent for treating mucositis and the ability to store or transport the composition.
  • The therapeutic composition can be in any convenient physical form, but is often preferably in the form of a flowable fluid medium at the time of administration. For example, when treating for oral mucositis, the therapeutic composition is preferably sufficiently fluid in character that it can be accepted in the oral cavity and swished in the manner of a mouthwash. In this situation, the therapeutic composition will typically include as its largest constituent a carrier liquid to impart the flowable fluid properties to the therapeutic composition. In most instances the carrier liquid will be water. The biocompatible polymer and mucositis therapeutic are each dissolved in the carrier liquid or suspended in the carrier liquid as a disperse phase. For example, the therapeutic composition can comprise an aqueous solution of the biocompatible polymer, with the mucositis therapeutic also dissolved in the solution and/or suspended as a precipitate in the solution. Preferably, both of the biocompatible polymer and the mucositis therapeutic are dissolved in the carrier liquid, at least at a temperature at which the therapeutic composition is to be administered to patients. Having the biocompatible polymer and the mucositis therapeutic codissolved in the carrier liquid ensures intimate mixing of the two materials, which promotes adhesion of the mucositis therapeutic to surfaces of the oral cavity along with the biocompatible polymer, thereby effectively using the therapeutic.
  • Proper selection of the biocompatible polymer is important to enhanced performance of therapeutic composition. In one important embodiment, the biocompatible polymer is selected so that when the biocompatible polymer is incorporated into the therapeutic composition, the rheology of the therapeutic composition is such that the viscosity of the therapeutic composition increases with increasing temperature in the vicinity of physiological temperature, which is typically about 37° C. In this way, the therapeutic composition can be administered as a lower viscosity flowable fluid medium at a cool temperature, and the viscosity of the therapeutic composition will increase as the therapeutic composition is warmed to physiological temperature. In one preferred embodiment for many applications when it is desirable for the therapeutic composition to exhibit reverse-thermal viscosity behavior, the therapeutic composition exhibits reverse-thermal viscosity behavior over at least some range of temperatures between 1° C. and the physiological temperature of the host (e.g., 37° C. for a human host), and preferably over some range of temperatures between 1° C. and 20° C. The therapeutic composition can then be administered to the host in a lower viscosity form at a reduced temperature, typically lower than 20° C. and more typically from 1° C. to 20° C. Often a refrigerated temperature of from 1° C. to 10° C. and more often a refrigerated temperature of from 2° C. to 8° C. will be used. For example, the therapeutic composition may be introduced into the oral cavity at a temperature of from about 1° C. to about 20° C., and more preferably a temperature of from about 1° C. to about 10° C.
  • Nonlimiting examples of biocompatible polymers that can be used to make therapeutic composition of the present invention include polyethers (preferably polyoxyalkylene block copolymers, with more preferred polyoxyalkylene block copolymers including polyoxyethylene-polyoxypropylene block copolymers, referred to herein as POE-POP block copolymers, such as Pluronic® F68, Pluronic® F127, Pluronic® L121, and Pluronic® L101, and Tetronic® T1501); cellulosic polymers (including hydroxypropylmethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, methyl cellulose and ethylhydroxyethyl cellulose); gelatin; polyethylene glycol; polyacrylic acid (such as Carbopol® gel); polyoxyl-35-castor oil (Cremophor® EL); and glycerol (glycerin). Pluronic®, Tetronic® and Cremophor® are trademarks of BASF Corporation. Carbopol® is a trademark of B. F. Goodrich. Furthermore, more than one of these exemplary biocompatible polymers may be included in the composition to provide the desired characteristics and other biocompatible polymers or other additives may also be included in the composition to the extent the inclusion is not inconsistent with performance requirements of the composition.
  • Particularly preferred biocompatible polymers, when the composition is to be administered with the biocompatible polymer in solution form dissolved in a solvent, include cellulosic polymers, glycerin, polyethylene glycol and polyoxyalkylene block copolymers.
  • Reverse-thermal gelation polymers are especially useful for imparting desirable rheological properties to the therapeutic composition. These biocompatible reverse-thermal gelation polymers can be incorporated into the therapeutic composition at concentrations so that the therapeutic composition has reverse-thermal gelation properties, or can be incorporated into the therapeutic composition at a concentration that does not impart reverse-thermal gelation properties to the therapeutic composition, but otherwise provides desired viscosity behavior for a particular application.
  • As used herein, the terms “reverse-thermal viscosity property” and “reverse-thermal viscosity behavior” each refer to a property of a component or components, and in particular a biocompatible polymer/water combination, to undergo a viscosity increase with increasing temperature across at least some temperature range. A reverse-thermal gelation property is a one type of reverse-thermal viscosity behavior in which a component or components, and in particular a biocompatible polymer/water combination in the therapeutic composition, change from a liquid form to a gel form as the temperature is raised from below to above a reverse-thermal gel transition temperature. “Reverse-thermal gelation polymer” refers to a polymer capable of interacting with a liquid vehicle, and particularly water, so that the polymer/liquid vehicle combination exhibits a reverse-thermal gelation property when the polymer and liquid vehicle are combined in at least some proportion. It should be appreciated that, if desired, a reverse-thermal gelation polymer and water can be incorporated into the therapeutic composition in such proportions that the therapeutic composition does not have a reverse-thermal gelation property, or does not even exhibit any reverse-thermal viscosity behavior. For most situations, however, the presence of reverse-thermal viscosity behavior is preferred.
  • With reverse-thermal viscosity behavior (which may or may not involve reverse-thermal gelation), the therapeutic composition can be administered to a patient at a cool temperature, as noted above, which provides a beneficial ‘cold’ feeling upon tissue, such as in the oral cavity or esophagus, of the host following administration. Also the therapeutic composition tends to become more viscous, and possibly even gelatinous depending upon the concentration of biocompatible polymer used, as the therapeutic composition warms to physiological temperature, depending upon the rapidity with which the therapeutic composition is diluted by biological fluids. Such reverse-thermal viscosity behavior does tend to promote greater bioadhesion of the biocompatible polymer and the pharmaceutical substance onto mucosal surfaces, leading to longer contact time of the pharmaceutical substance at the targeted mucosal site.
  • Furthermore, the biocompatible polymer and other components of the therapeutic composition may aid in the permeation of a mucosal therapeutic into the mucosa. For example, permeation into the oral mucosa or across oral mucosal cell membranes may aid in placing the therapeutic agent at additional target sites as well as provide for sustained action of the therapeutic agent within the oral mucosa.
  • Non-limiting examples of some biocompatible reverse-thermal gelation polymers include certain polyethers (preferably polyoxyalkylene block copolymers with more preferred polyoxyalkylene block copolymers including polyoxyethylene-polyoxypropylene block copolymers referred to herein as POE-POP block copolymers, such as Pluronic™ F68, Pluronic™ F127, Pluronic™ L121, and Pluronic™ L101, and Tetronic™ T1501); certain cellulosic polymers, such as ethylhydroxyethyl cellulose; and certain poly (ether-ester) block copolymers (such as those disclosed in U.S. Pat. No. 5,702,717, the entire contents of which are incorporated by reference herein as if set forth herein in full). Pluronic™ and Tetronic™ are trademarks of BASF Corporation. Furthermore, more than one of these and/or other biocompatible polymers may be included in the therapeutic composition. Also, other polymers and/or other additives may also be included in the therapeutic composition to the extent the inclusion is not inconsistent with the desired characteristics of the therapeutic composition. Furthermore, these polymers may be mixed with other polymers or other additives, such as sugars, to vary the transition temperature, typically in aqueous solutions, at which reverse-thermal gelation occurs.
  • As will be appreciated, any number of biocompatible polymers may now or hereafter exist that are capable of being used in the therapeutic composition, and such polymers are specifically intended to be within the scope of the present invention when incorporated into the therapeutic composition.
  • Polyoxyalkylene block copolymers are particularly preferred as biocompatible polymers for use in the therapeutic composition. A polyoxyalkylene block copolymer is a polymer including at least one block (i.e. polymer segment) of a first polyoxyalkylene and at least one block of a second polyoxyalkylene, although other blocks may be present as well. POE-POP block copolymers are one class of preferred polyoxyalkylene block copolymers for use as the biocompatible reverse-thermal gelation polymer in the formulated biocompatible polymer. POE-POP block copolymers include at least one block of a polyoxyethylene and at least one block of a polyoxypropylene, although other blocks may be present as well. The polyoxyethylene block may generally be represented by the formula (C2H4O)b when b is an integer. The polyoxypropylene block may generally be represented by the formula (C3H6O)a when a is an integer. The polyoxypropylene block could be for example (CH2CH2CH2O)a, or could be
    Figure US20070014860A1-20070118-C00001
  • Several POE-POP block copolymers are known to exhibit reverse-thermal gelation properties, and these polymers are particularly preferred for imparting reverse-thermal viscosity and/or reverse-thermal gelation properties to the therapeutic composition. Examples of POE-POP block copolymers include Pluronic™ F68, Pluronic™ F127, Pluronic™ L121, Pluronic™ L101, and Tetronic™ T1501. Tetronicm T1501 is one example of a POE-POP block copolymer having at least one polymer segment in addition to the polyoxyethylene and polyoxypropylene segments. Tetronic™ T1501 is reported by BASF Corporation to be a block copolymer including polymer segments, or blocks, of ethylene oxide, propylene oxide and ethylene diamine.
  • Some preferred POE-POP block copolymers have the formula:
    HO(C2H4O)b(C3H6O)a(C2H4O)bH   I
    which, in the preferred embodiment, has the property of being liquid at ambient or lower temperatures and existing as a semi-solid gel at mammalian body temperatures wherein a and b are integers in the range of 15 to 80 and 50 to 150, respectively. A particularly preferred POE-POP block copolymer for use with the present invention has the following formula:
    HO(CH2CH2O)b(CH2(CH3)CHO)a(CH2CH2O)bH   II
    wherein a and b are integers such that the hydrophobe base represented by (CH2(CH3)CHO)a has a molecular weight of about 4,000, as determined by hydroxyl number; the polyoxyethylene chain constituting about 70 percent of the total number of monomeric units in the molecule and where the copolymer has an average molecular weight of about 12,600. Pluronic™ F-127, also known as Poloxamer 407, is such a material. In addition, a structurally similar Pluronic™ F-68 may also be used.
  • The procedures used to prepare aqueous solutions which form gels or viscous solutions of polyoxyalkylene block copolymer are well known and are disclosed in U.S. Pat. No. 5,861,174, which is incorporated herein by reference in its entirety. When the therapeutic composition exhibits reverse-thermal gelation properties, the amount of biocompatible polymer and the amount of oral mucositis therapeutic agent are typically selected such that the resulting composition has a reverse-thermal gel transition temperature that is not higher than the physiological temperature of the host (e.g., 37° C. for human hosts). In most situations, the reverse-thermal gel transition temperature will be in a range having a lower limit of about 1°, more typically about 10° C., sometimes about 20° C. and sometimes even 25° C., and having an upper limit typically of about 40 ° C., more typically about 37 ° C. and even more typically about 25° C. Particularly preferred when the therapeutic composition has reverse-thermal gelation properties is for the reverse-thermal gel transition temperature to be in a range of from about 10° C. to about 25° C. In this situation, the reverse-thermal polymer/liquid vehicle combination will be in a liquid form when stored at normal refrigeration storage temperatures of 2° C. to 8° C.
  • As noted previously, in a preferred embodiment, at least the biocompatible polymer is dissolved in the carrier liquid in the therapeutic composition when the therapeutic composition is in a flowable medium form. With many of the biocompatible polymers useful with the present invention, however, at least some of the polymer will often come out of solution as the therapeutic composition is warmed in the after introduction into the host. This is often, but not always, the case, for example, when the therapeutic composition exhibits a reverse-thermal gel transition temperature at physiological temperature or lower. In some instances, the therapeutic composition is diluted by saliva in the oral cavity, or other by other biological fluids at other mucosal sites, at such a fast rate and to such an extent so as to entirely prevent gelling from occurring. However, even when gelling does not occur, some of the biocompatible polymer and mucosal therapeutic polymer will adhere to mucosal surfaces. When the therapeutic composition has the property of increasing viscosity with increasing temperature, as discussed above, the increasing viscosity may be accompanied, to some degree, by reduced solubility of the biocompatible polymer in the carrier liquid, which further promotes good adhesion to mucosal surfaces. In most situations, the biocompatible polymer will be substantially entirely dissolved in the carrier liquid when the temperature of the composition is at a temperature of about 5° C. There are, however, some situations where it may be desirable to have the therapeutic composition be in a gel form even at such low temperatures.
  • The concentration of the biocompatible polymer in the composition will vary depending upon the specific biocompatible polymer and the specific situation. In most situations, however, the biocompatible polymer will comprise from about 1% by weight to about 70% by weight, and more typically from about 5% by weight to about 20% by weight of the therapeutic composition. For example, particularly preferred for use of Pluronic® F-127 in many applications is a range of from about 10% by weight to about 20% by weight of the therapeutic composition.
  • The therapeutic composition of the present invention can also comprise other additives, including polymer or therapeutic agent stabilizers including sucrose, salts, and pH adjusting agents; preservatives including antioxidants such as butylated hydroxytoluene, antiftngals, and antibacterials; and taste masking components. Inclusion of taste masking components is particularly desirable when administration is in the oral cavity, such as for treatment of oral mucositis or esophagitis. Nonlimiting examples of taste masking components include fruit flavorings (and particularly citrus flavorings), mint flavorings, salt, or sugars. In one preferred embodiment, the taste masking component imparts a citrus flavor, and preferably lemon flavor to the composition, such as when the taste masking component comprises lemon juice or a lemon extract.
  • The therapeutic composition of the present invention can also include a penetration enhancer. As used herein, a penetration enhancer is any material that, when added to a formulation including an active agent (such as the mucositis therapeutic in the therapeutic composition) enables permeation of the active agent across biological tissues and cells, such as epithelium, thereby increasing the amount of therapeutic at the target site. While the penetration enhancer may also act as a mucositis therapeutic or bioadhesive, the primary purpose of adding the penetration enhancer is to increase the amount or the rate of permeation of the mucositis therapeutic into the mucosa. Exemplary penetration enhancers include various molecular weight chitosans and chitosan derivatives, such as N,O-carboxymethyl chitosan; fatty acids, such as lauric acid, lipoic acid, and those extracted from cod-liver oil, including palmitic and oleic acids; bile salts such as deoxycholate, glycolate, cholate, taurocholate, taurodeoxycholate, and glycodeoxycholate; polyoxyethylenesorbitan such as Tween® 20 and Tween® 80; sodium lauryl sulfate; polyoxyethylene-9-lauryl ether (Laureth®-9); EDTA; citric acid; salicylates; caprylic/capric glycerides; sodium caprylate; sodium caprate; sodium laurate; sodium glycyrrhetinate; dipotassium glycyrrhizinate; glycyrrhetinic acid hydrogen succinate, disodium salt (carbenoxolone®); acylcarnitines such as palmitoylcarnitine; cyclodextrin; and phospholipids, such as lysophosphatidylcholine. Preferably, the penetration enhancer is selected from the group consisting of chitosans, fatty acids, EDTA, and bile salts. More preferably, the penetration enhancer is selected from the group consisting of chitosans and fatty acids.
  • When present, the amount of penetration enhancer in the therapeutic composition of the present invention generally varies depending on the particular penetration enhancer used. Typically, however, the amount of penetration enhancer, when used, will be present in the therapeutic composition in an amount from about 0.001% by weight to about 10% by weight of the therapeutic composition, preferably from about 0.01% by weight to about 5% by weight, and more preferably from about 0.01% by weight to about 1.0% by weight. In one particular aspect of the present invention where chitosan is used as the penetration enhancer, the amount of chitosan present in the composition is from about 0.01% by weight to about 10% by weight, preferably from about 0.1% by weight to about 1% by weight, and more preferably from about 0.1% by weight to about 0.5% by weight.
  • The therapeutic composition of the present invention can also include a bioadhesive agent that is different than and in addition to the biocompatible polymer, to further aid in depositing and holding the mucosal therapeutic in the vicinity of the desired mucosal tissue for delivery. While the bioadhesive agent may also act as an mucositis therapeutic or penetration enhancer, the primary purpose of adding the bioadhesive agent is to increase the duration of contact between the composition and the mucosal tissue. Nonlimiting examples of bioadhesive materials include Pluronic® F127, Pluronic® F68, chitosans, salivary or intestinal mucin glycoproteins, trefoil peptides, hydroxypropylmethyl cellulose, and polycarbophils. Improved bioadhesion of the composition onto the mucosa lengthens the contact time of the therapeutic at its target site. It is believed that increased contact time enables the mucositis therapeutic to be more effective in preventing or reducing the severity or duration of mucositis by having a longer time of action or a longer time with which to permeate the mucosa. When such a separate bioadhesive polymer is included in the therapeutic composition, the therapeutic composition will include at least two polymers, with a first polymer being the biocompatible polymer as discussed above and the second polymer being a bioadhesive agent that is more bioadhesive than the first polymer.
  • When a bioadhesive agent is used, the amount of bioadhesive agent in the therapeutic composition will vary depending on the nature and potency of the bioadhesive agent. Typically, however, when included in the therapeutic composition, the amount of the bioadhesive agent is from about 0.01% by weight of the composition to about 70% by weight of the composition, more typically from about 0.1% by weight to about 50% by weight, and most typically from about 0.1% by weight to about 25% by weight.
  • Nonlimiting examples of mucositis therapeutics that may be used to make the therapeutic composition of the present invention include antioxidants, antibacterials, antiinflammatories, anesthetics, analgesics, proteins, peptides and cytokines, including those currently available or later developed. Preferably the mucositis therapeutic is selected from the group consisting of antioxidants. More preferably the antioxidant is selected from the group consisting of sulfur-containing antioxidants or vitamin antioxidants, with sulfur-containing antioxidants generally being more preferred. Even more preferably, the sulfur-containing antioxidant includes sulfur in at least one constituent group selected from thiol, thioether, thioester, thiourea, thiocarbamate, disulfide and sulfonium, with thiol-containing antioxidants (also referred to as sulfhydryl-containing antioxidants) being particularly preferred. Some examples of preferred thiol-containing antioxidants include N-acetylcysteine (NAC) and glutathione. Other examples of preferred sulfur-containing antioxidants include S-carboxymethylcysteine and methylmethionine sulfonium chloride.
  • In an especially preferred embodiment, the sulfur-containing antioxidants are precursors for biosynthesis of glutathione in the host, such as by providing cysteine or a precursor for cysteine for glutathione synthesis. In this way, the mucosal therapeutic promotes the production of glutathione. Examples of antioxidants that are precursors for glutathione biosynthesis include NAC, procysteine, lipoic acid, s-allyl cysteine, and methylmethionine sulfonium chloride. In one preferred embodiment the mucositis therapeutic is NAC.
  • Examples of vitamin antioxidants include vitamin E, vitamin E mimetics, vitamin E analogs, vitamin C, and vitamin A. Particularly preferred in the vitamin class of antioxidants are water soluble vitamin forms of vitamin E, including Trolox and vitamin E TGPS (d-α-tocopherol polyethylene glycol 1000 succinate).
  • The action and selection of the antioxidant are not limited by the above description as many antioxidants may have a multitude of actions and thus fall under several classes of antioxidants or several classes of therapeutic agents. For example, NAC may directly scavenge free radicals extracellularly and provide cysteine intracellularly as a precursor for intracellular scavenging of free radicals via glutathione biosynthesis and regulation of glutathione-dependent antioxidative enzymes. Another example includes curcumin, which, in addition to its antioxidative action, possesses anti-inflammatory and antiproliferative actions that are beneficial in preventing or alleviating the clinical course of oral mucositis. In addition to therapeutic action, the antioxidant selected may exert other beneficial effects as a component of the therapeutic composition including bioadhesion as in the case of lipid soluble forms of vitamin E and penetration enhancement as in the case of lipoic acid, curcumin, and vitamin E TGPS.
  • The amount of mucosal therapeutic included in the therapeutic composition of the present invention varies depending on the nature and potency of the particular therapeutic. Typically, however, the amount of mucosal therapeutic present in the therapeutic composition is in a range having a lower limit typically of about 0.001%, more typically about 0.01%, and even more typically about 0.1% by weight of the therapeutic composition, and having an upper limit of typically about 50%, more typically about 25%, and even more typically about 10% by weight of the therapeutic composition.
  • The therapeutic composition of the present invention may be administered to a host (patient) to achieve any desired effect in the clinical outcome of the targeted mucositis. Preferably the host is a mammal, and more preferably a human. The therapeutic composition can be administered in a variety of forms adapted to the chosen route of administration.
  • When treating for oral mucositis, the therapeutic composition is contacted with the oral mucosa in the oral cavity. Administration in this situation can include, for example, use of a mouthwash, spray, lollipop or other product form of the formulation. Preferably, the mode of administering the therapeutic composition for treating oral mucositis is a mouthwash which, after being swished in the mouth, may then be spit out or, more preferably, swallowed in order to coat both mucosal surfaces in the mouth and in the esophagus, as well as provide systemic effects upon gastrointestinal absorption.
  • The therapeutic composition is typically prepared in water or a saline solution. Under ordinary conditions of storage and use, these preparations can also contain a preservative to prevent the growth of microorganisms. For oral mucositis applications, the therapeutic composition typically is a fluid, i.e., in a liquid form, to the extent that it is palatable and thus, easily tolerated, by the often nauseous cancer patient. The therapeutic composition can be stable under the conditions of manufacture and storage and preferably preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier liquid can be a solvent of dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by maintaining the temperature of the therapeutic composition having reverse-thermal gelation properties below the transition temperature. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, benzoic acid, alcohol, benzalkonium chloride and the like. In many cases, it will be preferable to include isotonic agents, e.g., sugars, phosphate buffers, sodium benzoate, sodium chloride, or mixtures thereof.
  • In many situations, it will be desirable for the therapeutic composition to be in the form of a flowable medium when introduced into the host for treatment of a mucosal site. This will often be the case for example for oral mucositis applications in which the therapeutic composition is to be administered as a refrigerated mouthwash. In one preferred embodiment, the therapeutic composition has a relatively low viscosity when the therapeutic composition is at a temperature for introduction into the host for treatment. In this embodiment, the viscosity of the therapeutic composition when introduced into the host is no larger than 60 cP (centipoises), and more preferably no larger than 50 cP. Because the therapeutic composition is typically administered at a reduced temperature, in this embodiment, the therapeutic composition will preferably have a viscosity at 2° C. of no larger than 60 cP and more preferably no larger than 50 cP. When the therapeutic composition exhibits reverse-thermal viscosity behavior, the viscosity of the therapeutic composition will preferably exhibit an increase in viscosity from a viscosity of no larger than 60 cP (and more preferably no larger than 50 cP) to a viscosity of at least 70 cP, or even 80 cp or more (and more preferably even larger) as the temperature of the therapeutic composition is increased over at least some range of temperatures between 1° C. and the physiological temperature of the host (e.g., 37° C. for a human host). When the therapeutic composition has reverse-thermal gelation properties, the viscosity will often increase to a level of 90 cp, or even 100 cP or more with an increase in temperature from below to above the reverse-thermal gel transition temperature.
  • In some situations when treating for oral mucositis, it will be desirable to specifically target sublingual mucosal surfaces. In this situation, the therapeutic composition can be sublingually placed, such as in the form of a tablet, patch or film. In one preferred sublingual application, the therapeutic composition is already in the form of a gel when sublingually placed, and the gel then dissipates as it is diluted with biological fluids. In this situation, the administered gel can have a thick, pudding-like texture and can be spooned or squeezed from a tube into the sublingual location. In this situation, when administered, the therapeutic composition will typically have a viscosity of at least 70 cP, and more typically a viscosity of at least 80 cP, at least 90 cP or even at least 100 cP.
  • For oral mucositis applications when the therapeutic composition has reverse-thermal gelation properties, the therapeutic composition can be used as a mouthwash at a temperature below the reverse-thermal gel transition temperature, whereupon the therapeutic composition will ordinarily become more viscous or even gelatinous as it warms inside the mouth. Not all aspects of the invention when treating for oral mucositis are so limited, however. For example, in some instances the therapeutic composition may not become more viscous or gelatinous inside the mouth of the host, but the biocompatible polymer will still provide some protection to the oral mucositis therapeutic and enable contact and permeation of the mucositis therapeutic within the oral mucosa.
  • Solutes can be incorporated into the therapeutic composition of the present invention to stabilize the mucositis therapeutic. Stabilizing solutes such as those that modify the pH of the therapeutic composition or a second antioxidant, may aid in protecting and stabilizing the therapeutic by keeping it in a reduced, thus active, form. Furthermore, pH modification, inclusion of an antioxidant (in addition to the mucositis therapeutic), or inclusion of a solute such as sucrose may not only aid in protecting and stabilizing the therapeutic, but also allow the biocompatible polymer to form solutions at suitable viscosities at lower concentrations than needed in water or buffer alone and/or to change the transition temperature at which thermal gelation occurs. Thus, the working range of biocompatible polymer concentration can be widened and the transition temperature modified.
  • It is known that in some cases a gel will not form when the concentration of polyoxyethelene-polyoxypropylene block copolymer in water or dilute buffer is outside a particular range, e.g., equal to or less than 15% by weight in water for Pluronic™ F127. However, by introducing therapeutic-stabilizing solutes, or other components, into the therapeutic composition of the present invention, the transition temperature may be manipulated, while also lowering the concentration of polyoxyethelene-polyoxypropylene block copolymer that is necessary to form a gel. Also, the presence of the mucosal therapeutic, a penetration enhancer and other additives, tend to alter the viscosity behavior of the therapeutic composition, often by lowering the concentration of the reverse-thermal gelation polymer required to impart reverse-thermal gelation properties to the therapeutic composition.
  • Much of the foregoing description has been primarily directed to the treatment of oral mucositis. It should be recognized, however, that the same principles discussed above are also generally applicable to treatment of mucosal disorders occurring in other regions of the body, with the product form of the therapeutic composition being modified for administration to the other targeted mucosal site. For example, the therapeutic composition of the present invention is applicable for the prevention and/or treatment of mucosal disorders of the esophagus, vagina, bladder and the entire gastrointestinal tract (for example including stomach, small intestine, large intestine and rectum). These mucosal disorders include but are not limited to sinusitis, asthma, inflammatory bowel disease, colitis, cystitis, GERD, proctitis, stomatitis, celiac disease and Crohn's disease. Mucosal disorders at these other locations are mechanistically similar to oral mucositis, and particularly when the disorder is the result of chemotherapy or radiation therapy. For example, patients undergoing radiation therapy treatment for non-small cell lung cancer frequently develop esophagitis as a side effect of treatment. Esophagitis in this patient population can impede the progress of cancer treatment. The pharmaceutical substances described above are also applicable for treatment of mucositis disorders in other regions of the body. The method of delivery to the affected region may be by any convenient technique as suitably adapted for the particular region of the body at issue.
  • Depending on the area of delivery the pharmaceutical substance of the present invention can be formulated in different product forms. Some examples of possible product forms for administration of the therapeutic composition include an oral solution, bladder irrigation solution, gel, slurry, mouthwash, lozenge, tablet, film, patch, lollipop, spray, drops or suppository. For example, a gel formulated into a suppository would be one preferred product form for administration to treat mucosal surfaces of either the rectum or the vagina. A tablet, patch or film could be formulated to administer the therapeutic composition sublingually. A slurry or oral solution could be used for treatment of mucosal surfaces in the oral cavity, esophagus and/or gastrointestinal tract. A bladder irrigation solution would be administered to the bladder by catheter. A spray would be advantageous in delivering the present invention to either the nasal cavity or the lungs, while a droplet formulation would be advantageous for delivery to the eye or inner ear.
  • When treating for esophagitis, the therapeutic composition could be introduced into the oral cavity in the form of a flowable medium, such as discussed above with respect to treatment for oral mucositis, with the therapeutic composition being swallowed to coat at least a portion of mucosal surfaces in the esophagus. The therapeutic composition could be immediately swallowed after introduction into the oral cavity, or could be swallowed after it has first been swished in the oral cavity. In one preferred embodiment, for treating esophagitis, the therapeutic composition is introduced into the oral cavity in a highly viscous form, typically a gel form, that may have a thick, pudding-like texture. When this highly viscous form is swallowed it moves slowly through the esophagus to promote good coating of esophageal mucosal surfaces. When introduced into the oral cavity of the host, the high viscosity form will be at a temperature where the viscosity of the therapeutic composition has a viscosity of at least 70 cP, often at least 80 cP, or even at least 90 cP or at least 100 cP or more. Also, because the coating effect to the esophageal mucosal surfaces must be accomplished with only a single pass through the esophagus, it is highly preferred that the therapeutic composition include a bioadhesive agent, as discussed above, with a preferred bioadhesive agent being a carbophil polymer.
  • When treating for mucositis in the gastrointestinal tract, and particularly in the stomach, the therapeutic composition will generally be administered to the oral cavity and swallowed as described with treatment of esophagitis. The product form of the therapeutic composition when introduced into the oral cavity will preferably be of a form as described with respect to treatment for esophagitis.
  • When treating for mucositis at a nasal mucosal site, the therapeutic composition is introduced into the nasal cavity to contact mucosal surfaces in the nasal cavity. For nasal applications, a preferred method of administration is in the form of a nasal spray, such as is generated by a nasal nebulizer or other spray device. Also, for nasal applications it is generally preferred that the therapeutic composition have reverse-thermal gelation properties, with a reverse-thermal gel transition temperature that is no higher than the physiological temperature of the host. When the spray is generated, the therapeutic composition should be at a temperature at which the therapeutic composition is in the form of a flowable medium that can be processed in the nebulizer or other spray device to generate the desired spray.
  • When treating for mucositis at a pulmonary mucosal site, the therapeutic composition is typically introduced into the host by inhalation of the therapeutic composition in aerosol form to introduce the therapeutic composition into at least one lung of the host. Considerations are similar to delivery of a nasal spray for nasal applications. For pulmonary applications, however, the aerosol should preferably have smaller and better controlled aerosol particle size, such as could be provided by a pulmonary nebulizer or other inhaler. Again, when generating the aerosol, the therapeutic composition should be at a temperature where the therapeutic composition is in the form of a flowable medium.
  • When treating for mucositis at a rectal mucosal site, the therapeutic composition will be introduced into the rectum of the host. Preferably, for rectal applications the therapeutic composition will be in the form of a gel at least when the therapeutic composition is at the physiological temperature of the host. The therapeutic composition may or may not have reverse-thermal gelation properties, but preferably does have reverse thermal gelation properties and is administrable as a flowable medium below the reverse-thermal gel transition temperature. Considerations for vaginal applications are similar to those for rectal applications, except that the therapeutic composition is introduced into the vagina rather than the rectum.
  • When treating for mucositis at a mucosal site in the bladder, the therapeutic composition will typically be introduced into the bladder through a catheter. In this situation, it is preferred that during administration, the therapeutic composition be in the form of a flowable medium that is injectable through the catheter. The therapeutic composition will preferably not have reverse-thermal gelation properties.
  • When treating for mucositis at an ocular mucosal site, the therapeutic composition is generally introduced into the orbita, preferably by applying to an eye of the host at least one drop of the therapeutic composition in the form of a flowable medium. The therapeutic composition will preferably not have reverse-thermal gelation properties.
  • When treating for mucositis at an aural mucosal site, the therapeutic composition is generally introduced into the ear, and preferably into the inner ear, by administration into the ear of at least one drop of the therapeutic composition in the form of a flowable medium. The therapeutic composition will preferably not have reverse-thermal gelation properties.
  • The following example is given to illustrate the present invention. It should be understood that the invention is not to be limited to the specific conditions or details described in the example.
  • EXAMPLE
  • This example describes the formulation and use of the antioxidant, NAC, within a Pluronic® F127 delivery matrix in the absence and presence of chitosan as a penetration enhancer, for preventing or reducing the clinical outcome of oral mucositis in a hamster model of radiation-induced buccal mucositis.
  • Preparation of stock solutions: Pluronic® F127 (poloxamer 407; BASF Corporation, Washington, N.J.) was autoclaved and dissolved in sterile water for injection (Abbott Laboratories, North Chicago, Ill.) at 30% (w/w). Chitosan (medium molecular weight; Sigma-Aldrich, St. Louis, Mo.) was autoclaved and dissolved at 3% (w/w) in sterile filtered water for injection containing 1% (v/v) acetic acid (Fisher Scientific, Fair Lawn, N.J.). NaOH (Fisher Scientific) was prepared in sterile water for injection at 4 M and sterile filtered.
  • Preparation of antioxidant formulations: The antioxidant, N-acetyl-L-cysteine (NAC; Sigma-Aldrich), was formulated in the various delivery matrices by weighing and mixing the desired components under sterile conditions. The pH was determined by litmus pH paper (Sigma-Aldrich). Examples of antioxidant-containing formulations are described below in Table 1.
    TABLE 1
    Descriptions of formulations
    Antioxidant Pluronic ® F 127 Chitosan NaOH
    Formulation (Wt %) (Wt %) (Wt %) (M) pH
    N-acetylcysteine
    Tube A2.01 10 16.25 0.5 0.57 4-5
    Tube A2.02 10 16.25 0 0.57 4-5
    Tube A2.03 10 0 0 0.57 5-6
    (in WFI)
    Controls
    Vehicle control
    0 16.25 0.5 0 5-6
    Water control 0 0 0 0
    (WFI)

    All formulations were stored at 2-8 ° C.
    Use of antioxidants in an animal model of radiation-induced oral mucositis:
    Study location and animals: The study was carried out by Biomodels and Affiliates (Boston, Mass.) at the Massachusetts College of Pharmacy and Health Sciences. Male Golden Syrian hamsters (Charles River Laboratories, Wilmington, Mass.), 5 to 6 weeks of age, weighing approximately 90 g at study commencement were used.
    Radiation: The acute-radiation hamster model was developed by Dr. Steve Sonis (Harvard School of Dental Medicine, Brigham and Women's Hospital, Boston, Mass.). Hamsters were anesthetized with an intraperitoneal injection of sodium pentobarbital (80 mg/kg). The left buccal pouch was everted, fixed and isolated using a lead shield. Oral mucositis was induced using a standardized acute radiation protocol. A single dose of radiation (40 Gy/dose) was administered to all animals on Day 0. Radiation was generated with a 250 kilovolt potential (15-ma) source at a focal distance of 50 cm, hardened with a 0.35 mm Cu filtration system. Irradiation targeted the left buccal pouch mucosa at a rate of 121.5 cGy/minute. This radiation protocol produces ‘peak’ oral mucositis 14 to 18 days after irradiation.
    Formulation application: Each animal was dosed topically 3 times per day by applying 0.25 mL of formulation into the left (irradiated) buccal pouch per application. Dosing was carried out from Day-1 to Day 28.
    Mucositis evaluation: Clinical mucositis was assessed every 2nd day starting on Day 6 to Day 28. Mucositis was evaluated by visual scoring using a validated photographic scale for comparison. Following visual scoring, a photograph of each animal's mucosa was taken so that mucositis could be scored ‘blind’ at the end of the study.
  • Mucositis data: Data showing the results of visual scoring of mucositis to Day 28 are shown in FIG. 1. Values are the mean clinical mucositis scores±SEM per formulation treatment group (N=7 hamsters per group).
    TABLE 2
    Description of clinical mucositis scoring:
    Score: Description:
    0 Pouch completely healthy. No erythema or vasodilation
    1 Light to severe erythema and vasodilation. No erosion of mucosa
    2 Severe erythema and vasodilation. Erosion of superficial aspects
    of mucosa leaving denuded areas. Decreased stippling of
    mucosa.
    3 Formation of off-white ulcers in one or more places. Ulcers may
    have a yellow/gray due to pseudomembrane. Cumulative size of
    ulcers should equal about ¼ of the pouch. Severe
    erythema and vasodilation.
    4 Cumulative size of ulcers should equal about ½ of the pouch.
    Loss of pliability. Severe erythema and vasodilation.
    5 Virtually all of pouch is ulcerated. Loss of pliability (pouch
    can only partially be extracted from mouth)
  • A score of 1-2 is considered to represent a mild stage of the disease, whereas a score of 3-5 is considered to indicate moderate to severe mucositis. Following visual scoring, a photograph was taken of each animal's mucosa using a standardized technique. At the conclusion of the experiment, all film was developed and the photographs randomly numbered. At least two independent trained observers graded the photographs in blinded fashion using the above-described scale (blinded scoring).
  • Clinical mucositis scores in the hamster buccal pouch following acute radiation and application of NAC-containing formulations. Values are the mean clinical mucositis scores±SEM per formulation treatment group (N=7 hamsters per group).
  • Results:
  • The water control treatment group exhibited the expected clinical mucositis score (i.e., a score of 3 or 4) at the expected peak mucositis time (i.e., 14 to 18 days post-irradiation). All three NAC formulations reduced the mean clinical mucositis scores relative to the vehicle and water controls, with the NAC formulated in Pluronic® F127 (Tube A2.02) being the most effective. The vehicle appeared to have some beneficial effect in reducing the mean clinical mucositis score at day 14, but this effect was not maintained throughout the peak time of mucositis induction.
  • The description of the invention, including the foregoing example, has been presented for purposes of illustration and description. Moreover, the description is not intended to limit the variations and modifications commensurate with the above teachings, and the skill or knowledge in the relevant art are within the scope of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the present invention, and thus it is intended that the present invention cover modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Also, the preferred embodiment(s) described hereinabove are intended to explain the best mode known of practicing the invention and to enable others skilled in the art to utilize the invention in various embodiments and with the various modifications required by their particular applications or uses of the invention. Moreover, to the extent that features are not functionally incompatible, it is contemplated within the scope of the present invention that any feature of any disclosed embodiment is combinable in any combination with any feature of any other embodiment. It is intended that the appended claims be construed to include alternate embodiments to the extent permitted by the prior art. Use of the terms “comprise,” “include,” “contain,” “have” and variations of those terms are used to indicate the presence of an attribute, feature or component, but not to the exclusion of the presence of other possible attributes, features or components.

Claims (33)

1. A method for treatment of esophagitis in the esophagus of a human host the method comprising:
introducing a therapeutic composition into the host directed to the esophagus of the host, the therapeutic composition comprising:
(i) a carrier liquid;
(ii) a reverse-thermal gelation biocompatible polymer that is a polyoxyalkylene block copolymer, comprising at least one block of a first polyoxyalkylene and at least one block of a second polyoxyalkylene that is different than the first polyoxyalkylene; and
(iii) a pharmaceutical substance selected from the group consisting of glutathione and a precursor for glutathione biosynthesis, the pharmaceutical substance, as formulated in the therapeutic composition, being effective for treatment of esophagitis at a mucosal site within the esophagus; and
wherein, after the introducing, at least a portion of the biocompatible polymer and at least a portion of the pharmaceutical substance adhere to a mucosal surface at the mucosal site.
2. The method of claim 1, wherein the pharmaceutical substance comprises a thiol-containing compound.
3. The method of claim 1, wherein the pharmaceutical substance comprises a sulfur-containing antioxidant.
4. The method of claim 3, wherein the sulfur-containing antioxidant is selected from the group consisting of S-carboxymethylcysteine, procysteine, lipoic acid, s-allyl cysteine, and methylmethionine sulfonium chloride.
5. The method of claim 3, wherein the sulfur-containing antioxidant includes sulfur in at least one functional group selected from the group consisting of thiol, thioether, thioester, thiourea, thiocarbamate, disulfide, and sulfonium salt.
6. The method of claim 1, wherein the pharmaceutical substance comprises a precursor for glutathione biosynthesis.
7. The method of claim 6, wherein the precursor is selected from the group consisting of procysteine, lipoic acid, s-allyl cysteine, S-carboxymethylcysteine, and methylmethionine sulfonium chloride.
8. The method of claim 1, wherein the pharmaceutical substance comprises N-acetylcysteine.
9. The method of claim 1, wherein the liquid vehicle and the biocompatible polymer interact to impart reverse-thermal viscosity behavior to the therapeutic composition, with the therapeutic composition exhibiting the reverse-thermal viscosity behavior over at least some range of temperatures between 1 ° C. and the physiological temperature of the host.
10. The method of claim 9, wherein the therapeutic composition exhibits an increase in viscosity from no larger than about 60 cP to at least about 70 cP when a temperature of the therapeutic composition is increased over at least some range of temperatures between 1 ° C. and the physiological temperature of the host.
11. The method of claim 1, wherein the therapeutic composition exhibits an increase in viscosity from no larger than about 50 cP to at least about 70 cP when a temperature of the therapeutic composition is increased over at least some range of temperatures between 1 ° C. and the physiological temperature of the host.
12. The method of claim 1, wherein the therapeutic composition has reverse-thermal gelation properties and a reverse-thermal liquid-gel transition temperature in a range of from 1 ° C. and the physiological temperature of the host.
13. The method of claim 12, wherein during the introducing, the therapeutic composition is at an administration temperature within a range of from 1 ° C. to 10° C.
14. The method of claim 1, wherein the therapeutic composition comprises a bioadhesive agent other than the biocompatible polymer.
15. The method of claim 1, wherein the therapeutic composition comprises from 0.001 to 25 weight percent of the pharmaceutical substance and from 1 to 70 weight percent of the biocompatible polymer.
16. The method of claim 15, wherein the first polyoxyalkylene is a polyoxyethylene and the second polyoxyalkylene is a polyoxypropylene, and the biocompatible polymer comprises two of the block of the first polyoxyalkylene and one of the block of the second polyoxyalkylene.
17. The method of claim 16, wherein the therapeutic composition comprises from 5 to 20 weight percent of the biocompatible polymer.
18. The method of claim 17, wherein the pharmaceutical substance is N-acetylcysteine.
19. The method of claim 1, wherein the esophagitis is a side effect of the host undergoing cancer therapy treatment comprising one or both of chemotherapy and radiation therapy.
20. The method of claim 19, wherein the introducing occurs prior to the cancer therapy treatment.
21. The method of claim 19, wherein the introducing occurs multiple times, a first said introducing occurring prior to the cancer therapy treatment a second said introducing occurring after the cancer therapy treatment.
22. The method of claim 1, wherein when introduced into the host, the therapeutic composition is in the form of a flowable medium.
23. The method of claim 1, wherein when introduced into the host, the therapeutic composition is in the form of a gel.
24. The method of claim 1, wherein when introduced into the host, the therapeutic composition has a viscosity of at least 70 cP.
25. A method for treatment of esophagitis in the esophagus of a human host the method comprising:
introducing a therapeutic composition into the host directed to the esophagus of the host, the therapeutic composition comprising:
(i) an amount of from 0.001 to 25 weight percent of N-acetylcysteine effective as formulated in the therapeutic composition for treatment of esophagitis at a mucosal site within the esophagus;
(i) from 1 to 70 weight percent of a reverse-thermal gelation biocompatible polymer that is a polyoxyalkylene block copolymer, comprising at least two blocks of polyoxyethylene and at least one block of polyoxypropylene; and
(iii) an aqueous carrier liquid interacting with the biocompatible polymer to impart reverse-thermal viscosity behavior to the therapeutic composition;
wherein, the therapeutic composition exhibits the reverse-thermal viscosity behavior over at least some range of temperatures between 1° C. and the physiological temperature of the host.
26. The method of claim 25, wherein during the introducing, the therapeutic composition is in the form of a flowable medium at an administration temperature that is at least 1° C. and that is lower than the physiological temperature of the host, and the therapeutic composition exhibits the reverse-thermal viscosity behavior over at least some range of temperatures between the administration temperature and the physiological temperature of the host.
27. The method of claim 26, wherein the flowable medium is a solution comprising the N-acetylcysteine and the biocompatible polymer dissolved in the carrier liquid.
28. The method of claim 27, wherein the therapeutic composition has a reverse-thermal liquid-gel transition temperature in a range of from the administration temperature to the physiological temperature of the host.
29. The method of claim 28, wherein the biocompatible polymer is poloxamer 407 .
30. The method of claim 29, wherein during the introducing, the therapeutic composition is in the form of a gel.
31. The method of claim 30, wherein the biocompatible polymer is poloxamer 407.
32. The method of claim 25, wherein the therapeutic composition comprises from 5 weight percent to 20 weight percent of the biocompatible polymer.
33. The method of claim 25, wherein the therapeutic composition comprises from 10 weight percent to 20 weight percent of the biocompatible polymer.
US11/525,752 2000-11-22 2006-09-22 Treatment of esophagitis Abandoned US20070014860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/525,752 US20070014860A1 (en) 2000-11-22 2006-09-22 Treatment of esophagitis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72151600A 2000-11-22 2000-11-22
US09/993,383 US6685917B2 (en) 2000-11-22 2001-11-21 Treatment of mucositis
US10/728,277 US20040141949A1 (en) 2000-11-22 2003-12-04 Treatment of mucositis
US11/525,752 US20070014860A1 (en) 2000-11-22 2006-09-22 Treatment of esophagitis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/728,277 Division US20040141949A1 (en) 2000-11-22 2003-12-04 Treatment of mucositis

Publications (1)

Publication Number Publication Date
US20070014860A1 true US20070014860A1 (en) 2007-01-18

Family

ID=24898290

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/993,383 Expired - Lifetime US6685917B2 (en) 2000-11-22 2001-11-21 Treatment of mucositis
US10/728,277 Abandoned US20040141949A1 (en) 2000-11-22 2003-12-04 Treatment of mucositis
US11/525,983 Abandoned US20070014861A1 (en) 2000-11-22 2006-09-22 Treatment of proctitis
US11/525,752 Abandoned US20070014860A1 (en) 2000-11-22 2006-09-22 Treatment of esophagitis
US11/540,357 Abandoned US20070071824A1 (en) 2000-11-22 2006-09-29 Treatment of mucositis using N-acetylcysteine

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/993,383 Expired - Lifetime US6685917B2 (en) 2000-11-22 2001-11-21 Treatment of mucositis
US10/728,277 Abandoned US20040141949A1 (en) 2000-11-22 2003-12-04 Treatment of mucositis
US11/525,983 Abandoned US20070014861A1 (en) 2000-11-22 2006-09-22 Treatment of proctitis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/540,357 Abandoned US20070071824A1 (en) 2000-11-22 2006-09-29 Treatment of mucositis using N-acetylcysteine

Country Status (11)

Country Link
US (5) US6685917B2 (en)
EP (2) EP1343492B1 (en)
JP (1) JP4822652B2 (en)
AT (1) ATE316786T1 (en)
AU (1) AU2002239342A1 (en)
BR (1) BRPI0115531B1 (en)
DE (1) DE60117043T2 (en)
DK (1) DK1343492T3 (en)
ES (1) ES2254523T3 (en)
MX (1) MXPA03004546A (en)
WO (1) WO2002041837A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729050B2 (en) 2007-12-08 2014-05-20 Euphora Ltd. Method for prevention and treatment of reflux injury in the aerodigestive tract and laryngopharynx caused by pepsin
US10239847B1 (en) 2016-03-03 2019-03-26 Cellactin Method for 2-oxothiazolidine-4-carboxylic acid for cellular glutathione
US11213545B2 (en) * 2017-03-02 2022-01-04 University of Pittsburgh—of the Commonwealth System of Higher Education ECM hydrogel for treating esophageal inflammation
US11413375B2 (en) 2014-03-21 2022-08-16 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for preparation of a terminally sterilized hydrogel derived from extracellular matrix

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525018B1 (en) * 1999-05-17 2003-02-25 The General Hospital Corp. Treating eye disorders using intestinal trefoil proteins
US20030185838A1 (en) * 2001-11-28 2003-10-02 Podolsky Daniel K. Methods and compositions for treating lesions of the respiratory epithelium
US20030186882A1 (en) * 2001-07-31 2003-10-02 Podolsky Daniel K. Methods and compositions for treating and preventing distal bowel lesions
EP1343492B1 (en) * 2000-11-22 2006-02-01 Rxkinetix, Inc. Treatment of mucositis
CA2444885A1 (en) * 2001-04-24 2002-10-31 The General Hospital Corporation Methods and compositions for treating oral and esophageal lesions
US20030105016A1 (en) * 2001-09-06 2003-06-05 Podolsky Daniel K. Methods and compositions for treating vaginal, cervical, and uterine epithelial lesions
US20060189526A1 (en) * 2002-04-24 2006-08-24 Podolsky Daniel K Compositions containing an intestinal trefoil peptide and a mucoadhesive
US20040171544A1 (en) * 2001-04-24 2004-09-02 Barker Nicholas P. Trefoil domain-containing polypeptides and uses thereof
US7538082B2 (en) * 2001-04-24 2009-05-26 The General Hospital Corporation Methods and compositions for treating oral and esophageal lesions
US20030181384A1 (en) * 2001-09-06 2003-09-25 Podolsky Daniel K. Methods and compositions for treating vaginal, cervical, and uterine epithelial lesions
US20030185839A1 (en) * 2001-10-05 2003-10-02 Podolsky Daniel K. Methods and compositions for treating dermal lesions
CA2462291A1 (en) * 2001-10-05 2003-04-17 The General Hospital Corporation Methods and compositions for treating dermal lesions
US6620405B2 (en) 2001-11-01 2003-09-16 3M Innovative Properties Company Delivery of hydrogel compositions as a fine mist
MXPA04009363A (en) * 2002-03-26 2005-01-25 Gen Hospital Corp Combination therapy using trefoil peptides.
FR2837709B1 (en) * 2002-03-26 2005-05-13 Innovations Pharma Ag THERMOREVERSIBLE COMPOSITION FOR COMPENSATING THE HYPOSIALIES AND ASIALIES CAUSED BY XEROSTOMIES
US20060275370A1 (en) * 2002-07-25 2006-12-07 Yih-Lin Chung Method and compositions for treatment of epithelial damage
US20040057983A1 (en) 2002-09-25 2004-03-25 David Schmidt Biomolecular wearable apparatus
KR20040028336A (en) * 2002-09-30 2004-04-03 김종국 Novel composite of thermosensitive antifungal gel for vaginal administration
US20060188471A1 (en) * 2002-10-31 2006-08-24 Podolsky Daniel K Methods of treating epithelial lesions
JP4493594B2 (en) * 2003-03-04 2010-06-30 田辺三菱製薬株式会社 Nasal powder formulation
US20040198841A1 (en) * 2003-03-13 2004-10-07 Oregon Health & Science University Use of thiol-based compositions in ameliorating mucosal injury
US20050118261A1 (en) * 2003-06-12 2005-06-02 Oien Hal J. Compositions and methods of administering doxepin to mucosal tissue
US6984628B2 (en) 2003-07-15 2006-01-10 Allergan, Inc. Ophthalmic compositions comprising trefoil factor family peptides
JP5473190B2 (en) * 2003-10-16 2014-04-16 ネステク ソシエテ アノニム Nutritional composition for side effects of chemotherapy or radiation therapy
US20050090551A1 (en) * 2003-10-27 2005-04-28 Board Of Trustees Of Southern Illinois University Therapeutic use of methionine for the treatment or prevention of mucositis
US20070003582A1 (en) * 2003-11-25 2007-01-04 Heng Madalene C Medicine for the treatment of acne and for reversing the signs of age and sun damage and method for using same
EP1708722B1 (en) 2004-01-28 2014-05-21 The Regents of The University of California Novel interstitial therapy for immediate symptom relief and chronic therapy in interstitial cystitis
WO2005087221A1 (en) * 2004-03-15 2005-09-22 Christine Allen Biodegradable biocompatible implant and method of manufacturing same
US7754230B2 (en) * 2004-05-19 2010-07-13 The Regents Of The University Of California Methods and related compositions for reduction of fat
US20060127468A1 (en) * 2004-05-19 2006-06-15 Kolodney Michael S Methods and related compositions for reduction of fat and skin tightening
DK2422789T3 (en) * 2004-05-19 2018-02-26 Los Angeles Biomedical Res Inst Harbor Ucla Medical Ct INJECTABLE COMPOSITION CONTAINING SODIUM DEOXYCHOLATE
AR053332A1 (en) * 2005-02-16 2007-05-02 Wyeth Corp USE OF SELECTIVE AGONISTS FOR THE STROGEN BETA RECEIVER (ERP) FOR MUCOSITIS INDICATED BY RADIATION OR BY CHEMOTHERAPY AND FOR RADIATION INDUCED CYSTITIS
US8075771B2 (en) * 2005-02-17 2011-12-13 E. I. Du Pont De Nemours And Company Apparatus for magnetic field gradient enhanced centrifugation
JP4732784B2 (en) * 2005-04-21 2011-07-27 興和株式会社 Panthenol-containing oral mucosal adhesive preparation
JP5032003B2 (en) * 2005-06-15 2012-09-26 株式会社琉球バイオリソース開発 Analgesic and anti-inflammatory lozenges for oral mucosa
US20090028951A1 (en) * 2005-07-13 2009-01-29 Al Czap Compositions for Oral Administration of Sustained Release Glutathione, Methods for Their Production and Uses Thereof
US8679545B2 (en) * 2005-11-12 2014-03-25 The Regents Of The University Of California Topical corticosteroids for the treatment of inflammatory diseases of the gastrointestinal tract
US8497258B2 (en) 2005-11-12 2013-07-30 The Regents Of The University Of California Viscous budesonide for the treatment of inflammatory diseases of the gastrointestinal tract
US8324192B2 (en) 2005-11-12 2012-12-04 The Regents Of The University Of California Viscous budesonide for the treatment of inflammatory diseases of the gastrointestinal tract
PT1965787E (en) 2005-11-30 2013-07-05 Endo Pharmaceuticals Inc Treatment of xerostomia with a sulfur-containing antioxidant
WO2007107012A1 (en) * 2006-03-23 2007-09-27 Citagenix Inc. Reverse phase osteoconductive composition
WO2007142973A1 (en) * 2006-05-30 2007-12-13 Haley Jeffrey T Cobalamin compositions and methods for treating or preventing mucositis
AU2007267069B2 (en) 2006-06-01 2011-08-11 Nobera Pharma, S.L. Use of allopurinol for the treatment of palmar plantar erythrodysesthesia
US20090047336A1 (en) * 2007-08-17 2009-02-19 Hong Kong Baptist University novel formulation of dehydrated lipid vesicles for controlled release of active pharmaceutical ingredient via inhalation
EP2203152A4 (en) * 2007-10-03 2011-05-25 Myrex Pharmaceuticals Inc Mouthwash and method of using same for the treatment of mucositis or stomatitis
CN101835439B (en) * 2007-10-22 2015-04-08 皇家飞利浦电子股份有限公司 Interproximal teeth cleaning apparatus with an air-driven spray
CN101156834B (en) * 2007-10-30 2010-08-11 深圳南粤药业有限公司 Ammonia temperature responsive form gel and its preparation method
US20100216754A1 (en) * 2007-11-13 2010-08-26 Meritage Pharma, Inc. Compositions for the treatment of inflammation of the gastrointestinal tract
NZ585268A (en) * 2007-11-13 2012-09-28 Meritage Pharma Inc Corticosteroid compositions for the treatment of esophageal inflammation
US20090143343A1 (en) * 2007-11-13 2009-06-04 Meritage Pharma, Inc. Compositions for the treatment of inflammation of the gastrointestinal tract
US20090123551A1 (en) * 2007-11-13 2009-05-14 Meritage Pharma, Inc. Gastrointestinal delivery systems
WO2009111173A2 (en) * 2008-02-29 2009-09-11 Pluromed, Inc. Local embolization via heating of thermosensitive polymers
JP5836592B2 (en) * 2008-02-29 2015-12-24 プルーロームド インコーポレイテッドPluromed, Inc. Local embolization using thermosensitive polymers
US20090264392A1 (en) * 2008-04-21 2009-10-22 Meritage Pharma, Inc. Treating eosinophilic esophagitis
US8602961B2 (en) * 2008-05-15 2013-12-10 Lifewave Products Llc Apparatus and method of stimulating elevation of glutathione levels in a subject
US20100204286A1 (en) 2009-02-12 2010-08-12 Donahue Stephen R Method for reducing gastrointestinal adverse effects of cytotoxic agents
US8101593B2 (en) 2009-03-03 2012-01-24 Kythera Biopharmaceuticals, Inc. Formulations of deoxycholic acid and salts thereof
EP2246057A1 (en) * 2009-04-29 2010-11-03 Nobera Pharma, S.L. Use of allopurinol for the treatment of hand foot skin reaction
JP2012526840A (en) * 2009-05-13 2012-11-01 プロテイン デリヴァリー ソリューションズ エルエルシー Formulation system for transmembrane delivery
WO2011094504A2 (en) * 2010-01-28 2011-08-04 Ora, Inc. Antimicrobial sinus irrigation compositions, methods, and devices
WO2012031123A2 (en) 2010-09-01 2012-03-08 Trythisfirst, Inc. Method of treating ear infections
US12016950B2 (en) 2010-09-01 2024-06-25 Try This First, Inc. Devices and methods for treating ear pain
IT1401895B1 (en) 2010-10-18 2013-08-28 Straccia NATURAL PHARMACOLOGICAL PRESIDIUM FOR THE PREVENTION OF INFLAMMATORY DISEASES OF PARODONTO.
IT1401894B1 (en) * 2010-10-18 2013-08-28 Straccia PHARMACOLOGICAL PRESIDIUM FOR THE PREVENTION OF CARIOUS INCIDIENT LESION AND DENTAL IPERSENSIBILITY
IT1405758B1 (en) * 2010-11-03 2014-01-24 Stewart Italia Srl NAC BASED PHARMACEUTICAL PREPARATION IN HYPERTONIC SOLUTION FOR THE TREATMENT OF RINOFARINGEAL AFFECTIONS
JP2012116818A (en) * 2010-12-03 2012-06-21 Feng Chia Univ Pharmaceutical composition for treatment of urinary system disease
WO2012112940A1 (en) 2011-02-18 2012-08-23 Kythera Biopharmaceuticals, Inc. Treatment of submental fat
FR2972327B1 (en) * 2011-03-11 2017-08-11 Laboratoires Le Stum MUCOADHESIVE NUTRACEUTICAL COMPOSITION COMPRISING ANTIOXIDANT ASSOCIATION
US8653058B2 (en) 2011-04-05 2014-02-18 Kythera Biopharmaceuticals, Inc. Compositions comprising deoxycholic acid and salts thereof suitable for use in treating fat deposits
ES2857252T3 (en) 2011-04-29 2021-09-28 Moberg Pharma Ab Pharmaceutical compositions comprising a local anesthetic such as bupivacaine for local administration in the mouth or throat
ITMI20110954A1 (en) * 2011-05-26 2012-11-27 Professional Dietetics Srl COMBINATIONS FOR THE TREATMENT OF VAGINAL OR RECTAL MUCOSITES
ITMI20111151A1 (en) * 2011-06-24 2012-12-25 Lo Li Pharma Srl N-ACETYL CISTEIN AND ITS COMPOSITION FOR USE IN THE TREATMENT OF VAGINAL DISORDERS.
FI20115680L (en) * 2011-06-29 2012-12-30 Biohit Oyj Liquid pharmaceutical compositions or combination products
US20130177599A1 (en) * 2012-01-06 2013-07-11 Insite Vision Incorporated Methods and kits for extending contact lens use
JP2013170156A (en) * 2012-02-22 2013-09-02 Terumo Corp Solid composition
WO2013175377A2 (en) * 2012-05-23 2013-11-28 Mahesh Kandula Compositions and methods for the treatment of mucositis
KR101320945B1 (en) * 2012-07-03 2013-10-23 주식회사파마킹 Composition comprising s-allyl-l-cysteine for preventing or treating colitis and medicinal products
KR101423631B1 (en) * 2012-08-17 2014-07-25 주식회사파마킹 Composition comprising s-allyl-l-cysteine for preventing or treating Eye disease and medicinal products
CN103027891A (en) * 2012-11-25 2013-04-10 天津坤健生物制药有限公司 Acetylcysteine gargle for treating dental ulcers, and preparation method thereof
JP6582983B2 (en) * 2013-07-31 2019-10-02 味の素株式会社 Side-effect reducing agent for cancer chemotherapy
US9457011B2 (en) * 2014-02-25 2016-10-04 Muslim D. Shahid Compositions and methods for the treatment of acid-related gastrointestinal disorders containing a dithiolane compound and a gastric acid secretion inhibitor
WO2016142341A1 (en) * 2015-03-06 2016-09-15 Repoceuticals Aps Melatonin for preventing and treating radiation vaginitis and proctitis
EP3267988B1 (en) * 2015-03-13 2019-07-03 Repoceuticals ApS Melatonin for preventing and treating radiation cystitis
WO2016181335A1 (en) 2015-05-14 2016-11-17 Professional Dietetics S.P.A. Compositions comprising amino acids for use in the treatment of mucositides in neoplasia patients undergoing radiation therapy and/or chemotherapy
CR20180128A (en) 2015-08-05 2018-04-24 Childrens Medical Center COMPOSITIONS WITH PERMEATION POTENTIALS FOR DRUG SUPPLY
CN105380957A (en) * 2015-12-04 2016-03-09 天津坤健生物制药有限公司 Acetylcysteine gel, and preparation method and application thereof
CA3031691A1 (en) 2016-09-13 2018-03-22 Rasna Research Inc. Dactinomycin compositions and methods for the treatment of myelodysplastic syndrome and acute myeloid leukemia
JP7277360B2 (en) * 2016-09-14 2023-05-18 ザ チルドレンズ メディカル センター コーポレーション Compositions with permeation enhancers for drug delivery
EP3330251A1 (en) * 2016-11-30 2018-06-06 Clevexel Pharma Process for the preparation of freeze-dried 2-[(3-aminopropyl)amino]ethanethiol
CN110494132A (en) * 2017-04-19 2019-11-22 株式会社大塚制药工场 Anti-inflammatory agent
IT201700124424A1 (en) * 2017-10-31 2019-05-01 Sofar Swiss Sa Compress to suck and / or dissolve in the mouth based on hyaluronic acid and chondroitin sulfate and their salts
WO2019124609A1 (en) * 2017-12-22 2019-06-27 경상대학교병원 Pharmaceutical composition containing alpha-lipoic acid as active ingredient for preventing or treating sialadenitis
WO2019124605A1 (en) * 2017-12-22 2019-06-27 경상대학교병원 Pharmaceutical composition for preventing or treating mouth ulcer, containing alpha-lipoic acid as active ingredient
EP3834887A1 (en) * 2019-12-12 2021-06-16 Koninklijke Philips N.V. Topical oral composition
WO2022040584A1 (en) * 2020-08-21 2022-02-24 Neuronasal, Inc. Methods of administering glutathione precursors
JP7544345B2 (en) 2021-01-22 2024-09-03 三洋化成工業株式会社 Esophageal Coolant

Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091569A (en) * 1960-08-26 1963-05-28 Mead Johnson & Co Mucolytic-nu-acylated sulfhydryl compositions and process for treating animal mucus
US4176197A (en) * 1978-02-03 1979-11-27 Dominion Pharmacal, Inc. Method for treating acne vulgaris
US4188373A (en) * 1976-02-26 1980-02-12 Cooper Laboratories, Inc. Clear, water-miscible, liquid pharmaceutical vehicles and compositions which gel at body temperature for drug delivery to mucous membranes
US4512968A (en) * 1982-11-30 1985-04-23 Lion Corporation Oral compositions
US4615697A (en) * 1983-11-14 1986-10-07 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
US4708965A (en) * 1985-09-16 1987-11-24 Morgan Lee R Method of treating herpes virus infections with N,N'-diacetylcystine and derivatives
US4724239A (en) * 1985-09-16 1988-02-09 Morgan Lee R Method of treating chemical ulcers with N,N'-diacetylcystine, N-acetyl homocysteine and N-acetyl cysteine
US4918224A (en) * 1987-08-21 1990-04-17 Degussa Akteingesellschaft Method of preparing salts of N-acetyl cysteine or N-acetyl homocysteine
US4946870A (en) * 1986-06-06 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Delivery systems for pharmaceutical or therapeutic actives
US4968506A (en) * 1988-10-10 1990-11-06 Lejus Medical Aktienbolag Pharmaceutical dosage with core of N-acetyl cystein
US5061729A (en) * 1988-06-08 1991-10-29 Biogal Gyogyszergyar Pharmaceutical composition and process for preparing the same
US5071644A (en) * 1990-08-07 1991-12-10 Mediventures, Inc. Topical drug delivery with thermo-irreversible gels
US5143731A (en) * 1990-08-07 1992-09-01 Mediventures Incorporated Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US5221722A (en) * 1988-11-28 1993-06-22 The B. F. Goodrich Company Crosslinked polyacrylic acid
US5286480A (en) * 1992-06-29 1994-02-15 The Procter & Gamble Company Use of N-acetylated amino acid complexes in oral care compositions
US5296500A (en) * 1991-08-30 1994-03-22 The Procter & Gamble Company Use of N-acetyl-cysteine and derivatives for regulating skin wrinkles and/or skin atrophy
US5300494A (en) * 1986-06-06 1994-04-05 Union Carbide Chemicals & Plastics Technology Corporation Delivery systems for quaternary and related compounds
US5346703A (en) * 1990-08-07 1994-09-13 Mediventures, Inc. Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US5447712A (en) * 1993-12-09 1995-09-05 Free Radical Sciences Method of reducing cyclophosphamide induced hemorrhagic cystitis
US5458879A (en) * 1994-03-03 1995-10-17 The Procter & Gamble Company Oral vehicle compositions
US5472704A (en) * 1991-05-30 1995-12-05 Recordati S.A., Chemical And Pharmaceutical Company Pharmaceutical controlled-release composition with bioadhesive properties
US5490978A (en) * 1993-10-15 1996-02-13 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Block copolymers of polysaccharides and polyalkylene oxides
US5510384A (en) * 1993-02-12 1996-04-23 Mckee; Rex N. Method of treating damaged mucosal and epithelial tissues with misoprostol
US5510101A (en) * 1992-01-16 1996-04-23 Zambon Group S.P.A. Ophthalmic pharmaceutical composition containing N-acetyl-cysteine and polyvinylalcohol
US5541181A (en) * 1994-05-26 1996-07-30 Bristol-Myers Squibb Company Compound produced by a strain of micromonospora
US5580577A (en) * 1990-01-11 1996-12-03 Herzenberg; Leonard A. Method of treating the symptoms of human rhinovirus infection
US5593683A (en) * 1990-05-01 1997-01-14 Mdv Technologies, Inc. Method of making thermoreversible polyoxyalkylene gels
US5597849A (en) * 1994-11-14 1997-01-28 Medical Polymer Technologies, Inc. Stick formulations for topical drug delivery of therapeutic agents and uses thereof
US5635489A (en) * 1992-09-21 1997-06-03 Oncogene Science, Inc. Methods of prevention of oral mucositis with transforming growth factor β
US5637616A (en) * 1993-06-18 1997-06-10 Arcturus Pharmaceutical Corporation Method for treating diseases mediated by proteases
US5667776A (en) * 1986-11-21 1997-09-16 Chiron Corporation Treatment for biological damage using tumor necrosis factor and a free-radical scavenger
US5707635A (en) * 1991-10-16 1998-01-13 Richardson-Vicks Inc. Gel type cosmetic compositions
US5744155A (en) * 1993-08-13 1998-04-28 Friedman; Doron Bioadhesive emulsion preparations for enhanced drug delivery
US5807894A (en) * 1992-12-02 1998-09-15 Zambon Group S.P.A. Syrup containing N-acetyl-cysteine
US5843881A (en) * 1997-02-13 1998-12-01 The Procter & Gamble Company Spray compositions
US5861174A (en) * 1996-07-12 1999-01-19 University Technology Corporation Temperature sensitive gel for sustained delivery of protein drugs
US5869029A (en) * 1996-06-21 1999-02-09 Hercules Incorporated Dispersible water-soluble or water-swellable polymers and process for making toothpastes containing them
US5904927A (en) * 1997-03-14 1999-05-18 Northeastern University Drug delivery using pH-sensitive semi-interpenetrating network hydrogels
US5939485A (en) * 1995-06-19 1999-08-17 Medlogic Global Corporation Responsive polymer networks and methods of their use
US5945089A (en) * 1998-11-05 1999-08-31 I-Dent International Corporation Method of treating mucositis
US5958443A (en) * 1991-10-30 1999-09-28 Mdv Technologies, Inc. Medical uses of in situ formed gels
US5994409A (en) * 1997-12-09 1999-11-30 U.S. Bioscience, Inc. Methods for treatment of neuro--and nephro--disorders and therapeutic toxicities using aminothiol compounds
US6013632A (en) * 1997-01-13 2000-01-11 Emory University Compounds and their combinations for the treatment of influenza infection
US6025326A (en) * 1995-07-07 2000-02-15 Intrabiotics Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of oral mucositis
US6117415A (en) * 1999-06-17 2000-09-12 Alpharx Inc. Toothpaste comprising bioadhesive submicron emulsion for improved delivery of antibacterial and anticaries agents
US6126930A (en) * 1997-02-13 2000-10-03 The Procter & Gamble Company Spray compositions
US6150472A (en) * 1995-12-22 2000-11-21 Holland Biomaterials Group B.V. Multi-functional site containing polymers, and applications thereof
US6158491A (en) * 1994-12-23 2000-12-12 Cookson Group Plc Process for the corrosion protection of copper or copper alloys
US6159485A (en) * 1999-01-08 2000-12-12 Yugenic Limited Partnership N-acetyl aldosamines, n-acetylamino acids and related n-acetyl compounds and their topical use
US6166084A (en) * 1996-12-20 2000-12-26 Johnson & Johnson Medical, Ltd. Compositions for the treatment of chronic wounds
US6194382B1 (en) * 1999-03-03 2001-02-27 Albert Einstein College Of Medicine Of Yeshiva University Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists
US6197331B1 (en) * 1997-07-24 2001-03-06 Perio Products Ltd. Pharmaceutical oral patch for controlled release of pharmaceutical agents in the oral cavity
US6207703B1 (en) * 1997-10-22 2001-03-27 Jens Ponikau Methods and materials for treating and preventing inflammation of mucosal tissue
US6228347B1 (en) * 1997-12-01 2001-05-08 Thione International, Inc. Antioxidant gel for gingival conditions
US6231889B1 (en) * 1998-09-21 2001-05-15 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US6255502B1 (en) * 1996-07-11 2001-07-03 Farmarc Nederland B.V. Pharmaceutical composition containing acid addition salt of basic drug
US6258342B1 (en) * 1999-11-03 2001-07-10 Hercules Incorporated Process for making toothpaste using agglomerated dispersible polymers
US20010018059A1 (en) * 1999-01-08 2001-08-30 Gehlsen Kurt R. Methods and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US20010025027A1 (en) * 2000-03-07 2001-09-27 Sonis Stephen T. Inhibition of ceramide for the prevention and treatment of oral mucositis induced by antineoplastic drugs or radiation
US6297337B1 (en) * 1999-05-19 2001-10-02 Pmd Holdings Corp. Bioadhesive polymer compositions
US6309663B1 (en) * 1999-08-17 2001-10-30 Lipocine Inc. Triglyceride-free compositions and methods for enhanced absorption of hydrophilic therapeutic agents
US6316011B1 (en) * 1998-08-04 2001-11-13 Madash, Llc End modified thermal responsive hydrogels
US6319513B1 (en) * 1998-08-24 2001-11-20 The Procter & Gamble Company Oral liquid mucoadhesive compounds
US6323189B1 (en) * 1998-07-30 2001-11-27 E-Nutriceuticals, Inc. Chitosan-containing liquid compositions and methods for their preparation and use
US20020013331A1 (en) * 2000-06-26 2002-01-31 Williams Robert O. Methods and compositions for treating pain of the mucous membrane
US6391860B1 (en) * 1999-09-09 2002-05-21 Mcgrath Patrick D. Method for preparation and use of paste formed by controlled reaction of sucralfate with hydrochloric acid
US6432415B1 (en) * 1999-12-17 2002-08-13 Axrix Laboratories, Inc. Pharmaceutical gel and aerosol formulations and methods to administer the same to skin and mucosal surfaces
US6458373B1 (en) * 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6468548B1 (en) * 1998-01-15 2002-10-22 Novartis Ag Autoclavable pharmaceutical compositions containing a chelating agent
US6479068B1 (en) * 2000-06-30 2002-11-12 Baxter International Inc. Therapeutic nutrient regimen for alleviating mucositis, stomatitis and cachexia in oncology patients
US20020168334A1 (en) * 2001-02-15 2002-11-14 Jacob Jeremy E. Liquid formulations for the prevention and treatment of mucosal diseases and disorders
US20020198161A1 (en) * 1997-02-20 2002-12-26 Douglas E. Brash Therapeutic uses of antioxidants
US6503955B1 (en) * 1999-09-11 2003-01-07 The Procter & Gamble Company Pourable liquid vehicles
US6511800B1 (en) * 1997-11-25 2003-01-28 Medical University Of South Carolina Methods of treating nitric oxide and cytokine mediated disorders
US20030064913A1 (en) * 2001-08-16 2003-04-03 Sonis Stephen T. Treatment and prevention of mucositis in cancer patients
US6562802B2 (en) * 1996-12-16 2003-05-13 Noviscens Ab Medical composition and uses thereof
US6565895B2 (en) * 2000-06-08 2003-05-20 Geltex Pharmaceuticals, Inc. Bismuth compounds for the treatment and prevention of mucositis
US6620428B1 (en) * 1996-04-23 2003-09-16 Pharmacia Ab Transdermally administered acetylcysteine as mucolytic agent
US20030176359A1 (en) * 2000-04-26 2003-09-18 Neuwelt Edward A. Administration of a thiol-based chemoprotectant compound
US6623754B2 (en) * 2001-05-21 2003-09-23 Noveon Ip Holdings Corp. Dosage form of N-acetyl cysteine
US20030229141A1 (en) * 1999-01-08 2003-12-11 Yu Ruey J. N-acetyl cysteine and its topical use
US6685917B2 (en) * 2000-11-22 2004-02-03 Rxkinetix, Inc. Treatment of mucositis
US20040062764A1 (en) * 2001-08-30 2004-04-01 Neuwelt Edward A Chemoprotectant for gastric toxicity
US6743422B1 (en) * 1996-10-15 2004-06-01 Amgen, Inc. Keratinocyte growth factor-2 products
US6790827B2 (en) * 1996-08-27 2004-09-14 University Of Utah Research Foundation Bioconjugates and delivery of bioactive agents
US6797729B1 (en) * 1996-06-28 2004-09-28 Baxter International Inc. Therapeutic glutamine and N-actyl-cysteine composition
US7033606B1 (en) * 1998-07-20 2006-04-25 Laboratoire L. Lafon Pharmaceutical composition intended in particular for the prevention and the treatment of radiomucositis and chemomucositis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591686A (en) * 1967-08-01 1971-07-06 Mead Johnson & Co Anti-inflammatory compositions and methods utilizing n-acylcysteines and the beta-alkyl and carboxyl derivatives thereof
US5256396A (en) * 1990-01-24 1993-10-26 Colgate-Palmolive Company Topical composition
US5466680A (en) * 1992-03-26 1995-11-14 Cytologics, Inc. Method and compositions for enhancing white blood cell functioning on a mucosal or cutaneous surface
IT1255460B (en) * 1992-07-28 1995-11-02 Poli Ind Chimica Spa PHARMACEUTICAL COMPOSITIONS IN THE FORM OF MICROEMULSIONS OR BIOADHESIVE LIPOSOMIAL DISPERSIONS FOR THE TRANSMUCOSAL ADMINISTRATION OF PEPTIDAL SUBSTANCES AND PHARMACOLOGICALLY ACTIVE PROTEINS
AU1905799A (en) * 1997-12-22 1999-07-12 Human Genome Sciences, Inc. Keratinocyte growth factor-2 formulations
GB9812426D0 (en) * 1998-06-10 1998-08-05 Reckitt & Colmann Prod Ltd Improvements in or relating to organic compositions
US6669927B2 (en) * 1998-11-12 2003-12-30 3M Innovative Properties Company Dental compositions
US6159491A (en) * 1999-02-12 2000-12-12 Biovector Technologies, Inc. Prolonged release bioadhesive vaginal gel dosage form
IT1318447B1 (en) 2000-04-04 2003-08-25 Paolo Farina FORMULATIONS FOR REMOVAL OF DENTAL PLATE AND TARTAR.
FI121528B (en) 2000-10-30 2010-12-31 Biohit Oyj Pharmaceutical composition to reduce the risk of sunk in cancer by binding acetaldehyde in saliva, stomach and colon
US6857784B2 (en) * 2002-09-30 2005-02-22 Reliance Electric Technologies, Llc. Adapter mounted bearing assembly

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091569A (en) * 1960-08-26 1963-05-28 Mead Johnson & Co Mucolytic-nu-acylated sulfhydryl compositions and process for treating animal mucus
US4188373A (en) * 1976-02-26 1980-02-12 Cooper Laboratories, Inc. Clear, water-miscible, liquid pharmaceutical vehicles and compositions which gel at body temperature for drug delivery to mucous membranes
US4176197A (en) * 1978-02-03 1979-11-27 Dominion Pharmacal, Inc. Method for treating acne vulgaris
US4512968A (en) * 1982-11-30 1985-04-23 Lion Corporation Oral compositions
US4615697A (en) * 1983-11-14 1986-10-07 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
US4708965A (en) * 1985-09-16 1987-11-24 Morgan Lee R Method of treating herpes virus infections with N,N'-diacetylcystine and derivatives
US4724239A (en) * 1985-09-16 1988-02-09 Morgan Lee R Method of treating chemical ulcers with N,N'-diacetylcystine, N-acetyl homocysteine and N-acetyl cysteine
US4946870A (en) * 1986-06-06 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Delivery systems for pharmaceutical or therapeutic actives
US5300494A (en) * 1986-06-06 1994-04-05 Union Carbide Chemicals & Plastics Technology Corporation Delivery systems for quaternary and related compounds
US5667776A (en) * 1986-11-21 1997-09-16 Chiron Corporation Treatment for biological damage using tumor necrosis factor and a free-radical scavenger
US4918224A (en) * 1987-08-21 1990-04-17 Degussa Akteingesellschaft Method of preparing salts of N-acetyl cysteine or N-acetyl homocysteine
US5061729A (en) * 1988-06-08 1991-10-29 Biogal Gyogyszergyar Pharmaceutical composition and process for preparing the same
US4968506A (en) * 1988-10-10 1990-11-06 Lejus Medical Aktienbolag Pharmaceutical dosage with core of N-acetyl cystein
US5221722A (en) * 1988-11-28 1993-06-22 The B. F. Goodrich Company Crosslinked polyacrylic acid
US5580577A (en) * 1990-01-11 1996-12-03 Herzenberg; Leonard A. Method of treating the symptoms of human rhinovirus infection
US5593683A (en) * 1990-05-01 1997-01-14 Mdv Technologies, Inc. Method of making thermoreversible polyoxyalkylene gels
US5143731A (en) * 1990-08-07 1992-09-01 Mediventures Incorporated Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US6346272B1 (en) * 1990-08-07 2002-02-12 Mdv Technologies, Inc. Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US5071644A (en) * 1990-08-07 1991-12-10 Mediventures, Inc. Topical drug delivery with thermo-irreversible gels
US5346703A (en) * 1990-08-07 1994-09-13 Mediventures, Inc. Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US5472704A (en) * 1991-05-30 1995-12-05 Recordati S.A., Chemical And Pharmaceutical Company Pharmaceutical controlled-release composition with bioadhesive properties
US5296500A (en) * 1991-08-30 1994-03-22 The Procter & Gamble Company Use of N-acetyl-cysteine and derivatives for regulating skin wrinkles and/or skin atrophy
US5707635A (en) * 1991-10-16 1998-01-13 Richardson-Vicks Inc. Gel type cosmetic compositions
US5958443A (en) * 1991-10-30 1999-09-28 Mdv Technologies, Inc. Medical uses of in situ formed gels
US5510101A (en) * 1992-01-16 1996-04-23 Zambon Group S.P.A. Ophthalmic pharmaceutical composition containing N-acetyl-cysteine and polyvinylalcohol
US5286480A (en) * 1992-06-29 1994-02-15 The Procter & Gamble Company Use of N-acetylated amino acid complexes in oral care compositions
US5358705A (en) * 1992-06-29 1994-10-25 The Procter & Gamble Company Use of N-acetylated amino acid complexes in oral care compositions
US5817625A (en) * 1992-09-21 1998-10-06 Oncogene Science, Inc. Methods of prevention of oral mucositis with transforming growth factor beta
US5635489A (en) * 1992-09-21 1997-06-03 Oncogene Science, Inc. Methods of prevention of oral mucositis with transforming growth factor β
US5807894A (en) * 1992-12-02 1998-09-15 Zambon Group S.P.A. Syrup containing N-acetyl-cysteine
US5510384A (en) * 1993-02-12 1996-04-23 Mckee; Rex N. Method of treating damaged mucosal and epithelial tissues with misoprostol
US5637616A (en) * 1993-06-18 1997-06-10 Arcturus Pharmaceutical Corporation Method for treating diseases mediated by proteases
US5744155A (en) * 1993-08-13 1998-04-28 Friedman; Doron Bioadhesive emulsion preparations for enhanced drug delivery
US5993846A (en) * 1993-08-13 1999-11-30 Pharmos Corporation Bioadhesive emulsion preparations for enhanced drug delivery
US5490978A (en) * 1993-10-15 1996-02-13 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Block copolymers of polysaccharides and polyalkylene oxides
US5447712A (en) * 1993-12-09 1995-09-05 Free Radical Sciences Method of reducing cyclophosphamide induced hemorrhagic cystitis
US5458879A (en) * 1994-03-03 1995-10-17 The Procter & Gamble Company Oral vehicle compositions
US5541181A (en) * 1994-05-26 1996-07-30 Bristol-Myers Squibb Company Compound produced by a strain of micromonospora
US5597849A (en) * 1994-11-14 1997-01-28 Medical Polymer Technologies, Inc. Stick formulations for topical drug delivery of therapeutic agents and uses thereof
US6158491A (en) * 1994-12-23 2000-12-12 Cookson Group Plc Process for the corrosion protection of copper or copper alloys
US5939485A (en) * 1995-06-19 1999-08-17 Medlogic Global Corporation Responsive polymer networks and methods of their use
US6025326A (en) * 1995-07-07 2000-02-15 Intrabiotics Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of oral mucositis
US6150472A (en) * 1995-12-22 2000-11-21 Holland Biomaterials Group B.V. Multi-functional site containing polymers, and applications thereof
US6620428B1 (en) * 1996-04-23 2003-09-16 Pharmacia Ab Transdermally administered acetylcysteine as mucolytic agent
US5869029A (en) * 1996-06-21 1999-02-09 Hercules Incorporated Dispersible water-soluble or water-swellable polymers and process for making toothpastes containing them
US6797729B1 (en) * 1996-06-28 2004-09-28 Baxter International Inc. Therapeutic glutamine and N-actyl-cysteine composition
US6255502B1 (en) * 1996-07-11 2001-07-03 Farmarc Nederland B.V. Pharmaceutical composition containing acid addition salt of basic drug
US5861174A (en) * 1996-07-12 1999-01-19 University Technology Corporation Temperature sensitive gel for sustained delivery of protein drugs
US6790827B2 (en) * 1996-08-27 2004-09-14 University Of Utah Research Foundation Bioconjugates and delivery of bioactive agents
US6743422B1 (en) * 1996-10-15 2004-06-01 Amgen, Inc. Keratinocyte growth factor-2 products
US6562802B2 (en) * 1996-12-16 2003-05-13 Noviscens Ab Medical composition and uses thereof
US6166084A (en) * 1996-12-20 2000-12-26 Johnson & Johnson Medical, Ltd. Compositions for the treatment of chronic wounds
US6458373B1 (en) * 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6013632A (en) * 1997-01-13 2000-01-11 Emory University Compounds and their combinations for the treatment of influenza infection
US6107281A (en) * 1997-01-13 2000-08-22 Nutri-Quest, Inc. Compounds and their combinations for the treatment of influenza infection
US6126930A (en) * 1997-02-13 2000-10-03 The Procter & Gamble Company Spray compositions
US5843881A (en) * 1997-02-13 1998-12-01 The Procter & Gamble Company Spray compositions
US20020198161A1 (en) * 1997-02-20 2002-12-26 Douglas E. Brash Therapeutic uses of antioxidants
US5904927A (en) * 1997-03-14 1999-05-18 Northeastern University Drug delivery using pH-sensitive semi-interpenetrating network hydrogels
US6197331B1 (en) * 1997-07-24 2001-03-06 Perio Products Ltd. Pharmaceutical oral patch for controlled release of pharmaceutical agents in the oral cavity
US6207703B1 (en) * 1997-10-22 2001-03-27 Jens Ponikau Methods and materials for treating and preventing inflammation of mucosal tissue
US6291500B2 (en) * 1997-10-22 2001-09-18 Jens Ponikau Methods and materials for treating and preventing inflammation of mucosal tissue
US6511800B1 (en) * 1997-11-25 2003-01-28 Medical University Of South Carolina Methods of treating nitric oxide and cytokine mediated disorders
US6228347B1 (en) * 1997-12-01 2001-05-08 Thione International, Inc. Antioxidant gel for gingival conditions
US5994409A (en) * 1997-12-09 1999-11-30 U.S. Bioscience, Inc. Methods for treatment of neuro--and nephro--disorders and therapeutic toxicities using aminothiol compounds
US6468548B1 (en) * 1998-01-15 2002-10-22 Novartis Ag Autoclavable pharmaceutical compositions containing a chelating agent
US7033606B1 (en) * 1998-07-20 2006-04-25 Laboratoire L. Lafon Pharmaceutical composition intended in particular for the prevention and the treatment of radiomucositis and chemomucositis
US6323189B1 (en) * 1998-07-30 2001-11-27 E-Nutriceuticals, Inc. Chitosan-containing liquid compositions and methods for their preparation and use
US6316011B1 (en) * 1998-08-04 2001-11-13 Madash, Llc End modified thermal responsive hydrogels
US6319513B1 (en) * 1998-08-24 2001-11-20 The Procter & Gamble Company Oral liquid mucoadhesive compounds
US6231889B1 (en) * 1998-09-21 2001-05-15 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US5945089A (en) * 1998-11-05 1999-08-31 I-Dent International Corporation Method of treating mucositis
US20030229141A1 (en) * 1999-01-08 2003-12-11 Yu Ruey J. N-acetyl cysteine and its topical use
US6350785B2 (en) * 1999-01-08 2002-02-26 Maxim Pharmaceuticals, Inc. Methods and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US20020095001A1 (en) * 1999-01-08 2002-07-18 Gehlsen Kurt R. Methods and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US6159485A (en) * 1999-01-08 2000-12-12 Yugenic Limited Partnership N-acetyl aldosamines, n-acetylamino acids and related n-acetyl compounds and their topical use
US20010018059A1 (en) * 1999-01-08 2001-08-30 Gehlsen Kurt R. Methods and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US6194382B1 (en) * 1999-03-03 2001-02-27 Albert Einstein College Of Medicine Of Yeshiva University Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists
US6297337B1 (en) * 1999-05-19 2001-10-02 Pmd Holdings Corp. Bioadhesive polymer compositions
US6117415A (en) * 1999-06-17 2000-09-12 Alpharx Inc. Toothpaste comprising bioadhesive submicron emulsion for improved delivery of antibacterial and anticaries agents
US6309663B1 (en) * 1999-08-17 2001-10-30 Lipocine Inc. Triglyceride-free compositions and methods for enhanced absorption of hydrophilic therapeutic agents
US6391860B1 (en) * 1999-09-09 2002-05-21 Mcgrath Patrick D. Method for preparation and use of paste formed by controlled reaction of sucralfate with hydrochloric acid
US6503955B1 (en) * 1999-09-11 2003-01-07 The Procter & Gamble Company Pourable liquid vehicles
US6258342B1 (en) * 1999-11-03 2001-07-10 Hercules Incorporated Process for making toothpaste using agglomerated dispersible polymers
US6432415B1 (en) * 1999-12-17 2002-08-13 Axrix Laboratories, Inc. Pharmaceutical gel and aerosol formulations and methods to administer the same to skin and mucosal surfaces
US20010025027A1 (en) * 2000-03-07 2001-09-27 Sonis Stephen T. Inhibition of ceramide for the prevention and treatment of oral mucositis induced by antineoplastic drugs or radiation
US6663850B2 (en) * 2000-03-07 2003-12-16 Mucosal Therapeutics, Llc Inhibition of ceramide for the prevention and treatment of oral mucositis induced by antineoplastic drugs or radiation
US20030176359A1 (en) * 2000-04-26 2003-09-18 Neuwelt Edward A. Administration of a thiol-based chemoprotectant compound
US20060177523A1 (en) * 2000-04-26 2006-08-10 Oregon Health & Science University Administration of a thiol-based chemoprotectant compound
US6565895B2 (en) * 2000-06-08 2003-05-20 Geltex Pharmaceuticals, Inc. Bismuth compounds for the treatment and prevention of mucositis
US20020013331A1 (en) * 2000-06-26 2002-01-31 Williams Robert O. Methods and compositions for treating pain of the mucous membrane
US6509028B2 (en) * 2000-06-26 2003-01-21 Epicept Corporation Methods and compositions for treating pain of the mucous membrane
US6479068B1 (en) * 2000-06-30 2002-11-12 Baxter International Inc. Therapeutic nutrient regimen for alleviating mucositis, stomatitis and cachexia in oncology patients
US6685917B2 (en) * 2000-11-22 2004-02-03 Rxkinetix, Inc. Treatment of mucositis
US20020168334A1 (en) * 2001-02-15 2002-11-14 Jacob Jeremy E. Liquid formulations for the prevention and treatment of mucosal diseases and disorders
US6623754B2 (en) * 2001-05-21 2003-09-23 Noveon Ip Holdings Corp. Dosage form of N-acetyl cysteine
US20030064913A1 (en) * 2001-08-16 2003-04-03 Sonis Stephen T. Treatment and prevention of mucositis in cancer patients
US6841578B2 (en) * 2001-08-16 2005-01-11 Stephen T. Sonis Treatment and prevention of mucositis in cancer patients
US20040062764A1 (en) * 2001-08-30 2004-04-01 Neuwelt Edward A Chemoprotectant for gastric toxicity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729050B2 (en) 2007-12-08 2014-05-20 Euphora Ltd. Method for prevention and treatment of reflux injury in the aerodigestive tract and laryngopharynx caused by pepsin
US11413375B2 (en) 2014-03-21 2022-08-16 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for preparation of a terminally sterilized hydrogel derived from extracellular matrix
US12005158B2 (en) 2014-03-21 2024-06-11 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for preparation of a terminally sterilized hydrogel derived from extracellular matrix
US10239847B1 (en) 2016-03-03 2019-03-26 Cellactin Method for 2-oxothiazolidine-4-carboxylic acid for cellular glutathione
US11213545B2 (en) * 2017-03-02 2022-01-04 University of Pittsburgh—of the Commonwealth System of Higher Education ECM hydrogel for treating esophageal inflammation

Also Published As

Publication number Publication date
DE60117043D1 (en) 2006-04-13
EP1343492A2 (en) 2003-09-17
US20070071824A1 (en) 2007-03-29
AU2002239342A1 (en) 2002-06-03
BRPI0115531B1 (en) 2015-10-13
DE60117043T2 (en) 2006-07-13
JP4822652B2 (en) 2011-11-24
US6685917B2 (en) 2004-02-03
EP1343492B1 (en) 2006-02-01
EP1609468A2 (en) 2005-12-28
EP1343492A4 (en) 2004-05-06
DK1343492T3 (en) 2006-03-06
BR0115531A (en) 2004-02-03
ATE316786T1 (en) 2006-02-15
MXPA03004546A (en) 2003-09-10
JP2004513957A (en) 2004-05-13
EP1609468A3 (en) 2006-01-25
ES2254523T3 (en) 2006-06-16
WO2002041837A2 (en) 2002-05-30
WO2002041837A3 (en) 2003-03-06
US20020119104A1 (en) 2002-08-29
US20040141949A1 (en) 2004-07-22
US20070014861A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US6685917B2 (en) Treatment of mucositis
AU2006320538B2 (en) Treatment of xerostomia with a sulfur-containing antioxidant
EP1363600B1 (en) Liquid formulations for the prevention and treatment of mucosal diseases and disorders
US20070264289A1 (en) Compositions and methods of administering doxepin to mucosal tissue
AU670094B2 (en) Bioadhesive solid mineral oil emulsion
US20050287181A1 (en) Phospholipid gel compositions for drug delivery and methods of treating conditions using same
US20080306133A1 (en) Intranasal administration of asenapine and pharmaceutical compositions therefor
TW201110961A (en) Ophthalmic composition
US6913759B2 (en) Gel composition and method for treatment of vaginal infections
US11129896B2 (en) Topical formulations and treatments
TW201720450A (en) Ophthalmic composition
AU2003265624B2 (en) Liquid formulations for the prevention and treatment of mucosal diseases and disorders
KR20100092016A (en) Compositions and methods for the treatment of bladder cancer
JP5572110B2 (en) Liquid formulations for prevention and treatment of mucosal diseases and disorders
US11903992B2 (en) Composition comprising lidocaine, l-carnosine and dexpanthenol
JP7191515B2 (en) ophthalmic composition
US20040131686A1 (en) Composition and method for treatment of bacterial vaginal infections
CN112972481A (en) Pharmaceutical composition, preparation method and application thereof
WO2022157587A1 (en) A composition comprising lidocaine, l-carnosine and dexpanthenol

Legal Events

Date Code Title Description
AS Assignment

Owner name: RXKINETIX, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSENTHAL, GARY J.;ETTER, JEFFREY B.;RODELL, TIMOTHY C.;AND OTHERS;REEL/FRAME:018345/0367;SIGNING DATES FROM 20020121 TO 20020122

AS Assignment

Owner name: ENDO PHARMACEUTICALS COLORADO, INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:RXKINETIX, INC.;REEL/FRAME:023312/0771

Effective date: 20061012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION