Nothing Special   »   [go: up one dir, main page]

US20060274954A1 - Image processing apparatus - Google Patents

Image processing apparatus Download PDF

Info

Publication number
US20060274954A1
US20060274954A1 US11/503,905 US50390506A US2006274954A1 US 20060274954 A1 US20060274954 A1 US 20060274954A1 US 50390506 A US50390506 A US 50390506A US 2006274954 A1 US2006274954 A1 US 2006274954A1
Authority
US
United States
Prior art keywords
image data
gray scale
data
scale value
pixel position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/503,905
Inventor
Hideaki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/503,905 priority Critical patent/US20060274954A1/en
Publication of US20060274954A1 publication Critical patent/US20060274954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding

Definitions

  • the present invention relates to an image processing apparatus which combines various predetermined data such as image data, character data and voice data or the like with original image data to generate combined image data and separates the various predetermined data from the combined image data.
  • LAN Local Area Network
  • Internet Internet or the like by digitalization of multimedia data such as an image or a voice or the like.
  • Contents business draws people's attention as business utilizing a network.
  • Contents business is a business which directly transmits digital data such as an image, a music, a video or the like to a consumer via a network.
  • E-commerce by which commercial products are dealt with on the network makes commerce of the commercial products more efficient, but the e-commerce requires transporting means such as a truck or the like to be used for delivering the commercial products when the commercial products in themselves are corporeal.
  • the contents business does not require the transporting means since the commercial products in themselves are delivered to the consumer via the network. Consequently, pioneering a new business making full use of such feature as mentioned above is expected.
  • the electronic watermark relates to technique for utilizing feature of human perception such as visual perception and auditory perception or the like and embedding different predetermined data from digital contents in themselves such as a still image, a motion image and audio or the like into the digital contents so that it is difficult for a man to perceive the different predetermined data.
  • the electronic watermark cannot directly prevent the illegal copy, but can indirectly prevent the illegal copy by restraining the illegal copy (e.g. as referred to Japanese Unexamined Patent Publication JP-A 2000-106624 (2000)).
  • predetermined data is embedded in low-order bit of a gray scale value of original image data as a simple method of embedding the predetermined data in the original image data.
  • a sampling point sampled at the time of digitalizing an image is called a pixel.
  • This pixel becomes a minimum unit configuring a digital image.
  • each pixel is either white or black and therefore, each pixel has two gray scales and the two gray scales can be represented as one bit by allocating a gray scale values 0 to white and allocating a gray scale value 1 to black.
  • the gray scale of the pixel is increased.
  • the gray scale value of the color image is often represented as 8 bits in view of easiness of handling the gray scale value on a computer.
  • a cone which is a color sensitive organ in a human's eye consists of three kinds L, M and S (color space for 3 primary colors)
  • three values are required for representing a plurality of colors, but, in other words, existence of the three values is sufficient to represent the plurality of colors.
  • Changing the three gray scale values of red (R), green (G) and blue (B) enables various kinds of colors to be displayed on a display. Therefore, a color image is represented by 8 bit concerning each of RGB.
  • the low-order about 2 bit of the gray scale value of the color image generally and originally means noise, and therefore, even if the predetermined data is embedded in this low-order bit, there is less deterioration of quality of the color image in the case of small amount of the predetermined data.
  • a method for realizing electronic watermark actually is more sophisticated and retrieving the predetermined data embedded in the original image data cannot be easily performed, and deterioration of quality of the color image is inevitably accompanied.
  • the method for realizing electronic watermark should be an embedding method having good endurance for compression, in other words, a method by which the embedded predetermined information can be retrieved when the whole of the image data is encoded and then decoded.
  • a method of compression encoding comprises lossless compression and lossy compression.
  • the lossless compression is conversion by which data decompressed after compression of the data perfectly coincides with data having existed before compression of the data.
  • the lossy compression is conversion by which data decompressed after compression of the data perfectly does not coincide with data having existed before compression of the data and once the compressed data is not perfectly returned.
  • a compression ratio is enhanced by leaving information on a part of the display which is sensitively recognized by a human's eye and eliminating information especially on a part of the display which is more insensitively recognized by the human's eye.
  • the lossy compression uses transform encoding, for instance, with use of discrete cosine transform (abbreviated as “DCT”) and wavelet transform or the like.
  • DCT discrete cosine transform
  • wavelet transform wavelet transform or the like.
  • DCT discrete cosine transform
  • JPEG Joint Photographic coding Expert Group
  • JPEG2000 wavelet transform is used for transform encoding.
  • the predetermined data when the predetermined data is written in the header and the control signal of the code, deterioration of the quality of the image can be avoided, but there is a problem that the predetermined data can be simply retrieved and an illegal copy of the original image data can be easily made because the predetermined data is written separately from the original image data.
  • An object of the invention is to provide an image processing apparatus capable of combining predetermined data with original image data and without incurring deterioration of quality of a resultant image, and preventing illegal copying of the original image data by making retrieval of the combined predetermined data difficult.
  • Another object of the invention is to provide an image processing apparatus applicable to easy confirmation of the predetermined data which is combined with the original image data under difficult condition of retrieving the predetermined data.
  • the invention provides an image processing apparatus comprising:
  • encoding means for encoding the combined image data generated by the data combining means.
  • the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the lower limit.
  • predetermined data for example, such as image data, music data and character data or the like are combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such away that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data.
  • the combined image data is generated.
  • the gray scale of the original image data is R (R is a positive integer equal to or more than 2)
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the data combining means combines the predetermined data with the original image data on a pixel position with the lower limit gray scale value 0 and thereby the gray scale value of the combined image data on this pixel position becomes a negative integer.
  • the predetermined data is combined outside the extent of the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image.
  • the predetermined data is combined outside the extent of the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • the predetermined data since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • the invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease, and generating decoded combined image data;
  • the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is smaller than the lower limit.
  • the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data.
  • predetermined data for example, such as image data, music data and character data or the like
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the data separating means separates the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value 0 in the direction of gray scale value decrease from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • the invention provides an image processing apparatus comprising:
  • encoding means for encoding the combined image data generated by the data combining means.
  • the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the upper limit.
  • predetermined data for example, such as image data, music data and character data or the like are combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data.
  • the combined image data is generated.
  • the gray scale of the original image data is R (R is a positive integer equal to or more than 2)
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the data combining means combines the predetermined data with the original image data on the pixel position with the gray scale value equal to R-1 (upper limit) and thereby the gray scale value of the combined image data on this pixel position becomes a value greater than R- 1 .
  • image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image.
  • the predetermined data is combined outside the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • the predetermined data since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • the invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data;
  • the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is greater than the upper limit.
  • the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data.
  • predetermined data for example, such as image data, music data and character data or the like
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the data separating means separates the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value R-1 in the direction of gray scale value increase from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • the invention provides an image processing apparatus comprising:
  • encoding means for encoding the combined image data generated by the data combining means.
  • the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the upper limit or the lower limit.
  • a part of predetermined data for example, such as image data, music data and character data or the like is combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data and the remaining part of predetermined data, for example, such as image data, music data and character data or the like is combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data.
  • the combined image data is generated.
  • the gray scale of the original image data is R (R is a positive integer equal to or more than 2)
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the data combining means combines the predetermined data with the original image data on the pixel position with the lower limit gray scale value 0 and thereby the gray scale value of the combined image data on this pixel position becomes a negative integer.
  • the data combining means combines the predetermined data with the original image data on the pixel position with the gray scale value equal to R-1 (upper limit) and thereby the gray scale value of the combined image data on this pixel position becomes a value greater than R-1.
  • the predetermined data is combined outside the extent of the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image.
  • the predetermined data is combined outside the extent of the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • the predetermined data since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • the invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding the combined image data which is generated by combining a part of predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease and combining a remaining part of predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data;
  • the data separating means comprises a judging portion for judging whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit and smaller than the lower limit.
  • the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining a part of predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data and by combining the remaining part of predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data.
  • the gray scale of the original image data is R (R is a positive integer equal to or more than 2)
  • the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit
  • the data separating means separates a part of the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value 0 in the direction of gray scale value decrease and a remaining part of the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value R-1 in the direction of gray scale value increase from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic water mark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • the predetermined data is combined outside the extent of the gray scale of the original image data
  • image data having the gray scale value within the extent from the upper limit to the lower limit of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image.
  • the predetermined data is combined outside the gray scale of the original image data, a user never perceives this predetermined data.
  • the predetermined data can be embedded in the original data so that the predetermined data cannot be perceived by a user and there is no deterioration of quality of the image to be displayed on display means even in the case of the predetermined data embedded in the original data.
  • a user since a user never perceives this predetermined data, it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • the predetermined data since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data outside the extent of the gray scale of the original image data.
  • predetermined data for example, such as image data, music data and character data or the like
  • the gray scale value of each pixel is represented by one of positive integers ranging from the lower limit 0 to the upper limit R-1.
  • the data separating means separates the predetermined data combined outside the extent of the gray scale of the original image data from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • FIG. 1 is a block diagram showing configuration of an image processing apparatus according to one embodiment of the invention
  • FIG. 2 is a view showing an example of predetermined data
  • FIG. 3 is a view showing an example of original image data
  • FIG. 4 is a view showing an example of combined image data
  • FIG. 5 is a view showing an example of decoded combined image data
  • FIG. 6 is a view showing an example of decoded predetermined data
  • FIG. 7 is a view showing an example of decoded image data
  • FIG. 8 is a block diagram showing an image decoding apparatus provided with a clipping portion
  • FIGS. 9A to 9 C are views showing aspect of processing of clipping gray scale value equal to or more than R to R-1 in connection with noise of decoded image data, when the original image data whose basic color is white includes stair-like edges, which noise arises around the edges;
  • FIG. 10 is a view showing an example of original image data
  • FIG. 11 is a view showing an example of combined image data generated by combining predetermined data with the original image data
  • FIG. 12 is a view showing an example of decoded combined image data
  • FIG. 13 is a view showing an example of decoded image data
  • FIG. 14 is a view showing an example of the original image data
  • FIG. 15 is a view showing an example of combined image data generated by combining predetermined data with the original image data
  • FIG. 16 is a view showing an example of decoded combined image data
  • FIG. 17 is a view showing an example of the decoded image data.
  • FIG. 1 is a block diagram showing configuration of an image processing apparatus 10 according to one embodiment of the invention.
  • An image processing apparatus 10 comprises an image encoding apparatus 12 and an image decoding apparatus 13 .
  • the image encoding apparatus 12 comprises a color converting portion 14 as color converting means, a data combining portion 15 as data combining means and an encoding portion 16 as encoding means.
  • the color converting portion 14 converts color space of the original image data 1 represented, for instance, in red (R), green (G) and blue (B) to brightness and two color differences.
  • RGB red
  • G green
  • B blue
  • YCbCr is used for a digital camera and a TV camera
  • CIELAB is used for a color facsimile.
  • Such color system of the color space as mentioned above is different depending on an application program loaded on the image processing apparatus.
  • the difference of color system is not essential and a technique of color converting defined by International Standard can be used.
  • the data combining portion 15 combines predetermined data 2 with the original image data 1 on the pixel position with an upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data 2 is greater than the upper limit gray scale value of the original image data 1 and generates combined image data.
  • the data combining portion 15 comprises a judging portion 17 .
  • the judging portion 17 judges whether or not the gray scale value on the position of each pixel of the original image data 1 is of the upper limit. When the judging portion 17 judges that the gray scale value on the pixel position of the original image data 1 is of the upper limit, the data combining portion 15 combines the predetermined data 2 with the original image data 1 on this position of the pixel.
  • the gray scale value of the original image 1 is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • the upper limit R-1 is and the lower limit is 0.
  • the predetermined data 2 is combined with at least one of components of brightness, hue and color difference of the original image data 1 .
  • the predetermined data 2 is combined with the component of brightness of the original image data 1 .
  • the predetermined data 2 is defined as image data.
  • the predetermined data 2 is added to the gray scale value, which is data, of the original image data 1 .
  • data represented in binary can be allowed.
  • the gray scale value of the original image data 1 is represented in 8 bits
  • the upper limit gray scale value is represented as 11111111 in binary.
  • the predetermined data 2 is represented as 11 in binary
  • the gray scale value of the combined image data is 100000011 in binary.
  • the predetermined data 2 may be music data, character data or the like, and further encoded image data, encoded music data and encoded character data or the like.
  • the gray scale value of the predetermined data 2 is defined as D
  • the gray scale value of the combined image data generated by the data combining portion 15 by combining the predetermined data 2 with the original image data 1 is defined as G
  • the data combining portion 15 generates the combined image data by using the following equations (1) and (2).
  • the gray scale value R equal to 256 corresponding to 8 bits is used.
  • G F (0 ⁇ F ⁇ R -1) (1)
  • FIG. 2 is a view showing an example of the predetermined data 2
  • FIG. 3 is a view showing an example of the original image data 1
  • FIG. 4 is a view showing an example of the combined image data 4 .
  • a vertical axis designates the gray scale value
  • a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on the pixel position 0 is D 1
  • the gray scale value on the pixel position X 1 is D 2
  • the gray scale value on the pixel position X 2 is D 1
  • the gray scale values on the left side from the pixel position X 3 are equal to and more than 0 and less than R-1 and the gray scale values on the right side from the pixel position X 3 are R-1.
  • the data combining portion 15 adds the gray scale value of the predetermined data 2 shown in FIG. 2 to the gray scale value of each pixel of the original image data 1 within the extent from the pixel position X 3 corresponding to the gray scale value R-1 shown in FIG. 3 to a pixel position X 2 +X 3 , to generate the combined image data 4 shown in FIG. 4 .
  • the gray scale values of the combined image data 4 on the pixel positions X 3 , X 1 +X 3 and X 2 +X 3 become (R-1)+D 1 , (R-1)+D 2 and (R-1)+D 1 , respectively.
  • the predetermined data 2 is combined with the original image data 1 on a plurality of pixel positions.
  • the predetermined data 2 is divided and is combined with the original image data 1 on each pixel position.
  • the predetermined data 2 may be combined with the original image data 1 on a single pixel position.
  • Processing performed by the data combining portion 15 is simple processing of adding the gray scale value of the predetermined data 2 to the gray scale value of the original image data 1 . Consequently, the data combining portion 15 can perform processing of combining the predetermined data 2 with the original image data 1 and generating the combined image data in a short period of time.
  • the encoding portion 16 encodes the combined image data generated by the data combining portion 15 and generates encoded combined image data 22 .
  • the encoding portion 16 comprises a frequency converting portion 18 , a quantizing portion 19 , an entropy encoding portion 20 and a bit stream generating portion 21 .
  • the frequency converting portion 18 converts the frequency of the combined image data given from the data combining portion 15 and outputs a frequency component. By performing frequency conversion, a conversion coefficient representing the same number of the frequency components as the number of pixels is obtained. Since one pixel is represented in 8-bit prior to the frequency conversion, for instance, with use of discrete cosine transform (abbreviated as “DCT”) as frequency conversion, each conversion coefficient can be represented by a 11-bit integer on condition that the conversion coefficient is rounded off after the decimal point. Either wavelet transform or discrete sine transform (abbreviated as “DST”) may be used except DCT as frequency conversion.
  • DCT discrete cosine transform
  • the frequency converting portion 18 even if more than 8-bit value is given as the gray scale value of the image, it is required that frequency conversion is correctly calculated. However, as mentioned above, since there is a case in which more than 8-bit value is given as the value calculated by frequency conversion takes, more than 8-bit memory variable is already secured for a value to be input in many mounting circuits. Consequently, the frequency converting portion 18 can be realized by a general frequency converting circuit.
  • the quantizing portion 19 quantizes the combined image data which is converted to frequency area given from the frequency converting portion 18 .
  • a low frequency component is quantized finely and a high frequency component is quantized coarsely and thereby an amount of data is reduced. This utilizes a fact that image quality is not so much lowered because a human's eye is insensitive to the high frequency component even if accuracy of the high frequency component is lowered.
  • quantizing the value is performed with use of a quantizing table representing a width of a quantizing step.
  • the entropy encoding portion 20 assigns a code to the frequency component quantized in the quantizing portion 19 so that information entropy will become small.
  • the entropy encoding portion 20 assigns a variable length code corresponding to appearance probability of a symbol and minimizes an average code length of data to be output.
  • the entropy encoding portion 20 assigns a code, for instance, a Huffman code and simultaneously generates an encoding table indicating the assigned code.
  • the bit stream generating portion 21 allocates parameters such as the quantizing table used in the quantizing portion 19 and the encoding table used in the entropy encoding portion 20 or the like to a position complying with a regulation predetermined in advance and generates the encoded image data 22 .
  • the regulation predetermined in advance has difference depending on an encoding method.
  • the encoded image data 22 comprises all information such as a size of the image and the quantizing table or the like required for decoding the original image.
  • the encoded image data 22 output by the image encoding apparatus 12 is stored in the a storing medium 23 via a communication line or the like and then is retrieved to be input in the image decoding apparatus 13 .
  • the image decoding apparatus 13 comprises a decoding portion 24 as decoding means, a data separating portion 25 as data separating means and a color converting portion 26 as color converting means.
  • the decoding portion 24 decodes the encoded image data 22 encoded by the above mentioned image encoding apparatus 12 and generates decoded image data represented by brightness and color difference.
  • the decoding portion 24 comprises a bit stream developing portion 27 , an entropy decoding portion 28 , a reverse quantizing portion 29 and a reverse frequency converting portion 30 .
  • the bit stream developing portion 27 retrieves the parameters such as the quantizing table and the encoding table which are required for decoding the encoded image data 22 from the encoded image data 22 .
  • the entropy decoding portion 28 decodes the coded image data given from the bit stream developing portion 27 by using the encoding table generated in the entropy encoding portion 20 , to a quantized frequency component.
  • the reverse quantizing portion 29 reversely quantizes the quantized frequency component given from the entropy decoding portion 28 .
  • the reverse quantizing portion 29 decodes the frequency component by using the parameter (i.e. in this case the quantized table used in the quantizing portion 19 ) retrieved in the bit stream developing portion 27 .
  • the reverse frequency converting portion 30 returns the frequency component given from the reverse quantizing portion 29 to the gray scale value and generates decoded combined image data.
  • the reverse frequency converting portion 30 performs reverse DCT, for instance when the frequency converting portion 18 performs DCT.
  • the data separating portion 25 separates the predetermined data 2 which is combined with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase from the decoded combined image data given from the reverse frequency converting portion 30 .
  • the data separating portion 25 separates the decoded original data 1 and the decoded predetermined data 2 .
  • the decoded original data 1 is hereinafter called decoded image data 3 .
  • the gray scale value of the original image data 1 is a positive integer ranging from 0 to R-1.
  • the upper limit is R-1 and the lower limit is 0.
  • the data separating portion 25 comprises a judging portion 31 .
  • the judging portion 31 judges whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit.
  • the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • the judging portion 31 judges whether or not the gray scale value on each pixel position of this original image data is greater than the upper limit by turns in a line direction and judges each pixel on a position which is one-row shifted in a row direction by turns after judgment on one line is finished.
  • the gray scale value of the decoded combined image data is defined as G′ and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′
  • the gray scale of the decoded image data 3 ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data 2 and the decoded image data 3 from the decoded combined image data by using the following equations (3) and (4).
  • the gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
  • F′ G ′(0 ⁇ G′ ⁇ R -1) (3)
  • F′ R -1
  • D′ G ′ ⁇ ( R -1) ( G′ ⁇ R -1) (4)
  • data on a pixel position with the gray scale value equal to or more than 0 and less than R-1 is defined as the gray scale value of the decoded image data 3 as it is and data on a pixel position with the gray scale value equal to or more than R-1 is defined as the gray scale value R-1 of the decoded image data 3 .
  • the data is defined as the decoded predetermined data 2 .
  • F is nearly equal to F′ (F ⁇ F′)
  • G is nearly equal to G′ (G ⁇ G′)
  • D is nearly equal to D′ (D ⁇ D′).
  • the decoded image data 3 which is decoded by the decoding portion 24 and is separated by the data separating portion 25 does not accurately coincide with the original image data 1 , but the quantizing table determining a quantizing step is set so that difference between the decoded image data 3 and the original image data 1 will be within an extent of incapability of judging the difference even with use of a human's eye.
  • FIG. 5 is a view showing an example of the decoded combined image data 5
  • FIG. 6 is a view showing an example of decoded predetermined data 2
  • FIG. 7 is a view showing an example of decoded image data 3 .
  • a vertical axis designates the gray scale value
  • a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on the pixel position X 3 is (R-1)+D 1 ′
  • the gray scale value on the pixel position (X 1 +X 3 ) is (R-1)+D 2 ′
  • the gray scale value from the pixel position X 3 to the pixel position (X 1 +X 3 ) is greater than R-1.
  • the data separating portion 25 subtracts R-1 from the gray scale value from the pixel position X 3 to the pixel position (X 1 +X 3 ) on which the gray scale value of the encoded combined image data 5 is greater than R-1 as shown in FIG. 5 and thereby can separate the decoded predetermined data 2 as shown in FIG. 6 , and defines the gray scale value on the pixel on the right side from the pixel position X 3 as R-1 and thereby can separate the decoded image data 3 as shown in FIG. 7 .
  • the gray scale values on the pixel positions 0, X 1 and X 2 of the decoded predetermined data 2 are D 1 ′, D 2 ′ and D 3 ′, respectively.
  • the predetermined data 2 Since the predetermined data 2 is combined with the original data 1 and then frequency conversion is performed for the predetermined data 2 and the predetermined data 2 is quantized, the predetermined data 2 does not perfectly coincide with the encoded predetermined data 2 . Therefore, when the predetermined data 2 is utilized as the electronic watermark, care should be taken. However, since the predetermined data 2 cannot be retrieved only after the encoded image data 22 is decoded, it is difficult to retrieve the predetermined data 2 in comparison with a case where the predetermined data is added to a header or the like of the encoded image data and thereby an illegal copy can be restrained.
  • the color converting portion 26 converts the color space represented by the brightness and the color differences of the decoded image data to color space of a display device and thereby an image can be displayed on the display device.
  • RGB is used.
  • CMYK consisting of cyan (C), magenta(M), yellow (Y), black (K) or the like is used.
  • the gray scale value is a positive integer ranging from 0 to R-1.
  • a 8-bit value 256 is generally used for the gray scale and therefore this value 256 is also defined as the gray scale in the embodiment of the invention. Since there is occurrence of an error arises because of frequency conversion and quantization in the case of lossy encoding of JPEG, JPEG2000 or the like, there is a case where the gray scale value deviates from the extent of the gray scale when the image is decoded. In other words, there is a case where the gray scale value becomes a negative value, i.e., a value smaller than 0 or a value greater than R-1.
  • the gray scale value of the image data should fit in the extent of the gray scale and therefore, in the decoded side, the frequency component is returned to the gray scale value and then a part exceeding the extent of the gray scale is omitted.
  • the gray scale is 8-bit
  • a minus gray scale value and the gray scale value more than 256 are defined as 0 and 255 respectively and thereby a final gray scale of the image fits in 8-bit. This processing is called clipping.
  • FIG. 8 is a block diagram showing an image decoding apparatus 36 provided with clipping portion 35 that executes the clipping.
  • the components that play the same or corresponding roles as the image decoding apparatus 13 of the image processing apparatus 10 shown in the above-mentioned FIG. 1 will be identified with the same reference symbols, and detailed descriptions will be omitted.
  • FIGS. 9A to 9 C are views showing aspect of processing of clipping gray scale value equal to or more than R to R-1 in connection with noise of decoded image data, when the original image data whose basic color is white includes stair-like edges, which noise arises around the edges.
  • Such processing of clipping as mentioned above finally enables only noise with pixel value becoming less than R-1 to be visible.
  • gray scale value of image data on the basic color deviating from the extent of the gray scale before encoding the image data
  • a width of the gray scale shifted on the basic color is greater than a width of a gray scale of noise, almost all noise disappears by processing of clipping the noise as shown in FIG. 9C .
  • the clipping portion 35 as clipping means enables the decoded image data 3 to be displayed from the decoded combined image data on the display means by clipping the gray scale value more than R-1. Consequently, the encoded image data 22 encoded by the above-mentioned image encoding apparatus 12 is decoded and the decoded image can be also displayed on the display means of this image decoding apparatus 36 .
  • the image processing apparatus 10 actively utilizes a case where the gray scale value of the pixel exceeds the extent of the gray scale at the time of decoding the image data and combines the predetermined data 2 with a part exceeding the extent of the gray scale before encoding the image data.
  • the gray scale value of the pixel exceeding the extent of the gray scale disappears by using the clipping portion 35 , but in the image decoding apparatus 13 shown in FIG. 1 separates a part exceeding the extent of the gray scale of the decoded combined image data 5 as the predetermined data 2 .
  • the image decoding apparatus 13 can retrieve the predetermined data 2 combined with the original image data 1 and for instance, when the predetermined data 2 is used as an electronic watermark, the image decoding apparatus 13 can confirm the predetermined data 2 to be combined with the original image data 1 and representing the author or the like.
  • the predetermined data 2 is combined outside the extent of the gray scale of the original image data 1 in the image processing apparatus 10 , data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data 2 is only the original image data 1 . Consequently, when the combined image data with the predetermined data 2 is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data 1 visible and there is no deterioration of the quality of the combined image.
  • the predetermined data 2 is combined outside the extent of the gray scale of the original image data 1 , the user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data 1 can be prevented. Consequently, the predetermined data 2 can be effectively utilized as the electronic watermark.
  • an image processing apparatus may be so configured that a sub sampling portion is provided between the color converting portion 14 and the data combining portion 15 and an up sampling portion is provided between the data separating portion 25 and the color converting portion 26 .
  • the sub sampling portion resolution of brightness is maintained as it is and resolution of the color difference is lowered.
  • the sub sampling adopts a method in which sampling is performed vertically and horizontally and one pixel of the color difference is made adapted to four pixels of the brightness or a method in which sampling is performed only horizontally and one pixel of the color difference is made adapted to two pixels of the brightness. Sampling may use mean of pixels instead of only pixel skipping.
  • the up sampling portion returns the resolution of the color difference to an original resolution, i.e., the same resolution as that of brightness.
  • the up sampling adopts a method in which the same pixel is copied to four pixel positions of the color difference, and a method in which interpolation is performed or the like, in the case where two pixels of the color difference are adapted to the four pixels of the brightness.
  • an amount of data of the encoded combined image data 22 can be reduced.
  • the original data 1 may be handled without color conversion and an image processing apparatus may be so configured that the data combining portion 15 combines the predetermined data 2 with at least one of components of red (R), green (G) and blue (B) of the original data 1 .
  • An image processing apparatus in another additional embodiment of the invention has the same configuration as the image processing apparatus 10 shown in the above mentioned FIG. 1 has and there is difference in only processing of the data combining portion 15 and the data separating portion 25 .
  • the data combining portion 15 of the embodiment of the invention combines the predetermined data 2 with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the lower limit gray scale value of the original image data 1 and generates combined image data.
  • the data separating portion 25 separates the predetermined data 2 combined with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, from the decoded combined image data.
  • the judging portion 17 of the data combining portion 15 judges whether or not the gray scale value on each pixel position of the original image data 1 is of the lower limit. When the judging portion 17 judges that the gray scale value on the pixel position of the original image data 1 is of the lower limit 0, the data combining portion 15 combines the predetermined data 2 with the image data 1 on this position of the pixel.
  • the gray scale value of the predetermined data 2 is defined as D
  • the gray scale value of the combined image data generated by the data combining portion 15 combining the predetermined data 2 with the original image data 1 is defined as G
  • the extent of the gray scale of the original data 1 ranges from 0 to R-1
  • the data combining portion 15 generates the combined image data by using the following equations (5) and (6).
  • the gray scale value R equal to 256 corresponding to 8 bits is used.
  • the gray scale value of the original image data 1 is represented by a positive integer ranging from 0 to R-1.
  • G F (0 ⁇ F ⁇ R -1) (6)
  • the combined image data is obtained by subtracting the predetermined data 2 from data on a pixel position with the gray scale value 0 of the original image data 1 , and by maintaining the original image data 1 on a pixel position with the gray scale value more than 0 and equal to or less than R-1 as it is.
  • FIG. 10 is a view showing an example of original image data 1
  • FIG. 11 is a view showing an example of the combined image data 4 generated by combining the predetermined data 2 shown in FIG. 2 with the original image data 1
  • a vertical axis designates the gray scale value
  • a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on a position on the left side from the pixel position X 5 is more than 0 and equal to and less than R-1 and the gray scale value on a position on the right side from the pixel position X 5 is 0.
  • the data combining portion 15 generates the combined image data 4 shown in FIG. 11 by subtracting the gray scale value of the predetermined data 2 shown in FIG. 2 from the gray scale value of each pixel of the original image data 1 shown in FIG. 3 within the extent of the pixel position from X 5 corresponding to the gray scale value 0 shown in FIG. 10 to (X 2 +X 5 ).
  • the gray scale values of the combined image data 4 on the pixel positions X 5 , X 1 +X 5 and X 2 +X 5 become ⁇ D 1 , ⁇ D 2 and ⁇ D 1 , respectively.
  • the judging portion 31 of the data separating portion 25 judges whether or not the gray scale value on each pixel position of the decoded combined image data is smaller than the lower limit.
  • the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • the gray scale value of the decoded combined image data is defined as G 1 and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′
  • the gray scale of the decoded image data ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data and the decoded image data from the decoded combined image data by using the following equations (7) and (8).
  • the gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
  • F′ G ′(0 ⁇ G′ ⁇ R -1) (8)
  • decoded combined image data data on a pixel position with the gray scale value equal to or less than 0 corresponds to the decoded predetermined data 2 .
  • data on a pixel position with the gray scale value equal to or less than 0 is identified with the gray scale value 0 of the decoded image data, and data on a pixel position with the gray scale value more than 0 and equal to and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is.
  • FIG. 12 is a view showing an example of the decoded combined image data 5
  • FIG. 13 is a view showing an example of decoded image data 3
  • a vertical axis designates the gray scale value
  • a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value.
  • the left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on a position on the left side from X 5 is greater than 0 and the gray scale value from the pixel position X 4 to the pixel position (X 2 +X 5 ) is smaller than 0.
  • the data separating portion 25 changes a sign of the gray scale value from the pixel position X 5 to the pixel position X 2 +X 5 on which the gray scale value of the encoded combined image data 5 is smaller than 0, i.e. negative value, as shown in FIG. 12 and separates the predetermined data 2 as shown in FIG. 6 and defines the gray scale value on the pixel position on the right side from the pixel position X 5 as 0 and thereby can separate the decoded image data 3 as shown in FIG. 13 .
  • the image processing apparatus in another additional embodiment of the invention has the same configuration as the image processing apparatus 10 shown in the above mentioned FIG. 1 has and there is difference in only processing of the data combining portion 15 and the data separating portion 25 .
  • the data combining portion 15 combines a part of the predetermined data 2 with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the upper limit gray scale value of the original image data 1 , moreover the data combining portion 15 combines a remaining part of the predetermined data 2 with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the lower limit gray scale value of the original image data 1 and the data combining portion 15 generates combined image data.
  • the data separating portion 25 separates the part of the predetermined data 2 combined with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, from the decoded combined image data, and the data separating portion 25 also separates the remaining part of predetermined data 2 combined with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, from the decoded combined image data.
  • the judging portion 17 of the data combining portion 15 judges whether or not the gray scale value on each pixel position of the original image data 1 is of the upper limit or the lower limit.
  • the data combining portion 15 combines the predetermined data 2 with the image data 1 on this position of the pixel.
  • the gray scale value of the predetermined data 2 is defined as D
  • the gray scale value of the combined image data generated by the data combining portion 15 combining the predetermined data 2 with the original image data 1 is defined as G
  • the extent of the gray scale of the original data 1 ranges from 0 to R-1
  • the data combining portion 15 generates the combined image data by using the following equations (9), (10) and (11).
  • the gray scale value R equal to 256 corresponding to 8 bits is used.
  • the gray scale value of the original data is represented by a positive integer ranging from 0 to R-1.
  • G F (0 ⁇ F ⁇ R -1) (10)
  • the combined image data is obtained by maintaining data on a pixel position with the gray scale value equal to or more than 0 and less than R-1 of the original image data 1 corresponds to the combined image data as it is, and adding a part of the predetermined data 2 to data on a pixel position with the upper limit gray scale value R-1.
  • the combined image data is obtained by subtracting a part of the predetermined data 2 from data on a pixel position with the gray scale value 0 and maintaining the original image data 1 on a pixel position with the gray scale value more than 0 and equal to or less than R-1 as it is.
  • FIG. 14 is a view showing an example of original image data 1
  • FIG. 15 is a view showing an example of combined image data 4 generated by combining the predetermined data 2 shown in FIG. 2 with the original image data 1
  • a vertical axis designates the gray scale value
  • a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on a position on the left side from the pixel position X 6 is more than 0 and equal to and less than R-1 and the gray scale value on a pixel position from X 6 to X 7 is R-1 and the gray scale value which is on a position on the right side from the pixel position X 7 and on a position on the left side from the pixel position X 8 is greater than 0 and equal to and less than R-1 and the gray scale value on a position on the light side from the pixel position X 8 is 0.
  • the data combining portion 15 generates the combined image data shown in FIG. 11 by adding a part of the predetermined data 2 shown in FIG. 2 to the gray scale value of each pixel of the original image data 1 within the extent of the pixel position from X 6 corresponding to the gray scale value R-1 shown in FIG. 14 to X 7 and by subtracting the remaining part of the predetermined data 2 shown in FIG. 2 from each pixel on a position on the right side from the pixel position X 8 corresponding to the gray scale value 0 of the original image data 1 .
  • the pixel positions X 1 , X 6 and X 7 comply with the following inequality.
  • the judging portion 31 of the data separating portion 25 judges whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit and smaller than the lower limit.
  • the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • the gray scale value of the decoded combined image data is defined as G′ and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′
  • the extent of the gray scale of the decoded image data 3 ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data 2 and the decoded image data 3 from the decoded combined image data by using the following equations (12), (13) and (14).
  • the gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
  • the gray scale value on a pixel position with the gray scale value equal to or more than 0 and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is.
  • the gray scale value on a pixel position with the gray scale value equal to or more than R-1 is identified with the gray scale value R-1 of the decoded image data 3 .
  • the value subtracting the gray scale value R-1 from data on a pixel position with the gray scale value equal to or more than R-1 corresponds to a part of the decoded predetermined data 2 .
  • the gray scale value on a pixel position with the gray scale value equal to or less than 0 corresponds to the gray scale value of the decoded predetermined data 2 .
  • data on a pixel position with the gray scale value equal to or less than 0 is identified with the gray scale value 0 of the decoded image data, and the gray scale value on a pixel position with the gray scale value more than 0 and equal to and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is.
  • FIG. 16 is a view showing an example of the decoded combined image data 5 and FIG. 17 is a view showing an example of decoded image data 3 .
  • a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image.
  • the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater.
  • the gray scale value on a position on the left side from X 6 is greater than 0 and smaller than R-1
  • the gray scale value from the pixel position X 6 to the pixel position X 7 is greater than R-1
  • the gray scale value which is on a position on the right side from the pixel position X 7 and is on a position on the left side from the pixel position X 8 is greater than 0 and smaller than R-1
  • the gray scale value from the pixel position X 8 to the pixel position X 9 is smaller than 0.
  • the data separating portion 25 separates a part of the predetermined data 2 as shown in FIG. 6 by subtracting R-1 from the gray scale value greater than R-1 from the pixel position X 6 to the pixel position X 7 , and changes a sign of the gray scale value from the pixel position X 8 to the pixel position X 9 on which the gray scale value of the decoded image data 3 is smaller than 0 and separates the remaining part of the predetermined data 2 as shown in FIG. 6 .
  • the data separating portion 25 can separate the decoded image data 3 shown in FIG. 17 by identifying the gray scale value from the pixel position X 6 to the pixel position X 7 on which the gray scale value of the decoded image data 3 as shown in FIG. 16 is greater than R-1, with R-1 and identifying the gray scale value from the pixel position X 8 to the pixel position X 9 on which the gray scale value of the decoded image data 3 is smaller than 0, with 0.
  • the whole gray scale of the combined image data is made small and more data can be embedded in less number of bits in comparison with a case where the predetermined data 2 is combined with only original image data 1 with the gray scale value equal to the upper limit in the direction of gray scale value increase and a case where the predetermined data 2 is combined with only original image data 1 with the lower limit gray scale value in the direction of gray scale value decrease.
  • the encoded image data 22 generated by image encoding apparatus 12 mentioned above complies with format specified in JPEG and JPEG2000
  • an existing decoder for decoding JPEG and JPEG2000 can also decode the encoded image data 22 . Therefore, even when the image data is data with embedded predetermined data 2 , the image data can be handled similarly to image data without embedded predetermined data 2 .
  • the original image data may be either still image data or motion image data.
  • motion image data for instance in MPEG (Motion Picture Coding Expert Group)
  • I picture which is reference image data for instance in MPEG (Motion Picture Coding Expert Group)
  • the invention can be preferably implemented for application program which is embedded in WWW browser, a color facsimile, a cellular phone with display unit or the like and handles still image and motion image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Television Signal Processing For Recording (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

By using a data combining portion, the predetermined data is combined with the original image data on a pixel position with an upper limit gray scale value in a direction of increase of the gray scale value and a combined image data is generated. Since the predetermined data is combined outside an extent of the gray scale of the original image data, there is no deterioration of the quality of the original data and a user never perceives the predetermined data combined outside the extent of the gray scale of the original image data. In addition, since the predetermined data is embedded in combined image data in itself encoded by an encoding portion, the predetermined data cannot be separated from the original image data before the encoded combined image data is decoded.

Description

  • This application is a Divisional of co-pending application Ser. No. 10/667,377, filed on Sep. 23, 2003, and for which priority is claimed under 35 U.S.C. § 120; and this application claims priority of Application No. 2002-277291 filed in Japan on Sep. 24, 2002 under 35 U.S.C. § 119; the entire contents of all are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an image processing apparatus which combines various predetermined data such as image data, character data and voice data or the like with original image data to generate combined image data and separates the various predetermined data from the combined image data.
  • 2. Description of the Related Art
  • It has become easy for a large number of people to share the same data through a network such as Local Area Network (abbreviated as “LAN”) or the Internet or the like by digitalization of multimedia data such as an image or a voice or the like.
  • Contents business draws people's attention as business utilizing a network. Contents business is a business which directly transmits digital data such as an image, a music, a video or the like to a consumer via a network. E-commerce by which commercial products are dealt with on the network makes commerce of the commercial products more efficient, but the e-commerce requires transporting means such as a truck or the like to be used for delivering the commercial products when the commercial products in themselves are corporeal. On the contrary, the contents business does not require the transporting means since the commercial products in themselves are delivered to the consumer via the network. Consequently, pioneering a new business making full use of such feature as mentioned above is expected.
  • However, digital data can be easily copied and therefore, unless any counter measure for preventing such a copy as mentioned above is taken, there is possibility that an illegal copy is rampant. An electronic watermark is researched as effective technique for preventing the illegal copy.
  • The electronic watermark relates to technique for utilizing feature of human perception such as visual perception and auditory perception or the like and embedding different predetermined data from digital contents in themselves such as a still image, a motion image and audio or the like into the digital contents so that it is difficult for a man to perceive the different predetermined data. The electronic watermark cannot directly prevent the illegal copy, but can indirectly prevent the illegal copy by restraining the illegal copy (e.g. as referred to Japanese Unexamined Patent Publication JP-A 2000-106624 (2000)).
  • To realize the above mentioned electronic watermark, various methods are proposed. For example, it is possible that predetermined data is embedded in low-order bit of a gray scale value of original image data as a simple method of embedding the predetermined data in the original image data.
  • A sampling point sampled at the time of digitalizing an image is called a pixel. This pixel becomes a minimum unit configuring a digital image. In a monochrome facsimile, each pixel is either white or black and therefore, each pixel has two gray scales and the two gray scales can be represented as one bit by allocating a gray scale values 0 to white and allocating a gray scale value 1 to black. However, with respect to a gray-scale image which is of color, it is required that the gray scale of the pixel is increased. The gray scale value of the color image is often represented as 8 bits in view of easiness of handling the gray scale value on a computer.
  • By the way, since a cone which is a color sensitive organ in a human's eye consists of three kinds L, M and S (color space for 3 primary colors), three values are required for representing a plurality of colors, but, in other words, existence of the three values is sufficient to represent the plurality of colors. Changing the three gray scale values of red (R), green (G) and blue (B) enables various kinds of colors to be displayed on a display. Therefore, a color image is represented by 8 bit concerning each of RGB.
  • The low-order about 2 bit of the gray scale value of the color image generally and originally means noise, and therefore, even if the predetermined data is embedded in this low-order bit, there is less deterioration of quality of the color image in the case of small amount of the predetermined data. However, the larger amount of the predetermined data becomes, the greater deterioration of the quality of the color image becomes. However, a method for realizing electronic watermark actually is more sophisticated and retrieving the predetermined data embedded in the original image data cannot be easily performed, and deterioration of quality of the color image is inevitably accompanied. In addition, in advance of compression technique, since the predetermined data is embedded in the original image data and then the whole of the image data is compressed, it is essential that the method for realizing electronic watermark should be an embedding method having good endurance for compression, in other words, a method by which the embedded predetermined information can be retrieved when the whole of the image data is encoded and then decoded.
  • Since an image has large amount of data, the image is often compressed. A method of compression encoding comprises lossless compression and lossy compression. The lossless compression is conversion by which data decompressed after compression of the data perfectly coincides with data having existed before compression of the data. The lossy compression is conversion by which data decompressed after compression of the data perfectly does not coincide with data having existed before compression of the data and once the compressed data is not perfectly returned. In the lossy compression, a compression ratio is enhanced by leaving information on a part of the display which is sensitively recognized by a human's eye and eliminating information especially on a part of the display which is more insensitively recognized by the human's eye.
  • The lossy compression uses transform encoding, for instance, with use of discrete cosine transform (abbreviated as “DCT”) and wavelet transform or the like. In the transform encoding, pixels lined on a plane are transformed to spatial frequency components and the spatial frequency components and combination of this transform with quantization of the pixels eliminates information of high frequency component which is insensitively recognized by the human's eye and realizes high compression ratio of pixel data. In JPEG (Joint Photographic coding Expert Group) which is international standard for a method of still image compression encoding, DCT is used for transform encoding and in JPEG2000 wavelet transform is used for transform encoding.
  • A method, by which the original image data is encoded as mentioned above and then the predetermined data is written in a header and a control signal of a code, is also considered.
  • When the predetermined data is embedded in low-order bit of the gray scale value of the above mentioned image data, there is a problem of unavoidable deterioration of quality of the image in which the predetermined data is embedded.
  • In addition, when the predetermined data is written in the header and the control signal of the code, deterioration of the quality of the image can be avoided, but there is a problem that the predetermined data can be simply retrieved and an illegal copy of the original image data can be easily made because the predetermined data is written separately from the original image data.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide an image processing apparatus capable of combining predetermined data with original image data and without incurring deterioration of quality of a resultant image, and preventing illegal copying of the original image data by making retrieval of the combined predetermined data difficult.
  • In addition, another object of the invention is to provide an image processing apparatus applicable to easy confirmation of the predetermined data which is combined with the original image data under difficult condition of retrieving the predetermined data.
  • The invention provides an image processing apparatus comprising:
  • data combining means for combining predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease, and generating combined image data; and
  • encoding means for encoding the combined image data generated by the data combining means.
  • In the invention, it is preferable that the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the lower limit.
  • According to the invention, by the data combining means, predetermined data, for example, such as image data, music data and character data or the like are combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such away that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data. Thus, the combined image data is generated. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1. The data combining means combines the predetermined data with the original image data on a pixel position with the lower limit gray scale value 0 and thereby the gray scale value of the combined image data on this pixel position becomes a negative integer.
  • Since the predetermined data is combined outside the extent of the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image. In addition, since the predetermined data is combined outside the extent of the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • In addition, since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • The invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease, and generating decoded combined image data; and
  • data separating means for separating the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease from the decoded combined image data generated by the decoding means.
  • In the invention, it is preferable that the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is smaller than the lower limit.
  • According to the invention, the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • The data separating means separates the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value 0 in the direction of gray scale value decrease from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • The invention provides an image processing apparatus comprising:
  • data combining means for combining predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating combined image data; and
  • encoding means for encoding the combined image data generated by the data combining means.
  • In the invention, it is preferable that the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the upper limit.
  • According to the invention, by the data combining means, predetermined data, for example, such as image data, music data and character data or the like are combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data. Thus, the combined image data is generated. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1. The data combining means combines the predetermined data with the original image data on the pixel position with the gray scale value equal to R-1 (upper limit) and thereby the gray scale value of the combined image data on this pixel position becomes a value greater than R-1.
  • Since the predetermined data is combined outside the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image. In addition, since the predetermined data is combined outside the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • In addition, since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • The invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data; and
  • data separating means for separating the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase from the decoded combined image data generated by the decoding means.
  • In the invention, it is preferable that the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is greater than the upper limit.
  • According to the invention, the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • The data separating means separates the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value R-1 in the direction of gray scale value increase from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • The invention provides an image processing apparatus comprising:
  • data combining means for combining a part of predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease and combining a remaining part of the predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating combined image data; and
  • encoding means for encoding the combined image data generated by the data combining means.
  • In the invention, it is preferable that the data combining means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the original image data is of the upper limit or the lower limit.
  • According to the invention, by the data combining means, a part of predetermined data, for example, such as image data, music data and character data or the like is combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data and the remaining part of predetermined data, for example, such as image data, music data and character data or the like is combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data. Thus, the combined image data is generated. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • The data combining means combines the predetermined data with the original image data on the pixel position with the lower limit gray scale value 0 and thereby the gray scale value of the combined image data on this pixel position becomes a negative integer. The data combining means combines the predetermined data with the original image data on the pixel position with the gray scale value equal to R-1 (upper limit) and thereby the gray scale value of the combined image data on this pixel position becomes a value greater than R-1.
  • Since the predetermined data is combined outside the extent of the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image. In addition, since the predetermined data is combined outside the extent of the gray scale of the original image data, a user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • In addition, since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • The invention provides an image processing apparatus comprising:
  • decoding means for decoding encoded combined image data generated by encoding the combined image data which is generated by combining a part of predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease and combining a remaining part of predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data; and
  • data separating means for separating a part of the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease and a remaining part of the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale increase from the decoded combined image data generated by the decoding means.
  • In the invention, it is preferable that the data separating means comprises a judging portion for judging whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit and smaller than the lower limit.
  • According to the invention, the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining a part of predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data is smaller than the lower limit gray scale value of the original image data and by combining the remaining part of predetermined data, for example, such as image data, music data and character data or the like with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data is greater than the upper limit gray scale value of the original image data. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1.
  • The data separating means separates a part of the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value 0 in the direction of gray scale value decrease and a remaining part of the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value R-1 in the direction of gray scale value increase from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic water mark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • As mentioned above, according to the invention, since the predetermined data is combined outside the extent of the gray scale of the original image data, image data having the gray scale value within the extent from the upper limit to the lower limit of the combined image data with the predetermined data is only the original image data. Consequently, when the combined image data with the predetermined data is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit to the lower limit is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data visible and there is no deterioration of the quality of the combined image. In addition, since the predetermined data is combined outside the gray scale of the original image data, a user never perceives this predetermined data.
  • Consequently, since the predetermined data can be embedded in the original data so that the predetermined data cannot be perceived by a user and there is no deterioration of quality of the image to be displayed on display means even in the case of the predetermined data embedded in the original data. In addition, since a user never perceives this predetermined data, it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data can be prevented.
  • In addition, since the predetermined data is embedded in the combined image data itself encoded by the encoding means, the predetermined data cannot be separated from the original image data until the combined image data encoded is decoded. Consequently, it is difficult to separate the predetermined data from the combined image data encoded and thereby illegal deletion of the predetermined data can be prevented.
  • In addition, according to the invention, the data decoding means decodes encoded combined image data generated by encoding combined image data which is generated by combining predetermined data, for example, such as image data, music data and character data or the like with the original image data outside the extent of the gray scale of the original image data. When the gray scale of the original image data is R (R is a positive integer equal to or more than 2), the gray scale value of each pixel is represented by one of positive integers ranging from the lower limit 0 to the upper limit R-1.
  • The data separating means separates the predetermined data combined outside the extent of the gray scale of the original image data from the decoded combined image data and therefore, when the predetermined data is combined with the original image data as electronic watermark, the predetermined data representing an author of the original image data or the like can be retrieved and confirmed separately from the original image data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other and further objects, features, and advantages of the invention will be more explicit from the following detailed description taken with reference to the drawings wherein:
  • FIG. 1 is a block diagram showing configuration of an image processing apparatus according to one embodiment of the invention;
  • FIG. 2 is a view showing an example of predetermined data;
  • FIG. 3 is a view showing an example of original image data;
  • FIG. 4 is a view showing an example of combined image data;
  • FIG. 5 is a view showing an example of decoded combined image data;
  • FIG. 6 is a view showing an example of decoded predetermined data;
  • FIG. 7 is a view showing an example of decoded image data;
  • FIG. 8 is a block diagram showing an image decoding apparatus provided with a clipping portion;
  • FIGS. 9A to 9C are views showing aspect of processing of clipping gray scale value equal to or more than R to R-1 in connection with noise of decoded image data, when the original image data whose basic color is white includes stair-like edges, which noise arises around the edges;
  • FIG. 10 is a view showing an example of original image data;
  • FIG. 11 is a view showing an example of combined image data generated by combining predetermined data with the original image data;
  • FIG. 12 is a view showing an example of decoded combined image data;
  • FIG. 13 is a view showing an example of decoded image data;
  • FIG. 14 is a view showing an example of the original image data;
  • FIG. 15 is a view showing an example of combined image data generated by combining predetermined data with the original image data;
  • FIG. 16 is a view showing an example of decoded combined image data; and
  • FIG. 17 is a view showing an example of the decoded image data.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now referring to the drawings, preferred embodiments of the invention are described below.
  • FIG. 1 is a block diagram showing configuration of an image processing apparatus 10 according to one embodiment of the invention. An image processing apparatus 10 comprises an image encoding apparatus 12 and an image decoding apparatus 13.
  • The image encoding apparatus 12 comprises a color converting portion 14 as color converting means, a data combining portion 15 as data combining means and an encoding portion 16 as encoding means.
  • The color converting portion 14 converts color space of the original image data 1 represented, for instance, in red (R), green (G) and blue (B) to brightness and two color differences. With regard to the color space represented by the brightness and the two color differences, YCbCr is used for a digital camera and a TV camera and CIELAB is used for a color facsimile. Such color system of the color space as mentioned above is different depending on an application program loaded on the image processing apparatus. However, in the invention, the difference of color system is not essential and a technique of color converting defined by International Standard can be used.
  • The data combining portion 15 combines predetermined data 2 with the original image data 1 on the pixel position with an upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data 2 is greater than the upper limit gray scale value of the original image data 1 and generates combined image data. The data combining portion 15 comprises a judging portion 17. The judging portion 17judges whether or not the gray scale value on the position of each pixel of the original image data 1 is of the upper limit. When the judging portion 17 judges that the gray scale value on the pixel position of the original image data 1 is of the upper limit, the data combining portion 15 combines the predetermined data 2 with the original image data 1 on this position of the pixel. When the gray scale of the original image data 1 is R, the gray scale value of the original image 1 is represented by a positive integer ranging from the lower limit 0 to the upper limit R-1. In addition, with respect to the gray scale value of the combined image data, the upper limit R-1 is and the lower limit is 0.
  • The predetermined data 2 is combined with at least one of components of brightness, hue and color difference of the original image data 1. In the embodiment of the invention, the predetermined data 2 is combined with the component of brightness of the original image data 1.
  • In the embodiment of the invention, the predetermined data 2 is defined as image data. The predetermined data 2 is added to the gray scale value, which is data, of the original image data 1. However, instead of the gray scale value, data represented in binary can be allowed. For instance, when the gray scale value of the original image data 1 is represented in 8 bits, the upper limit gray scale value is represented as 11111111 in binary. For instance, when the predetermined data 2 is represented as 11 in binary, the gray scale value of the combined image data is 100000011 in binary. In another embodiment of the invention, the predetermined data 2, for instance, may be music data, character data or the like, and further encoded image data, encoded music data and encoded character data or the like.
  • When the gray scale of the original image data 1 is defined as R, the gray scale value is defined as F, the gray scale value of the predetermined data 2 is defined as D and the gray scale value of the combined image data generated by the data combining portion 15 by combining the predetermined data 2 with the original image data 1 is defined as G, the data combining portion 15 generates the combined image data by using the following equations (1) and (2). In the embodiment of the invention, the gray scale value R equal to 256 corresponding to 8 bits is used.
    G=F (0≦F<R-1)   (1)
    G=F+D (F=R-1)   (2)
  • FIG. 2 is a view showing an example of the predetermined data 2, FIG. 3 is a view showing an example of the original image data 1 and FIG. 4 is a view showing an example of the combined image data 4. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 2 to 4, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater. As to the predetermined data 2, the gray scale value on the pixel position 0 is D1, the gray scale value on the pixel position X1 is D2, and the gray scale value on the pixel position X2 is D1. In addition, as to the original image data 1, the gray scale values on the left side from the pixel position X3 are equal to and more than 0 and less than R-1 and the gray scale values on the right side from the pixel position X3 are R-1.
  • The data combining portion 15 adds the gray scale value of the predetermined data 2 shown in FIG. 2 to the gray scale value of each pixel of the original image data 1 within the extent from the pixel position X3 corresponding to the gray scale value R-1 shown in FIG. 3 to a pixel position X2+X3, to generate the combined image data 4 shown in FIG. 4. The gray scale values of the combined image data 4 on the pixel positions X3, X1+X3 and X2+X3 become (R-1)+D1, (R-1)+D2 and (R-1)+D1, respectively.
  • As mentioned above, the predetermined data 2 is combined with the original image data 1 on a plurality of pixel positions. When the predetermined data 2 is combined with the original image data 1 on the plurality of pixel positions, the predetermined data 2 is divided and is combined with the original image data 1 on each pixel position. In the other embodiment of the invention, the predetermined data 2 may be combined with the original image data 1 on a single pixel position.
  • By combining the predetermined data 2 with the original image data 1 with use of the data combining portion 15, combined image data can be made in a state where the predetermined data 2 is embedded in the original image data 1.
  • Processing performed by the data combining portion 15 is simple processing of adding the gray scale value of the predetermined data 2 to the gray scale value of the original image data 1. Consequently, the data combining portion 15 can perform processing of combining the predetermined data 2 with the original image data 1 and generating the combined image data in a short period of time.
  • The encoding portion 16 encodes the combined image data generated by the data combining portion 15 and generates encoded combined image data 22. The encoding portion 16 comprises a frequency converting portion 18, a quantizing portion 19, an entropy encoding portion 20 and a bit stream generating portion 21.
  • The frequency converting portion 18 converts the frequency of the combined image data given from the data combining portion 15 and outputs a frequency component. By performing frequency conversion, a conversion coefficient representing the same number of the frequency components as the number of pixels is obtained. Since one pixel is represented in 8-bit prior to the frequency conversion, for instance, with use of discrete cosine transform (abbreviated as “DCT”) as frequency conversion, each conversion coefficient can be represented by a 11-bit integer on condition that the conversion coefficient is rounded off after the decimal point. Either wavelet transform or discrete sine transform (abbreviated as “DST”) may be used except DCT as frequency conversion.
  • In the frequency converting portion 18, even if more than 8-bit value is given as the gray scale value of the image, it is required that frequency conversion is correctly calculated. However, as mentioned above, since there is a case in which more than 8-bit value is given as the value calculated by frequency conversion takes, more than 8-bit memory variable is already secured for a value to be input in many mounting circuits. Consequently, the frequency converting portion 18 can be realized by a general frequency converting circuit.
  • The quantizing portion 19 quantizes the combined image data which is converted to frequency area given from the frequency converting portion 18. In the quantizing portion 19, a low frequency component is quantized finely and a high frequency component is quantized coarsely and thereby an amount of data is reduced. This utilizes a fact that image quality is not so much lowered because a human's eye is insensitive to the high frequency component even if accuracy of the high frequency component is lowered. In the quantizing portion 19, on the occasion of quantizing the value of the conversion coefficient, quantizing the value is performed with use of a quantizing table representing a width of a quantizing step.
  • The entropy encoding portion 20 assigns a code to the frequency component quantized in the quantizing portion 19 so that information entropy will become small. The entropy encoding portion 20 assigns a variable length code corresponding to appearance probability of a symbol and minimizes an average code length of data to be output. The entropy encoding portion 20 assigns a code, for instance, a Huffman code and simultaneously generates an encoding table indicating the assigned code.
  • The bit stream generating portion 21 allocates parameters such as the quantizing table used in the quantizing portion 19 and the encoding table used in the entropy encoding portion 20 or the like to a position complying with a regulation predetermined in advance and generates the encoded image data 22. The regulation predetermined in advance has difference depending on an encoding method. The encoded image data 22 comprises all information such as a size of the image and the quantizing table or the like required for decoding the original image.
  • The encoded image data 22 output by the image encoding apparatus 12 is stored in the a storing medium 23 via a communication line or the like and then is retrieved to be input in the image decoding apparatus 13.
  • The image decoding apparatus 13 comprises a decoding portion 24 as decoding means, a data separating portion 25 as data separating means and a color converting portion 26 as color converting means.
  • The decoding portion 24 decodes the encoded image data 22 encoded by the above mentioned image encoding apparatus 12 and generates decoded image data represented by brightness and color difference. The decoding portion 24 comprises a bit stream developing portion 27, an entropy decoding portion 28, a reverse quantizing portion 29 and a reverse frequency converting portion 30.
  • The bit stream developing portion 27 retrieves the parameters such as the quantizing table and the encoding table which are required for decoding the encoded image data 22 from the encoded image data 22.
  • The entropy decoding portion 28 decodes the coded image data given from the bit stream developing portion 27 by using the encoding table generated in the entropy encoding portion 20, to a quantized frequency component.
  • The reverse quantizing portion 29 reversely quantizes the quantized frequency component given from the entropy decoding portion 28. The reverse quantizing portion 29 decodes the frequency component by using the parameter (i.e. in this case the quantized table used in the quantizing portion 19) retrieved in the bit stream developing portion 27.
  • The reverse frequency converting portion 30 returns the frequency component given from the reverse quantizing portion 29 to the gray scale value and generates decoded combined image data. The reverse frequency converting portion 30 performs reverse DCT, for instance when the frequency converting portion 18 performs DCT.
  • The data separating portion 25 separates the predetermined data 2 which is combined with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase from the decoded combined image data given from the reverse frequency converting portion 30. Concretely, the data separating portion 25 separates the decoded original data 1 and the decoded predetermined data 2. The decoded original data 1 is hereinafter called decoded image data 3. As mentioned above, when the gray scale of the original image data 1 is defined as R, the gray scale value of the original image data 1 is a positive integer ranging from 0 to R-1. In addition, with respect to the gray scale value of the decoded combined image data, the upper limit is R-1 and the lower limit is 0.
  • The data separating portion 25 comprises a judging portion 31. The judging portion 31 judges whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit. When the judging portion 31 judges that the gray scale value on the pixel position of the decoded combined image data is greater than the upper limit, the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • When the decoded image is, for instance, rectangle and pixels are lined on a grid, the judging portion 31 judges whether or not the gray scale value on each pixel position of this original image data is greater than the upper limit by turns in a line direction and judges each pixel on a position which is one-row shifted in a row direction by turns after judgment on one line is finished.
  • When the gray scale value of the decoded combined image data is defined as G′ and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′, the gray scale of the decoded image data 3 ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data 2 and the decoded image data 3 from the decoded combined image data by using the following equations (3) and (4). In addition, the gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
    F′=G′(0≦G′<R-1)   (3)
    F′=R-1, D′=G′−(R-1) (G′≧R-1)   (4)
  • As to decoded combined image data, data on a pixel position with the gray scale value equal to or more than 0 and less than R-1 is defined as the gray scale value of the decoded image data 3 as it is and data on a pixel position with the gray scale value equal to or more than R-1 is defined as the gray scale value R-1 of the decoded image data 3. In addition, as to a value given by subtraction of R-1 from data on a pixel position with the gray scale value equal to or more than R-1, the data is defined as the decoded predetermined data 2.
  • Since the image processing apparatus 10 in the embodiment of the invention performs lossy compression by decoding portion 24, F is nearly equal to F′ (F≈F′), G is nearly equal to G′ (G≈G′), and D is nearly equal to D′ (D≈D′). The decoded image data 3 which is decoded by the decoding portion 24 and is separated by the data separating portion 25 does not accurately coincide with the original image data 1, but the quantizing table determining a quantizing step is set so that difference between the decoded image data 3 and the original image data 1 will be within an extent of incapability of judging the difference even with use of a human's eye.
  • FIG. 5 is a view showing an example of the decoded combined image data 5, FIG. 6 is a view showing an example of decoded predetermined data 2, and FIG. 7 is a view showing an example of decoded image data 3. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 5 to 7, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater. As to the decoded combined data 5, the gray scale value on the pixel position X3 is (R-1)+D1′, the gray scale value on the pixel position (X1+X3) is (R-1)+D2′ and the gray scale value from the pixel position X3 to the pixel position (X1+X3) is greater than R-1.
  • The data separating portion 25 subtracts R-1 from the gray scale value from the pixel position X3 to the pixel position (X1+X3) on which the gray scale value of the encoded combined image data 5 is greater than R-1 as shown in FIG. 5 and thereby can separate the decoded predetermined data 2 as shown in FIG. 6, and defines the gray scale value on the pixel on the right side from the pixel position X3 as R-1 and thereby can separate the decoded image data 3 as shown in FIG. 7. The gray scale values on the pixel positions 0, X1 and X2 of the decoded predetermined data 2 are D1′, D2′ and D3′, respectively.
  • Since the predetermined data 2 is combined with the original data 1 and then frequency conversion is performed for the predetermined data 2 and the predetermined data 2 is quantized, the predetermined data 2 does not perfectly coincide with the encoded predetermined data 2. Therefore, when the predetermined data 2 is utilized as the electronic watermark, care should be taken. However, since the predetermined data 2 cannot be retrieved only after the encoded image data 22 is decoded, it is difficult to retrieve the predetermined data 2 in comparison with a case where the predetermined data is added to a header or the like of the encoded image data and thereby an illegal copy can be restrained.
  • The color converting portion 26 converts the color space represented by the brightness and the color differences of the decoded image data to color space of a display device and thereby an image can be displayed on the display device. For instance, when the display device is a display, RGB is used. When the display device is a printer, CMYK consisting of cyan (C), magenta(M), yellow (Y), black (K) or the like is used.
  • When the gray scale of the original image data 1 is defined as R as mentioned above, the gray scale value is a positive integer ranging from 0 to R-1. A 8-bit value 256 is generally used for the gray scale and therefore this value 256 is also defined as the gray scale in the embodiment of the invention. Since there is occurrence of an error arises because of frequency conversion and quantization in the case of lossy encoding of JPEG, JPEG2000 or the like, there is a case where the gray scale value deviates from the extent of the gray scale when the image is decoded. In other words, there is a case where the gray scale value becomes a negative value, i.e., a value smaller than 0 or a value greater than R-1.
  • When image data is displayed on display means such as the display, the gray scale value of the image data should fit in the extent of the gray scale and therefore, in the decoded side, the frequency component is returned to the gray scale value and then a part exceeding the extent of the gray scale is omitted. Specifically, when the gray scale is 8-bit, a minus gray scale value and the gray scale value more than 256 are defined as 0 and 255 respectively and thereby a final gray scale of the image fits in 8-bit. This processing is called clipping.
  • FIG. 8 is a block diagram showing an image decoding apparatus 36 provided with clipping portion 35 that executes the clipping. In the image decoding apparatus 36 shown in FIG. 8, the components that play the same or corresponding roles as the image decoding apparatus 13 of the image processing apparatus 10 shown in the above-mentioned FIG. 1 will be identified with the same reference symbols, and detailed descriptions will be omitted.
  • FIGS. 9A to 9C are views showing aspect of processing of clipping gray scale value equal to or more than R to R-1 in connection with noise of decoded image data, when the original image data whose basic color is white includes stair-like edges, which noise arises around the edges. Such processing of clipping as mentioned above finally enables only noise with pixel value becoming less than R-1 to be visible. In addition, as to gray scale value of image data on the basic color deviating from the extent of the gray scale before encoding the image data, when a width of the gray scale shifted on the basic color is greater than a width of a gray scale of noise, almost all noise disappears by processing of clipping the noise as shown in FIG. 9C.
  • The clipping portion 35 as clipping means enables the decoded image data 3 to be displayed from the decoded combined image data on the display means by clipping the gray scale value more than R-1. Consequently, the encoded image data 22 encoded by the above-mentioned image encoding apparatus 12 is decoded and the decoded image can be also displayed on the display means of this image decoding apparatus 36.
  • The image processing apparatus 10 actively utilizes a case where the gray scale value of the pixel exceeds the extent of the gray scale at the time of decoding the image data and combines the predetermined data 2 with a part exceeding the extent of the gray scale before encoding the image data. In the image decoding apparatus 36 shown in FIG. 8, the gray scale value of the pixel exceeding the extent of the gray scale disappears by using the clipping portion 35, but in the image decoding apparatus 13 shown in FIG. 1 separates a part exceeding the extent of the gray scale of the decoded combined image data 5 as the predetermined data 2. Consequently, the image decoding apparatus 13 can retrieve the predetermined data 2 combined with the original image data 1 and for instance, when the predetermined data 2 is used as an electronic watermark, the image decoding apparatus 13 can confirm the predetermined data 2 to be combined with the original image data 1 and representing the author or the like.
  • In addition, since the predetermined data 2 is combined outside the extent of the gray scale of the original image data 1 in the image processing apparatus 10, data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 of the combined image data with the predetermined data 2 is only the original image data 1. Consequently, when the combined image data with the predetermined data 2 is made visible by display means or like that, only image data having the gray scale value within the extent from the upper limit R-1 to the lower limit 0 is made visible and therefore the combined image made visible is the same image as generated in the case of making the original image data 1 visible and there is no deterioration of the quality of the combined image. In addition, since the predetermined data 2 is combined outside the extent of the gray scale of the original image data 1, the user never perceives this predetermined data and therefore it is difficult for the user to retrieve the predetermined data and thereby illegal deletion of the predetermined data and an illegal copy of the original image data 1 can be prevented. Consequently, the predetermined data 2 can be effectively utilized as the electronic watermark.
  • In another embodiment of the invention, an image processing apparatus may be so configured that a sub sampling portion is provided between the color converting portion 14 and the data combining portion 15 and an up sampling portion is provided between the data separating portion 25 and the color converting portion 26. As to the sub sampling portion, resolution of brightness is maintained as it is and resolution of the color difference is lowered. The sub sampling adopts a method in which sampling is performed vertically and horizontally and one pixel of the color difference is made adapted to four pixels of the brightness or a method in which sampling is performed only horizontally and one pixel of the color difference is made adapted to two pixels of the brightness. Sampling may use mean of pixels instead of only pixel skipping. The up sampling portion returns the resolution of the color difference to an original resolution, i.e., the same resolution as that of brightness. The up sampling adopts a method in which the same pixel is copied to four pixel positions of the color difference, and a method in which interpolation is performed or the like, in the case where two pixels of the color difference are adapted to the four pixels of the brightness.
  • As mentioned above, by providing the sub sampling portion and the up sampling portion, an amount of data of the encoded combined image data 22 can be reduced.
  • In another additional embodiment of the invention, the original data 1 may be handled without color conversion and an image processing apparatus may be so configured that the data combining portion 15 combines the predetermined data 2 with at least one of components of red (R), green (G) and blue (B) of the original data 1.
  • An image processing apparatus in another additional embodiment of the invention has the same configuration as the image processing apparatus 10 shown in the above mentioned FIG. 1 has and there is difference in only processing of the data combining portion 15 and the data separating portion 25. Note that the components that play the same or corresponding roles as the above-mentioned embodiments will be identified with the same reference symbols. The data combining portion 15 of the embodiment of the invention combines the predetermined data 2 with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the lower limit gray scale value of the original image data 1 and generates combined image data. The data separating portion 25 separates the predetermined data 2 combined with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, from the decoded combined image data.
  • The judging portion 17 of the data combining portion 15 judges whether or not the gray scale value on each pixel position of the original image data 1 is of the lower limit. When the judging portion 17 judges that the gray scale value on the pixel position of the original image data 1 is of the lower limit 0, the data combining portion 15 combines the predetermined data 2 with the image data 1 on this position of the pixel.
  • When the gray scale of the original image data 1 is defined as R, the gray scale value is defined as F, the gray scale value of the predetermined data 2 is defined as D and the gray scale value of the combined image data generated by the data combining portion 15 combining the predetermined data 2 with the original image data 1 is defined as G, the extent of the gray scale of the original data 1 ranges from 0 to R-1 and the data combining portion 15 generates the combined image data by using the following equations (5) and (6). The gray scale value R equal to 256 corresponding to 8 bits is used. The gray scale value of the original image data 1 is represented by a positive integer ranging from 0 to R-1.
    G=−D (F=0)   (5)
    G=F (0≦F≦R-1)   (6)
  • The combined image data is obtained by subtracting the predetermined data 2 from data on a pixel position with the gray scale value 0 of the original image data 1, and by maintaining the original image data 1 on a pixel position with the gray scale value more than 0 and equal to or less than R-1 as it is.
  • FIG. 10 is a view showing an example of original image data 1, and FIG. 11 is a view showing an example of the combined image data 4 generated by combining the predetermined data 2 shown in FIG. 2 with the original image data 1. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 10 and 11, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shift toward the right, the positive integer value of the pixel position becomes greater. As to the original image data 1, the gray scale value on a position on the left side from the pixel position X5 is more than 0 and equal to and less than R-1 and the gray scale value on a position on the right side from the pixel position X5 is 0.
  • The data combining portion 15 generates the combined image data 4 shown in FIG. 11 by subtracting the gray scale value of the predetermined data 2 shown in FIG. 2 from the gray scale value of each pixel of the original image data 1 shown in FIG. 3 within the extent of the pixel position from X5 corresponding to the gray scale value 0 shown in FIG. 10 to (X2+X5). The gray scale values of the combined image data 4 on the pixel positions X5, X1+X5 and X2+X5 become −D1, −D2 and −D1, respectively.
  • The judging portion 31 of the data separating portion 25 judges whether or not the gray scale value on each pixel position of the decoded combined image data is smaller than the lower limit. When the judging portion 31 judges that the gray scale value on the pixel position of the decoded combined image data is smaller than the lower limit 0, the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • When the gray scale value of the decoded combined image data is defined as G1 and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′, the gray scale of the decoded image data ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data and the decoded image data from the decoded combined image data by using the following equations (7) and (8). The gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
    F′=0, D′=−G′(G′≦0)   (7)
    F′=G′(0<G′≦R-1)   (8)
  • As to decoded combined image data, data on a pixel position with the gray scale value equal to or less than 0 corresponds to the decoded predetermined data 2. In addition, as to decoded combined image data, data on a pixel position with the gray scale value equal to or less than 0 is identified with the gray scale value 0 of the decoded image data, and data on a pixel position with the gray scale value more than 0 and equal to and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is.
  • FIG. 12 is a view showing an example of the decoded combined image data 5 and FIG. 13 is a view showing an example of decoded image data 3. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 12 and 13, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater. As to the decoded combined image data 5, the gray scale value on a position on the left side from X5 is greater than 0 and the gray scale value from the pixel position X4 to the pixel position (X2+X5) is smaller than 0.
  • The data separating portion 25 changes a sign of the gray scale value from the pixel position X5 to the pixel position X2+X5 on which the gray scale value of the encoded combined image data 5 is smaller than 0, i.e. negative value, as shown in FIG. 12 and separates the predetermined data 2 as shown in FIG. 6 and defines the gray scale value on the pixel position on the right side from the pixel position X5 as 0 and thereby can separate the decoded image data 3 as shown in FIG. 13.
  • The image processing apparatus in another additional embodiment of the invention has the same configuration as the image processing apparatus 10 shown in the above mentioned FIG. 1 has and there is difference in only processing of the data combining portion 15 and the data separating portion 25. Note that the components that play the same or corresponding roles as the above-mentioned embodiments will be identified with the same reference symbols. The data combining portion 15 according to the embodiment of the invention combines a part of the predetermined data 2 with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the upper limit gray scale value of the original image data 1, moreover the data combining portion 15 combines a remaining part of the predetermined data 2 with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, in other words, in such a way that the gray scale value of the predetermined data 2 is smaller than the lower limit gray scale value of the original image data 1 and the data combining portion 15 generates combined image data. The data separating portion 25 separates the part of the predetermined data 2 combined with the original image data 1 on the pixel position with the upper limit gray scale value in the direction of gray scale value increase, from the decoded combined image data, and the data separating portion 25 also separates the remaining part of predetermined data 2 combined with the original image data 1 on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease, from the decoded combined image data.
  • The judging portion 17 of the data combining portion 15 judges whether or not the gray scale value on each pixel position of the original image data 1 is of the upper limit or the lower limit. When the judging portion 17 judges that the gray scale value on the pixel position of the original image data 1 is of the upper limit R-1 or the lower limit 0, the data combining portion 15 combines the predetermined data 2 with the image data 1 on this position of the pixel.
  • When the gray scale of the original image data 1 is defined as R, the gray scale value is defined as F, the gray scale value of the predetermined data 2 is defined as D and the gray scale value of the combined image data generated by the data combining portion 15 combining the predetermined data 2 with the original image data 1 is defined as G, the extent of the gray scale of the original data 1 ranges from 0 to R-1 and the data combining portion 15 generates the combined image data by using the following equations (9), (10) and (11). For example, the gray scale value R equal to 256 corresponding to 8 bits is used. The gray scale value of the original data is represented by a positive integer ranging from 0 to R-1.
    G=−D (F=0)   (9)
    G=F (0<F<R-1)   (10)
    G=F+D (F =R-1)   (11)
  • The combined image data is obtained by maintaining data on a pixel position with the gray scale value equal to or more than 0 and less than R-1 of the original image data 1 corresponds to the combined image data as it is, and adding a part of the predetermined data 2 to data on a pixel position with the upper limit gray scale value R-1.
  • The combined image data is obtained by subtracting a part of the predetermined data 2 from data on a pixel position with the gray scale value 0 and maintaining the original image data 1 on a pixel position with the gray scale value more than 0 and equal to or less than R-1 as it is.
  • FIG. 14 is a view showing an example of original image data 1, and FIG. 15 is a view showing an example of combined image data 4 generated by combining the predetermined data 2 shown in FIG. 2 with the original image data 1. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 14 and 15, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater. As to the original image data 1, the gray scale value on a position on the left side from the pixel position X6 is more than 0 and equal to and less than R-1 and the gray scale value on a pixel position from X6 to X7 is R-1 and the gray scale value which is on a position on the right side from the pixel position X7 and on a position on the left side from the pixel position X8 is greater than 0 and equal to and less than R-1 and the gray scale value on a position on the light side from the pixel position X8 is 0.
  • The data combining portion 15 generates the combined image data shown in FIG. 11 by adding a part of the predetermined data 2 shown in FIG. 2 to the gray scale value of each pixel of the original image data 1 within the extent of the pixel position from X6 corresponding to the gray scale value R-1 shown in FIG. 14 to X7 and by subtracting the remaining part of the predetermined data 2 shown in FIG. 2 from each pixel on a position on the right side from the pixel position X8 corresponding to the gray scale value 0 of the original image data 1. Here, the pixel positions X1, X6 and X7 comply with the following inequality.
    (X7-X6)>X1
    The gray scale values of the combined image data 4 on the pixel positions X6, X7, X8 and X9={X8+(X7-X6)-X2} become (R-1)+D1, (R-1)+D2, −D2 and −D1, respectively.
  • The judging portion 31 of the data separating portion 25 judges whether or not the gray scale value on each pixel position of the decoded combined image data is greater than the upper limit and smaller than the lower limit. When the judging portion 31 judges that the gray scale value on the pixel position of the decoded combined image data is greater than the upper limit R-1 or smaller than the lower limit 0, the data separating portion 25 separates the predetermined data 2 from the data on this pixel position.
  • When the gray scale value of the decoded combined image data is defined as G′ and the gray scale value of the decoded image data 3 is defined as F′ and the gray scale value of the decoded predetermined data 2 is defined as D′, the extent of the gray scale of the decoded image data 3 ranges from 0 to R-1 and the data separating portion 25 separates the predetermined data 2 and the decoded image data 3 from the decoded combined image data by using the following equations (12), (13) and (14). The gray scale value of the decoded image data 3 is a positive integer ranging from 0 to R-1.
    F′=0, D′=−G′(G′≦0)   (12)
    F′=G′(0<G′<R-1)   (13)
    F′=R-1, D′=G′−(R-1) (G′≧R-1)   (14)
  • As to the decoded combined image data, the gray scale value on a pixel position with the gray scale value equal to or more than 0 and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is. In addition, as to decoded combined image data, the gray scale value on a pixel position with the gray scale value equal to or more than R-1 is identified with the gray scale value R-1 of the decoded image data 3. In addition, the value subtracting the gray scale value R-1 from data on a pixel position with the gray scale value equal to or more than R-1 corresponds to a part of the decoded predetermined data 2.
  • In addition, as to the decoded combined image data, the gray scale value on a pixel position with the gray scale value equal to or less than 0 corresponds to the gray scale value of the decoded predetermined data 2. In addition, as to the decoded combined image data, data on a pixel position with the gray scale value equal to or less than 0 is identified with the gray scale value 0 of the decoded image data, and the gray scale value on a pixel position with the gray scale value more than 0 and equal to and less than R-1 corresponds to the gray scale value of the decoded image data 3 as it is.
  • FIG. 16 is a view showing an example of the decoded combined image data 5 and FIG. 17 is a view showing an example of decoded image data 3. In these figures, a vertical axis designates the gray scale value and a horizontal axis designates a position of a pixel on one line image. In FIGS. 16 and 17, the pixel position is represented by a positive integer value. The left end of the pixel position is defined as 0, and as the pixel position is shifted toward the right, the positive integer value of the pixel position becomes greater. As to the decoded combined image data 5, the gray scale value on a position on the left side from X6 is greater than 0 and smaller than R-1, and the gray scale value from the pixel position X6 to the pixel position X7 is greater than R-1. The gray scale value which is on a position on the right side from the pixel position X7 and is on a position on the left side from the pixel position X8 is greater than 0 and smaller than R-1, and the gray scale value from the pixel position X8 to the pixel position X9 is smaller than 0.
  • The data separating portion 25 separates a part of the predetermined data 2 as shown in FIG. 6 by subtracting R-1 from the gray scale value greater than R-1 from the pixel position X6 to the pixel position X7, and changes a sign of the gray scale value from the pixel position X8 to the pixel position X9 on which the gray scale value of the decoded image data 3 is smaller than 0 and separates the remaining part of the predetermined data 2 as shown in FIG. 6. In addition, the data separating portion 25 can separate the decoded image data 3 shown in FIG. 17 by identifying the gray scale value from the pixel position X6 to the pixel position X7 on which the gray scale value of the decoded image data 3 as shown in FIG. 16 is greater than R-1, with R-1 and identifying the gray scale value from the pixel position X8 to the pixel position X9 on which the gray scale value of the decoded image data 3 is smaller than 0, with 0.
  • As mentioned above, by combining a part of the predetermined data 2 with the original image data 1 with the upper limit gray scale value in the direction of gray scale value increase and combining the remaining part of the predetermined data 2 with the original image data 1 with the lower limit gray scale value in the direction of gray scale value decrease, the whole gray scale of the combined image data is made small and more data can be embedded in less number of bits in comparison with a case where the predetermined data 2 is combined with only original image data 1 with the gray scale value equal to the upper limit in the direction of gray scale value increase and a case where the predetermined data 2 is combined with only original image data 1 with the lower limit gray scale value in the direction of gray scale value decrease.
  • Since the encoded image data 22 generated by image encoding apparatus 12 mentioned above complies with format specified in JPEG and JPEG2000, an existing decoder for decoding JPEG and JPEG2000 can also decode the encoded image data 22. Therefore, even when the image data is data with embedded predetermined data 2, the image data can be handled similarly to image data without embedded predetermined data 2.
  • According to the embodiments of the invention, the original image data may be either still image data or motion image data. In the case of motion image data, for instance in MPEG (Motion Picture Coding Expert Group), the original image data in which the predetermined data is embedded is I picture which is reference image data.
  • Since standard image encoding system widely used for encoding not only motion image and still image, but also natural image can be adopted for encoding processing performed by the encoding portion 16, this facilitates the implementation of the encoding portion 16 by a logic circuit, and it is possible to incorporate an encoding program in the encoding portion 16 in every kind of application program.
  • The invention can be preferably implemented for application program which is embedded in WWW browser, a color facsimile, a cellular phone with display unit or the like and handles still image and motion image.
  • The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and the range of equivalency of the claims are therefore intended to be embraced therein.

Claims (6)

1. An image processing apparatus comprising:
decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease, and generating decoded combined image data; and
data separating means for separating the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease from the decoded combined image data generated by the decoding means.
2. An image processing apparatus comprising:
decoding means for decoding encoded combined image data generated by encoding combined image data which is generated by combining predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data; and
data separating means for separating the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value in the direction of gray scale value increase from the decoded combined image data generated by the decoding means.
3. An image processing apparatus comprising:
decoding means for decoding encoded combined image data generated by encoding the combined image data which is generated by combining a part of predetermined data with original image data on a pixel position with a lower limit gray scale value in a direction of gray scale value decrease and combining a remaining part of predetermined data with original image data on a pixel position with an upper limit gray scale value in a direction of gray scale value increase, and generating decoded combined image data; and
data separating means for separating a part of the predetermined data combined with the original image data on the pixel position with the lower limit gray scale value in the direction of gray scale value decrease and a remaining part of the predetermined data combined with the original image data on the pixel position with the upper limit gray scale value in the direction of the gray scale increase from the decoded combined image data generated by the decoding means.
4. The image processing apparatus of claim 1, wherein the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is smaller than the lower limit.
5. The image processing apparatus of claim 2, wherein the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is greater than the upper limit.
6. The image processing apparatus of claim 3, wherein the data separating means comprises a judging portion for judging whether or not a gray scale value on each pixel position of the decoded combined image data is greater than the upper limit and smaller than the lower limit.
US11/503,905 2002-09-24 2006-08-15 Image processing apparatus Abandoned US20060274954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/503,905 US20060274954A1 (en) 2002-09-24 2006-08-15 Image processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002277921A JP2004120122A (en) 2002-09-24 2002-09-24 Image processing apparatus
JPP2002-277921 2002-09-24
US10/667,377 US7181069B2 (en) 2002-09-24 2003-09-23 Image processing apparatus
US11/503,905 US20060274954A1 (en) 2002-09-24 2006-08-15 Image processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/667,377 Division US7181069B2 (en) 2002-09-24 2003-09-23 Image processing apparatus

Publications (1)

Publication Number Publication Date
US20060274954A1 true US20060274954A1 (en) 2006-12-07

Family

ID=32273381

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/667,377 Expired - Fee Related US7181069B2 (en) 2002-09-24 2003-09-23 Image processing apparatus
US11/503,905 Abandoned US20060274954A1 (en) 2002-09-24 2006-08-15 Image processing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/667,377 Expired - Fee Related US7181069B2 (en) 2002-09-24 2003-09-23 Image processing apparatus

Country Status (3)

Country Link
US (2) US7181069B2 (en)
JP (1) JP2004120122A (en)
CN (1) CN1254080C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110298891A1 (en) * 2010-06-04 2011-12-08 Iowa State University Research Foundation, Inc. Composite phase-shifting algorithm for 3-d shape compression

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064127B2 (en) * 2002-03-08 2008-03-19 シャープ株式会社 Image encoding apparatus and image decoding apparatus
JP2004120122A (en) * 2002-09-24 2004-04-15 Sharp Corp Image processing apparatus
JP4603446B2 (en) * 2004-09-29 2010-12-22 株式会社リコー Image processing apparatus, image processing method, and image processing program
US20070091109A1 (en) * 2005-09-13 2007-04-26 Roscoe Atkinson Image quality
JP4915071B2 (en) * 2005-09-22 2012-04-11 株式会社ニコン Microscope and virtual slide creation system
JP5590390B2 (en) * 2010-07-15 2014-09-17 ソニー株式会社 Image processing apparatus and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044182A (en) * 1995-11-30 2000-03-28 Eastman Kodak Company Method for embedding digital information in an image
US20010000711A1 (en) * 1998-12-07 2001-05-03 Xerox Corporation. Method and apparatus for pre-processing mixed raster content planes to improve the quality of a decompressed image and increase document compression ratios
US6343152B1 (en) * 1994-10-18 2002-01-29 Peerless Systems Corporation Bi-level image compression by gray scale encoding
US6608928B1 (en) * 1999-11-03 2003-08-19 Xerox Corporation Generic pre-processing of mixed raster content planes
US20030219159A1 (en) * 2002-03-08 2003-11-27 Hideaki Yamada Image coding device and image decoding device
US6750983B1 (en) * 1999-03-30 2004-06-15 Canon Kabushiki Kaisha Image processing apparatus and method, and storage medium
US6873711B1 (en) * 1999-11-18 2005-03-29 Canon Kabushiki Kaisha Image processing device, image processing method, and storage medium
US7031531B1 (en) * 1999-08-27 2006-04-18 Sharp Kabushiki Kaisha Image encoding device and method therefor, image decoding apparatus and method therefor, and computer-readable recorded medium on which image encoding program and image decoding program are recorded
US7043049B2 (en) * 2000-11-30 2006-05-09 Intel Corporation Apparatus and method for monitoring streamed multimedia quality using digital watermark
US7181069B2 (en) * 2002-09-24 2007-02-20 Sharp Kabushiki Kaisha Image processing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409623A (en) * 1981-01-31 1983-10-11 Nippon Telegraph & Telephone Public Corporation Method and equipment for processing gray scale facsimile signal
JPS60254190A (en) * 1984-05-31 1985-12-14 株式会社 アスキ− Display controller
US5339164A (en) * 1991-12-24 1994-08-16 Massachusetts Institute Of Technology Method and apparatus for encoding of data using both vector quantization and runlength encoding and using adaptive runlength encoding
JP2000106624A (en) 1998-07-28 2000-04-11 Canon Inc Data processing unit, method and computer-readable storage medium
US6781600B2 (en) * 2000-04-14 2004-08-24 Picsel Technologies Limited Shape processor
EP1470726A1 (en) * 2001-12-31 2004-10-27 STMicroelectronics Asia Pacific Pte Ltd. Video encoding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343152B1 (en) * 1994-10-18 2002-01-29 Peerless Systems Corporation Bi-level image compression by gray scale encoding
US6044182A (en) * 1995-11-30 2000-03-28 Eastman Kodak Company Method for embedding digital information in an image
US20010000711A1 (en) * 1998-12-07 2001-05-03 Xerox Corporation. Method and apparatus for pre-processing mixed raster content planes to improve the quality of a decompressed image and increase document compression ratios
US6750983B1 (en) * 1999-03-30 2004-06-15 Canon Kabushiki Kaisha Image processing apparatus and method, and storage medium
US7031531B1 (en) * 1999-08-27 2006-04-18 Sharp Kabushiki Kaisha Image encoding device and method therefor, image decoding apparatus and method therefor, and computer-readable recorded medium on which image encoding program and image decoding program are recorded
US6608928B1 (en) * 1999-11-03 2003-08-19 Xerox Corporation Generic pre-processing of mixed raster content planes
US6873711B1 (en) * 1999-11-18 2005-03-29 Canon Kabushiki Kaisha Image processing device, image processing method, and storage medium
US7043049B2 (en) * 2000-11-30 2006-05-09 Intel Corporation Apparatus and method for monitoring streamed multimedia quality using digital watermark
US20030219159A1 (en) * 2002-03-08 2003-11-27 Hideaki Yamada Image coding device and image decoding device
US7181069B2 (en) * 2002-09-24 2007-02-20 Sharp Kabushiki Kaisha Image processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110298891A1 (en) * 2010-06-04 2011-12-08 Iowa State University Research Foundation, Inc. Composite phase-shifting algorithm for 3-d shape compression

Also Published As

Publication number Publication date
CN1254080C (en) 2006-04-26
CN1496102A (en) 2004-05-12
US7181069B2 (en) 2007-02-20
JP2004120122A (en) 2004-04-15
US20050100189A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US6618444B1 (en) Scene description nodes to support improved chroma-key shape representation of coded arbitrary images and video objects
US6947600B1 (en) Information processing method, apparatus and storage medium for receiving and decoding a code sequence obtained by encoding an image
JP4444968B2 (en) Alpha image processing
JP3830009B2 (en) Data processing system and color conversion method
KR102240164B1 (en) Techniques for encoding, decoding and representing high dynamic range images
US20060274954A1 (en) Image processing apparatus
JP2000059634A (en) Variable quantization device
JP2007336467A (en) Image compression apparatus, image reader with the same, image processor with image compression apparatus, image forming apparatus with the same, method of image compression processing, computer program hereof, and recording medium
US20040201593A1 (en) Method for reversibly transforming data format, image processing apparatus, program for reversibly transforming data format, and computer-readable recording medium thereof
JP4037824B2 (en) Image encoding method and image apparatus
EP1324618A2 (en) Encoding method and arrangement
US7016548B2 (en) Mobile image transmission and reception for compressing and decompressing without transmitting coding and quantization tables and compatibility with JPEG
US20030235339A1 (en) Method and apparatus for differentially compressing images
US6640005B1 (en) Method for inconspicuously adding tracking data in coded images
US20110110600A1 (en) Method for compressing images and a format for compressed images
US7224832B2 (en) Image coding device, and image decoding device using irreversable coding without mask image
US20050129110A1 (en) Coding and decoding method and device
JP2000307879A (en) Method and device for color image communication
Okuda et al. Effective color space representation for wavelet based compression of HDR images
JP3950791B2 (en) Image processing apparatus and image data processing method
US20110243437A1 (en) System and method for image compression
US6625307B1 (en) Image decode optimization techniques
Kikuchi et al. Lossless compression of LogLuv32 HDR images by simple bitplane coding
JPH05260308A (en) Static image coding device
Fang On performance of lossless compression for HDR image quantized in color space

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE