US20060251890A1 - Pressure sensitive adhesive (PSA) laminates - Google Patents
Pressure sensitive adhesive (PSA) laminates Download PDFInfo
- Publication number
- US20060251890A1 US20060251890A1 US11/397,648 US39764806A US2006251890A1 US 20060251890 A1 US20060251890 A1 US 20060251890A1 US 39764806 A US39764806 A US 39764806A US 2006251890 A1 US2006251890 A1 US 2006251890A1
- Authority
- US
- United States
- Prior art keywords
- adhesive
- layer
- psa
- tackifier
- laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2409/00—Presence of diene rubber
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2411/00—Presence of chloroprene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2453/00—Presence of block copolymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2483/00—Presence of polysiloxane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
Definitions
- the present invention relates to coextruded non-adhesive laminates and pressure sensitive adhesive (PSA) laminates.
- PSA pressure sensitive adhesive
- the present invention also relates to processes for producing the non-adhesive laminates and PSA laminates.
- Articles of manufacture are also provided including, but not limited to, tapes, labels, protective films, signs, decals, and the like.
- pressure sensitive adhesive laminates comprise at least one polymeric component, at least one tackifier component, and at least one plasticizer. These components are then physically mixed together using heat, water, or solvents.
- PSA pressure-sensitive adhesive
- PSA labels are commonly used to apply printed information to an object or article.
- PSA labels typically comprise a release liner, a PSA layer disposed onto the release liner, and an outer layer which may be a filmic polymer laminated onto the PSA layer.
- Such laminates may be formed by first coating or laminating the PSA to the release liner, then laminating the outer layer onto the PSA-coated liner; or alternatively by coating or laminating the PSA to the outer layer, then the PSA-coated outer layer onto the release liner.
- the outer layer is typically made of plastic, which is printed on with information or other indicia either before or after the outer layer is laminated to the PSA and liner.
- a PSA laminate comprising:
- a non-adhesive laminate comprising:
- a process to produce the non-adhesive laminate comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate.
- a process to produce the PSA laminate comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate and applying at least one tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate to produce the PSA laminate.
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- the present invention is based on the discovery that a non-adhesive laminate comprising at least one filmic outer layer (A) and at least one adhesive base layer (B) can be converted into a PSA laminate by applying at least one tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate.
- a PSA laminate can be obtained with at least one of the following advantages over PSA laminates manufactured by conventional processes.
- the adhesive base polymer of the adhesive base layer (B) is coextruded onto the outer filmic layer (A) thus forming a coextruded melt bond thereby improving the anchorage of the adhesive base polymer onto the outer filmic layer.
- This can eliminate any offsetting that can occur with a normally manufactured filmic label PSA. Offsetting is the undesirable transfer of adhesive to a substrate during label removal caused by insufficient anchorage of the adhesive onto the filmic label substrate. Furthermore, this implies that any bond of the PSA laminate with a substrate during use of the PSA laminate will fail at the substrate interface or internally, i.e. cohesive failure.
- the tackifier layer (C) can be coated at very low temperatures, typically up to 100° C. lower than a traditional hot melt pressure sensitive adhesive, since it no longer contains the adhesive base polymer. This improves the filmic label manufacturing process in at least one of the following ways:
- Another advantage is the molecular weight gradient of tackifier in the adhesive base layer (B) and the tackifier layer (C).
- the adhesive base layer (B) and the tackifier layer (C) can exhibit a molecular weight gradient of tackifier from the tackifier layer (C) to the adhesive base layer (B).
- This molecular weight gradient leaves a low molecular weight, high tack layer at the surface of the tackifier layer (C) where this functionality is required to create pressure sensitive bonds.
- the migration of the tackifier into the adhesive base layer (B), the high molecular weight portion of the PSA laminate can improve at least one of the following properties: peel adhesion, loop tack, shear resistance, creep resistance, and high temperature performance.
- the adhesive base layer (B) can be manufactured with high cohesive strength polymers.
- High cohesive strength polymers are polymers having a melt flow rate ⁇ 1 g/10 min at 190° C. using a 2.16 kg weight utilizing ASTM D1238. Using such high cohesive strength polymers to manufacture conventional hot melt pressure sensitive adhesives can result in very high hot melt viscosities, so high that they cannot be coated using known hot melt coating equipment.
- the PSA laminate has improved clarity and haze since the low viscosity of the tackifier composition provides excellent wettability of the non-adhesive laminate and provides a smooth coated surface.
- a common problem in conventional PSAs is inadequate wetting of the adhesive to the facestock or insufficient flow, resulting in contact or surface defects, reducing the visual appearance of the PSA laminate.
- PSA laminates can now be assembled from readily available non-adhesive laminates which consist of the filmic outer layer (A) and the adhesive base layer (B) that can be converted into the PSA laminate by applying a tackifier layer (C) by normal coating techniques known to a person skilled in the art of coating adhesives (such as slot-die coating, curtain coating, spray coating, solution coating, or dispersion coating).
- FIG. 1 is a cross-section of a pressure sensitive adhesive laminate in one embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), and tackifier layer (C).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- FIG. 2 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and release layer (D).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- D release layer
- FIG. 3 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and overlaminate layer (E).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- E overlaminate layer
- FIG. 4 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and barrier layer (F).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- F barrier layer
- FIG. 5 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), overlaminate layer (E), and barrier layer (F).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- E overlaminate layer
- F barrier layer
- FIG. 6 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), and overlaminate layer (E).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- D release layer
- E overlaminate layer
- FIG. 7 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), and barrier layer (F).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- D release layer
- F barrier layer
- FIG. 8 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), overlaminate layer (E), and barrier layer (F).
- A outer filmic layer
- B adhesive base layer
- C tackifier layer
- D release layer
- E overlaminate layer
- F barrier layer
- FIG. 9 is a schematic overview of one embodiment of a process for preparing the PSA laminate according to the present invention.
- FIG. 10 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a curved interface between (B) and (C).
- FIG. 11 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a jagged interface between (B) and (C).
- FIG. 12 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a discontinuous tackifier layer (C).
- FIG. 13 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a discontinuous tackifier layer (C).
- FIGS. 14 . 1 - 14 . 3 shows a simplistic illustration of the migration of the tackifier from tackifier layer (C) into the adhesive base layer (B) in one embodiment of the invention.
- FIG. 14 . 1 shows a cross-section of a PSA laminate in one embodiment of the invention having an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C) prior to migration.
- FIG. 14 . 2 shows the migration of a portion of the tackifier in the tackifier layer (C) migrating into the adhesive base layer of the PSA laminate shown in FIG. 14 . 1 .
- FIG. 14 . 3 shows the migration of all of the tackifier in the tackifier layer (C) into the adhesive base layer of the PSA laminate shown in FIG. 14 . 1 .
- Optional or optionally means that the subsequently described event or circumstances may or may not occur.
- the description includes instances where the event or circumstance occurs, and instances where it does not occur.
- Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
- PSA refers to an adhesive that will form a bond to two surfaces under light finger pressure at room temperature.
- the PSA provides enough potential deformability and wettability so that the necessary contact to a surface can be achieved, yet there is enough internal strength, or cohesion, within the adhesive for it to be able to resist any moderate separation forces. More information concerning the definition of a PSA can be found in Pressure Sensitive Adhesive Tapes, A Guide to Their Function, Design, Manufacture, and Use , John Johnston, Pressure Sensitive Tape Council, 2000, Chap. 2, p. 23.
- layer when referring to the PSA laminate means a layer of material contained in the PSA that is of consistent thickness or can vary in thickness and can be either continuous or discontinuous depending on the use to be made of the PSA laminate.
- composition and thickness of the PSA laminate can vary over time due to the migration of the tackifier in the the tackifier layer (C) into the adhesive base layer (B).
- the terms “migrate”, “migrating”, “migration”, “diffuse”, “diffusing”, and “diffusion” are used interchangeably and mean that a portion or all of the tackifier in the tackifier layer (C) moves into the adhesive base layer thereby producing a PSA laminate. As a result, the original adhesive base layer may swell, so that the thickness of the combined layers remains relatively unaffected.
- a pressure sensitive adhesive (PSA) laminate comprising: a) at least one outer filmic layer (A) comprising at least one filmic polymer; b) at least one adhesive base layer (B) comprising at least one adhesive base polymer; and c) at least one tackifier layer (C) comprising at least one tackifier; wherein the pressure sensitive adhesive laminate is obtainable by co-extruding the outer filmic layer (A) with the adhesive base layer (B) to produce a non-adhesive laminate and applying the tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate to produce the PSA laminate.
- PSA pressure sensitive adhesive
- the outer filmic layer comprises at least one filmic polymer.
- the outer filmic layer can contain a blend of filmic polymers or can be a multi-layer film of various filmic polymers.
- Filmic polymers include any filmic polymer that can be coextruded with the adhesive base polymer to produce the non-adhesive laminate.
- it may be desired that the filmic polymer has a solubility parameter that is inconsistent with or incompatible with that of the adhesive base polymer to prevent migration between the two layers.
- the filmic polymer can, when combined with the adhesive base polymer, provide a sufficiently self-supporting construction to facilitate label separation and application.
- an overlaminate layer can be applied to the exposed face of the outer filmic layer to provide additional stiffness.
- the filmic polymer and any other material utilized in the outer filmic layer are chosen to provide the non-adhesive laminate with the desired properties such as inter alia printability.
- Typical filmic polymers include, but are not limited to, polystyrenes, polyolefins, polyamides, polyesters (e.g. polyethylene terephthalate), polycarbonates, polyurethanes, polyacrylates, polyvinyl alcohols, functional polyesters (e.g. sulfopolyesters), poly(ethylene vinyl alcohols), polyether block polyamides, polyvinyl acetates, and mixtures thereof.
- the filmic polymer is a polyolefin including, but not limited to, polymers having repeating units selected from the group consisting of ethylene, propylene, and 1-butene.
- the filmic polymer is at least one selected from the group consisting of polyethylene, polypropylene and ethylene-propylene copolymer.
- Various polyethylenes can be utilized including low, medium, and high density polyethylenes.
- the melt flow rate (MFR) of polyethylene used in the outer filmic layer can range from about 0.1 grams/10 minutes to about 15 grams/10 minutes measured at 190° C. using a 2.16 kg weight utilizing ASTM D1238, preferably from 0.1 grams/10 minutes to 5 grams/10 minutes.
- a commercial example of a polyethylene useful as the outer filmic layer is low density polyethylene sold as Lupolen 2426F having a density of about 0.924 g/cm 3 using ISO 1183 test method and a melt flow rate of about 0.75 g/10 minutes following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands.
- the melt flow rate (MFR) of polypropylene used in the outer filmic layer can range from about 1 grams/10 minutes to about 20 grams/10 minutes measured at 230° C. using a 2.16 kg weight utilizing ASTM D 1238, preferably from 0.1 grams/10 minutes to 10 grams/10 minutes.
- a commercial example of a polypropylene useful as the outer filmic layer is polypropylene homopolymer sold as Moplen HP422H having a density of 0.900 g/cm 3 using ISO 1183 test method and a melt flow rate of about 2 g/10 minutes at 230° C. using a 2.16 kg weight following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands.
- a commercial example of a random polypropylene copolymer useful as the outer filmic layer is Moplen RP210M polypropylene having a density of 0.900 g/cm 3 using ISO 1183 test method and a melt flow rate of about 6 g/10 minutes at 230° C. using a 2.16 kg weight following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands.
- the inner surface of the outer filmic layer may be coextruded with a barrier layer other than the barrier created by the adhesive base polymer layer (B) and/or the tackifier layer (C) of this invention.
- the barrier layer may prevent migration of constituents to the outer filmic layer.
- a tie or primer layer may also be included, or alternatively provided, to enhance adhesion of the adhesive base polymer layer to the outer filmic layer.
- “linerless” constructions are contemplated to be within the scope of the present claims. In linerless constructions, the outer surface is coated with a release material, such as a silicone (e.g., polydimethylsiloxane).
- the outer filmic layer has a thickness that is suitable for the particular PSA laminate application.
- the outer filmic layer has a thickness of about 10 ⁇ m to about 200 ⁇ m, preferably from about 20 ⁇ m to about 100 ⁇ m, and most preferably, from 30 ⁇ m to 90 ⁇ m.
- the adhesive base layer comprises at least one adhesive base polymer.
- the adhesive base polymer can be any that is known in the art that can be coextruded with the outer filmic polymer and is suitable for producing a non-adhesive laminate or PSA laminate.
- the adhesive base polymer utilized to produce the non-adhesive laminate or PSA laminate may generally be classified into the following categories:
- random copolymer adhesive base materials such as, but not limited to, those copolymers based upon acrylate and/or methacrylate copolymers and their derivatives, ⁇ -olefin copolymers, silicone-copolymers, chloroprene/acrylonitrile copolymers, and the like;
- block copolymer adhesive base polymers such as, but are not limited to, those based upon linear block copolymers (e.g., A- ⁇ and A-B-A type), multi-block copolymers, branched block copolymers, star block copolymers, grafted, or radial block copolymers, and the like; and
- natural and synthetic rubber adhesive base polymers such as, but are not limited to, polyisobutylene, polyisoprene, butyl rubber, and the like.
- the adhesive base polymer comprises a thermoplastic elastomer (TPE).
- TPE thermoplastic elastomer
- Thermoplastic elastomers are polymers that behave like a rubber at their use temperature, but can be processed in the melt as conventional polymers.
- TPEs include, but are not limited to, linear, branched, graft or radial block copolymers.
- Block copolymers can be represented by a di-block structure A-B, a tri-block A-B-A structure, a tetra-block structure, a multi-block structure, a radial or coupled structure (A-B) n , and combinations of these structure; wherein A represents a hard thermoplastic phase or block which is non-rubbery or glassy or crystalline at room temperature but fluid at high temperatures, and B represents a soft-block which is rubbery or elastomeric at service or room temperatures.
- thermoplastic elastomers may comprise from about 75% to about 95% by weight of rubbery segments and from about 5% to about 25% by weight of non-rubbery segments.
- the non-rubbery segments or hard blocks comprise polymers of mono- and poly-cyclic aromatic hydrocarbons, and more particularly vinyl-substituted aromatic hydrocarbons which may be mono-cyclic or bi-cyclic in nature.
- the preferred rubbery blocks or segments comprise polymer blocks of homopolymers or copolymers of aliphatic conjugated dienes. Rubbery materials, such as, but not limited to, polyisoprene, polybutadiene, and styrene butadiene rubbers may be used to form the rubbery block or segment.
- Particularly preferred rubbery segments include polydienes, and rubbers of ethylene-butylene or ethylene-propylene copolymers.
- the latter rubbers may be obtained from the corresponding unsaturated polyalkylene moieties such as polybutadiene and polyisoprene by hydrogenation thereof.
- the block copolymer may be selected from the group consisting of butadiene-based polymers, isoprene-based polymers, polyether block polyamides, and mixtures thereof.
- the butadiene-based polymers may be selected from the group consisting of styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene (SB) block copolymers, multi-armed (SB) x block copolymers, polybutadiene block copolymers, and mixtures thereof.
- Isoprene-based copolymers may be selected from the group consisting of styrene-isoprene-styrene (SIS) block copolymers, styrene-isoprene-butadiene-styrene (SIBS) copolymers, styrene-isoprene (SI) block copolymers, linear and multi-armed (SI) x block copolymers, radial block copolymers having an styrene-ethylene-butadiene-styrene (SEBS) backbone and isoprene and/or styrene-isoprene (SI) arms, polyisobutylene, natural rubber, synthetic polyisoprene, and mixtures thereof.
- SIBS styrene-isoprene-butadiene-styrene
- SIBS styrene-isoprene-butadiene-
- di-block copolymers include, but are not limited to, styrene-butadiene (SB), styrene-isoprene (SI), and the hydrogenated derivatives thereof.
- examples of tri-block polymers, tetra-block polymers, and multi-block polymers include, but are not limited to, styrene-butadiene-styrene (SBS), styrene-isoprene-styrene (SIS), ⁇ -methylstyrene-butadiene- ⁇ -methylstyrene, ⁇ -methylstyrene-isoprene- ⁇ -methylstyrene, styrene-isoprene-butadiene-styrene (SIBS) and derivatives thereof.
- SBS styrene-butadiene-styrene
- SIS styrene-isoprene-styrene
- a styrene-ethylene-butylene-styrene (SEBS) block copolymer Upon hydrogenation of SBS copolymers comprising a rubbery segment of a mixture of 1,4- and 1,2-isomers, a styrene-ethylene-butylene-styrene (SEBS) block copolymer is obtained.
- SEBS styrene-ethylene-butylene-styrene
- an SIS polymer yields a styrene-ethylene/propylene-styrene (SEPS) block copolymer
- hydrogenation of a (SI) x multiblock copolymer provides a multiblock copolymer of styrene and ethylene/propylene (SEP) x .
- functionalized block copolymers can be used, such as succinic anhydride-modified SEBS, which is commercially available as Kraton FG-1901X and 1924X block copolymer from Kraton Polymers in Houston, Tex.
- any of the adhesive base polymers include the hydrogenated derivatives thereof.
- a number of selectively hydrogenated block copolymers are available commercially from Kraton Polymers under the general trade designation “Kraton G”.
- particularly suitable block copolymers for the purposes of the present invention include Kraton G 1657 and Kraton G 1730 block copolymers.
- Kraton G 1657 is a SEBS tri-block copolymer which contains about 13% by weight styrene.
- Kraton G 1730 is a (SEP) x multi-block copolymer which contains about 21% by weight styrene.
- the adhesive base polymer layer (B) can be made up of high cohesive strength polymers. Since such polymers require relatively high temperatures to process in traditional hot melt manufacturing equipment, they are typically not used in producing a PSA laminate from the melt since at high temperatures, the tackifiers do not withstand such temperatures over an extended period of time. Such high cohesive strength polymers may also be applied with the tackifier in the tackifier layer (C) as either a solution or dispersion. Examples of high cohesive strength polymers include, but are not limited to, styrene block copolymers and isobutylene copolymers.
- Styrene block copolymers include, but are not limited to, styrene-isoprene-styrene block copolymers and copolymers based on styrene and ethylene/butylene (S-E/B-S), and copolymers based on styrene and ethylene/propylene (S-E/P-S).
- the polystyrene content of the SIS block copolymer ranges from about 10% by weight to about 50% by weight, preferably from 15% by weight to 30% by weight.
- the solution viscosity of the styrene block copolymers ranges from about 0.05 Pa ⁇ s to about 20 Pa ⁇ s, preferably from 0.1 Pa ⁇ s to 5 Pa ⁇ s measured utilizing 25% solids in toluene in a Brookfield viscosimeter, such as a Brookfield viscosimeter type DV-I+, using an appropriate spindle and rotation speed.
- the molecular weight of the polyisobutylene ranges from about 250,000 to about 5,000,000, preferably from 750,000 to 3,500,000.
- High cohesive strength polymers are commercially available as Kraton D1111 styrene-isoprene-styrene polymers from Kraton Polymers in Houston, Tex., Oppanol B200 isobutylene copolymers available from BASF, Ludwigshafen, Germany, and Kraton G-1652E S-E/B-S copolymer from Kraton Polymers.
- the adhesive base layer has a thickness that is suitable for the particular PSA laminate application.
- the adhesive base layer has a thickness of about 1 ⁇ m to about 60 ⁇ m, preferably from about 2 ⁇ m to about 40 ⁇ m, and most preferably, from 4 ⁇ m to 20 ⁇ m.
- the adhesive base layer can be modified by the addition of additives. Any additive known in the art that is compatible with the adhesive base polymer can be utilized.
- the adhesive base layer can be modified with pure monomer resins; poly(ethylene) or poly(propylene) waxes; poly(ethylene) with low viscosity, such as polyethylene with a melt flow rate of about 5 g/10 min to about 80 g/10 min, preferably 10 to 50 g/10 min, 190° C., 2.16 kg weight, according to ASTM D-1238; and ethylene or propylene based (co)polymers as produced by metallocene catalysts.
- additives can be utilized to improve the unwind characteristics of the non-adhesive laminate formed by the outer filmic layer and the adhesive base layer and/or to facilitate the production of the non-adhesive laminate formed by the outer filmic layer and the adhesive base layer by matching the rheological properties of the filmic polymer and the adhesive base polymer.
- the tackifier layer (C) comprises at least one tackifier. In one embodiment, the tackifier layer (C) comprises at least one tackifier and at least one polymer. In another embodiment, the tackifier layer (C) comprises at least one tackifier, at least one polymer, and at least one plasticizer.
- the polymer can be any polymer known in the art suitable for producing PSA laminates.
- the polymer is at least one thermoplastic elastomer. Thermoplastic elastomers were previously discussed in this disclosure.
- the amount of polymer is that which does not cause the tackifier layer to be a PSA.
- the amount of polymer can range from 0.1% by weight to about 15% by weight. Other ranges can be selected from the following ranges which are given in weight percent based on the weight of the tackifier layer (C): 0 to 7, 0 to 9, 0.1 to 15, 1 to 15, 5 to 15, 10 to 15, 0.1 to 10, 1 to 10, 5 to 10, 7 to 10, 0.1 to 5, 1 to 5, and 2 to 5.
- the tackifier can be any that is known in the art suitable for use in PSA laminates.
- the tackifer can include, but is not limited to, amorphous tackifier resins of all types known to tackify adhesives, including rosin-based and hydrogenated rosin-based, hydrocarbon-based and hydrogenated hydrocarbon-based, phenolic-based, terpene-based, terpene phenolic-based, styrenated terpene-based, hydrogenated terpene-based, polyester-based, pure monomer aromatic-based, aromatic acrylic-based, liquid resin types, and functionalized types thereof. Note that any of these tackifiers may be in a hydrogenated form.
- Pure monomer aromatic-based tackifier are tackifying resins based on low molecular weight polymers or oligomers produced from monomers, such as, for example, styrene, alpha-methylstyrene, vinyl toluene, and mixtures thereof.
- the tackifier layer comprises a liquid tackifier composition.
- the liquid tackifier composition may be a solution or dispersion of an appropriate tackifier.
- Such tackifier may be selected on the basis of experiments or existing knowledge with regard to the composition of the pressure sensitive adhesive laminate based on the adhesive base polymer being the major component of the non-adhesive laminate.
- the tackifier layer (C) may be a blend of polymer (i.e. adhesive base polymer and/or other performance additives) and amorphous resin tackifier resulting in a tackifier masterbatch composition.
- This composition can be formulated for spray ability/high-tack/adhesion and good compatibility with the adhesive base polymer layer.
- the tackifier layer can further comprise at least one plasticizer.
- the plasticizer can be any that is known in the art suitable for use in a PSA laminate. Examples of plasticizers include, but are not limited to, naphthenic and paraffinic oils, citrates, sulfonates, and phthalates
- Tackifiers may vary in their compatibility with the adhesive base polymer.
- the tackifier may be preferentially soluble in the adhesive base polymer. This is especially suitable for elastomers containing polystyrene or polyisoprene blocks.
- Tackifiers that are preferentially soluble in polystyrene and polyisoprene are obtained by polymerization of a stream of aliphatic petroleum derivatives in the form of dienes and mono-olefins containing 5 or 6 carbon atoms, generally in accordance with the teachings of U.S. Pat. No. 3,577,398, herein incorporated by reference in its entirety to the extent it does not contradict statements herein.
- the resulting hydrocarbon resins range from materials that are normally liquid at room temperatures to materials that are normally solid at room temperature, and typically contain 40% or more by weight polymerized dienes.
- dienes may be, for example, piperylene and/or isoprene.
- Examples include, but are not limited to, the Piccotac® family of resins (available from Eastman Chemical Company, Kingsport, Tenn., USA) and the Wingtack® family of resins (available from the Chemical Division of Goodyear Tire and Rubber Company, Akron, Ohio).
- Other solid tackifiers include, but are not limited to, Escorez® 1304 and Escorez® 1310-LC manufactured by Exxon Chemical Company (Houston, Tex.).
- modified C 5 -type petroleum resins which are made by copolymerizing one or more C 5 monoolefins and/or diolefins with one or more C 8 or C 9 monoalkenyl aromatic hydrocarbons.
- modified C 5 -type petroleum resins can be hydrogenated.
- C 5 monoolefins and diolefins such as isoprene, 2-methyl-1-butene, 2-methyl-2-butene, cyclopentene, 1-pentene, cis- and trans-2-pentene, cyclopentadiene, and cis-trans-1,3-pentadiene.
- Additional examples of C 8 and C 9 monoalkenyl aromatic compounds are styrene, methylstyrene, and indene.
- compositions that can be used as tackifiers include, but are not limited to, hydrogenated aromatic resins in which a substantial portion (50% or greater), if not all, of the benzene rings are converted to cyclohexane rings (for example the RegaliteTM and RegalrezTM family of resins available from Eastman Chemical, such as, Regalite R 1090, R 1100, R 1125, R 7100, R 9100 and Regalrez 1018, 1094, 3102, 6108, and 1126) and hydrogenated polycyclic resins (typically dicyclopentadiene resins, such as Escorez® 5300, 5320, 5340, 5380, 5400 and 5600, manufactured by Exxon Chemical Company).
- These tackifiers are especially useful when using an isoprene-based adhesive base polymer.
- Other additives include, but are not limited to, plasticizer oils, such as Shell Flex 371 (from Shell Chemical Company).
- the tackifier layer (C) contains at least one tackifier in an amount of about 50% to about 90% by weight, preferably 70% to 90% by weight, either as a solution or a dispersion.
- the tackifier layer (C) comprises a blend of the thermoplastic elastomer, which is present in the non-adhesive laminate, and an amorphous resin tackifier.
- the tackifier layer (C) includes about 2% to about 15% by weight of a thermoplastic elastomer, which may be the same elastomer as present in the adhesive base layer (B) or an elastomer compatible therewith.
- the tackifier layer has a thickness that is suitable for a particular PSA laminate application.
- the tackifier layer has a thickness of about 2 ⁇ m to about 150 ⁇ m. Other ranges are from from about 4 to about 125 ⁇ m and from 5 ⁇ m to 50 ⁇ m.
- the tackifier layer can be applied to the non-adhesive laminate by any method known in the art. Examples of application methods utilizing heat include, but are not limited to, slot die coating, roll axis coating, curtain coating, knife-over-roll coating, and spray coating.
- the tackifier layer can also be applied as an emulsion, dispersion or solution of the tackifier composition by any suitable method.
- the tackifier layer (C) itself may or may not form an effective PSA layer for the purposes of a PSA laminate (e.g. label, etc.).
- PSA was previously defined in this disclosure. In other words, if a tackifier layer (C) does not form an effective PSA layer when it is applied to a solid substrate neither the adhesive nor the structural properties (tack and strength) would be sufficient to form a structure (including an adhesive bond) with the properties of a conventional pressure sensitive adhesive laminate.
- the outer filmic layer, adhesive base layer, and tackifier layer of the PSA laminate can contain inorganic fillers and other organic and inorganic additives to provide desired properties, such as, but not limited to, appearance properties (opaque or coloured films), durability, and processing characteristics.
- useful fillers include, but are not limited to, calcium carbonate, titanium dioxide, metal articles, and fibers.
- Additives can include, but are not limited to, flame retardants, antioxidant compounds, heat stabilizers, light stabilizers, ultra-violet light stabilizers, anti-blocking agents, processing aids, and acid acceptors, etc. Nucleating agents can be added to increase crystallinity and thereby increase stiffness.
- FIGS. 1-8 and 10 - 14 Particular embodiments of the PSA laminate are shown in FIGS. 1-8 and 10 - 14 .
- the PSA laminates in FIGS. 1-8 and 10 - 14 illustrate embodiments of the invention where the tackifier in the tackifier layer (C) has not yet migrated into the adhesive base layer (B).
- the coextruded melt bond ( 10 ) between the outer filmic layer and the adhesive base layer is shown in each figure.
- FIG. 1 a cross-section of a PSA laminate is shown comprising an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C).
- FIG. 2 a cross-section of a PSA laminate further comprising a release layer (D) is shown.
- FIG. 3 a cross-section of a PSA laminate comprising an outer filmic layer (A), an adhesive base layer (B), a tackifier layer (C), and an overlaminate layer (E) is shown.
- FIG. 4 a cross-section of a PSA laminate of FIG. 1 is shown further comprising a barrier layer (F) between the outer filmic layer (A) and the adhesive base layer (B).
- FIG. 5 a cross-section of a PSA laminate is shown comprising an outer filmic layer (A), an adhesive base layer (B), a tackifier layer (C), an overlaminate layer (E), and a barrier layer (F).
- FIGS. 6-8 show the PSA laminates of FIGS. 3-5 further comprising a release layer (D). Layers A-F have been previously described in this disclosure.
- FIG. 10 a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a curved interface between (B) and (C).
- FIG. 10 a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a curved interface between (B) and (C).
- a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a jagged interface between (B) and (C).
- FIG. 12 a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a discontinuous tackifier layer (C).
- FIG. 13 a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a discontinuous tackifier layer (C).
- FIGS. 14 . 1 - 14 . 3 shows a simplistic illustration of the migration of the tackifier from tackifier layer (C) into the adhesive base layer (B) in one embodiment of the invention.
- FIG. 14 . 1 shows a cross-section of a PSA laminate in one embodiment of the invention having an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C) prior to migration.
- FIG. 14 . 2 shows the migration of a portion of the tackifier in the tackifier layer (C) migrating into the adhesive base layer of the PSA laminate shown in FIG. 14 . 1 to produce a PSA layer (B/C).
- FIG. 14 . 3 shows the migration of all of the tackifier in the tackifier layer (C) into the adhesive base layer of the PSA laminate shown in FIG. 14 . 1 to produce a PSA layer (B/C).
- the PSA laminate can have a thickness of about 35 to about 400 ⁇ m, preferably about 100 ⁇ m to about 250 ⁇ m, and most preferably from 50 ⁇ m to 150 ⁇ m.
- the PSA laminate can have a thickness ratio of outer filmic layer (A) to adhesive base layer (B) from about 50:1 to about 1:1, preferably 25:1 to 2:1.
- the thickness of outer filmic layer (A) may be in the range from about 10 ⁇ m to about 200 ⁇ m, preferably from about 20 ⁇ m to about 100 ⁇ m, and most preferably from 30 ⁇ m to 90 ⁇ m.
- Adhesive base layer (B) may have a thickness of about 1 to about 60 ⁇ m, preferably about 2 to about 40 ⁇ m and most preferably, 4 to 20 ⁇ m.
- a particularly suitable PSA laminate may have a thickness of 50-150 ⁇ m.
- the non-adhesive laminate is formed by a process comprising co-extruding an outer filmic layer (A) comprising at least one filmic polymer and an adhesive base polymer layer (B) comprising at least one adhesive base polymer, which may later on in the process be converted into a pressure sensitive adhesive laminate.
- the co-extrusion can be conducted by any method known in the art. Examples of processes for co-extruding the outer filmic layer (A) and the adhesive base layer (B) include, but is not limited to, casting and bubble blowing.
- the co-extrusion can be conducted by melting the filmic polymer and non-adhesive polymer in separate extruders and delivering the molten streams to an extrusion die from which the outer filmic layer (A) and the adhesive base layer (B) are extruded.
- the co-extrusion of the filmic polymer with the adhesive base polymer may be facilitated when the melt viscosities of the two polymers are similar.
- the choice of the material to be utilized in the formation of the non-adhesive laminate may depend upon the melt flow rate of the coextruded materials.
- the melt flow rate of the filmic polymer can range from about 0.1 g/10 min to about 15 g/10 min, preferably from 0.1 g/10 min to 5 g/10 min at 190° C. using a 2.16 kg weight (ASTM D1238).
- the melt flow rate of the filmic polymer can range from about 1 g/10 min to about 20 g/10 min, preferably from 0.1 g/10 min to 10 g/10 min at 230° C. using a 2.16 kg weight (ASTM D1238).
- the non-adhesive laminate has a thickness that is suitable for the particular application sought.
- the non-adhesive laminate has a thickness of about 10 ⁇ m to about 260 ⁇ m, preferably from about 20 ⁇ m to about 140 ⁇ m, and most preferably, from 30 ⁇ m to 80 ⁇ m.
- the thickness of the outer filmic layer can range from about 10 ⁇ m to about 200 ⁇ m, preferably from about 20 ⁇ m to about 100 ⁇ m, and most preferably, from 30 ⁇ m to 90 ⁇ m.
- the thickness of the adhesive base layer can range from about 1 ⁇ m to about 60 ⁇ m, preferably from about 2 ⁇ m to about 40 ⁇ m, and most preferably, from 4 ⁇ m to 20 ⁇ m
- the ratio of the outer filmic layer to the adhesive base layer can range from 50:1 to 1:1, preferably from 25:1 to 2:1 and most preferably, 15:1 to 4:1.
- the non-adhesive laminate or PSA laminate may be uniaxially or biaxially oriented (e.g., by heat stretching and heat setting).
- the application of the tackifier layer (C) may be effected both before and/or after the stretching occurs.
- Machine direction or biaxial orientation of the non-adhesive laminate or PSA laminate according to the invention can be accomplished by techniques known in the art.
- the laminates can be oriented in the machine direction by using tentering frames.
- the non-adhesive laminate is, in spite of the presence of at least one adhesive base polymer, not a pressure sensitive adhesive laminate. Thus, in most cases, the laminate will not have any problem of tackiness on heated rolls up to temperatures as high as 100° C.
- the non-adhesive nature of the non-adhesive laminate has significant advantages.
- this non-adhesive laminate can be easily handled and wound onto itself for later use, i.e. conversion into a PSA laminate.
- the adhesive base polymer of the adhesive base layer in the co-extrusion process can establish/form a coextruded melt bond with the outer filmic layer.
- any off-setting that can occur with a normally manufactured, transfer coated, hot melt PSA filmic label can be eliminated. Off-setting is the undesirable transfer of adhesive to a substrate during label removal caused by insufficient anchorage of the adhesive layer onto the filmic layer substrate.
- a non-adhesive laminate having a thickness of about 11 to about 210 ⁇ m comprising:
- the non-adhesive laminate may further comprise an anti-blocking layer having a thickness of about 1 to about 5 ⁇ m on top of the outer filmic layer (i.e. not in contact with the adhesive base layer (B)).
- This optional anti-blocking layer may typically be coextruded with the outer filmic layer (A) and the adhesive base layer (B). The purpose of this layer is to provide a smoother release or unwind of a rolled up non-adhesive laminate during the coating of the tackifier layer (C).
- the thermoplastic elastomer and the thickness of the adhesive base layer typically will be selected on the basis of two criteria: (a) strength requirements of the PSA laminate, and (b) capability of the thermoplastic elastomer to form a traditional PSA composition when about 30% to about 95% by weight of the thermoplastic elastomer and about 5% to about 70% by weight of a tackifier are combined (e.g. hot melt) and applied as a tackifier layer (C) to the non-adhesive laminate.
- a tackifier layer e.g. hot melt
- the adhesive base polymer layer typically comprises no tackifier.
- the outer filmic layer (A) is coextruded with the adhesive base polymer layer, and at the interface of these two layers a relatively strong coextruded melt bond is formed.
- the advantage of this is that it allows a suitable formulation to be made to result in cohesive-failing, tamper evident bonds suitable for security, tamper proof labelling, or for adhesion-interface failure mode, removable labels as well as resealable PSA applications.
- a process for preparing a PSA laminate comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate and applying at least one tackifier layer (C) to the adhesive base layer (B) of the non-adhesive laminate to produce the PSA laminate.
- a portion of the tackifier can diffuse into the adhesive base layer (B) such that a molecular weight gradient from tackifier layer (C) (low molecular weight) to adhesive base layer (B) (high molecular weight) will form.
- enhanced and improved shear resistance, creep resistance and high temperature performance may be observed.
- the portion of tackifier that diffuses into the adhesive base layer can be selected from the following ranges which are given in weight percent based on the weight of the tackifier layer (C): 0.1 to 100; 5 to 100; 10 to 100; 15 to 100; 20 to 100; 25 to 100; 30 to 100; 35 to 100; 40 to 100; 50 to 100; 55 to 100; 60 to 100; 65 to 100; 70 to 100; 75 to 100; 80 to 100; 85 to 100; 90 to 100; 95 to 100; 0.1 to 90; 5 to 90; 10 to 90; 15 to 90; 20 to 90; 25 to 90; 30 to 90; 35 to 90; 40 to 90; 45 to 90; 50 to 90; 55 to 90; 60 to 90; 65 to 90; 70 to 90; 75 to 90; 80 to 90; 85 to 90; 0.1 to 80; 5 to 80; 10 to 80; 15 to 80; 20 to 80; 25 to 80; 30 to 80; 35 to 80; 40 to 80; 45 to 80; 50 to 80; 55 to 80; 60 to 90; 65 to 90; 70 to
- the PSA laminate can be produced by any method known in the art.
- the PSA laminate can be produced in a one-step extrusion/spray-coating process, and the obtained PSA laminate may be self-wound or laminated to a release liner (e.g. silicone backing paper) and wound, creating PSA tape or label structures, respectively.
- a release liner e.g. silicone backing paper
- PSA laminate will thus be created cost-effectively.
- the tackifier layer (C) can be coated at very low temperatures, typically up to 100° C. lower than with traditional hot-melt pressure sensitive adhesives. This may improve the manufacturing process in at least one of the following ways: (1) heat sensitive outer filmic layers, e.g.
- polyethylene may be direct coated compared to the usual method of transfer coating; (2) process costs are lower; (3) a tackifier master-batch composition may be expected to have better heat aging properties, less colour loss, less charring in comparison to PSA laminates that have been conventionally processed or coated at high temperatures (with the tackifier in the PSA composition) which can exhibit gelling and/or charring due to an extended heat history.
- the non-adhesive laminate can be self-wound and stored for an indefinite time.
- the non-adhesive laminate (A & B) can then be further processed, for example, on a (narrow web) label press which is suitably modified for spraying or coating of the tackifier layer (C) onto the non-adhesive laminate to form the pressure sensitive adhesive layer (B and C), thereafter laminated with off-line produced release paper or release film (D), where the finished label would then be processed and used as a traditionally manufactured label laminate.
- the conversion of the non-adhesive laminate can be effected either in one production line (on-line) or off-line at a different location. This conversion typically will be implemented by applying the tackifier layer (C) to the second surface (or under surface) of the non-adhesive laminate (i.e. that is the surface of the non-adhesive laminate that is not in contact with the outer filmic layer (A)).
- Tackifier layer (C) may be applied on the adhesive base layer (B) either directly or indirectly.
- tackifier layer (C) may be first coated on an intermediary carrier (e.g. siliconized paper) and then transferred to adhesive base polymer layer (B).
- intermediary carrier e.g. siliconized paper
- the conversion of the non-adhesive laminate may require that the laminate is heated. Heating may be effected in the stretching process or separately by means of e.g. infra-red heaters. Such heating can help propagate the diffusion mechanism of the tackifier into the adhesive base layer and converts the non-adhesive laminate into a PSA laminate.
- This tackifier layer (C) can be coated onto the non-adhesive laminate at very low temperatures, typically up to 100° C. less than the required temperature for traditional hot melt pressure sensitive adhesives. Generally, conventional coating method temperatures range from about 130° C. to about 200° C., while the coating temperatures for applying the tackifier layer (C) to the non-adhesive laminate can range from about 60° C. to about 120° C. or from about 85° C. to about 110° C.
- the tackifier is a liquid or has been liquified (by melting, adding of solvent, forming of dispersion).
- Suitable solvents include hydrocarbons such as toluene.
- Dispersions may be formed with water and/or alcohols.
- the present invention further suggests tackifier compositions which essentially comprise one of the previously described tackifiers with either a solvent or dispersant and other additives.
- a PSA laminate according to the invention can have a thickness of about 35 to about 400 ⁇ m, preferably from 100 to 200 ⁇ m.
- other laminates are contemplated to be within the scope of the invention. e.g. faceless PSA constructions as described in US 2003198737, herein incorporated by reference to the extent it does not contradict statements herein. Accordingly, in applying the tackifier layer (C), both the layer thickness to be applied to the non-adhesive laminate and the concentration of the tackifier in the layer are of some concern.
- tackifier concentration in the tackifier layer (C) and the thickness were discussed previously in this disclosure.
- one function of the tackifier layer (C) is to provide a reservoir or source for a tackifier to migrate into the adhesive base layer to form the PSA laminate.
- solvent/dispersant which on the one hand, could facilitate the migration of the tackifier into the adhesive base polymer layer, but on the other hand, should not be present in an amount to effectively swell the adhesive base polymer layer.
- the tackifier layer (C) itself does not form a PSA.
- PSA was previously defined in this disclosure.
- both the concentration of the tackifier and the viscosity of the tackifier (which can account for the easiness of the application of the tackfier composition to the adhesive base layer) would be insufficient to form an effective pressure sensitive adhesive laminate.
- the tackifier layer (C) forms a PSA.
- PSA was previously defined in this disclosure.
- the tackifier layer (C) may comprise other additives that serve different purposes. For instance, polystyrene reinforcing additives may be present. Moreover, other components can be added to improve the stability, impart structural reinforcement, improve coatability, or impart some other desirable properties. Accordingly, the tackifier layer (C) may include stabilizers which inhibit oxidative degradation of the adhesives and pigments.
- FIG. 9 represents a schematic overview of one embodiment of the process for preparing the PSA laminate according to the present invention.
- two extruders 1 and 2 are utilized which provide two molten streams through lines 10 and 11 to the co-extrusion die 20 .
- Extruder 1 provides a molten stream 10 of the adhesive base layer which comprises at least one adhesive base polymer and extruder 2 provides a molten stream 11 of the filmic outer layer comprising at least one filmic polymer.
- the extruders 1 and 2 are used to melt the polymers and pumps are provided to deliver the molten streams to the extrusion die 20 .
- the precise extruder utilized is not critical to the process.
- a number of useful extruders are known, and these include, but are not limited to, single and twin-screw extruders, etc. Such extruders are available from a variety of commercial sources including Killion Extruders, Inc., C. W. Brabender, Inc., American Leistritz Extruder Corp., and Davis Standard Corp. A variety of useful co-extrusion die systems are known. Examples of extrusion dies useful in this invention are so-called “vane” dies, and multimanifold dies available from the Cloeren Company of Orange, Tex. Referring again to FIG. 9 , the molten non-adhesive laminate 30 of at least two layers exits the extrusion die 20 through orifice 21 .
- This non-adhesive laminate (as shown in detail M in FIG. 9 ) comprises the outer filmic layer 90 and the adhesive base layer 80 of the present invention.
- the non-adhesive laminate can then be further processed by any method known in the art. For instance, a number of additional steps can be performed on the non-adhesive laminate.
- the non-adhesive laminate of the present invention can either be collected for future processing, overlaminating and converting at a different time and/or geographic location, or these laminates can be routed to one or more other stations for printing, overlaminating, and/or converting during the same operation.
- the non-adhesive laminate is coated by a coating head 40 forming a tackifier layer 70 of the tackifier composition on the adhesive base layer 80 .
- the non-adhesive laminate 50 may be occasionally necessary to heat the non-adhesive laminate 50 before or after applying the tackifier layer (C).
- a heater 60 e.g. infra-red heater
- heater 60 can be located after the application of the tackifier layer 70 by coating head 40 .
- the non-adhesive laminate will “convert” into the final product, the PSA laminate comprising outer filmic layer (A) and pressure sensitive adhesive layer (B and C) (as shown in detail N in FIG. 9 ) formed from the adhesive base layer 80 and tackifier layer 70 , in a relatively short time (a few mintues to hours).
- This PSA laminate can be further processed by printing and applying the laminate to a substrate.
- a liner may be combined with the PSA laminate if the PSA laminate shall be collected for later use.
- the PSA laminate can be utilized to produce many articles of manufacture including, but not limited to, labels, decals, tapes, and films.
- a label comprises at least one PSA laminate.
- the label can be selected from filmic labels, such as linerless filmic labels, or filmic labels with a release liner.
- filmic labels include, but are not limited to, packaging labels and specialty labels.
- Packaging labels include, but are not limited to, labels used for packaging of beverages, food products, health and personal care products, pharmaceuticals, industrial chemicals, household chemicals or retail products.
- Speciality labels include, but are not limited to, repositionable labels, removable labels, resealable labels, no-look labels, deep freezer labels and security labels.
- a tape comprising the PSA laminate.
- tapes include, but are not limited to, multi-purpose tapes and specialty tapes.
- Multi-purpose tapes can be selected from the group consisting of packaging and transportation tapes; paint and spray masking tapes; consumer and office tapes; and bonding and fastening tapes.
- Specialty tapes can be selected from the group consisting of surface protection tapes; electrical insulation tapes; binding, reinforcing and marking tapes; splice tapes; HVAC-sealing tapes; medical application tapes; automotive applications tapes; electronic tapes; safety or reflective tapes; and diaper closure tapes.
- a film comprising the PSA laminate.
- Such films include, but are not limited to, adhesive films, barrier films, protective films, and cling films.
- Adhesive films can be selected from the group consisting of pressure sensitive adhesive films, heat activated adhesive films, single and double-sided adhesive layers, carpet underlayment, roofing underlayment, clear or colored films, food contact adhesive films, and backing layer films.
- Backing layer films include, but are not limited to, backing layer films used to support a drug matrix, multi-purpose backing layer films, or substrate-specific backing layer films.
- Substrate-specific backing layer films include, but are not limited to, backing layer films for nonwovens, glass, paper, cotton, mineral wool, polyethylene, polypropylene, nylon, polyester, polyurethane foams/sheets, and acrylic adhesives.
- Barrier films include, but are limited to, flexible food packaging; film barriers to odor, organic aromas and flavors, moisture, oxygen, and other gases; heat and impulse sealable barrier films, printable barrier films, corona treated barrier films, ostomy appliances, pharmaceutical blister packs, cap liners, bags, and textile lamination for protective clothing.
- Protective films include, but are not limited to, films laminated to solid structures. Examples include, but are not limited to, protective films on corrugated steel pipe to improve corrosion and abrasion resistance, masking protective films for painted surfaces, reflective films for interior or exterior glass, anti-shatter films for window glass, and glass tinting films.
- the PSA can also be utilized in films that offer high optical clarity.
- Cling films include, but are not limited to, food packaging, industrial applications, and consumer sealable applications.
- An example of industrial applications is pallet wrap.
- inventive PSA laminates are examples and do not limit the use of the inventive PSA to produce articles that are covered in this disclosure.
- Test methods are specified in the text of Examples 1-4.
- Loop tack was determined according to FINAT FTM 9 using stainless steel instead of glass.
- FINAT is an organization for label converters and has its headquarters in The Hague, The Netherlands.
- Peel adhesion was determined following AFERA (European Association for the Self Adhesive Tape Industry) 5001, test method A on species 25 mm wide.
- Shear adhesion was determined following AFERA 5012, procedure A on species 25 mm wide.
- a non-adhesive laminate comprised of an outer filmic layer of primarily polypropylene (PP) (80%) and an adhesive base layer of Kraton G1657 TPE (20%) was made on a coextrusion line operating with two Killion 1 inch single screw extruders with 24/1 L/D.
- the output from the two extruders directly entered a combining block adaptor where the two flow streams were combined to form a 2 layer flow profile with the adhesive base layer (Kraton TPE) on top to produce a combined polymer melt stream.
- the combined polymer melt stream entered a 6 inch wide film die where the flow profile spread out into the final laminate dimension to produce the non-adhesive laminate.
- the non-adhesive laminate was cast onto a chill roll at 30° C.
- the coextruded non-adhesive laminate rolls exhibited edges comprised of 100% Kraton TPE due to the fact that the TPE flowed more to the edges in the film die than the outer filmic layer, made from a 1.5 MFR polypropylene homopolymer. Polypropylene with a nominal 4.0 MFR would have given higher flow and better layer distribution in the coextruded non-adhesive laminate.
- the outer filmic layer contained 100% polypropylene polymer.
- the outer filmic layer contained 90% by weight of the polypropylene polymer combined with 10% by weight of Regalite R-1100 hydrocarbon resin from Eastman Chemical Company.
- the outer filmic layer contained 80% by weight of the polypropylene polymer combined with 20% by weight Regalite R-1100 hydrocarbon resin, while in non-adhesive laminate sample 1.4, the Regalite R-1100 hydrocarbon resin level was increased to 30% by weight.
- the nominal laminate thickness was about 33 mils with the adhesive base layer comprising about 18% of the total structure in the center of the samples.
- Each of the thick, non-adhesive laminate samples 1.2, 1.3, and 1.4 were stretched into oriented, non-adhesive laminate specimens by stretching 4 ⁇ by 4 ⁇ using a tenter frame film stretcher manufactured by the T.M. Long Company. Small specimens 10 cm ⁇ 10 cm were inserted into the clips of the stretcher, and the specimens were heated to 140° C. After heating, the non-adhesive laminate specimen was stretched in both directions simultaneously at a strain rate of about 150%/second until the final laminate dimensions were reached. The nominal thickness of the final oriented, non-adhesive laminates was about 2.2 mils where the laminates retained a surface layer of Kraton G-1657 copolymer about 10 microns thick.
- the oriented, non-adhesive laminates made from starting laminates 1.2, 1.3, and 1.4 were designated 1.5, 1.6, and 1.7, respectively.
- the starting non-adhesive laminate specimens 1.2, 1.3, and 1.4 were stretched 3 ⁇ 3 into oriented, non-adhesive laminates at 140° C. at a draw strain rate of about 250% per second using the same T.M. Long tenter frame stretcher with the final non-adhesive laminate samples designated as 1.8, 1.9, and 1.10.
- the average oriented, non-adhesive laminate thickness was about 95 microns and significant thickness variability was noted largely due to the excessively high draw strain rate.
- laminates with the highest Regalite hydrocarbon resin concentration exhibited the best stretch behavior.
- the oriented non-adhesive laminates exhibited visible surface irregularities. None of the oriented non-adhesive laminates exhibited measurable tack or adhesion properties.
- Oriented non-adhesive laminates 1.9 and 1.10 that had been oriented 3 ⁇ 3 to a nominal 95 microns thickness having an adhesive base layer of Kraton G-1657 copolymer about 16 microns thick were noted to possess negligible adhesive properties.
- a solution of Regalrez 1018 liquid hydrogenated tackifier resin in cyclohexane was coated onto the surface of the adhesive base layer of the oriented, non-adhesive laminate using a wire wrapped coating rod to produce PSA laminates 2.1, 2.2, and 2.3. Enough cyclohexane was added to reduce the viscosity so that the tackifier resin could be easily coated. The coating was performed so that the amount of dried Regalrez 1018 applied was about 30%-40% by weight of the starting nonadhesive laminate specimen weight.
- PSA laminates 2.1, 2.2, and 2.3 were very slimy due to the coating of the liquid tackifier resin.
- the surfaces of PSA laminates 2.1, 2.2, and 2.3 were converted to a tacky state that was very different from the initial dried surface coating of Regalrez 1018 tackifier resin.
- the 180° peel values of the tackified PSA laminates were measured using ASTM D-3330 as a guide. PSA laminates 2.1, 2.2, and 2.3 were cut into 1 inch wide strips which were press applied to stainless steel panels, and the 180° peel properties were measured with the peel values reported in units of kg f /25 mm width.
- the non-adhesive laminates were observed to demonstrate minimal tack or PSA adhesion to the metal substrate.
- the surface was slimy with very sticky character but with little adhesive strength because the coating was simply a viscous liquid.
- the liquid tackifier resin diffused into the adhesive base layer (Kraton G1657 TPE) so that the surface became a tacky semi-solid exhibiting typical viscoelastic properties of a PSA formulation. The peel forces measured from these specimens represent good PSA adhesion.
- Specimens of oriented nonadhesive laminate samples 1.6 and 1.7 were coated with an 80% solution of Regalrez 1018 tackifier resin in cyclohexane using a wire wrapped rod in order to achieve a dried coating weight applied to the surface of the adhesive base layer (Kraton G TPE) amounting to about 40% to 50% by weight of the starting oriented non-adhesive laminate weight to produce PSA laminates 3.1-3.4.
- the starting oriented non-adhesive laminates exhibited minimal tack or adhesion properties, but after coating, drying, and aging the PSA laminates for 1 hours at 60° C., the PSA laminates were noted to behave like a PSA.
- the PSA laminates were cut into 1 inch wide specimens applied to stainless steel panels to form test specimens for both 180° peel testing and loop tack testing.
- the 180° peel values were measured using ASTM D-3330 as a guide.
- Loop tack adhesion values were measured using ASTM D-6195 method as a guide.
- the adhesion properties measured for these PSA laminates are listed below. TABLE 3 Regalrez Loop 180° Ex- Oriented Coating 1018 to Tack Peel ample Nonadhesive PSA Wt.
- Kraton G Kg. (Oz./in No.
- Laminate Laminate Gain Ratio force width
- these examples serve to demonstrate the principle that when a tackifier formulation is applied to the surface of the adhesive base layer of a coextruded non-adhesive laminate construction, the tackifier species can diffuse into the adhesive base layer (TPE) with time so that the final PSA laminate will exhibit PSA properties dependent on the relative amount and type of tackifier coating applied to the adhesive base layer surface.
- TPE adhesive base layer
- Tackifier layer compositions were produced containing (SEP) x copolymer obtained as Kraton G1730 and Regalite R1090 and Regalrez 1018 tackifiers according to the procedure described in more detail in Example 13 for a single composition.
- Irganox 1010 antioxidant was also added.
- the amount of (SEP) x copolymer varied from 0-25% by weight.
- the amount of tackifier and antioxidant was changed according to the increase in the (SEP) x copolymer.
- the amounts are specified in Tables 4-9. These compositions were used to produce a tackifier layer (C) on a non-adhesive laminate.
- the outer filmic layer of the non-adhesive laminate was made of Sabic low density polyethylene obtained by Sabic Europe in Sittard, The Netherlands, and the adhesive base layer was Kraton G1730 (SEP) x block copolymer.
- the low density polyethylene had a density of 0.924 and a melt flow index of 0.75 g/10 min at 190° C. using a 2.16 kg weight.
- the non-adhesive laminate contained an anti-blocking layer on the surface of the outer filmic layer away from the adhesive base layer.
- a low density polyethylene containing 3% silica was utilized for the anti-blocking layer.
- the nonadhesive laminate was produced by co-extruding the low density polyethylene, (SEP) x block copolymer, and the anti-blocking layer.
- a cast film extrusion line was utilized having three separate extruders.
- the extruder for the outer filmic layer contained 6 zones and operated at an inlet temperature of about 170° C. and an outlet temperature of about 220° C.
- the extruders for the adhesive base layer and the anti-blocking layer contained 3 zones and operated at an inlet temperature of about 180° C. to 190° C. and an outlet temperature of about 210° C.
- the outer filmic layer of polyethylene represented 32% of the total; the adhesive base polymer represented 12% of the total extruded amount; and the anti-blocking layer amounted to 56% of the total amount extruded.
- the melt from the extruders were routed to a cloerenblok feed block and then to a Black Clawson Spuitkop die.
- the die temperature was in the range of about 250° C. to about 260° C., and the web speed was 21.3 m/min. After casting, the nonadhesive laminate was cooled and rewound.
- the tackifier layer compositions were transfer coated (24 grams per square meter or g/m 2 ) onto the non-adhesive laminate to produce a pressure sensitive adhesive laminate using a hot melt die coater onto a release liner.
- the pressure sensitive laminates were tested for peel adhesion, loop tack and shear resistance properties, initial, after 1 hr, 24 hrs, 48 hrs, 1 week, 2 weeks and 3 weeks. The data are tabulated in Tables 4-9.
- PSA laminates containing zero and 5% Kraton G1730 (SEP) x in the tackifier layer (C) showed off-setting to the release paper.
- the offsetting stopped after 1 week of storage at room temperature, again indicating diffusion of the tackifier from the tackifier layer (C) into the adhesive base layer (B).
- Tackifier Layer (C): Kraton G1730 (0 wt %)/Regalite R1090 (40.4 wt %)/Regalrez 1018 (59.3 wt %)/Irg.1010 (0.3 wt %) 1 2 3
- Tackifier Layer (C): Kraton G1730 (5.3 wt %)/Regalite R1090 (42.1 wt %)/ Regalrez 1018 (51.6 wt %)/Irg.1010 (1.1 wt %) 1 2 3
- Tackifier Layer (C): Kraton G1730 (10 wt %)/Regalite R1090 (37.5 wt %)/ Regalrez 1018 (51.5 wt %)/Irg.1010 (1 wt %) 1 2 3
- Example 7 - Tackifier Layer (C): Kraton G1730 (15 wt %)/Regalite R1090 (34.9 wt %)/ Regalrez 1018 (49 wt %)/Irg.1010 (1 wt %) 2 3
- Example 9 - Tackifier Layer Composition Kraton G1730 (25.2 wt %)/Regalite R1090 (44.3 wt %)/Regalrez 1018 (30.2 wt %)/Irg.1010 (0.3 wt %) 1 2 3
- Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 9.7 13.9 7.5 6.4 5.3 5.3 4.4 (N/25 mm) SD (2.1) (1.1) (0.5) (0.6) (0.8) (1.1) (0.7) Failure mode cf 5% Loop tack to steel AV 25.3 24.1 14.2 13.5 11.2 6.7 3.4 (N/25 mm) SD (2.9) (0.7) (1.2) (1.0) (0.9) (1.5) (1.1) Failure mode cf/ss cf/ss ssss Shear adhesion to steel AV >10K >10K >10K >10K >10K >10K 1 Kg (min) SD Failure mode
- a PSA laminate As further examples of preparing a PSA laminate, three PSA laminates were prepared in which an adhesive (adhesive base polymer and tackifier) is provided by migration of two non-PSA layers (non-adhesive laminate (B) and tackifier layer (C) into each other. This is shown in Examples 10-14.
- Comparative Example 15 provides PSAs (PSA 15.1 & 15.2) based on hot melt technology.
- Example 16 provides a PSA (PSA 16.1) based on solvent technology.
- the guiding principle for all these experiments is that the final adhesive layers in all the PSAs have the same gross composition and grammage. Since PSA laminate 14.3 also has the same outer filmic layer (BOPP), the adhesive properties of PSA 14.3 can be directly compared to the properties of Comparative PSAs 15.1, 15.2, and 16.1.
- the outer filmic layer of the non-adhesive laminate was made of low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands (Sabic 2201 TH 00), and the adhesive base layer was (SEP) x block copolymer as Kraton G1730, obtained from Kraton.
- the low density polyethylene had a melt flow index of 0.8 g/l 0 min at 230° C. using a 2.16 kg weight.
- the non-adhesive laminate contained 5% by weight of an anti-blocking additive and 1% by weight of a processing aid in the adhesive base layer.
- the non-adhesive laminate was produced by co-extruding the low density polyethylene and the (SEP) x block copolymer.
- a blown film extrusion line was used having five separate extruders. Two extruders were used to provide the outer layer, which is the outer filmic layer, and the inner layer, which is the adhesive base layer. The other three extruders were used to provide a symmetric five layer film core by splitting the output of two extruders. Each extruder had at least five heating zones.
- the polyethylene was heated from 170° C. to 200° C. in the first four zones, whereas the (SEP) x block copolymer was heated from 190° C. to 230° C. in the first four zones.
- a pressure profile was chosen across the non-adhesive laminate with the layers in the center extruded at the highest pressures. Finally, the throughput of the extruders was chosen such that a 64 micrometer polyethylene outer filmic layer with a 13 micrometer (SEP) x adhesive base layer was obtained.
- the non-adhesive laminate 10.1 was produced at 16 m/min and a width at production of 60 cm.
- the outer filmic layer of non-adhesive laminate 11.1 was made of polypropylene obtained from Borealis (Borealis RB707CF), and the adhesive base layer was Kraton G1730 (SEP) x block copolymer obtained from Kraton, The Netherlands.
- the polypropylene had a melt flow index of 0.9 g/10 min at 230° C. using a 2.16 kg weight.
- non-adhesive laminate 11.1 contained 5% of an anti-blocking additive in the adhesive base layer.
- Non-adhesive laminate 11.1 was produced by co-extruding the polypropylene and the (SEP) x block copolymer.
- a blown film extrusion line was used having five separate extruders. Two extruders were used to provide an outer filmic layer and an inner adhesive base layer. The other three extruders were used to provide a symmetric five layer film core by splitting the output of two extruders. Each extruder had at least five heating zones. Therefore, there were six layers of polypropylene (jointly forming the outer filmic layer (A)) and one layer of (SEP) x block copolymer (adhesive base layer (B)). The polypropylene was heated from 180° C. to 225° C.
- Non-adhesive laminate 11.1 was produced at 15 m/min and a width at production of 60 cm.
- a 33 wt. % solution of (SEP) x as Kraton G 1730 copolymer was prepared by adding 240 g of Kraton G1730 to 480 g of toluene in a solvent resistant plastic 1 L flask. 2 g of antioxidant Irganox 1010 were added. The mixture was placed on a low speed roller bank for four days to provide a clear solution of Kraton G1730 copolymer.
- the Kraton G1730 solution was coated on 36 ⁇ m biaxially oriented polypropylene (BOPP, released prior to coating to facilitate unwind) using equipment from RK Print Coat Instruments, Ltd. located in Lithington, UK, at room temperature at a speed of around 5 m/min. An adjustable gap between rolls was used to control coating weight. The solvent was removed from the non-adhesive laminate in four dryer sections at respectively 90° C., 110° C., 110° C., and 110° C. BOPP/Kraton G1730 non-adhesive laminate with a TPE coating weight between 10-14 g/m 2 was obtained.
- Tackifier layer compositions were produced containing 37.5% Regalite R1090 and 51.5% Regalrez 1018 tackifiers, 10% (SEP) x copolymer obtained as Kraton G1730 and 1% Irganox 1010 antioxidant in a Z-blade mixer (Linden, Marienheide, Germany) with an effective volume of approximately 1 L.
- the Z-blade mixer was initially filled with 150 g of Kraton G1730, 10.5 g Irganox 1010 antioxidant and 75 g Regalite R 1090.
- the Z-blade mixing chamber was heated using an oil bath with a set-point of 170° C. to provide an internal temperature in the mixer of approximately 150° C.
- These components were mixed to a homogeneous product in 50 minutes with regular removal of copolymer and tackifier from the sides of the Z-blade mixer.
- a further 275 g of Regalite R1090 tackifier was added in portions, followed by 490.5 g Regalrez 1018 tackifier in portions.
- the tackifier composition of Example 13 was coated at 24 grams at 110° C. onto a silicone based release liner, using a slot die coater, which was than laminated on the tackifier composition side with non-adhesive laminates from Examples 10-12 (tackifier to Kraton G1730 copolymer side) to provide PSA laminates 14.1, 14.2, and 14.3, respectively.
- Coating equipment supplied by Bobis located in Bobis, Apeldoorn, The Netherlands was used at a line speed of around 40 m/min. Speed was varied to control coating weight. Similar equipment is available through LC Maan Engineering, Raalte, The Netherlands.
- the PSA laminates with a coating weight between 34-36 g/m 2 were slitted into rolls of 5 cm width and stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- the PSA laminates were tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 1 week and 3 weeks according to methods previously described in this disclosure. The data are tabulated in Table 10.
- the hot melt adhesive was coated on 36 ⁇ m biaxially oriented polypropylene (BOPP, released prior to coating to facilitate unwind) using roll axle (IVa) or slot die (IVb) coating equipment from Bobis at 180° C. at a speed of around 40 m/min to produce Comparative PSAs 15.1 and 15.2.
- Coating equipment supplied by Bobis located in Bobis, Apeldoorn, The Netherlands was used at a line speed of around 40 m/min. Speed was varied to control coating weight. Similar equipment is available through LC Maan Engineering, Raalte, The Netherlands Speed was varied to control coating weight.
- PSAs 15.1 and 15.2 with a coating weight between 34-36 g/m 2 were slitted into rolls of 5 cm width and stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- the PSA laminates (15.1 and 15.2) were tested for peel adhesion, loop tack and shear resistance properties, initial, after 24 hrs, 1 week and 3 weeks according to methods previously described in this disclosure.
- the data are tabulated in Table 10.
- a solution of 33 wt. % Kraton G1730 copolymer was prepared by adding 144 grams (SEP), as Kraton G1730 copolymer to 288 grams toluene and placing the mixture for 48 hours on a low speed roller bank. To the resulting solution, 90 grams Regalite R1090 tackifier, 125.5 grams Regalrez 1018 tackifier, and 2.5 grams Irganox 1010 anti-oxidant were added. After a further 24 hours on the roller bank, a 55 wt % solids adhesive was obtained.
- laminates 14.1, 14.2 and 14.3 are PSAs based on the peel adhesion, loop tack, and shear adhesion data.
- the definition of PSA was previously described in this disclosure.
- the peel and loop tack values for PSA 14.3 are higher than for comparable laminates PSAs 15.1, 15.2, and 16.1.
- Shear adhesion and loop tack are time dependent for PSAs 14.1, 14.2, and 14.3, with typically initial high loop tack values and low shear values.
- the properties change over time to obtain PSAs which are at least comparable or better in adhesive properties than comparative PSAs 15.1, 15.2, and 16.1 prepared using conventional methods.
- Benefits include at least one of the following: processing advantages and advantages for other properties, such as, color, smell, clarity, gloss, haze, and anchorage.
- Processing advantages include: 1) lower processing temperatures which improve a number of properties such as color and smell, and 2) lower viscosities allowing very smooth and defect free surfaces improving the optical properties of the PSA laminate.
- Lower temperatures require less energy, and lower viscosities enable higher line speeds.
- the coextruded melt bond of the filmic polymer and the adhesive base layer eliminates the presence of a discrete interface between adhesive and filmic backing as in conventional PSAs. This enhances the visual appearance of the inventive PSAs over conventional PSAs, since the risk of interface defects as resulting from poor flow, entrainment of air or poor wettability, and any scatter, are eliminated.
- the PSA laminate has improved clarity and haze since the low viscosity of the tackifier composition provides excellent wettability of the non-adhesive laminate and provides a smooth coated surface.
- a common problem in conventional PSAs is inadequate wetting of the adhesive to the facestock or insufficient flow, resulting in contact or surface defects, reducing the visual appearance of the PSA laminate.
- the tackifying composition of Example 13 was formulated as an dispersion by heating 100 grams of the tackifying composition, 9 grams of a hydrogenated rosin acid (Staybellite resin E, Eastman Chemical Company, Middelburg, the Netherlands) and 2.2 grams 50 wt. % KOH in water. The latter two components serve as a tackifying surfactant system. Then, under vigorous stirring, slowly approximately 100 grams of water were added at 90° C., followed by cooling. A dispersion of the tackifying resin was obtained at 52 wt % solids with a particle size of 258 nm as measured by Coulter type particle size equipment and a viscosity of 500 mPas.
- the dispersion was coated onto A4 sheets of non-adhesive laminates 14.1, 14.2, and 14.3 using a K-bar type 6 to provide a 24 gram tackifying layer (C) after drying the PSA laminates for 2 minutes at 100° C. to produce PSAs 18.1, 18.2, and 18.3.
- All PSA laminates had a shear strength of >10000 minutes) in 1 week at 23° C., and a peel strength of >10 N/25 mm after ageing for three weeks.
- the outer filmic layer of the non-adhesive laminate was made of Sabic low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands, and the adhesive base layer was Kraton G1730 (SEP) x block copolymer.
- the low density polyethylene had a density of 0.924 (g/cm 3 ) and a melt flow index of 0.75 g/10 min at 190° C. using a 2.16 kg weight.
- the non-adhesive laminate contained an anti-blocking layer on the surface of the outer filmic layer away from the adhesive base layer. A low density polyethylene containing 3% silica was utilized for the anti-blocking layer.
- the non-adhesive laminate was produced by co-extruding the low density polyethylene, (SEP) x block copolymer, and the anti-blocking layer.
- a cast film extrusion line was utilized having three separate extruders.
- the extruder for the outer filmic layer contained 6 zones and operated at an inlet temperature of about 170° C. and an outlet temperature of about 220° C.
- the extruders for the adhesive base layer and the anti-blocking layer contained 3 zones and operated at an inlet temperature of about 180° C. to 190° C. and an outlet temperature of about 210° C.
- the anti-blocking layer of polyethylene with silica had a thickness of 50 micrometer; the core poly(ethylene) filmic layer had a thickness of 30 micrometer, and the adhesive base layer had a thickness of 30 micrometer.
- the melt from the extruders was routed to a cloerenblok feed block and then to a Black Clawson Spuitkop die.
- the die temperature was in the range of about 250° C. to about 260° C., and the web speed was 21.3 m/min. After casting, non-adhesive laminate 18.1 was cooled and rewound.
- the tackifier composition of Example 13 was coated at 30, 50, 70, 90 and 125 g/m 2 at 110° C. onto a silicone based release liner, using a slot die coater, which was than laminated on the tackifier composition side with non-adhesive laminates from examples 18 (tackifier to Kraton G1730 copolymer side) to provide pressure sensitive adhesive laminates (PSAs 19.1, 19.2, 19.3, 19.4, and 19.5).
- Coating equipment supplied by Meltex now Nordson, Luneburg Germany was used at a line speed between 3 and 11 m/min. Speed was varied to control coating weight. Low speed corresponds to high coating thickness.
- the PSA laminates were stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- Non-Adhesive Laminate 20.1 Korean G 1730 copolymer on PE by Co-Extrusion and Film Blowing
- the outer filmic layer of the non-adhesive laminate was made of low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands (Sabic 2201 TH 00), and the adhesive base layer was Kraton G1730 (SEP) x SEPS block copolymer obtained from Kraton.
- the low density polyethylene had a melt flow index of 0.8 g/10 min at 190° C. using a 2.16 kg weight.
- the non-adhesive laminate contained 5% by weight of an anti-blocking additive and 1% by weight of a processubg aid.
- a film blown process similar to the one used in Example 10 was used to provide a 85 micrometer polyethylene filmic outer layer with a 6 micrometer (SEP) x adhesive base layer.
- the roll had a width at production of 70 cm and was re-slit to 50 cm and 20 cm rolls.
- the tackifier composition of Example 13 was coated at 10, 15 and 20 g/m 2 at 110° C. onto a silicone based release liner, using a slot die coater, which was then laminated on the tackifier composition side with non-adhesive laminates from Example 20 (tackifier to Kraton G1730 side) to provide PSA laminates 21.1, 21.2, and 21.3.
- Coating equipment supplied by Meltex now Nordson, Luneburg Germany was used at a line speed between 19-39 m/min. Speed was varied to control coating weight. Low speed corresponds to high coating thickness.
- the PSA laminates were stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- the tackifier composition of Example 13 was coated at 13 g/m 2 at 100° C. onto a silicone based release liner, using a knife-over-roll coater with pressure roll, which was then laminated on the tackifier composition side with non-adhesive laminates from Example 20 (tackifier to Kraton G1730 side) to provide PSA laminate 22.1.
- Coating equipment supplied by Kroenert Maschinenfabrik Max Kroenert GmbH & Co KG, Hamburg, Germany was used at a line speed of 50 m/min.
- the PSA laminate was stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- the PSA laminate was tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 2 days, 4 days, 1 week, and 2 weeks according to methods described previously in this disclosure.
- the data are tabulated in Table 13.
- TABLE 13 Effect of tackifying layer amount on property development Tackfying layer PSA amount Time Property No. (gram/meter 2 ) 1 day 2 days 4 days 1 week 2 weeks Peel (N/25 mm) 22.1 13 16 17 16 14 11 Loop Tack (N/25 mm) 22.1 13 12 11 12 10 2 Shear 23° C., 1 kg 22.1 13 58 48 248 426 604 (min)
- the PSA laminate was examined by confocal Raman spectroscopy using a WiTec Confocal Raman Microscope CRM 200.
- the laser power used was 15 MW at 532 nm.
- An in depth analyses was carried out starting from the tackifier layer up to the polyethylene backing layer. Characteristic Raman signals were used to identify the compounds of the original layers:
- Depth profiles of the PSA laminate 22.1 were measured after 3 and 8 days of ageing at room temperature, in order to study the migration behaviour of the tackifier. Every analysis was carried out five times at different locations of the PSA laminate. The results of these analyses were averaged over each series of measurements. In order to quantify migration, the distance between the peak values of tackifier signal and adhesive base polymer signal were calculated, followed by a correction of the values by assuming a value of 1.5 of the breaking index for both tackifier and (SEP) x .
- the shear resistance of the PSA laminates increased by almost an order of magnitude over a similar time frame (e.g. 2 days-1 week), as listed in Table 13
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- This application is a continuation-in-part of copending U.S. application Ser. No. 11/178,849, filed Jul. 11, 2005, which claims priority to U.S. Provisional Application Ser. No. 60/678,620, filed May 6, 2005; all prior applications are hereby incorporated by reference in their entirety.
- The present invention relates to coextruded non-adhesive laminates and pressure sensitive adhesive (PSA) laminates. The present invention also relates to processes for producing the non-adhesive laminates and PSA laminates. Articles of manufacture are also provided including, but not limited to, tapes, labels, protective films, signs, decals, and the like.
- Generally, pressure sensitive adhesive laminates comprise at least one polymeric component, at least one tackifier component, and at least one plasticizer. These components are then physically mixed together using heat, water, or solvents. These pressure-sensitive adhesive (PSA) laminates are used in such articles of manufacture for example as labels, tapes, decals, signs, and the like. PSA labels are commonly used to apply printed information to an object or article. PSA labels typically comprise a release liner, a PSA layer disposed onto the release liner, and an outer layer which may be a filmic polymer laminated onto the PSA layer. Such laminates may be formed by first coating or laminating the PSA to the release liner, then laminating the outer layer onto the PSA-coated liner; or alternatively by coating or laminating the PSA to the outer layer, then the PSA-coated outer layer onto the release liner. The outer layer is typically made of plastic, which is printed on with information or other indicia either before or after the outer layer is laminated to the PSA and liner.
- There are research efforts in the industry to improve the adhesive properties of PSA laminates and the processes for producing such laminates. Coextrusion has been utilized to coextrude the outer filmic layer and the pressure sensitive adhesive, however, processing problems have occurred, such as, adherence to equipment rollers. To prevent the PSA laminate from sticking to the equipment rollers, a release liner can be required which is laminated to the PSA laminate immediately after the co-extrusion process.
- There is a need in the industry for improved processes for producing PSA laminates as well as laminates with improved properties.
- In accordance with one embodiment of this invention, a PSA laminate is provided comprising:
-
- a. at least one outer filmic layer (A) comprising at least one filmic polymer;
- b. at least one adhesive base layer (B) comprising at least one adhesive base polymer; and
- c. at least one tackifier layer (C) comprising at least one tackifier;
- wherein the pressure sensitive adhesive laminate is obtainable by co-extruding the outer filmic layer (A) with the adhesive base layer (B) to produce a non-adhesive laminate and applying the tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate to produce the PSA laminate.
- In accordance with another embodiment of this invention, a non-adhesive laminate is provided. The non-adhesive laminate comprising:
-
- a. at least one outer filmic layer (A) comprising at least one filmic polymer; and
- b. at least one adhesive base layer (B) comprising at least one adhesive base polymer; wherein the non-adhesive laminate is obtainable by co-extruding the outer filmic layer (A) with the adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate.
- In accordance with another embodiment of this invention, a process to produce the non-adhesive laminate is provided. The process comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate.
- In accordance with another embodiment of this invention, a process to produce the PSA laminate is provided. The process comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate and applying at least one tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate to produce the PSA laminate.
- The present invention is based on the discovery that a non-adhesive laminate comprising at least one filmic outer layer (A) and at least one adhesive base layer (B) can be converted into a PSA laminate by applying at least one tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate. Surprisingly, it has been found that by implementing this approach, a PSA laminate can be obtained with at least one of the following advantages over PSA laminates manufactured by conventional processes.
- First, the adhesive base polymer of the adhesive base layer (B) is coextruded onto the outer filmic layer (A) thus forming a coextruded melt bond thereby improving the anchorage of the adhesive base polymer onto the outer filmic layer. This can eliminate any offsetting that can occur with a normally manufactured filmic label PSA. Offsetting is the undesirable transfer of adhesive to a substrate during label removal caused by insufficient anchorage of the adhesive onto the filmic label substrate. Furthermore, this implies that any bond of the PSA laminate with a substrate during use of the PSA laminate will fail at the substrate interface or internally, i.e. cohesive failure. The advantage of this type of failure is that it allows suitable formulations to be made to result in cohesive failing, tamper evident bonds suitable for security, tamper proof labeling; for adhesion, interface failure mode, removable PSA laminate applications; or for re-positioning and resealing applications. Finally, the coextruded melt bond of the filmic polymer and the adhesive base layer eliminates the presence of a discrete interface between adhesive and filmic backing as in conventional PSAs. This enhances the visual appearance of the inventive PSAs over conventional PSAs, since the risk of interface defects as resulting from poor flow, entrainment of air or poor wettability are eliminated.
- Secondly, the tackifier layer (C) can be coated at very low temperatures, typically up to 100° C. lower than a traditional hot melt pressure sensitive adhesive, since it no longer contains the adhesive base polymer. This improves the filmic label manufacturing process in at least one of the following ways:
-
- a. heat sensitive outer filmic layers, e.g. polyethylene, are not affected;
- b. lower operating costs due to the lower coating temperature; and
- c. the PSA laminate has improved heat aging properties, less color loss, no charring, etc. compared with a traditional hot melt pressure sensitive adhesive that require higher temperatures.
- Another advantage is the molecular weight gradient of tackifier in the adhesive base layer (B) and the tackifier layer (C). Athough not intending to be bound by theory, it is believed due to the mechanism of auto adhesion fusion and intramolecular migration, the adhesive base layer (B) and the tackifier layer (C) can exhibit a molecular weight gradient of tackifier from the tackifier layer (C) to the adhesive base layer (B). This molecular weight gradient leaves a low molecular weight, high tack layer at the surface of the tackifier layer (C) where this functionality is required to create pressure sensitive bonds. The migration of the tackifier into the adhesive base layer (B), the high molecular weight portion of the PSA laminate, can improve at least one of the following properties: peel adhesion, loop tack, shear resistance, creep resistance, and high temperature performance.
- Another advantage of the present invention is the adhesive base layer (B) can be manufactured with high cohesive strength polymers. High cohesive strength polymers are polymers having a melt flow rate <1 g/10 min at 190° C. using a 2.16 kg weight utilizing ASTM D1238. Using such high cohesive strength polymers to manufacture conventional hot melt pressure sensitive adhesives can result in very high hot melt viscosities, so high that they cannot be coated using known hot melt coating equipment.
- Another advantage of this invention is that the PSA laminate has improved clarity and haze since the low viscosity of the tackifier composition provides excellent wettability of the non-adhesive laminate and provides a smooth coated surface. A common problem in conventional PSAs is inadequate wetting of the adhesive to the facestock or insufficient flow, resulting in contact or surface defects, reducing the visual appearance of the PSA laminate.
- Yet another advantage of this invention is that PSA laminates can now be assembled from readily available non-adhesive laminates which consist of the filmic outer layer (A) and the adhesive base layer (B) that can be converted into the PSA laminate by applying a tackifier layer (C) by normal coating techniques known to a person skilled in the art of coating adhesives (such as slot-die coating, curtain coating, spray coating, solution coating, or dispersion coating).
-
FIG. 1 is a cross-section of a pressure sensitive adhesive laminate in one embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), and tackifier layer (C). -
FIG. 2 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and release layer (D). -
FIG. 3 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and overlaminate layer (E). -
FIG. 4 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), and barrier layer (F). -
FIG. 5 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), overlaminate layer (E), and barrier layer (F). -
FIG. 6 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), and overlaminate layer (E). -
FIG. 7 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), and barrier layer (F). -
FIG. 8 is a cross-section of a pressure sensitive adhesive laminate in another embodiment of the invention having an outer filmic layer (A), adhesive base layer (B), tackifier layer (C), release layer (D), overlaminate layer (E), and barrier layer (F). -
FIG. 9 is a schematic overview of one embodiment of a process for preparing the PSA laminate according to the present invention. -
FIG. 10 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a curved interface between (B) and (C). -
FIG. 11 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a jagged interface between (B) and (C). -
FIG. 12 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a discontinuous tackifier layer (C). -
FIG. 13 is a cross-section of a PSA laminate in another embodiment of the invention having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) with a discontinuous tackifier layer (C). -
FIGS. 14 .1-14.3 shows a simplistic illustration of the migration of the tackifier from tackifier layer (C) into the adhesive base layer (B) in one embodiment of the invention.FIG. 14 .1 shows a cross-section of a PSA laminate in one embodiment of the invention having an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C) prior to migration.FIG. 14 .2 shows the migration of a portion of the tackifier in the tackifier layer (C) migrating into the adhesive base layer of the PSA laminate shown inFIG. 14 .1.FIG. 14 .3 shows the migration of all of the tackifier in the tackifier layer (C) into the adhesive base layer of the PSA laminate shown inFIG. 14 .1. - Before the present compositions of matter and methods are disclosed and described, it is to be understood that this invention is not limited to specific methods or to particular formulations, except as indicated, and as such, may vary from the disclosure. It is also to be understood that the terminology used is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention.
- The singular forms “a,” “an,” and “the” include plural referents, unless the context clearly dictates otherwise.
- Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs, and instances where it does not occur.
- Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
- Throughout this application, where patents or publications are referenced, the disclosures of these references in their entireties are intended to be incorporated by reference into this application, in order to more fully describe the state of the art to which the invention pertains to the extent they do not contradict the statements made herein.
- The term “PSA” as used in this disclosure refers to an adhesive that will form a bond to two surfaces under light finger pressure at room temperature. The PSA provides enough potential deformability and wettability so that the necessary contact to a surface can be achieved, yet there is enough internal strength, or cohesion, within the adhesive for it to be able to resist any moderate separation forces. More information concerning the definition of a PSA can be found in Pressure Sensitive Adhesive Tapes, A Guide to Their Function, Design, Manufacture, and Use, John Johnston, Pressure Sensitive Tape Council, 2000, Chap. 2, p. 23.
- The term “layer” when referring to the PSA laminate means a layer of material contained in the PSA that is of consistent thickness or can vary in thickness and can be either continuous or discontinuous depending on the use to be made of the PSA laminate. In addition, the composition and thickness of the PSA laminate can vary over time due to the migration of the tackifier in the the tackifier layer (C) into the adhesive base layer (B).
- The terms “migrate”, “migrating”, “migration”, “diffuse”, “diffusing”, and “diffusion” are used interchangeably and mean that a portion or all of the tackifier in the tackifier layer (C) moves into the adhesive base layer thereby producing a PSA laminate. As a result, the original adhesive base layer may swell, so that the thickness of the combined layers remains relatively unaffected.
- In an embodiment of this invention, a pressure sensitive adhesive (PSA) laminate is provided comprising: a) at least one outer filmic layer (A) comprising at least one filmic polymer; b) at least one adhesive base layer (B) comprising at least one adhesive base polymer; and c) at least one tackifier layer (C) comprising at least one tackifier; wherein the pressure sensitive adhesive laminate is obtainable by co-extruding the outer filmic layer (A) with the adhesive base layer (B) to produce a non-adhesive laminate and applying the tackifier layer (C) to the adhesive base layer side of the non-adhesive laminate to produce the PSA laminate.
- The outer filmic layer comprises at least one filmic polymer. In one embodiment of the invention, the outer filmic layer can contain a blend of filmic polymers or can be a multi-layer film of various filmic polymers. Filmic polymers include any filmic polymer that can be coextruded with the adhesive base polymer to produce the non-adhesive laminate. In one embodiment of the invention, it may be desired that the filmic polymer has a solubility parameter that is inconsistent with or incompatible with that of the adhesive base polymer to prevent migration between the two layers.
- In another embodiment of the invention, the filmic polymer can, when combined with the adhesive base polymer, provide a sufficiently self-supporting construction to facilitate label separation and application. Alternatively, when the filmic polymer combined with the adhesive base polymer is not sufficiently self-supporting, an overlaminate layer can be applied to the exposed face of the outer filmic layer to provide additional stiffness. Preferably, the filmic polymer and any other material utilized in the outer filmic layer are chosen to provide the non-adhesive laminate with the desired properties such as inter alia printability.
- Typical filmic polymers include, but are not limited to, polystyrenes, polyolefins, polyamides, polyesters (e.g. polyethylene terephthalate), polycarbonates, polyurethanes, polyacrylates, polyvinyl alcohols, functional polyesters (e.g. sulfopolyesters), poly(ethylene vinyl alcohols), polyether block polyamides, polyvinyl acetates, and mixtures thereof. Preferably, the filmic polymer is a polyolefin including, but not limited to, polymers having repeating units selected from the group consisting of ethylene, propylene, and 1-butene. Most preferably, the filmic polymer is at least one selected from the group consisting of polyethylene, polypropylene and ethylene-propylene copolymer. Various polyethylenes can be utilized including low, medium, and high density polyethylenes.
- In one embodiment of the invention, the melt flow rate (MFR) of polyethylene used in the outer filmic layer can range from about 0.1 grams/10 minutes to about 15 grams/10 minutes measured at 190° C. using a 2.16 kg weight utilizing ASTM D1238, preferably from 0.1 grams/10 minutes to 5 grams/10 minutes. A commercial example of a polyethylene useful as the outer filmic layer is low density polyethylene sold as Lupolen 2426F having a density of about 0.924 g/cm3 using ISO 1183 test method and a melt flow rate of about 0.75 g/10 minutes following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands.
- In another embodiment of the invention, the melt flow rate (MFR) of polypropylene used in the outer filmic layer can range from about 1 grams/10 minutes to about 20 grams/10 minutes measured at 230° C. using a 2.16 kg weight utilizing ASTM D 1238, preferably from 0.1 grams/10 minutes to 10 grams/10 minutes. A commercial example of a polypropylene useful as the outer filmic layer is polypropylene homopolymer sold as Moplen HP422H having a density of 0.900 g/cm3 using ISO 1183 test method and a melt flow rate of about 2 g/10 minutes at 230° C. using a 2.16 kg weight following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands. A commercial example of a random polypropylene copolymer useful as the outer filmic layer is Moplen RP210M polypropylene having a density of 0.900 g/cm3 using ISO 1183 test method and a melt flow rate of about 6 g/10 minutes at 230° C. using a 2.16 kg weight following test method ISO 1133 obtained from Basell Polyolefins located in The Netherlands.
- The inner surface of the outer filmic layer may be coextruded with a barrier layer other than the barrier created by the adhesive base polymer layer (B) and/or the tackifier layer (C) of this invention. The barrier layer may prevent migration of constituents to the outer filmic layer. There may also be included, or alternatively provided, a tie or primer layer to enhance adhesion of the adhesive base polymer layer to the outer filmic layer. Moreover, “linerless” constructions are contemplated to be within the scope of the present claims. In linerless constructions, the outer surface is coated with a release material, such as a silicone (e.g., polydimethylsiloxane).
- Generally, the outer filmic layer has a thickness that is suitable for the particular PSA laminate application. In one embodiment of the invention, the outer filmic layer has a thickness of about 10 μm to about 200 μm, preferably from about 20 μm to about 100 μm, and most preferably, from 30 μm to 90 μm.
- The adhesive base layer comprises at least one adhesive base polymer. The adhesive base polymer can be any that is known in the art that can be coextruded with the outer filmic polymer and is suitable for producing a non-adhesive laminate or PSA laminate. Generally, the adhesive base polymer utilized to produce the non-adhesive laminate or PSA laminate may generally be classified into the following categories:
- random copolymer adhesive base materials, such as, but not limited to, those copolymers based upon acrylate and/or methacrylate copolymers and their derivatives, α-olefin copolymers, silicone-copolymers, chloroprene/acrylonitrile copolymers, and the like;
- block copolymer adhesive base polymers, such as, but are not limited to, those based upon linear block copolymers (e.g., A-□ and A-B-A type), multi-block copolymers, branched block copolymers, star block copolymers, grafted, or radial block copolymers, and the like; and
- natural and synthetic rubber adhesive base polymers, such as, but are not limited to, polyisobutylene, polyisoprene, butyl rubber, and the like.
- In another embodiment of the invention, the adhesive base polymer comprises a thermoplastic elastomer (TPE). Thermoplastic elastomers are polymers that behave like a rubber at their use temperature, but can be processed in the melt as conventional polymers. TPEs include, but are not limited to, linear, branched, graft or radial block copolymers.
- Block copolymers can be represented by a di-block structure A-B, a tri-block A-B-A structure, a tetra-block structure, a multi-block structure, a radial or coupled structure (A-B)n, and combinations of these structure; wherein A represents a hard thermoplastic phase or block which is non-rubbery or glassy or crystalline at room temperature but fluid at high temperatures, and B represents a soft-block which is rubbery or elastomeric at service or room temperatures. These thermoplastic elastomers may comprise from about 75% to about 95% by weight of rubbery segments and from about 5% to about 25% by weight of non-rubbery segments.
- The non-rubbery segments or hard blocks comprise polymers of mono- and poly-cyclic aromatic hydrocarbons, and more particularly vinyl-substituted aromatic hydrocarbons which may be mono-cyclic or bi-cyclic in nature. The preferred rubbery blocks or segments comprise polymer blocks of homopolymers or copolymers of aliphatic conjugated dienes. Rubbery materials, such as, but not limited to, polyisoprene, polybutadiene, and styrene butadiene rubbers may be used to form the rubbery block or segment. Particularly preferred rubbery segments include polydienes, and rubbers of ethylene-butylene or ethylene-propylene copolymers.
- The latter rubbers may be obtained from the corresponding unsaturated polyalkylene moieties such as polybutadiene and polyisoprene by hydrogenation thereof.
- In one embodiment of the invention, the block copolymer may be selected from the group consisting of butadiene-based polymers, isoprene-based polymers, polyether block polyamides, and mixtures thereof. Thus, the butadiene-based polymers may be selected from the group consisting of styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene (SB) block copolymers, multi-armed (SB)x block copolymers, polybutadiene block copolymers, and mixtures thereof. Isoprene-based copolymers may be selected from the group consisting of styrene-isoprene-styrene (SIS) block copolymers, styrene-isoprene-butadiene-styrene (SIBS) copolymers, styrene-isoprene (SI) block copolymers, linear and multi-armed (SI)x block copolymers, radial block copolymers having an styrene-ethylene-butadiene-styrene (SEBS) backbone and isoprene and/or styrene-isoprene (SI) arms, polyisobutylene, natural rubber, synthetic polyisoprene, and mixtures thereof.
- Specific examples of di-block copolymers include, but are not limited to, styrene-butadiene (SB), styrene-isoprene (SI), and the hydrogenated derivatives thereof. Examples of tri-block polymers, tetra-block polymers, and multi-block polymers include, but are not limited to, styrene-butadiene-styrene (SBS), styrene-isoprene-styrene (SIS), α-methylstyrene-butadiene-α-methylstyrene, α-methylstyrene-isoprene-α-methylstyrene, styrene-isoprene-butadiene-styrene (SIBS) and derivatives thereof. Upon hydrogenation of SBS copolymers comprising a rubbery segment of a mixture of 1,4- and 1,2-isomers, a styrene-ethylene-butylene-styrene (SEBS) block copolymer is obtained. Similarly, hydrogenation of an SIS polymer yields a styrene-ethylene/propylene-styrene (SEPS) block copolymer and hydrogenation of a (SI)x multiblock copolymer provides a multiblock copolymer of styrene and ethylene/propylene (SEP)x.
- It is contemplated that functionalized block copolymers can be used, such as succinic anhydride-modified SEBS, which is commercially available as Kraton FG-1901X and 1924X block copolymer from Kraton Polymers in Houston, Tex.
- It should be noted that any of the adhesive base polymers include the hydrogenated derivatives thereof. A number of selectively hydrogenated block copolymers are available commercially from Kraton Polymers under the general trade designation “Kraton G”. Thus, particularly suitable block copolymers for the purposes of the present invention include Kraton G 1657 and Kraton G 1730 block copolymers. Kraton G 1657 is a SEBS tri-block copolymer which contains about 13% by weight styrene. Kraton G 1730 is a (SEP)x multi-block copolymer which contains about 21% by weight styrene.
- Moreover, the adhesive base polymer layer (B) can be made up of high cohesive strength polymers. Since such polymers require relatively high temperatures to process in traditional hot melt manufacturing equipment, they are typically not used in producing a PSA laminate from the melt since at high temperatures, the tackifiers do not withstand such temperatures over an extended period of time. Such high cohesive strength polymers may also be applied with the tackifier in the tackifier layer (C) as either a solution or dispersion. Examples of high cohesive strength polymers include, but are not limited to, styrene block copolymers and isobutylene copolymers. Styrene block copolymers include, but are not limited to, styrene-isoprene-styrene block copolymers and copolymers based on styrene and ethylene/butylene (S-E/B-S), and copolymers based on styrene and ethylene/propylene (S-E/P-S). In one embodiment of the invention, the polystyrene content of the SIS block copolymer ranges from about 10% by weight to about 50% by weight, preferably from 15% by weight to 30% by weight. In another embodiment of the invention, the solution viscosity of the styrene block copolymers ranges from about 0.05 Pa·s to about 20 Pa·s, preferably from 0.1 Pa·s to 5 Pa·s measured utilizing 25% solids in toluene in a Brookfield viscosimeter, such as a Brookfield viscosimeter type DV-I+, using an appropriate spindle and rotation speed.
- In another embodiment of the invention, the molecular weight of the polyisobutylene ranges from about 250,000 to about 5,000,000, preferably from 750,000 to 3,500,000. High cohesive strength polymers are commercially available as Kraton D1111 styrene-isoprene-styrene polymers from Kraton Polymers in Houston, Tex., Oppanol B200 isobutylene copolymers available from BASF, Ludwigshafen, Germany, and Kraton G-1652E S-E/B-S copolymer from Kraton Polymers.
- Further examples of useful adhesive base polymers can be found in WO 00/13888, WO 00/17285, and WO 01/96488, incorporated by reference herein in their entirety to the extent they do not contradict the statements herein.
- Generally, the adhesive base layer has a thickness that is suitable for the particular PSA laminate application. In one embodiment of the invention, the adhesive base layer has a thickness of about 1 μm to about 60 μm, preferably from about 2 μm to about 40 μm, and most preferably, from 4 μm to 20 μm.
- The adhesive base layer can be modified by the addition of additives. Any additive known in the art that is compatible with the adhesive base polymer can be utilized. In one embodiment of the invention, the adhesive base layer can be modified with pure monomer resins; poly(ethylene) or poly(propylene) waxes; poly(ethylene) with low viscosity, such as polyethylene with a melt flow rate of about 5 g/10 min to about 80 g/10 min, preferably 10 to 50 g/10 min, 190° C., 2.16 kg weight, according to ASTM D-1238; and ethylene or propylene based (co)polymers as produced by metallocene catalysts. These additives can be utilized to improve the unwind characteristics of the non-adhesive laminate formed by the outer filmic layer and the adhesive base layer and/or to facilitate the production of the non-adhesive laminate formed by the outer filmic layer and the adhesive base layer by matching the rheological properties of the filmic polymer and the adhesive base polymer.
- The tackifier layer (C) comprises at least one tackifier. In one embodiment, the tackifier layer (C) comprises at least one tackifier and at least one polymer. In another embodiment, the tackifier layer (C) comprises at least one tackifier, at least one polymer, and at least one plasticizer.
- The polymer can be any polymer known in the art suitable for producing PSA laminates. Preferably, the polymer is at least one thermoplastic elastomer. Thermoplastic elastomers were previously discussed in this disclosure. In one embodiment of the invention, the amount of polymer is that which does not cause the tackifier layer to be a PSA. The amount of polymer can range from 0.1% by weight to about 15% by weight. Other ranges can be selected from the following ranges which are given in weight percent based on the weight of the tackifier layer (C): 0 to 7, 0 to 9, 0.1 to 15, 1 to 15, 5 to 15, 10 to 15, 0.1 to 10, 1 to 10, 5 to 10, 7 to 10, 0.1 to 5, 1 to 5, and 2 to 5.
- The tackifier can be any that is known in the art suitable for use in PSA laminates. The tackifer can include, but is not limited to, amorphous tackifier resins of all types known to tackify adhesives, including rosin-based and hydrogenated rosin-based, hydrocarbon-based and hydrogenated hydrocarbon-based, phenolic-based, terpene-based, terpene phenolic-based, styrenated terpene-based, hydrogenated terpene-based, polyester-based, pure monomer aromatic-based, aromatic acrylic-based, liquid resin types, and functionalized types thereof. Note that any of these tackifiers may be in a hydrogenated form. Pure monomer aromatic-based tackifier are tackifying resins based on low molecular weight polymers or oligomers produced from monomers, such as, for example, styrene, alpha-methylstyrene, vinyl toluene, and mixtures thereof.
- In one embodiment of the invention, the tackifier layer comprises a liquid tackifier composition. The liquid tackifier composition may be a solution or dispersion of an appropriate tackifier. Such tackifier may be selected on the basis of experiments or existing knowledge with regard to the composition of the pressure sensitive adhesive laminate based on the adhesive base polymer being the major component of the non-adhesive laminate.
- In another embodiment of this invention, the tackifier layer (C) may be a blend of polymer (i.e. adhesive base polymer and/or other performance additives) and amorphous resin tackifier resulting in a tackifier masterbatch composition. This composition can be formulated for spray ability/high-tack/adhesion and good compatibility with the adhesive base polymer layer.
- Optionally, the tackifier layer can further comprise at least one plasticizer. The plasticizer can be any that is known in the art suitable for use in a PSA laminate. Examples of plasticizers include, but are not limited to, naphthenic and paraffinic oils, citrates, sulfonates, and phthalates
- Tackifiers may vary in their compatibility with the adhesive base polymer. In one embodiment of the invention, the tackifier may be preferentially soluble in the adhesive base polymer. This is especially suitable for elastomers containing polystyrene or polyisoprene blocks. Tackifiers that are preferentially soluble in polystyrene and polyisoprene are obtained by polymerization of a stream of aliphatic petroleum derivatives in the form of dienes and mono-olefins containing 5 or 6 carbon atoms, generally in accordance with the teachings of U.S. Pat. No. 3,577,398, herein incorporated by reference in its entirety to the extent it does not contradict statements herein. The resulting hydrocarbon resins range from materials that are normally liquid at room temperatures to materials that are normally solid at room temperature, and typically contain 40% or more by weight polymerized dienes. Such dienes may be, for example, piperylene and/or isoprene. Examples include, but are not limited to, the Piccotac® family of resins (available from Eastman Chemical Company, Kingsport, Tenn., USA) and the Wingtack® family of resins (available from the Chemical Division of Goodyear Tire and Rubber Company, Akron, Ohio). Other solid tackifiers include, but are not limited to, Escorez® 1304 and Escorez® 1310-LC manufactured by Exxon Chemical Company (Houston, Tex.). Further examples include, but are not limited to, modified C5-type petroleum resins which are made by copolymerizing one or more C5 monoolefins and/or diolefins with one or more C8 or C9 monoalkenyl aromatic hydrocarbons. These modified C5-type petroleum resins can be hydrogenated. Examples include, but are not limited to, C5 monoolefins and diolefins such as isoprene, 2-methyl-1-butene, 2-methyl-2-butene, cyclopentene, 1-pentene, cis- and trans-2-pentene, cyclopentadiene, and cis-trans-1,3-pentadiene. Additional examples of C8 and C9 monoalkenyl aromatic compounds are styrene, methylstyrene, and indene.
- Other compositions that can be used as tackifiers include, but are not limited to, hydrogenated aromatic resins in which a substantial portion (50% or greater), if not all, of the benzene rings are converted to cyclohexane rings (for example the Regalite™ and Regalrez™ family of resins available from Eastman Chemical, such as, Regalite R 1090, R 1100, R 1125, R 7100, R 9100 and Regalrez 1018, 1094, 3102, 6108, and 1126) and hydrogenated polycyclic resins (typically dicyclopentadiene resins, such as Escorez® 5300, 5320, 5340, 5380, 5400 and 5600, manufactured by Exxon Chemical Company). These tackifiers are especially useful when using an isoprene-based adhesive base polymer.
- In another embodiment of the invention, one may further add rosins, rosin esters, polyterpenes, aromatic and functionalized resins and other tackifiers to the tackifier layer (C) that are compatible to some degree with the adhesive base polymer contained in the adhesive base layer, especially when utilizing polyisoprene or polybutadiene as the adhesive base polymer. Other additives include, but are not limited to, plasticizer oils, such as Shell Flex 371 (from Shell Chemical Company).
- In one embodiment, the tackifier layer (C) contains at least one tackifier in an amount of about 50% to about 90% by weight, preferably 70% to 90% by weight, either as a solution or a dispersion. In another embodiment, the tackifier layer (C) comprises a blend of the thermoplastic elastomer, which is present in the non-adhesive laminate, and an amorphous resin tackifier. Preferably, the tackifier layer (C) includes about 2% to about 15% by weight of a thermoplastic elastomer, which may be the same elastomer as present in the adhesive base layer (B) or an elastomer compatible therewith.
- Generally, the tackifier layer has a thickness that is suitable for a particular PSA laminate application. In one embodiment of the invention, the tackifier layer has a thickness of about 2 μm to about 150 μm. Other ranges are from from about 4 to about 125 μm and from 5 μm to 50 μm.
- The tackifier layer can be applied to the non-adhesive laminate by any method known in the art. Examples of application methods utilizing heat include, but are not limited to, slot die coating, roll axis coating, curtain coating, knife-over-roll coating, and spray coating. The tackifier layer can also be applied as an emulsion, dispersion or solution of the tackifier composition by any suitable method.
- Depending on the use of the PSA laminate, the tackifier layer (C) itself may or may not form an effective PSA layer for the purposes of a PSA laminate (e.g. label, etc.). The term “PSA” was previously defined in this disclosure. In other words, if a tackifier layer (C) does not form an effective PSA layer when it is applied to a solid substrate neither the adhesive nor the structural properties (tack and strength) would be sufficient to form a structure (including an adhesive bond) with the properties of a conventional pressure sensitive adhesive laminate.
- The outer filmic layer, adhesive base layer, and tackifier layer of the PSA laminate can contain inorganic fillers and other organic and inorganic additives to provide desired properties, such as, but not limited to, appearance properties (opaque or coloured films), durability, and processing characteristics. Examples of useful fillers include, but are not limited to, calcium carbonate, titanium dioxide, metal articles, and fibers. Additives can include, but are not limited to, flame retardants, antioxidant compounds, heat stabilizers, light stabilizers, ultra-violet light stabilizers, anti-blocking agents, processing aids, and acid acceptors, etc. Nucleating agents can be added to increase crystallinity and thereby increase stiffness.
- Particular embodiments of the PSA laminate are shown in
FIGS. 1-8 and 10-14. The PSA laminates inFIGS. 1-8 and 10-14 illustrate embodiments of the invention where the tackifier in the tackifier layer (C) has not yet migrated into the adhesive base layer (B). The coextruded melt bond (10) between the outer filmic layer and the adhesive base layer is shown in each figure. - In
FIG. 1 , a cross-section of a PSA laminate is shown comprising an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C). InFIG. 2 , a cross-section of a PSA laminate further comprising a release layer (D) is shown. InFIG. 3 , a cross-section of a PSA laminate comprising an outer filmic layer (A), an adhesive base layer (B), a tackifier layer (C), and an overlaminate layer (E) is shown. InFIG. 4 , a cross-section of a PSA laminate ofFIG. 1 is shown further comprising a barrier layer (F) between the outer filmic layer (A) and the adhesive base layer (B). InFIG. 5 , a cross-section of a PSA laminate is shown comprising an outer filmic layer (A), an adhesive base layer (B), a tackifier layer (C), an overlaminate layer (E), and a barrier layer (F).FIGS. 6-8 show the PSA laminates ofFIGS. 3-5 further comprising a release layer (D). Layers A-F have been previously described in this disclosure. InFIG. 10 , a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a curved interface between (B) and (C). InFIG. 11 , a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a jagged interface between (B) and (C). InFIG. 12 , a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a discontinuous tackifier layer (C). InFIG. 13 , a cross-section of a PSA laminate is shown having a tackifier layer (C), an adhesive base layer (B), and an outer filmic layer (A) wherein there is a discontinuous tackifier layer (C). - Although not intended to be bound by theory,
FIGS. 14 .1-14.3 shows a simplistic illustration of the migration of the tackifier from tackifier layer (C) into the adhesive base layer (B) in one embodiment of the invention.FIG. 14 .1 shows a cross-section of a PSA laminate in one embodiment of the invention having an outer filmic layer (A), an adhesive base layer (B), and a tackifier layer (C) prior to migration.FIG. 14 .2 shows the migration of a portion of the tackifier in the tackifier layer (C) migrating into the adhesive base layer of the PSA laminate shown inFIG. 14 .1 to produce a PSA layer (B/C).FIG. 14 .3 shows the migration of all of the tackifier in the tackifier layer (C) into the adhesive base layer of the PSA laminate shown inFIG. 14 .1 to produce a PSA layer (B/C). - Typically, the PSA laminate can have a thickness of about 35 to about 400 μm, preferably about 100 μm to about 250 μm, and most preferably from 50 μm to 150 μm. Generally, the PSA laminate can have a thickness ratio of outer filmic layer (A) to adhesive base layer (B) from about 50:1 to about 1:1, preferably 25:1 to 2:1. Thus, the thickness of outer filmic layer (A) may be in the range from about 10 μm to about 200 μm, preferably from about 20 μm to about 100 μm, and most preferably from 30 μm to 90 μm. Adhesive base layer (B) may have a thickness of about 1 to about 60 μm, preferably about 2 to about 40 μm and most preferably, 4 to 20 μm. A particularly suitable PSA laminate may have a thickness of 50-150 μm.
- The non-adhesive laminate is formed by a process comprising co-extruding an outer filmic layer (A) comprising at least one filmic polymer and an adhesive base polymer layer (B) comprising at least one adhesive base polymer, which may later on in the process be converted into a pressure sensitive adhesive laminate. The co-extrusion can be conducted by any method known in the art. Examples of processes for co-extruding the outer filmic layer (A) and the adhesive base layer (B) include, but is not limited to, casting and bubble blowing. In one embodiment, the co-extrusion can be conducted by melting the filmic polymer and non-adhesive polymer in separate extruders and delivering the molten streams to an extrusion die from which the outer filmic layer (A) and the adhesive base layer (B) are extruded.
- The co-extrusion of the filmic polymer with the adhesive base polymer may be facilitated when the melt viscosities of the two polymers are similar. Thus, the choice of the material to be utilized in the formation of the non-adhesive laminate may depend upon the melt flow rate of the coextruded materials. In one embodiment of the invention when the filmic polymer is polyethylene, the melt flow rate of the filmic polymer can range from about 0.1 g/10 min to about 15 g/10 min, preferably from 0.1 g/10 min to 5 g/10 min at 190° C. using a 2.16 kg weight (ASTM D1238). In one embodiment of the invention when the filmic polymer is polypropylene, the melt flow rate of the filmic polymer can range from about 1 g/10 min to about 20 g/10 min, preferably from 0.1 g/10 min to 10 g/10 min at 230° C. using a 2.16 kg weight (ASTM D1238).
- The non-adhesive laminate has a thickness that is suitable for the particular application sought. In one embodiment of the invention, the non-adhesive laminate has a thickness of about 10 μm to about 260 μm, preferably from about 20 μm to about 140 μm, and most preferably, from 30 μm to 80 μm. The thickness of the outer filmic layer can range from about 10 μm to about 200 μm, preferably from about 20 μm to about 100 μm, and most preferably, from 30 μm to 90 μm. The thickness of the adhesive base layer can range from about 1 μm to about 60 μm, preferably from about 2 μm to about 40 μm, and most preferably, from 4 μm to 20 μm The ratio of the outer filmic layer to the adhesive base layer can range from 50:1 to 1:1, preferably from 25:1 to 2:1 and most preferably, 15:1 to 4:1.
- Optionally, a number of additional steps can be performed on the non-adhesive laminate or PSA laminate. Thus, for example, the non-adhesive laminate or PSA laminate may be uniaxially or biaxially oriented (e.g., by heat stretching and heat setting). In this context, it is appreciated that the application of the tackifier layer (C) may be effected both before and/or after the stretching occurs. Machine direction or biaxial orientation of the non-adhesive laminate or PSA laminate according to the invention can be accomplished by techniques known in the art. For example, the laminates can be oriented in the machine direction by using tentering frames.
- It should be noted at this point, however, that the non-adhesive laminate is, in spite of the presence of at least one adhesive base polymer, not a pressure sensitive adhesive laminate. Thus, in most cases, the laminate will not have any problem of tackiness on heated rolls up to temperatures as high as 100° C.
- Accordingly, the non-adhesive nature of the non-adhesive laminate has significant advantages. Thus, this non-adhesive laminate can be easily handled and wound onto itself for later use, i.e. conversion into a PSA laminate. Moreover, the adhesive base polymer of the adhesive base layer in the co-extrusion process can establish/form a coextruded melt bond with the outer filmic layer. Thus, any off-setting that can occur with a normally manufactured, transfer coated, hot melt PSA filmic label can be eliminated. Off-setting is the undesirable transfer of adhesive to a substrate during label removal caused by insufficient anchorage of the adhesive layer onto the filmic layer substrate.
- In one embodiment of the present invention, a non-adhesive laminate is provided having a thickness of about 11 to about 210 μm comprising:
-
- a. at least one outer filmic layer comprising at least one filmic polymer and having a thickness of about 10 to about 160 μm, preferably 45 to 150 μm, and
- b. at least one adhesive base layer having a thickness of about 1 to about 50 μm comprising at least one thermoplastic elastomer (TPE) selected from the group of TPEs which are capable of forming a pressure sensitive laminate.
- The non-adhesive laminate may further comprise an anti-blocking layer having a thickness of about 1 to about 5 μm on top of the outer filmic layer (i.e. not in contact with the adhesive base layer (B)). This optional anti-blocking layer may typically be coextruded with the outer filmic layer (A) and the adhesive base layer (B). The purpose of this layer is to provide a smoother release or unwind of a rolled up non-adhesive laminate during the coating of the tackifier layer (C).
- In one embodiment of the invention, the thermoplastic elastomer and the thickness of the adhesive base layer typically will be selected on the basis of two criteria: (a) strength requirements of the PSA laminate, and (b) capability of the thermoplastic elastomer to form a traditional PSA composition when about 30% to about 95% by weight of the thermoplastic elastomer and about 5% to about 70% by weight of a tackifier are combined (e.g. hot melt) and applied as a tackifier layer (C) to the non-adhesive laminate. In this context, it should be kept in mind that it is the purpose and function of the adhesive base polymer layer to “receive” the tackifier layer (C). Thus, the adhesive base polymer layer typically comprises no tackifier.
- The outer filmic layer (A) is coextruded with the adhesive base polymer layer, and at the interface of these two layers a relatively strong coextruded melt bond is formed. This implies that any bond of the pressure sensitive adhesive laminate made with a substrate during use of an adhesive label will either fail at the adhesive substrate interface or internally, i.e. cohesive failure. The advantage of this is that it allows a suitable formulation to be made to result in cohesive-failing, tamper evident bonds suitable for security, tamper proof labelling, or for adhesion-interface failure mode, removable labels as well as resealable PSA applications.
- In another embodiment of this invention, a process for preparing a PSA laminate is provided. The process comprises co-extruding at least one outer filmic layer (A) comprising at least one filmic polymer and at least one adhesive base layer (B) comprising at least one adhesive base polymer to produce the non-adhesive laminate and applying at least one tackifier layer (C) to the adhesive base layer (B) of the non-adhesive laminate to produce the PSA laminate.
- In forming the PSA layer (B and C) by applying a tackifier layer (C), a portion of the tackifier can diffuse into the adhesive base layer (B) such that a molecular weight gradient from tackifier layer (C) (low molecular weight) to adhesive base layer (B) (high molecular weight) will form. This leaves a low molecular weight, high-tack layer at the surface of (C) exactly where this functionality is required to create pressure sensitive bonds. Conversely, in the high molecular weight portion of the PSA layer (B & C), enhanced and improved shear resistance, creep resistance and high temperature performance may be observed.
- In one embodiment of the invention, the portion of tackifier that diffuses into the adhesive base layer can be selected from the following ranges which are given in weight percent based on the weight of the tackifier layer (C): 0.1 to 100; 5 to 100; 10 to 100; 15 to 100; 20 to 100; 25 to 100; 30 to 100; 35 to 100; 40 to 100; 50 to 100; 55 to 100; 60 to 100; 65 to 100; 70 to 100; 75 to 100; 80 to 100; 85 to 100; 90 to 100; 95 to 100; 0.1 to 90; 5 to 90; 10 to 90; 15 to 90; 20 to 90; 25 to 90; 30 to 90; 35 to 90; 40 to 90; 45 to 90; 50 to 90; 55 to 90; 60 to 90; 65 to 90; 70 to 90; 75 to 90; 80 to 90; 85 to 90; 0.1 to 80; 5 to 80; 10 to 80; 15 to 80; 20 to 80; 25 to 80; 30 to 80; 35 to 80; 40 to 80; 45 to 80; 50 to 80; 55 to 80; 60 to 80; 65 to 80; 70 to 80; 75 to 80; 0.1 to 70; 5 to 70; 10 to 70; 15 to 70; 20 to 70; 25 to 70; 30 to 70; 35 to 70; 40 to 70; 45 to 70; 50 to 70; 55 to 70; 60 to 70; 65 to 70; 0.1 to 60; 5 to 60; 10 to 60; 15 to 60; 20 to 60; 25 to 60; 30 to 60; 35 to 60; 40 to 60; 45 to 60; 50 to 60; 55 to 60; 0.1 to 50; 5 to 50; 10 to 50; 15 to 50; 20 to 50; 25 to 50; 30 to 50; 35 to 50; 40 to 50; 45 to 50; 0.1 to 40; 5 to 40; 10 to 40; 15 to 40; 20 to 40; 25 to 40; 30 to 100; 35 to 40; 0.1 to 30; 5 to 30; 10 to 30; 15 to 30; 20 to 30; 25 to 30; 0.1 to 20; 5 to 20; 10 to 20, 15 to 20; 0.1 to 10; and 5 to 10.
- The PSA laminate can be produced by any method known in the art. In one embodiment of the invention, the PSA laminate can be produced in a one-step extrusion/spray-coating process, and the obtained PSA laminate may be self-wound or laminated to a release liner (e.g. silicone backing paper) and wound, creating PSA tape or label structures, respectively. Such PSA laminate will thus be created cost-effectively. In particular, the tackifier layer (C) can be coated at very low temperatures, typically up to 100° C. lower than with traditional hot-melt pressure sensitive adhesives. This may improve the manufacturing process in at least one of the following ways: (1) heat sensitive outer filmic layers, e.g. polyethylene, may be direct coated compared to the usual method of transfer coating; (2) process costs are lower; (3) a tackifier master-batch composition may be expected to have better heat aging properties, less colour loss, less charring in comparison to PSA laminates that have been conventionally processed or coated at high temperatures (with the tackifier in the PSA composition) which can exhibit gelling and/or charring due to an extended heat history.
- It can be particularly advantageous to “assemble” the final PSA laminate at a different location from the production facility for the manufacture of the non-adhesive laminate. The non-adhesive laminate can be self-wound and stored for an indefinite time. In a second process step, the non-adhesive laminate (A & B) can then be further processed, for example, on a (narrow web) label press which is suitably modified for spraying or coating of the tackifier layer (C) onto the non-adhesive laminate to form the pressure sensitive adhesive layer (B and C), thereafter laminated with off-line produced release paper or release film (D), where the finished label would then be processed and used as a traditionally manufactured label laminate. To further reduce the costs, it is envisaged that such process could take place in-line with the printing and converting of the label where the finished label would then be applied directly to the article to be labelled. This would obviate the need for a silicone backing support and would further reduce the costs.
- The conversion of the non-adhesive laminate can be effected either in one production line (on-line) or off-line at a different location. This conversion typically will be implemented by applying the tackifier layer (C) to the second surface (or under surface) of the non-adhesive laminate (i.e. that is the surface of the non-adhesive laminate that is not in contact with the outer filmic layer (A)).
- Tackifier layer (C) may be applied on the adhesive base layer (B) either directly or indirectly. In an indirect (or transfer) coating process, tackifier layer (C) may be first coated on an intermediary carrier (e.g. siliconized paper) and then transferred to adhesive base polymer layer (B).
- The conversion of the non-adhesive laminate may require that the laminate is heated. Heating may be effected in the stretching process or separately by means of e.g. infra-red heaters. Such heating can help propagate the diffusion mechanism of the tackifier into the adhesive base layer and converts the non-adhesive laminate into a PSA laminate. Another advantage is that this tackifier layer (C) can be coated onto the non-adhesive laminate at very low temperatures, typically up to 100° C. less than the required temperature for traditional hot melt pressure sensitive adhesives. Generally, conventional coating method temperatures range from about 130° C. to about 200° C., while the coating temperatures for applying the tackifier layer (C) to the non-adhesive laminate can range from about 60° C. to about 120° C. or from about 85° C. to about 110° C.
- In one embodiment of the invention, the tackifier is a liquid or has been liquified (by melting, adding of solvent, forming of dispersion). Suitable solvents include hydrocarbons such as toluene. Dispersions may be formed with water and/or alcohols. Thus, the present invention further suggests tackifier compositions which essentially comprise one of the previously described tackifiers with either a solvent or dispersant and other additives.
- In general, a PSA laminate according to the invention can have a thickness of about 35 to about 400 μm, preferably from 100 to 200 μm. However, other laminates are contemplated to be within the scope of the invention. e.g. faceless PSA constructions as described in US 2003198737, herein incorporated by reference to the extent it does not contradict statements herein. Accordingly, in applying the tackifier layer (C), both the layer thickness to be applied to the non-adhesive laminate and the concentration of the tackifier in the layer are of some concern.
- The ranges for tackifier concentration in the tackifier layer (C) and the thickness were discussed previously in this disclosure. Thus, one function of the tackifier layer (C) is to provide a reservoir or source for a tackifier to migrate into the adhesive base layer to form the PSA laminate. An additional concern is the choice of solvent/dispersant, which on the one hand, could facilitate the migration of the tackifier into the adhesive base polymer layer, but on the other hand, should not be present in an amount to effectively swell the adhesive base polymer layer.
- In one embodiment of the invention, the tackifier layer (C) itself does not form a PSA. The term “PSA” was previously defined in this disclosure. In this embodiment, both the concentration of the tackifier and the viscosity of the tackifier (which can account for the easiness of the application of the tackfier composition to the adhesive base layer) would be insufficient to form an effective pressure sensitive adhesive laminate.
- In another embodiment, the tackifier layer (C) forms a PSA. The term “PSA” was previously defined in this disclosure.
- The tackifier layer (C) may comprise other additives that serve different purposes. For instance, polystyrene reinforcing additives may be present. Moreover, other components can be added to improve the stability, impart structural reinforcement, improve coatability, or impart some other desirable properties. Accordingly, the tackifier layer (C) may include stabilizers which inhibit oxidative degradation of the adhesives and pigments.
-
FIG. 9 represents a schematic overview of one embodiment of the process for preparing the PSA laminate according to the present invention. In a co-extrusion technique, twoextruders 1 and 2 are utilized which provide two molten streams throughlines molten stream 10 of the adhesive base layer which comprises at least one adhesive base polymer andextruder 2 provides amolten stream 11 of the filmic outer layer comprising at least one filmic polymer. Theextruders 1 and 2 are used to melt the polymers and pumps are provided to deliver the molten streams to the extrusion die 20. The precise extruder utilized is not critical to the process. A number of useful extruders are known, and these include, but are not limited to, single and twin-screw extruders, etc. Such extruders are available from a variety of commercial sources including Killion Extruders, Inc., C. W. Brabender, Inc., American Leistritz Extruder Corp., and Davis Standard Corp. A variety of useful co-extrusion die systems are known. Examples of extrusion dies useful in this invention are so-called “vane” dies, and multimanifold dies available from the Cloeren Company of Orange, Tex. Referring again toFIG. 9 , the moltennon-adhesive laminate 30 of at least two layers exits the extrusion die 20 throughorifice 21. This non-adhesive laminate (as shown in detail M inFIG. 9 ) comprises the outerfilmic layer 90 and theadhesive base layer 80 of the present invention. - It is understood by those skilled in the art of film coextrusion processes that actual production lines may have more than two extruders and may build up the non-adhesive laminate in more layers than are readily identified in the final non-adhesive laminate. In many cases, layers are build up of sublayers of the same or different material to enhance production speed, production flexibility or other reasons.
- The non-adhesive laminate can then be further processed by any method known in the art. For instance, a number of additional steps can be performed on the non-adhesive laminate. The non-adhesive laminate of the present invention can either be collected for future processing, overlaminating and converting at a different time and/or geographic location, or these laminates can be routed to one or more other stations for printing, overlaminating, and/or converting during the same operation. In the example shown in
FIG. 9 , the non-adhesive laminate is coated by acoating head 40 forming atackifier layer 70 of the tackifier composition on theadhesive base layer 80. It may be occasionally necessary to heat thenon-adhesive laminate 50 before or after applying the tackifier layer (C). Thus, the presence of a heater 60 (e.g. infra-red heater) may be desirable. Note thatheater 60 can be located after the application of thetackifier layer 70 by coatinghead 40. Once thetackifier layer 70 has been applied, the non-adhesive laminate will “convert” into the final product, the PSA laminate comprising outer filmic layer (A) and pressure sensitive adhesive layer (B and C) (as shown in detail N inFIG. 9 ) formed from theadhesive base layer 80 andtackifier layer 70, in a relatively short time (a few mintues to hours). - This PSA laminate can be further processed by printing and applying the laminate to a substrate. Alternatively, a liner may be combined with the PSA laminate if the PSA laminate shall be collected for later use.
- The PSA laminate can be utilized to produce many articles of manufacture including, but not limited to, labels, decals, tapes, and films.
- In one embodiment of the invention, a label is provided. The label comprises at least one PSA laminate. The label can be selected from filmic labels, such as linerless filmic labels, or filmic labels with a release liner. Examples of filmic labels include, but are not limited to, packaging labels and specialty labels. Packaging labels include, but are not limited to, labels used for packaging of beverages, food products, health and personal care products, pharmaceuticals, industrial chemicals, household chemicals or retail products. Speciality labels include, but are not limited to, repositionable labels, removable labels, resealable labels, no-look labels, deep freezer labels and security labels.
- In another embodiment of the invention, a tape is provided comprising the PSA laminate. Examples of tapes include, but are not limited to, multi-purpose tapes and specialty tapes. Multi-purpose tapes can be selected from the group consisting of packaging and transportation tapes; paint and spray masking tapes; consumer and office tapes; and bonding and fastening tapes. Specialty tapes can be selected from the group consisting of surface protection tapes; electrical insulation tapes; binding, reinforcing and marking tapes; splice tapes; HVAC-sealing tapes; medical application tapes; automotive applications tapes; electronic tapes; safety or reflective tapes; and diaper closure tapes.
- In another embodiment of the invention, a film is provided comprising the PSA laminate. Such films include, but are not limited to, adhesive films, barrier films, protective films, and cling films. Adhesive films can be selected from the group consisting of pressure sensitive adhesive films, heat activated adhesive films, single and double-sided adhesive layers, carpet underlayment, roofing underlayment, clear or colored films, food contact adhesive films, and backing layer films. Backing layer films include, but are not limited to, backing layer films used to support a drug matrix, multi-purpose backing layer films, or substrate-specific backing layer films. Substrate-specific backing layer films include, but are not limited to, backing layer films for nonwovens, glass, paper, cotton, mineral wool, polyethylene, polypropylene, nylon, polyester, polyurethane foams/sheets, and acrylic adhesives.
- Barrier films include, but are limited to, flexible food packaging; film barriers to odor, organic aromas and flavors, moisture, oxygen, and other gases; heat and impulse sealable barrier films, printable barrier films, corona treated barrier films, ostomy appliances, pharmaceutical blister packs, cap liners, bags, and textile lamination for protective clothing.
- Protective films include, but are not limited to, films laminated to solid structures. Examples include, but are not limited to, protective films on corrugated steel pipe to improve corrosion and abrasion resistance, masking protective films for painted surfaces, reflective films for interior or exterior glass, anti-shatter films for window glass, and glass tinting films. The PSA can also be utilized in films that offer high optical clarity.
- Cling films include, but are not limited to, food packaging, industrial applications, and consumer sealable applications. An example of industrial applications is pallet wrap.
- Below are examples of the inventive PSA laminates. It should be understood that these are examples and do not limit the use of the inventive PSA to produce articles that are covered in this disclosure.
- Test methods are specified in the text of Examples 1-4.
- The following methods were utilized in 4-21.
- Loop tack was determined according to FINAT FTM 9 using stainless steel instead of glass. FINAT is an organization for label converters and has its headquarters in The Hague, The Netherlands.
- Peel adhesion was determined following AFERA (European Association for the Self Adhesive Tape Industry) 5001, test method A on species 25 mm wide.
- Shear adhesion was determined following AFERA 5012, procedure A on species 25 mm wide.
- Melt flow rate was determine according to ASTM D-1238.
- A non-adhesive laminate comprised of an outer filmic layer of primarily polypropylene (PP) (80%) and an adhesive base layer of Kraton G1657 TPE (20%) was made on a coextrusion line operating with two Killion 1 inch single screw extruders with 24/1 L/D. The output from the two extruders directly entered a combining block adaptor where the two flow streams were combined to form a 2 layer flow profile with the adhesive base layer (Kraton TPE) on top to produce a combined polymer melt stream. The combined polymer melt stream entered a 6 inch wide film die where the flow profile spread out into the final laminate dimension to produce the non-adhesive laminate. The non-adhesive laminate was cast onto a chill roll at 30° C. and wound into rolls with release paper applied between the layers to prevent possible sticking. The extrusion parameters are tabulated below.
TABLE 1 Layer Chill Extruder Zone 1 Zone 2Zone 3 Rpm Feedblock Die Thick- ness Roll Kraton 200° C. 205° C. 205° C. 25 220° C. 225° C. 6 mils 30° C. G1657 TPE Huntsman 190° C. 220° C. 220° C. 100 220° C. 225° C. 27 mils 30° C. P4G2Z PP - The coextruded non-adhesive laminate rolls exhibited edges comprised of 100% Kraton TPE due to the fact that the TPE flowed more to the edges in the film die than the outer filmic layer, made from a 1.5 MFR polypropylene homopolymer. Polypropylene with a nominal 4.0 MFR would have given higher flow and better layer distribution in the coextruded non-adhesive laminate.
- In non-adhesive laminate sample 1.1, the outer filmic layer contained 100% polypropylene polymer. In non-adhesive laminate sample 1.2, the outer filmic layer contained 90% by weight of the polypropylene polymer combined with 10% by weight of Regalite R-1100 hydrocarbon resin from Eastman Chemical Company. In non-adhesive laminate sample 1.3, the outer filmic layer contained 80% by weight of the polypropylene polymer combined with 20% by weight Regalite R-1100 hydrocarbon resin, while in non-adhesive laminate sample 1.4, the Regalite R-1100 hydrocarbon resin level was increased to 30% by weight. Adding the Regalite R-1100 resin to the polypropylene reduced its melt viscosity, and it was noted that as the amount of the hydrocarbon resin in the outer filmic layer increased the layer distribution became more uniform due to the lower melt viscosity of the outer filmic layer. In all cases, the nominal laminate thickness was about 33 mils with the adhesive base layer comprising about 18% of the total structure in the center of the samples.
- Preparation of Oriented Nonadhesive Laminates Having Adhesive Base Layer of Kraton® TPE
- Each of the thick, non-adhesive laminate samples 1.2, 1.3, and 1.4 were stretched into oriented, non-adhesive laminate specimens by stretching 4× by 4× using a tenter frame film stretcher manufactured by the T.M. Long Company.
Small specimens 10 cm×10 cm were inserted into the clips of the stretcher, and the specimens were heated to 140° C. After heating, the non-adhesive laminate specimen was stretched in both directions simultaneously at a strain rate of about 150%/second until the final laminate dimensions were reached. The nominal thickness of the final oriented, non-adhesive laminates was about 2.2 mils where the laminates retained a surface layer of Kraton G-1657 copolymer about 10 microns thick. The oriented, non-adhesive laminates made from starting laminates 1.2, 1.3, and 1.4 were designated 1.5, 1.6, and 1.7, respectively. The Regalite R-1100 resins in the outer filmic layer made the layer easier to stretch, and it was noted that laminate 1.2 with only 10% Regalite hydrocarbon resin had poorer layer uniformity than the other two laminates. These laminates did not exhibit good film flatness which made subsequent coating of the surface of the adhesive base layer more difficult. None of the oriented, non-adhesive laminates exhibited measurable tack or adhesion properties. - In a similar manner, the starting non-adhesive laminate specimens 1.2, 1.3, and 1.4 were stretched 3×3 into oriented, non-adhesive laminates at 140° C. at a draw strain rate of about 250% per second using the same T.M. Long tenter frame stretcher with the final non-adhesive laminate samples designated as 1.8, 1.9, and 1.10. The average oriented, non-adhesive laminate thickness was about 95 microns and significant thickness variability was noted largely due to the excessively high draw strain rate. Again, laminates with the highest Regalite hydrocarbon resin concentration exhibited the best stretch behavior. The oriented non-adhesive laminates exhibited visible surface irregularities. None of the oriented non-adhesive laminates exhibited measurable tack or adhesion properties.
- Oriented non-adhesive laminates 1.9 and 1.10 that had been oriented 3×3 to a nominal 95 microns thickness having an adhesive base layer of Kraton G-1657 copolymer about 16 microns thick were noted to possess negligible adhesive properties. A solution of Regalrez 1018 liquid hydrogenated tackifier resin in cyclohexane was coated onto the surface of the adhesive base layer of the oriented, non-adhesive laminate using a wire wrapped coating rod to produce PSA laminates 2.1, 2.2, and 2.3. Enough cyclohexane was added to reduce the viscosity so that the tackifier resin could be easily coated. The coating was performed so that the amount of dried Regalrez 1018 applied was about 30%-40% by weight of the starting nonadhesive laminate specimen weight.
- Initially, the surface of PSA laminates 2.1, 2.2, and 2.3 were very slimy due to the coating of the liquid tackifier resin. After aging the PSA laminates for 2 hours in an oven at 60° C., the surfaces of PSA laminates 2.1, 2.2, and 2.3 were converted to a tacky state that was very different from the initial dried surface coating of Regalrez 1018 tackifier resin. The 180° peel values of the tackified PSA laminates were measured using ASTM D-3330 as a guide. PSA laminates 2.1, 2.2, and 2.3 were cut into 1 inch wide strips which were press applied to stainless steel panels, and the 180° peel properties were measured with the peel values reported in units of kgf/25 mm width.
TABLE 2 Peel Force Regalrez (kgf/25 mm. Oriented Coating 1018 To width) Example Nonadhesive PSA (% Wt. Kraton G Average No. Laminate Laminates Gain) Ratio Range 1.1 1.9 2.1 39% 2.2 1.09 0.84-1.23 1.2 1.10 2.2 31% 1.7 1.34 0.89-1.59 1.3 1.10 2.3 41% 2.3 1.56 1.45-1.67 - The non-adhesive laminates were observed to demonstrate minimal tack or PSA adhesion to the metal substrate. Immediately after applying and air drying the Regalrez 1018 tackifier resin, the surface was slimy with very sticky character but with little adhesive strength because the coating was simply a viscous liquid. After aging for about an hour at 60° C., the liquid tackifier resin diffused into the adhesive base layer (Kraton G1657 TPE) so that the surface became a tacky semi-solid exhibiting typical viscoelastic properties of a PSA formulation. The peel forces measured from these specimens represent good PSA adhesion.
- Specimens of oriented nonadhesive laminate samples 1.6 and 1.7 were coated with an 80% solution of Regalrez 1018 tackifier resin in cyclohexane using a wire wrapped rod in order to achieve a dried coating weight applied to the surface of the adhesive base layer (Kraton G TPE) amounting to about 40% to 50% by weight of the starting oriented non-adhesive laminate weight to produce PSA laminates 3.1-3.4. The starting oriented non-adhesive laminates exhibited minimal tack or adhesion properties, but after coating, drying, and aging the PSA laminates for 1 hours at 60° C., the PSA laminates were noted to behave like a PSA. The PSA laminates were cut into 1 inch wide specimens applied to stainless steel panels to form test specimens for both 180° peel testing and loop tack testing. The 180° peel values were measured using ASTM D-3330 as a guide. Loop tack adhesion values were measured using ASTM D-6195 method as a guide. The adhesion properties measured for these PSA laminates are listed below.
TABLE 3 Regalrez Loop 180° Ex- Oriented Coating 1018 to Tack Peel ample Nonadhesive PSA Wt. Kraton G (Kg. (Oz./in No. Laminate Laminate Gain Ratio force) width) 3.1 1.6 3.1 47% 2.6 1.90 — 3.2 1.6 3.2 55% 3.1 — 1.40 3.2 1.7 3.3 43% 2.4 1.33 — 3.4 1.7 3.4 50% 2.8 — 1.48 - Again, diffusion of the applied liquid tackifier layer into the adhesive base layer (Kraton G TPE) of the oriented non-adhesive laminate converted the originally non-tacky adhesive base layer surface into a PSA laminate exhibiting good PSA properties after aging. Because of variations in laminate thickness across the specimens combined with variability in coating weight across the specimens, there was undesirable variation in the ratio of applied tackifier to TPE at the surface. This resulted in substantial variation in PSA properties across the specimens. However, these examples serve to demonstrate the principle that when a tackifier formulation is applied to the surface of the adhesive base layer of a coextruded non-adhesive laminate construction, the tackifier species can diffuse into the adhesive base layer (TPE) with time so that the final PSA laminate will exhibit PSA properties dependent on the relative amount and type of tackifier coating applied to the adhesive base layer surface.
- Tackifier layer compositions were produced containing (SEP)x copolymer obtained as Kraton G1730 and Regalite R1090 and Regalrez 1018 tackifiers according to the procedure described in more detail in Example 13 for a single composition.
- Irganox 1010 antioxidant was also added. The amount of (SEP)x copolymer varied from 0-25% by weight. The amount of tackifier and antioxidant was changed according to the increase in the (SEP)x copolymer. The amounts are specified in Tables 4-9. These compositions were used to produce a tackifier layer (C) on a non-adhesive laminate.
- The outer filmic layer of the non-adhesive laminate was made of Sabic low density polyethylene obtained by Sabic Europe in Sittard, The Netherlands, and the adhesive base layer was Kraton G1730 (SEP)x block copolymer. The low density polyethylene had a density of 0.924 and a melt flow index of 0.75 g/10 min at 190° C. using a 2.16 kg weight.
- In addition, the non-adhesive laminate contained an anti-blocking layer on the surface of the outer filmic layer away from the adhesive base layer. A low density polyethylene containing 3% silica was utilized for the anti-blocking layer.
- The nonadhesive laminate was produced by co-extruding the low density polyethylene, (SEP)x block copolymer, and the anti-blocking layer. A cast film extrusion line was utilized having three separate extruders. The extruder for the outer filmic layer contained 6 zones and operated at an inlet temperature of about 170° C. and an outlet temperature of about 220° C. The extruders for the adhesive base layer and the anti-blocking layer contained 3 zones and operated at an inlet temperature of about 180° C. to 190° C. and an outlet temperature of about 210° C. The outer filmic layer of polyethylene represented 32% of the total; the adhesive base polymer represented 12% of the total extruded amount; and the anti-blocking layer amounted to 56% of the total amount extruded. The melt from the extruders were routed to a cloerenblok feed block and then to a Black Clawson Spuitkop die. The die temperature was in the range of about 250° C. to about 260° C., and the web speed was 21.3 m/min. After casting, the nonadhesive laminate was cooled and rewound.
- The tackifier layer compositions were transfer coated (24 grams per square meter or g/m2) onto the non-adhesive laminate to produce a pressure sensitive adhesive laminate using a hot melt die coater onto a release liner. The pressure sensitive laminates were tested for peel adhesion, loop tack and shear resistance properties, initial, after 1 hr, 24 hrs, 48 hrs, 1 week, 2 weeks and 3 weeks. The data are tabulated in Tables 4-9.
- It is observed in these examples that generally peel and loop tack decreased in time, except in examples 2 and 3, whereas shear resistance increased in time in all cases. Furthermore, shear resistance was developed faster with higher polymer content in the tackifying layer. Althought not intending to be bound by theory, it is proposed that in forming the PSA layer (B and C) by applying a tackifier layer (C), a portion or all of the tackifier diffuses into the adhesive base layer (B) such that a molecular weight gradient from tackifier layer (C) (low molecular weight) to adhesive base layer (B) (high molecular weight) will form. This leaves a low molecular weight, high-tack layer at the surface of (C) exactly where this functionality is required to create pressure sensitive bonds. Conversely, in the high molecular weight portion of the PSA layer (B & C), improved shear resistance may be observed. These experimental results are consistent with this proposition and reflect the time it takes for the tackifier and adhesive base layer to inter-diffuse.
- PSA laminates containing zero and 5% Kraton G1730 (SEP)x in the tackifier layer (C) showed off-setting to the release paper. The offsetting stopped after 1 week of storage at room temperature, again indicating diffusion of the tackifier from the tackifier layer (C) into the adhesive base layer (B).
TABLE 4 Example 4: Tackifier Layer (C): Kraton G1730 (0 wt %)/Regalite R1090 (40.4 wt %)/Regalrez 1018 (59.3 wt %)/Irg.1010 (0.3 wt %) 1 2 3 Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 3.6 3.8 6.6 6.5 6.3 5.2 8 (N/25 mm) SD (0.5) (0.4) (0.3) (0.2) (0.7) (0.6) (0.7) Failure mode cf**/ss cf**/ss Cf**/lss cf*/ cf cf cf lss Loop tack to steel AV 3.9 3.5 6.3 11.8 9.2 0.9 5.8 (N/25 mm) SD (0.9) (1.1) (0.3) (2.2) (1.7) (0.3) (2.7) Failure mode cf/ss cf/ss cf/ss cf/ss cf/ss cf/ss cf/ss Shear adhesion to steel AV 39 35 94 201 478 1843 1 Kg (min) SD (2) (6) (42) (33) (231) (1310) Failure mode cf cf cf cf cf cf
Initial to 48 hrs offsetting of the tackifier layer to release paper and fingers.
After 1 week, this was not observed.
AV—average
SD—standard deviation
cf—cohesive failure
ss—slip stick
lss—limited slip stick
**total transfer of tackifier layer to steel plate
*75% total offsetting of tackifier to steel plate
-
TABLE 5 Example 5: Tackifier Layer (C): Kraton G1730 (5.3 wt %)/Regalite R1090 (42.1 wt %)/ Regalrez 1018 (51.6 wt %)/Irg.1010 (1.1 wt %) 1 2 3 Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 10.5 11.9 9.2 8.9 9.9 7.7 6.9 (N/25 mm) SD (0.6) (1.0) (0.6) (0.6) (0.8) (0.7) (0.3) Failure mode cf/ss cf/ss cf/ss cf/lss cf cf Loop tack to steel AV 4.6 8.1 7.0 6.5 1.0 9.9 9.6 (N/25 mm) SD (1.2) (1.8) (1.2) (1.7) (0.9) (1.7) (2.7) Failure mode cf/ss cf/ss lcf/ss lcf/ss lss ss ss Shear adhesion to steel AV 155 167 1076 >10K >10K >10K 1 Kg (min) SD (7) (32) (527) Failure mode Cf cf cf
Initial to 48 hrs offsetting of the tackifier layer to release paper and fingers.
After 1 week, this was not observed.
-
TABLE 6 Example 6: Tackifier Layer (C): Kraton G1730 (10 wt %)/Regalite R1090 (37.5 wt %)/ Regalrez 1018 (51.5 wt %)/Irg.1010 (1 wt %) 1 2 3 Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 16.5 17.0 13.9 12.1 8.0 6.5 5.9 (N/25 mm) SD (0.6) (0.5) (2.0) (0.2) (1.5) (1.1) (0.6) Failure mode Cf cf cf cf 85 % cf 20% Loop tack to steel AV 21.4 12.0 18.5 8.7 7.9 9.6 3.7 (N/25 mm) SD (2.0) (0.7) (0.8) (3.4) (0.7) (1.3) (1.1) Failure mode Cf/ss cf/ss lcf/ss lcf/ss lcf/ss ss ss Shear adhesion to steel AV 94 108 >10K >10K >10K >10K 1 Kg (min) SD (9.7 (40) Failure mode -
TABLE 7 Example 7 - Tackifier Layer (C): Kraton G1730 (15 wt %)/Regalite R1090 (34.9 wt %)/ Regalrez 1018 (49 wt %)/Irg.1010 (1 wt %) 2 3 Initial 1 Hr 24 Hrs 48 Hrs 1 week weeks weeks Peel adhesion to steel AV 17.2 16.6 14.7 14.3 7.5 6.5 6.3 (N/25 mm) SD (0.3) (0.6) (2.2) (1.5) (1.6) (0.6) (0.3) Failure mode Cf Cf cf 75% cf 35% Loop tack to steel AV 34.1 36.4 5.8 11 10.7 10.4 8.1 (N/25 mm) SD (0.4) (1.6) (2.1) (2.8) (1.2) (2.8) (1.0) Failure mode Cf Cf lcf/ss lcf/ss ss Shear adhesion to steel AV 135 223 >10K >10K >10K >10K >10K 1 Kg (min) SD (26) (36) Failure mode Cf Cf -
TABLE 8 Example 8 - Tackifier Layer (C): Kraton G1730 (20 wt %)/Regalite R1090 (32.5 wt %)/ Regalrez 1018 (46.5 wt %)/Irg.1010 (1 wt %) 1 2 3 Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 18.1 16.8 13.3 12.6 7.0 5.5 5.4 (N/25 mm) SD (1.4) (0.4) (1.7) (3.0) (1.4) (0.7) (0.3) Failure mode cf 40 % cf 40% Loop tack to steel AV 17.9 17.6 15.7 11.4 14.4 10.7 8.6 (N/25 mm) SD (1.6) (4.6) (3.6) (1.8) (0.9) (2.6) (1.6) Failure mode lcf/ss lcf/ss lcf/ss lcf/ss lss Shear adhesion to steel AV >10K >10K >10K >10K >10K >10K >10K 1 Kg (min) SD Failure mode -
TABLE 9 Example 9 - Tackifier Layer Composition: Kraton G1730 (25.2 wt %)/Regalite R1090 (44.3 wt %)/Regalrez 1018 (30.2 wt %)/Irg.1010 (0.3 wt %) 1 2 3 Initial 1 Hr 24 Hrs 48 Hrs week weeks weeks Peel adhesion to steel AV 9.7 13.9 7.5 6.4 5.3 5.3 4.4 (N/25 mm) SD (2.1) (1.1) (0.5) (0.6) (0.8) (1.1) (0.7) Failure mode cf 5% Loop tack to steel AV 25.3 24.1 14.2 13.5 11.2 6.7 3.4 (N/25 mm) SD (2.9) (0.7) (1.2) (1.0) (0.9) (1.5) (1.1) Failure mode cf/ss cf/ss ss ss Shear adhesion to steel AV >10K >10K >10K >10K >10K >10K >10K 1 Kg (min) SD Failure mode - As further examples of preparing a PSA laminate, three PSA laminates were prepared in which an adhesive (adhesive base polymer and tackifier) is provided by migration of two non-PSA layers (non-adhesive laminate (B) and tackifier layer (C) into each other. This is shown in Examples 10-14.
- For comparative purposes, two PSA laminates were prepared using conventional technology. Comparative Example 15 provides PSAs (PSA 15.1 & 15.2) based on hot melt technology. Example 16 provides a PSA (PSA 16.1) based on solvent technology. The guiding principle for all these experiments is that the final adhesive layers in all the PSAs have the same gross composition and grammage. Since PSA laminate 14.3 also has the same outer filmic layer (BOPP), the adhesive properties of PSA 14.3 can be directly compared to the properties of Comparative PSAs 15.1, 15.2, and 16.1. These results are captured in Table 10.
- The outer filmic layer of the non-adhesive laminate was made of low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands (Sabic 2201 TH 00), and the adhesive base layer was (SEP)x block copolymer as Kraton G1730, obtained from Kraton. The low density polyethylene had a melt flow index of 0.8 g/
l 0 min at 230° C. using a 2.16 kg weight. In addition, the non-adhesive laminate contained 5% by weight of an anti-blocking additive and 1% by weight of a processing aid in the adhesive base layer. - The non-adhesive laminate was produced by co-extruding the low density polyethylene and the (SEP)x block copolymer. A blown film extrusion line was used having five separate extruders. Two extruders were used to provide the outer layer, which is the outer filmic layer, and the inner layer, which is the adhesive base layer. The other three extruders were used to provide a symmetric five layer film core by splitting the output of two extruders. Each extruder had at least five heating zones. The polyethylene was heated from 170° C. to 200° C. in the first four zones, whereas the (SEP)x block copolymer was heated from 190° C. to 230° C. in the first four zones. A pressure profile was chosen across the non-adhesive laminate with the layers in the center extruded at the highest pressures. Finally, the throughput of the extruders was chosen such that a 64 micrometer polyethylene outer filmic layer with a 13 micrometer (SEP)x adhesive base layer was obtained. The non-adhesive laminate 10.1 was produced at 16 m/min and a width at production of 60 cm.
- The outer filmic layer of non-adhesive laminate 11.1 was made of polypropylene obtained from Borealis (Borealis RB707CF), and the adhesive base layer was Kraton G1730 (SEP)x block copolymer obtained from Kraton, The Netherlands. The polypropylene had a melt flow index of 0.9 g/10 min at 230° C. using a 2.16 kg weight. In addition, non-adhesive laminate 11.1 contained 5% of an anti-blocking additive in the adhesive base layer.
- Non-adhesive laminate 11.1 was produced by co-extruding the polypropylene and the (SEP)x block copolymer. A blown film extrusion line was used having five separate extruders. Two extruders were used to provide an outer filmic layer and an inner adhesive base layer. The other three extruders were used to provide a symmetric five layer film core by splitting the output of two extruders. Each extruder had at least five heating zones. Therefore, there were six layers of polypropylene (jointly forming the outer filmic layer (A)) and one layer of (SEP)x block copolymer (adhesive base layer (B)). The polypropylene was heated from 180° C. to 225° C. in the first four zones, whereas the (SEP)x block copolymer was heated from 190° C. to 250° C. in the first four zones. A pressure profile was chosen across non-adhesive laminate 11.1 with the layers in the center extruded at the highest pressures. Finally, the throughput of the extruders was chosen such that a 39 micrometer polypropylene outer filmic layer with a 12 micrometer (SEP)x adhesive base layer was obtained. Non-adhesive laminate 11.1 was produced at 15 m/min and a width at production of 60 cm.
- A 33 wt. % solution of (SEP)x as Kraton G 1730 copolymer was prepared by adding 240 g of Kraton G1730 to 480 g of toluene in a solvent resistant plastic 1 L flask. 2 g of antioxidant Irganox 1010 were added. The mixture was placed on a low speed roller bank for four days to provide a clear solution of Kraton G1730 copolymer.
- The Kraton G1730 solution was coated on 36 μm biaxially oriented polypropylene (BOPP, released prior to coating to facilitate unwind) using equipment from RK Print Coat Instruments, Ltd. located in Lithington, UK, at room temperature at a speed of around 5 m/min. An adjustable gap between rolls was used to control coating weight. The solvent was removed from the non-adhesive laminate in four dryer sections at respectively 90° C., 110° C., 110° C., and 110° C. BOPP/Kraton G1730 non-adhesive laminate with a TPE coating weight between 10-14 g/m2 was obtained.
- Tackifier layer compositions were produced containing 37.5% Regalite R1090 and 51.5% Regalrez 1018 tackifiers, 10% (SEP)x copolymer obtained as Kraton G1730 and 1% Irganox 1010 antioxidant in a Z-blade mixer (Linden, Marienheide, Germany) with an effective volume of approximately 1 L.
- To meet the required initial fill levels of this equipment and to meet adopted best practice for this type of equipment with regards to polymer/tackifier ratio, initially a mixture containing 15% (SEP)x polymer was prepared, followed by a dilution to 10% polymer.
- The Z-blade mixer was initially filled with 150 g of Kraton G1730, 10.5 g Irganox 1010 antioxidant and 75 g Regalite R 1090. The Z-blade mixing chamber was heated using an oil bath with a set-point of 170° C. to provide an internal temperature in the mixer of approximately 150° C. These components were mixed to a homogeneous product in 50 minutes with regular removal of copolymer and tackifier from the sides of the Z-blade mixer. To this mixture, a further 275 g of Regalite R1090 tackifier was added in portions, followed by 490.5 g Regalrez 1018 tackifier in portions. 300 g of this tackifier/copolymer mixture was removed, and a further 149.1 g Regalite R0190 tackifier, 3 g Irganox 1010 antioxidant and 197 g Regalrez 1018 tackifier were added in portions to the remaining 700 g of mixture to obtain 1050 g of tackifier layer composition. The product was poured into a paper box coated with silicone release and cooled to room temperature for further use.
- The tackifier composition of Example 13 was coated at 24 grams at 110° C. onto a silicone based release liner, using a slot die coater, which was than laminated on the tackifier composition side with non-adhesive laminates from Examples 10-12 (tackifier to Kraton G1730 copolymer side) to provide PSA laminates 14.1, 14.2, and 14.3, respectively. Coating equipment supplied by Bobis located in Bobis, Apeldoorn, The Netherlands was used at a line speed of around 40 m/min. Speed was varied to control coating weight. Similar equipment is available through LC Maan Engineering, Raalte, The Netherlands.
- The PSA laminates with a coating weight between 34-36 g/m2 were slitted into rolls of 5 cm width and stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing. The PSA laminates were tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 1 week and 3 weeks according to methods previously described in this disclosure. The data are tabulated in Table 10.
- To a Z-blade mixer Linden LK-II with thermostated oil bath heating, 400 grams of Kraton G1730 copolymer, 7 grams of Irganox 1010 antioxidant, and 200 grams Regalite R1090 tackifier were added. The Z-blade mixing chamber was heated using an oil bath with a set-point of 170° C. to provide an internal temperature in the mixer of approximately 150° C. Resin or copolymer sticking to the inner surface was cut loose every five minutes with a hot spatula until a homogeneous mixture was obtained after 1 hour. A further 50 g of Regalite R1090 tackifier were added to the mixer, followed by the addition in parts of 343 grams of Regalrez 1018 tackifier. Finally, the warm hot melt formulation was poured into a cardboard box with silicon inner liner to provide approximately 1 kg of hot melt adhesive.
- The hot melt adhesive was coated on 36 μm biaxially oriented polypropylene (BOPP, released prior to coating to facilitate unwind) using roll axle (IVa) or slot die (IVb) coating equipment from Bobis at 180° C. at a speed of around 40 m/min to produce Comparative PSAs 15.1 and 15.2. Coating equipment supplied by Bobis located in Bobis, Apeldoorn, The Netherlands was used at a line speed of around 40 m/min. Speed was varied to control coating weight. Similar equipment is available through LC Maan Engineering, Raalte, The Netherlands Speed was varied to control coating weight. PSAs 15.1 and 15.2 with a coating weight between 34-36 g/m2 were slitted into rolls of 5 cm width and stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- The PSA laminates (15.1 and 15.2) were tested for peel adhesion, loop tack and shear resistance properties, initial, after 24 hrs, 1 week and 3 weeks according to methods previously described in this disclosure. The data are tabulated in Table 10.
- A solution of 33 wt. % Kraton G1730 copolymer was prepared by adding 144 grams (SEP), as Kraton G1730 copolymer to 288 grams toluene and placing the mixture for 48 hours on a low speed roller bank. To the resulting solution, 90 grams Regalite R1090 tackifier, 125.5 grams Regalrez 1018 tackifier, and 2.5 grams Irganox 1010 anti-oxidant were added. After a further 24 hours on the roller bank, a 55 wt % solids adhesive was obtained.
- The adhesive was coated on 36 μm biaxially oriented polypropylene (BOPP, released prior to coating to facilitate unwind) using equipment from RK Print Coat Instruments Ltd., at room temperature at a speed of around 5 m/min to produce PSA 16.1. An adjustable gap between rolls was used to control coating weight. The solvent was removed from PSA 16.1 in four dryer sections at respectively 90° C., 110° C., 110° C. and 110° C. The PSA with a coating weight between 34-36 g/m2 were slitted into rolls of 5 cm width and stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- PSA laminate 16.1 was tested for peel adhesion, loop tack and shear resistance properties, initial, after 24 hrs, 1 week and 3 weeks according to methods previously described in this disclosure. The data are tabulated in Table 10.
TABLE 10 PSA Time Property Laminate 1 day 1 week 3 weeks Remarks Peel (N/25 mm) 14.1 22 24 18 elongation > 5 cm 14.2 16 14* 14* elongation > 5 cm 14.3 14* 16* 17* 15.1 8 5 5 15.2 8 7 7 16.1 5 5 6 Tack (N/25 mm) 14.1 23 21 12 slip stick for each sample 14.2 22* 11* 11* slip stick for each sample 14.3 27* 17* 23* 15.1 15 10 10 15.2 16 13 12 16.1 10 10 9 Shear 1 kg/steel 14.1 3421 >10000 >10000 (minutes) 14.2 394 >10000 >10000 14.3 172 >10000 >10000 15.1 >10000 >10000 >10000 15.2 >10000 >10000 >10000 16.1 >10000 >10000 >10000
*= cohesive failure
- Clearly, laminates 14.1, 14.2 and 14.3 are PSAs based on the peel adhesion, loop tack, and shear adhesion data. The definition of PSA was previously described in this disclosure. The peel and loop tack values for PSA 14.3 are higher than for comparable laminates PSAs 15.1, 15.2, and 16.1. Shear adhesion and loop tack are time dependent for PSAs 14.1, 14.2, and 14.3, with typically initial high loop tack values and low shear values. The properties change over time to obtain PSAs which are at least comparable or better in adhesive properties than comparative PSAs 15.1, 15.2, and 16.1 prepared using conventional methods.
- Notwithstanding the above, the formation of an adhesive layer of a PSA by migration of the tackifier into the adhesive base layer can provide many other benefits. Benefits include at least one of the following: processing advantages and advantages for other properties, such as, color, smell, clarity, gloss, haze, and anchorage. Processing advantages include: 1) lower processing temperatures which improve a number of properties such as color and smell, and 2) lower viscosities allowing very smooth and defect free surfaces improving the optical properties of the PSA laminate. In addition to providing enhanced properties, economic benefits may be obtained. Lower temperatures require less energy, and lower viscosities enable higher line speeds. The coextruded melt bond of the filmic polymer and the adhesive base layer eliminates the presence of a discrete interface between adhesive and filmic backing as in conventional PSAs. This enhances the visual appearance of the inventive PSAs over conventional PSAs, since the risk of interface defects as resulting from poor flow, entrainment of air or poor wettability, and any scatter, are eliminated.
- Another advantage of this invention is that the PSA laminate has improved clarity and haze since the low viscosity of the tackifier composition provides excellent wettability of the non-adhesive laminate and provides a smooth coated surface. A common problem in conventional PSAs is inadequate wetting of the adhesive to the facestock or insufficient flow, resulting in contact or surface defects, reducing the visual appearance of the PSA laminate.
- The tackifying composition of Example 13 was formulated as an dispersion by heating 100 grams of the tackifying composition, 9 grams of a hydrogenated rosin acid (Staybellite resin E, Eastman Chemical Company, Middelburg, the Netherlands) and 2.2
grams 50 wt. % KOH in water. The latter two components serve as a tackifying surfactant system. Then, under vigorous stirring, slowly approximately 100 grams of water were added at 90° C., followed by cooling. A dispersion of the tackifying resin was obtained at 52 wt % solids with a particle size of 258 nm as measured by Coulter type particle size equipment and a viscosity of 500 mPas. - The dispersion was coated onto A4 sheets of non-adhesive laminates 14.1, 14.2, and 14.3 using a K-bar type 6 to provide a 24 gram tackifying layer (C) after drying the PSA laminates for 2 minutes at 100° C. to produce PSAs 18.1, 18.2, and 18.3. All PSA laminates had a shear strength of >10000 minutes) in 1 week at 23° C., and a peel strength of >10 N/25 mm after ageing for three weeks.
- The outer filmic layer of the non-adhesive laminate was made of Sabic low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands, and the adhesive base layer was Kraton G1730 (SEP)x block copolymer. The low density polyethylene had a density of 0.924 (g/cm3) and a melt flow index of 0.75 g/10 min at 190° C. using a 2.16 kg weight. In addition, the non-adhesive laminate contained an anti-blocking layer on the surface of the outer filmic layer away from the adhesive base layer. A low density polyethylene containing 3% silica was utilized for the anti-blocking layer.
- The non-adhesive laminate was produced by co-extruding the low density polyethylene, (SEP)x block copolymer, and the anti-blocking layer. A cast film extrusion line was utilized having three separate extruders. The extruder for the outer filmic layer contained 6 zones and operated at an inlet temperature of about 170° C. and an outlet temperature of about 220° C. The extruders for the adhesive base layer and the anti-blocking layer contained 3 zones and operated at an inlet temperature of about 180° C. to 190° C. and an outlet temperature of about 210° C. The anti-blocking layer of polyethylene with silica had a thickness of 50 micrometer; the core poly(ethylene) filmic layer had a thickness of 30 micrometer, and the adhesive base layer had a thickness of 30 micrometer. The melt from the extruders was routed to a cloerenblok feed block and then to a Black Clawson Spuitkop die. The die temperature was in the range of about 250° C. to about 260° C., and the web speed was 21.3 m/min. After casting, non-adhesive laminate 18.1 was cooled and rewound.
- The tackifier composition of Example 13 was coated at 30, 50, 70, 90 and 125 g/m2 at 110° C. onto a silicone based release liner, using a slot die coater, which was than laminated on the tackifier composition side with non-adhesive laminates from examples 18 (tackifier to Kraton G1730 copolymer side) to provide pressure sensitive adhesive laminates (PSAs 19.1, 19.2, 19.3, 19.4, and 19.5). Coating equipment supplied by Meltex now Nordson, Luneburg Germany, was used at a line speed between 3 and 11 m/min. Speed was varied to control coating weight. Low speed corresponds to high coating thickness. The PSA laminates were stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- The PSA laminates were tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 4 days, 1 week, 2 weeks and 3 weeks according to methods described previously in this disclosure. The data are tabulated in Table 11.
TABLE 11 Effect of tackifying layer amount on property development Tackifying layer amount Time Property PSA (gram/m2) 1 day 4 day 1 week 2 week 3 week Peel (N/25 mm) 19.1 30 14 1 ND ND ND 19.2 50 29 6 5 3 2 19.3 70 31 32 28 4 6 19.4 90 36 34 32 24 21 19.5 125 40 36 SD SD SD Loop Tack 19.1 30 10 1 ND ND ND (N/25 mm) 19.2 50 19 13 3 1 3 19.3 70 23 26 19 12 6 19.4 90 29 28 27 30 13 19.5 125 29 28 22 28 25 Shear 23° C., 19.1 30 87 700-10k >10000 >10000 >10000 1 kg (min) 19.2 50 62 204 452 >10000 >10000 19.3 70 35 45 91 254 783 19.4 90 22 26 45 93 115 19.5 125 16 19 25 48 31
ND—Not Determinated
SD—Substrate Destruction - In this case, the peel is so high that the outer filmic layer tears.
- These examples demonstrate that the adhesive properties of the PSA laminates can be widely varied with variation of the thickness of the tackfying layer. This is very useful in providing different adhesive properties from a single non-adhesive laminate. Also, a large range of tackfying layer thicknesses can be used to provide PSA laminates with useful properties.
- The outer filmic layer of the non-adhesive laminate was made of low density polyethylene obtained from Sabic Europe in Sittard, The Netherlands (Sabic 2201 TH 00), and the adhesive base layer was Kraton G1730 (SEP)x SEPS block copolymer obtained from Kraton. The low density polyethylene had a melt flow index of 0.8 g/10 min at 190° C. using a 2.16 kg weight. In addition, the non-adhesive laminate contained 5% by weight of an anti-blocking additive and 1% by weight of a processubg aid. A film blown process similar to the one used in Example 10 was used to provide a 85 micrometer polyethylene filmic outer layer with a 6 micrometer (SEP)x adhesive base layer. The roll had a width at production of 70 cm and was re-slit to 50 cm and 20 cm rolls.
- The tackifier composition of Example 13 was coated at 10, 15 and 20 g/m2 at 110° C. onto a silicone based release liner, using a slot die coater, which was then laminated on the tackifier composition side with non-adhesive laminates from Example 20 (tackifier to Kraton G1730 side) to provide PSA laminates 21.1, 21.2, and 21.3. Coating equipment supplied by Meltex now Nordson, Luneburg Germany was used at a line speed between 19-39 m/min. Speed was varied to control coating weight. Low speed corresponds to high coating thickness. The PSA laminates were stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- The PSA laminates were tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 2 days, 1 week, 2 weeks and 3 weeks according to methods described previously in this disclosure. The data are tabulated in Table 12.
TABLE 12 Effect of tackifying layer amount on property development Tackfying layer PSA amount Time Property No. (gram/meter2) 1 day 2 day 1 week 2 week 3 week Peel 21.1 10 14 13 10 10 11 (N/25 mm) 21.2 15 20 20 20 18 20 21.3 20 22 23 23 24 24 Loop Tack 21.1 10 14 9 2 2 1 (N/25 mm) 21.2 15 26 26 10 13 12 21.3 20 35 34 29 27 32 Shear 23° C., 21.1 10 149 207 >750 >1700 >10000 1 kg (min) 21.2 15 219 248 >1000 >1300 >10000 21.3 20 196 266 461 904 1310 - These examples demonstrate that the adhesive properties of the PSA laminates can be widely varied with variation of the thickness of the tackifier layer. This is very useful in providing different adhesive properties from a single non-adhesive laminate.
- The tackifier composition of Example 13 was coated at 13 g/m2 at 100° C. onto a silicone based release liner, using a knife-over-roll coater with pressure roll, which was then laminated on the tackifier composition side with non-adhesive laminates from Example 20 (tackifier to Kraton G1730 side) to provide PSA laminate 22.1. Coating equipment supplied by Kroenert Maschinenfabrik Max Kroenert GmbH & Co KG, Hamburg, Germany was used at a line speed of 50 m/min. The PSA laminate was stored overnight in a climatized control room at 23° C. and 50% relative humidity prior to testing.
- The PSA laminate was tested for peel adhesion, loop tack and shear resistance properties after 24 hrs, 2 days, 4 days, 1 week, and 2 weeks according to methods described previously in this disclosure. The data are tabulated in Table 13.
TABLE 13 Effect of tackifying layer amount on property development Tackfying layer PSA amount Time Property No. (gram/meter2) 1 day 2 days 4 days 1 week 2 weeks Peel (N/25 mm) 22.1 13 16 17 16 14 11 Loop Tack (N/25 mm) 22.1 13 12 11 12 10 2 Shear 23° C., 1 kg 22.1 13 58 48 248 426 604 (min) - Furthermore, the PSA laminate was examined by confocal Raman spectroscopy using a WiTec Confocal
Raman Microscope CRM 200. A Nikon objective, CFI Plan Achromat 100×, NA=0.9 is used without cover glass correction. The laser power used was 15 MW at 532 nm. An in depth analyses was carried out starting from the tackifier layer up to the polyethylene backing layer. Characteristic Raman signals were used to identify the compounds of the original layers: - 760-790 cm−1 for the tackifier;
- 1120-1140 cm−1 for the polyethylene (outer filmic layer); and 3014-3100 cm−1 for the (SEP)x copolymer (adhesive base polymer). Using the intensities of these signals, cross-sections were obtained showing the concentration of the tackifiers, (SEP)x, and polyethylene as a function of depth (μm).
- Depth profiles of the PSA laminate 22.1 were measured after 3 and 8 days of ageing at room temperature, in order to study the migration behaviour of the tackifier. Every analysis was carried out five times at different locations of the PSA laminate. The results of these analyses were averaged over each series of measurements. In order to quantify migration, the distance between the peak values of tackifier signal and adhesive base polymer signal were calculated, followed by a correction of the values by assuming a value of 1.5 of the breaking index for both tackifier and (SEP)x.
- It was found that the distance between the peak values for the tackifier and (SEP)x copolymer decreased from 12 micrometer to 7 micrometer between three and eight days of storage. Theoretically, a distance between the peak values of 0 micrometer represents a fully migrated system without compositional differences.
- The shear resistance of the PSA laminates increased by almost an order of magnitude over a similar time frame (e.g. 2 days-1 week), as listed in Table 13
- Although not intending to be bound by theory, this implies that the change in adhesive properties over time is related to migration of tackifier into the adhesive base layer as studied by confocal Raman spectroscopy.
Claims (130)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/397,648 US20060251890A1 (en) | 2005-05-06 | 2006-04-04 | Pressure sensitive adhesive (PSA) laminates |
EP06009361A EP1719809A3 (en) | 2005-05-06 | 2006-05-05 | Pressure sensitive adhesive (PSA) laminates |
EP06009360A EP1719808A3 (en) | 2005-05-06 | 2006-05-05 | Pressure sensitive adhesive laminates |
JP2006129643A JP2006328391A (en) | 2005-05-06 | 2006-05-08 | Pressure-sensitive adhesive (psa) laminate |
JP2006129605A JP2006341593A (en) | 2005-05-06 | 2006-05-08 | Pressure-sensitive adhesive (psa) laminate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67862005P | 2005-05-06 | 2005-05-06 | |
US11/178,849 US20060251889A1 (en) | 2005-05-06 | 2005-07-11 | Pressure sensitive adhesive (PSA) laminates |
US11/397,648 US20060251890A1 (en) | 2005-05-06 | 2006-04-04 | Pressure sensitive adhesive (PSA) laminates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/178,849 Continuation-In-Part US20060251889A1 (en) | 2005-05-06 | 2005-07-11 | Pressure sensitive adhesive (PSA) laminates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060251890A1 true US20060251890A1 (en) | 2006-11-09 |
Family
ID=37394362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/397,648 Abandoned US20060251890A1 (en) | 2005-05-06 | 2006-04-04 | Pressure sensitive adhesive (PSA) laminates |
Country Status (1)
Country | Link |
---|---|
US (1) | US20060251890A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090069764A1 (en) * | 2006-02-17 | 2009-03-12 | B. Braun Medical Sas | Connector for stoma bag, of the two-piece type, fixed by gluing |
US20090117309A1 (en) * | 2007-11-07 | 2009-05-07 | Ogden Jr Orval D | Extrudable adherable material systems |
US20100063382A1 (en) * | 2008-09-05 | 2010-03-11 | University Of South Carolina | Specific Gene Polymorphisms in Breast Cancer Diagnosis, Prevention and Treatment |
US20100071456A1 (en) * | 2008-09-25 | 2010-03-25 | Silverbrook Research Pty Ltd | Tack adhesion testing device |
US20100072473A1 (en) * | 2008-09-25 | 2010-03-25 | Silverbrook Research Pty Ltd | Tack adhesion testing device |
US20100227103A1 (en) * | 2009-03-04 | 2010-09-09 | Mitek Holdings, Inc. | Roofing underlayment |
US20100272943A1 (en) * | 2009-04-22 | 2010-10-28 | Robert Kintu Ddamulira | Carrier-free adhesive film |
US8142592B2 (en) * | 2008-10-02 | 2012-03-27 | Mylan Inc. | Method for making a multilayer adhesive laminate |
EP2585529A1 (en) * | 2010-06-23 | 2013-05-01 | UPM Raflatac Oy | Mdo polypropylene liner |
CN104411495A (en) * | 2012-09-06 | 2015-03-11 | 琳得科株式会社 | Flame-retardant laminate and flame-retardant adhesive sheet |
WO2015183896A1 (en) * | 2014-05-27 | 2015-12-03 | Henkel IP & Holding GmbH | Enhanced pressure sensitive adhesive for thermal management applications |
US20160186015A1 (en) * | 2013-08-01 | 2016-06-30 | Tombow Pencil Co., Ltd. | Pressure-sensitive adhesive transfer tape and transferring implement |
US20170239384A1 (en) * | 2014-10-09 | 2017-08-24 | Coloplast A/S | Composition comprising a polymer and a switch initiator |
US20170292046A1 (en) * | 2014-09-18 | 2017-10-12 | Mitsubishi Plastics, Inc. | Photocrosslinkable transparent adhesive material, transparent adhesive material layered body, and layered body for constituting optical device |
US9909035B1 (en) * | 2017-09-29 | 2018-03-06 | Mayapple Baby Llc | Mountable articles, dual-adhesive-adhesive tape and mounting methods using them |
US20180346765A1 (en) * | 2017-06-02 | 2018-12-06 | Carlisle Intangible Company | Pressure-sensitive pvc cover strip |
WO2020036787A1 (en) * | 2018-08-13 | 2020-02-20 | 3M Innovative Properties Company | Cohesive compositions and articles |
US10647096B2 (en) | 2015-04-28 | 2020-05-12 | Kuraray Co., Ltd. | Laminating acrylic thermoplastic polymer compositions |
US10981746B2 (en) | 2017-07-04 | 2021-04-20 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
CN113646169A (en) * | 2019-03-05 | 2021-11-12 | 陶氏环球技术有限责任公司 | 2-component solvent-based adhesive composition |
US11261050B2 (en) | 2014-12-09 | 2022-03-01 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
US11866285B2 (en) | 2017-07-04 | 2024-01-09 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577398A (en) * | 1966-06-09 | 1971-05-04 | Goodyear Tire & Rubber | Synthetic resin |
US4719261A (en) * | 1978-09-22 | 1988-01-12 | H. B. Fuller Company | Hot melt adhesive for elastic banding and method for utlizing the same |
US4725468A (en) * | 1986-02-06 | 1988-02-16 | Acumeter Laboratories, Inc. | Method of co-extrusion of different coating materials, including adhesive coating with intermittent non-adhering sections, and products produced thereby |
US4725454A (en) * | 1983-02-23 | 1988-02-16 | Manuli Autoadesivi Spa | Process for the manufacturing of adhesive tapes |
US4822653A (en) * | 1987-08-05 | 1989-04-18 | National Starch And Chemical Corporation | Recyclable hot melt adhesive compositions |
US4833193A (en) * | 1987-08-14 | 1989-05-23 | Sieverding David L | Novel pressure sensitive adhesives |
US4835200A (en) * | 1986-12-19 | 1989-05-30 | Shell Oil Company | Color stable hot melt adhesive |
US4898762A (en) * | 1988-07-01 | 1990-02-06 | Minnesota Mining And Manufacturing Company | Easy tear sterilization indicator tape |
US4906421A (en) * | 1987-07-01 | 1990-03-06 | Avery International Corporation | Process for making high performance pressure sensitive adhesive tapes |
US4914154A (en) * | 1984-08-24 | 1990-04-03 | Wacker-Chemie Gmbh | Novel matting agent and its use |
US5001179A (en) * | 1987-08-05 | 1991-03-19 | National Starch And Chemical Investment Holding Corporation | Recyclable hot melt adhesive compositions |
US5085927A (en) * | 1990-04-10 | 1992-02-04 | Paragon Films, Inc. | Stretch film cling enhancement by addition of elastomers |
US5085655A (en) * | 1990-07-19 | 1992-02-04 | Avery Dennison Corporation | Cohesive tape system |
US5112889A (en) * | 1987-08-31 | 1992-05-12 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive composition, tape and diaper closure system |
US5202367A (en) * | 1988-06-16 | 1993-04-13 | The United States Of America As Represented By The Secretary Of The Navy | Epoxy self-priming topcoats |
US5204182A (en) * | 1990-05-04 | 1993-04-20 | Imperial Chemical Industries Plc | Polyolefin film |
US5283117A (en) * | 1991-01-10 | 1994-02-01 | Idemitsu Petrochemical Co., Ltd. | Laminate and self-adhesive tape |
US5284688A (en) * | 1992-04-16 | 1994-02-08 | Unique Label Systems, Inc. | Pressure sensitive adhesive labels and manufacture thereof |
US5308695A (en) * | 1988-10-18 | 1994-05-03 | Nitto Denko Corporation | Adhesive tapes for medical or sanitary use |
US5382451A (en) * | 1992-04-06 | 1995-01-17 | Minnesota Mining And Manufacturing | Method for coating adhesive polymers |
US5418052A (en) * | 1987-11-16 | 1995-05-23 | National Starch And Chemical Investment Holding Corporation | Hot melt adhesive composition |
US5503923A (en) * | 1993-04-27 | 1996-04-02 | Toyoda Gosei Co., Ltd. | Molded sandwich article |
US5516581A (en) * | 1990-12-20 | 1996-05-14 | Minnesota Mining And Manufacturing Company | Removable adhesive tape |
US5518762A (en) * | 1994-06-03 | 1996-05-21 | Moore Business Forms, Inc. | Method and apparatus for manufacturing linerless labels |
US5520868A (en) * | 1994-01-24 | 1996-05-28 | Kt Industries Inc. | Forming pressure sensitive adhesive tape |
US5597648A (en) * | 1991-10-18 | 1997-01-28 | Dow Corning Corporation | Low-volatility pressure sensitive adhesives |
US5599621A (en) * | 1995-09-29 | 1997-02-04 | Brady Precision Tape Co. | Cover tape for surface mount device packaging |
US5602202A (en) * | 1994-01-14 | 1997-02-11 | Minnesota Mining And Manufacturing Company | Methods of using acrylate-containing polymer blends |
US5601927A (en) * | 1994-12-05 | 1997-02-11 | Furon Company | Cling signage |
US5605717A (en) * | 1995-06-01 | 1997-02-25 | Morgan Adhesives Company | Process for foaming an adhesive using moisture in a backing |
US5616420A (en) * | 1993-09-06 | 1997-04-01 | Gunze Limited | Laminate film |
US5733825A (en) * | 1996-11-27 | 1998-03-31 | Minnesota Mining And Manufacturing Company | Undrawn tough durably melt-bondable macrodenier thermoplastic multicomponent filaments |
US5741840A (en) * | 1996-07-03 | 1998-04-21 | H.B. Fuller Licensing & Financing, Inc. | Cohesively failing hot melt pressure sensitive adhesive |
US5747107A (en) * | 1995-10-26 | 1998-05-05 | Minnesota Mining And Manufacturing Company | Method of applying a hot melt coating |
US5750192A (en) * | 1995-04-04 | 1998-05-12 | Moore Business Forms Inc | Method of producing linerless thermal labels |
US5858150A (en) * | 1995-12-18 | 1999-01-12 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive based on partially oriented and partially crystallized elastomer |
US5863977A (en) * | 1993-10-12 | 1999-01-26 | H. B. Fuller Licensing & Financing, Inc. | High molecular weight S-EB-S hot melt adhesive |
US5869555A (en) * | 1995-11-16 | 1999-02-09 | H. B. Fuller Licensing & Financing Inc. | Polymeric composition in pellet form |
US5869562A (en) * | 1997-03-28 | 1999-02-09 | H. B. Fuller Licensing & Financing, Inc. | Hot melt pressure sensitive adhesive designed for use on high density spun polyolefin film |
US5874512A (en) * | 1995-12-07 | 1999-02-23 | Farley; James Mccleod | Tackifiers and a process to obtain tackifiers |
US5885699A (en) * | 1992-08-27 | 1999-03-23 | Cryovac, Inc. | Multilayer thermoplastic packaging film |
US6010783A (en) * | 1995-09-26 | 2000-01-04 | The Dow Chemical Company | Clear monolayer label filmstock |
US6017598A (en) * | 1994-03-29 | 2000-01-25 | Fresenius Ag | Multilayer polymer film for a multichamber medical bag and process for fabrication thereof |
US6037042A (en) * | 1994-10-26 | 2000-03-14 | Toppan Moore Co., Ltd. | Label sheet and method of manufacturing the same |
US6040046A (en) * | 1997-06-17 | 2000-03-21 | Tredegar Corporation | Masking film and method for producing same |
US6042930A (en) * | 1997-12-24 | 2000-03-28 | The Dow Chemical Company | Plastic heat-activated adhesive labels |
US6042882A (en) * | 1995-12-22 | 2000-03-28 | 3M Innovative Properties Company | Adhesive tape and method of making |
US6172156B1 (en) * | 1996-07-03 | 2001-01-09 | H. B. Fuller Licensing & Financing, Inc. | Cohesively failing hot melt pressure sensitive adhesive |
US6180229B1 (en) * | 1998-06-17 | 2001-01-30 | H. B. Fuller Licensing & Financing, Inc. | Hot melt pressure sensitive adhesive composition useful for contact coating on heat sensitive substrates |
US6183862B1 (en) * | 1998-09-23 | 2001-02-06 | Avery Dennison Corporation | Multilayer PSA construction exhibiting reduced tackifier migration |
US6187432B1 (en) * | 1997-03-11 | 2001-02-13 | Avery Dennison Corporation | Composite pressure sensitive adhesive |
US6231922B1 (en) * | 1998-09-02 | 2001-05-15 | Monarch Marketing Systems, Inc. | Silicone release coating composition |
US20010002289A1 (en) * | 1997-12-13 | 2001-05-31 | Peter Himmelsbach | Process for the at least partial, direct coating of an extensible backing material with a pressure-sensitive adhesive composition |
US6350344B1 (en) * | 1996-10-26 | 2002-02-26 | Henkel Kommanditgesellschaft Auf Aktien | Solventless primers which are hardenable by radiation |
US6372335B1 (en) * | 1996-11-30 | 2002-04-16 | Beiersdorf Ag | Adhesive tape |
US20020045043A1 (en) * | 2000-08-28 | 2002-04-18 | Nitto Denko Corporation | Pressure-sensitive adhesive composition and pressure-sensitive tape or sheet |
US6391960B1 (en) * | 1998-12-23 | 2002-05-21 | National Starch And Chemical Investment Holding Corporation | Multipurpose hot melt adhesive |
US6395348B1 (en) * | 2000-12-22 | 2002-05-28 | Kt Holdings Inc. | Method for manufacturing adhesive tapes |
US6503620B1 (en) * | 1999-10-29 | 2003-01-07 | Avery Dennison Corporation | Multilayer composite PSA constructions |
US6506447B1 (en) * | 1999-08-18 | 2003-01-14 | Tesa Ag | Process for the continuous, solvent- and mastication-free production of pressure-sensitive self-adhesive compositions based on non-thermoplastic elastomers and coating thereof to produce self-adhesive articles |
US20030015819A1 (en) * | 1997-10-03 | 2003-01-23 | 3M Innovative Properties Company | Elastic fastener |
US20030017329A1 (en) * | 2001-07-23 | 2003-01-23 | Shah Suresh D. | Tie-layer formulation and method of manufacture |
US6511466B1 (en) * | 1999-10-13 | 2003-01-28 | Nitto Denko Corporation | Pressure-sensitive adhesive tape, disposable diaper using the same and structure for attaching a tape to the chassis of a disposable diaper |
US6521336B2 (en) * | 2000-09-28 | 2003-02-18 | Tohcello, Co., Ltd. | Aliphatic polyester compositions, film made thereof and laminates thereof |
US6524701B1 (en) * | 1998-11-20 | 2003-02-25 | Lintec Corporation | Pressure sensitive adhesive sheet and method of use thereof |
US20030039785A1 (en) * | 2001-08-24 | 2003-02-27 | Dronzek Peter J. | Durable supports for labeling and relabeling objects |
US6540865B1 (en) * | 1996-09-27 | 2003-04-01 | Avery Dennison Corporation | Prelaminate pressure-sensitive adhesive constructions |
US20030065048A1 (en) * | 2001-06-26 | 2003-04-03 | Paul Charles W. | Radiation curable adhesive |
US6551704B2 (en) * | 1996-08-06 | 2003-04-22 | Beiersdorf Ag | Self-adhesively treated backing materials |
US6552109B1 (en) * | 1994-04-19 | 2003-04-22 | Applied Elastomerics, Inc. | Gelatinous elastomer compositions and articles |
US20030077439A1 (en) * | 2001-10-20 | 2003-04-24 | Ingo Neubert | Self-adhesive masking tape for vehicles and vehicle parts |
US6555218B2 (en) * | 1998-01-07 | 2003-04-29 | H. B. Fuller Licensing & Financing Inc. | Flame retardant filters |
US20030080461A1 (en) * | 2000-05-29 | 2003-05-01 | Kari Kirjavainen | Extrusion method and extrusion device |
US20030082371A1 (en) * | 1993-10-29 | 2003-05-01 | 3M Innovative Properties Company | Pressure-sensitive adhesives having microstructured surfaces |
US6713174B2 (en) * | 1999-10-13 | 2004-03-30 | Arlin Mgf. Co., Inc. | Tear tape |
USH2100H1 (en) * | 1996-03-26 | 2004-04-06 | Kraton Polymers Llc | Low stress relaxation adhesive having high molecular weight endblock copolymer |
US20050002925A1 (en) * | 2001-05-08 | 2005-01-06 | Yi Xu | Surface proteins from gram-positive bacteria having highly conserved motifs and antibodies that recognize them |
US6844383B2 (en) * | 2000-05-25 | 2005-01-18 | Asahi Kasei Kabushiki Kaisha | Block copolymer and composition thereof |
US6849691B2 (en) * | 2000-11-02 | 2005-02-01 | Tokai Rubber Industries, Ltd. | High damping elastomer composition |
US6867253B1 (en) * | 1994-04-19 | 2005-03-15 | Applied Elastomerics, Inc. | Tear resistant, crystalline midblock copolymer gels and articles |
US20050064162A1 (en) * | 2001-11-22 | 2005-03-24 | Masaru Iriya | Polypropylene-based wrap film |
US20050061435A1 (en) * | 2000-10-25 | 2005-03-24 | 3M Innovative Properties Company | Latent, over-tackified, adhesives and methods of use |
US6875487B1 (en) * | 1999-08-13 | 2005-04-05 | Foto-Wear, Inc. | Heat-setting label sheet |
US6984428B2 (en) * | 2000-11-10 | 2006-01-10 | Tesa Aktiengesellschaft | Pressure-sensitive adhesive mass and the use thereof |
US6987142B2 (en) * | 2002-02-07 | 2006-01-17 | Kraton Polymers U.S. Llc | Adhesives and sealants from controlled distribution block copolymers |
US20060029766A1 (en) * | 2000-01-18 | 2006-02-09 | Bolnick Martin M | Label form for use in drug testing and method for applying the same |
US20060040083A1 (en) * | 2004-08-17 | 2006-02-23 | Hellermann Tyton Corporation | Wire label with carrier |
US20060040084A1 (en) * | 2004-08-17 | 2006-02-23 | Hellermanntyton Corporation | Wire label with carrier |
US20060040081A1 (en) * | 2004-08-23 | 2006-02-23 | Hodsdon Jerry G | Apparatus, system, and method for personalizing a portable electronic device |
US20060051550A1 (en) * | 2004-08-25 | 2006-03-09 | Jeffrey Arippol | Label-seal manufacturing method and the resulting improved label-seal |
US7015155B2 (en) * | 2002-07-02 | 2006-03-21 | Kimberly-Clark Worldwide, Inc. | Elastomeric adhesive |
US20060068191A1 (en) * | 2004-09-13 | 2006-03-30 | Hiroshi Goto | Heat-sensitive adhesive material |
US20060073318A1 (en) * | 2004-10-06 | 2006-04-06 | Applied Extrusion Technologies, Inc. | Opaque decorative film and construction laminates employing same |
US20060078703A1 (en) * | 2003-04-01 | 2006-04-13 | Kari Virtanen | Laminate, a self-adhesive label web and a method for manufacturing |
US20070003758A1 (en) * | 2004-04-01 | 2007-01-04 | National Starch And Chemical Investment Holding Corporation | Dicing die bonding film |
US7163739B2 (en) * | 2001-03-15 | 2007-01-16 | Mitsui Chemicals, Inc. | Laminate and display apparatus using the same |
US7163741B2 (en) * | 2000-02-02 | 2007-01-16 | 3M Innovative Properties Company | Adhesive for bonding to low surface energy surfaces |
-
2006
- 2006-04-04 US US11/397,648 patent/US20060251890A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577398A (en) * | 1966-06-09 | 1971-05-04 | Goodyear Tire & Rubber | Synthetic resin |
US4719261A (en) * | 1978-09-22 | 1988-01-12 | H. B. Fuller Company | Hot melt adhesive for elastic banding and method for utlizing the same |
US4725454A (en) * | 1983-02-23 | 1988-02-16 | Manuli Autoadesivi Spa | Process for the manufacturing of adhesive tapes |
US4914154A (en) * | 1984-08-24 | 1990-04-03 | Wacker-Chemie Gmbh | Novel matting agent and its use |
US4725468A (en) * | 1986-02-06 | 1988-02-16 | Acumeter Laboratories, Inc. | Method of co-extrusion of different coating materials, including adhesive coating with intermittent non-adhering sections, and products produced thereby |
US4835200A (en) * | 1986-12-19 | 1989-05-30 | Shell Oil Company | Color stable hot melt adhesive |
US4906421A (en) * | 1987-07-01 | 1990-03-06 | Avery International Corporation | Process for making high performance pressure sensitive adhesive tapes |
US4822653A (en) * | 1987-08-05 | 1989-04-18 | National Starch And Chemical Corporation | Recyclable hot melt adhesive compositions |
US5001179A (en) * | 1987-08-05 | 1991-03-19 | National Starch And Chemical Investment Holding Corporation | Recyclable hot melt adhesive compositions |
US4833193A (en) * | 1987-08-14 | 1989-05-23 | Sieverding David L | Novel pressure sensitive adhesives |
US5112889A (en) * | 1987-08-31 | 1992-05-12 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive composition, tape and diaper closure system |
US5418052A (en) * | 1987-11-16 | 1995-05-23 | National Starch And Chemical Investment Holding Corporation | Hot melt adhesive composition |
US5202367A (en) * | 1988-06-16 | 1993-04-13 | The United States Of America As Represented By The Secretary Of The Navy | Epoxy self-priming topcoats |
US4898762A (en) * | 1988-07-01 | 1990-02-06 | Minnesota Mining And Manufacturing Company | Easy tear sterilization indicator tape |
US5308695A (en) * | 1988-10-18 | 1994-05-03 | Nitto Denko Corporation | Adhesive tapes for medical or sanitary use |
US5085927A (en) * | 1990-04-10 | 1992-02-04 | Paragon Films, Inc. | Stretch film cling enhancement by addition of elastomers |
US5204182A (en) * | 1990-05-04 | 1993-04-20 | Imperial Chemical Industries Plc | Polyolefin film |
US5085655A (en) * | 1990-07-19 | 1992-02-04 | Avery Dennison Corporation | Cohesive tape system |
US5516581A (en) * | 1990-12-20 | 1996-05-14 | Minnesota Mining And Manufacturing Company | Removable adhesive tape |
US5283117A (en) * | 1991-01-10 | 1994-02-01 | Idemitsu Petrochemical Co., Ltd. | Laminate and self-adhesive tape |
US5597648A (en) * | 1991-10-18 | 1997-01-28 | Dow Corning Corporation | Low-volatility pressure sensitive adhesives |
US5382451A (en) * | 1992-04-06 | 1995-01-17 | Minnesota Mining And Manufacturing | Method for coating adhesive polymers |
US5284688A (en) * | 1992-04-16 | 1994-02-08 | Unique Label Systems, Inc. | Pressure sensitive adhesive labels and manufacture thereof |
US5885699A (en) * | 1992-08-27 | 1999-03-23 | Cryovac, Inc. | Multilayer thermoplastic packaging film |
US5503923A (en) * | 1993-04-27 | 1996-04-02 | Toyoda Gosei Co., Ltd. | Molded sandwich article |
US5616420A (en) * | 1993-09-06 | 1997-04-01 | Gunze Limited | Laminate film |
US5863977A (en) * | 1993-10-12 | 1999-01-26 | H. B. Fuller Licensing & Financing, Inc. | High molecular weight S-EB-S hot melt adhesive |
US6838150B2 (en) * | 1993-10-29 | 2005-01-04 | 3M Innovative Properties Company | Pressure-sensitive adhesives having microstructured surfaces |
US20030082371A1 (en) * | 1993-10-29 | 2003-05-01 | 3M Innovative Properties Company | Pressure-sensitive adhesives having microstructured surfaces |
US5602202A (en) * | 1994-01-14 | 1997-02-11 | Minnesota Mining And Manufacturing Company | Methods of using acrylate-containing polymer blends |
US5520868A (en) * | 1994-01-24 | 1996-05-28 | Kt Industries Inc. | Forming pressure sensitive adhesive tape |
US6017598A (en) * | 1994-03-29 | 2000-01-25 | Fresenius Ag | Multilayer polymer film for a multichamber medical bag and process for fabrication thereof |
US6552109B1 (en) * | 1994-04-19 | 2003-04-22 | Applied Elastomerics, Inc. | Gelatinous elastomer compositions and articles |
US6867253B1 (en) * | 1994-04-19 | 2005-03-15 | Applied Elastomerics, Inc. | Tear resistant, crystalline midblock copolymer gels and articles |
US5518762A (en) * | 1994-06-03 | 1996-05-21 | Moore Business Forms, Inc. | Method and apparatus for manufacturing linerless labels |
US6037042A (en) * | 1994-10-26 | 2000-03-14 | Toppan Moore Co., Ltd. | Label sheet and method of manufacturing the same |
US5601927A (en) * | 1994-12-05 | 1997-02-11 | Furon Company | Cling signage |
US5750192A (en) * | 1995-04-04 | 1998-05-12 | Moore Business Forms Inc | Method of producing linerless thermal labels |
US5605717A (en) * | 1995-06-01 | 1997-02-25 | Morgan Adhesives Company | Process for foaming an adhesive using moisture in a backing |
US6010783A (en) * | 1995-09-26 | 2000-01-04 | The Dow Chemical Company | Clear monolayer label filmstock |
US5599621A (en) * | 1995-09-29 | 1997-02-04 | Brady Precision Tape Co. | Cover tape for surface mount device packaging |
US5747107A (en) * | 1995-10-26 | 1998-05-05 | Minnesota Mining And Manufacturing Company | Method of applying a hot melt coating |
US5869555A (en) * | 1995-11-16 | 1999-02-09 | H. B. Fuller Licensing & Financing Inc. | Polymeric composition in pellet form |
US5874512A (en) * | 1995-12-07 | 1999-02-23 | Farley; James Mccleod | Tackifiers and a process to obtain tackifiers |
US5866249A (en) * | 1995-12-18 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive based on partially oriented and partially crystallized elastomer |
US5858150A (en) * | 1995-12-18 | 1999-01-12 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive based on partially oriented and partially crystallized elastomer |
US6042882A (en) * | 1995-12-22 | 2000-03-28 | 3M Innovative Properties Company | Adhesive tape and method of making |
USH2100H1 (en) * | 1996-03-26 | 2004-04-06 | Kraton Polymers Llc | Low stress relaxation adhesive having high molecular weight endblock copolymer |
US6172156B1 (en) * | 1996-07-03 | 2001-01-09 | H. B. Fuller Licensing & Financing, Inc. | Cohesively failing hot melt pressure sensitive adhesive |
US5741840A (en) * | 1996-07-03 | 1998-04-21 | H.B. Fuller Licensing & Financing, Inc. | Cohesively failing hot melt pressure sensitive adhesive |
US6551704B2 (en) * | 1996-08-06 | 2003-04-22 | Beiersdorf Ag | Self-adhesively treated backing materials |
US6540865B1 (en) * | 1996-09-27 | 2003-04-01 | Avery Dennison Corporation | Prelaminate pressure-sensitive adhesive constructions |
US6350344B1 (en) * | 1996-10-26 | 2002-02-26 | Henkel Kommanditgesellschaft Auf Aktien | Solventless primers which are hardenable by radiation |
US5733825A (en) * | 1996-11-27 | 1998-03-31 | Minnesota Mining And Manufacturing Company | Undrawn tough durably melt-bondable macrodenier thermoplastic multicomponent filaments |
US6372335B1 (en) * | 1996-11-30 | 2002-04-16 | Beiersdorf Ag | Adhesive tape |
US6187432B1 (en) * | 1997-03-11 | 2001-02-13 | Avery Dennison Corporation | Composite pressure sensitive adhesive |
US5869562A (en) * | 1997-03-28 | 1999-02-09 | H. B. Fuller Licensing & Financing, Inc. | Hot melt pressure sensitive adhesive designed for use on high density spun polyolefin film |
US6040046A (en) * | 1997-06-17 | 2000-03-21 | Tredegar Corporation | Masking film and method for producing same |
US20030015819A1 (en) * | 1997-10-03 | 2003-01-23 | 3M Innovative Properties Company | Elastic fastener |
US20010002289A1 (en) * | 1997-12-13 | 2001-05-31 | Peter Himmelsbach | Process for the at least partial, direct coating of an extensible backing material with a pressure-sensitive adhesive composition |
US6042930A (en) * | 1997-12-24 | 2000-03-28 | The Dow Chemical Company | Plastic heat-activated adhesive labels |
US6555218B2 (en) * | 1998-01-07 | 2003-04-29 | H. B. Fuller Licensing & Financing Inc. | Flame retardant filters |
US6180229B1 (en) * | 1998-06-17 | 2001-01-30 | H. B. Fuller Licensing & Financing, Inc. | Hot melt pressure sensitive adhesive composition useful for contact coating on heat sensitive substrates |
US6231922B1 (en) * | 1998-09-02 | 2001-05-15 | Monarch Marketing Systems, Inc. | Silicone release coating composition |
US6183862B1 (en) * | 1998-09-23 | 2001-02-06 | Avery Dennison Corporation | Multilayer PSA construction exhibiting reduced tackifier migration |
US6524701B1 (en) * | 1998-11-20 | 2003-02-25 | Lintec Corporation | Pressure sensitive adhesive sheet and method of use thereof |
US6391960B1 (en) * | 1998-12-23 | 2002-05-21 | National Starch And Chemical Investment Holding Corporation | Multipurpose hot melt adhesive |
US6875487B1 (en) * | 1999-08-13 | 2005-04-05 | Foto-Wear, Inc. | Heat-setting label sheet |
US6506447B1 (en) * | 1999-08-18 | 2003-01-14 | Tesa Ag | Process for the continuous, solvent- and mastication-free production of pressure-sensitive self-adhesive compositions based on non-thermoplastic elastomers and coating thereof to produce self-adhesive articles |
US6713174B2 (en) * | 1999-10-13 | 2004-03-30 | Arlin Mgf. Co., Inc. | Tear tape |
US6511466B1 (en) * | 1999-10-13 | 2003-01-28 | Nitto Denko Corporation | Pressure-sensitive adhesive tape, disposable diaper using the same and structure for attaching a tape to the chassis of a disposable diaper |
US6503620B1 (en) * | 1999-10-29 | 2003-01-07 | Avery Dennison Corporation | Multilayer composite PSA constructions |
US20060029766A1 (en) * | 2000-01-18 | 2006-02-09 | Bolnick Martin M | Label form for use in drug testing and method for applying the same |
US7163741B2 (en) * | 2000-02-02 | 2007-01-16 | 3M Innovative Properties Company | Adhesive for bonding to low surface energy surfaces |
US6844383B2 (en) * | 2000-05-25 | 2005-01-18 | Asahi Kasei Kabushiki Kaisha | Block copolymer and composition thereof |
US20030080461A1 (en) * | 2000-05-29 | 2003-05-01 | Kari Kirjavainen | Extrusion method and extrusion device |
US20020045043A1 (en) * | 2000-08-28 | 2002-04-18 | Nitto Denko Corporation | Pressure-sensitive adhesive composition and pressure-sensitive tape or sheet |
US6521336B2 (en) * | 2000-09-28 | 2003-02-18 | Tohcello, Co., Ltd. | Aliphatic polyester compositions, film made thereof and laminates thereof |
US20050061435A1 (en) * | 2000-10-25 | 2005-03-24 | 3M Innovative Properties Company | Latent, over-tackified, adhesives and methods of use |
US6849691B2 (en) * | 2000-11-02 | 2005-02-01 | Tokai Rubber Industries, Ltd. | High damping elastomer composition |
US6984428B2 (en) * | 2000-11-10 | 2006-01-10 | Tesa Aktiengesellschaft | Pressure-sensitive adhesive mass and the use thereof |
US6395348B1 (en) * | 2000-12-22 | 2002-05-28 | Kt Holdings Inc. | Method for manufacturing adhesive tapes |
US7163739B2 (en) * | 2001-03-15 | 2007-01-16 | Mitsui Chemicals, Inc. | Laminate and display apparatus using the same |
US20050002925A1 (en) * | 2001-05-08 | 2005-01-06 | Yi Xu | Surface proteins from gram-positive bacteria having highly conserved motifs and antibodies that recognize them |
US20030065048A1 (en) * | 2001-06-26 | 2003-04-03 | Paul Charles W. | Radiation curable adhesive |
US20030017329A1 (en) * | 2001-07-23 | 2003-01-23 | Shah Suresh D. | Tie-layer formulation and method of manufacture |
US20030039785A1 (en) * | 2001-08-24 | 2003-02-27 | Dronzek Peter J. | Durable supports for labeling and relabeling objects |
US20030077439A1 (en) * | 2001-10-20 | 2003-04-24 | Ingo Neubert | Self-adhesive masking tape for vehicles and vehicle parts |
US20050064162A1 (en) * | 2001-11-22 | 2005-03-24 | Masaru Iriya | Polypropylene-based wrap film |
US6987142B2 (en) * | 2002-02-07 | 2006-01-17 | Kraton Polymers U.S. Llc | Adhesives and sealants from controlled distribution block copolymers |
US7015155B2 (en) * | 2002-07-02 | 2006-03-21 | Kimberly-Clark Worldwide, Inc. | Elastomeric adhesive |
US20060078703A1 (en) * | 2003-04-01 | 2006-04-13 | Kari Virtanen | Laminate, a self-adhesive label web and a method for manufacturing |
US20070003758A1 (en) * | 2004-04-01 | 2007-01-04 | National Starch And Chemical Investment Holding Corporation | Dicing die bonding film |
US20060040084A1 (en) * | 2004-08-17 | 2006-02-23 | Hellermanntyton Corporation | Wire label with carrier |
US20060040083A1 (en) * | 2004-08-17 | 2006-02-23 | Hellermann Tyton Corporation | Wire label with carrier |
US20060040081A1 (en) * | 2004-08-23 | 2006-02-23 | Hodsdon Jerry G | Apparatus, system, and method for personalizing a portable electronic device |
US20060051550A1 (en) * | 2004-08-25 | 2006-03-09 | Jeffrey Arippol | Label-seal manufacturing method and the resulting improved label-seal |
US20060068191A1 (en) * | 2004-09-13 | 2006-03-30 | Hiroshi Goto | Heat-sensitive adhesive material |
US20060073318A1 (en) * | 2004-10-06 | 2006-04-06 | Applied Extrusion Technologies, Inc. | Opaque decorative film and construction laminates employing same |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090069764A1 (en) * | 2006-02-17 | 2009-03-12 | B. Braun Medical Sas | Connector for stoma bag, of the two-piece type, fixed by gluing |
US20090117309A1 (en) * | 2007-11-07 | 2009-05-07 | Ogden Jr Orval D | Extrudable adherable material systems |
US9457547B2 (en) * | 2007-11-07 | 2016-10-04 | Magnum Magnetics Corporation | Extrudable adherable material systems |
US20100063382A1 (en) * | 2008-09-05 | 2010-03-11 | University Of South Carolina | Specific Gene Polymorphisms in Breast Cancer Diagnosis, Prevention and Treatment |
US20100071456A1 (en) * | 2008-09-25 | 2010-03-25 | Silverbrook Research Pty Ltd | Tack adhesion testing device |
US20100072473A1 (en) * | 2008-09-25 | 2010-03-25 | Silverbrook Research Pty Ltd | Tack adhesion testing device |
US8322207B2 (en) * | 2008-09-25 | 2012-12-04 | Silverbrook Research Pty Ltd | Tack adhesion testing device |
US10272656B2 (en) | 2008-10-02 | 2019-04-30 | Mylan Inc. | Method for making a multilayer adhesive laminate |
US8142592B2 (en) * | 2008-10-02 | 2012-03-27 | Mylan Inc. | Method for making a multilayer adhesive laminate |
US9731490B2 (en) | 2008-10-02 | 2017-08-15 | Mylan Inc. | Method for making a multilayer adhesive laminate |
US20100227103A1 (en) * | 2009-03-04 | 2010-09-09 | Mitek Holdings, Inc. | Roofing underlayment |
US9394701B2 (en) | 2009-04-22 | 2016-07-19 | W.F. Taylor Llc | Carrier-free adhesive film |
US20100272943A1 (en) * | 2009-04-22 | 2010-10-28 | Robert Kintu Ddamulira | Carrier-free adhesive film |
EP2585529A4 (en) * | 2010-06-23 | 2013-12-04 | Upm Raflatac Oy | Mdo polypropylene liner |
EP2585529A1 (en) * | 2010-06-23 | 2013-05-01 | UPM Raflatac Oy | Mdo polypropylene liner |
US9227453B2 (en) * | 2012-09-06 | 2016-01-05 | Lintec Corporation | Flame-retardant laminate and flame-retardant adhesive sheet |
CN104411495A (en) * | 2012-09-06 | 2015-03-11 | 琳得科株式会社 | Flame-retardant laminate and flame-retardant adhesive sheet |
TWI581966B (en) * | 2012-09-06 | 2017-05-11 | Lintec Corp | Flammable laminates and flammable adhesive sheets |
US20160186015A1 (en) * | 2013-08-01 | 2016-06-30 | Tombow Pencil Co., Ltd. | Pressure-sensitive adhesive transfer tape and transferring implement |
US10696871B2 (en) | 2013-08-01 | 2020-06-30 | Tombow Pencil Co., Ltd. | Pressure-sensitive adhesive transfer tape and transferring implement |
WO2015183896A1 (en) * | 2014-05-27 | 2015-12-03 | Henkel IP & Holding GmbH | Enhanced pressure sensitive adhesive for thermal management applications |
US20170292046A1 (en) * | 2014-09-18 | 2017-10-12 | Mitsubishi Plastics, Inc. | Photocrosslinkable transparent adhesive material, transparent adhesive material layered body, and layered body for constituting optical device |
US11111419B2 (en) * | 2014-09-18 | 2021-09-07 | Mitsubishi Chemical Corporation | Photocrosslinkable transparent adhesive material, transparent adhesive material layered body, and layered body for constituting optical device |
US11045576B2 (en) * | 2014-10-09 | 2021-06-29 | Coloplast A/S | Composition comprising a polymer and a switch initiator |
US11607472B2 (en) * | 2014-10-09 | 2023-03-21 | Coloplast A/S | Moisture switchable adhesive composition comprising a polymer and a switch initiator |
US20170239384A1 (en) * | 2014-10-09 | 2017-08-24 | Coloplast A/S | Composition comprising a polymer and a switch initiator |
US20210268142A1 (en) * | 2014-10-09 | 2021-09-02 | Coloplast A/S | Moisture switchable adhesive composition comprising a polymer and a switch initiator |
US11261050B2 (en) | 2014-12-09 | 2022-03-01 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
US11400695B2 (en) | 2015-04-28 | 2022-08-02 | Kuraray Co., Ltd. | Laminating acrylic thermoplastic polymer compositions |
US10647096B2 (en) | 2015-04-28 | 2020-05-12 | Kuraray Co., Ltd. | Laminating acrylic thermoplastic polymer compositions |
CN113278372A (en) * | 2017-06-02 | 2021-08-20 | 卡利斯乐无形资产有限责任公司 | Pressure sensitive PVC cover strip |
US20180346765A1 (en) * | 2017-06-02 | 2018-12-06 | Carlisle Intangible Company | Pressure-sensitive pvc cover strip |
US10731057B2 (en) * | 2017-06-02 | 2020-08-04 | Carlisle Intangible, LLC | Pressure-sensitive PVC cover strip |
EP3974596A1 (en) * | 2017-06-02 | 2022-03-30 | Carlisle Intangible Company | Pressure-sensitive pvc cover strip |
EP3418466A3 (en) * | 2017-06-02 | 2019-03-06 | Carlisle Intangible Company | Pressure-sensitive pvc cover strip |
CN108977098A (en) * | 2017-06-02 | 2018-12-11 | 卡利斯乐无形资产有限责任公司 | Pressure-sensitive PVC covering tape |
US11827813B2 (en) * | 2017-06-02 | 2023-11-28 | Carlisle Intangible, LLC | Pressure-sensitive PVC cover strip |
US10981746B2 (en) | 2017-07-04 | 2021-04-20 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
US11866285B2 (en) | 2017-07-04 | 2024-01-09 | Tombow Pencil Co., Ltd. | Coating film transfer tool |
US9909035B1 (en) * | 2017-09-29 | 2018-03-06 | Mayapple Baby Llc | Mountable articles, dual-adhesive-adhesive tape and mounting methods using them |
WO2020036787A1 (en) * | 2018-08-13 | 2020-02-20 | 3M Innovative Properties Company | Cohesive compositions and articles |
CN113646169A (en) * | 2019-03-05 | 2021-11-12 | 陶氏环球技术有限责任公司 | 2-component solvent-based adhesive composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070231571A1 (en) | Pressure sensitive adhesive (PSA) laminates | |
US20060263596A1 (en) | Pressure sensitive adhesives (PSA) laminates | |
US20060251890A1 (en) | Pressure sensitive adhesive (PSA) laminates | |
EP1719809A2 (en) | Pressure sensitive adhesive (PSA) laminates | |
US20100139707A1 (en) | Washable filmic laminates | |
US20060251888A1 (en) | Pressure sensitive adhesive (PSA) laminates | |
JP6731428B2 (en) | Blend of block copolymer and acrylic adhesive | |
CA2671033C (en) | Block copolymer blend adhesives with multiple tackifiers | |
US20060251889A1 (en) | Pressure sensitive adhesive (PSA) laminates | |
AU2006338695B2 (en) | Adhesive tape and its use | |
JP2001524405A (en) | Multilayer film having a pressure-sensitive adhesive layer | |
WO2000013888A1 (en) | Coextruded adhesive constructions | |
WO2001017775A1 (en) | Method of improving peel-plate dispensability of label constructions | |
KR20110003283A (en) | Multilayer film and pressure-sensitive adhesive tape | |
JP2019516810A (en) | Clear hot melt adhesive | |
WO2013021830A1 (en) | Adhesive tape | |
US20190077998A1 (en) | Self-adhesive article and use thereof for bonding on coated woodchip wallpaper | |
JP2004513210A (en) | Adhesive | |
WO2013021810A1 (en) | Adhesive tape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANE, RICHARD;BAMBOROUGH, DEREK WILLIAM;KIRCHNER-PAREE, MAGDALENA ELIZABETH CORNELLA;AND OTHERS;REEL/FRAME:017900/0603;SIGNING DATES FROM 20060515 TO 20060616 Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANE, RICHARD;BAMBOROUGH, DEREK WILLIAM;KIRCHNER-PAREE, MAGDALENA ELIZABETH CORNELIA;AND OTHERS;REEL/FRAME:017900/0535;SIGNING DATES FROM 20060515 TO 20060616 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |