US20060237812A1 - Electronic emitters with dopant gradient - Google Patents
Electronic emitters with dopant gradient Download PDFInfo
- Publication number
- US20060237812A1 US20060237812A1 US11/450,033 US45003306A US2006237812A1 US 20060237812 A1 US20060237812 A1 US 20060237812A1 US 45003306 A US45003306 A US 45003306A US 2006237812 A1 US2006237812 A1 US 2006237812A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- emitters
- emitter
- oxide
- field emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
- H01J1/3044—Point emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30403—Field emission cathodes characterised by the emitter shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/116—Oxidation, differential
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/172—Vidicons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/978—Semiconductor device manufacturing: process forming tapered edges on substrate or adjacent layers
Definitions
- This invention relates to field emitter technology and, more particularly, to electron emitters and a method for forming them.
- Cathode ray tube (CRT) displays such as those commonly used in desktop computer screens, function as a result of a scanning electron beam from an electron gun impinging on phosphors on a relatively distant screen.
- the electrons increase the energy level of the phosphors.
- the phosphors release energy imparted to them from the bombarding electrons, thereby emitting photons, which photons are transmitted through the glass screen of the display to the viewer.
- U.S. Pat. No. 3,875,442 entitled “Display Panel,” Wasa et al. disclose a display panel comprising a transparent gas-tight envelope, two main planar electrodes that are arranged within the gas-tight envelope parallel with each other, and a cathode luminescent panel.
- One of the two main electrodes is a cold cathode, and the other is a low potential anode, gate, or grid.
- the cathode luminescent panel may consist of a transparent glass plate, a transparent electrode formed on the transparent glass plate, and a phosphor layer coated on the transparent electrode.
- the phosphor layer is made of, for example, zinc oxide which can be excited with low-energy electrons.
- a potential source is provided with its positive terminal connected to the gate, or grid, and its negative terminal connected to the emitter electrode (cathode conductor substrate).
- the potential source may be made variable for the purpose of controlling the electron emission current.
- An array of points in registry with holes in grids is adaptable to the production of gate emission sources subdivided into areas containing one or more tips from which areas of emission can be drawn separately by the application of the appropriate potentials thereto.
- the performance of a field emission display is a function of a number of factors, including emitter tip or edge sharpness.
- a dopant material that affects the oxidation rate or the etch rate of silicon is diffused into a silicon substrate or film.
- “Stalks” or “pillars” are then etched, and the dopant differential is used to produce a sharpened tip.
- “fins” or “hedges” may be etched, and the dopant differential used to produce a sharpened edge.
- One of the advantages of the present invention is the manufacturing control and available process window for fabricating emitters, particularly if a high-aspect ratio is desired. Another advantage of the present invention is its scalability to large areas.
- FIG. 1 is a schematic cross-section of a field emission device in which the emitter tips or edges formed from the process of the present invention can be used;
- FIG. 1A is a schematic cross-section of a field emission device in which the emitter tips or edges formed from the process of an alternative of the present invention can be used;
- FIG. 2 is a schematic cross-section of the doped substrate of the present invention superjacent to which is a mask, which in this embodiment, comprises several layers;
- FIG. 2A is a schematic cross-section of another doped substrate of the present invention superjacent to which is a mask, which in this embodiment comprises several layers;
- FIG. 3 is a schematic cross-section of the substrate of FIG. 2 , after the substrate has been patterned and etched according to the process of the present invention
- FIG. 3A is a schematic cross-section of the substrate of FIG. 2A , after the substrate has been patterned and etched according to the process of the present invention
- FIG. 4 is a schematic cross-section of the substrate of FIG. 3 , after the tips or edges have been formed according to the process of the present invention
- FIG. 4A is a schematic cross-section of the substrate of FIG. 3A , after the tips or edges have been formed according to the process of the present invention
- FIG. 5 is a schematic cross-section of the tips or edges of FIG. 4 , after the nitride and oxide layers of the mask have been removed;
- FIG. 5A is a schematic cross-section of the tips or edges of FIG. 4A , after the nitride and oxide layers of the mask have been removed.
- a field emission display employing a pixel 22 is depicted.
- the cold cathode emitter tip 13 of the present invention is depicted as part of the pixel 22 .
- the emitter 13 is in the shape of an elongated wedge, the apex of such a wedge being referred to as a “knife edge” or “blade.”
- the schematic cross-sections for the alternative embodiment are substantially similar to those of the preferred embodiment in which the emitters 13 are tips. From a top view (not shown), the elongated portion of the wedge would be more apparent.
- FIG. 1 is merely illustrative of the many applications for which the emitter 13 of the present invention can be used.
- the present invention is described herein with respect to field emitter displays, but one having ordinary skill in the art will realize that it is equally applicable to any other device or structure employing a micro-machined point, edge, or blade, such as, but not limited to, a stylus, probe tip, fastener, or fine needle.
- the substrate 11 can be comprised of glass, for example, or any of a variety of other suitable materials, onto which a conductive or semiconductive material layer, such as doped polycrystalline silicon can be deposited.
- a conductive or semiconductive material layer such as doped polycrystalline silicon
- single crystal silicon serves as a substrate 11 , from which the emitters 13 are directly formed.
- Other substrates may also be used including, but not limited to, macrograin polysilicon and monocrystalline silicon, the selection of which may depend on cost and availability.
- the micro-cathode 13 should be coated with a conductive or semiconductive material prior to doping.
- a micro-cathode 13 (also referred to herein as an emitter) has been constructed in the substrate 11 .
- the micro-cathode 13 is a protuberance that may have a variety of shapes, such as pyramidal, conical, wedge, or other geometry, which has a fine micro-point, edge, or blade for the emission of electrons.
- the micro-cathode 13 has an apex and a base.
- the aspect ratio (i.e., height-to-base width ratio) of the emitters 13 is preferably greater than 1:1. Hence, the preferred emitters 13 have a tall, narrow appearance.
- the emitter 13 of the present invention has an impurity concentration gradient, indicated by the shaded area 13 A, in which the concentration is higher at the apex and decreases towards the base.
- the emitter 13 of an alternative of the present invention has an impurity concentration gradient, indicated by the shaded area 13 A′, in which the concentration is lower at the apex and increases towards the base.
- an extraction grid or gate structure 15 Surrounding the micro-cathode 13 is an extraction grid or gate structure 15 .
- a voltage differential through source 20
- an electron stream 17 is emitted toward a phosphor-coated screen 16 .
- the phosphor-coated screen 16 functions as the anode.
- the electron stream 17 tends to be divergent, becoming wider at greater distances from the tip of micro-cathode 13 .
- the electron emitter 13 is integral with the semiconductor substrate 11 and serves as a cathode conductor.
- Gate structure 15 serves as an extraction grid for its respective micro-cathode 13 .
- a dielectric insulating layer 14 is deposited on the substrate 11 .
- a conductive cathode layer (not shown) may also be disposed between the dielectric insulating layer 14 and the substrate 11 , depending upon the material selected for the substrate 11 .
- the dielectric insulating layer 14 also has an opening at the field emission site location.
- FIG. 2 shows the substrate or film 11 which is used to fabricate a field emitter 13 .
- the substrate 11 is preferably single crystal silicon.
- An impurity concentration gradient 13 A is introduced into the substrate or film 11 in such a manner so as to create a concentration gradient from the top of the substrate 11 surface, which decreases with depth down into the film or substrate 11 .
- the impurity concentration gradient 13 A is from the group including, but not limited to, boron, phosphorus, and arsenic.
- FIG. 2A shows the substrate or film 11 which is used to fabricate a field emitter 13 .
- the substrate 11 is preferably single crystal silicon.
- An impurity concentration gradient 13 A′ is introduced into the substrate or film 11 in such a manner so as to create a concentration gradient from the top of the substrate 11 surface, which increases with depth down into the film or substrate 11 .
- the impurity concentration gradient 13 A′ is from the group including, but not limited to boron, phosphorus, and arsenic.
- the substrate 11 can be doped using a variety of available methods.
- the impurity concentration gradient 13 A can be obtained from a solid source diffusion disc or gas or vapor feed source, such as POCl, or from spin-on dopant with subsequent heat treatment or implantation or CVD film deposition with increasing dopant component in the feed stream, throughout the time of deposition, either intermittently or continuously.
- an impurity that decreases throughout the deposition and serves as a component for retarding the consumptive process subsequently employed in the process of the present invention.
- An example is the combination of a silicon film or substrate 11 , doped with a boron impurity concentration gradient 13 A, and etched with an ethylene diamine pyrocatechol (EDP) etchant, where the EDP is employed after anisotropically etching pillars or fins from substrate 11 .
- EDP ethylene diamine pyrocatechol
- the substrate 11 is single crystal silicon.
- the film or substrate 11 is then patterned, preferably with a resist/silicon nitride/silicon oxide sandwich etch mask 24 and dry etched.
- Other types of materials can be used to form the sandwich etch mask 24 , as long as they provide the necessary selectivity to the substrate 11 .
- the resist/silicon nitride/silicon oxide sandwich etch mask 24 has been selected due to its tendency to assist in controlling the lateral consumption of silicon during thermal oxidation, which is well known in semiconductor LOCOS (Local Oxidation of Silicon) processing.
- the structure of FIG. 2 is then etched, preferably using a reactive ion, crystallographic etch, or other etch method well known in the art.
- the etch is substantially anisotropic, i.e., having undercutting that is reduced and controlled, thereby forming “pillars” in the substrate 11 , which “pillars” will be the sites of the emitter tips 13 of the present invention.
- FIG. 2A is then etched, preferably using a reactive ion, crystallographic etch, or other etch method well known in the art.
- the etch is substantially anisotropic, i.e., having undercutting that is reduced and controlled, thereby forming pillars 50 in the substrate 11 , which pillars 50 are depicted in FIG. 3A and will be the sites of the emitter tips 13 of the present invention.
- FIG. 4 illustrates the substrate 11 having emitter tips 13 formed therein.
- the resist portion 24 A ( FIG. 2 ) of the sandwich etch mask 24 has been removed.
- An oxidation is then performed, wherein an oxide layer 25 is disposed about the emitter tip 13 and subsequently removed.
- FIG. 4A illustrates the substrate 11 having emitter tips 13 formed therein.
- the resist portion 24 A ( FIG. 2A ) of the sandwich etch mask 24 has been removed.
- An oxidation is then performed, wherein an oxide layer 25 is disposed about the emitter tip 13 and subsequently removed.
- an etch is performed, the rate of which is dependent upon (i.e., a function of) the concentration of the contaminants (impurities exposed to a consumptive process, whereby the rate or degree of consumption is a function of the impurity concentration, such as the thermal oxidation of silicon which has been doped with impurity concentration gradient 13 A).
- the etch, or oxidation proceeds at a faster rate in areas having higher concentration of impurities.
- the emitters 13 are etched faster at the apex, where there is an increased impurity concentration gradient 13 A, and slower at the base, where there is a decrease in the impurity concentration gradient 13 A.
- the etch is preferably nondirectional in nature, removing material of a selected purity level in both horizontal and vertical directions, thereby creating an undercut.
- the amount of undercut is related to the impurity concentration gradient 13 A, 13 A′.
- FIG. 5 shows the emitters 13 following the removal of the nitride 24 B and oxide 24 C layers (shown in FIGS. 2 - 4 ); preferably by a selective wet stripping process.
- An example of such a stripping process involves a 1:100 solution of hydrofluoric acid (HF)/water at 20° C., followed by a water rinse. Next is a boiling phosphoric acid (H 3 PO 4 )/water solution at 140° C., followed by a water rinse and a 1:4 hydrofluoric acid (HF)/water solution at 20° C.
- HF hydrofluoric acid
- FIG. 5A shows the emitters 13 following the removal of the nitride 24 B and oxide 24 C layers (shown in FIG. 2A ); preferably by a selective wet stripping process.
- An example of such a stripping process involves a 1:100 solution of hydrofluoric acid (HF)/water at 20° C., followed by a water rinse. Next is a boiling phosphoric acid (H 3 PO 4 )/water solution at 140° C., followed by a water rinse and a 1:4 hydrofluoric acid (HF)/water solution at 20° C.
- HF hydrofluoric acid
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Abstract
Electron emitters and a method of fabricating emitters are disclosed, having a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Description
- This application is a divisional of application Ser. No. 09/759,746 filed Jan. 12, 2001, pending, which is a continuation of application Ser. No. 08/609,354, filed Mar. 1, 1996, now U.S. Pat. No. 6,825,596, issued Nov. 30, 2004, which is a divisional of application Ser. No. 08/089,166, filed Jul. 7, 1993, now U.S. Pat. No. 5,532,177, issued Jul. 2, 1996. There is a continuation application having Ser. No. 08/555,908, filed on Nov. 13, 1995, now abandoned. That application is a continuation of application Ser. No. 08/089,166, filed on Jul. 7, 1993 and issued as U.S. Pat. No. 5,532,177 on Jul. 2, 1996. Also, there is a divisional of application Ser. No. 08/609,354, which was filed on Sep. 25, 1998 as application Ser. No. 09/161,338, now U.S. Pat. No. 6,049,089 issued Apr. 11, 2000.
- This invention relates to field emitter technology and, more particularly, to electron emitters and a method for forming them.
- Cathode ray tube (CRT) displays, such as those commonly used in desktop computer screens, function as a result of a scanning electron beam from an electron gun impinging on phosphors on a relatively distant screen. The electrons increase the energy level of the phosphors. The phosphors release energy imparted to them from the bombarding electrons, thereby emitting photons, which photons are transmitted through the glass screen of the display to the viewer.
- Flat panel displays have become increasingly important in appliances requiring lightweight portable screens. Currently, such screens use electroluminescent, liquid crystal, or plasma technology. A promising technology is the use of a matrix-addressable array of cold cathode emission devices to excite phosphor on a screen.
- In U.S. Pat. No. 3,875,442, entitled “Display Panel,” Wasa et al., disclose a display panel comprising a transparent gas-tight envelope, two main planar electrodes that are arranged within the gas-tight envelope parallel with each other, and a cathode luminescent panel. One of the two main electrodes is a cold cathode, and the other is a low potential anode, gate, or grid. The cathode luminescent panel may consist of a transparent glass plate, a transparent electrode formed on the transparent glass plate, and a phosphor layer coated on the transparent electrode. The phosphor layer is made of, for example, zinc oxide which can be excited with low-energy electrons.
- Spindt et al., discuss field emission cathode structures in U.S. Pat. Nos. 3,665,241; 3,755,704; 3,812,559; and 4,874,981. To produce the desired field emission, a potential source is provided with its positive terminal connected to the gate, or grid, and its negative terminal connected to the emitter electrode (cathode conductor substrate). The potential source may be made variable for the purpose of controlling the electron emission current. Upon application of a potential between the electrodes, an electric field is established between the emitter tips and the grid, thus causing electrons to be emitted from the cathode tips through the holes in the grid electrode.
- An array of points in registry with holes in grids is adaptable to the production of gate emission sources subdivided into areas containing one or more tips from which areas of emission can be drawn separately by the application of the appropriate potentials thereto.
- There are several methods by which to form the electron emission tips. Examples of such methods are presented in U.S. Pat. No. 3,970,887 entitled, “Micro-structure Field Emission Electron Source.”
- The performance of a field emission display is a function of a number of factors, including emitter tip or edge sharpness.
- In the process of the present invention, a dopant material that affects the oxidation rate or the etch rate of silicon is diffused into a silicon substrate or film. “Stalks” or “pillars” are then etched, and the dopant differential is used to produce a sharpened tip. Alternatively, “fins” or “hedges” may be etched, and the dopant differential used to produce a sharpened edge.
- One of the advantages of the present invention is the manufacturing control and available process window for fabricating emitters, particularly if a high-aspect ratio is desired. Another advantage of the present invention is its scalability to large areas.
- The present invention will be better understood from reading the following description of nonlimitative embodiments, with reference to the attached drawings, wherein:
-
FIG. 1 is a schematic cross-section of a field emission device in which the emitter tips or edges formed from the process of the present invention can be used; -
FIG. 1A is a schematic cross-section of a field emission device in which the emitter tips or edges formed from the process of an alternative of the present invention can be used; -
FIG. 2 is a schematic cross-section of the doped substrate of the present invention superjacent to which is a mask, which in this embodiment, comprises several layers; -
FIG. 2A is a schematic cross-section of another doped substrate of the present invention superjacent to which is a mask, which in this embodiment comprises several layers; -
FIG. 3 is a schematic cross-section of the substrate ofFIG. 2 , after the substrate has been patterned and etched according to the process of the present invention; -
FIG. 3A is a schematic cross-section of the substrate ofFIG. 2A , after the substrate has been patterned and etched according to the process of the present invention; -
FIG. 4 is a schematic cross-section of the substrate ofFIG. 3 , after the tips or edges have been formed according to the process of the present invention; -
FIG. 4A is a schematic cross-section of the substrate ofFIG. 3A , after the tips or edges have been formed according to the process of the present invention; -
FIG. 5 is a schematic cross-section of the tips or edges ofFIG. 4 , after the nitride and oxide layers of the mask have been removed; and -
FIG. 5A is a schematic cross-section of the tips or edges ofFIG. 4A , after the nitride and oxide layers of the mask have been removed. - Referring to
FIG. 1 , a field emission display employing apixel 22 is depicted. In this embodiment, the coldcathode emitter tip 13 of the present invention is depicted as part of thepixel 22. In an alternative embodiment, theemitter 13 is in the shape of an elongated wedge, the apex of such a wedge being referred to as a “knife edge” or “blade.” - The schematic cross-sections for the alternative embodiment are substantially similar to those of the preferred embodiment in which the
emitters 13 are tips. From a top view (not shown), the elongated portion of the wedge would be more apparent. -
FIG. 1 is merely illustrative of the many applications for which theemitter 13 of the present invention can be used. The present invention is described herein with respect to field emitter displays, but one having ordinary skill in the art will realize that it is equally applicable to any other device or structure employing a micro-machined point, edge, or blade, such as, but not limited to, a stylus, probe tip, fastener, or fine needle. - The
substrate 11 can be comprised of glass, for example, or any of a variety of other suitable materials, onto which a conductive or semiconductive material layer, such as doped polycrystalline silicon can be deposited. In the preferred embodiment, single crystal silicon serves as asubstrate 11, from which theemitters 13 are directly formed. Other substrates may also be used including, but not limited to, macrograin polysilicon and monocrystalline silicon, the selection of which may depend on cost and availability. - If an insulative film or substrate is used with the process of the present invention, in lieu of the conductive or semiconductive film or
substrate 11, the micro-cathode 13 should be coated with a conductive or semiconductive material prior to doping. - At a field emission site, a micro-cathode 13 (also referred to herein as an emitter) has been constructed in the
substrate 11. The micro-cathode 13 is a protuberance that may have a variety of shapes, such as pyramidal, conical, wedge, or other geometry, which has a fine micro-point, edge, or blade for the emission of electrons. The micro-cathode 13 has an apex and a base. The aspect ratio (i.e., height-to-base width ratio) of theemitters 13 is preferably greater than 1:1. Hence, thepreferred emitters 13 have a tall, narrow appearance. - The
emitter 13 of the present invention has an impurity concentration gradient, indicated by the shadedarea 13A, in which the concentration is higher at the apex and decreases towards the base. - The
emitter 13 of an alternative of the present invention has an impurity concentration gradient, indicated by the shadedarea 13A′, in which the concentration is lower at the apex and increases towards the base. - Surrounding the micro-cathode 13 is an extraction grid or
gate structure 15. When a voltage differential, throughsource 20, is applied between the micro-cathode 13 and thegate structure 15, anelectron stream 17 is emitted toward a phosphor-coatedscreen 16. The phosphor-coatedscreen 16 functions as the anode. Theelectron stream 17 tends to be divergent, becoming wider at greater distances from the tip ofmicro-cathode 13. - The
electron emitter 13 is integral with thesemiconductor substrate 11 and serves as a cathode conductor.Gate structure 15 serves as an extraction grid for itsrespective micro-cathode 13. A dielectric insulatinglayer 14 is deposited on thesubstrate 11. However, a conductive cathode layer (not shown) may also be disposed between the dielectric insulatinglayer 14 and thesubstrate 11, depending upon the material selected for thesubstrate 11. The dielectric insulatinglayer 14 also has an opening at the field emission site location. - The process of the present invention, by which the
emitter 13 having the impurity concentration gradient is fabricated, is described below. -
FIG. 2 shows the substrate orfilm 11 which is used to fabricate afield emitter 13. Thesubstrate 11 is preferably single crystal silicon. Animpurity concentration gradient 13A is introduced into the substrate orfilm 11 in such a manner so as to create a concentration gradient from the top of thesubstrate 11 surface, which decreases with depth down into the film orsubstrate 11. Preferably, theimpurity concentration gradient 13A is from the group including, but not limited to, boron, phosphorus, and arsenic. -
FIG. 2A shows the substrate orfilm 11 which is used to fabricate afield emitter 13. Thesubstrate 11 is preferably single crystal silicon. Animpurity concentration gradient 13A′ is introduced into the substrate orfilm 11 in such a manner so as to create a concentration gradient from the top of thesubstrate 11 surface, which increases with depth down into the film orsubstrate 11. Preferably, theimpurity concentration gradient 13A′ is from the group including, but not limited to boron, phosphorus, and arsenic. - The
substrate 11 can be doped using a variety of available methods. Theimpurity concentration gradient 13A can be obtained from a solid source diffusion disc or gas or vapor feed source, such as POCl, or from spin-on dopant with subsequent heat treatment or implantation or CVD film deposition with increasing dopant component in the feed stream, throughout the time of deposition, either intermittently or continuously. - In the case of a CVD or epitaxially grown film, it is possible to introduce an impurity that decreases throughout the deposition and serves as a component for retarding the consumptive process subsequently employed in the process of the present invention. An example is the combination of a silicon film or
substrate 11, doped with a boronimpurity concentration gradient 13A, and etched with an ethylene diamine pyrocatechol (EDP) etchant, where the EDP is employed after anisotropically etching pillars or fins fromsubstrate 11. - In the preferred embodiment, the
substrate 11 is single crystal silicon. After doping, the film orsubstrate 11 is then patterned, preferably with a resist/silicon nitride/silicon oxidesandwich etch mask 24 and dry etched. Other types of materials can be used to form thesandwich etch mask 24, as long as they provide the necessary selectivity to thesubstrate 11. The resist/silicon nitride/silicon oxidesandwich etch mask 24 has been selected due to its tendency to assist in controlling the lateral consumption of silicon during thermal oxidation, which is well known in semiconductor LOCOS (Local Oxidation of Silicon) processing. - The structure of
FIG. 2 is then etched, preferably using a reactive ion, crystallographic etch, or other etch method well known in the art. Preferably, the etch is substantially anisotropic, i.e., having undercutting that is reduced and controlled, thereby forming “pillars” in thesubstrate 11, which “pillars” will be the sites of theemitter tips 13 of the present invention. - The structure of
FIG. 2A is then etched, preferably using a reactive ion, crystallographic etch, or other etch method well known in the art. Preferably, the etch is substantially anisotropic, i.e., having undercutting that is reduced and controlled, thereby formingpillars 50 in thesubstrate 11, whichpillars 50 are depicted inFIG. 3A and will be the sites of theemitter tips 13 of the present invention. -
FIG. 4 illustrates thesubstrate 11 havingemitter tips 13 formed therein. The resistportion 24A (FIG. 2 ) of thesandwich etch mask 24 has been removed. An oxidation is then performed, wherein anoxide layer 25 is disposed about theemitter tip 13 and subsequently removed. -
FIG. 4A illustrates thesubstrate 11 havingemitter tips 13 formed therein. The resistportion 24A (FIG. 2A ) of thesandwich etch mask 24 has been removed. An oxidation is then performed, wherein anoxide layer 25 is disposed about theemitter tip 13 and subsequently removed. - Alternatively, an etch is performed, the rate of which is dependent upon (i.e., a function of) the concentration of the contaminants (impurities exposed to a consumptive process, whereby the rate or degree of consumption is a function of the impurity concentration, such as the thermal oxidation of silicon which has been doped with
impurity concentration gradient 13A). - The etch, or oxidation, proceeds at a faster rate in areas having higher concentration of impurities. Hence, the
emitters 13 are etched faster at the apex, where there is an increasedimpurity concentration gradient 13A, and slower at the base, where there is a decrease in theimpurity concentration gradient 13A. - The etch is preferably nondirectional in nature, removing material of a selected purity level in both horizontal and vertical directions, thereby creating an undercut. The amount of undercut is related to the
impurity concentration gradient -
FIG. 5 shows theemitters 13 following the removal of thenitride 24B andoxide 24C layers (shown in FIGS. 2-4); preferably by a selective wet stripping process. An example of such a stripping process involves a 1:100 solution of hydrofluoric acid (HF)/water at 20° C., followed by a water rinse. Next is a boiling phosphoric acid (H3PO4)/water solution at 140° C., followed by a water rinse and a 1:4 hydrofluoric acid (HF)/water solution at 20° C. Theemitters 13 of the present invention are thereby exposed. -
FIG. 5A shows theemitters 13 following the removal of thenitride 24B andoxide 24C layers (shown inFIG. 2A ); preferably by a selective wet stripping process. An example of such a stripping process involves a 1:100 solution of hydrofluoric acid (HF)/water at 20° C., followed by a water rinse. Next is a boiling phosphoric acid (H3PO4)/water solution at 140° C., followed by a water rinse and a 1:4 hydrofluoric acid (HF)/water solution at 20° C. Theemitters 13 of the present invention are thereby exposed. - All of the U.S. patents cited herein are hereby incorporated by reference herein as if set forth in their entirety.
- While the particular process as herein shown and disclosed in detail is fully capable of obtaining the objects and advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims. For example, one having ordinary skill in the art will realize that the emitters can be used in a number of different devices, including but not limited to field emission devices, cold cathode electron emission devices, and micro-tip cold cathode vacuum triodes.
Claims (5)
1. An in-process semiconductor device, comprising:
a surface;
a pillar extending from said surface and having an etchability that decreases toward said surface; and
a dopant above said surface, in said pillar, and having a concentration commensurate with said etchability.
2. An in-process field emission device, comprising:
a substrate; and
a stalk extending from said substrate, further comprising:
an emitter having:
an apex, and
a base, and
an oxide around said emitter, wherein said oxide has a plurality of thicknesses, including:
a first thickness at said base, and
a greater second thickness at said apex.
3. The in-process field emission device in claim 2 , wherein said oxide has a third thickness above said apex greater than said second thickness.
4. The in-process field emission device in claim 3 , wherein said oxide covers said substrate.
5. The in-process field emission device in claim 4 , further comprising a dopant exclusively within said stalk, and having a plurality of concentrations that are generally directly proportional to said plurality of said thicknesses of said oxide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/450,033 US20060237812A1 (en) | 1993-07-07 | 2006-06-08 | Electronic emitters with dopant gradient |
US11/591,067 US20070052339A1 (en) | 1993-07-07 | 2006-11-01 | Electron emitters with dopant gradient |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/089,166 US5532177A (en) | 1993-07-07 | 1993-07-07 | Method for forming electron emitters |
US08/609,354 US6825596B1 (en) | 1993-07-07 | 1996-03-01 | Electron emitters with dopant gradient |
US09/759,746 US7064476B2 (en) | 1993-07-07 | 2001-01-12 | Emitter |
US11/450,033 US20060237812A1 (en) | 1993-07-07 | 2006-06-08 | Electronic emitters with dopant gradient |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/759,746 Division US7064476B2 (en) | 1993-07-07 | 2001-01-12 | Emitter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/591,067 Division US20070052339A1 (en) | 1993-07-07 | 2006-11-01 | Electron emitters with dopant gradient |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060237812A1 true US20060237812A1 (en) | 2006-10-26 |
Family
ID=22216063
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/089,166 Expired - Lifetime US5532177A (en) | 1993-07-07 | 1993-07-07 | Method for forming electron emitters |
US08/609,354 Expired - Fee Related US6825596B1 (en) | 1993-07-07 | 1996-03-01 | Electron emitters with dopant gradient |
US09/161,338 Expired - Fee Related US6049089A (en) | 1993-07-07 | 1998-09-25 | Electron emitters and method for forming them |
US09/759,746 Expired - Fee Related US7064476B2 (en) | 1993-07-07 | 2001-01-12 | Emitter |
US10/928,566 Abandoned US20050023951A1 (en) | 1993-07-07 | 2004-08-26 | Electron emitters with dopant gradient |
US11/450,033 Abandoned US20060237812A1 (en) | 1993-07-07 | 2006-06-08 | Electronic emitters with dopant gradient |
US11/450,039 Abandoned US20060226765A1 (en) | 1993-07-07 | 2006-06-08 | Electronic emitters with dopant gradient |
US11/591,067 Abandoned US20070052339A1 (en) | 1993-07-07 | 2006-11-01 | Electron emitters with dopant gradient |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/089,166 Expired - Lifetime US5532177A (en) | 1993-07-07 | 1993-07-07 | Method for forming electron emitters |
US08/609,354 Expired - Fee Related US6825596B1 (en) | 1993-07-07 | 1996-03-01 | Electron emitters with dopant gradient |
US09/161,338 Expired - Fee Related US6049089A (en) | 1993-07-07 | 1998-09-25 | Electron emitters and method for forming them |
US09/759,746 Expired - Fee Related US7064476B2 (en) | 1993-07-07 | 2001-01-12 | Emitter |
US10/928,566 Abandoned US20050023951A1 (en) | 1993-07-07 | 2004-08-26 | Electron emitters with dopant gradient |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/450,039 Abandoned US20060226765A1 (en) | 1993-07-07 | 2006-06-08 | Electronic emitters with dopant gradient |
US11/591,067 Abandoned US20070052339A1 (en) | 1993-07-07 | 2006-11-01 | Electron emitters with dopant gradient |
Country Status (1)
Country | Link |
---|---|
US (8) | US5532177A (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532177A (en) * | 1993-07-07 | 1996-07-02 | Micron Display Technology | Method for forming electron emitters |
KR100201554B1 (en) * | 1995-06-12 | 1999-06-15 | 하제준 | Manufacturing method of field emitter array |
US5772488A (en) * | 1995-10-16 | 1998-06-30 | Micron Display Technology, Inc. | Method of forming a doped field emitter array |
US6181308B1 (en) | 1995-10-16 | 2001-01-30 | Micron Technology, Inc. | Light-insensitive resistor for current-limiting of field emission displays |
KR100239688B1 (en) * | 1995-11-20 | 2000-01-15 | 김영환 | Manufacturing method of micro tip of field emission display |
KR100442982B1 (en) * | 1996-04-15 | 2004-09-18 | 마츠시타 덴끼 산교 가부시키가이샤 | Field-emission electron source and method of manufacturing the same |
US5688708A (en) * | 1996-06-24 | 1997-11-18 | Motorola | Method of making an ultra-high vacuum field emission display |
JP3195547B2 (en) * | 1996-11-11 | 2001-08-06 | 松下電器産業株式会社 | Vacuum sealed field emission type electron source device and manufacturing method thereof |
US6130106A (en) | 1996-11-14 | 2000-10-10 | Micron Technology, Inc. | Method for limiting emission current in field emission devices |
KR100250458B1 (en) * | 1997-11-06 | 2000-04-01 | 정선종 | Fabricating method of cathode tip of field emission device |
US6083767A (en) * | 1998-05-26 | 2000-07-04 | Micron Technology, Inc. | Method of patterning a semiconductor device |
US6355567B1 (en) * | 1999-06-30 | 2002-03-12 | International Business Machines Corporation | Retrograde openings in thin films |
US6426233B1 (en) | 1999-08-03 | 2002-07-30 | Micron Technology, Inc. | Uniform emitter array for display devices, etch mask for the same, and methods for making the same |
KR100343221B1 (en) * | 1999-11-09 | 2002-07-10 | 윤종용 | cooling device with cooling fin of micro structure |
US20130060355A9 (en) * | 2000-02-14 | 2013-03-07 | Pierre Bonnat | Method And System For Processing Signals For A MEMS Detector That Enables Control Of A Device Using Human Breath |
US6387717B1 (en) * | 2000-04-26 | 2002-05-14 | Micron Technology, Inc. | Field emission tips and methods for fabricating the same |
TW483025B (en) * | 2000-10-24 | 2002-04-11 | Nat Science Council | Formation method of metal tip electrode field emission structure |
DE10125528A1 (en) * | 2001-05-23 | 2002-12-12 | Siemens Ag | X-ray imaging apparatus, especially for medical X-ray and CT applications can be used for both low energy and high energy imaging techniques as the amplification of the imaging system is variable |
US20050269286A1 (en) * | 2004-06-08 | 2005-12-08 | Manish Sharma | Method of fabricating a nano-wire |
US20060049464A1 (en) * | 2004-09-03 | 2006-03-09 | Rao G R Mohan | Semiconductor devices with graded dopant regions |
JP5004484B2 (en) * | 2006-03-23 | 2012-08-22 | 日本碍子株式会社 | Dielectric device |
SG148067A1 (en) * | 2007-05-25 | 2008-12-31 | Sony Corp | Methods for producing electron emitter structures, the electron emitter structures produced, and field emission displays and field emission backlights incorporating the electron emitter structures |
JP2009043568A (en) * | 2007-08-09 | 2009-02-26 | Canon Inc | Electron emission element and image display device |
US8383498B2 (en) * | 2007-08-29 | 2013-02-26 | Imec | Method for formation of tips |
US8260174B2 (en) | 2008-06-30 | 2012-09-04 | Xerox Corporation | Micro-tip array as a charging device including a system of interconnected air flow channels |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3665241A (en) * | 1970-07-13 | 1972-05-23 | Stanford Research Inst | Field ionizer and field emission cathode structures and methods of production |
US3755704A (en) * | 1970-02-06 | 1973-08-28 | Stanford Research Inst | Field emission cathode structures and devices utilizing such structures |
US3812559A (en) * | 1970-07-13 | 1974-05-28 | Stanford Research Inst | Methods of producing field ionizer and field emission cathode structures |
US3816194A (en) * | 1972-02-02 | 1974-06-11 | Sperry Rand Corp | High frequency diode and method of manufacture |
US3875442A (en) * | 1972-06-02 | 1975-04-01 | Matsushita Electric Ind Co Ltd | Display panel |
US3894332A (en) * | 1972-02-11 | 1975-07-15 | Westinghouse Electric Corp | Solid state radiation sensitive field electron emitter and methods of fabrication thereof |
US3970887A (en) * | 1974-06-19 | 1976-07-20 | Micro-Bit Corporation | Micro-structure field emission electron source |
US4301429A (en) * | 1979-06-07 | 1981-11-17 | Raytheon Company | Microwave diode with high resistance layer |
US4400866A (en) * | 1980-02-14 | 1983-08-30 | Xerox Corporation | Application of grown oxide bumper insulators to a high-speed VLSI SASMESFET |
US4420872A (en) * | 1980-12-23 | 1983-12-20 | U.S. Philips Corporation | Method of manufacturing a semiconductor device |
US4718973A (en) * | 1986-01-28 | 1988-01-12 | Northern Telecom Limited | Process for plasma etching polysilicon to produce rounded profile islands |
US4766340A (en) * | 1984-02-01 | 1988-08-23 | Mast Karel D V D | Semiconductor device having a cold cathode |
US4874981A (en) * | 1988-05-10 | 1989-10-17 | Sri International | Automatically focusing field emission electrode |
US4943343A (en) * | 1989-08-14 | 1990-07-24 | Zaher Bardai | Self-aligned gate process for fabricating field emitter arrays |
US4964946A (en) * | 1990-02-02 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Process for fabricating self-aligned field emitter arrays |
US4968382A (en) * | 1989-01-18 | 1990-11-06 | The General Electric Company, P.L.C. | Electronic devices |
US5063327A (en) * | 1988-07-06 | 1991-11-05 | Coloray Display Corporation | Field emission cathode based flat panel display having polyimide spacers |
US5090932A (en) * | 1988-03-25 | 1992-02-25 | Thomson-Csf | Method for the fabrication of field emission type sources, and application thereof to the making of arrays of emitters |
US5138220A (en) * | 1990-12-05 | 1992-08-11 | Science Applications International Corporation | Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures |
US5201992A (en) * | 1990-07-12 | 1993-04-13 | Bell Communications Research, Inc. | Method for making tapered microminiature silicon structures |
US5269877A (en) * | 1992-07-02 | 1993-12-14 | Xerox Corporation | Field emission structure and method of forming same |
US5315126A (en) * | 1992-10-13 | 1994-05-24 | Itt Corporation | Highly doped surface layer for negative electron affinity devices |
US5330920A (en) * | 1993-06-15 | 1994-07-19 | Digital Equipment Corporation | Method of controlling gate oxide thickness in the fabrication of semiconductor devices |
US5358908A (en) * | 1992-02-14 | 1994-10-25 | Micron Technology, Inc. | Method of creating sharp points and other features on the surface of a semiconductor substrate |
US5372973A (en) * | 1992-02-14 | 1994-12-13 | Micron Technology, Inc. | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US5378658A (en) * | 1991-10-01 | 1995-01-03 | Fujitsu Limited | Patterning process including simultaneous deposition and ion milling |
US5431777A (en) * | 1992-09-17 | 1995-07-11 | International Business Machines Corporation | Methods and compositions for the selective etching of silicon |
US5469014A (en) * | 1991-02-08 | 1995-11-21 | Futaba Denshi Kogyo Kk | Field emission element |
US5532177A (en) * | 1993-07-07 | 1996-07-02 | Micron Display Technology | Method for forming electron emitters |
US5552613A (en) * | 1993-09-24 | 1996-09-03 | Sumitomo Electric Industries, Ltd. | Electron device |
US5583393A (en) * | 1994-03-24 | 1996-12-10 | Fed Corporation | Selectively shaped field emission electron beam source, and phosphor array for use therewith |
US5662815A (en) * | 1995-03-28 | 1997-09-02 | Samsung Display Devices Co., Ltd. | Fabricating method of a multiple micro-tip field emission device using selective etching of an adhesion layer |
US5703380A (en) * | 1995-06-13 | 1997-12-30 | Advanced Vision Technologies Inc. | Laminar composite lateral field-emission cathode |
US5757344A (en) * | 1991-09-30 | 1998-05-26 | Kabushiki Kaisha Kobe Seiko Sho | Cold cathode emitter element |
US5786659A (en) * | 1993-11-29 | 1998-07-28 | Futaba Denshi Kogyo K.K. | Field emission type electron source |
US6031250A (en) * | 1995-12-20 | 2000-02-29 | Advanced Technology Materials, Inc. | Integrated circuit devices and methods employing amorphous silicon carbide resistor materials |
US6091188A (en) * | 1997-03-31 | 2000-07-18 | Nec Corporation | Field emission cold cathode and method of fabricating the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5743412A (en) | 1980-08-28 | 1982-03-11 | Mitsubishi Electric Corp | Reduced pressure cvd method |
JP2755764B2 (en) | 1990-02-15 | 1998-05-25 | 沖電気工業株式会社 | Manufacturing method of cold cathode device |
US5338908A (en) * | 1993-06-08 | 1994-08-16 | Texas Instruments Incorporated | Vented pressure switch apparatus |
-
1993
- 1993-07-07 US US08/089,166 patent/US5532177A/en not_active Expired - Lifetime
-
1996
- 1996-03-01 US US08/609,354 patent/US6825596B1/en not_active Expired - Fee Related
-
1998
- 1998-09-25 US US09/161,338 patent/US6049089A/en not_active Expired - Fee Related
-
2001
- 2001-01-12 US US09/759,746 patent/US7064476B2/en not_active Expired - Fee Related
-
2004
- 2004-08-26 US US10/928,566 patent/US20050023951A1/en not_active Abandoned
-
2006
- 2006-06-08 US US11/450,033 patent/US20060237812A1/en not_active Abandoned
- 2006-06-08 US US11/450,039 patent/US20060226765A1/en not_active Abandoned
- 2006-11-01 US US11/591,067 patent/US20070052339A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755704A (en) * | 1970-02-06 | 1973-08-28 | Stanford Research Inst | Field emission cathode structures and devices utilizing such structures |
US3665241A (en) * | 1970-07-13 | 1972-05-23 | Stanford Research Inst | Field ionizer and field emission cathode structures and methods of production |
US3812559A (en) * | 1970-07-13 | 1974-05-28 | Stanford Research Inst | Methods of producing field ionizer and field emission cathode structures |
US3816194A (en) * | 1972-02-02 | 1974-06-11 | Sperry Rand Corp | High frequency diode and method of manufacture |
US3894332A (en) * | 1972-02-11 | 1975-07-15 | Westinghouse Electric Corp | Solid state radiation sensitive field electron emitter and methods of fabrication thereof |
US3875442A (en) * | 1972-06-02 | 1975-04-01 | Matsushita Electric Ind Co Ltd | Display panel |
US3970887A (en) * | 1974-06-19 | 1976-07-20 | Micro-Bit Corporation | Micro-structure field emission electron source |
US4301429A (en) * | 1979-06-07 | 1981-11-17 | Raytheon Company | Microwave diode with high resistance layer |
US4400866A (en) * | 1980-02-14 | 1983-08-30 | Xerox Corporation | Application of grown oxide bumper insulators to a high-speed VLSI SASMESFET |
US4420872A (en) * | 1980-12-23 | 1983-12-20 | U.S. Philips Corporation | Method of manufacturing a semiconductor device |
US4766340A (en) * | 1984-02-01 | 1988-08-23 | Mast Karel D V D | Semiconductor device having a cold cathode |
US4718973A (en) * | 1986-01-28 | 1988-01-12 | Northern Telecom Limited | Process for plasma etching polysilicon to produce rounded profile islands |
US5090932A (en) * | 1988-03-25 | 1992-02-25 | Thomson-Csf | Method for the fabrication of field emission type sources, and application thereof to the making of arrays of emitters |
US4874981A (en) * | 1988-05-10 | 1989-10-17 | Sri International | Automatically focusing field emission electrode |
US5063327A (en) * | 1988-07-06 | 1991-11-05 | Coloray Display Corporation | Field emission cathode based flat panel display having polyimide spacers |
US4968382A (en) * | 1989-01-18 | 1990-11-06 | The General Electric Company, P.L.C. | Electronic devices |
US4943343A (en) * | 1989-08-14 | 1990-07-24 | Zaher Bardai | Self-aligned gate process for fabricating field emitter arrays |
US4964946A (en) * | 1990-02-02 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Process for fabricating self-aligned field emitter arrays |
US5201992A (en) * | 1990-07-12 | 1993-04-13 | Bell Communications Research, Inc. | Method for making tapered microminiature silicon structures |
US5138220A (en) * | 1990-12-05 | 1992-08-11 | Science Applications International Corporation | Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures |
US5469014A (en) * | 1991-02-08 | 1995-11-21 | Futaba Denshi Kogyo Kk | Field emission element |
US5757344A (en) * | 1991-09-30 | 1998-05-26 | Kabushiki Kaisha Kobe Seiko Sho | Cold cathode emitter element |
US5378658A (en) * | 1991-10-01 | 1995-01-03 | Fujitsu Limited | Patterning process including simultaneous deposition and ion milling |
US5358908A (en) * | 1992-02-14 | 1994-10-25 | Micron Technology, Inc. | Method of creating sharp points and other features on the surface of a semiconductor substrate |
US5372973A (en) * | 1992-02-14 | 1994-12-13 | Micron Technology, Inc. | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US5269877A (en) * | 1992-07-02 | 1993-12-14 | Xerox Corporation | Field emission structure and method of forming same |
US5431777A (en) * | 1992-09-17 | 1995-07-11 | International Business Machines Corporation | Methods and compositions for the selective etching of silicon |
US5315126A (en) * | 1992-10-13 | 1994-05-24 | Itt Corporation | Highly doped surface layer for negative electron affinity devices |
US5330920A (en) * | 1993-06-15 | 1994-07-19 | Digital Equipment Corporation | Method of controlling gate oxide thickness in the fabrication of semiconductor devices |
US5532177A (en) * | 1993-07-07 | 1996-07-02 | Micron Display Technology | Method for forming electron emitters |
US6049089A (en) * | 1993-07-07 | 2000-04-11 | Micron Technology, Inc. | Electron emitters and method for forming them |
US5552613A (en) * | 1993-09-24 | 1996-09-03 | Sumitomo Electric Industries, Ltd. | Electron device |
US5786659A (en) * | 1993-11-29 | 1998-07-28 | Futaba Denshi Kogyo K.K. | Field emission type electron source |
US5583393A (en) * | 1994-03-24 | 1996-12-10 | Fed Corporation | Selectively shaped field emission electron beam source, and phosphor array for use therewith |
US5662815A (en) * | 1995-03-28 | 1997-09-02 | Samsung Display Devices Co., Ltd. | Fabricating method of a multiple micro-tip field emission device using selective etching of an adhesion layer |
US5703380A (en) * | 1995-06-13 | 1997-12-30 | Advanced Vision Technologies Inc. | Laminar composite lateral field-emission cathode |
US6031250A (en) * | 1995-12-20 | 2000-02-29 | Advanced Technology Materials, Inc. | Integrated circuit devices and methods employing amorphous silicon carbide resistor materials |
US6091188A (en) * | 1997-03-31 | 2000-07-18 | Nec Corporation | Field emission cold cathode and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US5532177A (en) | 1996-07-02 |
US6825596B1 (en) | 2004-11-30 |
US7064476B2 (en) | 2006-06-20 |
US20060226765A1 (en) | 2006-10-12 |
US20050023951A1 (en) | 2005-02-03 |
US20020093281A1 (en) | 2002-07-18 |
US20070052339A1 (en) | 2007-03-08 |
US6049089A (en) | 2000-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060237812A1 (en) | Electronic emitters with dopant gradient | |
US5448132A (en) | Array field emission display device utilizing field emitters with downwardly descending lip projected gate electrodes | |
US5186670A (en) | Method to form self-aligned gate structures and focus rings | |
US5653619A (en) | Method to form self-aligned gate structures and focus rings | |
US5259799A (en) | Method to form self-aligned gate structures and focus rings | |
US5151061A (en) | Method to form self-aligned tips for flat panel displays | |
US5229682A (en) | Field electron emission device | |
JPS6146931B2 (en) | ||
US5228878A (en) | Field electron emission device production method | |
KR970007786B1 (en) | Preparation process of silicon field emitter array | |
US5420054A (en) | Method for manufacturing field emitter array | |
JP2728813B2 (en) | Field emission type electron source and method of manufacturing the same | |
US6069018A (en) | Method for manufacturing a cathode tip of electric field emission device | |
US5481156A (en) | Field emission cathode and method for manufacturing a field emission cathode | |
JP3012517B2 (en) | Electron emitting device and method of manufacturing the same | |
US6190930B1 (en) | Buffered resist profile etch of a field emission device structure | |
EP1316982B1 (en) | Method for fabricating GaN field emitter arrays | |
US6781159B2 (en) | Field emission display device | |
US6045425A (en) | Process for manufacturing arrays of field emission tips | |
US6552477B2 (en) | Field emission display backplates | |
KR100257568B1 (en) | Method for a field emitter array of a field emission display | |
KR100343206B1 (en) | Horizontal field emission display and fabricating method thereof | |
KR100246254B1 (en) | Manufacturing method of field emission device having silicide as emitter and gate | |
JPH08329832A (en) | Electron emitting element and its manufacture | |
JP3135131B2 (en) | Electron-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |