Nothing Special   »   [go: up one dir, main page]

US20060208349A1 - Semiconductor device and manufacturing method for the same - Google Patents

Semiconductor device and manufacturing method for the same Download PDF

Info

Publication number
US20060208349A1
US20060208349A1 US11/392,853 US39285306A US2006208349A1 US 20060208349 A1 US20060208349 A1 US 20060208349A1 US 39285306 A US39285306 A US 39285306A US 2006208349 A1 US2006208349 A1 US 2006208349A1
Authority
US
United States
Prior art keywords
semiconductor chip
rear surface
adhesive
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/392,853
Inventor
Toshiyuki Fukuda
Hiroaki Fujimoto
Mutsuo Tsuji
Takashi Yui
Yoshiaki Takeoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US11/392,853 priority Critical patent/US20060208349A1/en
Publication of US20060208349A1 publication Critical patent/US20060208349A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19103Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device interposed between the semiconductor or solid-state device and the die mounting substrate, i.e. chip-on-passive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor device molded in resin wherein a plurality of semiconductor chips and passive parts are mounted within one semiconductor device molded in resin and to a manufacturing method for the same.
  • the present invention relates, in particular, to a semiconductor device molded in resin wherein two semiconductor chips are stacked and mounted on a wiring board and to a manufacturing method for the same.
  • the upper semiconductor chip is larger than the lower semiconductor chip and the upper semiconductor chip is in a condition extending in an overhanging manner over the lower semiconductor chip, which is a flip chip, in a conventional semiconductor device molded in resin having a configuration wherein the lower semiconductor chip is directly flip chip bonded to a carrier board and the upper semiconductor chip is mounted on the lower chip with the electric circuit thereof facing upward.
  • microcracks may occur in the upper semiconductor chip or defective connections of fine metal wires may occur due to impact at the time of connection of fine metal wires to the upper semiconductor chip by means of an ultrasonic wave or thermocompression bonding method.
  • FIG. 10A is a cross sectional view showing a conventional semiconductor device molded in resin and FIG. 10B shows an enlarged view of a portion of FIG. 10A .
  • the enlarged view shows the phenomenon that is the problem.
  • Au wires 7 are connected to electrode pads 4 of second semiconductor chip 2 using capillary 10 , as shown in FIGS. 10A and 10B .
  • second semiconductor chip 2 bends symbol (11 indicates the amount of bending ⁇ h) due to the impact from the load when ball bonding is carried out while ultrasonic waves and the load are being applied to an electrode pad 4 at a high temperature (from 115° C. to 250° C.) in the case wherein second semiconductor chip 2 is significantly larger than first semiconductor chip 1 . Therefore, a microscopic crack 12 occurs in the case wherein an Au wire 7 cannot be stably bonded or in the case wherein the load is too great. Stud bumps are denoted by symbol 5 , conductive paste is denoted by symbol 6 , underfill resin is denoted by symbol 13 and adhesive is denoted by symbol 14 in FIGS. 10A and 10B .
  • a purpose of the present invention is to provide a semiconductor device and a manufacturing method for the same wherein the reliability of connections of fine metal wires connecting an upper semiconductor chip to a wiring board can be improved in the case wherein the upper semiconductor chip, which is located above a lower semiconductor chip, is significantly larger than the lower semiconductor chip in a configuration wherein the two semiconductor chips are stacked and mounted on a wiring board.
  • a semiconductor device of the first invention is provided with: a wiring board having a first wiring electrode and a second wiring electrode; a first semiconductor chip having, on the top surface, an electrode connected to the first wiring electrode; and a second semiconductor chip, which is mounted on the first semiconductor chip, which is larger than the first semiconductor chip and which has, at least in the periphery of the top surface, an electrode electrically connected to the second wiring electrode by means of a fine metal wire, wherein the rear surface of the first semiconductor chip and the rear surface of the second semiconductor chip are adhered to each other by means of adhesive and the sides of the adhesive are inclined from the edge portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip.
  • the rear surface of the first semiconductor chip and the rear surface of the second semiconductor chip are adhered to each other by means of adhesive and the side of the adhesive is inclined from the edge portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip and, therefore, the size and form of the the adhesive can be optimized. Therefore, it becomes possible to prevent the occurrence of microcracks in the second semiconductor chip and to prevent the occurrence of defective fine metal wire connections caused by the impact at the time of electrical connection of the second semiconductor chip to the wiring board. Thereby, a semiconductor device of a high reliability molded in resin wherein semiconductor chips are stacked can be provided.
  • a semiconductor device of the second invention is the semiconductor device of the first invention wherein the area of the cross section of the adhesive in a plane along the plane direction of the first semiconductor ship is no less than the area of the rear surface of the first semiconductor chip.
  • the area of the cross section of the adhesive in a plane along the plane direction of the first semiconductor chip is no less than the area of the rear surface of the first semiconductor chip and, therefore, an adhesive having a size that is significantly greater than that of the first semiconductor chip and a sufficient thickness can be formed on the rear surface of the second semiconductor chip. Thereby, defective bonding caused by the impact to the fine metal wires and microcracks in the second semiconductor chip can be further prevented.
  • a semiconductor device of the third invention is the semiconductor device of the first invention wherein the surface of the side of the adhesive is in a concave, curved form.
  • the surface of the side of the adhesive is in a concave, curved form and, therefore, a cross section of the adhesive perpendicular to the rear surface of the first semiconductor chip is in an inverted arched form, wherein sufficient stiffness for bearing mechanical stress is provided in the same manner as in a bridge pier so as to be able to bear the load from wire bonding.
  • a semiconductor device of the fourth invention is the semiconductor device of the first invention wherein the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip. According to this configuration the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip and, therefore, the application of a bending moment force with a starting point at the corner portion of the rear surface of the first semiconductor chip can be suppressed in the case wherein the load from wiring bonding is applied to the electrode of the second semiconductor chip.
  • a semiconductor device of the fifth invention is the semiconductor device of the first invention wherein an underfill resin is placed between the wiring board and the first semiconductor chip and wherein at least a portion of the side of the underfill resin is covered with an adhesive.
  • an underfill resin is placed between the wiring board and the first semiconductor chip and at least a portion of the side of the underfill resin is covered with an adhesive and, therefore, the application of a bending moment force with a starting point at the corner portion of the rear surface of the first semiconductor chip can be further suppressed.
  • a semiconductor device of the sixth invention is the semiconductor device of the first invention wherein a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other.
  • a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other and, therefore, the same working effects as of the first invention can be gained in a semiconductor device wherein a plurality of semiconductor chips and a passive part are mounted.
  • a semiconductor device of the seventh invention is the semiconductor device of the first invention wherein a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed, wherein a spacer is adhered to the rear surface of the passive part so that the height of the spacer becomes approximately equal to the height of the rear surface of the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the condition wherein the spacer is intervened therebetween.
  • a spacer is adhered to the rear surface of a passive part so that the height of the spacer becomes approximately equal to the height of the rear surface of the first semiconductor chip and, therefore, the second semiconductor chip is maintained in a stable condition even in the case wherein the height of the rear surface of the first semiconductor chip and the height of the rear surface of the passive part differ from each other and the load from wire bonding is applied to the electrode of the second semiconductor chip.
  • a manufacturing method for a semiconductor device of the eighth invention is provided with: the step of preparing a wiring board having a first wiring electrode and a second wiring electrode as well as a first semiconductor chip having an electrode on the top surface; the step of electrically connecting the first wiring electrode of the wiring board to the electrode of the first semiconductor chip via a bump; the step of preparing a second semiconductor chip that is larger than the first semiconductor chip and that has an electrode in at least the periphery of the top surface; the step of adhering the rear surface of the first semiconductor chip, which is the side opposite to the electrode, and the rear surface of the second semiconductor, which is the side opposite to the electrode, to each other by means of adhesive; and the step of connecting the electrode of the second semiconductor chip to the second wiring electrode of the wiring board by means of a fine metal wire, wherein the adhesive is formed so that the side of the adhesive is inclined from the end portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip at the time of the step of adhering the first semiconductor chip and the
  • the adhesive is formed to have an optimized size and form so that the side of the adhesive is inclined from the end portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip at the time of the step of adhering the first semiconductor chip and the second semiconductor chip to each other and, thereby, it becomes possible to prevent the occurrence of defective bonding caused by the impact to the fine metal wires for electrically connecting the second semiconductor chip to the wiring board and to prevent the occurrence of microcracks in the second semiconductor chip.
  • a manufacturing method for a semiconductor device of a high reliability molded in resin wherein semiconductor chips are stacked can be provided.
  • a manufacturing method for a semiconductor device of the ninth invention is the manufacturing method for a semiconductor device of the eighth invention wherein the fine metal wire is connected to the electrode of, the second semiconductor chip after a molten ball is formed of the end of the fine metal wire on the second wiring electrode of the wiring board at the time of the step of connecting the second semiconductor chip to the wiring board by means of the fine metal wire.
  • the fine metal wire is connected to the electrode of the second semiconductor chip after a molten ball is formed of the end of the fine metal wire on the second wiring electrode of the wiring board at the time of the step of connecting the second semiconductor chip to the wiring board by means of the fine metal wire and, therefore, it becomes possible limit the height above the second semiconductor chip of the fine metal wires to a low height.
  • a manufacturing method for a semiconductor device of the tenth invention is the manufacturing method for a semiconductor device of the eighth invention wherein the wiring board and a passive part are electrically connected to each other at the time of the step of electrically connecting the wiring board to the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal at the time of the step of adhering the first semiconductor chip to the second semiconductor chip.
  • the wiring board and a passive part are electrically connected to each other at the time of the step of electrically connecting the wiring board to the first semiconductor chip and, therefore, the same working effects as of the eighth invention can be gained in a semiconductor device wherein a plurality of semiconductor chips and a passive part are mounted.
  • the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal at the time of the step of adhering the first semiconductor chip to the second semiconductor chip and, therefore, the second semiconductor chip can be maintained in a stable condition at the time of connecting the second semiconductor chip to the wiring board by means of fine metal wires even in the case wherein the height of the rear surface of the first semiconductor chip and height of the rear surface of the passive part differ from each other.
  • a manufacturing method for a semiconductor device of the eleventh invention is the manufacturing method for a semiconductor device of the eighth invention wherein the wiring board and a passive part are electrically connected to each other and an underfill resin is placed between the wiring board and the first semiconductor chip at the time of the step of electrically connecting the wiring board to the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal and a material having a thixotropy greater than that of the underfill resin is used for the spacer at the time of the step of adhering the first semiconductor chip to the second semiconductor chip.
  • FIG. 1A is a perspective view showing semiconductor chips utilized in a semiconductor device molded in resin according to one embodiment of the present invention and FIG. 1B is a cross sectional view thereof;
  • FIG. 2A is a plan view showing a first semiconductor chip utilized in a semiconductor device molded in resin according to one embodiment of the present invention
  • FIG. 2B is an enlarged view of a main portion of the first semiconductor chip
  • FIG. 2C is a view for describing the formation of an electrode pad
  • FIG. 3 is a plan view showing a sheet board utilized in a semiconductor device molded in resin according to one embodiment of the present invention
  • FIG. 4A is a plan view of the surface of the carrier board on which semiconductor elements are mounted in FIG. 3
  • FIG. 4B is a cross sectional view along line a-a′
  • FIG. 4C is a plan view of the external terminal side of the carrier board;
  • FIGS. 5A to 5 D are cross sectional views showing a semiconductor device molded in resin during manufacturing steps according to one embodiment of the present invention.
  • FIGS. 6A and 6B are cross sectional views during the steps following the steps of FIGS. 5A to 5 D;
  • FIG. 7 is a cross sectional view showing the form of an adhesive according to one embodiment of the present invention.
  • FIGS. 8A to BC are cross sectional views of a semiconductor device molded in resin according to another embodiment of the present invention.
  • FIG. 9A is a partially penetrative plan view of a semiconductor device molded in resin according to still another embodiment of the present invention and FIG. 9B is a cross sectional view thereof;
  • FIG. 10A is a cross sectional view showing a semiconductor device molded in resin according to a prior art and FIG. 10B is an enlarged view showing a portion thereof.
  • FIG. 1A is a perspective view showing semiconductor chips utilized in a semiconductor device molded in resin according to one embodiment of the present invention
  • FIG. 1B is a cross sectional view thereof.
  • a partial cross section of the configuration of the semiconductor device is exposed in the perspective view for the purpose of ease of understanding.
  • the semiconductor device molded in resin shown in FIG. 1 is provided with:
  • a carrier board (wiring board) 20 having, on the top surface, a plurality of electrodes 22 and 23 as well as board wires 21 connected to electrodes 22 and 23 and having, on the rear surface, external terminals 24 electrically connected to electrodes 22 , 23 and board wires 21 ;
  • a first semiconductor chip 1 having, on the top surface, electrode pads 3 connected to the plurality of electrodes (first wiring electrodes) 22 on the top surface of carrier board 20 via conductive paste 6 by means of Au bumps 5 ;
  • an underfill resin 13 that fills in the gap between first semiconductor chip 1 and carrier board 20 and that covers the peripheral edge portion of first semiconductor chip 1 ;
  • a second semiconductor chip 2 which is larger than first semiconductor chip 1 , has electrode pads 4 in at least the periphery of the top surface and is connected to first semiconductor chip 1 back-to-back by means of an adhesive 14 having a thickness;
  • a mold resin 25 for covering and sealing first and second semiconductor chips 1 and 2 as well as Au wires 7 .
  • the side of adhesive 14 is inclined from the end portions of first semiconductor chip 1 toward the portions of second semiconductor chip 2 extending from the sides of the first semiconductor chip.
  • An alumina-based ceramic board, an aluminum nitride-based ceramic board, or the like, is used for carrier board 20 .
  • an insulating single layer, or multilayer, circuit board, or the like, made of an organic board, such as an epoxy board, may be used as another material.
  • conductive paste 6 such as Ag—Pd paste, is supplied to Au bumps 5 and first semiconductor chip 1 , of which the top surface faces downward, is mounted onto carrier board 20 and conductive paste 6 is hardened. Thereby, the electrical and mechanical connections between carrier board 20 and first semiconductor chip 1 are secured.
  • Adhesive 14 having a thickness, that connects first semiconductor chip 1 and second semiconductor chip 2 back-to-back may be adhesive layers applied to both surfaces of a tape material or may be an adhesive in a jelly form, such as a silicon-based adhesive.
  • the thickness of the adhesive be arbitrarily set at a value between several tens of ⁇ m to several hundreds of ⁇ m and that the form of the cross section thereof be in a tapered form (oblique angle) or in an R surface form (concave, curved surface) and it is important for the adhesive to have an area that is significantly larger than that of first semiconductor chip 1 .
  • FIG. 2A is a plan view showing a first semiconductor chip utilized in a semiconductor device molded in resin according to one embodiment of the present invention
  • FIG. 2B is an enlarged view of a main portion of the first semiconductor chip
  • FIG. 2C is a view for describing the formation of an electrode pad.
  • the wire width according to the wiring rule for integrated circuits in semiconductor chips is, at present, progressing from 0.18 ⁇ m to 0.13 ⁇ m and, furthermore, to 0.10 ⁇ m in order to scale down the microscopic process.
  • the pitch of the electrode pads for connection to the outside has been reduced in correspondence with the above and the pitch for the alignment of the electrode pads has been scaled down to 100 ⁇ m and to 80 ⁇ m in order to prevent increase in the area of the semiconductor chip.
  • An electrode pad pitch of 60 ⁇ m, or less provides a distance between adjacent electrode pads that is too narrow for a probe inspection or for the step of flip chip connection after the application of conductive paste to Au bumps and, therefore, a method is used wherein electrode pads 3 are arranged in a zigzag manner, as shown in FIGS. 2A and 2B .
  • a POE pad on element
  • an electrode pad is formed on a circuit element or on a wire of an internal circuit is also generally used in order to prevent increase in the area of a semiconductor integrated circuit.
  • An Au bump 5 (also referred to as a stud bump, which is a bump in a two-stage protruding form) is formed on an electrode pad 3 of first semiconductor chip 1 using a wire bonding method (ball bonding method) as shown in FIG. 2C .
  • a ball formed at the end of an Au wire is thermally compressed to an electrode pad 3 having a surface of Al, and thereby, the lower stage of the two-stage protrusion is formed and, furthermore, an Au wire loop is formed by shifting capillary 10 so that the upper stage of the two-stage protrusion is formed.
  • the heights of the two-stage protrusions are not uniform and the tops thereof lack flatness in the above described condition and, therefore, leveling is carried out in order to make the heights of the two-stage protrusions uniform by compression and in order to make the tops thereof flat.
  • This bump formation method is referred to as stud bump formation.
  • conductive paste 6 containing Ag—Pd as conductive material is applied to a rotating disk so as to gain an appropriate thickness using a doctor blade method.
  • conductive paste 6 is supplied to Au bumps 5 according to a method wherein first semiconductor chip 1 , on which Au bumps 5 are provided, is pulled up after being pressed against conductive paste 6 , which is a so-called transfer method.
  • Conductive paste 6 made of epoxy resin, which is a binder, and of Ag—Pd coprecipitating powder, which is a conductive filler, for example, is used while taking the reliability and the thermal stress of conductive paste 6 into consideration.
  • FIG. 3 is a plan view showing a sheet board utilized in a semiconductor device molded in resin according to one embodiment of the present invention
  • FIG. 4A is a plan view of the surface of the carrier board on which semiconductor elements are mounted in FIG. 3
  • FIG. 4B is a cross sectional view along line a-a′
  • FIG. 4C is a plan view of the external terminal side of the carrier board.
  • carrier board 20 is placed on a plurality of sheet boards 19 . Electrodes 22 and 23 electrically connected to first and second semiconductor chips are provided on the side of carrier board 20 that is connected to the semiconductor chips. In addition, external terminals 24 are arranged in a grid form on the opposite side.
  • An alumina-based ceramic board, an aluminum nitride-based, or the like, is used for carrier board 20 and the board is formed of a plurality, from four to eight, of layers corresponding to the wire density.
  • the wires 21 in the respective layers are made of tungsten and the vias connecting the respective layers are made of molybdenum, which is electrically condition.
  • tungsten wires having a thickness of from 10 ⁇ m to 30 ⁇ m are plated by means of non-electrode plating with Ni having a thickness of several ⁇ ms and, in addition, they are plated with an Au layer having a thickness of from approximately 0.1 ⁇ m to 0.8 ⁇ m in order to form electrodes 22 and 23 , which are electrically connected to the first and second semiconductor chips, and terminals 24 on the surface of the ceramic board.
  • the thickness of the board is from 0.40 mm to 0.60 mm.
  • Broken lines surrounding carrier boards 20 arranged on sheet boards 19 , indicate molding lines 26 of resin molds integrally sealing a plurality of carrier boards 20 .
  • One-dotted chained lines between carrier boards 20 indicate the dividing lines 28 between products for division into individual semiconductor devices molded in resin.
  • FIGS. 5A to 5 D and FIGS. 6A and 6B are cross sectional views showing a semiconductor de vice molded in resin during a manufacturing process according to one embodiment of the present invention.
  • FIG. 5A shows the step of connecting first semiconductor chip 1 , which is a flip chip, to carrier board 20 .
  • first semiconductor chip 1 which is a flip chip
  • carrier board 20 According to a flip chip system wherein the top surface of first semiconductor chip 1 is made to face downward for mounting, Au bumps 5 on first semiconductor chip 1 , to which conductive paste 6 is supplied, and electrodes 22 on carrier board 20 , on the bottom surface of which external terminals 24 are formed at constant intervals in a grid form, are positioned with a high precision so as to be connected to each other and, after that, thermosetting is carried out at a constant, temperature.
  • This connection method is referred to as the SBB (stud bump bonding) method.
  • SBB stud bump bonding
  • FIG. 5B shows the step of sealing the gap beneath first semiconductor chip 1 , which has been connected as a flip chip, with underfill resin 13 .
  • This is the step wherein molding with resin is carried out by injecting underfill resin 13 , which is a liquid epoxy resin that is a thermosetting resin, into the gap created between first semiconductor chip 1 and carrier board 20 as well as into the peripheral portion around first semiconductor chip 1 by means of nozzle 29 and of hardening the resin.
  • the purpose of this step is to protect the integrated circuit on the top surface of first semiconductor chip 1 as well as Au bumps 5 and conductive paste 6 over electrode pads 3 .
  • FIG. 5C shows the step of adhering the rear surface of first semiconductor chip 1 to the rear surface of second semiconductor chip 2 back-to-back.
  • Adhesive 14 having a size that is significantly larger than first semiconductor chip 1 and having a thickness is temporarily adhered to the rear surface of second semiconductor chip 2 .
  • Adhesive 14 may be formed of adhesive layers that have been applied to both sides of a tape material in advance or may be an adhesive in a jelly form, such as a silicon-based adhesive.
  • the thickness of adhesive 14 be arbitrarily set at a value between several tens of ⁇ m to several hundreds of ⁇ m and that the form of the cross section of the side of adhesive 14 be in a tapered form (oblique angle) or in an R surface form (curved surface).
  • Adhesive 14 having a size greater than that of first semiconductor chip 1 , is prepared and is attached to the rear surface of second semiconductor chip 2 by means of a tool. At this time a tape having excellent releasability may be attached to the tool in order to prevent adhesive 14 from becoming stuck to the tool.
  • a concrete adhesive method is described wherein a dicing sheet is attached to the top surface of second semiconductor chips 2 , which are still in a wafer, and dicing is carried out from the rear surface of second semiconductor chips 2 .
  • second semiconductor chips 2 that are good products are selected according to the above conditions and, then, adhesive 14 is attached to the rear surfaces of these chips.
  • these chips are adhered and fixed to the rear surfaces of first semiconductor chips 1 via the dicing sheet.
  • FIG. 5D shows the step of electrically connecting second semiconductor chip 2 to carrier board 20 by means of Au wires 7 .
  • An ultrasonic wave and thermal compression method is used as a method for electrically connecting second semiconductor chip 2 to carrier board 20 by means of Au wires 7 .
  • the end of Au wire 7 is made molten by means of a spark and is formed into a ball under the condition wherein Au wire 7 has been threaded through capillary 10 .
  • Ultrasonic wave compression is carried out on the formed ball that is pressed to electrode 23 using capillary 10 so as to form a 1st side (ball side) 8 .
  • carrier board 20 including second semiconductor chip 2 is heated to from 150° C. to 250° C.
  • loop control is carried out on Au wire 7 by means of capillary 10 and the wire is connected to electrode pad 4 on second semiconductor chip 2 so as to form a 2nd side (crescent side) 9 .
  • a so-called reverse wire bonding method is used wherein the order of formation of the 1st side and 2nd side, which is the order of connection of the wires, is opposite to that of the generally and widely used wire bonding method.
  • the merit of this method is that it is possible to limit the height above the second semiconductor chip 2 of Au wires 7 to a low height.
  • Au wire 7 is made of gold (Au) with a purity of 99.99%, or higher, and has a diameter ranging from 15 ⁇ m to 30 ⁇ m while electrode pads have a surface of Al.
  • FIG. 6A shows a cross sectional view of a semiconductor device molded in resin.
  • a semiconductor device which is a semi-finished product, that has been completed through the steps up to and including the steps in FIG. 5D is placed in a resin molding die set (not shown) and is sandwiched therebetween.
  • a thermosetting epoxy resin is heated to a temperature of from 150° C. to 200° C. so as to be liquefied and a portion of the product covering the outside of a semiconductor device is formed as a resin mold. After that the resin is hardened within the molding die set for a period of time of hardening of several tens of seconds and the product is removed from the die set.
  • the molding resin side of a semiconductor device is fixed to an adhesive tape or is fixed by means of vacuum suction, for example, and the mold is divided into individual products along dividing lines 28 between products using a dicer with a blade or a laser as a cutting means for product division.
  • FIG. 6B shows a cross sectional view of a finished semiconductor device molded in resin.
  • FIG. 7 is an illustration for describing in detail the cross sectional form of FIG. 1 .
  • cross sectional form 15 of the edge portion of adhesive 14 located between second semiconductor chip 2 and first semiconductor chip 1 , the point of contact with second semiconductor chip 2 is located outside the point of contact with first semiconductor chip 1 , as shown in FIG. 7 .
  • One method for implementing this shape is described above in reference to FIG. 5C . That is to say, at the time of the process of adhering first semiconductor chip 1 and second semiconductor chip 2 to each other, adhesive 14 is formed so that the side thereof is inclined from the edge portions of first semiconductor chip 1 toward the portions of second semiconductor chip 2 , extending from the sides of first semiconductor chip 1 .
  • This form has a configuration in an inverted arch form, such as in a bridge pier, so as to be able to bear the load from wire bonding.
  • FIGS. 8A to 8 C are cross sectional views of a semiconductor device molded in resin according to another embodiment of the present invention.
  • FIG. 8A shows the form of adhesive 14 , of which the end portion partially covers the side of first semiconductor chip 1 . This is in order to gain the same effects as described in reference to FIG. 7 and, in addition, in order to suppress the application of a bending moment force with a starting point at the corner portion of the rear surface of first semiconductor chip 1 in the case wherein the load from wiring bonding is applied to electrode pad 4 of second semiconductor chip 2 .
  • FIG. 8B shows a structure wherein the corner portions of the rear surface of first semiconductor chip 1 are rounded in order to further suppress the application of a bending moment force to second semiconductor chip 2 with a starting point at the corner portion of the rear surface of first semiconductor chip 1 and, in addition, the same effects as in FIGS. 7 and 8 A are gained.
  • FIG. 8C shows a structure wherein the edge portion of adhesive 14 covers the side of first semiconductor chip 1 and makes contact with underfill resin 13 that exists on the side of first semiconductor chip 1 . Furthermore, the corner portions of the rear surface of first semiconductor chip 1 are rounded so as to form rounded portions 30 and the application of a bending moment force to second semiconductor chip 2 with a starting point at the corner portion of the rear surface of first semiconductor chip 1 can be prevented.
  • FIG. 9A is a partially penetrative plan view of a semiconductor device molded in resin according to still another embodiment of the present invention and FIG. 9B is a cross sectional view thereof.
  • passive parts 17 are electrically connected to the mounting surface of first semiconductor chip 1 on carrier board 20 and second semiconductor chip 2 is larger than the region wherein first semiconductor chip 1 and passive parts 17 are arranged so that the rear surface of second semiconductor chip 2 and the rear surfaces of passive parts 17 facing the rear surface of second semiconductor chip 2 are adhered to each other.
  • a spacer 16 is adhered to the rear surfaces of passive parts 17 so that the height of the spacer becomes approximately the same as the height of the rear surface of first semiconductor chip 1 .
  • Passive parts 17 are soldered to electrodes on carrier board 20 .
  • the manufacturing process for this semiconductor device is the same as that shown in FIGS. 5A to 5 D and FIGS. 6A and 6B except wherein passive parts 17 are electrically connected to carrier board 20 in the step ( FIG. 5A ) of electrically connecting first semiconductor chip 1 to carrier board 20 .
  • the step ( FIG. 5C ) of adhering first semiconductor chip 1 and second semiconductor chip 2 to each other is carried out under the condition wherein spacer 16 is intervened between the rear surface of second semiconductor chip 2 and the rear surfaces of passive parts 17 facing the rear surface of second semiconductor chip 2 after the provision of underfill resin 13 between carrier board 20 and first semiconductor chip 1 , wherein the height of spacer 16 is approximately the same as that of the rear surface of first semiconductor chip 1 .
  • a material having a thixotropy greater than that of said underfill resin 13 is used for spacer 16 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A semiconductor device and a manufacturing method for the same are provided wherein the reliability of connections of fine metal wires connecting a second semiconductor chip to a wiring board can be improved in the case wherein the second semiconductor chip, which is located above the lower, first semiconductor chip, is significantly larger than the first semiconductor chip in a configuration wherein two semiconductor chips are stacked and mounted on a wiring board. In this semiconductor device the rear surface of the first semiconductor chip and the rear surface of the second semiconductor chip are adhered to each other by means of adhesive and the side of the adhesive is inclined from the edge portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the side of the first semiconductor chip. Therefore, it becomes possible to prevent the occurrence of microcracks in the second semiconductor chip and to prevent the occurrence of defective fine metal wire connections caused by the impact at the time of electrical connection of the second semiconductor chip to the wiring board.

Description

  • This is a continuation application of application Ser. No. 11/281,366 filed Nov. 18, 2005, which is a divisional application of application Ser. No. 10/636,595 filed on Aug. 8, 2003.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device molded in resin wherein a plurality of semiconductor chips and passive parts are mounted within one semiconductor device molded in resin and to a manufacturing method for the same. The present invention relates, in particular, to a semiconductor device molded in resin wherein two semiconductor chips are stacked and mounted on a wiring board and to a manufacturing method for the same.
  • 2. Description of the Background Art
  • In recent years reduction in the weight and thickness of mobile apparatuses, as represented by notebook personal computers, cellular phones, and the like, has rapidly progressed. According to such a trend an increase in the density of electronic parts and an enhancement in performance are required for electronic parts mounted on the mother boards of the apparatuses, in particular; for semiconductor devices, which make up the core of the apparatuses. Conventionally an MCM (multichip module) wherein a plurality of semiconductor chips is mounted on a plane surface of an interposer (substrate having external terminals for direct mounting on a mother board), for example, is generally used (see Japanese unexamined patent publication H09 (1997)-8220 (FIG. 1)) in the case, wherein a plurality of semiconductor chips is incorporated within one semiconductor device. Moreover, in order to further increase the configuration density within the semiconductor device, a method of stacking semiconductor chips, for example, has come into wide use (see Japanese unexamined patent publication H11 (1999)-204720 (FIGS. 1 and 3)). The size of a semiconductor chip mounted above the lower chip is, in general, smaller than the lower chip to make connection of fine metal wires easy in the case wherein a plurality of semiconductor chips is stacked in a conventional manner. In some cases, however, the dimensions of the upper semiconductor chip are greater than that of the lower chip in the configuration wherein the lower chip is, for example, directly bonded to a board and the upper semiconductor chip is mounted on the lower chip so that the electric circuit thereof faces upward (see Japanese unexamined patent publication 2000-299431 (FIG. 1) and Japanese unexamined patent publication 2001-320014 (FIG. 1)). These cases disclose a technique of supporting the upper chip with supports, or support members.
  • The upper semiconductor chip is larger than the lower semiconductor chip and the upper semiconductor chip is in a condition extending in an overhanging manner over the lower semiconductor chip, which is a flip chip, in a conventional semiconductor device molded in resin having a configuration wherein the lower semiconductor chip is directly flip chip bonded to a carrier board and the upper semiconductor chip is mounted on the lower chip with the electric circuit thereof facing upward. In this case microcracks may occur in the upper semiconductor chip or defective connections of fine metal wires may occur due to impact at the time of connection of fine metal wires to the upper semiconductor chip by means of an ultrasonic wave or thermocompression bonding method.
  • Here, a problem is described in reference to FIGS. 10A and 10B. FIG. 10A is a cross sectional view showing a conventional semiconductor device molded in resin and FIG. 10B shows an enlarged view of a portion of FIG. 10A. In addition, the enlarged view shows the phenomenon that is the problem. In a semiconductor device molded in resin having a configuration wherein first semiconductor chip 1, is directly flip chip bonded to a carrier board 20 and a second semiconductor chip 2 is mounted on first semiconductor chip 1 so that the electric circuit thereof faces upward, Au wires 7 are connected to electrode pads 4 of second semiconductor chip 2 using capillary 10, as shown in FIGS. 10A and 10B. At this time second semiconductor chip 2 bends symbol (11 indicates the amount of bending Δh) due to the impact from the load when ball bonding is carried out while ultrasonic waves and the load are being applied to an electrode pad 4 at a high temperature (from 115° C. to 250° C.) in the case wherein second semiconductor chip 2 is significantly larger than first semiconductor chip 1. Therefore, a microscopic crack 12 occurs in the case wherein an Au wire 7 cannot be stably bonded or in the case wherein the load is too great. Stud bumps are denoted by symbol 5, conductive paste is denoted by symbol 6, underfill resin is denoted by symbol 13 and adhesive is denoted by symbol 14 in FIGS. 10A and 10B.
  • SUMMARY OF THE INVENTION
  • A purpose of the present invention is to provide a semiconductor device and a manufacturing method for the same wherein the reliability of connections of fine metal wires connecting an upper semiconductor chip to a wiring board can be improved in the case wherein the upper semiconductor chip, which is located above a lower semiconductor chip, is significantly larger than the lower semiconductor chip in a configuration wherein the two semiconductor chips are stacked and mounted on a wiring board.
  • In order to achieve the above described purpose, a semiconductor device of the first invention is provided with: a wiring board having a first wiring electrode and a second wiring electrode; a first semiconductor chip having, on the top surface, an electrode connected to the first wiring electrode; and a second semiconductor chip, which is mounted on the first semiconductor chip, which is larger than the first semiconductor chip and which has, at least in the periphery of the top surface, an electrode electrically connected to the second wiring electrode by means of a fine metal wire, wherein the rear surface of the first semiconductor chip and the rear surface of the second semiconductor chip are adhered to each other by means of adhesive and the sides of the adhesive are inclined from the edge portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip.
  • According to this configuration the rear surface of the first semiconductor chip and the rear surface of the second semiconductor chip are adhered to each other by means of adhesive and the side of the adhesive is inclined from the edge portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip and, therefore, the size and form of the the adhesive can be optimized. Therefore, it becomes possible to prevent the occurrence of microcracks in the second semiconductor chip and to prevent the occurrence of defective fine metal wire connections caused by the impact at the time of electrical connection of the second semiconductor chip to the wiring board. Thereby, a semiconductor device of a high reliability molded in resin wherein semiconductor chips are stacked can be provided.
  • A semiconductor device of the second invention is the semiconductor device of the first invention wherein the area of the cross section of the adhesive in a plane along the plane direction of the first semiconductor ship is no less than the area of the rear surface of the first semiconductor chip. According to this configuration the area of the cross section of the adhesive in a plane along the plane direction of the first semiconductor chip is no less than the area of the rear surface of the first semiconductor chip and, therefore, an adhesive having a size that is significantly greater than that of the first semiconductor chip and a sufficient thickness can be formed on the rear surface of the second semiconductor chip. Thereby, defective bonding caused by the impact to the fine metal wires and microcracks in the second semiconductor chip can be further prevented.
  • A semiconductor device of the third invention is the semiconductor device of the first invention wherein the surface of the side of the adhesive is in a concave, curved form. According to this configuration the surface of the side of the adhesive is in a concave, curved form and, therefore, a cross section of the adhesive perpendicular to the rear surface of the first semiconductor chip is in an inverted arched form, wherein sufficient stiffness for bearing mechanical stress is provided in the same manner as in a bridge pier so as to be able to bear the load from wire bonding.
  • A semiconductor device of the fourth invention is the semiconductor device of the first invention wherein the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip. According to this configuration the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip and, therefore, the application of a bending moment force with a starting point at the corner portion of the rear surface of the first semiconductor chip can be suppressed in the case wherein the load from wiring bonding is applied to the electrode of the second semiconductor chip.
  • A semiconductor device of the fifth invention is the semiconductor device of the first invention wherein an underfill resin is placed between the wiring board and the first semiconductor chip and wherein at least a portion of the side of the underfill resin is covered with an adhesive. According to this configuration an underfill resin is placed between the wiring board and the first semiconductor chip and at least a portion of the side of the underfill resin is covered with an adhesive and, therefore, the application of a bending moment force with a starting point at the corner portion of the rear surface of the first semiconductor chip can be further suppressed.
  • A semiconductor device of the sixth invention is the semiconductor device of the first invention wherein a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other. According to this configuration a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other and, therefore, the same working effects as of the first invention can be gained in a semiconductor device wherein a plurality of semiconductor chips and a passive part are mounted.
  • A semiconductor device of the seventh invention is the semiconductor device of the first invention wherein a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and the passive part are placed, wherein a spacer is adhered to the rear surface of the passive part so that the height of the spacer becomes approximately equal to the height of the rear surface of the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the condition wherein the spacer is intervened therebetween. According to this configuration a spacer is adhered to the rear surface of a passive part so that the height of the spacer becomes approximately equal to the height of the rear surface of the first semiconductor chip and, therefore, the second semiconductor chip is maintained in a stable condition even in the case wherein the height of the rear surface of the first semiconductor chip and the height of the rear surface of the passive part differ from each other and the load from wire bonding is applied to the electrode of the second semiconductor chip.
  • A manufacturing method for a semiconductor device of the eighth invention is provided with: the step of preparing a wiring board having a first wiring electrode and a second wiring electrode as well as a first semiconductor chip having an electrode on the top surface; the step of electrically connecting the first wiring electrode of the wiring board to the electrode of the first semiconductor chip via a bump; the step of preparing a second semiconductor chip that is larger than the first semiconductor chip and that has an electrode in at least the periphery of the top surface; the step of adhering the rear surface of the first semiconductor chip, which is the side opposite to the electrode, and the rear surface of the second semiconductor, which is the side opposite to the electrode, to each other by means of adhesive; and the step of connecting the electrode of the second semiconductor chip to the second wiring electrode of the wiring board by means of a fine metal wire, wherein the adhesive is formed so that the side of the adhesive is inclined from the end portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip at the time of the step of adhering the first semiconductor chip and the second semiconductor chip to each other.
  • According to this configuration the adhesive is formed to have an optimized size and form so that the side of the adhesive is inclined from the end portions of the first semiconductor chip toward the portions of the second semiconductor chip extending from the sides of the first semiconductor chip at the time of the step of adhering the first semiconductor chip and the second semiconductor chip to each other and, thereby, it becomes possible to prevent the occurrence of defective bonding caused by the impact to the fine metal wires for electrically connecting the second semiconductor chip to the wiring board and to prevent the occurrence of microcracks in the second semiconductor chip. Thereby, a manufacturing method for a semiconductor device of a high reliability molded in resin wherein semiconductor chips are stacked can be provided.
  • A manufacturing method for a semiconductor device of the ninth invention is the manufacturing method for a semiconductor device of the eighth invention wherein the fine metal wire is connected to the electrode of, the second semiconductor chip after a molten ball is formed of the end of the fine metal wire on the second wiring electrode of the wiring board at the time of the step of connecting the second semiconductor chip to the wiring board by means of the fine metal wire. According to this configuration the fine metal wire is connected to the electrode of the second semiconductor chip after a molten ball is formed of the end of the fine metal wire on the second wiring electrode of the wiring board at the time of the step of connecting the second semiconductor chip to the wiring board by means of the fine metal wire and, therefore, it becomes possible limit the height above the second semiconductor chip of the fine metal wires to a low height.
  • A manufacturing method for a semiconductor device of the tenth invention is the manufacturing method for a semiconductor device of the eighth invention wherein the wiring board and a passive part are electrically connected to each other at the time of the step of electrically connecting the wiring board to the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal at the time of the step of adhering the first semiconductor chip to the second semiconductor chip.
  • According to this configuration the wiring board and a passive part are electrically connected to each other at the time of the step of electrically connecting the wiring board to the first semiconductor chip and, therefore, the same working effects as of the eighth invention can be gained in a semiconductor device wherein a plurality of semiconductor chips and a passive part are mounted. In addition, the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal at the time of the step of adhering the first semiconductor chip to the second semiconductor chip and, therefore, the second semiconductor chip can be maintained in a stable condition at the time of connecting the second semiconductor chip to the wiring board by means of fine metal wires even in the case wherein the height of the rear surface of the first semiconductor chip and height of the rear surface of the passive part differ from each other.
  • A manufacturing method for a semiconductor device of the eleventh invention is the manufacturing method for a semiconductor device of the eighth invention wherein the wiring board and a passive part are electrically connected to each other and an underfill resin is placed between the wiring board and the first semiconductor chip at the time of the step of electrically connecting the wiring board to the first semiconductor chip and wherein the rear surface of the second semiconductor chip and the rear surface of the passive part facing the rear surface of the second semiconductor chip are adhered to each other in the case wherein a spacer is intervened therebetween so that the height of the rear surface of the first semiconductor chip and the height of the spacer become approximately equal and a material having a thixotropy greater than that of the underfill resin is used for the spacer at the time of the step of adhering the first semiconductor chip to the second semiconductor chip. It is necessary to fill in the underfill resin by injection into a narrow gap (from several μm to several tens of μm) between the first semiconductor chip and the wiring board and, therefore, a low thixotropy is required for the underfill resin while it is necessary for the spacer to be transformed in a plastic manner so that the surface of the spacer and the rear surface of the first semiconductor chip share approximately the same plane in the case wherein an arbitrary load is applied at the time when the second semiconductor chip is mounted and, therefore, it is important for the thixotropic ratio of the spacer to be greater than that of the underfill resin so that the spacer plays a most important role.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view showing semiconductor chips utilized in a semiconductor device molded in resin according to one embodiment of the present invention and FIG. 1B is a cross sectional view thereof;
  • FIG. 2A is a plan view showing a first semiconductor chip utilized in a semiconductor device molded in resin according to one embodiment of the present invention, FIG. 2B is an enlarged view of a main portion of the first semiconductor chip and FIG. 2C is a view for describing the formation of an electrode pad;
  • FIG. 3 is a plan view showing a sheet board utilized in a semiconductor device molded in resin according to one embodiment of the present invention;
  • FIG. 4A is a plan view of the surface of the carrier board on which semiconductor elements are mounted in FIG. 3, FIG. 4B is a cross sectional view along line a-a′ and FIG. 4C is a plan view of the external terminal side of the carrier board;
  • FIGS. 5A to 5D are cross sectional views showing a semiconductor device molded in resin during manufacturing steps according to one embodiment of the present invention;
  • FIGS. 6A and 6B are cross sectional views during the steps following the steps of FIGS. 5A to 5D;
  • FIG. 7 is a cross sectional view showing the form of an adhesive according to one embodiment of the present invention;
  • FIGS. 8A to BC are cross sectional views of a semiconductor device molded in resin according to another embodiment of the present invention;
  • FIG. 9A is a partially penetrative plan view of a semiconductor device molded in resin according to still another embodiment of the present invention and FIG. 9B is a cross sectional view thereof; and
  • FIG. 10A is a cross sectional view showing a semiconductor device molded in resin according to a prior art and FIG. 10B is an enlarged view showing a portion thereof.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The embodiments of the present invention are described below with reference to FIGS. 1 to 7. FIG. 1A is a perspective view showing semiconductor chips utilized in a semiconductor device molded in resin according to one embodiment of the present invention and FIG. 1B is a cross sectional view thereof. Here, a partial cross section of the configuration of the semiconductor device is exposed in the perspective view for the purpose of ease of understanding.
  • The semiconductor device molded in resin shown in FIG. 1 is provided with:
  • a carrier board (wiring board) 20 having, on the top surface, a plurality of electrodes 22 and 23 as well as board wires 21 connected to electrodes 22 and 23 and having, on the rear surface, external terminals 24 electrically connected to electrodes 22, 23 and board wires 21;
  • a first semiconductor chip 1 having, on the top surface, electrode pads 3 connected to the plurality of electrodes (first wiring electrodes) 22 on the top surface of carrier board 20 via conductive paste 6 by means of Au bumps 5;
  • an underfill resin 13 that fills in the gap between first semiconductor chip 1 and carrier board 20 and that covers the peripheral edge portion of first semiconductor chip 1;
  • a second semiconductor chip 2, which is larger than first semiconductor chip 1, has electrode pads 4 in at least the periphery of the top surface and is connected to first semiconductor chip 1 back-to-back by means of an adhesive 14 having a thickness;
  • Au wires 7 for connecting electrode pads 4 of second semiconductor chip 2 to electrodes (second wiring electrodes) 23 of carrier board 20; and
  • a mold resin 25 for covering and sealing first and second semiconductor chips 1 and 2 as well as Au wires 7. In addition, the side of adhesive 14 is inclined from the end portions of first semiconductor chip 1 toward the portions of second semiconductor chip 2 extending from the sides of the first semiconductor chip.
  • An alumina-based ceramic board, an aluminum nitride-based ceramic board, or the like, is used for carrier board 20. In addition, an insulating single layer, or multilayer, circuit board, or the like, made of an organic board, such as an epoxy board, may be used as another material. In addition, when a plurality of electrodes 22 on the top surface of carrier board 20 and electrode pads 3 on first semiconductor chip 1 are connected, conductive paste 6, such as Ag—Pd paste, is supplied to Au bumps 5 and first semiconductor chip 1, of which the top surface faces downward, is mounted onto carrier board 20 and conductive paste 6 is hardened. Thereby, the electrical and mechanical connections between carrier board 20 and first semiconductor chip 1 are secured. In addition, liquid molding resin is utilized as underfill resin 13 and, thereby, the gap between carrier substrate 20 and first semiconductor chip 1 is filled in and the peripheral end portions of first semiconductor chip 1 are covered. Adhesive 14, having a thickness, that connects first semiconductor chip 1 and second semiconductor chip 2 back-to-back may be adhesive layers applied to both surfaces of a tape material or may be an adhesive in a jelly form, such as a silicon-based adhesive. An important factor herein is that the thickness of the adhesive be arbitrarily set at a value between several tens of μm to several hundreds of μm and that the form of the cross section thereof be in a tapered form (oblique angle) or in an R surface form (concave, curved surface) and it is important for the adhesive to have an area that is significantly larger than that of first semiconductor chip 1.
  • FIG. 2A is a plan view showing a first semiconductor chip utilized in a semiconductor device molded in resin according to one embodiment of the present invention, FIG. 2B is an enlarged view of a main portion of the first semiconductor chip and FIG. 2C is a view for describing the formation of an electrode pad.
  • The wire width according to the wiring rule for integrated circuits in semiconductor chips is, at present, progressing from 0.18 μm to 0.13 μm and, furthermore, to 0.10 μm in order to scale down the microscopic process. The pitch of the electrode pads for connection to the outside has been reduced in correspondence with the above and the pitch for the alignment of the electrode pads has been scaled down to 100 μm and to 80 μm in order to prevent increase in the area of the semiconductor chip. An electrode pad pitch of 60 μm, or less, however, provides a distance between adjacent electrode pads that is too narrow for a probe inspection or for the step of flip chip connection after the application of conductive paste to Au bumps and, therefore, a method is used wherein electrode pads 3 are arranged in a zigzag manner, as shown in FIGS. 2A and 2B. On the other hand, a POE (pad on element) wherein an electrode pad is formed on a circuit element or on a wire of an internal circuit is also generally used in order to prevent increase in the area of a semiconductor integrated circuit.
  • An Au bump 5 (also referred to as a stud bump, which is a bump in a two-stage protruding form) is formed on an electrode pad 3 of first semiconductor chip 1 using a wire bonding method (ball bonding method) as shown in FIG. 2C. According to this method a ball formed at the end of an Au wire is thermally compressed to an electrode pad 3 having a surface of Al, and thereby, the lower stage of the two-stage protrusion is formed and, furthermore, an Au wire loop is formed by shifting capillary 10 so that the upper stage of the two-stage protrusion is formed. The heights of the two-stage protrusions are not uniform and the tops thereof lack flatness in the above described condition and, therefore, leveling is carried out in order to make the heights of the two-stage protrusions uniform by compression and in order to make the tops thereof flat. This bump formation method is referred to as stud bump formation. Next, conductive paste 6 containing Ag—Pd as conductive material is applied to a rotating disk so as to gain an appropriate thickness using a doctor blade method. At this time conductive paste 6 is supplied to Au bumps 5 according to a method wherein first semiconductor chip 1, on which Au bumps 5 are provided, is pulled up after being pressed against conductive paste 6, which is a so-called transfer method. Conductive paste 6 made of epoxy resin, which is a binder, and of Ag—Pd coprecipitating powder, which is a conductive filler, for example, is used while taking the reliability and the thermal stress of conductive paste 6 into consideration.
  • FIG. 3 is a plan view showing a sheet board utilized in a semiconductor device molded in resin according to one embodiment of the present invention, FIG. 4A is a plan view of the surface of the carrier board on which semiconductor elements are mounted in FIG. 3, FIG. 4B is a cross sectional view along line a-a′ and FIG. 4C is a plan view of the external terminal side of the carrier board.
  • As shown in FIGS. 3 and 4, carrier board 20 is placed on a plurality of sheet boards 19. Electrodes 22 and 23 electrically connected to first and second semiconductor chips are provided on the side of carrier board 20 that is connected to the semiconductor chips. In addition, external terminals 24 are arranged in a grid form on the opposite side. An alumina-based ceramic board, an aluminum nitride-based, or the like, is used for carrier board 20 and the board is formed of a plurality, from four to eight, of layers corresponding to the wire density. The wires 21 in the respective layers are made of tungsten and the vias connecting the respective layers are made of molybdenum, which is electrically condition. In addition, tungsten wires having a thickness of from 10 μm to 30 μm are plated by means of non-electrode plating with Ni having a thickness of several μms and, in addition, they are plated with an Au layer having a thickness of from approximately 0.1 μm to 0.8 μm in order to form electrodes 22 and 23, which are electrically connected to the first and second semiconductor chips, and terminals 24 on the surface of the ceramic board. The thickness of the board is from 0.40 mm to 0.60 mm. Broken lines surrounding carrier boards 20, arranged on sheet boards 19, indicate molding lines 26 of resin molds integrally sealing a plurality of carrier boards 20. One-dotted chained lines between carrier boards 20 indicate the dividing lines 28 between products for division into individual semiconductor devices molded in resin.
  • Next, a manufacturing method for a semiconductor device is described. FIGS. 5A to 5D and FIGS. 6A and 6B are cross sectional views showing a semiconductor de vice molded in resin during a manufacturing process according to one embodiment of the present invention.
  • FIG. 5A shows the step of connecting first semiconductor chip 1, which is a flip chip, to carrier board 20. According to a flip chip system wherein the top surface of first semiconductor chip 1 is made to face downward for mounting, Au bumps 5 on first semiconductor chip 1, to which conductive paste 6 is supplied, and electrodes 22 on carrier board 20, on the bottom surface of which external terminals 24 are formed at constant intervals in a grid form, are positioned with a high precision so as to be connected to each other and, after that, thermosetting is carried out at a constant, temperature. This connection method is referred to as the SBB (stud bump bonding) method. Here, the formation of Au bumps 5 and conductive paste 6 are described in detail above in reference to FIG. 2 and a description thereof is omitted here.
  • Next, FIG. 5B shows the step of sealing the gap beneath first semiconductor chip 1, which has been connected as a flip chip, with underfill resin 13. This is the step wherein molding with resin is carried out by injecting underfill resin 13, which is a liquid epoxy resin that is a thermosetting resin, into the gap created between first semiconductor chip 1 and carrier board 20 as well as into the peripheral portion around first semiconductor chip 1 by means of nozzle 29 and of hardening the resin. The purpose of this step is to protect the integrated circuit on the top surface of first semiconductor chip 1 as well as Au bumps 5 and conductive paste 6 over electrode pads 3.
  • Next, FIG. 5C shows the step of adhering the rear surface of first semiconductor chip 1 to the rear surface of second semiconductor chip 2 back-to-back. Adhesive 14 having a size that is significantly larger than first semiconductor chip 1 and having a thickness is temporarily adhered to the rear surface of second semiconductor chip 2. Adhesive 14 may be formed of adhesive layers that have been applied to both sides of a tape material in advance or may be an adhesive in a jelly form, such as a silicon-based adhesive. An important factor herein is that the thickness of adhesive 14 be arbitrarily set at a value between several tens of μm to several hundreds of μm and that the form of the cross section of the side of adhesive 14 be in a tapered form (oblique angle) or in an R surface form (curved surface). Adhesive 14, having a size greater than that of first semiconductor chip 1, is prepared and is attached to the rear surface of second semiconductor chip 2 by means of a tool. At this time a tape having excellent releasability may be attached to the tool in order to prevent adhesive 14 from becoming stuck to the tool.
  • Though not shown, a concrete adhesive method is described wherein a dicing sheet is attached to the top surface of second semiconductor chips 2, which are still in a wafer, and dicing is carried out from the rear surface of second semiconductor chips 2. After that, second semiconductor chips 2 that are good products are selected according to the above conditions and, then, adhesive 14 is attached to the rear surfaces of these chips. Next, these chips are adhered and fixed to the rear surfaces of first semiconductor chips 1 via the dicing sheet.
  • Next, FIG. 5D shows the step of electrically connecting second semiconductor chip 2 to carrier board 20 by means of Au wires 7. An ultrasonic wave and thermal compression method is used as a method for electrically connecting second semiconductor chip 2 to carrier board 20 by means of Au wires 7. The end of Au wire 7 is made molten by means of a spark and is formed into a ball under the condition wherein Au wire 7 has been threaded through capillary 10. Ultrasonic wave compression is carried out on the formed ball that is pressed to electrode 23 using capillary 10 so as to form a 1st side (ball side) 8. At this time carrier board 20 including second semiconductor chip 2 is heated to from 150° C. to 250° C. Next, loop control is carried out on Au wire 7 by means of capillary 10 and the wire is connected to electrode pad 4 on second semiconductor chip 2 so as to form a 2nd side (crescent side) 9.
  • According to the embodiment of the present invention a so-called reverse wire bonding method is used wherein the order of formation of the 1st side and 2nd side, which is the order of connection of the wires, is opposite to that of the generally and widely used wire bonding method. The merit of this method is that it is possible to limit the height above the second semiconductor chip 2 of Au wires 7 to a low height. Though not shown, there is a method for connecting the 2nd side of Au wire 7 to an Au bump by forming the Au bump on an electrode pad 4 in advance. A method wherein the step of covering the surface of electrode pads with Al, for example, is omitted so that Cu in the lower layer is exposed and Au bumps are formed directly on Cu and, then, the 2nd side of Au wire 7 is connected to an Au bump is cost effective. Here, Au wire 7 is made of gold (Au) with a purity of 99.99%, or higher, and has a diameter ranging from 15 μm to 30 μm while electrode pads have a surface of Al.
  • FIG. 6A shows a cross sectional view of a semiconductor device molded in resin. A semiconductor device, which is a semi-finished product, that has been completed through the steps up to and including the steps in FIG. 5D is placed in a resin molding die set (not shown) and is sandwiched therebetween. A thermosetting epoxy resin is heated to a temperature of from 150° C. to 200° C. so as to be liquefied and a portion of the product covering the outside of a semiconductor device is formed as a resin mold. After that the resin is hardened within the molding die set for a period of time of hardening of several tens of seconds and the product is removed from the die set. The molding resin side of a semiconductor device is fixed to an adhesive tape or is fixed by means of vacuum suction, for example, and the mold is divided into individual products along dividing lines 28 between products using a dicer with a blade or a laser as a cutting means for product division.
  • FIG. 6B shows a cross sectional view of a finished semiconductor device molded in resin.
  • FIG. 7 is an illustration for describing in detail the cross sectional form of FIG. 1. In cross sectional form 15 of the edge portion of adhesive 14, located between second semiconductor chip 2 and first semiconductor chip 1, the point of contact with second semiconductor chip 2 is located outside the point of contact with first semiconductor chip 1, as shown in FIG. 7. One method for implementing this shape is described above in reference to FIG. 5C. That is to say, at the time of the process of adhering first semiconductor chip 1 and second semiconductor chip 2 to each other, adhesive 14 is formed so that the side thereof is inclined from the edge portions of first semiconductor chip 1 toward the portions of second semiconductor chip 2, extending from the sides of first semiconductor chip 1. This form has a configuration in an inverted arch form, such as in a bridge pier, so as to be able to bear the load from wire bonding.
  • FIGS. 8A to 8C are cross sectional views of a semiconductor device molded in resin according to another embodiment of the present invention.
  • FIG. 8A shows the form of adhesive 14, of which the end portion partially covers the side of first semiconductor chip 1. This is in order to gain the same effects as described in reference to FIG. 7 and, in addition, in order to suppress the application of a bending moment force with a starting point at the corner portion of the rear surface of first semiconductor chip 1 in the case wherein the load from wiring bonding is applied to electrode pad 4 of second semiconductor chip 2.
  • FIG. 8B shows a structure wherein the corner portions of the rear surface of first semiconductor chip 1 are rounded in order to further suppress the application of a bending moment force to second semiconductor chip 2 with a starting point at the corner portion of the rear surface of first semiconductor chip 1 and, in addition, the same effects as in FIGS. 7 and 8A are gained.
  • FIG. 8C shows a structure wherein the edge portion of adhesive 14 covers the side of first semiconductor chip 1 and makes contact with underfill resin 13 that exists on the side of first semiconductor chip 1. Furthermore, the corner portions of the rear surface of first semiconductor chip 1 are rounded so as to form rounded portions 30 and the application of a bending moment force to second semiconductor chip 2 with a starting point at the corner portion of the rear surface of first semiconductor chip 1 can be prevented.
  • FIG. 9A is a partially penetrative plan view of a semiconductor device molded in resin according to still another embodiment of the present invention and FIG. 9B is a cross sectional view thereof.
  • As shown in FIGS. 9A and 9B, passive parts 17 are electrically connected to the mounting surface of first semiconductor chip 1 on carrier board 20 and second semiconductor chip 2 is larger than the region wherein first semiconductor chip 1 and passive parts 17 are arranged so that the rear surface of second semiconductor chip 2 and the rear surfaces of passive parts 17 facing the rear surface of second semiconductor chip 2 are adhered to each other. In addition, a spacer 16 is adhered to the rear surfaces of passive parts 17 so that the height of the spacer becomes approximately the same as the height of the rear surface of first semiconductor chip 1. Passive parts 17 are soldered to electrodes on carrier board 20.
  • The manufacturing process for this semiconductor device is the same as that shown in FIGS. 5A to 5D and FIGS. 6A and 6B except wherein passive parts 17 are electrically connected to carrier board 20 in the step (FIG. 5A) of electrically connecting first semiconductor chip 1 to carrier board 20. The step (FIG. 5C) of adhering first semiconductor chip 1 and second semiconductor chip 2 to each other is carried out under the condition wherein spacer 16 is intervened between the rear surface of second semiconductor chip 2 and the rear surfaces of passive parts 17 facing the rear surface of second semiconductor chip 2 after the provision of underfill resin 13 between carrier board 20 and first semiconductor chip 1, wherein the height of spacer 16 is approximately the same as that of the rear surface of first semiconductor chip 1. A material having a thixotropy greater than that of said underfill resin 13 is used for spacer 16.

Claims (12)

1. A semiconductor device comprising:
a wiring board having a first wiring electrode and a second wiring electrode;
a first semiconductor chip having, on the top surface, an electrode connected to said first wiring electrode; and
a second semiconductor chip, which is mounted on said first semiconductor chip, which is larger than the first semiconductor chip and which has, at least in the periphery of the top surface, an electrode that is electrically connected to said second wiring electrode by means of a fine metal wire, wherein:
the rear surface of said first semiconductor chip and the rear surface of said second semiconductor chip are made to adhere to each other by an adhesive, and the sides of said adhesive are inclined from the edge portions of said first semiconductor chip toward the portions of said second semiconductor chip extending from the sides of the first semiconductor chip,
the cross section of said adhesive in a plane along the top surface of the first semiconductor chip is no smaller than the area of the rear surface of said first semiconductor chip.
2. A semiconductor device comprising:
a wiring board having a first wiring electrode and a second wiring electrode;
a first semiconductor chip having, on the top surface, an electrode connected to said first wiring electrode; and
a second semiconductor chip, which is mounted on said first semiconductor chip, which is larger than the first semiconductor chip and which has, at least in the periphery of the top surface, an electrode electrically connected to said second wiring electrode by means of a fine metal wire, wherein:
the rear surface of said first semiconductor chip and the rear surface of said second semiconductor chip are adhered to each other by means of adhesive and the sides of said adhesive are inclined from the edge portions of said first semiconductor chip toward the portions of said second semiconductor chip extending from the sides of the first semiconductor chip,
a passive part is electrically connected to the same mounting surface on the wiring board that is connected to the first semiconductor chip,
the second semiconductor chip is larger than the region where the first semiconductor chip and said passive part are placed, and
the rear surface of said second semiconductor chip and the rear surface of said passive part facing the rear surface of said second semiconductor chip are adhered to each other.
3. The semiconductor device according to claim 2, wherein a passive part is electrically connected to the mounting surface of the first semiconductor chip on the wiring board, wherein the second semiconductor chip is larger than the region where the first semiconductor chip and said passive part are placed, wherein a spacer is adhered to the rear surface of said passive part so that the height of the spacer becomes approximately equal to the height of the rear surface of the first semiconductor chip and wherein the rear surface of said second semiconductor chip and the rear surface of said passive part facing the rear surface of said second semiconductor chip are adhered to each other in the condition wherein said spacer is intervened therebetween.
4. The semiconductor device according to claim 1, wherein the surface of the side of the adhesive is in a concave, curved form.
5. The semiconductor device according to claim 2, wherein the surface of the side of the adhesive is in a concave, curved form.
6. The semiconductor device according to claim 3, wherein the surface of the side of the adhesive is in a concave, curved form.
7. The semiconductor device according to claim 1, wherein the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip.
8. The semiconductor device according to claim 2, wherein the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip.
9. The semiconductor device according to claim 3, wherein the adhesive is formed over the entire region of the rear surface and over a portion of the sides of the first semiconductor chip.
10. The semiconductor device according to claim 1, wherein an underfill resin is placed between the wiring board and the first semiconductor chip and wherein at least a portion of the side of said underfill resin is covered with an adhesive.
11. The semiconductor device according to claim 2, wherein an underfill resin is placed between the wiring board and the first semiconductor chip and wherein at least a portion of the side of said underfill resin is covered with an adhesive.
12. The semiconductor device according to claim 3, wherein an underfill resin is placed between the wiring board and the first semiconductor chip and wherein at least a portion of the side of said underfill resin is covered with an adhesive.
US11/392,853 2003-01-29 2006-03-30 Semiconductor device and manufacturing method for the same Abandoned US20060208349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/392,853 US20060208349A1 (en) 2003-01-29 2006-03-30 Semiconductor device and manufacturing method for the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003-020313 2003-01-29
JP2003020313A JP3819851B2 (en) 2003-01-29 2003-01-29 Semiconductor device and manufacturing method thereof
US10/636,595 US7087455B2 (en) 2003-01-29 2003-08-08 Semiconductor device and manufacturing method for the same
US11/281,366 US20060079023A1 (en) 2003-01-29 2005-11-18 Semiconductor device and manufacturing method for the same
US11/392,853 US20060208349A1 (en) 2003-01-29 2006-03-30 Semiconductor device and manufacturing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/281,366 Continuation US20060079023A1 (en) 2003-01-29 2005-11-18 Semiconductor device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
US20060208349A1 true US20060208349A1 (en) 2006-09-21

Family

ID=32732862

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/636,595 Expired - Lifetime US7087455B2 (en) 2003-01-29 2003-08-08 Semiconductor device and manufacturing method for the same
US11/281,366 Abandoned US20060079023A1 (en) 2003-01-29 2005-11-18 Semiconductor device and manufacturing method for the same
US11/392,853 Abandoned US20060208349A1 (en) 2003-01-29 2006-03-30 Semiconductor device and manufacturing method for the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/636,595 Expired - Lifetime US7087455B2 (en) 2003-01-29 2003-08-08 Semiconductor device and manufacturing method for the same
US11/281,366 Abandoned US20060079023A1 (en) 2003-01-29 2005-11-18 Semiconductor device and manufacturing method for the same

Country Status (4)

Country Link
US (3) US7087455B2 (en)
JP (1) JP3819851B2 (en)
CN (1) CN100423258C (en)
TW (1) TWI277187B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152314A1 (en) * 2005-12-30 2007-07-05 Intel Corporation Low stress stacked die packages
US20120074596A1 (en) * 2006-09-14 2012-03-29 Kazuaki Sumita Set of resin compositions for preparing system-in-package type semiconductor device
US20130075926A1 (en) * 2011-09-23 2013-03-28 JoHyun Bae Integrated circuit packaging system with package stacking and method of manufacture thereof
US20130328218A1 (en) * 2011-08-08 2013-12-12 Renesas Electronics Corporation Sealed semiconductor device having adhesive patch with inwardly sloped side surfaces
US8716065B2 (en) 2011-09-23 2014-05-06 Stats Chippac Ltd. Integrated circuit packaging system with encapsulation and method of manufacture thereof
US20170323868A1 (en) * 2016-05-06 2017-11-09 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196907A1 (en) * 2003-09-19 2005-09-08 Glenn Ratificar Underfill system for die-over-die arrangements
TW200520123A (en) * 2003-10-07 2005-06-16 Matsushita Electric Ind Co Ltd Method for mounting semiconductor chip and semiconductor chip-mounted board
US20050112842A1 (en) * 2003-11-24 2005-05-26 Kang Jung S. Integrating passive components on spacer in stacked dies
FI20041525A (en) * 2004-11-26 2006-03-17 Imbera Electronics Oy Electronics module and manufacturing process
JP2006253576A (en) * 2005-03-14 2006-09-21 Taiyo Yuden Co Ltd Semiconductor device and manufacturing method thereof
JP2006310649A (en) * 2005-04-28 2006-11-09 Sharp Corp Semiconductor device package and its manufacturing method
JP4871280B2 (en) 2005-08-30 2012-02-08 スパンション エルエルシー Semiconductor device and manufacturing method thereof
TWI303873B (en) * 2005-09-23 2008-12-01 Freescale Semiconductor Inc Method of making stacked die package
KR100660882B1 (en) * 2005-10-27 2006-12-26 삼성전자주식회사 Board on chip package and manufacturing method thereof
US7342308B2 (en) * 2005-12-20 2008-03-11 Atmel Corporation Component stacking for integrated circuit electronic package
JP4577228B2 (en) * 2006-02-09 2010-11-10 セイコーエプソン株式会社 Semiconductor device and manufacturing method of semiconductor device
KR100764682B1 (en) * 2006-02-14 2007-10-08 인티그런트 테크놀로지즈(주) Ic chip and package
DE102006022748B4 (en) * 2006-05-12 2019-01-17 Infineon Technologies Ag Semiconductor device with surface mount devices and method of making the same
JP2007311395A (en) * 2006-05-16 2007-11-29 Toppan Printing Co Ltd Semiconductor device and its manufacturing process
US8198735B2 (en) 2006-12-31 2012-06-12 Stats Chippac Ltd. Integrated circuit package with molded cavity
DE112007003208T5 (en) * 2007-01-09 2009-12-17 Infineon Technologies Ag A semiconductor package
JP5178028B2 (en) * 2007-03-09 2013-04-10 三洋電機株式会社 Manufacturing method of semiconductor device
JP2009111062A (en) * 2007-10-29 2009-05-21 Toshiba Corp Semiconductor device and its manufacturing method
US8258015B2 (en) * 2008-02-22 2012-09-04 Stats Chippac Ltd. Integrated circuit package system with penetrable film adhesive
US9955582B2 (en) * 2008-04-23 2018-04-24 Skyworks Solutions, Inc. 3-D stacking of active devices over passive devices
JP4947316B2 (en) * 2008-08-15 2012-06-06 信越化学工業株式会社 Substrate bonding method and three-dimensional semiconductor device
JP2010118554A (en) * 2008-11-13 2010-05-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
US8022539B2 (en) * 2008-11-17 2011-09-20 Stats Chippac Ltd. Integrated circuit packaging system with increased connectivity and method of manufacture thereof
US7939369B2 (en) * 2009-05-14 2011-05-10 International Business Machines Corporation 3D integration structure and method using bonded metal planes
US20110193243A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Unique Package Structure
TW201205745A (en) * 2010-07-23 2012-02-01 Global Unichip Corp Semiconductor packaging structure and the forming method
JP2011124604A (en) * 2011-02-09 2011-06-23 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2012186374A (en) * 2011-03-07 2012-09-27 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
KR101739945B1 (en) 2011-05-02 2017-06-09 삼성전자주식회사 Semiconductor Package And Manufacturing The Same
KR101894125B1 (en) * 2012-09-14 2018-08-31 르네사스 일렉트로닉스 가부시키가이샤 Method for manufacturing semiconductor device
JP2015176893A (en) * 2014-03-13 2015-10-05 株式会社東芝 Semiconductor device and method of manufacturing the same
US10403669B2 (en) * 2015-06-15 2019-09-03 Sony Corporation Semiconductor device and electronic device having a chip size package (CSP) stack
US10796975B2 (en) * 2016-04-02 2020-10-06 Intel Corporation Semiconductor package with supported stacked die
US11532551B2 (en) * 2018-12-24 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package with chamfered semiconductor device
CN115547846A (en) * 2019-02-21 2022-12-30 奥特斯科技(重庆)有限公司 Component carrier, method for manufacturing the same, and electrical device
JP7143951B2 (en) * 2019-07-17 2022-09-29 株式会社村田製作所 semiconductor module
KR102702093B1 (en) 2019-11-27 2024-09-04 삼성전자주식회사 Semiconductor package
CN111063659B (en) * 2019-11-28 2022-08-19 福建省福联集成电路有限公司 Passive device with double-layer structure and manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010035587A1 (en) * 2000-04-26 2001-11-01 Mitsubishi Denki Kabushiki Kaisha Resin-sealed chip stack type semiconductor device
US6353263B1 (en) * 1999-04-14 2002-03-05 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US20020074669A1 (en) * 2000-12-15 2002-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having capacitors for reducing power source noise
US6489686B2 (en) * 1999-12-21 2002-12-03 International Business Machines Corporation Multi-cavity substrate structure for discrete devices
US6503776B2 (en) * 2001-01-05 2003-01-07 Advanced Semiconductor Engineering, Inc. Method for fabricating stacked chip package
US20030006496A1 (en) * 2001-03-15 2003-01-09 Venkateshwaran Vaiyapuri Semiconductor/printed circuit board assembly, and computer system
US20030067083A1 (en) * 2001-10-10 2003-04-10 Micron Technology, Inc. Packaged stacked semiconductor die and method of preparing same
US6713871B2 (en) * 2002-05-21 2004-03-30 Intel Corporation Surface mount solder method and apparatus for decoupling capacitance and process of making
US20050133932A1 (en) * 2003-12-19 2005-06-23 Jens Pohl Semiconductor module with a semiconductor stack, and methods for its production
US6998721B2 (en) * 2002-11-08 2006-02-14 Stmicroelectronics, Inc. Stacking and encapsulation of multiple interconnected integrated circuits
US7005747B2 (en) * 2002-10-02 2006-02-28 Shinko Electric Industries Co., Ltd. Semiconductor device having additional functional element and method of manufacturing thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901518B2 (en) 1995-06-15 1999-06-07 日本電気株式会社 Multi-chip semiconductor device
US6096576A (en) * 1997-09-02 2000-08-01 Silicon Light Machines Method of producing an electrical interface to an integrated circuit device having high density I/O count
US6413797B2 (en) * 1997-10-09 2002-07-02 Rohm Co., Ltd. Semiconductor device and method for making the same
JP3481444B2 (en) 1998-01-14 2003-12-22 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP3839323B2 (en) 2001-04-06 2006-11-01 株式会社ルネサステクノロジ Manufacturing method of semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353263B1 (en) * 1999-04-14 2002-03-05 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6489686B2 (en) * 1999-12-21 2002-12-03 International Business Machines Corporation Multi-cavity substrate structure for discrete devices
US20010035587A1 (en) * 2000-04-26 2001-11-01 Mitsubishi Denki Kabushiki Kaisha Resin-sealed chip stack type semiconductor device
US20020074669A1 (en) * 2000-12-15 2002-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having capacitors for reducing power source noise
US6503776B2 (en) * 2001-01-05 2003-01-07 Advanced Semiconductor Engineering, Inc. Method for fabricating stacked chip package
US20030006496A1 (en) * 2001-03-15 2003-01-09 Venkateshwaran Vaiyapuri Semiconductor/printed circuit board assembly, and computer system
US20030067083A1 (en) * 2001-10-10 2003-04-10 Micron Technology, Inc. Packaged stacked semiconductor die and method of preparing same
US6713871B2 (en) * 2002-05-21 2004-03-30 Intel Corporation Surface mount solder method and apparatus for decoupling capacitance and process of making
US7005747B2 (en) * 2002-10-02 2006-02-28 Shinko Electric Industries Co., Ltd. Semiconductor device having additional functional element and method of manufacturing thereof
US6998721B2 (en) * 2002-11-08 2006-02-14 Stmicroelectronics, Inc. Stacking and encapsulation of multiple interconnected integrated circuits
US20050133932A1 (en) * 2003-12-19 2005-06-23 Jens Pohl Semiconductor module with a semiconductor stack, and methods for its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152314A1 (en) * 2005-12-30 2007-07-05 Intel Corporation Low stress stacked die packages
US20120074596A1 (en) * 2006-09-14 2012-03-29 Kazuaki Sumita Set of resin compositions for preparing system-in-package type semiconductor device
US9018281B2 (en) * 2006-09-14 2015-04-28 Shin-Etsu Chemical Co., Ltd. Set of resin compositions for preparing system-in-package type semiconductor device
US8941226B2 (en) * 2011-08-08 2015-01-27 Renesas Electronics Corporation Sealed semiconductor device having adhesive patch with inwardly sloped side surfaces
US20130328218A1 (en) * 2011-08-08 2013-12-12 Renesas Electronics Corporation Sealed semiconductor device having adhesive patch with inwardly sloped side surfaces
US8698297B2 (en) * 2011-09-23 2014-04-15 Stats Chippac Ltd. Integrated circuit packaging system with stack device
US8716065B2 (en) 2011-09-23 2014-05-06 Stats Chippac Ltd. Integrated circuit packaging system with encapsulation and method of manufacture thereof
US20130075926A1 (en) * 2011-09-23 2013-03-28 JoHyun Bae Integrated circuit packaging system with package stacking and method of manufacture thereof
US9349666B1 (en) 2011-09-23 2016-05-24 Stats Chippac Ltd. Integrated circuit packaging system with package stacking
US20170323868A1 (en) * 2016-05-06 2017-11-09 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US10297575B2 (en) * 2016-05-06 2019-05-21 Amkor Technology, Inc. Semiconductor device utilizing an adhesive to attach an upper package to a lower die
US11011497B2 (en) 2016-05-06 2021-05-18 Amkor Technology Singapore Holding Pte. Ltd. Electronic device having a substrate-to-substrate interconnection structure and manufacturing method thereof
US11869875B2 (en) 2016-05-06 2024-01-09 Amkor Technology Singapore Holding Pte. Ltd. Electronic device having a substrate-to-substrate interconnection structure and manufacturing method thereof

Also Published As

Publication number Publication date
US7087455B2 (en) 2006-08-08
TW200414471A (en) 2004-08-01
CN1519928A (en) 2004-08-11
JP3819851B2 (en) 2006-09-13
US20040145040A1 (en) 2004-07-29
CN100423258C (en) 2008-10-01
JP2004235310A (en) 2004-08-19
US20060079023A1 (en) 2006-04-13
TWI277187B (en) 2007-03-21

Similar Documents

Publication Publication Date Title
US7087455B2 (en) Semiconductor device and manufacturing method for the same
US8952527B2 (en) Semiconductor device and manufacturing method thereof
US8786102B2 (en) Semiconductor device and method of manufacturing the same
US6621172B2 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic equipment
JP5529371B2 (en) Semiconductor device and manufacturing method thereof
JP5215244B2 (en) Semiconductor device
US20040245652A1 (en) Semiconductor device, electronic device, electronic appliance, and method of manufacturing a semiconductor device
JP2004031754A (en) Laminated multi-chip package and manufacturing method of chip constituting it, and wire bonding method
US20110074037A1 (en) Semiconductor device
KR20040080912A (en) Semiconductor device
US20060220208A1 (en) Stacked-type semiconductor device and method of manufacturing the same
US6396155B1 (en) Semiconductor device and method of producing the same
KR20060101385A (en) A semiconductor device and a manufacturing method of the same
JP4331179B2 (en) Semiconductor device
KR20090036948A (en) Bga package and method for fabricating of the same
KR100269539B1 (en) Method of manufacturing of csp and prepared csp device
JP2006156881A (en) Semiconductor device and manufacturing method thereof
JP2008091954A (en) Method of manufacturing semiconductor device
JPH11317425A (en) Semiconductor device
JP2005285928A (en) Semiconductor mounting body and its manufacturing method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION