US20060094983A1 - Methods and apparatus for securing medical instruments to desired locations in a patient's body - Google Patents
Methods and apparatus for securing medical instruments to desired locations in a patient's body Download PDFInfo
- Publication number
- US20060094983A1 US20060094983A1 US11/303,154 US30315405A US2006094983A1 US 20060094983 A1 US20060094983 A1 US 20060094983A1 US 30315405 A US30315405 A US 30315405A US 2006094983 A1 US2006094983 A1 US 2006094983A1
- Authority
- US
- United States
- Prior art keywords
- tissue
- distal end
- instrument
- recited
- bonding agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000007767 bonding agent Substances 0.000 claims abstract description 64
- 230000004807 localization Effects 0.000 claims abstract description 52
- 238000001574 biopsy Methods 0.000 claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 25
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 239000000853 adhesive Substances 0.000 claims abstract description 4
- 230000001070 adhesive effect Effects 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000003106 tissue adhesive Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229920001651 Cyanoacrylate Polymers 0.000 claims description 4
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 claims description 4
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 4
- 230000000149 penetrating effect Effects 0.000 claims 2
- 238000003384 imaging method Methods 0.000 abstract description 29
- 238000013459 approach Methods 0.000 abstract description 5
- 239000003894 surgical glue Substances 0.000 abstract description 3
- 210000001519 tissue Anatomy 0.000 description 89
- 230000003902 lesion Effects 0.000 description 25
- 238000001802 infusion Methods 0.000 description 20
- 238000004873 anchoring Methods 0.000 description 12
- 210000000481 breast Anatomy 0.000 description 11
- 230000015271 coagulation Effects 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009607 mammography Methods 0.000 description 2
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241001073224 Baeopogon indicator Species 0.000 description 1
- 208000031872 Body Remains Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241001264766 Callistemon Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007387 excisional biopsy Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000007386 incisional biopsy Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/04—Endoscopic instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0241—Pointed or sharp biopsy instruments for prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00491—Surgical glue applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/32056—Surgical snare instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
- A61B90/17—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320725—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1487—Trocar-like, i.e. devices producing an enlarged transcutaneous opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320064—Surgical cutting instruments with tissue or sample retaining means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B2017/348—Means for supporting the trocar against the body or retaining the trocar inside the body
- A61B2017/3482—Means for supporting the trocar against the body or retaining the trocar inside the body inside
- A61B2017/3484—Anchoring means, e.g. spreading-out umbrella-like structure
- A61B2017/3488—Fixation to inner organ or inner body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/00202—Moving parts rotating
- A61B2018/00208—Moving parts rotating actively driven, e.g. by a motor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00333—Breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1407—Loop
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1475—Electrodes retractable in or deployable from a housing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/16—Indifferent or passive electrodes for grounding
- A61B2018/162—Indifferent or passive electrodes for grounding located on the probe body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3908—Soft tissue, e.g. breast tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3987—Applicators for implanting markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3991—Markers, e.g. radio-opaque or breast lesions markers having specific anchoring means to fixate the marker to the tissue, e.g. hooks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
Definitions
- the present invention relates to methods and devices for ensuring that a medical instrument remains in a desired location within a patient's body during a medical procedure, and more particularly to methods and devices for affixing a distal end of the medical instrument to the desired location using adhesives.
- biopsy may be done by an open or percutaneous technique. Open biopsy is a surgical procedure using a scalpel and involving direct vision of the target area, for removing the entire mass (excisional biopsy) or a part of the mass (incisional biopsy).
- Percutaneous biopsy is usually done with a needle-like instrument through a relatively small incision, blindly or with the aid of an artificial imaging device, and may be either a fine needle aspiration (FNA) or a core biopsy.
- FNA biopsy individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear.
- core biopsy as the term suggests, a core or fragment of tissue is obtained for histologic examination which may be done via a frozen section or paraffin section.
- biopsy The type of biopsy utilized depends in large part on circumstances present with respect to the patient, including the location of the lesion(s) within the body, and no single procedure is ideal for all cases. However, core biopsy is extremely useful in a number of conditions and is being used more frequently by the medical profession.
- lesion localization needles and devices for use in localizing or marking non-palpable lesions and tumors within the body.
- These devices generally comprise a hypodermic needle or cannula which is inserted into the body under local anesthesia to the lesion or tissue of interest.
- the wire marker, or localization wire is then passed through the cannula and extends through the lesion of interest so that the distal end thereof is anchored beyond the lesion.
- the lesion is marked for subsequent surgical procedures such as excision or biopsy.
- the anchoring procedure is typically accomplished by means of mechanical structure disposed at the distal end of the wire marker, such as a barb, hook, or the like, which is attached to surrounding tissue.
- the cannula is usually removed from the body, leaving the wire in place and extending from the body, for subsequent use by the surgeon during the biopsy procedure in identifying the lesion location.
- the barb or hook at the distal end of the wire marker attaches to something other than the tumor or lesion.
- the breast will typically be placed in compression during the imaging procedure in order to properly identify the location of the target lesion and place the localization wire.
- breast tissue is comprised of fibrous bands which, in compression, may be close to the target lesion and inadvertently engaged by the barb of the localization wire. Later, when the breast is released from compression prior to the surgical procedure, the fibrous bands will move away from the target lesion, and the distal end of the localization wire may thus move a substantial distance away from the target lesion.
- stereotactic imaging equipment or other suitable alternatives can cost as much as $400,000 or more and is not in the usual inventory of a typical community hospital. It would therefore be quite advantageous if a method and apparatus could be developed which would permit the uncoupling of the imaging environment from the procedural environment without undue risk that the active or cutting end of the core biopsy instrument would migrate away from the target lesion during the interval between the imaging procedure and the biopsy procedure.
- the present invention solves the problems outlined above by describing devices and methods for securely affixing a localization wire to desired tissue in a patient's body, so that after the patient is moved from the imaging environment to the procedural environment, the practitioner will have assurance that the localization wire is still accurately placed. Additionally, devices and methods are described for ensuring that the distal end of a tissue acquisition instrument, such as a biopsy instrument, is securely affixed to a particular target area, such as a lesion, in a patient's body, thereby advantageously permitting the imaging environment to be uncoupled from the procedural environment so that expensive and often unavailable imaging equipment, such as stereotactic imaging equipment, need not be used.
- a tissue acquisition instrument such as a biopsy instrument
- a medical device comprising a tube having a distal end, a proximal end, and a longitudinal axis, wherein the device is adapted for placement of the distal end thereof into a patient's body at a desired location.
- the medical device includes a fixation agent, which may comprise any one of a bonding agent, a mechanical fixation agent, or an electrosurgical coagulation element, disposed on the distal end thereof, which is adapted for affixing the distal end of the medical device at the desired location.
- the medical device may comprise for example, a localization wire for use in connection with an open biopsy procedure.
- the device may comprise a tissue acquisition instrument, such as a biopsy instrument.
- the fixation agent is a bonding agent, comprising a surgical adhesive, glue, or solvent.
- a tissue acquisition instrument for retrieving body tissue, having a longitudinal axis and which comprises a distal end adapted for entry into a patient's body, a cutting element disposed on the instrument for cutting surrounding tissue, and structure disposed on the distal end for securing the tissue acquisition instrument at a predetermined desired location, in order to ensure that the tissue acquisition instrument remains in place during a tissue acquisition procedure so that desired tissue is properly acquired.
- a method of performing a medical procedure using a medical device comprising a tube having a distal end, a proximal end, and a longitudinal axis.
- the method first comprises the step of placing the distal end of the tube in a patient's body, so that the distal end is disposed in a desired tissue location. Then, a bonding agent is dispensed for the tube into tissue surrounding the distal end, so that the distal end of the tube becomes affixed to the desired tissue location.
- a method for performing a tissue acquisition procedure using a tissue acquisition instrument having a distal end, a proximal end, a longitudinal axis, and a cutting element.
- the distal end of the instrument is placed into a patient's body, so that the distal end is disposed in a desired tissue location.
- the distal end of the instrument is affixed to the desired tissue location, so that the instrument does not move relative to the desired tissue location during the tissue acquisition procedure.
- the cutting element is then actuated to acquire one or more tissue samples.
- FIG. 1 is a schematic plan view of a first embodiment of the present invention, illustrating a catheter for a localization wire introduction and infusion system wherein an introducer needle for introducing the localization wire into a patient's body remains in place during securement of the localization wire to surrounding tissue using a bonding agent;
- FIG. 2 is a schematic plan view of the introducer needle used in conjunction with the catheter of FIG. 1 ;
- FIG. 3 is a schematic plan view of one embodiment of a localization wire which may be used in conjunction with the infusion system shown in FIGS. 1 and 2 ;
- FIG. 3 a is a perspective view of the distal end of the embodiment shown in FIGS. 1-3 , wherein the introducer needle is inserted through the lumen of the catheter;
- FIG. 3 b is a perspective view of the distal end of the embodiment shown in FIGS. 1 - 3 , wherein the introducer needle is inserted through the lumen of the catheter, and its position within the catheter lumen is shown in phantom for illustrative purposes;
- FIG. 3 c is a perspective view similar to FIG. 3 a , wherein the localization wire is inserted through the lumen of the catheter;
- FIG. 4 is a perspective view of a second embodiment of the present invention, illustrating a second embodiment of a localization wire introduction and infusion system, wherein an introducer needle for introducing the localization wire into a patient's body is removed during securement of the localization wire to surrounding tissue using a bonding agent;
- FIG. 5 is schematic plan view of the catheter for the system illustrated in FIG. 4 ;
- FIG. 6 is a schematic plan view of the introducer needle for the system illustrated in FIGS. 4 and 5 ;
- FIG. 6 a is a perspective view of the distal end of the embodiment shown in FIGS. 4-6 , wherein the localization wire is inserted through a lumen of the catheter;
- FIG. 7 is a schematic plan view of a second embodiment of a localization wire which may be utilized in conjunction with either of the embodiments of FIGS. 1-3 or 4 - 6 ;
- FIG. 8 is a schematic view in isolation illustrating one embodiment of the present invention for storing and releasing a bonding agent which is dispensed from a medical instrument for affixing the medical instrument to surrounding tissue in a patient's body;
- FIG. 9 is a perspective view of a third embodiment of the present invention, illustrating a catheter which may be used as a localization wire and infusion system;
- FIG. 10 is an enlarged perspective view of the distal end of the cannula illustrated in FIG. 9 , showing in greater detail the perforations in the distal end for infusing a bonding agent to surrounding tissue;
- FIG. 11 is a perspective view of a modified version of the embodiment shown in FIGS. 9 and 10 , wherein the cannula is comprised of a braided polymer tubing and the interstices between the braids function as the infusion openings for infusing bonding agent to surrounding tissue;
- FIG. 12 is a perspective view of another modified version of the embodiment shown in FIGS. 9 and 10 , wherein the cannula is comprised of a coil and the interstices between expanded coils function as the infusion openings for infusing bonding agent to surrounding tissue;
- FIG. 13 is a perspective view of a biopsy instrument constructed in accordance with the principles of the present invention.
- FIG. 14 is a perspective view of a second modified embodiment of a biopsy instrument having an expandable Mallicot structure at its distal end for anchoring the instrument at a particular tissue site;
- FIG. 15 is a perspective view of a third modified embodiment of a biopsy instrument having a modified expandable Mallicot structure at its distal end for anchoring the instrument at a particular tissue site;
- FIG. 16 is a perspective view of a fourth modified embodiment of a biopsy instrument having an expandable linkage structure at its distal end for anchoring the instrument at a particular tissue site, wherein the linkage structure is shown in its retracted position;
- FIG. 17 is a perspective view of the embodiment shown in FIG. 16 , wherein the linkage structure is shown in its expanded position;
- FIG. 18 is a perspective view of a fourth modified embodiment of a biopsy instrument having an extendable “bottle brush” structure at its distal end for anchoring the instrument at a particular tissue site;
- FIG. 19 is a perspective view of a fifth modified embodiment of a biopsy instrument having a nitinol flap structure at its distal end, expandable upon retraction of a surrounding sleeve, for anchoring the instrument at a particular tissue site;
- FIG. 20 is a perspective view of a sixth modified embodiment of a biopsy instrument having a rolled stent structure at its distal end which unrolls upon retraction of a surrounding sleeve, for anchoring the instrument at a particular tissue site;
- FIG. 21 is a perspective view of a seventh modified embodiment of a biopsy instrument having expandable spiral wires at its distal end for anchoring the instrument at a particular tissue site;
- FIG. 22 is a perspective view of an eighth modified embodiment of a biopsy instrument having an expandable basket at its distal end for anchoring the instrument at a particular tissue site.
- FIGS. 1-3 c illustrate a first embodiment of the invention, wherein a medical instrument 10 ( FIGS. 3 a - 3 c ) comprises a catheter 12 ( FIGS. 1, 3 a - 3 c ), an introducer needle 14 ( FIGS. 2, 3 a , and 3 b ), and a localization wire 16 ( FIGS. 3, 3 c ).
- the introducer needle 14 comprises a sharp distal end 18 , which is inserted through an entry hole 20 in the catheter 12 ( FIG. 1 ), so that its tip 18 extends beyond the distal end 22 of the catheter 12 , as shown in FIGS.
- the introducer needle 14 may include a stop 24 having an enlarged diameter, which is adapted to engage the distally tapering inner sidewall of the catheter 12 at a predetermined point, as generally shown particularly in FIG. 3 b , to ensure that the tip 18 properly extends beyond the distal end 22 of the catheter 12 .
- the introducer needle 14 and catheter 12 together are then introduced into a patient's body (not shown), using known imaging techniques for guiding localization wires to the site of tissue to be excised (“target tissue”).
- the introducer needle 14 is removed proximally from the catheter 12 , and the localization wire 16 is inserted distally through the entry hole 20 and pushed distally through the lumen in the catheter 12 , so that the distal end of the localization wire 16 extends distally of the distal end of the introducer needle and catheter, as shown in FIG. 3 b .
- Indicator marks 25 preferably assist the practitioner in ensuring that the localization wire is properly inserted to the required depth.
- Localization wires such as the wire 16 typically include some-type of mechanical anchoring means, such as a barb or hook 26 , for securing the distal end of the localization wire 16 in position behind the target tissue.
- a barb or hook 26 for securing the distal end of the localization wire 16 in position behind the target tissue.
- this approach is often inadequate, as discussed supra in the Background portion of the specification, because the tissue to which the hook 26 becomes attached will often shift relative to the target tissue between the imaging step of the medical procedure, which is usually a biopsy, such as a breast biopsy, and the ensuing surgical step, which usually takes place in a different area of the hospital and requires transportation and resultant jostling of the patient from the radiology department to the operating room.
- the present invention contemplates an advantageous additional step of employing a bonding agent, which may comprise any known material which is capable of creating a bond between the distal end of the medical instrument 10 and surrounding tissue.
- a bonding agent which may comprise any known material which is capable of creating a bond between the distal end of the medical instrument 10 and surrounding tissue.
- the catheter 12 comprises a proximal hub 30 ( FIG. 1 ), including a stopcock 32 which is engageable with a syringe (not shown) containing the bonding agent.
- a syringe not shown
- the practitioner injects the bonding agent into the lumen (not shown) of the catheter using the syringe with sufficient pressure that it flows distally through the lumen and is infused into surrounding body tissue through the infusion ports 28 .
- the resultant bonding of the distal end of the localization wire 16 to the surrounding target tissue ensures with much greater certainty than the use of mechanical attachment means alone, such as the hook 26 , that the localization wire will be properly positioned when the surgical procedure commences, thereby improving the likelihood that the proper target tissue will be excised with a minimum incision and resultant trauma to the patient.
- Preferred bonding agents include any known effective biocompatible bonding materials, such as surgical adhesives, including cyanoacrylate, fibrin glue, and solvents.
- FIG. 8 An alternative to injection of the bonding agent through the lumen of the medical instrument 10 is illustrated in FIG. 8 .
- the bonding agent 33 may be stored in a rupturable container 34 which is disposed in the distal end of the medical instrument 10 , adjacent to the infusion ports 28 .
- a puncturing device 36 may be actuated by the practitioner to rupture the container 34 .
- the device 36 comprises a simple “spear” which is actuated distally to rupture the container, but it may alternatively comprise any suitable configuration for functioning equivalently.
- the practitioner may withdraw the catheter and introducer needle assembly, leaving the localization wire in place to mark the target tissue for the ensuing surgical step in the biopsy or other medical procedure.
- FIGS. 4-7 illustrate a second “localization wire” embodiment, wherein like elements to those shown in the first embodiment are designated by like reference numerals, succeeded by the letter “a”.
- This system may be styled as a “needle out” infusion system.
- the catheter 12 a comprises a dual lumen extrusion, including first and second lumens 38 and 40 , respectively ( FIG. 6 a ).
- the first lumen 38 accommodates the bonding agent, while the second lumen accommodates the localization wire.
- the catheter 12 a further includes a dual lumen proximal hub 42 , which comprises a localization wire entry port 44 and a stopcock 32 a.
- the introducer needle 14 a is disposed coaxially outside of the catheter 12 a , as illustrated in FIG. 4 , and the instrument 10 a is inserted into the patient's body in known fashion, under conventional imaging guidance.
- the localization wire 16 a is inserted distally through the port 44 , either before or after introduction of the instrument 10 a into the patient's body.
- the localization wire 16 a is advanced distally until the indicator marks 25 a indicate to the practitioner that the distal hook 26 a is distal of the distal end of the catheter 12 a and of the target lesion, as shown by the imaging equipment.
- the localization wires of FIGS. 3 and 7 may be used interchangeably in either of the two disclosed embodiments, and are substantially identical except that the localization wire 16 a includes filaments 46 near its distal end which provide additional surface area for bonding.
- bonding agent is injected into the catheter 12 a , preferably using a syringe which is engaged with the stopcock 32 a , so that the bonding agent flows distally through the first lumen 38 and is infused through the infusion ports 28 a .
- the infusion ports may be disposed about the catheter, in rows offset by 90 degrees with respect to one another, or otherwise staggered so that the bonding agent is evenly disposed about the catheter.
- the bonding agent may be stored in the distal end of the instrument 10 a using an apparatus like that illustrated in FIG. 8 .
- the catheter 12 a and introducer needle 14 a are withdrawn from the patient's body, leaving the localization wire in place.
- FIGS. 9 and 10 Still a third embodiment, which functions in a manner equivalent to that of a localization wire is illustrated in FIGS. 9 and 10 .
- a catheter 48 which comprises a proximal hub 50 , a distal end 52 , and a lumen 54 , is insertable into a patient's body using conventional image guidance techniques, so that the distal end 52 is disposed at a desired target tissue site.
- a bonding agent 33 is infused through one or more infusion ports 56 to surrounding target tissue, in order to bond the distal end of the catheter 48 to the surrounding tissue.
- the bonding agent may be injected into the lumen 54 of the catheter through the proximal hub 50 , or may alternatively be stored in the distal end 52 of the catheter and selectively released at the desired time.
- FIGS. 11 and 12 illustrate two alternative embodiments for the outer tube 58 of the catheter in any of the foregoing embodiments.
- the tube 58 comprises a stainless steel braid, the proximal end 60 of which is encapsulated by a polymer, such as polyamide, and the distal end 62 of which is exposed.
- the exposed distal end is preferably approximately 1-2 centimeter (cm) in length, though it may be longer or shorter if desired.
- interstices 64 between bands 66 of the exposed braided portion 62 function as openings for permitting infusion of bonding agent to surrounding tissue, instead of the infusion ports disclosed in the preceding embodiments. If the exposed braided portion is expanded, the interstices will be enlarged and will permit the flow of more bonding agent therethrough.
- the FIG. 12 embodiment comprises an outer tube 58 having a sleeve 68 surrounding a coil 70 of suitable material.
- the coil 70 may be stretched to create interstices 72 between bands 74 of the coil. Bonding material may be infused, as desired, outwardly through the interstices 72 of the expanded coil, and then through holes 76 in the sleeve 68 to surrounding tissue.
- the sleeve could be retracted to expose the coil, in which case the sleeve holes 76 would be unnecessary.
- FIG. 13 illustrates the distal end of a medical instrument 78 which is shown and described in co-pending application Ser. No. 09/057,303, commonly assigned with the present application and expressly incorporated by reference herein.
- the instrument 78 comprises a tissue acquisition or biopsy instrument and preferably includes a tip 80 having an electrosurgical element 82 for entering tissue, and a shaft 84 , on which is disposed a radially extendable and retractable cutting element or wire 86 .
- the cutting element 86 is preferably energized by RF energy provided by an electrosurgical generator.
- the instrument 78 is moved axially to a position wherein the distal tip 80 is preferably distal to a target lesion or tissue to be removed, using a suitable imaging technique;
- imaging techniques for biopsy procedures and the like typically include the use of a stereotactic or sonographic imaging system, both of which are relatively expensive and not always available in an average community hospital.
- This approach is designed to combine the imaging and cutting steps so that both occur simultaneously. For example, in the case of a breast biopsy procedure, the breast is clamped in order to effectively utilize the imaging equipment, after which the instrument is inserted into the breast under imaging guidance to the lesion location. Then, under continued imaging guidance, the cutting element is actuated and the target tissue removed.
- an important advantage of the present invention is the ability to “uncouple” the imaging environment from the procedural environment in a typical surgical or biopsy procedure, and the resultant important ability to utilize unmodified mammography equipment, readily available in most hospitals, to position the distal end of the instrument during the imaging step, rather than expensive and specialized stereotactic equipment. Then, the procedural step may occur later, in another area of the hospital. In the case of breast biopsies, this “uncoupling” also permits the patient's breast to be unclamped for the procedural step, resulting in increased patient comfort and easier working conditions for the practitioner.
- the inventive apparatus and technique permits the securement of the distal end of the instrument to the target tissue or lesion with sufficient confidence that the patient may be moved to the procedural environment without fear of having it slip away from the target tissue.
- This securement is accomplished using a fixation agent, which preferably comprises a bonding agent like that disclosed in connection with the foregoing localization wire and catheter embodiments.
- the bonding agent is injected into a lumen of the instrument, or, alternatively, in a manner like that described supra, released from a container or chamber in the distal end of the instrument, so that it may be infused from one or more infusion ports 88 disposed on the distal end of the instrument.
- the ports 88 are disposed on a bushing or sleeve 90 which has a linear slot 92 for permitting passage of the cutting element 86 as it is extended and retracted radially, and which is rotatable relative to the shaft 84 .
- the bonding agent is infused to the surrounding tissue, so that the bushing 90 is affixed in place relative to the surrounding tissue, the cutting element 86 will still be rotatable on the underlying shaft 84 in order to permit circumferential cutting of tissue, as desired, during the later procedural step. Suitable care is taken that only a sufficient amount of bonding agent is dispensed to bond the bushing to surrounding tissue, and not the shaft or tip of the instrument, in order that the shaft and tip continue to be rotatable relative to the bushing.
- the bushing 90 may be constructed in number of alternative ways, as will be apparent to those of ordinary skill in the art.
- the bushing could be comprised of a braided or coil material, so that interstices between braids or coils thereof could function as the infusion openings.
- FIG. 14 illustrates an alternative embodiment to that of FIG. 13 , wherein a mechanical fixation structure 94 is utilized to secure the distal end of the instrument to surrounding tissue, rather than a bonding agent.
- the mechanical fixation structure 94 comprises an expandable Mallicot structure, having a rotatable bushing 90 b and a plurality of expandable bands 96 .
- Actuating pushrods 98 are provided to actuate the bands 96 between their expanded positions (as shown), in which they are positioned to anchor the distal tip 80 b to the desired tissue site, and their retracted positions.
- FIG. 15 illustrates another modified embodiment which is similar to that of FIG. 14 , and wherein like elements to those of FIG. 14 are designated by like reference numerals, succeeded by the letter “c”.
- the bands 96 c are split at their centers, to form protruding portions 100 , for the purpose of permitting further radial extension of each band and to also permit the protruding portions 100 to attach themselves to adjacent tissue.
- FIGS. 16 and 17 schematically illustrate still another modified mechanical fixation structure 94 d , comprising a linkage, which may be substituted for the structures 94 and 94 c of FIGS. 14 and 15 , respectively, wherein FIG. 16 illustrates the linkage in its retracted configuration and FIG. 17 illustrates it in its radially expanded configuration.
- FIG. 18 schematically illustrates yet another modified mechanical fixation structure 94 e, comprised of a plurality of radially retractable and extendable wires 102 .
- FIG. 19 schematically illustrates still another modified mechanical fixation structure 94 f , of the bone anchor type, comprised of a nitinol tube 104 and radially expandable flaps 106 .
- FIG. 20 there is shown another modified mechanical fixation structure 94 g , comprised of a rolled stent which may be unrolled to expand radially and provide an anchoring function by axially retracting a sleeve 108 .
- FIG. 21 shows still another modified mechanical fixation structure 94 h comprised of a plurality of extendable wires 110 .
- FIG. 22 illustrates a modified mechanical fixation structure 94 i which comprises a radially expandable and retractable basket.
- any of the foregoing mechanical fixation structures may be interchangeably employed in the embodiments of FIGS. 14 and 15 , and it is within the scope of this invention to also employ other mechanical fixation structures which are known conventionally for anchoring medical devices in the body.
- Still another means for bonding the distal end of the instrument 78 to surrounding tissue is to apply RF energy to the tissue, using an electrosurgical coagulation element.
- the electrosurgical coagulation element may comprise one of the existing electrosurgical elements 82 or 86 , or preferably another coagulation element 112 ( FIG. 13 ) which may be disposed on or near the bushing 90 .
- Activation of the coagulation element 112 for a short interval coagulates the tissue surrounding the tissue, thereby bonding the bushing to the tissue.
- the element 112 could comprise a heating rod for cauterizing tissue, similar to the function of a branding iron, to produce the same type of bonding effect by “sticking” the cauterized tissue to the distal end of the instrument.
- This approach may also be utilized in the localization wire embodiments illustrated in FIGS. 1-12 , by employing an electrosurgical coagulation element on the distal end thereof, which is connected to a suitable-electrosurgical generator, or, alternatively, by employing an electrical heating element for cauterizing tissue.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Neurosurgery (AREA)
- Surgical Instruments (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Materials For Medical Uses (AREA)
Abstract
Devices and methods are provided for securely affixing a medical instrument to desired tissue in a patient's body, using a fixation agent. Such medical instruments may comprise localization wires or tissue acquisition instruments, such as biopsy instruments, for example. In the case of tissue acquisition instruments, the inventors have discovered significant advantages for securely affixing the distal end of the tissue acquisition instrument to a particular tissue target area. For example, such an approach permits the imaging environment to be uncoupled from the procedural environment so that expensive and often unavailable imaging equipment, such as stereotactic imaging equipment, need not be used. In a preferred embodiment, a bonding agent, such as adhesive, surgical glue, or a solvent, is used as the fixation agent.
Description
- The present invention relates to methods and devices for ensuring that a medical instrument remains in a desired location within a patient's body during a medical procedure, and more particularly to methods and devices for affixing a distal end of the medical instrument to the desired location using adhesives.
- It is often desirable and frequently necessary to sample or remove a portion of tissue from humans and other animals, particularly in the diagnosis and treatment of patients with cancerous tumors, pre-malignant conditions, and other diseases or disorders.
- Typically, in the case of cancer, particularly cancer of the breast, there is a great emphasis on early detection and diagnosis through the use of screening modalities, such as physical examination, and particularly mammography, which is capable of detecting very small-abnormalities, often nonpalpable. When the physician establishes by means of a mammogram or other screening modality, such as ultrasound, that suspicious circumstances exist, a biopsy must be performed to capture tissue for a definitive diagnosis as to whether the suspicious lesion is cancerous. Biopsy may be done by an open or percutaneous technique. Open biopsy is a surgical procedure using a scalpel and involving direct vision of the target area, for removing the entire mass (excisional biopsy) or a part of the mass (incisional biopsy). Percutaneous biopsy, on the other hand, is usually done with a needle-like instrument through a relatively small incision, blindly or with the aid of an artificial imaging device, and may be either a fine needle aspiration (FNA) or a core biopsy. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear. In core biopsy, as the term suggests, a core or fragment of tissue is obtained for histologic examination which may be done via a frozen section or paraffin section.
- The type of biopsy utilized depends in large part on circumstances present with respect to the patient, including the location of the lesion(s) within the body, and no single procedure is ideal for all cases. However, core biopsy is extremely useful in a number of conditions and is being used more frequently by the medical profession.
- When an open surgical biopsy procedure is indicated, current practice dictates the use of lesion localization needles and devices, commonly referred to as “localization wires”, for use in localizing or marking non-palpable lesions and tumors within the body. These devices generally comprise a hypodermic needle or cannula which is inserted into the body under local anesthesia to the lesion or tissue of interest. The wire marker, or localization wire, is then passed through the cannula and extends through the lesion of interest so that the distal end thereof is anchored beyond the lesion. Thus, the lesion is marked for subsequent surgical procedures such as excision or biopsy. The anchoring procedure is typically accomplished by means of mechanical structure disposed at the distal end of the wire marker, such as a barb, hook, or the like, which is attached to surrounding tissue. After marking the lesion with the wire marker, the cannula is usually removed from the body, leaving the wire in place and extending from the body, for subsequent use by the surgeon during the biopsy procedure in identifying the lesion location. However, it often occurs that the barb or hook at the distal end of the wire marker attaches to something other than the tumor or lesion. For example, in the case of breast biopsies, the breast will typically be placed in compression during the imaging procedure in order to properly identify the location of the target lesion and place the localization wire. However, breast tissue is comprised of fibrous bands which, in compression, may be close to the target lesion and inadvertently engaged by the barb of the localization wire. Later, when the breast is released from compression prior to the surgical procedure, the fibrous bands will move away from the target lesion, and the distal end of the localization wire may thus move a substantial distance away from the target lesion.
- It would be desirable, therefore, to develop a localization wire system and method wherein the distal end of the localization wire could be positively attached to the target lesion in order to minimize the possibility of migration of the distal end of the localization wire away from the target lesion between the imaging and surgical procedures.
- In circumstances where a core biopsy procedure is indicated, various systems are available. Such systems are shown, for example, in U.S. Pat. No. 5,526,822 to Burbank et al, which discloses a probe having a laterally disposed tissue receiving port at the distal end thereof for acquiring relatively small tissue samples, and in U.S. Pat. No. 5,111,828 to Kornberg et al., which discloses a probe having an axially disposed tissue receiving port at the distal end thereof for acquiring relatively large intact tissue samples. Both of these patents are expressly incorporated by reference herein.
- U.S. application Ser. No. 09/057,303 to Burbank et al., commonly assigned with the present application and expressly incorporated by reference herein, discloses still another core biopsy apparatus, which advantageously permits the acquisition of tissue samples which are larger in diameter than the diameter of the instrument lumen, thereby greatly increasing the chances of completely removing the target lesion and leaving “clean” margins thereabout.
- As in the case of localization wires, there is some risk in using any of the foregoing devices that the distal end of the instrument will migrate away from the target lesion during the biopsy procedure, thereby reducing the likelihood of removing target tissue. Heretofore, in the case of core biopsy procedures, the risk of this occurrence is minimized by employing image guidance techniques during the entire tissue removal procedure. For example, in the case of the '822 Burbank et al. patent, a stereotactic imaging guidance system is typically utilized during the disclosed procedure. One disadvantage of this approach, however, is that the patient's breast must remain in compression during the entire procedure, with attendant discomfort and increased procedural difficulty, in order to properly utilize the imaging equipment. Furthermore, stereotactic imaging equipment or other suitable alternatives can cost as much as $400,000 or more and is not in the usual inventory of a typical community hospital. It would therefore be quite advantageous if a method and apparatus could be developed which would permit the uncoupling of the imaging environment from the procedural environment without undue risk that the active or cutting end of the core biopsy instrument would migrate away from the target lesion during the interval between the imaging procedure and the biopsy procedure.
- The present invention solves the problems outlined above by describing devices and methods for securely affixing a localization wire to desired tissue in a patient's body, so that after the patient is moved from the imaging environment to the procedural environment, the practitioner will have assurance that the localization wire is still accurately placed. Additionally, devices and methods are described for ensuring that the distal end of a tissue acquisition instrument, such as a biopsy instrument, is securely affixed to a particular target area, such as a lesion, in a patient's body, thereby advantageously permitting the imaging environment to be uncoupled from the procedural environment so that expensive and often unavailable imaging equipment, such as stereotactic imaging equipment, need not be used.
- More particularly, in one aspect of the invention a medical device is provided comprising a tube having a distal end, a proximal end, and a longitudinal axis, wherein the device is adapted for placement of the distal end thereof into a patient's body at a desired location. The medical device includes a fixation agent, which may comprise any one of a bonding agent, a mechanical fixation agent, or an electrosurgical coagulation element, disposed on the distal end thereof, which is adapted for affixing the distal end of the medical device at the desired location.
- The medical device may comprise for example, a localization wire for use in connection with an open biopsy procedure. Alternatively, the device may comprise a tissue acquisition instrument, such as a biopsy instrument. In the preferred embodiment, the fixation agent is a bonding agent, comprising a surgical adhesive, glue, or solvent.
- In another aspect of the invention, a tissue acquisition instrument is provided for retrieving body tissue, having a longitudinal axis and which comprises a distal end adapted for entry into a patient's body, a cutting element disposed on the instrument for cutting surrounding tissue, and structure disposed on the distal end for securing the tissue acquisition instrument at a predetermined desired location, in order to ensure that the tissue acquisition instrument remains in place during a tissue acquisition procedure so that desired tissue is properly acquired.
- In yet another aspect of the invention, a method of performing a medical procedure is provided, using a medical device comprising a tube having a distal end, a proximal end, and a longitudinal axis. The method first comprises the step of placing the distal end of the tube in a patient's body, so that the distal end is disposed in a desired tissue location. Then, a bonding agent is dispensed for the tube into tissue surrounding the distal end, so that the distal end of the tube becomes affixed to the desired tissue location.
- In still another aspect of the invention, a method is provided for performing a tissue acquisition procedure using a tissue acquisition instrument having a distal end, a proximal end, a longitudinal axis, and a cutting element. In this method, the distal end of the instrument is placed into a patient's body, so that the distal end is disposed in a desired tissue location. Then, the distal end of the instrument is affixed to the desired tissue location, so that the instrument does not move relative to the desired tissue location during the tissue acquisition procedure. The cutting element is then actuated to acquire one or more tissue samples.
- The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.
-
FIG. 1 is a schematic plan view of a first embodiment of the present invention, illustrating a catheter for a localization wire introduction and infusion system wherein an introducer needle for introducing the localization wire into a patient's body remains in place during securement of the localization wire to surrounding tissue using a bonding agent; -
FIG. 2 is a schematic plan view of the introducer needle used in conjunction with the catheter ofFIG. 1 ; -
FIG. 3 is a schematic plan view of one embodiment of a localization wire which may be used in conjunction with the infusion system shown inFIGS. 1 and 2 ; -
FIG. 3 a is a perspective view of the distal end of the embodiment shown inFIGS. 1-3 , wherein the introducer needle is inserted through the lumen of the catheter; -
FIG. 3 b is a perspective view of the distal end of the embodiment shown in FIGS. 1-3, wherein the introducer needle is inserted through the lumen of the catheter, and its position within the catheter lumen is shown in phantom for illustrative purposes; -
FIG. 3 c is a perspective view similar toFIG. 3 a, wherein the localization wire is inserted through the lumen of the catheter; -
FIG. 4 is a perspective view of a second embodiment of the present invention, illustrating a second embodiment of a localization wire introduction and infusion system, wherein an introducer needle for introducing the localization wire into a patient's body is removed during securement of the localization wire to surrounding tissue using a bonding agent; -
FIG. 5 is schematic plan view of the catheter for the system illustrated inFIG. 4 ; -
FIG. 6 is a schematic plan view of the introducer needle for the system illustrated inFIGS. 4 and 5 ; -
FIG. 6 a is a perspective view of the distal end of the embodiment shown inFIGS. 4-6 , wherein the localization wire is inserted through a lumen of the catheter; -
FIG. 7 is a schematic plan view of a second embodiment of a localization wire which may be utilized in conjunction with either of the embodiments ofFIGS. 1-3 or 4-6; -
FIG. 8 is a schematic view in isolation illustrating one embodiment of the present invention for storing and releasing a bonding agent which is dispensed from a medical instrument for affixing the medical instrument to surrounding tissue in a patient's body; -
FIG. 9 is a perspective view of a third embodiment of the present invention, illustrating a catheter which may be used as a localization wire and infusion system; -
FIG. 10 is an enlarged perspective view of the distal end of the cannula illustrated inFIG. 9 , showing in greater detail the perforations in the distal end for infusing a bonding agent to surrounding tissue; -
FIG. 11 is a perspective view of a modified version of the embodiment shown inFIGS. 9 and 10 , wherein the cannula is comprised of a braided polymer tubing and the interstices between the braids function as the infusion openings for infusing bonding agent to surrounding tissue; -
FIG. 12 is a perspective view of another modified version of the embodiment shown inFIGS. 9 and 10 , wherein the cannula is comprised of a coil and the interstices between expanded coils function as the infusion openings for infusing bonding agent to surrounding tissue; -
FIG. 13 is a perspective view of a biopsy instrument constructed in accordance with the principles of the present invention; -
FIG. 14 is a perspective view of a second modified embodiment of a biopsy instrument having an expandable Mallicot structure at its distal end for anchoring the instrument at a particular tissue site; -
FIG. 15 is a perspective view of a third modified embodiment of a biopsy instrument having a modified expandable Mallicot structure at its distal end for anchoring the instrument at a particular tissue site; -
FIG. 16 is a perspective view of a fourth modified embodiment of a biopsy instrument having an expandable linkage structure at its distal end for anchoring the instrument at a particular tissue site, wherein the linkage structure is shown in its retracted position; -
FIG. 17 is a perspective view of the embodiment shown inFIG. 16 , wherein the linkage structure is shown in its expanded position; -
FIG. 18 is a perspective view of a fourth modified embodiment of a biopsy instrument having an extendable “bottle brush” structure at its distal end for anchoring the instrument at a particular tissue site; -
FIG. 19 is a perspective view of a fifth modified embodiment of a biopsy instrument having a nitinol flap structure at its distal end, expandable upon retraction of a surrounding sleeve, for anchoring the instrument at a particular tissue site; -
FIG. 20 is a perspective view of a sixth modified embodiment of a biopsy instrument having a rolled stent structure at its distal end which unrolls upon retraction of a surrounding sleeve, for anchoring the instrument at a particular tissue site; -
FIG. 21 is a perspective view of a seventh modified embodiment of a biopsy instrument having expandable spiral wires at its distal end for anchoring the instrument at a particular tissue site; and -
FIG. 22 is a perspective view of an eighth modified embodiment of a biopsy instrument having an expandable basket at its distal end for anchoring the instrument at a particular tissue site. - Referring now more particularly to the drawings,
FIGS. 1-3 c illustrate a first embodiment of the invention, wherein a medical instrument 10 (FIGS. 3 a-3 c) comprises a catheter 12 (FIGS. 1, 3 a-3 c), an introducer needle 14 (FIGS. 2, 3 a, and 3 b), and a localization wire 16 (FIGS. 3, 3 c). In this embodiment, which may be styled as a “needle in” infusion system, theintroducer needle 14 comprises a sharpdistal end 18, which is inserted through anentry hole 20 in the catheter 12 (FIG. 1 ), so that itstip 18 extends beyond thedistal end 22 of thecatheter 12, as shown inFIGS. 3 a and 3 b. Theintroducer needle 14 may include astop 24 having an enlarged diameter, which is adapted to engage the distally tapering inner sidewall of thecatheter 12 at a predetermined point, as generally shown particularly inFIG. 3 b, to ensure that thetip 18 properly extends beyond thedistal end 22 of thecatheter 12. Theintroducer needle 14 andcatheter 12 together are then introduced into a patient's body (not shown), using known imaging techniques for guiding localization wires to the site of tissue to be excised (“target tissue”). - Once the
catheter 12 andintroducer needle 14 are in position relative to the target tissue, theintroducer needle 14 is removed proximally from thecatheter 12, and thelocalization wire 16 is inserted distally through theentry hole 20 and pushed distally through the lumen in thecatheter 12, so that the distal end of thelocalization wire 16 extends distally of the distal end of the introducer needle and catheter, as shown inFIG. 3 b. Indicator marks 25 preferably assist the practitioner in ensuring that the localization wire is properly inserted to the required depth. - Localization wires such as the
wire 16 typically include some-type of mechanical anchoring means, such as a barb orhook 26, for securing the distal end of thelocalization wire 16 in position behind the target tissue. However, this approach is often inadequate, as discussed supra in the Background portion of the specification, because the tissue to which thehook 26 becomes attached will often shift relative to the target tissue between the imaging step of the medical procedure, which is usually a biopsy, such as a breast biopsy, and the ensuing surgical step, which usually takes place in a different area of the hospital and requires transportation and resultant jostling of the patient from the radiology department to the operating room. The present invention, therefore, contemplates an advantageous additional step of employing a bonding agent, which may comprise any known material which is capable of creating a bond between the distal end of the medical instrument 10 and surrounding tissue. Once the localization wire is properly placed at the desired target tissue site, under imaging guidance, the bonding agent is dispensed from the distal end of the medical instrument to the surrounding tissue to create the desired bond. In the embodiment ofFIGS. 1-3 a, a plurality ofinfusion ports 28 are disposed along the length of the distal end of thecatheter 12. Any number of infusion ports (one or more) may be employed in order to optimize the flow of bonding agent to the tissue, and they are preferably staggered circumferentially about the catheter in order to evenly deliver bonding agent about the circumference of the instrument 10. Various delivery means may be employed as well. For example, in the illustrated embodiment, thecatheter 12 comprises a proximal hub 30 (FIG. 1 ), including a stopcock 32 which is engageable with a syringe (not shown) containing the bonding agent. When the localization wire is properly positioned, the practitioner injects the bonding agent into the lumen (not shown) of the catheter using the syringe with sufficient pressure that it flows distally through the lumen and is infused into surrounding body tissue through theinfusion ports 28. The resultant bonding of the distal end of thelocalization wire 16 to the surrounding target tissue ensures with much greater certainty than the use of mechanical attachment means alone, such as thehook 26, that the localization wire will be properly positioned when the surgical procedure commences, thereby improving the likelihood that the proper target tissue will be excised with a minimum incision and resultant trauma to the patient. - Preferred bonding agents include any known effective biocompatible bonding materials, such as surgical adhesives, including cyanoacrylate, fibrin glue, and solvents.
- An alternative to injection of the bonding agent through the lumen of the medical instrument 10 is illustrated in
FIG. 8 . Thebonding agent 33 may be stored in arupturable container 34 which is disposed in the distal end of the medical instrument 10, adjacent to theinfusion ports 28. When it is desired to release thebonding agent 33 through the infusion ports, a puncturing device 36 may be actuated by the practitioner to rupture thecontainer 34. In the illustrated embodiment, the device 36 comprises a simple “spear” which is actuated distally to rupture the container, but it may alternatively comprise any suitable configuration for functioning equivalently. Additionally, it is within the scope of the invention to employ a chamber for containing the bonding agent which includes a valved port, wherein the valve is actuated to an open position by the practitioner to release the bonding agent. Various other embodiments for accomplishing this function, as would be known to one of ordinary skill in the art, are deemed to fall within the scope of the invention as well. - Once the localization wire is securely bonded to the surrounding tissue, the practitioner may withdraw the catheter and introducer needle assembly, leaving the localization wire in place to mark the target tissue for the ensuing surgical step in the biopsy or other medical procedure.
-
FIGS. 4-7 illustrate a second “localization wire” embodiment, wherein like elements to those shown in the first embodiment are designated by like reference numerals, succeeded by the letter “a”. This system may be styled as a “needle out” infusion system. In this embodiment, thecatheter 12 a comprises a dual lumen extrusion, including first andsecond lumens FIG. 6 a). Thefirst lumen 38 accommodates the bonding agent, while the second lumen accommodates the localization wire. Thecatheter 12 a further includes a dual lumenproximal hub 42, which comprises a localizationwire entry port 44 and a stopcock 32 a. - In operation, the
introducer needle 14 a is disposed coaxially outside of thecatheter 12 a, as illustrated inFIG. 4 , and the instrument 10 a is inserted into the patient's body in known fashion, under conventional imaging guidance. The localization wire 16 a is inserted distally through theport 44, either before or after introduction of the instrument 10 a into the patient's body. As in the first embodiment, once the instrument 10 a is placed, the localization wire 16 a is advanced distally until the indicator marks 25 a indicate to the practitioner that the distal hook 26 a is distal of the distal end of thecatheter 12 a and of the target lesion, as shown by the imaging equipment. The localization wires ofFIGS. 3 and 7 may be used interchangeably in either of the two disclosed embodiments, and are substantially identical except that the localization wire 16 a includesfilaments 46 near its distal end which provide additional surface area for bonding. - As in the previous embodiment, once the localization wire is in the proper position, bonding agent is injected into the
catheter 12 a, preferably using a syringe which is engaged with the stopcock 32 a, so that the bonding agent flows distally through thefirst lumen 38 and is infused through theinfusion ports 28 a. Again, the infusion ports may be disposed about the catheter, in rows offset by 90 degrees with respect to one another, or otherwise staggered so that the bonding agent is evenly disposed about the catheter. Alternatively, as in the previous embodiment, the bonding agent may be stored in the distal end of the instrument 10 a using an apparatus like that illustrated inFIG. 8 . It is within the scope of this invention, as well, to store or inject two or more bonding agent compounds, comprising a reactant and a catalyst, at the injection site, and to mix the reactant and catalyst together at the appropriate time to catalyze a bonding agent. - Once the bonding agent has been injected, but before it has solidified, the
catheter 12 a andintroducer needle 14 a are withdrawn from the patient's body, leaving the localization wire in place. - Still a third embodiment, which functions in a manner equivalent to that of a localization wire is illustrated in
FIGS. 9 and 10 . In this embodiment, acatheter 48, which comprises aproximal hub 50, adistal end 52, and alumen 54, is insertable into a patient's body using conventional image guidance techniques, so that thedistal end 52 is disposed at a desired target tissue site. Once properly located, abonding agent 33 is infused through one ormore infusion ports 56 to surrounding target tissue, in order to bond the distal end of thecatheter 48 to the surrounding tissue. Again, as in the previous embodiments, the bonding agent may be injected into thelumen 54 of the catheter through theproximal hub 50, or may alternatively be stored in thedistal end 52 of the catheter and selectively released at the desired time. -
FIGS. 11 and 12 illustrate two alternative embodiments for theouter tube 58 of the catheter in any of the foregoing embodiments. In FIG. I 1, thetube 58 comprises a stainless steel braid, theproximal end 60 of which is encapsulated by a polymer, such as polyamide, and the distal end 62 of which is exposed. The exposed distal end is preferably approximately 1-2 centimeter (cm) in length, though it may be longer or shorter if desired. In operation,interstices 64 betweenbands 66 of the exposed braided portion 62 function as openings for permitting infusion of bonding agent to surrounding tissue, instead of the infusion ports disclosed in the preceding embodiments. If the exposed braided portion is expanded, the interstices will be enlarged and will permit the flow of more bonding agent therethrough. - In a manner in some respects similar to the embodiment of
FIG. 11 , theFIG. 12 embodiment comprises anouter tube 58 having asleeve 68 surrounding acoil 70 of suitable material. In the distal end of thetube 58, thecoil 70 may be stretched to createinterstices 72 betweenbands 74 of the coil. Bonding material may be infused, as desired, outwardly through theinterstices 72 of the expanded coil, and then through holes 76 in thesleeve 68 to surrounding tissue. Alternatively, the sleeve could be retracted to expose the coil, in which case the sleeve holes 76 would be unnecessary. -
FIG. 13 illustrates the distal end of amedical instrument 78 which is shown and described in co-pending application Ser. No. 09/057,303, commonly assigned with the present application and expressly incorporated by reference herein. Theinstrument 78 comprises a tissue acquisition or biopsy instrument and preferably includes atip 80 having anelectrosurgical element 82 for entering tissue, and ashaft 84, on which is disposed a radially extendable and retractable cutting element orwire 86. The cuttingelement 86 is preferably energized by RF energy provided by an electrosurgical generator. - In operation, the
instrument 78 is moved axially to a position wherein thedistal tip 80 is preferably distal to a target lesion or tissue to be removed, using a suitable imaging technique; In the prior art, such imaging techniques for biopsy procedures and the like typically include the use of a stereotactic or sonographic imaging system, both of which are relatively expensive and not always available in an average community hospital. This approach is designed to combine the imaging and cutting steps so that both occur simultaneously. For example, in the case of a breast biopsy procedure, the breast is clamped in order to effectively utilize the imaging equipment, after which the instrument is inserted into the breast under imaging guidance to the lesion location. Then, under continued imaging guidance, the cutting element is actuated and the target tissue removed. - However, an important advantage of the present invention is the ability to “uncouple” the imaging environment from the procedural environment in a typical surgical or biopsy procedure, and the resultant important ability to utilize unmodified mammography equipment, readily available in most hospitals, to position the distal end of the instrument during the imaging step, rather than expensive and specialized stereotactic equipment. Then, the procedural step may occur later, in another area of the hospital. In the case of breast biopsies, this “uncoupling” also permits the patient's breast to be unclamped for the procedural step, resulting in increased patient comfort and easier working conditions for the practitioner.
- These advantages are made possible because the inventive apparatus and technique permits the securement of the distal end of the instrument to the target tissue or lesion with sufficient confidence that the patient may be moved to the procedural environment without fear of having it slip away from the target tissue. This securement is accomplished using a fixation agent, which preferably comprises a bonding agent like that disclosed in connection with the foregoing localization wire and catheter embodiments. In a manner similar to those embodiments, once the instrument is positioned in a desired position, the bonding agent is injected into a lumen of the instrument, or, alternatively, in a manner like that described supra, released from a container or chamber in the distal end of the instrument, so that it may be infused from one or
more infusion ports 88 disposed on the distal end of the instrument. Preferably, theports 88 are disposed on a bushing orsleeve 90 which has alinear slot 92 for permitting passage of the cuttingelement 86 as it is extended and retracted radially, and which is rotatable relative to theshaft 84. Thus, when the bonding agent is infused to the surrounding tissue, so that thebushing 90 is affixed in place relative to the surrounding tissue, the cuttingelement 86 will still be rotatable on theunderlying shaft 84 in order to permit circumferential cutting of tissue, as desired, during the later procedural step. Suitable care is taken that only a sufficient amount of bonding agent is dispensed to bond the bushing to surrounding tissue, and not the shaft or tip of the instrument, in order that the shaft and tip continue to be rotatable relative to the bushing. - Of course, the
bushing 90 may be constructed in number of alternative ways, as will be apparent to those of ordinary skill in the art. For example, as shown inFIGS. 11 and 12 , the bushing could be comprised of a braided or coil material, so that interstices between braids or coils thereof could function as the infusion openings. - Rather than using a bonding agent, a mechanical fixation agent may be utilized to secure the distal end of the instrument to surrounding tissue. For example,
FIG. 14 illustrates an alternative embodiment to that ofFIG. 13 , wherein amechanical fixation structure 94 is utilized to secure the distal end of the instrument to surrounding tissue, rather than a bonding agent. In this embodiment, wherein like elements to those ofFIG. 13 are designated by like reference numerals, succeeded by the letter “b”, themechanical fixation structure 94 comprises an expandable Mallicot structure, having a rotatable bushing 90 b and a plurality ofexpandable bands 96. Actuatingpushrods 98, of which there are preferably four, arranged circumferentially 90 degrees apart, are provided to actuate thebands 96 between their expanded positions (as shown), in which they are positioned to anchor the distal tip 80 b to the desired tissue site, and their retracted positions. -
FIG. 15 illustrates another modified embodiment which is similar to that ofFIG. 14 , and wherein like elements to those ofFIG. 14 are designated by like reference numerals, succeeded by the letter “c”. The only difference between this embodiment and theFIG. 14 embodiment is that the bands 96 c are split at their centers, to form protrudingportions 100, for the purpose of permitting further radial extension of each band and to also permit the protrudingportions 100 to attach themselves to adjacent tissue. -
FIGS. 16 and 17 schematically illustrate still another modifiedmechanical fixation structure 94 d, comprising a linkage, which may be substituted for thestructures 94 and 94 c ofFIGS. 14 and 15 , respectively, whereinFIG. 16 illustrates the linkage in its retracted configuration andFIG. 17 illustrates it in its radially expanded configuration. -
FIG. 18 schematically illustrates yet another modifiedmechanical fixation structure 94e, comprised of a plurality of radially retractable andextendable wires 102. -
FIG. 19 schematically illustrates still another modifiedmechanical fixation structure 94 f, of the bone anchor type, comprised of a nitinol tube 104 and radiallyexpandable flaps 106. - In
FIG. 20 , there is shown another modified mechanical fixation structure 94 g, comprised of a rolled stent which may be unrolled to expand radially and provide an anchoring function by axially retracting asleeve 108. -
FIG. 21 shows still another modifiedmechanical fixation structure 94 h comprised of a plurality ofextendable wires 110. -
FIG. 22 illustrates a modified mechanical fixation structure 94 i which comprises a radially expandable and retractable basket. - Any of the foregoing mechanical fixation structures may be interchangeably employed in the embodiments of
FIGS. 14 and 15 , and it is within the scope of this invention to also employ other mechanical fixation structures which are known conventionally for anchoring medical devices in the body. - Still another means for bonding the distal end of the
instrument 78 to surrounding tissue, which is within the scope of the present invention, is to apply RF energy to the tissue, using an electrosurgical coagulation element. The electrosurgical coagulation element may comprise one of the existingelectrosurgical elements FIG. 13 ) which may be disposed on or near thebushing 90. Activation of thecoagulation element 112 for a short interval coagulates the tissue surrounding the tissue, thereby bonding the bushing to the tissue. Alternatively, theelement 112 could comprise a heating rod for cauterizing tissue, similar to the function of a branding iron, to produce the same type of bonding effect by “sticking” the cauterized tissue to the distal end of the instrument. - This approach may also be utilized in the localization wire embodiments illustrated in
FIGS. 1-12 , by employing an electrosurgical coagulation element on the distal end thereof, which is connected to a suitable-electrosurgical generator, or, alternatively, by employing an electrical heating element for cauterizing tissue. - While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.
Claims (63)
1. A medical device comprising a tube having a distal end, a proximal end, and a longitudinal axis, the device being adapted for placement of said distal end into a patient's body at a desired location, said medical device having a fixation agent disposed on said distal end, the fixation agent being adapted for affixing the distal end of said medical device at said desired location.
2-48. (canceled)
49. A medical device for securing a medical instrument to a desired location within a patient's body comprising:
a. a shaft having a distal end, a proximal end, and a longitudinal axis, and having a distal tip configured for advancement within a patient's body to a desired location; and
b. a fixation agent for fixing the distal end at the desired location which is selected from a group of fixation agents consisting of a bonding agent, an electrical heating agent, an electrosurgical cauterizing agent, and combinations thereof.
50. The medical device as recited in Clam 49, wherein the distal end of the device has at least one opening for dispensing bonding agent into the patient's body to fix the distal end at the desired location.
51. The medical device as recited in claim 50 , wherein the bonding agent is a surgical adhesive.
52. The medical device as recited in claim 51 , wherein the surgical adhesive is a cyanoacrylate.
53. The medical device as recited in claim 50 , wherein the bonding agent is a fibrin glue.
54. The medical device as recited in claim 50 , wherein the bonding agent is a solvent.
55. The medical device as recited in claim 50 , wherein the tube has a braided outer wall.
56. The device of claim 55 wherein the braided outer wall has an interstice which forms at least in part the at least one opening for dispensing the bonding agent.
57. The medical device as recited in claim 50 , wherein the shaft has an outer wall formed at least in part from a coil of material, which has at least one interstice for dispensing the bonding agent.
58. The medical device as recited in claim 50 having a tissue acquisition device with a longitudinal axis about which the medical device is rotatable, a cutting element disposed on the shaft for cutting surrounding tissue, and a bushing disposed on the shaft which has at least one opening and which is rotatable relative to the shaft, and wherein the bonding agent is dispensed through the at least one opening and affixes the bushing to the surrounding tissue, so that the instrument is secured to the desired location without preventing rotational movement thereof.
59. The medical device as recited in claim 49 , wherein the fixation agent is an electrosurgical element disposed on the distal end of the shaft, which coagulates tissue surrounding the distal end of the shaft to affix tissue to the distal end of the shaft.
60. The medical device as recited in claim 49 , wherein the fixation agent is an electrical heating element disposed on the shaft distal end which cauterizes tissue surrounding the shaft distal end and thereby causes the tissue to be affixed to the distal end of the shaft.
61. The medical device of claim 49 , wherein the fixation agent is a, bonding agent selected from the group consisting of adhesives, solvents, and combinations thereof.
62. A medical device for securing medical instruments to a desired location in a patient's body comprising:
a. a shaft having a distal end configured for advancement within a patient's body to a desired location, a proximal end, a localization wire, and a longitudinal axis;
b. a fixation agent disposed on the distal end of the shaft which is adapted for affixing the distal end of the medical device at the desired location; and
c. a catheter having a lumen through which the localization wire is introduced into the patient's body.
63. The medical device as recited in claim 62 , wherein the fixation agent is a bonding agent, and the catheter has a second lumen which accommodates the bonding agent.
64. A medical device for securing medical instruments to a desired location in a patient's body comprising:
a. a shaft having a distal end configured for advancement within a patient's body to a desired location, a proximal end, and a longitudinal axis and
b. an expandable mechanical fixation agent which is configured for affixing the distal end of the shaft to the desired location.
65. The medical device as recited in claim 64 , wherein the mechanical fixation agent is a Mallicot structure.
66. The medical device as recited in claim 64 , wherein the mechanical fixation agent is a rolled stent and an axially movable sleeve, and the stent is exposed and unrolls to engage surrounding tissue and affix the distal end of the device when the sleeve is moved proximal to the stent.
67. The medical device as recited in claim 64 , wherein the mechanical fixation agent is a radially expandable and retractable basket which is actuatable to extend outwardly into tissue surrounding the distal end of the device to engage the tissue and thereby anchor the distal end of the shaft to the desired location.
68. The medical device as recited-in claim 64 , wherein the mechanical fixation agent is a wire.
69. The medical device as recited in claim 64 , wherein the mechanical fixation agent is an anchor.
70. A tissue acquisition instrument for retrieving tissue at a body site comprising
a. a longitudinal axis;
b. a distal end with a distal tip configured for advancement within a patient's body;
c. a cutting element having a contracted configuration for delivery to the body site and an expanded configuration for separating tissue from the body site;
d. a lumen containing a bonding agent and at least one opening disposed at the distal end for dispensing the bonding agent to surrounding tissue; and
e. a mechanical fixation element disposed proximal to the distal end which has an expanded configuration for securing the tissue acquisition instrument at a predetermined desired location, in order to insure that the tissue acquisition instrument remains in place during a tissue acquisition procedure and which has a fully retracted configuration with a transverse dimension of the bendable legs which is smaller than the expanded configuration.
71. The tissue acquisition instrument as recited in claim 70 , wherein the instrument is rotatable about the longitudinal axis and wherein a bushing is disposed on the instrument which is rotatable relative to the instrument and which has an electrical heating element disposed on the bushing which cauterizes and bonds to the bushing when the electrical heating element is energized so that the instrument is secured to a location without preventing rotational movement thereof.
72. The tissue acquisition instrument as recited in claim 70 , wherein the instrument is rotatable about the longitudinal axis and wherein the instrument has a bushing disposed on the instrument which is rotatable relative to the instrument and wherein the bonding agent dispensed through the at least one opening affixes the bushing to the surrounding tissue, so that the instrument is secured in a desired location without preventing rotational movement thereof.
73. The tissue acquisition instrument as recited in claim 70 , wherein the bonding agent comprises a surgical adhesive.
74. The tissue acquisition instrument as recited in claim 73 , wherein the surgical adhesive is a cyanoacrylate.
75. The tissue acquisition instrument as recited in claim 70 , wherein the bonding agent is a fibrin glue.
76. The tissue acquisition as recited in claim 70 wherein the bonding agent is a solvent.
77. A tissue acquisition instrument for retrieving tissue at a body site comprising:
a. a longitudinal axis;
b. a distal end with a distal tip configured for advancement within a patient's body;
c. a cutting element which has a contracted configuration for delivery to the body site and an expanded configuration for separating tissue from the body site;
d. and a mechanical fixation element which is a Mallicot structure, which is disposed proximal to the distal end, which has an expanded configuration for securing the tissue acquisition instrument at a predetermined desired location, in order to insure that the tissue acquisition instrument remains in place during a tissue acquisition procedure and which has a fully retracted configuration with a transverse dimension of the bendable legs which is smaller than the expanded configuration.
78. The tissue acquisition instrument as recited in claim 77 , wherein the mechanical fixation agent is a rolled stent and an axially movable sleeve and wherein the stent is exposed and unrolls to engage the surrounding tissue and affix to the distal end of the medical device when the sleeve is moved proximally to the stent.
79. The tissue acquisition instrument as recited in claim 77 , wherein the tissue specimen has a transverse dimension and the Mallicot structure is configured to have a transverse dimension smaller than the transverse dimension of the tissue specimen.
80. The tissue acquisition instrument as recited in claim 77 , wherein the cutting element has a transverse dimension and the Mallicot structure is configured to have a transverse dimension smaller than the transverse dimension of the cutting element.
81. A tissue acquisition instrument for retrieving a tissue specimen at a body site comprising:
a. a longitudinal axis;
b. a distal end with a distal tip configured for advancement within a patient's body;
c. a cutting element which has a contracted configuration for delivery to the body site and an expanded configuration for separating tissue from the body site and
d. a mechanical fixation element which is a radially expandable and retractable basket, which is disposed proximal to the distal end, which has an expanded configuration for securing the tissue acquisition instrument at a predetermined desired location, in order to insure that the tissue acquisition instrument remains in place during a tissue acquisition procedure and which has a fully retracted configuration with a transverse dimension which is smaller than the expanded configuration.
82. The tissue acquisition instrument as recited in claim 81 , wherein the tissue specimen has a transverse dimension and the radially expandable and retractable basket is configured to have a transverse dimension smaller than the transverse dimension of the tissue specimen.
83. The tissue acquisition instrument as recited in claim 81 , wherein the cutting element has a transverse dimension and the radially expandable and retractable basket is configured to have a transverse dimension smaller than the transverse dimension of the cutting element.
84. A tissue acquisition instrument for retrieving tissue at a body site comprising:
a. a longitudinal axis;
b. a distal end with a distal tip configured for advancement within a patient's body;
c. a-cutting element which has a contracted configuration for delivery to the body site and an expanded configuration for separating tissue from the body site;
d. a mechanical fixation element disposed proximal to the distal end which has an expanded configuration for securing the tissue acquisition instrument at a predetermined desired location, in order to insure that the tissue acquisition instrument remains in place during a tissue acquisition procedure and which has a contracted configuration with a transverse dimension which is smaller than the expanded configuration for delivery to a target site; and
e. a bushing which is disposed on the instrument, which is rotatable relative to the instrument, and which has an electrosurgical element disposed on the bushing which coagulates and bonds surrounding tissue to the bushing when the electrosurgical element is energized so that the instrument is secured in a desired location without preventing movement thereof.
85. A tissue acquisition instrument for retrieving tissue at a body site comprising:
a. an elongated shaft having a distal portion, a proximal portion and a longitudinal axis;
b. a distal end with a distal tip configured for advancement within a patient's body;
c. a cutting element which has a contracted configuration for delivery to the body site and an expanded configuration for separating tissue from the body site; and
d. a mechanical fixation element disposed proximal to the distal end which has an expanded configuration for securing the tissue acquisition instrument at a predetermined desired location, in order to insure that the tissue acquisition instrument remains in place during a tissue acquisition procedure, and which has a fully retracted configuration with a transverse dimension which is smaller than the expanded configuration and a hinged linkage configured to have a transverse dimension smaller than a transverse dimension of a tissue specimen.
86. A method for performing a tissue acquisition procedure comprising the steps of:
a.) providing a tissue acquisition instrument having a distal end, a proximal end, a longitudinal axis, and a cutting element;
b) placing the distal end of the instrument in a patient's body, so that the distal end is disposed in a desired tissue location and
c) affixing the distal end of the instrument to the desired tissue location by performing a step selected from the group consisting of dispensing a bonding agent from the distal end into surrounding tissue, activating an electrosurgical element, activating an electrical heating element, and combinations thereof.
87. The method as recited in claim 86 , wherein the step of affixing the distal end of the instrument is performed by dispensing a bonding agent from the distal end into surrounding tissue.
88. The method of claim 87 , wherein the bonding agent is selected from the group consisting of adhesives, solvents, and combinations thereof.
89. The method as recited in claim 86 , wherein the step of affixing the distal end of the instrument is performed by activating an electrosurgical element and operating it to coagulate tissue surrounding the distal end of the instrument, to an extent that the tissue bonds to the instrument distal end.
90. The method as recited in claim 86 , wherein the step of affixing the distal end of the instrument is performed by activating an electrical heating element and operating it to cauterize tissue surrounding the distal end of the instrument, to an extent that the tissue bonds to the instrument distal end.
91. A biopsy device for separating a tissue specimen from a target site within a patient, comprising:
a. an elongated shaft having a distal shaft portion, a proximal shaft portion, a tissue penetrating distal tip and a longitudinal axis;
b. a radially expandable, longitudinally oriented tissue cutting component which is secured to the distal shaft portion proximal to the distal tip, which has a distal end and a proximal end and which has a contracted configuration for delivery to the target site and an expanded configuration for cutting the tissue specimen from supporting tissue at the target site; and
c. a tissue fixation component disposed on the elongated shaft between the proximal and distal ends of the tissue cutting component to be fixed to the tissue specimen.
92. The device of claim 91 wherein the tissue fixation component includes a bushing which is disposed on the shaft between the ends of the tissue cutting component, which has at least one discharge opening and which is rotatable relative to the shaft, and wherein a bonding agent is dispensed through the at least one opening to affix the bushing to the tissue specimen.
93. The device of claim 91 , wherein the bonding agent is at least in part a surgical adhesive.
94. The device of claim 93 wherein the surgical adhesive is at least in part a cyanoacrylate.
95. The device of claim 91 , wherein the bonding agent is at least in part a fibrin glue.
96. The device of claim 91 wherein the bonding agent is at least in part a solvent.
97. The device of claim 91 , wherein the tissue fixation component includes a Mallicot structure.
98. The device of claim 91 , wherein the tissue fixation component includes an expandable stent.
99. The device of claim. 98 wherein an axially movable sleeve is disposed about the expandable stent, and removal of the sleeve allows the stent to expand and thereby be fixed to the tissue specimen.
100. The device of claim 91 , wherein the tissue fixation component includes a radially expandable and retractable basket.
101. The device of claim 91 wherein the tissue fixation component has at least one expandable band.
102. The device of claim 101 wherein the at least one expandable band is split at its center to form a tissue engaging protruding portion.
103. The device of claim 102 wherein the tissue engaging protruding portion extends distally.
104. The device of claim 103 wherein the tissue engaging protruding portion extends proximally.
105. The device of claim 101 wherein the tissue fixation component has a plurality of protruding portions, with at least one protruding portion extending distal and at least one protruding portion extending proximal.
106. The device of claim 105 wherein the protruding portions are part of split bands.
107. The device of claim 91 wherein the penetrating distal tip has an electrosurgical tissue cutting element.
108. The device of claim 107 wherein the electrosurgical tissue cutting element lies in a plane perpendicular to the longitudinal axis of the elongated shaft.
109. The device of claim 107 wherein the electrosurgical tissue cutting element is configured for connection to a RF power source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/303,154 US20060094983A1 (en) | 1998-03-03 | 2005-12-15 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7697398P | 1998-03-03 | 1998-03-03 | |
US09/057,303 US6331166B1 (en) | 1998-03-03 | 1998-04-08 | Breast biopsy system and method |
US09/146,185 US6540693B2 (en) | 1998-03-03 | 1998-09-01 | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US10/010,213 US7264596B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/303,154 US20060094983A1 (en) | 1998-03-03 | 2005-12-15 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/010,213 Continuation US7264596B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060094983A1 true US20060094983A1 (en) | 2006-05-04 |
Family
ID=22516198
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/146,185 Expired - Lifetime US6540693B2 (en) | 1998-02-26 | 1998-09-01 | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US10/004,987 Expired - Lifetime US6958044B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US10/010,213 Expired - Lifetime US7264596B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/059,992 Expired - Fee Related US8229553B2 (en) | 1998-09-01 | 2005-02-17 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/179,277 Expired - Fee Related US7329228B2 (en) | 1998-03-03 | 2005-07-11 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/303,154 Abandoned US20060094983A1 (en) | 1998-03-03 | 2005-12-15 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US13/543,309 Expired - Fee Related US9216012B2 (en) | 1998-09-01 | 2012-07-06 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US14/939,320 Abandoned US20160058433A1 (en) | 1998-09-01 | 2015-11-12 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/146,185 Expired - Lifetime US6540693B2 (en) | 1998-02-26 | 1998-09-01 | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US10/004,987 Expired - Lifetime US6958044B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US10/010,213 Expired - Lifetime US7264596B2 (en) | 1998-03-03 | 2001-12-04 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/059,992 Expired - Fee Related US8229553B2 (en) | 1998-09-01 | 2005-02-17 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US11/179,277 Expired - Fee Related US7329228B2 (en) | 1998-03-03 | 2005-07-11 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/543,309 Expired - Fee Related US9216012B2 (en) | 1998-09-01 | 2012-07-06 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US14/939,320 Abandoned US20160058433A1 (en) | 1998-09-01 | 2015-11-12 | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
Country Status (7)
Country | Link |
---|---|
US (8) | US6540693B2 (en) |
EP (1) | EP1109496B1 (en) |
JP (1) | JP2002523170A (en) |
AT (1) | ATE556657T1 (en) |
AU (1) | AU5579299A (en) |
CA (1) | CA2341528C (en) |
WO (1) | WO2000012009A2 (en) |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040102671A1 (en) * | 2001-11-02 | 2004-05-27 | Terwilliger Richard A. | Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing |
US20060074270A1 (en) * | 2003-05-13 | 2006-04-06 | World Wide Medical Technologies, Llc | Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing |
US20060217635A1 (en) * | 2005-03-24 | 2006-09-28 | Mccombs Elizabeth S | Biopsy device marker deployment |
US20070021643A1 (en) * | 2005-07-22 | 2007-01-25 | World Wide Medical Technologies, Llc | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US20070197971A1 (en) * | 2006-02-22 | 2007-08-23 | Krueger John A | Curable material delivery device with a rotatable supply section |
US20070197854A1 (en) * | 2006-01-27 | 2007-08-23 | Circulite, Inc. | Heart assist system |
US20070265488A1 (en) * | 2006-05-09 | 2007-11-15 | Worldwide Medical Technologies Llc | After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy |
US20080076960A1 (en) * | 2006-08-30 | 2008-03-27 | Circulite, Inc. | Cannula insertion devices, systems, and methods including a compressible member |
US20080076959A1 (en) * | 2006-08-30 | 2008-03-27 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US20080269540A1 (en) * | 2007-04-27 | 2008-10-30 | Worldwide Medical Technologies Llc | Seed cartridge adaptor and methods for use therewith |
US20090023975A1 (en) * | 2007-07-19 | 2009-01-22 | Circulite, Inc. | Cannula for heart chamber implantation and related systems and methods |
US20090088695A1 (en) * | 2007-09-28 | 2009-04-02 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US20090088730A1 (en) * | 2007-09-28 | 2009-04-02 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US20090171137A1 (en) * | 2006-09-14 | 2009-07-02 | Circulite, Inc. | Intravascular blood pump and catheter |
US20090182188A1 (en) * | 2006-08-30 | 2009-07-16 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US20090216063A1 (en) * | 2008-01-29 | 2009-08-27 | Biocompatibles Uk Limited | Bio-absorbable brachytherapy strands |
US20090318950A1 (en) * | 2006-07-24 | 2009-12-24 | Yossi Gross | Fibroid treatment apparatus and method |
US20100121130A1 (en) * | 2001-11-02 | 2010-05-13 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy |
US20100204678A1 (en) * | 2009-02-12 | 2010-08-12 | Mir Imran | Skin penetrating device and method for subcutaneous solid drug delivery |
US20100249490A1 (en) * | 2009-03-27 | 2010-09-30 | Circulite, Inc. | Transseptal cannula device, coaxial balloon delivery device, and methods of using the same |
US20100249491A1 (en) * | 2009-03-27 | 2010-09-30 | Circulite, Inc. | Two-piece transseptal cannula, delivery system, and method of delivery |
WO2010093837A3 (en) * | 2009-02-11 | 2010-12-16 | Tendyne Medical, Inc. | Percutaneous mitral annular stitch to decrease mitral regurgitation |
US7874976B1 (en) | 2006-09-07 | 2011-01-25 | Biocompatibles Uk Limited | Echogenic strands and spacers therein |
US20110022073A1 (en) * | 2009-07-27 | 2011-01-27 | Fibro Control, Inc. | Balloon with rigid tube for occluding the uterine artery |
US7878964B1 (en) | 2006-09-07 | 2011-02-01 | Biocompatibles Uk Limited | Echogenic spacers and strands |
US20110040281A1 (en) * | 2009-08-14 | 2011-02-17 | White Steven B | Integrated vascular delivery system |
US20110054487A1 (en) * | 2009-09-02 | 2011-03-03 | Circulite, Inc. | Coaxial transseptal guide-wire and needle assembly |
US20110112353A1 (en) * | 2009-11-09 | 2011-05-12 | Circulite, Inc. | Bifurcated outflow cannulae |
US20110118668A1 (en) * | 2009-11-13 | 2011-05-19 | Circulite, Inc. | Cannula stabilizer |
US20110196190A1 (en) * | 2010-02-11 | 2011-08-11 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US20110251516A1 (en) * | 2010-04-13 | 2011-10-13 | Thomas Doerr | Implant and applicator |
US8066627B2 (en) | 2001-11-02 | 2011-11-29 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings |
US8187159B2 (en) | 2005-07-22 | 2012-05-29 | Biocompatibles, UK | Therapeutic member including a rail used in brachytherapy and other radiation therapy |
KR101212412B1 (en) | 2010-08-24 | 2012-12-13 | 사회복지법인 삼성생명공익재단 | A needle for VATS |
US8343029B2 (en) | 2007-10-24 | 2013-01-01 | Circulite, Inc. | Transseptal cannula, tip, delivery system, and method |
US8470294B2 (en) | 2000-11-16 | 2013-06-25 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
WO2014009420A1 (en) * | 2012-07-12 | 2014-01-16 | Bowa-Electronic Gmbh & Co. Kg | Instrument for cutting body tissue |
WO2014055686A1 (en) * | 2012-10-02 | 2014-04-10 | Wallace Robert F | Implant insertion system |
US8771230B2 (en) | 2010-05-19 | 2014-07-08 | Tangent Medical Technologies, Llc | Integrated vascular delivery system |
US8814833B2 (en) | 2010-05-19 | 2014-08-26 | Tangent Medical Technologies Llc | Safety needle system operable with a medical device |
US9078749B2 (en) | 2007-09-13 | 2015-07-14 | Georg Lutter | Truncated cone heart valve stent |
US9216012B2 (en) | 1998-09-01 | 2015-12-22 | Senorx, Inc | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US9480559B2 (en) | 2011-08-11 | 2016-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US9510809B2 (en) | 1999-01-27 | 2016-12-06 | Senorx, Inc. | Tissue specimen isolating and damaging device and method |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US9597181B2 (en) | 2013-06-25 | 2017-03-21 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US9675454B2 (en) | 2012-07-30 | 2017-06-13 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US9750866B2 (en) | 2010-02-11 | 2017-09-05 | Circulite, Inc. | Cannula lined with tissue in-growth material |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9895221B2 (en) | 2012-07-28 | 2018-02-20 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US10028762B1 (en) | 2013-10-14 | 2018-07-24 | Percutaneous Cosmetic Devices LLC | Method of cutting soft tissue under facial skin |
US10086170B2 (en) | 2014-02-04 | 2018-10-02 | Icu Medical, Inc. | Self-priming systems and methods |
US10201419B2 (en) | 2014-02-05 | 2019-02-12 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US10463494B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US10517728B2 (en) | 2014-03-10 | 2019-12-31 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US10555718B2 (en) | 2013-10-17 | 2020-02-11 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US10610358B2 (en) | 2015-12-28 | 2020-04-07 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US10610354B2 (en) | 2013-08-01 | 2020-04-07 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US10610356B2 (en) | 2015-02-05 | 2020-04-07 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10667905B2 (en) | 2015-04-16 | 2020-06-02 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US10786351B2 (en) | 2015-01-07 | 2020-09-29 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
US11039921B2 (en) | 2016-06-13 | 2021-06-22 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US11090157B2 (en) | 2016-06-30 | 2021-08-17 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11096782B2 (en) | 2015-12-03 | 2021-08-24 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US11154399B2 (en) | 2017-07-13 | 2021-10-26 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11179236B2 (en) | 2009-12-08 | 2021-11-23 | Colorado State University Research Foundation | Device and system for transcatheter mitral valve replacement |
US11191639B2 (en) | 2017-08-28 | 2021-12-07 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11648110B2 (en) | 2019-12-05 | 2023-05-16 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11678980B2 (en) | 2020-08-19 | 2023-06-20 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
Families Citing this family (211)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852487B1 (en) * | 1996-02-09 | 2005-02-08 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
AU8507398A (en) * | 1997-07-24 | 1999-02-16 | James F. Mcguckin Jr. | Breast surgery method and apparatus |
US6626903B2 (en) * | 1997-07-24 | 2003-09-30 | Rex Medical, L.P. | Surgical biopsy device |
US8668737B2 (en) | 1997-10-10 | 2014-03-11 | Senorx, Inc. | Tissue marking implant |
US6530923B1 (en) * | 1998-02-10 | 2003-03-11 | Artemis Medical, Inc. | Tissue removal methods and apparatus |
DE69839888D1 (en) * | 1997-11-12 | 2008-09-25 | Genesis Technologies Llc | DEVICE FOR REMOVING OCCLUSIONS IN BIOLOGICAL PASSES |
US20040010206A1 (en) * | 1998-02-10 | 2004-01-15 | Dubrul William R. | Intraoperative tissue treatment methods |
US20100030256A1 (en) | 1997-11-12 | 2010-02-04 | Genesis Technologies Llc | Medical Devices and Methods |
US9498604B2 (en) | 1997-11-12 | 2016-11-22 | Genesis Technologies Llc | Medical device and method |
US6602204B2 (en) | 1998-02-10 | 2003-08-05 | Artemis Medical, Inc | Intraoperative tissue treatment methods |
US6270464B1 (en) * | 1998-06-22 | 2001-08-07 | Artemis Medical, Inc. | Biopsy localization method and device |
US6312452B1 (en) | 1998-01-23 | 2001-11-06 | Innercool Therapies, Inc. | Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device |
US6602265B2 (en) * | 1998-02-10 | 2003-08-05 | Artemis Medical, Inc. | Tissue separation medical device and method |
WO1999039648A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Entrapping apparatus and method for use |
US6638234B2 (en) * | 1998-03-03 | 2003-10-28 | Senorx, Inc. | Sentinel node location and biopsy |
US6599312B2 (en) | 1998-03-24 | 2003-07-29 | Innercool Therapies, Inc. | Isolated selective organ cooling apparatus |
US6905494B2 (en) | 1998-03-31 | 2005-06-14 | Innercool Therapies, Inc. | Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection |
US6997885B2 (en) * | 1998-04-08 | 2006-02-14 | Senorx, Inc. | Dilation devices and methods for removing tissue specimens |
US6540695B1 (en) * | 1998-04-08 | 2003-04-01 | Senorx, Inc. | Biopsy anchor device with cutter |
US6363940B1 (en) | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US20020058882A1 (en) * | 1998-06-22 | 2002-05-16 | Artemis Medical, Incorporated | Biopsy localization method and device |
US6179860B1 (en) | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
US6936014B2 (en) | 2002-10-16 | 2005-08-30 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
US6022362A (en) | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6440147B1 (en) | 1998-09-03 | 2002-08-27 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US9820824B2 (en) | 1999-02-02 | 2017-11-21 | Senorx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
US7651505B2 (en) | 2002-06-17 | 2010-01-26 | Senorx, Inc. | Plugged tip delivery for marker placement |
US8361082B2 (en) | 1999-02-02 | 2013-01-29 | Senorx, Inc. | Marker delivery device with releasable plug |
US8282573B2 (en) | 2003-02-24 | 2012-10-09 | Senorx, Inc. | Biopsy device with selectable tissue receiving aperture orientation and site illumination |
US6862470B2 (en) | 1999-02-02 | 2005-03-01 | Senorx, Inc. | Cavity-filling biopsy site markers |
US20090216118A1 (en) | 2007-07-26 | 2009-08-27 | Senorx, Inc. | Polysaccharide markers |
US7983734B2 (en) | 2003-05-23 | 2011-07-19 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US7189206B2 (en) | 2003-02-24 | 2007-03-13 | Senorx, Inc. | Biopsy device with inner cutter |
US8498693B2 (en) | 1999-02-02 | 2013-07-30 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US6575991B1 (en) | 1999-06-17 | 2003-06-10 | Inrad, Inc. | Apparatus for the percutaneous marking of a lesion |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US20040158150A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US6660013B2 (en) * | 1999-10-05 | 2003-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus for removing plaque from blood vessels using ultrasonic energy |
US6722371B1 (en) | 2000-02-18 | 2004-04-20 | Thomas J. Fogarty | Device for accurately marking tissue |
AU2001238382A1 (en) | 2000-02-18 | 2001-08-27 | Thomas J. M. D. Fogarty | Improved device for accurately marking tissue |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
US6994677B1 (en) * | 2003-02-25 | 2006-02-07 | Artemis Medical, Inc. | Tissue localizing and separating assembly |
US20030204188A1 (en) * | 2001-11-07 | 2003-10-30 | Artemis Medical, Inc. | Tissue separating and localizing catheter assembly |
US7534242B2 (en) | 2003-02-25 | 2009-05-19 | Artemis Medical, Inc. | Tissue separating catheter assembly and method |
US6494844B1 (en) | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
US7074232B2 (en) * | 2000-09-01 | 2006-07-11 | Medtronic Angiolink, Inc. | Advanced wound site management systems and methods |
US6482184B1 (en) * | 2000-09-29 | 2002-11-19 | Advanced Infusion, Inc. | Attachable catheter |
AU2002211568B2 (en) | 2000-10-16 | 2005-11-17 | Sanarus Medical, Inc. | Device for biopsy of tumors |
US6540694B1 (en) | 2000-10-16 | 2003-04-01 | Sanarus Medical, Inc. | Device for biopsy tumors |
WO2002076281A2 (en) * | 2000-11-07 | 2002-10-03 | Artemis Medical Inc. | Tissue separator assembly and method |
WO2002041786A2 (en) | 2000-11-20 | 2002-05-30 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US20020072739A1 (en) | 2000-12-07 | 2002-06-13 | Roberta Lee | Methods and devices for radiofrequency electrosurgery |
GB0120645D0 (en) | 2001-08-24 | 2001-10-17 | Smiths Group Plc | Medico-surgical devices |
US6589240B2 (en) | 2001-08-28 | 2003-07-08 | Rex Medical, L.P. | Tissue biopsy apparatus with collapsible cutter |
US6623437B2 (en) | 2001-08-28 | 2003-09-23 | Rex Medical, L.P. | Tissue biopsy apparatus |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
ATE426427T1 (en) | 2001-11-09 | 2009-04-15 | Angioscore Inc | BALLOON CATHETER WITH NON-DELIVEABLE STENT |
US20040111108A1 (en) | 2001-11-09 | 2004-06-10 | Farnan Robert C. | Balloon catheter with non-deployable stent |
US20030163147A1 (en) * | 2002-02-22 | 2003-08-28 | Rabiner Robert A. | Apparatus and method for using a vascular introducer with an ultrasonic probe |
US20030163143A1 (en) * | 2002-02-26 | 2003-08-28 | Akio Wakabayashi | Apparatus and method for suturing in restricted space |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US6752767B2 (en) | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
US7044956B2 (en) | 2002-07-03 | 2006-05-16 | Rubicor Medical, Inc. | Methods and devices for cutting and collecting soft tissue |
WO2004020024A1 (en) * | 2002-08-30 | 2004-03-11 | Inrad, Inc. | Localizing needle with fluid delivery |
US7931658B2 (en) | 2002-09-20 | 2011-04-26 | Interrad Medical, Inc. | Temporary retention device |
US7029451B2 (en) | 2002-11-06 | 2006-04-18 | Rubicor Medical, Inc. | Excisional devices having selective cutting and atraumatic configurations and methods of using same |
US20060036158A1 (en) | 2003-11-17 | 2006-02-16 | Inrad, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US8131346B2 (en) * | 2002-11-18 | 2012-03-06 | Bard Peripheral Vascular, Inc. | Apparatus and method for implanting a preloaded localization wire |
US6889833B2 (en) | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US7289839B2 (en) | 2002-12-30 | 2007-10-30 | Calypso Medical Technologies, Inc. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US8080026B2 (en) | 2003-01-21 | 2011-12-20 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
GB0307350D0 (en) | 2003-03-29 | 2003-05-07 | Smiths Group Plc | Catheters |
US7877133B2 (en) | 2003-05-23 | 2011-01-25 | Senorx, Inc. | Marker or filler forming fluid |
US7122011B2 (en) | 2003-06-18 | 2006-10-17 | Rubicor Medical, Inc. | Methods and devices for cutting and collecting soft tissue |
US7066879B2 (en) * | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US20090012530A1 (en) * | 2003-07-15 | 2009-01-08 | Fowler Dennis L | Insertable Device and System For Minimal Access Procedure |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
US7494473B2 (en) * | 2003-07-30 | 2009-02-24 | Intact Medical Corp. | Electrical apparatus and system with improved tissue capture component |
DE10345023A1 (en) * | 2003-09-24 | 2005-04-21 | Biotronik Gmbh & Co Kg | Ablation catheter, comprising electrode holding elements in radial extended position when released |
US7429259B2 (en) * | 2003-12-02 | 2008-09-30 | Cadeddu Jeffrey A | Surgical anchor and system |
US9408592B2 (en) | 2003-12-23 | 2016-08-09 | Senorx, Inc. | Biopsy device with aperture orientation and improved tip |
US7273471B1 (en) | 2003-12-23 | 2007-09-25 | Advanced Cardiovascular Systems, Inc. | Catheter balloon having a porous layer with ridges |
US20050149072A1 (en) * | 2003-12-31 | 2005-07-07 | Devries Robert B. | Devices and methods for tissue invagination |
US7316709B2 (en) * | 2004-01-13 | 2008-01-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter having a textured member for enhancing balloon or stent retention |
US20050187514A1 (en) * | 2004-02-09 | 2005-08-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device operating in a torsional mode |
US7794414B2 (en) * | 2004-02-09 | 2010-09-14 | Emigrant Bank, N.A. | Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes |
US7402140B2 (en) | 2004-02-12 | 2008-07-22 | Sanarus Medical, Inc. | Rotational core biopsy device with liquid cryogen adhesion probe |
US20050267488A1 (en) * | 2004-05-13 | 2005-12-01 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic medical device to treat urolithiasis |
US20050256410A1 (en) * | 2004-05-14 | 2005-11-17 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon |
IL162415A0 (en) * | 2004-06-09 | 2005-11-20 | Noam Shamay | A micro-catheter for crossing totalocclusions in blood vessels |
US20060047253A1 (en) * | 2004-08-24 | 2006-03-02 | Hayman Michael H | Needle assembly |
US8409111B2 (en) * | 2004-11-22 | 2013-04-02 | Bard Peripheral Vascular, Inc. | Removable localizing wire |
US20060116610A1 (en) * | 2004-11-30 | 2006-06-01 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with variable frequency drive |
US8343071B2 (en) | 2004-12-16 | 2013-01-01 | Senorx, Inc. | Biopsy device with aperture orientation and improved tip |
GB0503730D0 (en) * | 2005-02-23 | 2005-03-30 | Medical Device Innovations Ltd | Pneumothorax relief device |
KR100766340B1 (en) | 2005-03-28 | 2007-10-11 | (주)메드멕스 | Brush for liquid based cytology of cervix carcinoma |
JP2008537693A (en) * | 2005-03-31 | 2008-09-25 | サイティック コーポレーション | Internal biopsy marking |
US10357328B2 (en) | 2005-04-20 | 2019-07-23 | Bard Peripheral Vascular, Inc. and Bard Shannon Limited | Marking device with retractable cannula |
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
US7556042B2 (en) * | 2005-05-18 | 2009-07-07 | Apmed Solutions, Inc. | Methods and systems for tracheal access and ventilation |
US20060260617A1 (en) * | 2005-05-18 | 2006-11-23 | Apmed Solutions, Inc. | Methods and systems for tracheal access and ventilation |
US9095325B2 (en) | 2005-05-23 | 2015-08-04 | Senorx, Inc. | Tissue cutting member for a biopsy device |
US8715294B2 (en) * | 2005-08-05 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Gastric instrument sleeve to prevent cross contamination of stomach content and provide fixation and repeatable path |
US7572236B2 (en) | 2005-08-05 | 2009-08-11 | Senorx, Inc. | Biopsy device with fluid delivery to tissue specimens |
US8317725B2 (en) | 2005-08-05 | 2012-11-27 | Senorx, Inc. | Biopsy device with fluid delivery to tissue specimens |
US7473232B2 (en) * | 2006-02-24 | 2009-01-06 | Boston Scientific Scimed, Inc. | Obtaining a tissue sample |
US8016794B2 (en) | 2006-03-09 | 2011-09-13 | Interrad Medical, Inc. | Anchor device and method |
US20070219460A1 (en) * | 2006-03-15 | 2007-09-20 | Goldenberg Alec S | Aspiration needles |
WO2007130382A2 (en) * | 2006-04-29 | 2007-11-15 | Board Of Regents, The University Of Texas System | Devices for use in transluminal and endoluminal surgery |
US20070255303A1 (en) * | 2006-05-01 | 2007-11-01 | Ethicon Endo-Surgery, Inc. | Integrated Guidewire Needle Knife Device |
US20080058846A1 (en) * | 2006-08-31 | 2008-03-06 | Khashayar Vosough | Mechanical tissue morcellator |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
US20080140022A1 (en) * | 2006-12-08 | 2008-06-12 | Warsaw Orthopedic, Inc. | Coated Cannula with Protective Tip for Insertion Into a Patient |
WO2008073965A2 (en) | 2006-12-12 | 2008-06-19 | C.R. Bard Inc. | Multiple imaging mode tissue marker |
ES2432572T3 (en) | 2006-12-18 | 2013-12-04 | C.R. Bard, Inc. | Biopsy marker with imaging properties generated in situ |
US20080243082A1 (en) * | 2007-03-30 | 2008-10-02 | Closure Medical Corporation | System for surgical drain fixation |
WO2008137587A1 (en) * | 2007-05-03 | 2008-11-13 | I-Flow Corporation | Apparatus for securing a catheter within an anatomy |
US7753889B2 (en) | 2007-06-15 | 2010-07-13 | Interrad Medical, Inc. | Anchor instrumentation and methods |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
CN105213010A (en) | 2008-01-14 | 2016-01-06 | 康文图斯整形外科公司 | For the apparatus and method of fracture repair |
JP2009247696A (en) | 2008-04-08 | 2009-10-29 | Olympus Medical Systems Corp | High-frequency treatment equipment |
US8235948B2 (en) | 2008-06-27 | 2012-08-07 | Interrad Medical, Inc. | System for anchoring medical devices |
US8038653B2 (en) | 2008-07-16 | 2011-10-18 | Interrad Medical, Inc. | Anchor systems and methods |
US9327061B2 (en) | 2008-09-23 | 2016-05-03 | Senorx, Inc. | Porous bioabsorbable implant |
EP3005971B1 (en) | 2008-12-30 | 2023-04-26 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US8328764B2 (en) | 2009-02-06 | 2012-12-11 | Interrad Medical, Inc. | System for anchoring medical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US20110087224A1 (en) * | 2009-10-09 | 2011-04-14 | Cadeddu Jeffrey A | Magnetic surgical sled with variable arm |
US20110178520A1 (en) | 2010-01-15 | 2011-07-21 | Kyle Taylor | Rotary-rigid orthopaedic rod |
CA2823873A1 (en) * | 2010-01-20 | 2011-07-28 | Conventus Orthopaedics, Inc. | Apparatus and methods for bone access and cavity preparation |
AU2011224529C1 (en) * | 2010-03-08 | 2017-01-19 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
US8529466B2 (en) | 2010-03-30 | 2013-09-10 | Siteselect Medical Technologies, Inc. | Tissue excision device with rotating stylet blades |
EP2380604A1 (en) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Improved coating formulations for scoring or cutting balloon catheters |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US9561094B2 (en) | 2010-07-23 | 2017-02-07 | Nfinium Vascular Technologies, Llc | Devices and methods for treating venous diseases |
US8728008B2 (en) * | 2010-08-03 | 2014-05-20 | Biomet Biologics, Llc | Bone marrow aspiration needle |
US9078639B2 (en) | 2010-08-03 | 2015-07-14 | Biomet Biologics, Llc | Bone marrow aspiration needle |
CA2808671A1 (en) * | 2010-08-20 | 2012-02-23 | Queen's University At Kingston | Probe for diagnosis and treatment of muscle contraction dysfunction |
US8632559B2 (en) | 2010-09-21 | 2014-01-21 | Angioscore, Inc. | Method and system for treating valve stenosis |
US8343108B2 (en) | 2010-09-29 | 2013-01-01 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
KR101211397B1 (en) | 2010-11-18 | 2012-12-12 | 서울대학교병원 (분사무소) | Localization wire for video-assisted thoracoscopic surgery for small pulmonary nodule |
US20120303018A1 (en) * | 2011-05-23 | 2012-11-29 | Tyco Healthcare Group Lp | Tissue Dissectors |
US8758264B2 (en) * | 2011-06-29 | 2014-06-24 | Cook Medical Technologies Llc | Expandable device for full thickness biopsy |
US10314594B2 (en) | 2012-12-14 | 2019-06-11 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10813630B2 (en) | 2011-08-09 | 2020-10-27 | Corquest Medical, Inc. | Closure system for atrial wall |
US10307167B2 (en) | 2012-12-14 | 2019-06-04 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US8936576B2 (en) | 2011-09-15 | 2015-01-20 | Interrad Medical, Inc. | System for anchoring medical devices |
US9283027B2 (en) | 2011-10-24 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Battery drain kill feature in a battery powered device |
GB201120023D0 (en) * | 2011-11-21 | 2012-01-04 | Univ Dundee | Radio frequency surgical probe |
US8932263B2 (en) | 2012-02-17 | 2015-01-13 | Interrad Medical, Inc. | Anchoring an intravenous cannula |
US9314596B2 (en) | 2012-10-11 | 2016-04-19 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US20140142584A1 (en) * | 2012-11-16 | 2014-05-22 | Spinal Generations, Llc | Multichannel cannula and methods for using same |
US9833272B2 (en) * | 2012-11-16 | 2017-12-05 | Spinal Generations, Llc | Multichannel cannula and methods for using same |
US20140142689A1 (en) | 2012-11-21 | 2014-05-22 | Didier De Canniere | Device and method of treating heart valve malfunction |
WO2014081940A1 (en) | 2012-11-21 | 2014-05-30 | Trustees Of Boston University | Tissue markers and uses thereof |
US9550043B2 (en) | 2012-12-13 | 2017-01-24 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US9415190B2 (en) | 2013-02-13 | 2016-08-16 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
CN103142256B (en) * | 2013-03-15 | 2015-02-25 | 江苏苏云医疗器材有限公司 | Urethral sampler |
EP2986229A4 (en) | 2013-04-16 | 2016-09-28 | Transmed7 Llc | Methods, devices and therapeutic platform for automated, selectable, soft tissue resection |
US9381321B2 (en) | 2013-05-03 | 2016-07-05 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US20150057531A1 (en) * | 2013-08-26 | 2015-02-26 | Tera Dennis | Soft tissue lesion excision guide |
USD715942S1 (en) | 2013-09-24 | 2014-10-21 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716451S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715442S1 (en) | 2013-09-24 | 2014-10-14 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716450S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
US10117668B2 (en) | 2013-10-08 | 2018-11-06 | The Spectranetics Corporation | Balloon catheter with non-deployable stent having improved stability |
AU2013403325B2 (en) | 2013-10-15 | 2019-07-18 | Stryker Corporation | Device for creating a void space in a living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle |
US9566443B2 (en) | 2013-11-26 | 2017-02-14 | Corquest Medical, Inc. | System for treating heart valve malfunction including mitral regurgitation |
US9848947B2 (en) * | 2013-12-11 | 2017-12-26 | Boston Scientific Scimed, Inc. | Devices and methods for prostate tissue ablation and/or resection |
CA2969316A1 (en) | 2013-12-12 | 2015-06-18 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
EP3151904A4 (en) | 2014-06-04 | 2018-02-14 | Nfinium Vascular Technologies, LLC | Low radial force vascular device and method of occlusion |
US11589846B2 (en) * | 2014-09-12 | 2023-02-28 | Robert K Ackroyd | Dual needle core biopsy instrument |
US10842626B2 (en) | 2014-12-09 | 2020-11-24 | Didier De Canniere | Intracardiac device to correct mitral regurgitation |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10080571B2 (en) | 2015-03-06 | 2018-09-25 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
JP6777727B2 (en) | 2015-08-13 | 2020-10-28 | コヴィディエン・アクチェンゲゼルシャフト | Electrosurgical methods and equipment using stiffness variation capture parts |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
CN106236248B (en) * | 2016-08-30 | 2019-11-12 | 苏州涵轩信息科技有限公司 | A kind of radio frequency ablation device, system and method |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
WO2018129127A1 (en) * | 2017-01-06 | 2018-07-12 | The Trustees Of The University Of Pennsylvania | Lymph node access needle |
US11051845B2 (en) * | 2017-01-14 | 2021-07-06 | Choon Kee Lee | Non-surgical chest tube introducer |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
ES2963106T3 (en) * | 2017-03-03 | 2024-03-25 | Univ Arizona | Biopsy system for enhanced tissue collection |
US10631881B2 (en) | 2017-03-09 | 2020-04-28 | Flower Orthopedics Corporation | Plating depth gauge and countersink instrument |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US10959802B1 (en) | 2017-04-17 | 2021-03-30 | Linda Henderson | Tissue marking device and method of use |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
WO2019010252A2 (en) | 2017-07-04 | 2019-01-10 | Conventus Orthopaedics, Inc. | Apparatus and methods for treatment of a bone |
WO2019067561A1 (en) * | 2017-09-28 | 2019-04-04 | Merit Medical Systems, Inc. | Biopsy needle sample retention system |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
JP2021501618A (en) * | 2017-10-05 | 2021-01-21 | ウニベルシテート バーゼル | Core biopsy |
CN108272475B (en) * | 2018-01-26 | 2020-10-16 | 青岛大学附属医院 | Tumor specimen collecting device for surgical operation |
US11331161B2 (en) * | 2018-03-23 | 2022-05-17 | Covidien Lp | Surgical assemblies facilitating tissue marking and methods of use thereof |
CN108309444A (en) * | 2018-03-30 | 2018-07-24 | 广东百德医疗有限公司 | A kind of fluid injection and wicking structure suitable for microwave melt needle |
EP3866693A4 (en) | 2018-10-17 | 2022-08-24 | DFC Medical LLC | Tissue marking device and methods of use thereof |
CN109620307B (en) * | 2019-01-14 | 2021-06-04 | 郑州大学第一附属医院 | Tumor surgery is with excision instrument with anti-disengaging structure |
US11849986B2 (en) | 2019-04-24 | 2023-12-26 | Stryker Corporation | Systems and methods for off-axis augmentation of a vertebral body |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
EP4138716A1 (en) * | 2020-04-23 | 2023-03-01 | DFC Medical LLC | Tissue marking device and methods of use thereof |
EP3977949A1 (en) * | 2020-10-01 | 2022-04-06 | Globus Medical, Inc. | Systems and methods for fixating a navigation array |
US20240016482A1 (en) * | 2020-10-16 | 2024-01-18 | Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America | Compact biological matter collection systems |
CN113796954B (en) * | 2021-10-11 | 2023-03-28 | 杭州市第一人民医院 | Ablation needle capable of changing heating angle |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2032860A (en) * | 1933-03-24 | 1936-03-03 | Wappler Frederick Charles | Method for electrosurgical treatment of tissue |
US3805791A (en) * | 1971-07-01 | 1974-04-23 | K Seuberth | Apparatus for the diathermic removal of growths |
US3955578A (en) * | 1974-12-23 | 1976-05-11 | Cook Inc. | Rotatable surgical snare |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4202338A (en) * | 1977-11-18 | 1980-05-13 | Richard Wolf Gmbh | Device for removing excrescences and polyps |
US4294254A (en) * | 1977-12-08 | 1981-10-13 | Chamness Dale L | Surgical apparatus |
US4311143A (en) * | 1978-10-12 | 1982-01-19 | Olympus Optical Co., Ltd. | Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4503855A (en) * | 1981-12-31 | 1985-03-12 | Harald Maslanka | High frequency surgical snare electrode |
US4576162A (en) * | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
US4592356A (en) * | 1984-09-28 | 1986-06-03 | Pedro Gutierrez | Localizing device |
US4616656A (en) * | 1985-03-19 | 1986-10-14 | Nicholson James E | Self-actuating breast lesion probe and method of using |
US4638802A (en) * | 1984-09-21 | 1987-01-27 | Olympus Optical Co., Ltd. | High frequency instrument for incision and excision |
US4682606A (en) * | 1986-02-03 | 1987-07-28 | Decaprio Vincent H | Localizing biopsy apparatus |
US4718419A (en) * | 1985-08-05 | 1988-01-12 | Olympus Optical Co., Ltd. | Snare assembly for endoscope |
US4724836A (en) * | 1985-01-08 | 1988-02-16 | Olympus Optical Co., Ltd. | High-frequency incision tool |
US4774948A (en) * | 1986-11-24 | 1988-10-04 | Markham Charles W | Marking and retraction needle having retrievable stylet |
US4966583A (en) * | 1989-02-03 | 1990-10-30 | Elie Debbas | Apparatus for locating a breast mass |
US5007908A (en) * | 1989-09-29 | 1991-04-16 | Everest Medical Corporation | Electrosurgical instrument having needle cutting electrode and spot-coag electrode |
US5024617A (en) * | 1989-03-03 | 1991-06-18 | Wilson-Cook Medical, Inc. | Sphincterotomy method and device having controlled bending and orientation |
US5035696A (en) * | 1990-02-02 | 1991-07-30 | Everest Medical Corporation | Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy |
US5047027A (en) * | 1990-04-20 | 1991-09-10 | Everest Medical Corporation | Tumor resector |
US5059197A (en) * | 1989-04-15 | 1991-10-22 | Urie Robert G | Lesion location device |
US5078716A (en) * | 1990-05-11 | 1992-01-07 | Doll Larry F | Electrosurgical apparatus for resecting abnormal protruding growth |
US5080660A (en) * | 1990-05-11 | 1992-01-14 | Applied Urology, Inc. | Electrosurgical electrode |
US5111828A (en) * | 1990-09-18 | 1992-05-12 | Peb Biopsy Corporation | Device for percutaneous excisional breast biopsy |
USRE33925E (en) * | 1984-05-22 | 1992-05-12 | Cordis Corporation | Electrosurgical catheter aned method for vascular applications |
USRE34056E (en) * | 1989-07-31 | 1992-09-08 | C.R. Bard, Inc. | Tissue sampling device |
US5158561A (en) * | 1992-03-23 | 1992-10-27 | Everest Medical Corporation | Monopolar polypectomy snare with coagulation electrode |
US5158084A (en) * | 1989-11-22 | 1992-10-27 | Board Of Regents, The University Of Texas System | Modified localization wire for excisional biopsy |
US5196007A (en) * | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US5201741A (en) * | 1990-07-24 | 1993-04-13 | Andrew Surgical, Inc. | Surgical snare with shape memory effect wire |
US5207686A (en) * | 1992-04-15 | 1993-05-04 | Stuart Dolgin | Surgical snare |
US5210732A (en) * | 1990-11-27 | 1993-05-11 | Matsushita Electric Industrial Co., Ltd. | Optical disk apparatus |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5224488A (en) * | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
US5234426A (en) * | 1989-06-15 | 1993-08-10 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5312400A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery probes for endoscopic electrosurgical suction-irrigation instrument |
US5318564A (en) * | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5323768A (en) * | 1991-04-22 | 1994-06-28 | Olympus Optical Co., Ltd. | Diathermic dissector with a bifurcation having substantially the same cross-sectional area as a lumen for guiding a wire |
US5324288A (en) * | 1991-04-30 | 1994-06-28 | Utah Medical Products, Inc. | Electrosurgical loop with a depth gauge |
US5335671A (en) * | 1989-11-06 | 1994-08-09 | Mectra Labs, Inc. | Tissue removal assembly with provision for an electro-cautery device |
US5344420A (en) * | 1991-02-13 | 1994-09-06 | Applied Medical Resources Corporation | Surgical trocar |
US5353804A (en) * | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5380321A (en) * | 1992-11-04 | 1995-01-10 | Yoon; Inbae | Shielded energy transmitting surgical instrument and methods therefor |
US5395312A (en) * | 1991-10-18 | 1995-03-07 | Desai; Ashvin | Surgical tool |
US5395313A (en) * | 1993-08-13 | 1995-03-07 | Naves; Neil H. | Reciprocating arthroscopic shaver |
US5409004A (en) * | 1993-06-11 | 1995-04-25 | Cook Incorporated | Localization device with radiopaque markings |
US5415656A (en) * | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5417697A (en) * | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
US5417687A (en) * | 1993-04-30 | 1995-05-23 | Medical Scientific, Inc. | Bipolar electrosurgical trocar |
US5423770A (en) * | 1991-12-06 | 1995-06-13 | Yoon; Inbae | Automatic retractable safety penetrating instrument |
US5423814A (en) * | 1992-05-08 | 1995-06-13 | Loma Linda University Medical Center | Endoscopic bipolar coagulation device |
US5437665A (en) * | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US5441503A (en) * | 1988-09-24 | 1995-08-15 | Considine; John | Apparatus for removing tumors from hollow organs of the body |
US5449382A (en) * | 1992-11-04 | 1995-09-12 | Dayton; Michael P. | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5494881A (en) * | 1993-07-29 | 1996-02-27 | Ngk Insulators, Ltd. | Ceramic honeycomb structural body and catalyst comprising the same |
US5501654A (en) * | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
US5527331A (en) * | 1993-10-13 | 1996-06-18 | Femrx | Method for prostatic tissue resection |
US5526822A (en) * | 1994-03-24 | 1996-06-18 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US5542948A (en) * | 1994-05-24 | 1996-08-06 | Arrow Precision Products, Inc. | Surgical combination inject and snare apparatus |
US5562102A (en) * | 1994-11-21 | 1996-10-08 | Taylor; Thomas V. | Multiple biopsy device |
US5611803A (en) * | 1994-12-22 | 1997-03-18 | Urohealth Systems, Inc. | Tissue segmentation device |
US5643282A (en) * | 1994-08-22 | 1997-07-01 | Kieturakis; Maciej J. | Surgical instrument and method for removing tissue from an endoscopic workspace |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5653718A (en) * | 1994-05-16 | 1997-08-05 | Yoon; Inbae | Cannula anchoring system |
US5665085A (en) * | 1991-11-01 | 1997-09-09 | Medical Scientific, Inc. | Electrosurgical cutting tool |
US5674184A (en) * | 1994-03-15 | 1997-10-07 | Ethicon Endo-Surgery, Inc. | Surgical trocars with cutting electrode and viewing rod |
US5735847A (en) * | 1995-08-15 | 1998-04-07 | Zomed International, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5749887A (en) * | 1994-07-13 | 1998-05-12 | C. R. Bard, Inc. | Twisted strand localization wire |
US5752972A (en) * | 1995-11-09 | 1998-05-19 | Hoogeboom; Thomas J. | Modular endoscopic surgical instrument |
US5755697A (en) * | 1995-11-22 | 1998-05-26 | Jones; Calvin E. | Self-tunneling, self-securing percutaneous catheterization device and method of use thereof |
US5766163A (en) * | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
US5769086A (en) * | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US5794626A (en) * | 1994-08-18 | 1998-08-18 | Kieturakis; Maciej J. | Excisional stereotactic apparatus |
US5795308A (en) * | 1995-03-09 | 1998-08-18 | Russin; Lincoln D. | Apparatus for coaxial breast biopsy |
US5800445A (en) * | 1995-10-20 | 1998-09-01 | United States Surgical Corporation | Tissue tagging device |
US5810764A (en) * | 1992-01-07 | 1998-09-22 | Arthrocare Corporation | Resecting loop electrode and method for electrosurgical cutting and ablation |
US5810806A (en) * | 1996-08-29 | 1998-09-22 | Ethicon Endo-Surgery | Methods and devices for collection of soft tissue |
US5868740A (en) * | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
US5879357A (en) * | 1995-10-20 | 1999-03-09 | United States Surgical Corporation | Apparatus for marking tissue location |
US5947964A (en) * | 1995-03-03 | 1999-09-07 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5954670A (en) * | 1994-10-05 | 1999-09-21 | Baker; Gary H. | Mandrel-guided tandem multiple channel biopsy guide device and method of use |
US6022362A (en) * | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6059734A (en) * | 1995-01-06 | 2000-05-09 | Yoon; Inbae | Methods of collecting tissue at obstructed anatomical sites |
US6117153A (en) * | 1996-10-03 | 2000-09-12 | Interventional Technologies, Inc. | Neovascularization catheter |
US6133359A (en) * | 1992-01-07 | 2000-10-17 | Whitford Plastics Limited | Non-stick coatings |
US6280450B1 (en) * | 1997-07-24 | 2001-08-28 | Rex Medical, Lp | Breast surgery method and apparatus |
US6363940B1 (en) * | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US20020068879A1 (en) * | 1998-04-08 | 2002-06-06 | Paul Lubock | Dilation devices and methods for removing tissue specimens |
US20020077628A1 (en) * | 1998-09-01 | 2002-06-20 | Senorx, Inc. | Electrosurgical lesion location device |
US6454727B1 (en) * | 1998-03-03 | 2002-09-24 | Senorx, Inc. | Tissue acquisition system and method of use |
US6540695B1 (en) * | 1998-04-08 | 2003-04-01 | Senorx, Inc. | Biopsy anchor device with cutter |
US6679851B2 (en) * | 1998-09-01 | 2004-01-20 | Senorx, Inc. | Tissue accessing and anchoring device and method |
US6716179B2 (en) * | 1998-03-03 | 2004-04-06 | Senorx, Inc. | Sentinel node location and biopsy |
Family Cites Families (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34056A (en) * | 1862-01-07 | Edwin gomez | ||
US33925A (en) * | 1861-12-17 | Improvement in fastenings for shoulder-straps | ||
US2447169A (en) | 1945-01-16 | 1948-08-17 | Sousa Eugenio De | Surgical instrument and technique |
DE1225813B (en) | 1961-10-23 | 1966-09-29 | Optique Et Prec De Levallois S | Suction biopsy probe |
US3844272A (en) | 1969-02-14 | 1974-10-29 | A Banko | Surgical instruments |
US3598108A (en) | 1969-02-28 | 1971-08-10 | Khosrow Jamshidi | Biopsy technique and biopsy device |
US3945375A (en) | 1972-04-04 | 1976-03-23 | Surgical Design Corporation | Rotatable surgical instrument |
JPS5727445Y2 (en) | 1973-06-20 | 1982-06-15 | ||
US3847153A (en) | 1973-09-14 | 1974-11-12 | B Weissman | Disposable probe tip for electro-surgical device |
US4243048A (en) | 1976-09-21 | 1981-01-06 | Jim Zegeer | Biopsy device |
GB2053691B (en) | 1979-07-24 | 1983-04-27 | Wolf Gmbh Richard | Endoscopes |
JPS614260B2 (en) | 1980-05-13 | 1986-02-07 | Amerikan Hosupitaru Sapurai Corp | |
US4565200A (en) | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US4493320A (en) | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
DE3419962A1 (en) | 1983-05-30 | 1984-12-06 | Olympus Optical Co., Ltd., Tokio/Tokyo | HIGH FREQUENCY INCISION AND EXCISION INSTRUMENT |
US4773413A (en) | 1983-06-13 | 1988-09-27 | Trimedyne Laser Systems, Inc. | Localized heat applying medical device |
JPS60103944A (en) | 1983-11-10 | 1985-06-08 | 株式会社東芝 | Ultrasonic examination apparatus |
CH661199A5 (en) | 1983-12-22 | 1987-07-15 | Sulzer Ag | MARKING IMPLANT. |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
US5066295A (en) | 1986-05-13 | 1991-11-19 | Mill-Rose Laboratories, Inc. | Rotatable surgical snare |
DE3804849A1 (en) | 1987-02-19 | 1988-09-01 | Cramer Bernhard M Priv Doz Dr | Device for removing blood clots from vessels |
DE3721663C3 (en) * | 1987-06-26 | 1997-10-09 | Lignotock Gmbh | Process for hot pressing molded articles |
US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
DE3916161A1 (en) | 1989-05-18 | 1990-11-22 | Wolf Gmbh Richard | ELECTROSURGICAL INSTRUMENT |
US5041124A (en) | 1989-07-14 | 1991-08-20 | Kensey Nash Corporation | Apparatus and method for sclerosing of body tissue |
US4997435A (en) | 1989-09-25 | 1991-03-05 | Methodist Hospital Of Indiana Inc. | Percutaneous catheter with encapsulating receptacle |
US5797907A (en) | 1989-11-06 | 1998-08-25 | Mectra Labs, Inc. | Electrocautery cutter |
EP0448857A1 (en) | 1990-03-27 | 1991-10-02 | Jong-Khing Huang | An apparatus of a spinning type of resectoscope for prostatectomy |
US5195958A (en) | 1990-05-25 | 1993-03-23 | Phillips Edward H | Tool for laparoscopic surgery |
US5527298A (en) | 1990-06-11 | 1996-06-18 | Schneider (Usa) Inc. | Tracking guidewire |
US5037379A (en) | 1990-06-22 | 1991-08-06 | Vance Products Incorporated | Surgical tissue bag and method for percutaneously debulking tissue |
US5234288A (en) * | 1990-06-29 | 1993-08-10 | State Paving Corporation | Integrated column and pile |
US5163938A (en) | 1990-07-19 | 1992-11-17 | Olympus Optical Co., Ltd. | High-frequency surgical treating device for use with endoscope |
US5405379A (en) * | 1990-07-26 | 1995-04-11 | Lane; Rodney J. | Self expanding vascular endoprosthesis for aneurysms |
US5100423A (en) | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5282799A (en) | 1990-08-24 | 1994-02-01 | Everest Medical Corporation | Bipolar electrosurgical scalpel with paired loop electrodes |
IL96352A (en) | 1990-11-14 | 1994-11-11 | Du Kedem Tech Ltd | Hard tissue biopsy instrument |
US5192270A (en) | 1990-11-19 | 1993-03-09 | Carswell Jr Donald D | Hypodermic syringe and a method for marking injections |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5599347A (en) | 1991-02-13 | 1997-02-04 | Applied Medical Resources Corporation | Surgical trocar with cutoff circuit |
US5984919A (en) | 1991-02-13 | 1999-11-16 | Applied Medical Resources Corporation | Surgical trocar |
US5409453A (en) | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5133360A (en) | 1991-03-07 | 1992-07-28 | Spears Colin P | Spears retriever |
US5147307A (en) | 1991-06-17 | 1992-09-15 | Gluck Seymour M | Anatomical marker device and method |
AU662357B2 (en) * | 1991-10-18 | 1995-08-31 | Ethicon Inc. | Adhesion barrier applicator |
US5217468A (en) | 1991-10-24 | 1993-06-08 | Mectra Labs, Inc. | Tissue encapsulating sheath |
US5331166A (en) | 1991-10-25 | 1994-07-19 | Kabushiki Kaisha Morita Seisakusho | Dental X-ray image detecting device with an automatic exposure function |
US5308327A (en) | 1991-11-25 | 1994-05-03 | Advanced Surgical Inc. | Self-deployed inflatable retractor |
US5215521A (en) | 1991-11-26 | 1993-06-01 | Cochran James C | Laparoscopy organ retrieval apparatus and procedure |
US5902272A (en) | 1992-01-07 | 1999-05-11 | Arthrocare Corporation | Planar ablation probe and method for electrosurgical cutting and ablation |
KR0145453B1 (en) | 1992-01-21 | 1998-07-01 | 알렌 제이 | Electrosurgical trocar control device |
US5509900A (en) | 1992-03-02 | 1996-04-23 | Kirkman; Thomas R. | Apparatus and method for retaining a catheter in a blood vessel in a fixed position |
US5201732A (en) | 1992-04-09 | 1993-04-13 | Everest Medical Corporation | Bipolar sphincterotomy utilizing side-by-side parallel wires |
US5217458A (en) * | 1992-04-09 | 1993-06-08 | Everest Medical Corporation | Bipolar biopsy device utilizing a rotatable, single-hinged moving element |
US5562720A (en) * | 1992-05-01 | 1996-10-08 | Vesta Medical, Inc. | Bipolar/monopolar endometrial ablation device and method |
US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5311858A (en) | 1992-06-15 | 1994-05-17 | Adair Edwin Lloyd | Imaging tissue or stone removal basket |
US5221281A (en) | 1992-06-30 | 1993-06-22 | Valleylab Inc. | Electrosurgical tubular trocar |
WO1994001536A1 (en) | 1992-07-07 | 1994-01-20 | University Research Corporation | Cancer immunotherapy with antibodies to cancer procoagulant |
DK91092D0 (en) | 1992-07-10 | 1992-07-10 | Novo Nordisk As | |
WO1994002077A2 (en) | 1992-07-15 | 1994-02-03 | Angelase, Inc. | Ablation catheter system |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5741225A (en) | 1992-08-12 | 1998-04-21 | Rita Medical Systems | Method for treating the prostate |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5295990A (en) | 1992-09-11 | 1994-03-22 | Levin John M | Tissue sampling and removal device |
US5549108A (en) | 1992-09-25 | 1996-08-27 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5401272A (en) | 1992-09-25 | 1995-03-28 | Envision Surgical Systems, Inc. | Multimodality probe with extendable bipolar electrodes |
US5471982A (en) * | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
CA2102084A1 (en) * | 1992-11-09 | 1994-05-10 | Howard C. Topel | Surgical cutting instrument for coring tissue affixed thereto |
US5501694A (en) | 1992-11-13 | 1996-03-26 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5330483A (en) | 1992-12-18 | 1994-07-19 | Advanced Surgical Inc. | Specimen reduction device |
US5425705A (en) * | 1993-02-22 | 1995-06-20 | Stanford Surgical Technologies, Inc. | Thoracoscopic devices and methods for arresting the heart |
US5578031A (en) | 1993-05-10 | 1996-11-26 | Wilk; Peter J. | Laparoscopic instrument assembly and associated method |
WO1994027670A1 (en) | 1993-06-02 | 1994-12-08 | Cardiac Pathways Corporation | Catheter having tip with fixation means |
WO1995001751A1 (en) | 1993-07-01 | 1995-01-19 | Boston Scientific Corporation | Imaging, electrical potential sensing, and ablation catheters |
GB9314641D0 (en) | 1993-07-15 | 1993-08-25 | Salim Aws S M | Tunnelling umbrella |
GB9314640D0 (en) | 1993-07-15 | 1993-08-25 | Salim Aws S M | Tunnellimg catheter |
US5374188A (en) | 1993-07-19 | 1994-12-20 | Bei Medical Systems, Inc. | Electro-surgical instrument and method for use with dental implantations |
AU7404994A (en) | 1993-07-30 | 1995-02-28 | Regents Of The University Of California, The | Endocardial infusion catheter |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5573008A (en) * | 1993-10-29 | 1996-11-12 | Boston Scientific Corporation | Multiple biopsy sampling coring device |
US5840044A (en) * | 1993-09-30 | 1998-11-24 | Boston Scientific Corporation | Multiple biopsy sampling forceps |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5728143A (en) | 1995-08-15 | 1998-03-17 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5487385A (en) | 1993-12-03 | 1996-01-30 | Avitall; Boaz | Atrial mapping and ablation catheter system |
US5403310A (en) | 1994-02-04 | 1995-04-04 | Fischer; Nathan R. | Instrument for electro-surgical excisor for the transformation zone of the uterine cervix and method of using same |
US5554159A (en) | 1994-02-04 | 1996-09-10 | Fischer; Nathan R. | Instrument for electro-surgical excisor for the transformation zone of the uterine cervix and method of using same |
US5441498A (en) | 1994-02-16 | 1995-08-15 | Envision Surgical Systems, Inc. | Method of using a multimodality probe with extendable bipolar electrodes |
US5397320A (en) | 1994-03-03 | 1995-03-14 | Essig; Mitchell N. | Dissecting surgical device and associated method |
US5477862A (en) | 1994-03-14 | 1995-12-26 | Haaga; John R. | Cutting tip for biopsy needle |
US5595185A (en) | 1994-08-11 | 1997-01-21 | N.M.B. Medical Applications Ltd. | Single puncture multi-biopsy gun |
US5509916A (en) | 1994-08-12 | 1996-04-23 | Valleylab Inc. | Laser-assisted electrosurgery system |
US5697946A (en) * | 1994-10-07 | 1997-12-16 | Origin Medsystems, Inc. | Method and apparatus for anchoring laparoscopic instruments |
US6032673A (en) | 1994-10-13 | 2000-03-07 | Femrx, Inc. | Methods and devices for tissue removal |
US5578030A (en) | 1994-11-04 | 1996-11-26 | Levin; John M. | Biopsy needle with cauterization feature |
US5684739A (en) | 1994-11-30 | 1997-11-04 | Nkk Corporation | Apparatus and method for determining current or voltage of a semiconductor device |
US5603711A (en) | 1995-01-20 | 1997-02-18 | Everest Medical Corp. | Endoscopic bipolar biopsy forceps |
US5814044A (en) | 1995-02-10 | 1998-09-29 | Enable Medical Corporation | Apparatus and method for morselating and removing tissue from a patient |
CA2168694A1 (en) | 1995-03-20 | 1996-09-21 | Wayne P. Young | Trocar assembly with electrocautery penetrating tip |
DE19515280C2 (en) | 1995-04-26 | 1997-06-12 | Siegfried Riek | Device for removing tissue or the like from the abdominal cavity |
US5700273A (en) | 1995-07-14 | 1997-12-23 | C.R. Bard, Inc. | Wound closure apparatus and method |
DE19528440C2 (en) | 1995-08-02 | 1998-09-10 | Harald Dr Med Kuebler | Surgical cutting instrument |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US5817034A (en) | 1995-09-08 | 1998-10-06 | United States Surgical Corporation | Apparatus and method for removing tissue |
US5857982A (en) | 1995-09-08 | 1999-01-12 | United States Surgical Corporation | Apparatus and method for removing tissue |
US5857981A (en) | 1995-09-12 | 1999-01-12 | Bucalo; Brian D. | Biopsy instrument with tissue specimen retaining and retrieval device |
US5853374A (en) | 1995-10-11 | 1998-12-29 | Applied Medical Resources Corporation | Tissue collection and retrieval bag |
US5782775A (en) | 1995-10-20 | 1998-07-21 | United States Surgical Corporation | Apparatus and method for localizing and removing tissue |
US5848978A (en) * | 1995-11-14 | 1998-12-15 | Genx International, Inc. | Surgical biopsy device |
US5676663A (en) | 1995-11-21 | 1997-10-14 | Kim; David S. | Cone biopsy instrument |
US5687739A (en) | 1995-12-06 | 1997-11-18 | Interventional Concepts, Inc. | Biopsy specimen cutter |
NL1001890C2 (en) * | 1995-12-13 | 1997-06-17 | Cordis Europ | Catheter with plate-shaped electrode array. |
US6126656A (en) | 1996-01-30 | 2000-10-03 | Utah Medical Products, Inc. | Electrosurgical cutting device |
US5730726A (en) | 1996-03-04 | 1998-03-24 | Klingenstein; Ralph James | Apparatus and method for removing fecal impaction |
US6139527A (en) | 1996-03-05 | 2000-10-31 | Vnus Medical Technologies, Inc. | Method and apparatus for treating hemorrhoids |
WO1997035522A1 (en) | 1996-03-25 | 1997-10-02 | Safe Conduct Ab | Device for extraction of tissue or the like |
DE19706751A1 (en) | 1996-03-27 | 1997-10-02 | Valleylab Inc | Electrosurgical device for removing tissue in body areas |
US5725521A (en) | 1996-03-29 | 1998-03-10 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
US5733283A (en) | 1996-06-05 | 1998-03-31 | Malis; Jerry L. | Flat loop bipolar electrode tips for electrosurgical instrument |
DE19626408A1 (en) | 1996-07-01 | 1998-01-08 | Berchtold Gmbh & Co Geb | Trocar for laparoscopic operations |
CA2256503C (en) | 1996-07-26 | 2005-10-25 | Cascade Engineering, Inc. | System for fastening sheet materials together |
US5902310A (en) | 1996-08-12 | 1999-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for marking tissue |
US5882316A (en) | 1996-08-29 | 1999-03-16 | City Of Hope | Minimally invasive biopsy device |
US5913857A (en) | 1996-08-29 | 1999-06-22 | Ethicon End0-Surgery, Inc. | Methods and devices for collection of soft tissue |
US5769794A (en) | 1996-09-04 | 1998-06-23 | Smith & Nephew Endoscopy, Inc | Tissue retrieval bag and method for removing cancerous tissue |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US5827268A (en) | 1996-10-30 | 1998-10-27 | Hearten Medical, Inc. | Device for the treatment of patent ductus arteriosus and method of using the device |
JP2001505460A (en) * | 1996-12-02 | 2001-04-24 | アンジオトラックス,インコーポレイテッド | Apparatus and method for performing surgery percutaneously |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
CA2201458C (en) | 1997-04-01 | 2001-06-12 | George A. Vilos | Improved resectoscope |
US5759202A (en) * | 1997-04-28 | 1998-06-02 | Sulzer Intermedics Inc. | Endocardial lead with lateral active fixation |
US5984920A (en) | 1997-05-09 | 1999-11-16 | Medi-Globe Corporation | Rotatable sphincterotome/papillotome and method of use |
US6050992A (en) | 1997-05-19 | 2000-04-18 | Radiotherapeutics Corporation | Apparatus and method for treating tissue with multiple electrodes |
US6383145B1 (en) | 1997-09-12 | 2002-05-07 | Imagyn Medical Technologies California, Inc. | Incisional breast biopsy device |
US6050955A (en) | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6142955A (en) | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6494881B1 (en) | 1997-09-30 | 2002-12-17 | Scimed Life Systems, Inc. | Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode |
US6063082A (en) | 1997-11-04 | 2000-05-16 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device |
US6484050B1 (en) | 1997-11-18 | 2002-11-19 | Care Wise Medical Products Corporation | Minimally invasive surgical instrument for tissue identification, dislodgment and retrieval and methods of use |
US6106542A (en) | 1998-01-23 | 2000-08-22 | Microsurgical Laboratories, Inc. | Surgical forceps |
US6261241B1 (en) | 1998-03-03 | 2001-07-17 | Senorx, Inc. | Electrosurgical biopsy device and method |
US6659105B2 (en) | 1998-02-26 | 2003-12-09 | Senorx, Inc. | Tissue specimen isolating and damaging device and method |
US6540693B2 (en) | 1998-03-03 | 2003-04-01 | Senorx, Inc. | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US6331166B1 (en) | 1998-03-03 | 2001-12-18 | Senorx, Inc. | Breast biopsy system and method |
US6344026B1 (en) | 1998-04-08 | 2002-02-05 | Senorx, Inc. | Tissue specimen encapsulation device and method thereof |
US6758848B2 (en) | 1998-03-03 | 2004-07-06 | Senorx, Inc. | Apparatus and method for accessing a body site |
US6497706B1 (en) | 1998-03-03 | 2002-12-24 | Senorx, Inc. | Biopsy device and method of use |
US6471700B1 (en) | 1998-04-08 | 2002-10-29 | Senorx, Inc. | Apparatus and method for accessing biopsy site |
US5951550A (en) | 1998-03-11 | 1999-09-14 | Utah Medical Products, Inc. | Endocervical conization electrode apparatus |
US6007497A (en) | 1998-06-30 | 1999-12-28 | Ethicon Endo-Surgery, Inc. | Surgical biopsy device |
US6120462A (en) | 1999-03-31 | 2000-09-19 | Ethicon Endo-Surgery, Inc. | Control method for an automated surgical biopsy device |
US6514248B1 (en) | 1999-10-15 | 2003-02-04 | Neothermia Corporation | Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes |
US20020072739A1 (en) | 2000-12-07 | 2002-06-13 | Roberta Lee | Methods and devices for radiofrequency electrosurgery |
US6520421B2 (en) * | 2000-12-29 | 2003-02-18 | Siemens Automotive Corporation | Modular fuel injector having an integral filter and o-ring retainer |
US6671637B2 (en) | 2002-01-29 | 2003-12-30 | Sumitomo Heavy Industries, Ltd. | Thrust ripple measuring apparatus and method in linear motor |
-
1998
- 1998-09-01 US US09/146,185 patent/US6540693B2/en not_active Expired - Lifetime
-
1999
- 1999-08-24 CA CA002341528A patent/CA2341528C/en not_active Expired - Fee Related
- 1999-08-24 AU AU55792/99A patent/AU5579299A/en not_active Abandoned
- 1999-08-24 EP EP99942405A patent/EP1109496B1/en not_active Expired - Lifetime
- 1999-08-24 WO PCT/US1999/019123 patent/WO2000012009A2/en active Application Filing
- 1999-08-24 JP JP2000567136A patent/JP2002523170A/en not_active Ceased
- 1999-08-24 AT AT99942405T patent/ATE556657T1/en active
-
2001
- 2001-12-04 US US10/004,987 patent/US6958044B2/en not_active Expired - Lifetime
- 2001-12-04 US US10/010,213 patent/US7264596B2/en not_active Expired - Lifetime
-
2005
- 2005-02-17 US US11/059,992 patent/US8229553B2/en not_active Expired - Fee Related
- 2005-07-11 US US11/179,277 patent/US7329228B2/en not_active Expired - Fee Related
- 2005-12-15 US US11/303,154 patent/US20060094983A1/en not_active Abandoned
-
2012
- 2012-07-06 US US13/543,309 patent/US9216012B2/en not_active Expired - Fee Related
-
2015
- 2015-11-12 US US14/939,320 patent/US20160058433A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2032860A (en) * | 1933-03-24 | 1936-03-03 | Wappler Frederick Charles | Method for electrosurgical treatment of tissue |
US3805791A (en) * | 1971-07-01 | 1974-04-23 | K Seuberth | Apparatus for the diathermic removal of growths |
US3955578A (en) * | 1974-12-23 | 1976-05-11 | Cook Inc. | Rotatable surgical snare |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4202338A (en) * | 1977-11-18 | 1980-05-13 | Richard Wolf Gmbh | Device for removing excrescences and polyps |
US4294254A (en) * | 1977-12-08 | 1981-10-13 | Chamness Dale L | Surgical apparatus |
US4311143A (en) * | 1978-10-12 | 1982-01-19 | Olympus Optical Co., Ltd. | Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4503855A (en) * | 1981-12-31 | 1985-03-12 | Harald Maslanka | High frequency surgical snare electrode |
US4576162A (en) * | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
USRE33925E (en) * | 1984-05-22 | 1992-05-12 | Cordis Corporation | Electrosurgical catheter aned method for vascular applications |
US4638802A (en) * | 1984-09-21 | 1987-01-27 | Olympus Optical Co., Ltd. | High frequency instrument for incision and excision |
US4592356A (en) * | 1984-09-28 | 1986-06-03 | Pedro Gutierrez | Localizing device |
US4724836A (en) * | 1985-01-08 | 1988-02-16 | Olympus Optical Co., Ltd. | High-frequency incision tool |
US4616656A (en) * | 1985-03-19 | 1986-10-14 | Nicholson James E | Self-actuating breast lesion probe and method of using |
US4718419A (en) * | 1985-08-05 | 1988-01-12 | Olympus Optical Co., Ltd. | Snare assembly for endoscope |
US4682606A (en) * | 1986-02-03 | 1987-07-28 | Decaprio Vincent H | Localizing biopsy apparatus |
US4774948A (en) * | 1986-11-24 | 1988-10-04 | Markham Charles W | Marking and retraction needle having retrievable stylet |
US5441503A (en) * | 1988-09-24 | 1995-08-15 | Considine; John | Apparatus for removing tumors from hollow organs of the body |
US4966583A (en) * | 1989-02-03 | 1990-10-30 | Elie Debbas | Apparatus for locating a breast mass |
US5024617A (en) * | 1989-03-03 | 1991-06-18 | Wilson-Cook Medical, Inc. | Sphincterotomy method and device having controlled bending and orientation |
US5059197A (en) * | 1989-04-15 | 1991-10-22 | Urie Robert G | Lesion location device |
US5234426A (en) * | 1989-06-15 | 1993-08-10 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
USRE34056E (en) * | 1989-07-31 | 1992-09-08 | C.R. Bard, Inc. | Tissue sampling device |
US5007908A (en) * | 1989-09-29 | 1991-04-16 | Everest Medical Corporation | Electrosurgical instrument having needle cutting electrode and spot-coag electrode |
US5335671A (en) * | 1989-11-06 | 1994-08-09 | Mectra Labs, Inc. | Tissue removal assembly with provision for an electro-cautery device |
US5158084A (en) * | 1989-11-22 | 1992-10-27 | Board Of Regents, The University Of Texas System | Modified localization wire for excisional biopsy |
US5035696A (en) * | 1990-02-02 | 1991-07-30 | Everest Medical Corporation | Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy |
US5047027A (en) * | 1990-04-20 | 1991-09-10 | Everest Medical Corporation | Tumor resector |
US5078716A (en) * | 1990-05-11 | 1992-01-07 | Doll Larry F | Electrosurgical apparatus for resecting abnormal protruding growth |
US5080660A (en) * | 1990-05-11 | 1992-01-14 | Applied Urology, Inc. | Electrosurgical electrode |
US5201741A (en) * | 1990-07-24 | 1993-04-13 | Andrew Surgical, Inc. | Surgical snare with shape memory effect wire |
US5111828A (en) * | 1990-09-18 | 1992-05-12 | Peb Biopsy Corporation | Device for percutaneous excisional breast biopsy |
US5353804A (en) * | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5210732A (en) * | 1990-11-27 | 1993-05-11 | Matsushita Electric Industrial Co., Ltd. | Optical disk apparatus |
US5344420A (en) * | 1991-02-13 | 1994-09-06 | Applied Medical Resources Corporation | Surgical trocar |
US5323768A (en) * | 1991-04-22 | 1994-06-28 | Olympus Optical Co., Ltd. | Diathermic dissector with a bifurcation having substantially the same cross-sectional area as a lumen for guiding a wire |
US5324288A (en) * | 1991-04-30 | 1994-06-28 | Utah Medical Products, Inc. | Electrosurgical loop with a depth gauge |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5196007A (en) * | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US5395312A (en) * | 1991-10-18 | 1995-03-07 | Desai; Ashvin | Surgical tool |
US5665085A (en) * | 1991-11-01 | 1997-09-09 | Medical Scientific, Inc. | Electrosurgical cutting tool |
US5423770A (en) * | 1991-12-06 | 1995-06-13 | Yoon; Inbae | Automatic retractable safety penetrating instrument |
US5810764A (en) * | 1992-01-07 | 1998-09-22 | Arthrocare Corporation | Resecting loop electrode and method for electrosurgical cutting and ablation |
US6133359A (en) * | 1992-01-07 | 2000-10-17 | Whitford Plastics Limited | Non-stick coatings |
US5158561A (en) * | 1992-03-23 | 1992-10-27 | Everest Medical Corporation | Monopolar polypectomy snare with coagulation electrode |
US5207686A (en) * | 1992-04-15 | 1993-05-04 | Stuart Dolgin | Surgical snare |
US5462553A (en) * | 1992-04-15 | 1995-10-31 | Dolgin; Stuart | Surgical snare with a frangible loop |
US5318564A (en) * | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5423814A (en) * | 1992-05-08 | 1995-06-13 | Loma Linda University Medical Center | Endoscopic bipolar coagulation device |
US5224488A (en) * | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
US5312400A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery probes for endoscopic electrosurgical suction-irrigation instrument |
US5380321A (en) * | 1992-11-04 | 1995-01-10 | Yoon; Inbae | Shielded energy transmitting surgical instrument and methods therefor |
US5449382A (en) * | 1992-11-04 | 1995-09-12 | Dayton; Michael P. | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5417687A (en) * | 1993-04-30 | 1995-05-23 | Medical Scientific, Inc. | Bipolar electrosurgical trocar |
US5409004A (en) * | 1993-06-11 | 1995-04-25 | Cook Incorporated | Localization device with radiopaque markings |
US5417697A (en) * | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
US5501654A (en) * | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
US5494881A (en) * | 1993-07-29 | 1996-02-27 | Ngk Insulators, Ltd. | Ceramic honeycomb structural body and catalyst comprising the same |
US5395313A (en) * | 1993-08-13 | 1995-03-07 | Naves; Neil H. | Reciprocating arthroscopic shaver |
US5415656A (en) * | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5437665A (en) * | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US5527331A (en) * | 1993-10-13 | 1996-06-18 | Femrx | Method for prostatic tissue resection |
US5674184A (en) * | 1994-03-15 | 1997-10-07 | Ethicon Endo-Surgery, Inc. | Surgical trocars with cutting electrode and viewing rod |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5526822A (en) * | 1994-03-24 | 1996-06-18 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US5653718A (en) * | 1994-05-16 | 1997-08-05 | Yoon; Inbae | Cannula anchoring system |
US5542948A (en) * | 1994-05-24 | 1996-08-06 | Arrow Precision Products, Inc. | Surgical combination inject and snare apparatus |
US5749887A (en) * | 1994-07-13 | 1998-05-12 | C. R. Bard, Inc. | Twisted strand localization wire |
US5794626A (en) * | 1994-08-18 | 1998-08-18 | Kieturakis; Maciej J. | Excisional stereotactic apparatus |
US5643282A (en) * | 1994-08-22 | 1997-07-01 | Kieturakis; Maciej J. | Surgical instrument and method for removing tissue from an endoscopic workspace |
US5954670A (en) * | 1994-10-05 | 1999-09-21 | Baker; Gary H. | Mandrel-guided tandem multiple channel biopsy guide device and method of use |
US5562102A (en) * | 1994-11-21 | 1996-10-08 | Taylor; Thomas V. | Multiple biopsy device |
US5611803A (en) * | 1994-12-22 | 1997-03-18 | Urohealth Systems, Inc. | Tissue segmentation device |
US6059734A (en) * | 1995-01-06 | 2000-05-09 | Yoon; Inbae | Methods of collecting tissue at obstructed anatomical sites |
US5947964A (en) * | 1995-03-03 | 1999-09-07 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5795308A (en) * | 1995-03-09 | 1998-08-18 | Russin; Lincoln D. | Apparatus for coaxial breast biopsy |
US5868740A (en) * | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
US5735847A (en) * | 1995-08-15 | 1998-04-07 | Zomed International, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5879357A (en) * | 1995-10-20 | 1999-03-09 | United States Surgical Corporation | Apparatus for marking tissue location |
US5800445A (en) * | 1995-10-20 | 1998-09-01 | United States Surgical Corporation | Tissue tagging device |
US5752972A (en) * | 1995-11-09 | 1998-05-19 | Hoogeboom; Thomas J. | Modular endoscopic surgical instrument |
US5755697A (en) * | 1995-11-22 | 1998-05-26 | Jones; Calvin E. | Self-tunneling, self-securing percutaneous catheterization device and method of use thereof |
US5769086A (en) * | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US5766163A (en) * | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
US5810806A (en) * | 1996-08-29 | 1998-09-22 | Ethicon Endo-Surgery | Methods and devices for collection of soft tissue |
US6117153A (en) * | 1996-10-03 | 2000-09-12 | Interventional Technologies, Inc. | Neovascularization catheter |
US6280450B1 (en) * | 1997-07-24 | 2001-08-28 | Rex Medical, Lp | Breast surgery method and apparatus |
US6712775B2 (en) * | 1998-03-03 | 2004-03-30 | Senorx, Inc. | Tissue acquisition system and method of use |
US6454727B1 (en) * | 1998-03-03 | 2002-09-24 | Senorx, Inc. | Tissue acquisition system and method of use |
US6716179B2 (en) * | 1998-03-03 | 2004-04-06 | Senorx, Inc. | Sentinel node location and biopsy |
US20020068879A1 (en) * | 1998-04-08 | 2002-06-06 | Paul Lubock | Dilation devices and methods for removing tissue specimens |
US6540695B1 (en) * | 1998-04-08 | 2003-04-01 | Senorx, Inc. | Biopsy anchor device with cutter |
US20030144605A1 (en) * | 1998-04-08 | 2003-07-31 | Senorx, Inc. | Biopsy anchor device with cutter |
US6363940B1 (en) * | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US20020077628A1 (en) * | 1998-09-01 | 2002-06-20 | Senorx, Inc. | Electrosurgical lesion location device |
US6679851B2 (en) * | 1998-09-01 | 2004-01-20 | Senorx, Inc. | Tissue accessing and anchoring device and method |
US6022362A (en) * | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
Cited By (191)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9216012B2 (en) | 1998-09-01 | 2015-12-22 | Senorx, Inc | Methods and apparatus for securing medical instruments to desired locations in a patient's body |
US9510809B2 (en) | 1999-01-27 | 2016-12-06 | Senorx, Inc. | Tissue specimen isolating and damaging device and method |
US8470294B2 (en) | 2000-11-16 | 2013-06-25 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US10994058B2 (en) | 2000-11-16 | 2021-05-04 | Microspherix Llc | Method for administering a flexible hormone rod |
US9636401B2 (en) | 2000-11-16 | 2017-05-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US9636402B2 (en) | 2000-11-16 | 2017-05-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US10493181B2 (en) | 2000-11-16 | 2019-12-03 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US8821835B2 (en) | 2000-11-16 | 2014-09-02 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US20040102671A1 (en) * | 2001-11-02 | 2004-05-27 | Terwilliger Richard A. | Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing |
US7942803B2 (en) | 2001-11-02 | 2011-05-17 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy |
US8066627B2 (en) | 2001-11-02 | 2011-11-29 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings |
US7874974B2 (en) | 2001-11-02 | 2011-01-25 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy |
US20100121130A1 (en) * | 2001-11-02 | 2010-05-13 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy |
US20060074270A1 (en) * | 2003-05-13 | 2006-04-06 | World Wide Medical Technologies, Llc | Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing |
US7736295B2 (en) | 2003-05-13 | 2010-06-15 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy using custom end spacing |
US7736294B2 (en) | 2003-05-13 | 2010-06-15 | Biocompatibles Uk Limited | Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing |
US20060217635A1 (en) * | 2005-03-24 | 2006-09-28 | Mccombs Elizabeth S | Biopsy device marker deployment |
US8790235B2 (en) | 2005-07-22 | 2014-07-29 | Eckert & Ziegler Debig S.A. | Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy |
US20070021642A1 (en) * | 2005-07-22 | 2007-01-25 | Worldwide Medical Technologies Llc | Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy |
US20090149692A1 (en) * | 2005-07-22 | 2009-06-11 | Biocompatibles Uk Limited | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US8187159B2 (en) | 2005-07-22 | 2012-05-29 | Biocompatibles, UK | Therapeutic member including a rail used in brachytherapy and other radiation therapy |
US7736293B2 (en) | 2005-07-22 | 2010-06-15 | Biocompatibles Uk Limited | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US7972261B2 (en) | 2005-07-22 | 2011-07-05 | Biocompatibles Uk Limited | Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy |
US20090099402A1 (en) * | 2005-07-22 | 2009-04-16 | Biocompatibles Uk Limited | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US20070021643A1 (en) * | 2005-07-22 | 2007-01-25 | World Wide Medical Technologies, Llc | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US20090124846A1 (en) * | 2005-07-22 | 2009-05-14 | Biocompatibles Uk Limited | Anchor seed cartridge for use with brachytherapy applicator |
US8021291B2 (en) | 2005-07-22 | 2011-09-20 | Biocompatibles Uk Limited | Markers for use in brachytherapy and other radiation therapy that resist migration and rotation |
US8114007B2 (en) | 2005-07-22 | 2012-02-14 | Biocompatibles Uk Limited | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US8192345B2 (en) | 2005-07-22 | 2012-06-05 | Biocompatibles, UK | Cartridge for use with brachytherapy applicator |
US8795146B2 (en) | 2005-07-22 | 2014-08-05 | Eckert & Ziegler Bebig S.A. | Implants including spacers for use in brachytherapy and other radiation therapy that resist migration and rotation |
US20070197854A1 (en) * | 2006-01-27 | 2007-08-23 | Circulite, Inc. | Heart assist system |
US8157720B2 (en) | 2006-01-27 | 2012-04-17 | Circulite, Inc. | Heart assist system |
US8361032B2 (en) * | 2006-02-22 | 2013-01-29 | Carefusion 2200 Inc. | Curable material delivery device with a rotatable supply section |
US20070197971A1 (en) * | 2006-02-22 | 2007-08-23 | Krueger John A | Curable material delivery device with a rotatable supply section |
US7988611B2 (en) | 2006-05-09 | 2011-08-02 | Biocompatibles Uk Limited | After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy |
US20080009661A1 (en) * | 2006-05-09 | 2008-01-10 | Worldwide Medical Technologies Llc | Methods for Using After-Loaders |
US20080009660A1 (en) * | 2006-05-09 | 2008-01-10 | Worldwide Medical Technologies Llc | After-Loader Devices and Kits |
US20070265488A1 (en) * | 2006-05-09 | 2007-11-15 | Worldwide Medical Technologies Llc | After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy |
US7985172B2 (en) | 2006-05-09 | 2011-07-26 | Biocompatibles Uk Limited | After-loader devices and kits |
US20090318950A1 (en) * | 2006-07-24 | 2009-12-24 | Yossi Gross | Fibroid treatment apparatus and method |
US8357176B2 (en) | 2006-07-24 | 2013-01-22 | Fibro Control, Inc. | Fibroid treatment apparatus and method |
US10639410B2 (en) | 2006-08-30 | 2020-05-05 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US7905823B2 (en) | 2006-08-30 | 2011-03-15 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US20080076960A1 (en) * | 2006-08-30 | 2008-03-27 | Circulite, Inc. | Cannula insertion devices, systems, and methods including a compressible member |
US20080076959A1 (en) * | 2006-08-30 | 2008-03-27 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US9572917B2 (en) | 2006-08-30 | 2017-02-21 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US20090182188A1 (en) * | 2006-08-30 | 2009-07-16 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US8333686B2 (en) * | 2006-08-30 | 2012-12-18 | Circulite, Inc. | Cannula insertion devices, systems, and methods including a compressible member |
US7878964B1 (en) | 2006-09-07 | 2011-02-01 | Biocompatibles Uk Limited | Echogenic spacers and strands |
US7874976B1 (en) | 2006-09-07 | 2011-01-25 | Biocompatibles Uk Limited | Echogenic strands and spacers therein |
US8545380B2 (en) | 2006-09-14 | 2013-10-01 | Circulite, Inc. | Intravascular blood pump and catheter |
US20090171137A1 (en) * | 2006-09-14 | 2009-07-02 | Circulite, Inc. | Intravascular blood pump and catheter |
US20080269540A1 (en) * | 2007-04-27 | 2008-10-30 | Worldwide Medical Technologies Llc | Seed cartridge adaptor and methods for use therewith |
US8545379B2 (en) | 2007-07-19 | 2013-10-01 | Circulite, Inc. | Cannula for heart chamber implantation and related systems and methods |
US20090023975A1 (en) * | 2007-07-19 | 2009-01-22 | Circulite, Inc. | Cannula for heart chamber implantation and related systems and methods |
EP2891502A1 (en) * | 2007-08-29 | 2015-07-08 | CircuLite, Inc. | Cannula insertion devices, systems, and methods including a compressible member |
WO2009029387A1 (en) * | 2007-08-29 | 2009-03-05 | Circulite, Inc. | Cannula insertion devices, systems, and methods including a compressible member |
US11213387B2 (en) | 2007-09-13 | 2022-01-04 | Georg Lutter | Truncated cone heart valve stent |
US10456248B2 (en) | 2007-09-13 | 2019-10-29 | Georg Lutter | Truncated cone heart valve stent |
US9078749B2 (en) | 2007-09-13 | 2015-07-14 | Georg Lutter | Truncated cone heart valve stent |
US9730792B2 (en) | 2007-09-13 | 2017-08-15 | Georg Lutter | Truncated cone heart valve stent |
US9254192B2 (en) | 2007-09-13 | 2016-02-09 | Georg Lutter | Truncated cone heart valve stent |
US20090088730A1 (en) * | 2007-09-28 | 2009-04-02 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US8439892B2 (en) | 2007-09-28 | 2013-05-14 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US8147480B2 (en) | 2007-09-28 | 2012-04-03 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US20090088695A1 (en) * | 2007-09-28 | 2009-04-02 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US7766875B2 (en) * | 2007-09-28 | 2010-08-03 | Codman & Shurtleff, Inc. | Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent |
US8343029B2 (en) | 2007-10-24 | 2013-01-01 | Circulite, Inc. | Transseptal cannula, tip, delivery system, and method |
US20090216063A1 (en) * | 2008-01-29 | 2009-08-27 | Biocompatibles Uk Limited | Bio-absorbable brachytherapy strands |
WO2010093837A3 (en) * | 2009-02-11 | 2010-12-16 | Tendyne Medical, Inc. | Percutaneous mitral annular stitch to decrease mitral regurgitation |
WO2010093834A2 (en) * | 2009-02-12 | 2010-08-19 | Incube Labs, Llc | Skin penetrating device and method for subcutaneous solid drug delivery |
US20100204678A1 (en) * | 2009-02-12 | 2010-08-12 | Mir Imran | Skin penetrating device and method for subcutaneous solid drug delivery |
US8353863B2 (en) | 2009-02-12 | 2013-01-15 | InCube Labs, Inc. | Skin penetrating device and method for subcutaneous solid drug delivery |
WO2010093834A3 (en) * | 2009-02-12 | 2010-12-09 | Incube Labs, Llc | Skin penetrating device and method for subcutaneous solid drug delivery |
US8460168B2 (en) | 2009-03-27 | 2013-06-11 | Circulite, Inc. | Transseptal cannula device, coaxial balloon delivery device, and methods of using the same |
US20100249490A1 (en) * | 2009-03-27 | 2010-09-30 | Circulite, Inc. | Transseptal cannula device, coaxial balloon delivery device, and methods of using the same |
US20100249491A1 (en) * | 2009-03-27 | 2010-09-30 | Circulite, Inc. | Two-piece transseptal cannula, delivery system, and method of delivery |
US8403953B2 (en) | 2009-07-27 | 2013-03-26 | Fibro Control, Inc. | Balloon with rigid tube for occluding the uterine artery |
US20110022073A1 (en) * | 2009-07-27 | 2011-01-27 | Fibro Control, Inc. | Balloon with rigid tube for occluding the uterine artery |
US8968252B2 (en) | 2009-08-14 | 2015-03-03 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US9962526B2 (en) | 2009-08-14 | 2018-05-08 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
CN102573980A (en) * | 2009-08-14 | 2012-07-11 | 密执安州立大学董事会 | Integrated vascular delivery system |
US10668252B2 (en) | 2009-08-14 | 2020-06-02 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US8323249B2 (en) | 2009-08-14 | 2012-12-04 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US9592366B2 (en) | 2009-08-14 | 2017-03-14 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US8668674B2 (en) | 2009-08-14 | 2014-03-11 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US11577053B2 (en) | 2009-08-14 | 2023-02-14 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
WO2011019985A3 (en) * | 2009-08-14 | 2011-06-16 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US8790310B2 (en) | 2009-08-14 | 2014-07-29 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US20110040281A1 (en) * | 2009-08-14 | 2011-02-17 | White Steven B | Integrated vascular delivery system |
US20110054487A1 (en) * | 2009-09-02 | 2011-03-03 | Circulite, Inc. | Coaxial transseptal guide-wire and needle assembly |
US20110112353A1 (en) * | 2009-11-09 | 2011-05-12 | Circulite, Inc. | Bifurcated outflow cannulae |
US20110118668A1 (en) * | 2009-11-13 | 2011-05-19 | Circulite, Inc. | Cannula stabilizer |
US8308715B2 (en) | 2009-11-13 | 2012-11-13 | Circulite, Inc. | Cannula stabilizer |
US11179236B2 (en) | 2009-12-08 | 2021-11-23 | Colorado State University Research Foundation | Device and system for transcatheter mitral valve replacement |
US9504776B2 (en) | 2010-02-11 | 2016-11-29 | Circulite, Inc. | Cannula lined with tissue in-growth material and method of using the same |
US20110196191A1 (en) * | 2010-02-11 | 2011-08-11 | Circulite, Inc. | Cannula lined with tissue in-growth material and method of using the same |
US9132216B2 (en) | 2010-02-11 | 2015-09-15 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US9750866B2 (en) | 2010-02-11 | 2017-09-05 | Circulite, Inc. | Cannula lined with tissue in-growth material |
US20110196190A1 (en) * | 2010-02-11 | 2011-08-11 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US8768487B2 (en) | 2010-02-11 | 2014-07-01 | Circulite, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
US9462962B2 (en) * | 2010-04-13 | 2016-10-11 | Biotronik Se & Co. Kg | Implant and applicator |
US20110251516A1 (en) * | 2010-04-13 | 2011-10-13 | Thomas Doerr | Implant and applicator |
US11577052B2 (en) | 2010-05-19 | 2023-02-14 | Tangent Medical Technologies, Inc. | Integrated vascular delivery system |
US10905858B2 (en) | 2010-05-19 | 2021-02-02 | Tangent Medical Technologies, Inc. | Safety needle system operable with a medical device |
US10159818B2 (en) | 2010-05-19 | 2018-12-25 | Tangent Medical Technologies, Inc. | Safety needle system operable with a medical device |
US9827398B2 (en) | 2010-05-19 | 2017-11-28 | Tangent Medical Technologies, Inc. | Integrated vascular delivery system |
US8814833B2 (en) | 2010-05-19 | 2014-08-26 | Tangent Medical Technologies Llc | Safety needle system operable with a medical device |
US10569057B2 (en) | 2010-05-19 | 2020-02-25 | Tangent Medical Technologies, Inc. | Integrated vascular delivery system |
US12059538B2 (en) | 2010-05-19 | 2024-08-13 | Tangent Medical Technologies, Inc. | Safety needle system operable with a medical device |
US9308354B2 (en) | 2010-05-19 | 2016-04-12 | Tangent Medical Technologies Llc | Safety needle system operable with a medical device |
US8771230B2 (en) | 2010-05-19 | 2014-07-08 | Tangent Medical Technologies, Llc | Integrated vascular delivery system |
KR101212412B1 (en) | 2010-08-24 | 2012-12-13 | 사회복지법인 삼성생명공익재단 | A needle for VATS |
US9480559B2 (en) | 2011-08-11 | 2016-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11382737B2 (en) | 2011-08-11 | 2022-07-12 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11135055B2 (en) | 2011-08-11 | 2021-10-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US12121434B2 (en) | 2011-08-11 | 2024-10-22 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US10617519B2 (en) | 2011-08-11 | 2020-04-14 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11123181B2 (en) | 2011-08-11 | 2021-09-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US12059343B2 (en) | 2011-08-11 | 2024-08-13 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11123180B2 (en) | 2011-08-11 | 2021-09-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11364116B2 (en) | 2011-08-11 | 2022-06-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US9833315B2 (en) | 2011-08-11 | 2017-12-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11484404B2 (en) | 2011-08-11 | 2022-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11311374B2 (en) | 2011-08-11 | 2022-04-26 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US10639145B2 (en) | 2011-08-11 | 2020-05-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US10952844B2 (en) | 2011-12-16 | 2021-03-23 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9855093B2 (en) | 2012-07-12 | 2018-01-02 | Bowa-Electronic Gmbh & Co. Kg | Instrument for cutting body tissue |
WO2014009420A1 (en) * | 2012-07-12 | 2014-01-16 | Bowa-Electronic Gmbh & Co. Kg | Instrument for cutting body tissue |
US11759318B2 (en) | 2012-07-28 | 2023-09-19 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9895221B2 (en) | 2012-07-28 | 2018-02-20 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US10219900B2 (en) | 2012-07-30 | 2019-03-05 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US11090155B2 (en) | 2012-07-30 | 2021-08-17 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US9675454B2 (en) | 2012-07-30 | 2017-06-13 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
WO2014055686A1 (en) * | 2012-10-02 | 2014-04-10 | Wallace Robert F | Implant insertion system |
US10391291B2 (en) | 2012-10-02 | 2019-08-27 | Robert F. Wallace | Implant insertion system |
CN104822410A (en) * | 2012-10-02 | 2015-08-05 | 马修·Q·肖 | Implant insertion system |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463494B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US11311379B2 (en) | 2013-04-02 | 2022-04-26 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US11364119B2 (en) | 2013-04-04 | 2022-06-21 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US10405976B2 (en) | 2013-05-30 | 2019-09-10 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US11617645B2 (en) | 2013-05-30 | 2023-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US11471281B2 (en) | 2013-06-25 | 2022-10-18 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US9597181B2 (en) | 2013-06-25 | 2017-03-21 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US10595996B2 (en) | 2013-06-25 | 2020-03-24 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US10610354B2 (en) | 2013-08-01 | 2020-04-07 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US11612480B2 (en) | 2013-08-01 | 2023-03-28 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US10028762B1 (en) | 2013-10-14 | 2018-07-24 | Percutaneous Cosmetic Devices LLC | Method of cutting soft tissue under facial skin |
US10646245B2 (en) | 2013-10-14 | 2020-05-12 | Percytaneous Cosmetic Devices LLC | Needle knife device and system |
US11246562B2 (en) | 2013-10-17 | 2022-02-15 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US10555718B2 (en) | 2013-10-17 | 2020-02-11 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US10363135B2 (en) | 2013-10-29 | 2019-07-30 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US11096783B2 (en) | 2013-10-29 | 2021-08-24 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US10086170B2 (en) | 2014-02-04 | 2018-10-02 | Icu Medical, Inc. | Self-priming systems and methods |
US10814107B2 (en) | 2014-02-04 | 2020-10-27 | Icu Medical, Inc. | Self-priming systems and methods |
US11724071B2 (en) | 2014-02-04 | 2023-08-15 | Icu Medical, Inc. | Self-priming systems and methods |
US11464628B2 (en) | 2014-02-05 | 2022-10-11 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10201419B2 (en) | 2014-02-05 | 2019-02-12 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US11589985B2 (en) | 2014-02-05 | 2023-02-28 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US11045183B2 (en) | 2014-02-11 | 2021-06-29 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US10517728B2 (en) | 2014-03-10 | 2019-12-31 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US11382753B2 (en) | 2014-03-10 | 2022-07-12 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US10786351B2 (en) | 2015-01-07 | 2020-09-29 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
US10610356B2 (en) | 2015-02-05 | 2020-04-07 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10667905B2 (en) | 2015-04-16 | 2020-06-02 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US11523902B2 (en) | 2015-04-16 | 2022-12-13 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US11318012B2 (en) | 2015-09-18 | 2022-05-03 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of prosthetic mitral valve |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US11096782B2 (en) | 2015-12-03 | 2021-08-24 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US11464629B2 (en) | 2015-12-28 | 2022-10-11 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US10610358B2 (en) | 2015-12-28 | 2020-04-07 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US11253354B2 (en) | 2016-05-03 | 2022-02-22 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US11039921B2 (en) | 2016-06-13 | 2021-06-22 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
US11090157B2 (en) | 2016-06-30 | 2021-08-17 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11701226B2 (en) | 2016-06-30 | 2023-07-18 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US11154399B2 (en) | 2017-07-13 | 2021-10-26 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11191639B2 (en) | 2017-08-28 | 2021-12-07 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
US11648110B2 (en) | 2019-12-05 | 2023-05-16 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
US11678980B2 (en) | 2020-08-19 | 2023-06-20 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
Also Published As
Publication number | Publication date |
---|---|
US7264596B2 (en) | 2007-09-04 |
CA2341528A1 (en) | 2000-03-09 |
EP1109496B1 (en) | 2012-05-09 |
WO2000012009A3 (en) | 2000-06-29 |
ATE556657T1 (en) | 2012-05-15 |
AU5579299A (en) | 2000-03-21 |
US8229553B2 (en) | 2012-07-24 |
US20050245842A1 (en) | 2005-11-03 |
US20020087095A1 (en) | 2002-07-04 |
JP2002523170A (en) | 2002-07-30 |
WO2000012009A8 (en) | 2000-08-03 |
US6958044B2 (en) | 2005-10-25 |
US20020007130A1 (en) | 2002-01-17 |
CA2341528C (en) | 2010-01-05 |
US20160058433A1 (en) | 2016-03-03 |
US20120277626A1 (en) | 2012-11-01 |
US9216012B2 (en) | 2015-12-22 |
US20020052564A1 (en) | 2002-05-02 |
EP1109496A2 (en) | 2001-06-27 |
US20050143674A1 (en) | 2005-06-30 |
WO2000012009A2 (en) | 2000-03-09 |
US7329228B2 (en) | 2008-02-12 |
US6540693B2 (en) | 2003-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7329228B2 (en) | Methods and apparatus for securing medical instruments to desired locations in a patient's body | |
US7150712B2 (en) | Target tissue localization assembly and method | |
CA2443966C (en) | Surgical biopsy device | |
US5902310A (en) | Apparatus and method for marking tissue | |
JP2003518974A (en) | Apparatus and method for accessing a biopsy location | |
AU2002258866A1 (en) | Surgical biopsy device | |
JP2002360581A (en) | Biopsy device having tissue marker element | |
WO2000010471A9 (en) | Target tissue localization device and method | |
EP0781114A1 (en) | Methods and devices for defining and marking tissue | |
EP1284123B1 (en) | Apparatus for marking tissue | |
EP1552794B1 (en) | Apparatus for marking tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |