US20060041229A1 - Flow restriction system and method for patient infusion device - Google Patents
Flow restriction system and method for patient infusion device Download PDFInfo
- Publication number
- US20060041229A1 US20060041229A1 US11/163,234 US16323405A US2006041229A1 US 20060041229 A1 US20060041229 A1 US 20060041229A1 US 16323405 A US16323405 A US 16323405A US 2006041229 A1 US2006041229 A1 US 2006041229A1
- Authority
- US
- United States
- Prior art keywords
- flow path
- exit port
- port assembly
- flow
- outlet plug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/36—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
- A61M5/38—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body using hydrophilic or hydrophobic filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14248—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M2005/1401—Functional features
- A61M2005/1402—Priming
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0266—Shape memory materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3592—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2209/00—Ancillary equipment
- A61M2209/04—Tools for specific apparatus
- A61M2209/045—Tools for specific apparatus for filling, e.g. for filling reservoirs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/002—Packages specially adapted therefor, e.g. for syringes or needles, kits for diabetics
- A61M5/003—Kits for diabetics
Definitions
- the present invention relates generally to medical devices, systems and methods, and more particularly to small, low cost, portable infusion devices and methods that are useable to achieve precise, sophisticated, and programmable flow patterns for the delivery of therapeutic liquids such as insulin to a mammalian patient. Even more particularly, the present invention is directed to fluid flow restriction systems and methods for an infusion device. Among other benefits and features, the fluid flow restriction systems and methods of the present invention ensure adequate priming of infusion devices prior to use, and the delivery of accurate volumes of fluid from the infusion devices during their use.
- a medicine may only be available in a liquid form, or the liquid version may have desirable characteristics that cannot be achieved with solid or pill form.
- Delivery of liquid medicines may best be accomplished by infusing directly into the cardiovascular system via veins or arteries, into the subcutaneous tissue or directly into organs, tumors, cavities, bones or other site specific locations within the body.
- Parenteral delivery of liquid medicines into the body is often accomplished by administering bolus injections using a needle and reservoir, or continuously by gravity driven dispensers or transdermal patch technologies.
- Bolus injections often imperfectly match the clinical needs of the patient, and usually require larger individual doses than are desired at the specific time they are given.
- Continuous delivery of medicine through gravity feed systems compromise the patient's mobility and lifestyle, and limit the therapy to simplistic flow rates and profiles.
- Transdermal patches have special requirements of the medicine being delivered, particularly as it relates to the molecular structure, and similar to gravity feed systems, the control of the drug administration is severely limited.
- Ambulatory infusion pumps have been developed for delivering liquid medicaments to a patient. These infusion devices have the ability to offer sophisticated fluid delivery profiles accomplishing bolus requirements, continuous infusion and variable flow rate delivery. These infusion capabilities usually result in better efficacy of the drug and therapy and less toxicity to the patient's system.
- An example of a use of an ambulatory infusion pump is for the delivery of insulin for the treatment of diabetes mellitus. These pumps can deliver insulin on a continuous basal basis as well as a bolus basis as is disclosed in U.S. Pat. No. 4,498,843 to Schneider et al.
- the ambulatory pumps often work with a reservoir to contain the liquid medicine, such as a cartridge, a syringe or an IV bag, and use electro-mechanical pumping or metering technology to deliver the medication to the patient via tubing from the infusion device to a needle that is inserted transcutaneously, or through the skin of the patient.
- the devices allow control and programming via electromechanical buttons or switches located on the housing of the device, and accessed by the patient or clinician.
- the devices include visual feedback via text or graphic screens, such as liquid crystal displays known as LCD's, and may include alert or warning lights and audio or vibration signals and alarms.
- the device can be worn in a harness or pocket or strapped to the body of the patient.
- the device includes an exit port, a dispenser for causing fluid from a reservoir to flow to the exit port, a local processor programmed to cause a flow of fluid to the exit port based on flow instructions from a separate, remote control device, and a wireless receiver connected to the local processor for receiving the flow instructions.
- the device is provided with a housing that is free of user input components, such as a keypad, for providing flow instructions to the local processor.
- Such devices for delivering liquid medicines to a patient are preferably purged of air, or “primed” prior to operation such that desired volumes of fluid are accurately delivered by the devices. What is still desired, therefore, are new and improved devices for delivering fluid to a patient.
- the fluid delivery devices will be simple in design, and inexpensive and easy to manufacture, in order to further reduce the size, complexity and costs of the devices, such that the devices lend themselves to being small and disposable in nature.
- the fluid delivery device will preferably include a flow restriction system and method that primes the devices prior to operation.
- the present invention provides a device for delivering fluid, such as insulin for example, to a patient.
- the device includes a flow path having an exit port assembly adapted to connect to a transcutaneous patient access tool (e.g., needle), and a reservoir connected to the exit port assembly.
- the device also includes a flow restriction system having an air removal filter communicating with the flow path and allowing air to exit the flow path and preventing fluid from exiting the flow path, and a flow restrictor positioned within the flow path between the air removal filter and the exit port assembly.
- the flow restriction system of the present invention allows the flow path of the fluid delivery device to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by the device.
- the flow restrictor of the flow restriction system comprises an outlet plug removably connected to the exit port assembly to prevent fluid from exiting the flow path through the exit port assembly.
- the exit port assembly of the fluid delivery device includes a transcutaneous patient access tool and the outlet plug is removably connected to the access tool.
- the transcutaneous patient access tool comprises a needle having a distal end for insertion into a patient and the outlet plug is removably connected to the distal end of the needle.
- the air removal filter of the flow restriction system comprises at least a portion of the outlet plug allowing air to exit the flow path through the exit port assembly.
- the air removal filter of the outlet plug comprises one of PTFE and polyethylene.
- the air removal filter of the outlet plug is provided with predetermined physical properties (e.g., pore size and/or thickness) such that the filter expands upon the flow path being substantially primed.
- the air bubble removal filter of the outlet plug comprises needle septum material.
- the flow restriction system further comprises a second air removal filter positioned between the fill port and the reservoir.
- the flow restriction system further comprises a second flow restrictor positioned between the second air removal filter and the reservoir.
- the flow restriction system also includes a sensor assembly monitoring fluid flow conditions within the flow path.
- the sensor assembly includes a resilient diaphragm having opposing first and second surfaces, with the first surface of the diaphragm positioned against the flow path, a chamber wall positioned adjacent the second surface of the diaphragm and defining a sensor chamber adjacent the second surface of the diaphragm, and at least one sensor arranged to provide a signal when the second surface of the diaphragm expands into the chamber.
- the sensor assembly is adapted to provide a signal to the processor when the flow path is primed.
- the present invention also provides a method for restricting fluid flow in a flow path of a fluid delivery device having an exit port assembly adapted to connect to a transcutaneous patient access tool.
- the method includes preventing fluid from exiting the flow path, allowing air to exit the flow path at an air removal point within the flow path, and restricting fluid flow through the flow path between the air removal point and the exit port assembly.
- FIG. 1 is a perspective view of a first exemplary embodiment of a fluid delivery device constructed in accordance with the present invention shown secured on a patient, and a remote control device for use with the fluid delivery device (the remote control device being enlarged with respect to the patient and the fluid delivery device for purposes of illustration);
- FIG. 2 is an enlarged top sectional view of the fluid delivery device of FIG. 1 ;
- FIG. 3 is an enlarged side elevation view, partially cut-away, of the fluid delivery device of FIG. 1 ;
- FIG. 4 is an enlarged bottom plan view of the fluid delivery device of FIG. 1 ;
- FIG. 5 is an enlarged top sectional view of another exemplary embodiment of a fluid delivery device constructed in accordance with the present invention.
- FIG. 5 a is a further enlarged sectional view of an exemplary embodiment of a flow sensor assembly of the fluid delivery device of FIG. 5 ;
- FIG. 6 is a graph illustrating an exemplary embodiment of a method of restricting flow according to the present invention as carried out by the flow sensor assembly of the fluid delivery device of FIGS. 5 and 5 a;
- FIG. 7 is a sectional view of another exemplary embodiment of a flow restriction system constructed in accordance with the present invention.
- FIG. 8 is an enlarged sectional view of a portion of the exemplary embodiment of a flow restriction system contained in circle 8 of FIG. 7 ;
- FIG. 9 is an enlarged sectional view of an exemplary embodiment of an outlet plug constructed in accordance with the present invention for use as part of the flow restriction system of FIG. 4 a;
- FIG. 10 a is a further enlarged sectional view of the outlet plug of FIG. 9 ;
- FIG. 10 b is an enlarged sectional view of the outlet plug of FIG. 9 shown received on an exit port cannula of the fluid delivery device, after the device has been filled with fluid and purged of air;
- FIG. 11 is a sectional view of an additional exemplary embodiment of a flow restriction system constructed in accordance with the present invention.
- FIG. 12 is a side elevation view, partially cut-away, showing another exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device with a needle of a syringe inserted into the outlet plug for injecting fluid into the exit port cannula and the fluid delivery device;
- FIG. 13 is a side elevation view, partially cut-away, showing an additional exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula;
- FIG. 14 is a side elevation view, partially cut-away, showing a further exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula;
- FIGS. 15 a and 15 b are top plan views of another exemplary embodiment of an outlet plug constructed in accordance with the present invention, respectively showing an air bubble filter of the outlet plug before and after expansion;
- FIGS. 16 a and 16 b are side sectional views of another exemplary embodiment of an outlet plug constructed in accordance with the present invention, respectively showing an air bubble filter of the outlet plug before and after expansion;
- FIG. 17 is a side elevation view showing another exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device;
- FIG. 18 is a side elevation view showing an additional exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device;
- FIG. 19 is a side elevation view, partially cut-away, showing an exemplary embodiment of a package constructed in accordance with the present invention, and containing a fluid delivery device;
- FIG. 20 a is a side elevation view, partially cut-away, showing an exemplary embodiment of a fluid delivery device and an outlet plug constructed in accordance with the present invention
- FIG. 20 b is a side elevation view, partially cut-away, showing the outlet plug removed from the fluid delivery device of FIG. 20 a;
- FIG. 21 is a representation of an exemplary embodiment of a flow path constructed in accordance with the present invention for use in a fluid delivery device;
- FIG. 22 is a side elevation view, partially cut-away, showing an exemplary embodiment of an exit port assembly and an outlet plug constructed in accordance with the present invention for use in a fluid delivery device;
- FIG. 23 is a sectional view showing an exemplary embodiment of a fluid delivery device and an outlet plug constructed in accordance with the present invention.
- FIG. 24 is an enlarged sectional view of a pressure sensor of the fluid delivery device of FIG. 23 ;
- FIG. 25 is an enlarged sectional view of the outlet plug of FIG. 23 ;
- FIG. 26 is a sectional view showing the outlet plug of FIG. 23 attached to an exit port assembly of the fluid delivery device of FIG. 23 ;
- FIG. 27 is an enlarged sectional view of the outlet plug attached to the exit port assembly contained in circle 27 of FIG. 26 .
- FIG. 2 there is illustrated a fluid delivery device 10 including a flow restriction system 200 constructed in accordance with the present invention.
- the flow restriction system 200 operates to substantially prime (i.e., purge of air) a flow path 12 of the fluid delivery device 10 prior to operation of the device 10 , to ensure that a desired volume of fluid is accurately delivered by the device 10 during operation.
- the fluid delivery device 10 of FIG. 2 can be used for the delivery of fluids to a person or animal.
- the types of liquids that can be delivered by the fluid delivery device 10 include, but are not limited to, insulin, antibiotics, nutritional fluids, total parenteral nutrition or TPN, analgesics, morphine, hormones or hormonal drugs, gene therapy drugs, anticoagulants, analgesics, cardiovascular medications, AZT or chemotherapeutics.
- the types of medical conditions that the fluid delivery device 10 might be used to treat include, but are not limited to, diabetes, cardiovascular disease, pain, chronic pain, cancer, AIDS, neurological diseases, Alzheimer's Disease, ALS, Hepatitis, Parkinson's Disease or spasticity.
- the flow restriction assembly 200 according to the present invention can be used with fluid delivery devices other than those used for the delivery of fluids to persons or animals.
- the flow path 12 of the fluid delivery device 10 generally includes a reservoir 30 for receiving and holding the fluid to be delivered by the device 10 , an exit port assembly 70 connected to the reservoir, and a fill port connected to the reservoir.
- the fluid delivery device 10 also includes a dispenser 40 for causing fluid from the reservoir 30 to flow to the exit port assembly 70 .
- the volume of the reservoir 30 is chosen to best suit the therapeutic application of the fluid delivery device 10 impacted by such factors as available concentrations of medicinal fluids to be delivered, acceptable times between refills or disposal of the fluid delivery device 10 , size constraints and other factors.
- the reservoir 30 may be prefilled by the device manufacturer or a cooperating drug manufacturer, or may include external filling means, such as a fill port 90 having needle insertion septum or a Luer connector, for example.
- the device 10 can be provided with a removable reservoir.
- the exit port assembly 70 can include elements to penetrate the skin of the patient, such that the entire volume of the flow path 12 of the fluid delivery device 10 is predetermined.
- a needle-connection tubing terminating in a skin penetrating cannula 72 is provided as an integral part of the exit port assembly 70 .
- the exit port assembly 70 can further be provided with injection means, such as a spring-biased mechanism driven by a shaped memory element, to inject the skin penetrating cannula 72 into a patient when the fluid delivery device 10 is correctly positioned on the patient.
- the cannula is a flexible tube
- a rigid penetrator within the lumen of the tube can be driven through the skin by the injection means and then withdrawn, leaving the soft cannula in place in the subcutaneous tissue of the patient or other internal site.
- the injection means may be removable soon after transcutaneous penetration.
- the exit port assembly 70 can simply be adapted to connect with a Luer connector for example, to a separate, standard infusion device that includes a skin penetrating cannula.
- the exit port assembly 70 can alternatively be adapted to connect through tubing to another medical device.
- flow path 12 is meant to include all portions of the fluid delivery device 10 that contain therapeutic fluid for delivery to a patient, e.g., all portions between the fill port 90 of the reservoir 30 to the tip of the needle 72 of the exit port assembly 72 .
- the fluid delivery device 10 also includes a processor or electronic microcontroller (hereinafter referred to as the “local” processor) 50 connected to the dispenser 40 .
- the local processor 50 is programmed to cause a flow of fluid to the exit port assembly 70 based on flow instructions from a separate, remote control device 100 , an example of which is shown in FIG. 1 .
- the fluid delivery device 10 further includes a wireless receiver 60 connected to the local processor 50 for receiving flow instructions from a separate, remote control device 100 and delivering the flow instructions to the local processor 50 .
- the device 10 also includes a housing 20 containing the exit port assembly 70 , the reservoir 30 , the dispenser 40 , the local processor 50 , and the wireless receiver 60 .
- the housing 20 of the fluid delivery device 10 is free of user input components for providing flow instructions to the local processor 50 , such as electromechanical switches or buttons on an outer surface of the housing 20 , or interfaces otherwise accessible to a user to adjust the programmed flow rate through the local processor 50 .
- the lack of user input components allows the size, complexity and costs of the device 10 to be substantially reduced so that the device 10 lends itself to being small and disposable in nature. Examples of such devices are disclosed in co-pending U.S. patent application Ser. No. 09/943,992, filed on Aug. 31, 2001 (Atty. Docket No. INSL-110), and entitled DEVICES, SYSTEMS AND METHODS FOR PATIENT INFUSION, which is assigned to the assignee of the present application and has previously been incorporated herein by reference.
- the fluid delivery device 10 includes the wireless communication element, or receiver 60 for receiving the user inputs from the separate, remote control device 100 of FIG. 1 .
- Signals can be sent via a communication element (not shown) of the remote control device 100 , which can include or be connected to an antenna 130 , shown in FIG. 1 as being external to the device 100 .
- the remote control device 100 has user input components, including an array of electromechanical switches, such as the membrane keypad 120 shown.
- the control device 100 also includes user output components, including a visual display, such as a liquid crystal display (LCD) 110 .
- the control device can be provided with a touch screen for both user input and output.
- the remote control device 100 has its own processor (hereinafter referred to as the “remote” processor) connected to the membrane keypad 120 and the LCD 110 .
- the remote processor receives the user inputs from the membrane keypad 120 and provides “flow” instructions for transmission to the fluid delivery device 10 , and provides information to the LCD 110 . Since the remote control device 100 also includes a visual display 110 , the fluid delivery device 10 can be void of an information screen, further reducing the size, complexity and costs of the device 10 .
- the communication element 60 of the device 10 preferably receives electronic communication from the remote control device 100 using radio frequency or other wireless communication standards and protocols.
- the communication element 60 is a two-way communication element, including a receiver and a transmitter, for allowing the fluid delivery device 10 to send information back to the remote control device 100 .
- the remote control device 100 also includes an integral communication element comprising a receiver and a transmitter, for allowing the remote control device 100 to receive the information sent by the fluid delivery device 10 .
- the local processor 50 of the device 10 contains all the computer programs and electronic circuitry needed to allow a user to program the desired flow patterns and adjust the program as necessary.
- Such circuitry can include one or more microprocessors, digital and analog integrated circuits, resistors, capacitors, transistors and other semiconductors and other electronic components known to those skilled in the art.
- the local processor 50 also includes programming, electronic circuitry and memory to properly activate the dispenser 40 at the needed time intervals.
- the device 10 includes a power supply 80 , such as a battery or capacitor, for supplying power to the local processor 50 .
- the power supply 80 is preferably integrated into the fluid delivery device 10 , but can be provided as replaceable, e.g., a replaceable battery.
- the device 10 can include sensors or transducers such as a reservoir volume transducer or a reservoir pressure transducer, for transmitting information to the local processor 50 to indicate how and when to activate the dispenser 40 , or to indicate other parameters determining flow, blockage in flow path, contact sensors, rotary motion or other motion indicators, as well as conditions such as the reservoir 30 being empty or leaking, or the dispensing of too much or too little fluid from the reservoir, etc.
- sensors or transducers such as a reservoir volume transducer or a reservoir pressure transducer, for transmitting information to the local processor 50 to indicate how and when to activate the dispenser 40 , or to indicate other parameters determining flow, blockage in flow path, contact sensors, rotary motion or other motion indicators, as well as conditions such as the reservoir 30 being empty or leaking, or the dispensing of too much or too little fluid from the reservoir, etc.
- the device 10 can also be provided with an adhesive layer 22 on the outer surface of the housing 20 for securing the device 10 directly to the skin of a patient, as illustrated in FIG. 1 .
- the adhesive layer 22 is provided on an external “bottom” surface of the housing 20 .
- the adhesive layer is also preferably provided in a continuous ring encircling the port 24 of the exit port assembly 70 in order to provide a protective seal around the penetrated skin to prevent the penetrated skin from becoming dirty when the cannula 72 of the exit port assembly 70 extends through the skin.
- the fill port 90 extend through the bottom surface of the housing 20 and be surrounded by the adhesive layer 22 to discourage and prevent filling and re-filling of the fluid delivery device 10 when the device is attached to a patient's skin.
- the housing 20 can be made from flexible material, or can be provided with flexible hinged sections that allow the fluid delivery device 10 to flex during patient movement to prevent detachment and aid in patient comfort.
- the device 10 is provided with a non-pressurized reservoir 30 , and the dispenser 40 is adapted to control flow from the reservoir 30 by driving or pumping the fluid from the reservoir to the exit port assembly.
- dispensers Examples of such “driving or pumping” dispensers are shown in co-pending U.S. patent application Ser. No. 09/955,623, filed on Sep. 19, 2001 (Atty. Docket No. INSL-117), and entitled PLUNGER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference.
- Other examples of dispensers are shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), and entitled DISPENSER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference, and co-pending U.S.
- the reservoir 30 includes a side wall 32 extending towards an outlet 36 connected to the exit port assembly 70 .
- a threaded lead screw 42 is received in the reservoir 30 and extends towards the outlet 36 of the reservoir 30 generally parallel with the side wall 32 of the reservoir, and a plunger 44 is secured to an end of the lead screw 42 .
- the lead screw 42 , the plunger 44 and the reservoir 30 are adapted such that a fluid-tight seal is formed between the plunger and the lead screw and a fluid-tight seal is formed between the plunger and the side wall 32 of the reservoir, so that movement of the plunger towards the outlet 36 of the reservoir 30 forces fluid through the outlet 36 to the exit port assembly 70 .
- the dispenser 40 causes fluid flow by causing linear movement of the lead screw 42 and the plunger 44 towards the outlet 36 of the reservoir 30 .
- the dispenser 40 can include an elongated shape memory element connected to the local processor 50 and having a changeable length decreasing from an uncharged length to a charged length when at least one charge is applied to the shape memory element.
- the shape memory element is operatively connected to the plunger 44 such that the changeable length of the shape memory element causes the plunger 44 to move along the side wall 32 of the reservoir 30 .
- the dispenser 40 includes a rotatable gear 46 linearly fixed with respect to the reservoir 30 .
- the gear 46 is coaxially mounted with respect to the lead screw 42 , and is threadedly engaged with the lead screw 42 , such that rotation of the gear 46 causes linear movement of the lead screw 42 .
- the lead screw 42 and the gear 46 are adapted such that rotation of the gear 46 in a first direction causes linear movement of the lead screw 42 and the plunger 44 towards the outlet 36 of the reservoir 30 .
- the dispenser 40 further includes a finger 48 for engaging radially extending teeth of the gear 46 , wherein the finger 48 and the gear 46 are adapted such that linear movement of the finger 48 in a first direction adjacent the gear 46 causes rotation of the gear while linear movement of the finger 48 in a second direction adjacent the gear 46 causes no rotation of the gear.
- the elongated shape memory element is connected to the finger 48 such that the changeable length of the shape memory element decreasing from an uncharged length to a charged length causes linear movement of the finger 48 in one of the first and the second directions.
- the dispenser 40 can also include an actuation element, such as a compression spring, connected to the finger 48 for causing linear movement of the finger in the first direction. Examples of such dispensers are shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), which has already been incorporated herein by reference.
- the gear 46 can be further configured to be released from the lead screw 42 to allow the lead screw 42 and the plunger 44 to be linearly moved away from the outlet 36 of the reservoir 30 during filling of the reservoir.
- An example of such a releasable gear is also shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), which has already been incorporated herein by reference.
- dispensers can also be used with a device incorporating a flow restriction assembly 200 of the present invention.
- the device can be provided with a pressurized reservoir and a dispenser that does not create a driving or pumping force, but rather acts as a metering device, allowing pulses of fluid to pass from the pressurized reservoir, through the dispenser, to the exit port assembly 70 .
- metering Examples of such “metering” dispensers are shown in co-pending U.S. patent application Ser. No. 09/977,434, filed Oct. 12, 2001 (Atty. Docket No.
- the dispenser is controlled by the local processor 50 , which includes electronic programming, controls, and circuitry to allow sophisticated fluid delivery programming and control of the dispenser.
- the flow restriction system 200 generally includes an air removal filter communicating with the flow path 12 and allowing air to exit the flow path 12 and preventing fluid from exiting the flow path 12 , and a flow restrictor positioned within the flow path 12 between the air removal filter and the exit port assembly 70 (i.e., downstream of the filter).
- the flow restriction system 200 of the present invention allows the flow path 12 of the fluid delivery device 10 to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by the device 10 .
- the air removal filter of the flow restriction system 200 removes air from the flow path 12
- the flow restrictor of the flow restriction system 200 elevates pressure within the flow path 12 to ensure that substantially all air within the flow path 12 is forced out of the air removal filter.
- the flow restrictor and the air removal filter of the flow restriction system 200 are combined in a single outlet plug 202 fitted to the port 24 of the exit port assembly 70 .
- the outlet plug 202 is unitarily formed of a material that allows the passage of air but prevents the passage of fluid, such as an ultrahigh molecular weight polyethylene in sinstered porous form, a porous ceramic, a hydrophobic gel, a woven or non-woven polytetrafluoroethylene (PTFE) such as Teflon®, or woven fabric material having very small openings (e.g., 0.02 microns) such as Gortex®.
- PTFE woven or non-woven polytetrafluoroethylene
- the flow restrictor and the air removal filter of the flow restriction system 200 are positioned between the reservoir 30 and the outlet port assembly 70 .
- the flow restrictor and the air removal filter of the flow restriction system 200 could be positioned before the reservoir 30 , as long as the flow restrictor is positioned downstream of the air removal filter.
- the removable outlet plug 202 prevents fluid leakage from the flow path 12 prior to use, e.g., during storage and during priming when filled by a user.
- the outlet plug 202 may also maintain the cannula 72 of the exit port assembly 70 in a sterile state prior to use.
- the outlet plug 202 is removed by a user prior to attaching the fluid delivery device 10 to a patient's skin surface.
- the cannula 72 of the exit port assembly 70 is extendable through the port 22 in the housing 20 of the fluid delivery device 10 to be inserted into the skin of a patient.
- the outlet plug 202 is removably secured to the outer surface of the housing 20 over the port 22 , such that the outlet plug 202 prevents fluid from exiting the flow path 12 .
- FIG. 5 shows another exemplary embodiment of a fluid delivery device 10 including a flow restriction system 300 constructed in accordance with the present invention.
- the system 300 of FIG. 5 is similar to the system 200 of FIGS. 2 through 4 such that similar elements have the same reference numeral.
- the flow restriction system 300 of FIG. 5 further includes a flow sensor assembly 310 that provides an indication of fluid pressure within the flow path 12 , so that conditions within the flow path 12 can be determined during a filling process.
- the flow sensor assembly 310 can be used to provide an indication of when the flow path 12 is full and when the flow path 12 becomes primed.
- the flow sensor assembly 310 comprises a resilient diaphragm 320 having opposing first and second surfaces 322 , 324 , with the first surface 322 positioned against the flow path 12 of the device 10 , and a chamber wall 326 positioned adjacent the second surface 324 of the diaphragm.
- the diaphragm 320 is made from a suitably expandable yet resilient material, such as rubber or a synthetic rubber.
- the chamber wall 326 is adapted such that an enclosed chamber 328 is defined between the chamber wall 326 and the second surface 324 of the diaphragm 320 .
- the chamber 328 is provided with a predetermined volume.
- the chamber 328 can also be provided with a relief port for allowing air to escape the chamber upon expansion of the diaphragm 320 .
- the diaphragm 320 and the chamber 328 are arranged and adapted such that the amount of expansion and the duration of the expansion of the diaphragm into the chamber can be used to determine when the flow path 12 becomes substantially primed upon being filled through the fill port 90 .
- the sensor assembly 310 also includes at least one sensor 330 arranged to provide a signal when the second surface 324 of the diaphragm 320 expands into the chamber 328 in response to at least one predetermined fluid flow condition occurring in the flow path 12 .
- the sensor 330 can be arranged to determine when the second surface 324 of the diaphragm 320 expands fully into the chamber 328 and contacts the chamber wall 326 .
- the sensor 330 can comprise any device for determining and providing an indication of the position of the diaphragm 320 in the chamber 328 .
- the sensor can comprise one of a contact or pressure switch, a magnetic Hall effect sensor, a strain gage, and a density gage.
- the sensor comprises three open circuits 330 a , 330 b , 330 c , which each have their own primary leads 332 a , 332 b , 332 c and share a secondary lead 334 .
- the secondary lead 334 is positioned on the second surface 324 of the diaphragm 320 , while the primary leads 332 a , 332 b , 332 c are positioned on the chamber wall 326 at different points from the diaphragm 320 .
- the secondary lead 334 of the diaphragm 320 eventually contacts each of primary leads 332 a , 332 b , 332 c , and successively closes the circuits 330 a , 330 b , 330 c.
- the processor 50 of the fluid delivery device 10 also acts as the processor for the sensor assembly 300 and is connected to the open circuits 330 a , 330 b , 330 c .
- the circuits 330 a , 330 b , 330 c are successively closed to provide “signals” to the processor 50 .
- the sensor assembly 300 can be provided with its own, separate processor programmed to operate in accordance with the present invention.
- the sensors 330 a , 330 b , 330 c can simply be connected to an alarm(s), such as a light emitting diode or an electronic sound maker, and which is activated upon the circuits 330 a , 330 b , 330 c being closed. In this manner, a user can simply receive a visual or an audible alarm signal upon full expansion of the diaphragm 320 into the chamber 328 to close the circuits 330 a , 330 b , 330 c.
- an alarm(s) such as a light emitting diode or an electronic sound maker
- FIG. 6 illustrates an exemplary embodiment of a method of determining when the flow path 12 is primed in accordance with the present invention and as carried out by the processor 50 .
- FIG. 6 is a graph of pressure versus time illustrating pressure within the flow path while the flow path is being filled by a user. The pressure level “a” illustrated in the graph is produced upon the second surface 324 of the diaphragm 320 expanding partly into the chamber 328 and closing the first sensor circuit 330 a , shown in FIG. 5 a.
- the processor 50 Upon receiving signal “a” from the first sensor circuit 330 a , the processor 50 is programmed to send a signal to the remote control device 100 indicating that the flow delivery device 10 is being filled.
- the remote control device 100 can include an alarm, such as an audible or visual alarm, that the remote processor of the remote control device 100 activates upon receiving the signal from the local processor 50 .
- the fluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to the local processor 50 for activation at least initially when the flow path is being filled by a user.
- the pressure level “b” illustrated in the graph is produced upon the second surface 324 of the diaphragm 320 further expanding into the chamber 328 and closing the second sensor circuit 330 b.
- the processor 50 is programmed to send a signal to the remote control device 100 indicating that the plunger 44 of the flow delivery device 10 has been fully moved rearward within the reservoir 30 and away from the outlet 36 of the reservoir.
- the remote control device 100 can include another alarm, such as an audible or visual alarm, that the remote processor of the remote control device 100 activates upon receiving the signal from the local processor 50 .
- the fluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to the local processor 50 for activation when the plunger 44 has been fully moved rearward within the reservoir 30 .
- the pressure level “c” illustrated in the graph is produced upon the third surface 324 of the diaphragm 320 fully expanding into the chamber 328 and closing the third sensor circuit 330 c.
- the processor 50 is programmed to send a signal to the remote control device 100 indicating that the flow path 12 is filled and primed.
- the remote control device 100 can include another alarm, such as an audible or visual alarm, that the remote processor of the remote control device 100 activates upon receiving the signal from the local processor 50 .
- the fluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to the local processor 50 for activation when the flow path is primed.
- the preferred volume of the chamber 328 should take into account the compliance of the entire flow path 12 of the device 10 .
- the flow path 12 may expand, thereby artificially adding to the volume of the sensor chamber 328 . Any such artificially expanded volume must be taken into account in monitoring the signals received from the sensor.
- the flow path 12 is designed to have minimal compliance at both normal operating pressures and abnormal operating pressures. If minimal compliance of the flow path 12 is not possible, however, the computer algorithm of the processor can be programmed to take the known compliance of the flow path 12 into account when determining flow conditions based upon signals received from the sensor assembly 310 .
- the flow path 12 as well as the sensor assembly 310 is constructed from laminated layers of suitably strong and rigid material such as plastic or stainless steel, and can be secured together in a suitable manner, such as with adhesives or by welding.
- the laminated construction provides many benefits including, but not limited to, simplifying the design and manufacturing of the flow path 12 and the sensor assembly 310 , and further reducing the size, complexity and costs of the fluid delivery device 10 , so that the device lends itself to being small and disposable in nature.
- the diaphragm 320 of the flow sensor assembly 310 can be provided as other than a flat layer of resiliently expandable material.
- the diaphragm can include any structure that provides a fluid-tight barrier between the flow path 12 and the sensor chamber 328 , and that moves into the chamber upon an increase in pressure in the flow path 12 .
- the diaphragm may be provided as a piston biased away from the chamber wall with a spring.
- Many alternative embodiments of the diaphragm are possible while remaining within the scope of the present invention. Examples of flow sensor assemblies are shown in co-pending U.S. patent application Ser. No. 10/087,507, filed on Mar. 1, 2002 (Atty. Docket No.
- the flow sensor assembly can be provided in the form of a simple pressure sensor for determining when the flow path 12 reaches a primed pressure.
- FIGS. 7 and 8 show another exemplary embodiment of a flow restriction system constructed in accordance with the present invention.
- the system 400 of FIGS. 7 and 8 is similar to the system 300 of FIG. 5 such that similar elements have the same reference numeral.
- the flow restriction system 400 of FIGS. 7 and 8 further includes a second air removal filter 402 positioned between the fill port 90 and the reservoir 30 .
- the fill port 90 can include a resealing needle insertion septum 92 for receiving a needle and which can be constructed of a resealing elastomer such as silicone that allows a needle to puncture the septum to add fluid to the reservoir 30 through the fill port 90 , yet reseals after the needle is withdrawn.
- the fill port 90 can include a Luer or other connector.
- the second air removal filter is a flat sheet positioned in the flow path 12 just after the fill port 90 , and can be comprised of any material for filtering air from fluid, such as an ultrahigh molecular weight polyethylene in sintered porous form, porous ceramic, hydrophobic gel, a woven or non-woven polytetrafluoroethylene (PTFE) such as Teflon®, woven fabric material having very small openings (e.g., 0.02 microns) such as Goretex®, or hydrophilic material that swells with fluid pressure.
- the flow path 12 includes an air escape port 404 extending from the filter 402 for allowing filtered air to be directed out of the flow path 12 .
- the flow restriction system 400 also includes a second flow restrictor 406 positioned between the second air removal filter 402 and the reservoir 30 .
- the second flow restrictor comprises a narrowed portion 406 of the flow path 12 and elevates pressure within the flow path 12 to ensure that the second air removal filter 402 operates efficiently in removing air from fluid (e.g., insulin) injected into the flow path 12 through the fill port 90 .
- the sensor assembly 310 is positioned at the end of the reservoir 30 . Positioning the sensor assembly 310 at the end of the reservoir 30 can simplify the manufacturing process of the sensor assembly 310 and the fluid delivery device 10 and can reduce the number of parts to be assembled.
- FIG. 11 shows another exemplary embodiment of a flow restriction system 420 constructed in accordance with the present invention.
- the system 420 of FIG. 11 is similar to the system 400 of FIGS. 7 and 8 such that similar elements have the same reference numeral.
- the flow restriction system 420 of FIG. 11 includes a second flow restrictor comprising a porous plug 426 fitted in the flow path 12 to elevate pressure within the flow path 12 and ensure that the second air removal filter 402 operates efficiently in removing air from fluid (e.g., insulin) injected into the flow path through the fill port 90 .
- fluid e.g., insulin
- FIG. 9 shows an exemplary embodiment of an outlet plug 430 constructed in accordance with the present invention.
- the outlet plug 430 is adapted to be received on a needle 72 of an outlet port assembly 70 of a fluid delivery device.
- the outlet plug 430 includes a sleeve 432 having a first end removably received in a substantially fluid-tight manner on the distal end of the needle 72 , and a cap 434 connected to a second end of the sleeve 432 .
- the sleeve 432 and the cap 434 of the outlet plug 430 are unitarily formed from a resiliently flexible material, such as a synthetic rubber.
- An air removal filter 436 is seated in the cap 434 of the outlet plug 430 and prevents fluid from passing out of the needle 72 and allows air to pass out of the needle 72 .
- the air removal filter 436 is provided with predetermined physical properties, such as material pore size and/or thickness, such that the filter 436 expands upon the flow path being substantially primed.
- the air removal filter 436 can additionally be provided with specific visual indicia for indicating when the flow path is substantially primed.
- FIGS. 15 a and 15 b show an exemplary embodiment of the outlet plug 430 wherein the visual indicia comprises a drawing on the filter 436 that changes shape upon the filter expanding.
- the drawing can comprise two eyes and a mouth that appear as a “sad face” when the filter 436 is not expanded, as shown in FIG. 15 a , and that become a “happy face” upon the filter 436 expanding when the flow path is primed, as shown in FIG. 15 b.
- Other drawings can alternatively be used to provide an effective indication of filter 436 expansion and the flow path becoming primed.
- FIGS. 16 a and 16 b show another exemplary embodiment of an outlet plug 440 constructed in accordance with the present invention.
- the plug 440 of FIGS. 16 a and 16 b is similar to the plug 430 of FIGS. 9, 10 a and 10 b , such that similar elements have the same reference numeral.
- the outlet plug 440 of FIGS. 16 a and 16 b includes an air removal filter having an outer layer 436 a and an inner layer 436 b.
- the inner layer 436 b has predetermined physical properties, such as material pore size and/or thickness, that allows the inner layer 436 b to expand to contact the outer layer 436 a upon the flow path becoming substantially primed.
- the outer layer 436 a of the air removal filter 440 is relatively transparent and the inner layer 436 b is darker in coloring than the outer transparent layer 436 a such that the inner layer 436 b can be seen through the outer layer 436 a when the inner layer contacts the outer layer.
- the flow restriction system can be provided with a sensor, such as a contact sensor, for providing a signal when the inner layer 436 b contacts the outer layer 436 a.
- FIG. 12 shows another exemplary embodiment of an outlet plug 450 constructed in accordance with the present invention.
- the plug 450 of FIG. 12 is similar to the plug 430 of FIGS. 9, 10 a and 10 b , such that similar elements have the same reference numeral.
- the outlet plug 450 of FIG. 12 includes an air removal filter 452 that is comprised of a material that also acts as a needle septum such that the exit port assembly 70 of the fluid delivery device 10 can also act as the fill port for the device 10 .
- FIG. 12 shows the air removal filter 452 receiving a needle 454 of a syringe 456 for filling the flow path of the device 10 .
- the outlet plug 450 therefore, functions as an air removal filter, a flow restrictor and a needle septum. In this manner, the fluid delivery device 10 is further simplified since it does not require a separate fill port.
- FIG. 13 shows an additional exemplary embodiment of an outlet plug 460 constructed in accordance with the present invention.
- the plug 460 of FIG. 13 is similar to the plug 430 of FIGS. 9, 10 a and 10 b , such that similar elements have the same reference numeral.
- the outlet plug 460 of FIG. 13 includes a cap 462 further including straps 462 a for securely holding the air removal filter 436 therein.
- FIG. 14 shows still another exemplary embodiment of an outlet plug 470 constructed in accordance with the present invention.
- the plug 470 of FIG. 14 is similar to the plug 430 of FIGS. 9, 10 a and 10 b , such that similar elements have the same reference numeral.
- the outlet plug 470 of FIG. 14 further includes a pressure relief valve 472 .
- the relief valve 472 ensures that pressure within the flow path of the fluid delivery device does not become excessive during a filling procedure, i.e., does not exceed a desired maximum level of flow path pressure, which could damage the fluid delivery device.
- the air removal filter 436 of the outlet plug can be adapted to allow fluid to pass out of the needle 72 upon a pressure within the flow path exceeding a desired maximum level of flow path pressure. The fluid leaking from the needle 72 would then act as a visual indication to a user that the fluid delivery device was improperly filled and should be discarded prior to use.
- FIG. 17 a further exemplary embodiment of an outlet plug 480 constructed in accordance with the present invention is shown.
- the plug 480 of FIG. 17 may be configured to act only as a flow restrictor (wherein the system would include a separate air removal filter within the flow path of the device 10 ) or may be configured to act as both the flow restrictor and the air removal filter.
- the outlet plug 480 of FIG. 17 also includes a handle 482 for supporting the fluid delivery device 10 during filling of the device through the fill port.
- the handle 482 of the outlet plug 480 preferably includes an outer contour 484 that nests with an outer contour of an end the fluid delivery device 10 , as shown in FIG. 17 .
- FIG. 18 shows another exemplary embodiment of an outlet plug 490 constructed in accordance with the present invention.
- the outlet plug 490 of FIG. 18 also includes a handle 492 for supporting the fluid delivery device 10 during filling of the device.
- the handle 492 of the outlet plug 490 includes an outer contour 494 that nests with an outer contour of an end of the fluid delivery device 10 .
- the handle 494 also includes an extension 496 that supports a top surface of the fluid delivery device 10 during filling of the device.
- the packaging system 500 includes a container 502 holding the fluid delivery device 10 (e.g., similar to the fluid delivery device 10 of FIGS. 2 through 4 ), and a protective cover 504 removably sealing the fluid delivery device 10 within the container 502 .
- the container 502 includes an inner contour 506 that nests with an outer contour of the fluid delivery device 10 to provide support for the device 10 during handling and storage of the package system 500 and during filling of the device 10 by a user.
- the outlet plug 202 (e.g., similar to the outlet plug of FIGS.
- the fluid delivery device 10 also includes a switch mechanism 508 , and the protective cover 504 includes an insert 510 extending into the fluid delivery device 10 to normally hold the switch mechanism 508 open. Upon removal of the cover 504 , the insert 510 is removed from the switch mechanism 508 such that the switch mechanism 508 can close.
- the switch mechanism 508 can be used, example, to turn on the processor of the fluid delivery device 10 just prior to the device 10 being attached to a patient.
- FIGS. 20 a and 20 b show yet a further exemplary embodiment of a flow restriction system 520 and a fluid delivery device 530 constructed in accordance with the present invention.
- the system 520 and the fluid delivery device 530 of FIGS. 20 a and 20 b are similar to the system 200 and the device 10 of FIGS. 2 through 4 such that similar elements have the same reference numeral.
- the fluid delivery device 530 of FIGS. 20 and 20 b includes an adhesive layer 22 on a bottom external surface of the housing 20 for securing the device 530 to a patient, and a removable protective layer 26 covering the adhesive layer 22 prior to attachment of the fluid delivery device 530 to a patient.
- the flow restriction system 520 includes an outlet plug 202 that acts as both a flow restrictor and an air removal filter for the system 520 , and is secured to an insertable cannula 72 of the exit port assembly 70 prior to attachment of the fluid delivery device 530 to a patient.
- the outlet plug 202 is secured to the protective layer 26 of the fluid delivery device 530 so that the plug 202 is also removed from the cannula 72 when the protective layer 26 is removed from the adhesive layer 22 for attachment of the fluid delivery device 530 to a patient.
- FIG. 20 a shows the protective layer 26 and the outlet plug 202 prior to removal from the fluid delivery device 530
- FIG. 20 b shows the protective layer 26 and the outlet plug 202 after removal from the fluid delivery device 530 .
- the fluid delivery device 530 also includes a switch mechanism 532 for providing an indication when the outlet plug 202 is removed from the distal end of the cannula 72 .
- the switch mechanism 532 can be connected, for example, to the processor (not shown) of the fluid delivery device 530 to provide an indication that the outlet plug 202 has been removed, or can be connected to an alarm, such as an LED, for providing an indication to a user that the outlet plug 202 has been removed.
- the switch mechanism 532 can also be used to turn on the fluid delivery device 530 (e.g., connect the power source to the processor) upon removal of the outlet plug 202 .
- the switch mechanism 532 includes a first lead 534 normally biased towards a second lead 536 to close the switch mechanism.
- the switch mechanism 532 is arranged and oriented with respect to the outlet port assembly 70 such that the outlet plug 202 pushes the first lead 534 away from the second lead 536 when the outlet plug 202 is positioned on the cannula 72 , as shown in FIG. 20 a.
- the first lead 534 is allowed to return to the second lead 536 and close the switch mechanism 532 , as shown in FIG. 20 b.
- FIG. 21 Additional exemplary embodiments of a flow restriction system 540 and a flow path 550 of a fluid delivery device constructed in accordance with the present invention are shown in FIG. 21 .
- the system 540 and the flow path 550 of FIG. 21 are similar to the system 200 and the flow path 12 of FIGS. 2 through 4 such that similar elements have the same reference numeral.
- the flow path 550 includes an outlet port assembly comprising a rigid cannula 72 (e.g., a needle with sharpened distal end), a reservoir 30 connected to the cannula 72 , and a fill port comprising a needle septum 90 connected to the reservoir 30 .
- a rigid cannula 72 e.g., a needle with sharpened distal end
- a reservoir 30 connected to the cannula 72
- a fill port comprising a needle septum 90 connected to the reservoir 30 .
- the flow restriction system 540 includes an air removal filter 542 positioned in the flow path 550 between the reservoir 30 and the fill port 90 , and an outlet plug 544 removably fitted on the sharpened distal end of the rigid cannula 72 .
- the outlet plug 544 is made of a suitable air removal filter material such that the outlet plug 544 functions as both an air removal filter and a flow restrictor.
- the outlet plug 544 causes an increased pressure within the flow path 550 during filling of the flow path through the fill port 90 (with a needle and syringe, for example), so that air can be effectively filtered through the air removal filter 542 and the outlet plug 544 .
- the outlet plug 544 is removed from the cannula 72 prior to use of the flow path 530 (i.e., prior to injection of the cannula into a patient for delivery of fluid contained in the reservoir).
- FIG. 22 shows another exemplary embodiment of an outlet plug 560 constructed in accordance with the present invention.
- the outlet plug 560 is formed as part of a protective layer 562 removably attached to an adhesive layer 22 of the fluid delivery device 10 .
- the exemplary embodiment of the fluid delivery device 10 of FIG. 22 includes an exit port assembly 570 having an injectable needle 572 for insertion into a patient.
- the needle 572 is extendable out of a port 24 in a housing 20 of the fluid delivery device 10 .
- An o-ring 574 provides a fluid tight seal between the port 24 and the needle 572 .
- the outlet plug 560 provides a substantially fluid-tight seal of the port 24 when the protective layer 562 is attached to the adhesive 22 .
- the outlet plug 560 is made of a suitable air removal filter material such that the outlet plug 560 functions as both an air removal filter and a flow restrictor.
- the outlet plug 560 is made of a different material than the remainder of the protective layer 562 .
- the remainder of the protective layer 562 is made of a suitable material that readily detaches from the adhesive layer 22 , such as wax paper or a plastic.
- the protective layer can be made entirely of a suitable air removal filter material that is also readily detachable from the adhesive layer 22 , such that the portion of the protective layer positioned over the port 24 of the housing 20 can act as the outlet plug.
- FIGS. 23 and 26 show yet a further exemplary embodiment of a flow restriction system 600 and a fluid delivery device 610 constructed in accordance with the present invention.
- the system 600 and the fluid delivery device 610 of FIGS. 23 and 26 are similar to the system 200 and the device 10 of FIGS. 2 through 4 such that similar elements have the same reference numeral.
- a flow path 612 of the fluid delivery device 610 includes a reservoir 630 and an outlet port assembly 670 terminating in a needle 672 for insertion into a patient.
- the needle 672 is extendable out of a port 624 in a housing 620 of the fluid delivery device 610 .
- An o-ring 674 provides a fluid tight seal between the port 624 and the needle 672 .
- the outlet port assembly 670 also includes an injection mechanism 676 for injecting the needle 672 into a patient.
- the flow path 612 does not require a separate fill port connected to the reservoir 630 , as further discussed below.
- the flow restriction system 600 includes an air removal filter and a flow restrictor combined in a single outlet plug 602 fitted to the end of the exit port assembly 670 , as also shown in FIG. 27 .
- the flow restriction system 600 further includes a flow sensor assembly 330 positioned at the end of the reservoir 630 , as also shown in FIG. 24 .
- a second air removal filter 604 is positioned between the reservoir 630 and the exit port assembly 670 and can be adapted to also function as a second flow restrictor if desired.
- the removable outlet plug 602 is fitted to the end of the exit port assembly 670 and prevents fluid leakage from the flow path 612 prior to use, e.g., during storage and during priming when filled by a user.
- the outlet plug 602 is removed by a user prior to attaching the fluid delivery device 610 to a patient's skin surface.
- the outlet plug 602 includes a sleeve 605 having a first end removably received in a substantially fluid-tight manner on the distal end of the needle 672 , and a cap 607 connected to a second end of the sleeve 605 .
- the sleeve 605 and the cap 607 of the outlet plug 602 are unitarily formed from a resiliently flexible material.
- An air removal filter 606 is seated in the cap 607 such that air passing through the filter 606 can exit the outlet plug 602 through an air release port 609 in the cap 607 .
- the air removal filter 606 also acts as the flow restrictor.
- the outlet plug 602 further includes a needle septum 692 .
- the outlet plug 602 therefore, functions as an air removal filter, a flow restrictor and a needle septum. In this manner, the fluid delivery device 610 is further simplified since it does not require a separate fill port.
- the present invention generally provides a device for delivering fluid, such as insulin for example, to a patient.
- the device includes a flow path having an exit port assembly adapted to connect to a transcutaneous patient access tool (e.g., needle), and a reservoir connected to the exit port assembly.
- the device also includes a flow restriction system having an air removal filter communicating with the flow path and allowing air to exit the flow path and preventing fluid from exiting the flow path, and a flow restrictor positioned within the flow path between the air removal filter and the exit port assembly.
- the flow restriction system of the present invention allows the flow path of the fluid delivery device to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by the device.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Emergency Medicine (AREA)
- Dermatology (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
- The present application is a divisonal of co-pending U.S. patent application Ser. No. 10/198,690, filed on Jul. 16, 2002, which is assigned to the assignee of the present application and incorporated herein by reference.
- The present invention relates generally to medical devices, systems and methods, and more particularly to small, low cost, portable infusion devices and methods that are useable to achieve precise, sophisticated, and programmable flow patterns for the delivery of therapeutic liquids such as insulin to a mammalian patient. Even more particularly, the present invention is directed to fluid flow restriction systems and methods for an infusion device. Among other benefits and features, the fluid flow restriction systems and methods of the present invention ensure adequate priming of infusion devices prior to use, and the delivery of accurate volumes of fluid from the infusion devices during their use.
- Today, there are numerous diseases and other physical ailments that are treated by various medicines including pharmaceuticals, nutritional formulas, biologically derived or active agents, hormonal and gene based material and other substances in both solid or liquid form. In the delivery of these medicines, it is often desirable to bypass the digestive system of a mammalian patient to avoid degradation of the active ingredients caused by the catalytic enzymes in the digestive tract and liver. Delivery of a medicine other than by way of the intestines is known as parenteral delivery. Parenteral delivery of various drugs in liquid form is often desired to enhance the effect of the substance being delivered, insuring that the unaltered medicine reaches its intended site at a significant concentration. Also, undesired side effects associated with other routes of delivery, such as systemic toxicity, can potentially be avoided.
- Often, a medicine may only be available in a liquid form, or the liquid version may have desirable characteristics that cannot be achieved with solid or pill form. Delivery of liquid medicines may best be accomplished by infusing directly into the cardiovascular system via veins or arteries, into the subcutaneous tissue or directly into organs, tumors, cavities, bones or other site specific locations within the body. Parenteral delivery of liquid medicines into the body is often accomplished by administering bolus injections using a needle and reservoir, or continuously by gravity driven dispensers or transdermal patch technologies. Bolus injections often imperfectly match the clinical needs of the patient, and usually require larger individual doses than are desired at the specific time they are given. Continuous delivery of medicine through gravity feed systems compromise the patient's mobility and lifestyle, and limit the therapy to simplistic flow rates and profiles. Transdermal patches have special requirements of the medicine being delivered, particularly as it relates to the molecular structure, and similar to gravity feed systems, the control of the drug administration is severely limited.
- Ambulatory infusion pumps have been developed for delivering liquid medicaments to a patient. These infusion devices have the ability to offer sophisticated fluid delivery profiles accomplishing bolus requirements, continuous infusion and variable flow rate delivery. These infusion capabilities usually result in better efficacy of the drug and therapy and less toxicity to the patient's system. An example of a use of an ambulatory infusion pump is for the delivery of insulin for the treatment of diabetes mellitus. These pumps can deliver insulin on a continuous basal basis as well as a bolus basis as is disclosed in U.S. Pat. No. 4,498,843 to Schneider et al.
- The ambulatory pumps often work with a reservoir to contain the liquid medicine, such as a cartridge, a syringe or an IV bag, and use electro-mechanical pumping or metering technology to deliver the medication to the patient via tubing from the infusion device to a needle that is inserted transcutaneously, or through the skin of the patient. The devices allow control and programming via electromechanical buttons or switches located on the housing of the device, and accessed by the patient or clinician. The devices include visual feedback via text or graphic screens, such as liquid crystal displays known as LCD's, and may include alert or warning lights and audio or vibration signals and alarms. The device can be worn in a harness or pocket or strapped to the body of the patient. Currently available ambulatory infusion devices are expensive, difficult to program and prepare for infusion, and tend to be bulky, heavy and very fragile. Filling these devices can be difficult and require the patient to carry both the intended medication as well as filling accessories. The devices require specialized care, maintenance, and cleaning to assure proper functionality and safety for their intended long term use. Due to the high cost of existing devices, healthcare providers limit the patient populations approved to use the devices and therapies for which the devices can be used.
- Clearly, therefore, there was a need for a programmable and adjustable infusion system that is precise and reliable and can offer clinicians and patients a small, low cost, light-weight, easy-to-use alternative for parenteral delivery of liquid medicines. In response, the applicant of the present application provided a small, low cost, light-weight, easy-to-use device for delivering liquid medicines to a patient. The device, which is described in detail in co-pending U.S. application Ser. No. 09/943,992, filed on Aug. 31, 2001, includes an exit port, a dispenser for causing fluid from a reservoir to flow to the exit port, a local processor programmed to cause a flow of fluid to the exit port based on flow instructions from a separate, remote control device, and a wireless receiver connected to the local processor for receiving the flow instructions. To reduce the size, complexity and costs of the device, the device is provided with a housing that is free of user input components, such as a keypad, for providing flow instructions to the local processor. Such devices for delivering liquid medicines to a patient are preferably purged of air, or “primed” prior to operation such that desired volumes of fluid are accurately delivered by the devices. What is still desired, therefore, are new and improved devices for delivering fluid to a patient. Preferably, the fluid delivery devices will be simple in design, and inexpensive and easy to manufacture, in order to further reduce the size, complexity and costs of the devices, such that the devices lend themselves to being small and disposable in nature. In addition, the fluid delivery device will preferably include a flow restriction system and method that primes the devices prior to operation.
- The present invention provides a device for delivering fluid, such as insulin for example, to a patient. The device includes a flow path having an exit port assembly adapted to connect to a transcutaneous patient access tool (e.g., needle), and a reservoir connected to the exit port assembly. The device also includes a flow restriction system having an air removal filter communicating with the flow path and allowing air to exit the flow path and preventing fluid from exiting the flow path, and a flow restrictor positioned within the flow path between the air removal filter and the exit port assembly. Among other features and advantages, the flow restriction system of the present invention allows the flow path of the fluid delivery device to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by the device. According to one aspect of the present invention, the flow restrictor of the flow restriction system comprises an outlet plug removably connected to the exit port assembly to prevent fluid from exiting the flow path through the exit port assembly. According to another aspect, the exit port assembly of the fluid delivery device includes a transcutaneous patient access tool and the outlet plug is removably connected to the access tool. According to a further aspect, the transcutaneous patient access tool comprises a needle having a distal end for insertion into a patient and the outlet plug is removably connected to the distal end of the needle.
- According to another aspect of the present invention, the air removal filter of the flow restriction system comprises at least a portion of the outlet plug allowing air to exit the flow path through the exit port assembly. According to an additional aspect, the air removal filter of the outlet plug comprises one of PTFE and polyethylene. According to a further aspect, the air removal filter of the outlet plug is provided with predetermined physical properties (e.g., pore size and/or thickness) such that the filter expands upon the flow path being substantially primed. According to yet another aspect, the air bubble removal filter of the outlet plug comprises needle septum material. According to an additional aspect of the present invention, the flow restriction system further comprises a second air removal filter positioned between the fill port and the reservoir. According to another aspect, the flow restriction system further comprises a second flow restrictor positioned between the second air removal filter and the reservoir. According to a further aspect of the present invention, the flow restriction system also includes a sensor assembly monitoring fluid flow conditions within the flow path.
- According to one aspect, the sensor assembly includes a resilient diaphragm having opposing first and second surfaces, with the first surface of the diaphragm positioned against the flow path, a chamber wall positioned adjacent the second surface of the diaphragm and defining a sensor chamber adjacent the second surface of the diaphragm, and at least one sensor arranged to provide a signal when the second surface of the diaphragm expands into the chamber. According to an additional aspect, the sensor assembly is adapted to provide a signal to the processor when the flow path is primed. The present invention also provides a method for restricting fluid flow in a flow path of a fluid delivery device having an exit port assembly adapted to connect to a transcutaneous patient access tool. The method includes preventing fluid from exiting the flow path, allowing air to exit the flow path at an air removal point within the flow path, and restricting fluid flow through the flow path between the air removal point and the exit port assembly. These aspects of the invention together with additional features and advantages thereof may best be understood by reference to the following detailed descriptions and examples taken in connection with the accompanying illustrated drawings.
-
FIG. 1 is a perspective view of a first exemplary embodiment of a fluid delivery device constructed in accordance with the present invention shown secured on a patient, and a remote control device for use with the fluid delivery device (the remote control device being enlarged with respect to the patient and the fluid delivery device for purposes of illustration); -
FIG. 2 is an enlarged top sectional view of the fluid delivery device ofFIG. 1 ; -
FIG. 3 is an enlarged side elevation view, partially cut-away, of the fluid delivery device ofFIG. 1 ; -
FIG. 4 is an enlarged bottom plan view of the fluid delivery device ofFIG. 1 ; -
FIG. 5 is an enlarged top sectional view of another exemplary embodiment of a fluid delivery device constructed in accordance with the present invention; -
FIG. 5 a is a further enlarged sectional view of an exemplary embodiment of a flow sensor assembly of the fluid delivery device ofFIG. 5 ; -
FIG. 6 is a graph illustrating an exemplary embodiment of a method of restricting flow according to the present invention as carried out by the flow sensor assembly of the fluid delivery device ofFIGS. 5 and 5 a; -
FIG. 7 is a sectional view of another exemplary embodiment of a flow restriction system constructed in accordance with the present invention; -
FIG. 8 is an enlarged sectional view of a portion of the exemplary embodiment of a flow restriction system contained incircle 8 ofFIG. 7 ; -
FIG. 9 is an enlarged sectional view of an exemplary embodiment of an outlet plug constructed in accordance with the present invention for use as part of the flow restriction system ofFIG. 4 a; -
FIG. 10 a is a further enlarged sectional view of the outlet plug ofFIG. 9 ; -
FIG. 10 b is an enlarged sectional view of the outlet plug ofFIG. 9 shown received on an exit port cannula of the fluid delivery device, after the device has been filled with fluid and purged of air; -
FIG. 11 is a sectional view of an additional exemplary embodiment of a flow restriction system constructed in accordance with the present invention; -
FIG. 12 is a side elevation view, partially cut-away, showing another exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device with a needle of a syringe inserted into the outlet plug for injecting fluid into the exit port cannula and the fluid delivery device; -
FIG. 13 is a side elevation view, partially cut-away, showing an additional exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula; -
FIG. 14 is a side elevation view, partially cut-away, showing a further exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula; -
FIGS. 15 a and 15 b are top plan views of another exemplary embodiment of an outlet plug constructed in accordance with the present invention, respectively showing an air bubble filter of the outlet plug before and after expansion; -
FIGS. 16 a and 16 b are side sectional views of another exemplary embodiment of an outlet plug constructed in accordance with the present invention, respectively showing an air bubble filter of the outlet plug before and after expansion; -
FIG. 17 is a side elevation view showing another exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device; -
FIG. 18 is a side elevation view showing an additional exemplary embodiment of outlet plug constructed in accordance with the present invention, received on an exit port cannula of a fluid delivery device; -
FIG. 19 is a side elevation view, partially cut-away, showing an exemplary embodiment of a package constructed in accordance with the present invention, and containing a fluid delivery device; -
FIG. 20 a is a side elevation view, partially cut-away, showing an exemplary embodiment of a fluid delivery device and an outlet plug constructed in accordance with the present invention; -
FIG. 20 b is a side elevation view, partially cut-away, showing the outlet plug removed from the fluid delivery device ofFIG. 20 a; -
FIG. 21 is a representation of an exemplary embodiment of a flow path constructed in accordance with the present invention for use in a fluid delivery device; -
FIG. 22 is a side elevation view, partially cut-away, showing an exemplary embodiment of an exit port assembly and an outlet plug constructed in accordance with the present invention for use in a fluid delivery device; -
FIG. 23 is a sectional view showing an exemplary embodiment of a fluid delivery device and an outlet plug constructed in accordance with the present invention; -
FIG. 24 is an enlarged sectional view of a pressure sensor of the fluid delivery device ofFIG. 23 ; -
FIG. 25 is an enlarged sectional view of the outlet plug ofFIG. 23 ; -
FIG. 26 is a sectional view showing the outlet plug ofFIG. 23 attached to an exit port assembly of the fluid delivery device ofFIG. 23 ; and -
FIG. 27 is an enlarged sectional view of the outlet plug attached to the exit port assembly contained incircle 27 ofFIG. 26 . - Like reference characters designate identical or corresponding components and units throughout the several views.
- Referring first to
FIG. 2 , there is illustrated afluid delivery device 10 including aflow restriction system 200 constructed in accordance with the present invention. Theflow restriction system 200 operates to substantially prime (i.e., purge of air) aflow path 12 of thefluid delivery device 10 prior to operation of thedevice 10, to ensure that a desired volume of fluid is accurately delivered by thedevice 10 during operation. - The
fluid delivery device 10 ofFIG. 2 , and which is also shown inFIGS. 3 and 4 , can be used for the delivery of fluids to a person or animal. The types of liquids that can be delivered by thefluid delivery device 10 include, but are not limited to, insulin, antibiotics, nutritional fluids, total parenteral nutrition or TPN, analgesics, morphine, hormones or hormonal drugs, gene therapy drugs, anticoagulants, analgesics, cardiovascular medications, AZT or chemotherapeutics. The types of medical conditions that thefluid delivery device 10 might be used to treat include, but are not limited to, diabetes, cardiovascular disease, pain, chronic pain, cancer, AIDS, neurological diseases, Alzheimer's Disease, ALS, Hepatitis, Parkinson's Disease or spasticity. In addition, it should be understood that theflow restriction assembly 200 according to the present invention can be used with fluid delivery devices other than those used for the delivery of fluids to persons or animals. - The
flow path 12 of thefluid delivery device 10, as shown inFIG. 2 , generally includes areservoir 30 for receiving and holding the fluid to be delivered by thedevice 10, anexit port assembly 70 connected to the reservoir, and a fill port connected to the reservoir. Thefluid delivery device 10 also includes adispenser 40 for causing fluid from thereservoir 30 to flow to theexit port assembly 70. - The volume of the
reservoir 30 is chosen to best suit the therapeutic application of thefluid delivery device 10 impacted by such factors as available concentrations of medicinal fluids to be delivered, acceptable times between refills or disposal of thefluid delivery device 10, size constraints and other factors. Thereservoir 30 may be prefilled by the device manufacturer or a cooperating drug manufacturer, or may include external filling means, such as afill port 90 having needle insertion septum or a Luer connector, for example. In addition, thedevice 10 can be provided with a removable reservoir. - The
exit port assembly 70 can include elements to penetrate the skin of the patient, such that the entire volume of theflow path 12 of thefluid delivery device 10 is predetermined. For example, in the exemplary embodiment shown inFIG. 3 , a needle-connection tubing terminating in askin penetrating cannula 72 is provided as an integral part of theexit port assembly 70. Theexit port assembly 70 can further be provided with injection means, such as a spring-biased mechanism driven by a shaped memory element, to inject theskin penetrating cannula 72 into a patient when thefluid delivery device 10 is correctly positioned on the patient. For example, if the cannula is a flexible tube, a rigid penetrator within the lumen of the tube can be driven through the skin by the injection means and then withdrawn, leaving the soft cannula in place in the subcutaneous tissue of the patient or other internal site. - Examples of injection means for the exit port assembly are shown in co-pending U.S. patent application Ser. No. 10/037,902, filed on Nov. 9, 2001 (Atty. Docket No. INSL-114), and entitled TRANSCUTANEOUS DELIVERY MEANS, and U.S. patent application Ser. No. 10/128,206, filed on Apr. 23, 2002 (Atty. Docket No. INSL-121), and entitled TRANSCUTANEOUS FLUID DELIVERY SYSTEM, both of which are assigned to the assignee of the present application and incorporated herein by reference.
- Alternatively, the injection means may be removable soon after transcutaneous penetration. In addition, the
exit port assembly 70 can simply be adapted to connect with a Luer connector for example, to a separate, standard infusion device that includes a skin penetrating cannula. Theexit port assembly 70 can alternatively be adapted to connect through tubing to another medical device. - It should be understood that, as used herein, the term “flow path” 12 is meant to include all portions of the
fluid delivery device 10 that contain therapeutic fluid for delivery to a patient, e.g., all portions between thefill port 90 of thereservoir 30 to the tip of theneedle 72 of theexit port assembly 72. - The
fluid delivery device 10 also includes a processor or electronic microcontroller (hereinafter referred to as the “local” processor) 50 connected to thedispenser 40. Thelocal processor 50 is programmed to cause a flow of fluid to theexit port assembly 70 based on flow instructions from a separate,remote control device 100, an example of which is shown inFIG. 1 . - Referring also to
FIG. 1 , thefluid delivery device 10 further includes awireless receiver 60 connected to thelocal processor 50 for receiving flow instructions from a separate,remote control device 100 and delivering the flow instructions to thelocal processor 50. Thedevice 10 also includes ahousing 20 containing theexit port assembly 70, thereservoir 30, thedispenser 40, thelocal processor 50, and thewireless receiver 60. - As shown best in
FIGS. 3 and 4 , thehousing 20 of thefluid delivery device 10 is free of user input components for providing flow instructions to thelocal processor 50, such as electromechanical switches or buttons on an outer surface of thehousing 20, or interfaces otherwise accessible to a user to adjust the programmed flow rate through thelocal processor 50. The lack of user input components allows the size, complexity and costs of thedevice 10 to be substantially reduced so that thedevice 10 lends itself to being small and disposable in nature. Examples of such devices are disclosed in co-pending U.S. patent application Ser. No. 09/943,992, filed on Aug. 31, 2001 (Atty. Docket No. INSL-110), and entitled DEVICES, SYSTEMS AND METHODS FOR PATIENT INFUSION, which is assigned to the assignee of the present application and has previously been incorporated herein by reference. - In order to program, adjust the programming of, or otherwise communicate user inputs to the
local processor 50, thefluid delivery device 10 includes the wireless communication element, orreceiver 60 for receiving the user inputs from the separate,remote control device 100 ofFIG. 1 . Signals can be sent via a communication element (not shown) of theremote control device 100, which can include or be connected to anantenna 130, shown inFIG. 1 as being external to thedevice 100. - The
remote control device 100 has user input components, including an array of electromechanical switches, such as themembrane keypad 120 shown. Thecontrol device 100 also includes user output components, including a visual display, such as a liquid crystal display (LCD) 110. Alternatively, the control device can be provided with a touch screen for both user input and output. Although not shown inFIG. 1 , theremote control device 100 has its own processor (hereinafter referred to as the “remote” processor) connected to themembrane keypad 120 and theLCD 110. The remote processor receives the user inputs from themembrane keypad 120 and provides “flow” instructions for transmission to thefluid delivery device 10, and provides information to theLCD 110. Since theremote control device 100 also includes avisual display 110, thefluid delivery device 10 can be void of an information screen, further reducing the size, complexity and costs of thedevice 10. - The
communication element 60 of thedevice 10 preferably receives electronic communication from theremote control device 100 using radio frequency or other wireless communication standards and protocols. In a preferred embodiment, thecommunication element 60 is a two-way communication element, including a receiver and a transmitter, for allowing thefluid delivery device 10 to send information back to theremote control device 100. In such an embodiment, theremote control device 100 also includes an integral communication element comprising a receiver and a transmitter, for allowing theremote control device 100 to receive the information sent by thefluid delivery device 10. - The
local processor 50 of thedevice 10 contains all the computer programs and electronic circuitry needed to allow a user to program the desired flow patterns and adjust the program as necessary. Such circuitry can include one or more microprocessors, digital and analog integrated circuits, resistors, capacitors, transistors and other semiconductors and other electronic components known to those skilled in the art. Thelocal processor 50 also includes programming, electronic circuitry and memory to properly activate thedispenser 40 at the needed time intervals. - In the exemplary embodiment of
FIG. 2 , thedevice 10 includes apower supply 80, such as a battery or capacitor, for supplying power to thelocal processor 50. Thepower supply 80 is preferably integrated into thefluid delivery device 10, but can be provided as replaceable, e.g., a replaceable battery. - Although not shown, the
device 10 can include sensors or transducers such as a reservoir volume transducer or a reservoir pressure transducer, for transmitting information to thelocal processor 50 to indicate how and when to activate thedispenser 40, or to indicate other parameters determining flow, blockage in flow path, contact sensors, rotary motion or other motion indicators, as well as conditions such as thereservoir 30 being empty or leaking, or the dispensing of too much or too little fluid from the reservoir, etc. - As shown in
FIGS. 3 and 4 , thedevice 10 can also be provided with anadhesive layer 22 on the outer surface of thehousing 20 for securing thedevice 10 directly to the skin of a patient, as illustrated inFIG. 1 . Theadhesive layer 22 is provided on an external “bottom” surface of thehousing 20. The adhesive layer is also preferably provided in a continuous ring encircling theport 24 of theexit port assembly 70 in order to provide a protective seal around the penetrated skin to prevent the penetrated skin from becoming dirty when thecannula 72 of theexit port assembly 70 extends through the skin. It is preferably that thefill port 90 extend through the bottom surface of thehousing 20 and be surrounded by theadhesive layer 22 to discourage and prevent filling and re-filling of thefluid delivery device 10 when the device is attached to a patient's skin. Thehousing 20 can be made from flexible material, or can be provided with flexible hinged sections that allow thefluid delivery device 10 to flex during patient movement to prevent detachment and aid in patient comfort. - In the exemplary embodiment of
FIGS. 4 and 5 , thedevice 10 is provided with anon-pressurized reservoir 30, and thedispenser 40 is adapted to control flow from thereservoir 30 by driving or pumping the fluid from the reservoir to the exit port assembly. - Examples of such “driving or pumping” dispensers are shown in co-pending U.S. patent application Ser. No. 09/955,623, filed on Sep. 19, 2001 (Atty. Docket No. INSL-117), and entitled PLUNGER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference. Other examples of dispensers are shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), and entitled DISPENSER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference, and co-pending U.S. patent application Ser. No. 10/128,203, filed on Apr. 23, 2002 (Atty. Docket No. INSL-123), and entitled DISPENSER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference. Further examples of dispensers are shown in co-pending U.S. patent application Ser. No. ______, filed on Jun. 9, 2002 (Atty. Docket No. INSL-124), and entitled PLUNGER FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference, and in co-pending U.S. patent application Ser. No. ______, filed on Jun. 9, 2002 (Atty. Docket No. INSL-125), and entitled PLUNGER FOR PATIENT INFUSION DEVICE, which is also assigned to the assignee of the present application and incorporated herein by reference.
- In the embodiment shown in
FIGS. 4 and 5 , thereservoir 30 includes aside wall 32 extending towards anoutlet 36 connected to theexit port assembly 70. A threadedlead screw 42 is received in thereservoir 30 and extends towards theoutlet 36 of thereservoir 30 generally parallel with theside wall 32 of the reservoir, and aplunger 44 is secured to an end of thelead screw 42. Thelead screw 42, theplunger 44 and thereservoir 30 are adapted such that a fluid-tight seal is formed between the plunger and the lead screw and a fluid-tight seal is formed between the plunger and theside wall 32 of the reservoir, so that movement of the plunger towards theoutlet 36 of thereservoir 30 forces fluid through theoutlet 36 to theexit port assembly 70. - The
dispenser 40 causes fluid flow by causing linear movement of thelead screw 42 and theplunger 44 towards theoutlet 36 of thereservoir 30. Although not shown, thedispenser 40 can include an elongated shape memory element connected to thelocal processor 50 and having a changeable length decreasing from an uncharged length to a charged length when at least one charge is applied to the shape memory element. The shape memory element is operatively connected to theplunger 44 such that the changeable length of the shape memory element causes theplunger 44 to move along theside wall 32 of thereservoir 30. - In the embodiment shown, the
dispenser 40 includes arotatable gear 46 linearly fixed with respect to thereservoir 30. Thegear 46 is coaxially mounted with respect to thelead screw 42, and is threadedly engaged with thelead screw 42, such that rotation of thegear 46 causes linear movement of thelead screw 42. In particular, thelead screw 42 and thegear 46 are adapted such that rotation of thegear 46 in a first direction causes linear movement of thelead screw 42 and theplunger 44 towards theoutlet 36 of thereservoir 30. - The
dispenser 40 further includes afinger 48 for engaging radially extending teeth of thegear 46, wherein thefinger 48 and thegear 46 are adapted such that linear movement of thefinger 48 in a first direction adjacent thegear 46 causes rotation of the gear while linear movement of thefinger 48 in a second direction adjacent thegear 46 causes no rotation of the gear. Although not shown, the elongated shape memory element is connected to thefinger 48 such that the changeable length of the shape memory element decreasing from an uncharged length to a charged length causes linear movement of thefinger 48 in one of the first and the second directions. Thedispenser 40 can also include an actuation element, such as a compression spring, connected to thefinger 48 for causing linear movement of the finger in the first direction. Examples of such dispensers are shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), which has already been incorporated herein by reference. - Although not shown, the
gear 46 can be further configured to be released from thelead screw 42 to allow thelead screw 42 and theplunger 44 to be linearly moved away from theoutlet 36 of thereservoir 30 during filling of the reservoir. An example of such a releasable gear is also shown in co-pending U.S. patent application Ser. No. 10/128,205, filed on Apr. 23, 2002 (Atty. Docket No. INSL-122), which has already been incorporated herein by reference. - It should be understood, however, that other types of dispensers can also be used with a device incorporating a
flow restriction assembly 200 of the present invention. For example, the device can be provided with a pressurized reservoir and a dispenser that does not create a driving or pumping force, but rather acts as a metering device, allowing pulses of fluid to pass from the pressurized reservoir, through the dispenser, to theexit port assembly 70. Examples of such “metering” dispensers are shown in co-pending U.S. patent application Ser. No. 09/977,434, filed Oct. 12, 2001 (Atty. Docket No. INSL-116), and entitled LAMINATED PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference. In any event, the dispenser is controlled by thelocal processor 50, which includes electronic programming, controls, and circuitry to allow sophisticated fluid delivery programming and control of the dispenser. - Referring now to
FIGS. 2 through 4 , an exemplary embodiment of theflow restriction system 200 of the present invention is shown. Theflow restriction system 200 generally includes an air removal filter communicating with theflow path 12 and allowing air to exit theflow path 12 and preventing fluid from exiting theflow path 12, and a flow restrictor positioned within theflow path 12 between the air removal filter and the exit port assembly 70 (i.e., downstream of the filter). Among other features and advantages, theflow restriction system 200 of the present invention allows theflow path 12 of thefluid delivery device 10 to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by thedevice 10. In particular, the air removal filter of theflow restriction system 200 removes air from theflow path 12, while the flow restrictor of theflow restriction system 200 elevates pressure within theflow path 12 to ensure that substantially all air within theflow path 12 is forced out of the air removal filter. - In the exemplary embodiment of
FIGS. 2 through 4 , the flow restrictor and the air removal filter of theflow restriction system 200 are combined in asingle outlet plug 202 fitted to theport 24 of theexit port assembly 70. Theoutlet plug 202 is unitarily formed of a material that allows the passage of air but prevents the passage of fluid, such as an ultrahigh molecular weight polyethylene in sinstered porous form, a porous ceramic, a hydrophobic gel, a woven or non-woven polytetrafluoroethylene (PTFE) such as Teflon®, or woven fabric material having very small openings (e.g., 0.02 microns) such as Gortex®. - In the exemplary embodiment of
FIGS. 2 through 4 , the flow restrictor and the air removal filter of theflow restriction system 200 are positioned between thereservoir 30 and theoutlet port assembly 70. However, the flow restrictor and the air removal filter of theflow restriction system 200 could be positioned before thereservoir 30, as long as the flow restrictor is positioned downstream of the air removal filter. - The
removable outlet plug 202 prevents fluid leakage from theflow path 12 prior to use, e.g., during storage and during priming when filled by a user. Theoutlet plug 202 may also maintain thecannula 72 of theexit port assembly 70 in a sterile state prior to use. Theoutlet plug 202 is removed by a user prior to attaching thefluid delivery device 10 to a patient's skin surface. In the embodiment shown, thecannula 72 of theexit port assembly 70 is extendable through theport 22 in thehousing 20 of thefluid delivery device 10 to be inserted into the skin of a patient. Theoutlet plug 202 is removably secured to the outer surface of thehousing 20 over theport 22, such that theoutlet plug 202 prevents fluid from exiting theflow path 12. -
FIG. 5 shows another exemplary embodiment of afluid delivery device 10 including aflow restriction system 300 constructed in accordance with the present invention. Thesystem 300 ofFIG. 5 is similar to thesystem 200 ofFIGS. 2 through 4 such that similar elements have the same reference numeral. Theflow restriction system 300 ofFIG. 5 , however, further includes aflow sensor assembly 310 that provides an indication of fluid pressure within theflow path 12, so that conditions within theflow path 12 can be determined during a filling process. In particular, theflow sensor assembly 310 can be used to provide an indication of when theflow path 12 is full and when theflow path 12 becomes primed. - In the exemplary embodiment, as also shown in
FIG. 5 a, theflow sensor assembly 310 comprises aresilient diaphragm 320 having opposing first andsecond surfaces first surface 322 positioned against theflow path 12 of thedevice 10, and achamber wall 326 positioned adjacent thesecond surface 324 of the diaphragm. Thediaphragm 320 is made from a suitably expandable yet resilient material, such as rubber or a synthetic rubber. Thechamber wall 326 is adapted such that anenclosed chamber 328 is defined between thechamber wall 326 and thesecond surface 324 of thediaphragm 320. Preferably, thechamber 328 is provided with a predetermined volume. Although not shown, thechamber 328 can also be provided with a relief port for allowing air to escape the chamber upon expansion of thediaphragm 320. - The
diaphragm 320 and thechamber 328 are arranged and adapted such that the amount of expansion and the duration of the expansion of the diaphragm into the chamber can be used to determine when theflow path 12 becomes substantially primed upon being filled through thefill port 90. Thesensor assembly 310 also includes at least onesensor 330 arranged to provide a signal when thesecond surface 324 of thediaphragm 320 expands into thechamber 328 in response to at least one predetermined fluid flow condition occurring in theflow path 12. For example, thesensor 330 can be arranged to determine when thesecond surface 324 of thediaphragm 320 expands fully into thechamber 328 and contacts thechamber wall 326. - The
sensor 330 can comprise any device for determining and providing an indication of the position of thediaphragm 320 in thechamber 328. For example, the sensor can comprise one of a contact or pressure switch, a magnetic Hall effect sensor, a strain gage, and a density gage. In the embodiment ofFIG. 5 a, the sensor comprises three open circuits 330 a, 330 b, 330 c, which each have their own primary leads 332 a, 332 b, 332 c and share asecondary lead 334. Thesecondary lead 334 is positioned on thesecond surface 324 of thediaphragm 320, while the primary leads 332 a, 332 b, 332 c are positioned on thechamber wall 326 at different points from thediaphragm 320. During expansion of thediaphragm 320 into thechamber 328, thesecondary lead 334 of thediaphragm 320 eventually contacts each ofprimary leads - In the
embodiment 300 of the invention illustrated inFIGS. 2 , theprocessor 50 of thefluid delivery device 10 also acts as the processor for thesensor assembly 300 and is connected to the open circuits 330 a, 330 b, 330 c. During expansion of thediaphragm 320 into thechamber 328, the circuits 330 a, 330 b, 330 c are successively closed to provide “signals” to theprocessor 50. Alternatively, thesensor assembly 300 can be provided with its own, separate processor programmed to operate in accordance with the present invention. In addition, the sensors 330 a, 330 b, 330 c can simply be connected to an alarm(s), such as a light emitting diode or an electronic sound maker, and which is activated upon the circuits 330 a, 330 b, 330 c being closed. In this manner, a user can simply receive a visual or an audible alarm signal upon full expansion of thediaphragm 320 into thechamber 328 to close the circuits 330 a, 330 b, 330 c. -
FIG. 6 illustrates an exemplary embodiment of a method of determining when theflow path 12 is primed in accordance with the present invention and as carried out by theprocessor 50.FIG. 6 is a graph of pressure versus time illustrating pressure within the flow path while the flow path is being filled by a user. The pressure level “a” illustrated in the graph is produced upon thesecond surface 324 of thediaphragm 320 expanding partly into thechamber 328 and closing the first sensor circuit 330 a, shown inFIG. 5 a. Upon receiving signal “a” from the first sensor circuit 330 a, theprocessor 50 is programmed to send a signal to theremote control device 100 indicating that theflow delivery device 10 is being filled. Although not shown, theremote control device 100 can include an alarm, such as an audible or visual alarm, that the remote processor of theremote control device 100 activates upon receiving the signal from thelocal processor 50. In addition, thefluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to thelocal processor 50 for activation at least initially when the flow path is being filled by a user. - The pressure level “b” illustrated in the graph is produced upon the
second surface 324 of thediaphragm 320 further expanding into thechamber 328 and closing the second sensor circuit 330 b. Upon receiving signal “b” from the second sensor circuit 330 b, theprocessor 50 is programmed to send a signal to theremote control device 100 indicating that theplunger 44 of theflow delivery device 10 has been fully moved rearward within thereservoir 30 and away from theoutlet 36 of the reservoir. Although not shown, theremote control device 100 can include another alarm, such as an audible or visual alarm, that the remote processor of theremote control device 100 activates upon receiving the signal from thelocal processor 50. In addition, thefluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to thelocal processor 50 for activation when theplunger 44 has been fully moved rearward within thereservoir 30. - The pressure level “c” illustrated in the graph is produced upon the
third surface 324 of thediaphragm 320 fully expanding into thechamber 328 and closing the third sensor circuit 330 c. Upon receiving signal “c” from the third sensor circuit 330 c, theprocessor 50 is programmed to send a signal to theremote control device 100 indicating that theflow path 12 is filled and primed. Although not shown, theremote control device 100 can include another alarm, such as an audible or visual alarm, that the remote processor of theremote control device 100 activates upon receiving the signal from thelocal processor 50. In addition, thefluid delivery device 10 itself can be provided with an alarm, such as a light emitting diode or electronic buzzer, connected to thelocal processor 50 for activation when the flow path is primed. - The preferred volume of the
chamber 328 should take into account the compliance of theentire flow path 12 of thedevice 10. At relative filling pressures, theflow path 12 may expand, thereby artificially adding to the volume of thesensor chamber 328. Any such artificially expanded volume must be taken into account in monitoring the signals received from the sensor. Preferably, theflow path 12 is designed to have minimal compliance at both normal operating pressures and abnormal operating pressures. If minimal compliance of theflow path 12 is not possible, however, the computer algorithm of the processor can be programmed to take the known compliance of theflow path 12 into account when determining flow conditions based upon signals received from thesensor assembly 310. - Preferably, the
flow path 12 as well as thesensor assembly 310 is constructed from laminated layers of suitably strong and rigid material such as plastic or stainless steel, and can be secured together in a suitable manner, such as with adhesives or by welding. The laminated construction provides many benefits including, but not limited to, simplifying the design and manufacturing of theflow path 12 and thesensor assembly 310, and further reducing the size, complexity and costs of thefluid delivery device 10, so that the device lends itself to being small and disposable in nature. - In alternative embodiments, the
diaphragm 320 of theflow sensor assembly 310 can be provided as other than a flat layer of resiliently expandable material. The diaphragm can include any structure that provides a fluid-tight barrier between theflow path 12 and thesensor chamber 328, and that moves into the chamber upon an increase in pressure in theflow path 12. For example, the diaphragm may be provided as a piston biased away from the chamber wall with a spring. Many alternative embodiments of the diaphragm are possible while remaining within the scope of the present invention. Examples of flow sensor assemblies are shown in co-pending U.S. patent application Ser. No. 10/087,507, filed on Mar. 1, 2002 (Atty. Docket No. INSL-118), and entitled FLOW CONDITION SENSOR ASSEMBLY FOR PATIENT INFUSION DEVICE, which is assigned to the assignee of the present application and incorporated herein by reference. Moreover, in alternative embodiments of the present invention, the flow sensor assembly can be provided in the form of a simple pressure sensor for determining when theflow path 12 reaches a primed pressure. -
FIGS. 7 and 8 show another exemplary embodiment of a flow restriction system constructed in accordance with the present invention. Thesystem 400 ofFIGS. 7 and 8 is similar to thesystem 300 ofFIG. 5 such that similar elements have the same reference numeral. Theflow restriction system 400 ofFIGS. 7 and 8 , however, further includes a secondair removal filter 402 positioned between thefill port 90 and thereservoir 30. Thefill port 90 can include a resealingneedle insertion septum 92 for receiving a needle and which can be constructed of a resealing elastomer such as silicone that allows a needle to puncture the septum to add fluid to thereservoir 30 through thefill port 90, yet reseals after the needle is withdrawn. Alternatively, thefill port 90 can include a Luer or other connector. - The second air removal filter is a flat sheet positioned in the
flow path 12 just after thefill port 90, and can be comprised of any material for filtering air from fluid, such as an ultrahigh molecular weight polyethylene in sintered porous form, porous ceramic, hydrophobic gel, a woven or non-woven polytetrafluoroethylene (PTFE) such as Teflon®, woven fabric material having very small openings (e.g., 0.02 microns) such as Goretex®, or hydrophilic material that swells with fluid pressure. Theflow path 12 includes anair escape port 404 extending from thefilter 402 for allowing filtered air to be directed out of theflow path 12. - In the exemplary embodiment of
FIGS. 7 and 8 , theflow restriction system 400 also includes asecond flow restrictor 406 positioned between the secondair removal filter 402 and thereservoir 30. The second flow restrictor comprises a narrowedportion 406 of theflow path 12 and elevates pressure within theflow path 12 to ensure that the secondair removal filter 402 operates efficiently in removing air from fluid (e.g., insulin) injected into theflow path 12 through thefill port 90. - In the exemplary embodiment of
FIGS. 7 and 8 , thesensor assembly 310 is positioned at the end of thereservoir 30. Positioning thesensor assembly 310 at the end of thereservoir 30 can simplify the manufacturing process of thesensor assembly 310 and thefluid delivery device 10 and can reduce the number of parts to be assembled. -
FIG. 11 shows another exemplary embodiment of aflow restriction system 420 constructed in accordance with the present invention. Thesystem 420 ofFIG. 11 is similar to thesystem 400 ofFIGS. 7 and 8 such that similar elements have the same reference numeral. Theflow restriction system 420 ofFIG. 11 , however, includes a second flow restrictor comprising aporous plug 426 fitted in theflow path 12 to elevate pressure within theflow path 12 and ensure that the secondair removal filter 402 operates efficiently in removing air from fluid (e.g., insulin) injected into the flow path through thefill port 90. -
FIG. 9 shows an exemplary embodiment of anoutlet plug 430 constructed in accordance with the present invention. Theoutlet plug 430 is adapted to be received on aneedle 72 of anoutlet port assembly 70 of a fluid delivery device. Theoutlet plug 430 includes asleeve 432 having a first end removably received in a substantially fluid-tight manner on the distal end of theneedle 72, and acap 434 connected to a second end of thesleeve 432. In the embodiment shown, thesleeve 432 and thecap 434 of theoutlet plug 430 are unitarily formed from a resiliently flexible material, such as a synthetic rubber. Anair removal filter 436 is seated in thecap 434 of theoutlet plug 430 and prevents fluid from passing out of theneedle 72 and allows air to pass out of theneedle 72. As shown inFIGS. 10 a and 10 b, theair removal filter 436 is provided with predetermined physical properties, such as material pore size and/or thickness, such that thefilter 436 expands upon the flow path being substantially primed. - The
air removal filter 436 can additionally be provided with specific visual indicia for indicating when the flow path is substantially primed. For example,FIGS. 15 a and 15 b, show an exemplary embodiment of theoutlet plug 430 wherein the visual indicia comprises a drawing on thefilter 436 that changes shape upon the filter expanding. For example, the drawing can comprise two eyes and a mouth that appear as a “sad face” when thefilter 436 is not expanded, as shown inFIG. 15 a, and that become a “happy face” upon thefilter 436 expanding when the flow path is primed, as shown inFIG. 15 b. Other drawings can alternatively be used to provide an effective indication offilter 436 expansion and the flow path becoming primed. -
FIGS. 16 a and 16 b show another exemplary embodiment of anoutlet plug 440 constructed in accordance with the present invention. Theplug 440 ofFIGS. 16 a and 16 b is similar to theplug 430 ofFIGS. 9, 10 a and 10 b, such that similar elements have the same reference numeral. Theoutlet plug 440 ofFIGS. 16 a and 16 b, however, includes an air removal filter having anouter layer 436 a and an inner layer 436 b. The inner layer 436 b has predetermined physical properties, such as material pore size and/or thickness, that allows the inner layer 436 b to expand to contact theouter layer 436 a upon the flow path becoming substantially primed. Theouter layer 436 a of theair removal filter 440 is relatively transparent and the inner layer 436 b is darker in coloring than the outertransparent layer 436 a such that the inner layer 436 b can be seen through theouter layer 436 a when the inner layer contacts the outer layer. Alternatively, the flow restriction system can be provided with a sensor, such as a contact sensor, for providing a signal when the inner layer 436 b contacts theouter layer 436 a. -
FIG. 12 shows another exemplary embodiment of anoutlet plug 450 constructed in accordance with the present invention. Theplug 450 ofFIG. 12 is similar to theplug 430 ofFIGS. 9, 10 a and 10 b, such that similar elements have the same reference numeral. Theoutlet plug 450 ofFIG. 12 , however, includes anair removal filter 452 that is comprised of a material that also acts as a needle septum such that theexit port assembly 70 of thefluid delivery device 10 can also act as the fill port for thedevice 10. For example,FIG. 12 shows theair removal filter 452 receiving aneedle 454 of asyringe 456 for filling the flow path of thedevice 10. Theoutlet plug 450, therefore, functions as an air removal filter, a flow restrictor and a needle septum. In this manner, thefluid delivery device 10 is further simplified since it does not require a separate fill port. -
FIG. 13 shows an additional exemplary embodiment of anoutlet plug 460 constructed in accordance with the present invention. Theplug 460 ofFIG. 13 is similar to theplug 430 ofFIGS. 9, 10 a and 10 b, such that similar elements have the same reference numeral. Theoutlet plug 460 ofFIG. 13 , however, includes acap 462 further including straps 462 a for securely holding theair removal filter 436 therein. -
FIG. 14 shows still another exemplary embodiment of anoutlet plug 470 constructed in accordance with the present invention. Theplug 470 ofFIG. 14 is similar to theplug 430 ofFIGS. 9, 10 a and 10 b, such that similar elements have the same reference numeral. Theoutlet plug 470 ofFIG. 14 , however, further includes apressure relief valve 472. Therelief valve 472 ensures that pressure within the flow path of the fluid delivery device does not become excessive during a filling procedure, i.e., does not exceed a desired maximum level of flow path pressure, which could damage the fluid delivery device. Alternatively, theair removal filter 436 of the outlet plug can be adapted to allow fluid to pass out of theneedle 72 upon a pressure within the flow path exceeding a desired maximum level of flow path pressure. The fluid leaking from theneedle 72 would then act as a visual indication to a user that the fluid delivery device was improperly filled and should be discarded prior to use. - Referring now to
FIG. 17 , a further exemplary embodiment of anoutlet plug 480 constructed in accordance with the present invention is shown. Theplug 480 ofFIG. 17 may be configured to act only as a flow restrictor (wherein the system would include a separate air removal filter within the flow path of the device 10) or may be configured to act as both the flow restrictor and the air removal filter. In any event, theoutlet plug 480 ofFIG. 17 also includes ahandle 482 for supporting thefluid delivery device 10 during filling of the device through the fill port. Thehandle 482 of theoutlet plug 480 preferably includes anouter contour 484 that nests with an outer contour of an end thefluid delivery device 10, as shown inFIG. 17 . -
FIG. 18 shows another exemplary embodiment of anoutlet plug 490 constructed in accordance with the present invention. Theoutlet plug 490 ofFIG. 18 also includes ahandle 492 for supporting thefluid delivery device 10 during filling of the device. Thehandle 492 of theoutlet plug 490 includes anouter contour 494 that nests with an outer contour of an end of thefluid delivery device 10. Thehandle 494 also includes anextension 496 that supports a top surface of thefluid delivery device 10 during filling of the device. - An exemplary embodiment of a
packaging system 500 constructed in accordance with the present invention is shown inFIG. 19 . Thepackaging system 500 includes acontainer 502 holding the fluid delivery device 10 (e.g., similar to thefluid delivery device 10 ofFIGS. 2 through 4 ), and aprotective cover 504 removably sealing thefluid delivery device 10 within thecontainer 502. Thecontainer 502 includes aninner contour 506 that nests with an outer contour of thefluid delivery device 10 to provide support for thedevice 10 during handling and storage of thepackage system 500 and during filling of thedevice 10 by a user. The outlet plug 202 (e.g., similar to the outlet plug ofFIGS. 2 through 4 ) of the flow restriction system is secured to and extends through theprotective cover 504, so that thefluid delivery device 10 can be filled while thedevice 10 is still sealed in thecontainer 502 and thecover 504. In addition, removal of theprotective cover 504 from thecontainer 502 removes the outlet plug 202 from theexit port assembly 70. Thefluid delivery device 10 also includes aswitch mechanism 508, and theprotective cover 504 includes aninsert 510 extending into thefluid delivery device 10 to normally hold theswitch mechanism 508 open. Upon removal of thecover 504, theinsert 510 is removed from theswitch mechanism 508 such that theswitch mechanism 508 can close. Theswitch mechanism 508 can be used, example, to turn on the processor of thefluid delivery device 10 just prior to thedevice 10 being attached to a patient. -
FIGS. 20 a and 20 b show yet a further exemplary embodiment of aflow restriction system 520 and afluid delivery device 530 constructed in accordance with the present invention. Thesystem 520 and thefluid delivery device 530 ofFIGS. 20 a and 20 b are similar to thesystem 200 and thedevice 10 ofFIGS. 2 through 4 such that similar elements have the same reference numeral. - The
fluid delivery device 530 ofFIGS. 20 and 20 b includes anadhesive layer 22 on a bottom external surface of thehousing 20 for securing thedevice 530 to a patient, and a removableprotective layer 26 covering theadhesive layer 22 prior to attachment of thefluid delivery device 530 to a patient. Theflow restriction system 520 includes anoutlet plug 202 that acts as both a flow restrictor and an air removal filter for thesystem 520, and is secured to aninsertable cannula 72 of theexit port assembly 70 prior to attachment of thefluid delivery device 530 to a patient. Theoutlet plug 202 is secured to theprotective layer 26 of thefluid delivery device 530 so that theplug 202 is also removed from thecannula 72 when theprotective layer 26 is removed from theadhesive layer 22 for attachment of thefluid delivery device 530 to a patient.FIG. 20 a shows theprotective layer 26 and theoutlet plug 202 prior to removal from thefluid delivery device 530, whileFIG. 20 b shows theprotective layer 26 and theoutlet plug 202 after removal from thefluid delivery device 530. - The
fluid delivery device 530 also includes aswitch mechanism 532 for providing an indication when theoutlet plug 202 is removed from the distal end of thecannula 72. Theswitch mechanism 532 can be connected, for example, to the processor (not shown) of thefluid delivery device 530 to provide an indication that theoutlet plug 202 has been removed, or can be connected to an alarm, such as an LED, for providing an indication to a user that theoutlet plug 202 has been removed. Theswitch mechanism 532 can also be used to turn on the fluid delivery device 530 (e.g., connect the power source to the processor) upon removal of theoutlet plug 202. - In the exemplary embodiment shown in
FIGS. 20 a and 20 b, theswitch mechanism 532 includes afirst lead 534 normally biased towards asecond lead 536 to close the switch mechanism. Theswitch mechanism 532 is arranged and oriented with respect to theoutlet port assembly 70 such that theoutlet plug 202 pushes thefirst lead 534 away from thesecond lead 536 when theoutlet plug 202 is positioned on thecannula 72, as shown inFIG. 20 a. When theoutlet plug 202 is removed from the distal end of thecannula 72, thefirst lead 534 is allowed to return to thesecond lead 536 and close theswitch mechanism 532, as shown inFIG. 20 b. - Additional exemplary embodiments of a
flow restriction system 540 and aflow path 550 of a fluid delivery device constructed in accordance with the present invention are shown inFIG. 21 . Thesystem 540 and theflow path 550 ofFIG. 21 are similar to thesystem 200 and theflow path 12 ofFIGS. 2 through 4 such that similar elements have the same reference numeral. Theflow path 550 includes an outlet port assembly comprising a rigid cannula 72 (e.g., a needle with sharpened distal end), areservoir 30 connected to thecannula 72, and a fill port comprising aneedle septum 90 connected to thereservoir 30. - The
flow restriction system 540 includes anair removal filter 542 positioned in theflow path 550 between thereservoir 30 and thefill port 90, and anoutlet plug 544 removably fitted on the sharpened distal end of therigid cannula 72. Theoutlet plug 544 is made of a suitable air removal filter material such that the outlet plug 544 functions as both an air removal filter and a flow restrictor. Theoutlet plug 544 causes an increased pressure within theflow path 550 during filling of the flow path through the fill port 90 (with a needle and syringe, for example), so that air can be effectively filtered through theair removal filter 542 and theoutlet plug 544. Theoutlet plug 544 is removed from thecannula 72 prior to use of the flow path 530 (i.e., prior to injection of the cannula into a patient for delivery of fluid contained in the reservoir). -
FIG. 22 shows another exemplary embodiment of anoutlet plug 560 constructed in accordance with the present invention. Theoutlet plug 560 is formed as part of aprotective layer 562 removably attached to anadhesive layer 22 of thefluid delivery device 10. The exemplary embodiment of thefluid delivery device 10 ofFIG. 22 includes anexit port assembly 570 having aninjectable needle 572 for insertion into a patient. Theneedle 572 is extendable out of aport 24 in ahousing 20 of thefluid delivery device 10. An o-ring 574 provides a fluid tight seal between theport 24 and theneedle 572. Theoutlet plug 560 provides a substantially fluid-tight seal of theport 24 when theprotective layer 562 is attached to the adhesive 22. Theoutlet plug 560 is made of a suitable air removal filter material such that the outlet plug 560 functions as both an air removal filter and a flow restrictor. In the embodiment shown, theoutlet plug 560 is made of a different material than the remainder of theprotective layer 562. The remainder of theprotective layer 562 is made of a suitable material that readily detaches from theadhesive layer 22, such as wax paper or a plastic. Alternatively, the protective layer can be made entirely of a suitable air removal filter material that is also readily detachable from theadhesive layer 22, such that the portion of the protective layer positioned over theport 24 of thehousing 20 can act as the outlet plug. -
FIGS. 23 and 26 show yet a further exemplary embodiment of aflow restriction system 600 and afluid delivery device 610 constructed in accordance with the present invention. Thesystem 600 and thefluid delivery device 610 ofFIGS. 23 and 26 are similar to thesystem 200 and thedevice 10 ofFIGS. 2 through 4 such that similar elements have the same reference numeral. - A
flow path 612 of thefluid delivery device 610 includes areservoir 630 and anoutlet port assembly 670 terminating in aneedle 672 for insertion into a patient. Theneedle 672 is extendable out of aport 624 in ahousing 620 of thefluid delivery device 610. An o-ring 674 provides a fluid tight seal between theport 624 and theneedle 672. Theoutlet port assembly 670 also includes aninjection mechanism 676 for injecting theneedle 672 into a patient. Theflow path 612 does not require a separate fill port connected to thereservoir 630, as further discussed below. - The
flow restriction system 600 includes an air removal filter and a flow restrictor combined in asingle outlet plug 602 fitted to the end of theexit port assembly 670, as also shown inFIG. 27 . Theflow restriction system 600 further includes aflow sensor assembly 330 positioned at the end of thereservoir 630, as also shown inFIG. 24 . A secondair removal filter 604 is positioned between thereservoir 630 and theexit port assembly 670 and can be adapted to also function as a second flow restrictor if desired. - The
removable outlet plug 602 is fitted to the end of theexit port assembly 670 and prevents fluid leakage from theflow path 612 prior to use, e.g., during storage and during priming when filled by a user. Theoutlet plug 602 is removed by a user prior to attaching thefluid delivery device 610 to a patient's skin surface. Also referring toFIG. 25 , theoutlet plug 602 includes asleeve 605 having a first end removably received in a substantially fluid-tight manner on the distal end of theneedle 672, and acap 607 connected to a second end of thesleeve 605. In the embodiment shown, thesleeve 605 and thecap 607 of theoutlet plug 602 are unitarily formed from a resiliently flexible material. Anair removal filter 606 is seated in thecap 607 such that air passing through thefilter 606 can exit theoutlet plug 602 through anair release port 609 in thecap 607. Theair removal filter 606 also acts as the flow restrictor. - The
outlet plug 602 further includes aneedle septum 692. Theoutlet plug 602, therefore, functions as an air removal filter, a flow restrictor and a needle septum. In this manner, thefluid delivery device 610 is further simplified since it does not require a separate fill port. - As illustrated by the above described exemplary embodiments, the present invention generally provides a device for delivering fluid, such as insulin for example, to a patient. The device includes a flow path having an exit port assembly adapted to connect to a transcutaneous patient access tool (e.g., needle), and a reservoir connected to the exit port assembly. The device also includes a flow restriction system having an air removal filter communicating with the flow path and allowing air to exit the flow path and preventing fluid from exiting the flow path, and a flow restrictor positioned within the flow path between the air removal filter and the exit port assembly.
- Among other features and advantages, the flow restriction system of the present invention allows the flow path of the fluid delivery device to be purged of air, or “primed” prior to operation, such that desired volumes of fluid can be accurately delivered by the device.
- It should be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make variations and modifications to the embodiments described without departing from the spirit and scope of the present invention. All such equivalent variations and modifications are intended to be included within the scope of this invention as defined by the appended claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/163,234 US20060041229A1 (en) | 2002-07-16 | 2005-10-11 | Flow restriction system and method for patient infusion device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/198,690 US7018360B2 (en) | 2002-07-16 | 2002-07-16 | Flow restriction system and method for patient infusion device |
US11/163,234 US20060041229A1 (en) | 2002-07-16 | 2005-10-11 | Flow restriction system and method for patient infusion device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,690 Division US7018360B2 (en) | 2002-07-16 | 2002-07-16 | Flow restriction system and method for patient infusion device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060041229A1 true US20060041229A1 (en) | 2006-02-23 |
Family
ID=30115165
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,690 Expired - Fee Related US7018360B2 (en) | 2002-07-16 | 2002-07-16 | Flow restriction system and method for patient infusion device |
US11/163,234 Abandoned US20060041229A1 (en) | 2002-07-16 | 2005-10-11 | Flow restriction system and method for patient infusion device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,690 Expired - Fee Related US7018360B2 (en) | 2002-07-16 | 2002-07-16 | Flow restriction system and method for patient infusion device |
Country Status (3)
Country | Link |
---|---|
US (2) | US7018360B2 (en) |
AU (1) | AU2003251600A1 (en) |
WO (1) | WO2004006981A2 (en) |
Cited By (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050160858A1 (en) * | 2002-07-24 | 2005-07-28 | M 2 Medical A/S | Shape memory alloy actuator |
US20050192561A1 (en) * | 2002-07-24 | 2005-09-01 | M 2 Medical A/S | Infusion pump system, an infusion pump unit and an infusion pump |
US20050245878A1 (en) * | 2002-11-05 | 2005-11-03 | M 2 Medical A/S | Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US20050251097A1 (en) * | 2002-12-23 | 2005-11-10 | M 2 Medical A/S | Flexible piston rod |
US20050273059A1 (en) * | 2002-12-23 | 2005-12-08 | M 2 Medical A/S | Disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US20070049870A1 (en) * | 2001-05-18 | 2007-03-01 | Deka Products Limited Partnership | Infusion Set for a Fluid Pump |
US20070073236A1 (en) * | 2005-09-26 | 2007-03-29 | Morten Mernoe | Dispensing fluid from an infusion pump system |
US20070073228A1 (en) * | 2005-09-26 | 2007-03-29 | Morten Mernoe | Dispensing fluid from an infusion pump system |
US20070073235A1 (en) * | 2005-09-26 | 2007-03-29 | Estes Mark C | Operating an infusion pump system |
US20070124002A1 (en) * | 2005-11-08 | 2007-05-31 | M2 Medical A/S | Method and System for Manual and Autonomous Control of an Infusion Pump |
US20070123819A1 (en) * | 2005-11-08 | 2007-05-31 | M2 Medical A/S | Infusion Pump System |
US20070167912A1 (en) * | 2005-09-26 | 2007-07-19 | M2 Medical A/S | Operating an Infusion Pump System |
US20070185449A1 (en) * | 2005-04-06 | 2007-08-09 | Morten Mernoe | Actuator with string drive #1 |
US20070213657A1 (en) * | 2006-02-28 | 2007-09-13 | Abbott Diabetes Care, Inc | Smart messages and alerts for an infusion delivery and management system |
US20070219597A1 (en) * | 2006-02-09 | 2007-09-20 | Dean Kamen | Adhesive and peripheral systems and methods for medical devices |
US20080004515A1 (en) * | 2006-06-30 | 2008-01-03 | Abbott Diabetes Care, Inc. | Integrated Analyte Sensor and Infusion Device and Methods Therefor |
US20080086086A1 (en) * | 2006-10-10 | 2008-04-10 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US20080102119A1 (en) * | 2006-11-01 | 2008-05-01 | Medtronic, Inc. | Osmotic pump apparatus and associated methods |
US20080161754A1 (en) * | 2006-12-29 | 2008-07-03 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US20080294109A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Illumination Instrument for an Infusion Pump |
US20080294094A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Occlusion Sensing for an Infusion Pump |
US20080294142A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Removable Controller for an Infusion Pump |
US20080294108A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Infusion Pump System with Contamination-Resistant Features |
US20090002179A1 (en) * | 2007-06-28 | 2009-01-01 | Abbott Diabetes Care, Inc. | Signal converting cradle for medical condition monitoring and management system |
US20090012377A1 (en) * | 2007-06-27 | 2009-01-08 | Abbott Diabetes Care, Inc. | Method and structure for securing a monitoring device element |
US20090048501A1 (en) * | 2003-07-15 | 2009-02-19 | Therasense, Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US20090054750A1 (en) * | 2006-08-07 | 2009-02-26 | Abbott Diabetes Care, Inc. | Method and System for Providing Integrated Analyte Monitoring and Infusion System Therapy Management |
US20090054745A1 (en) * | 2006-08-07 | 2009-02-26 | Abbott Diabetes Care, Inc. | Method and System for Providing Data Management in Integrated Analyte Monitoring and Infusion System |
US20090067989A1 (en) * | 2007-09-06 | 2009-03-12 | M2 Medical Group Holdings, Inc. | Occlusion Sensing System for Infusion Pumps |
US20090069787A1 (en) * | 2007-09-07 | 2009-03-12 | M2 Medical | Activity Sensing Techniques for an Infusion Pump System |
US20090069746A1 (en) * | 2007-09-07 | 2009-03-12 | M2 Medical Group Holdings, Inc. | Data Storage for an Infusion Pump System |
US20090099523A1 (en) * | 2001-05-18 | 2009-04-16 | Grant Kevin L | Infusion pump assembly |
US20090156990A1 (en) * | 2007-12-12 | 2009-06-18 | M2 Medical Group Holdings, Inc. | Portable Infusion Pump and Media Player |
US20090171269A1 (en) * | 2006-06-29 | 2009-07-02 | Abbott Diabetes Care, Inc. | Infusion Device and Methods Therefor |
US20090281497A1 (en) * | 2007-12-31 | 2009-11-12 | Dean Kamen | Wearable pump assembly |
US20100008794A1 (en) * | 2002-10-09 | 2010-01-14 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100094222A1 (en) * | 2008-10-10 | 2010-04-15 | Grant Kevin L | Infusion pump assembly |
US20100089475A1 (en) * | 2008-10-10 | 2010-04-15 | Tracey Brian D | Medium connector |
US20100094215A1 (en) * | 2008-10-10 | 2010-04-15 | Grant Kevin L | Pump assembly with a removable cover assembly |
US7717903B2 (en) | 2007-09-06 | 2010-05-18 | M2 Group Holdings, Inc. | Operating an infusion pump system |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7753879B2 (en) | 2004-01-29 | 2010-07-13 | M2 Group Holdings, Inc. | Disposable medicine dispensing device |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US20100274108A1 (en) * | 2005-09-30 | 2010-10-28 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Rechargeable Power in Data Monitoring and Management Systems |
US20100331826A1 (en) * | 2008-01-28 | 2010-12-30 | Medsolve Technologies, Inc. | Apparatus for infusing liquid to a body |
US20110022025A1 (en) * | 2009-07-23 | 2011-01-27 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US7879026B2 (en) | 2007-09-07 | 2011-02-01 | Asante Solutions, Inc. | Controlled adjustment of medicine dispensation from an infusion pump device |
US20110040252A1 (en) * | 2007-10-16 | 2011-02-17 | Peter Gravesen | Cannula Insertion Device and Related Methods |
US20110043357A1 (en) * | 2009-08-18 | 2011-02-24 | Greg Peatfield | Methods for detecting failure states in a medicine delivery device |
US20110046558A1 (en) * | 2009-08-18 | 2011-02-24 | Peter Gravesen | Medicine delivery device having detachable pressure sensing unit |
US20110054390A1 (en) * | 2009-09-02 | 2011-03-03 | Becton, Dickinson And Company | Extended Use Medical Device |
US20110054285A1 (en) * | 2009-09-02 | 2011-03-03 | Becton, Dickinson And Company | Flexible and Conformal Patch Pump |
US7922458B2 (en) | 2002-10-09 | 2011-04-12 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8029459B2 (en) | 2005-03-21 | 2011-10-04 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8047811B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8057436B2 (en) | 2005-09-26 | 2011-11-15 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US8112138B2 (en) | 2005-06-03 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8287514B2 (en) | 2007-09-07 | 2012-10-16 | Asante Solutions, Inc. | Power management techniques for an infusion pump system |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
US8454557B1 (en) | 2012-07-19 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
US8454562B1 (en) | 2012-07-20 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
US8454581B2 (en) | 2011-03-16 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump systems and methods |
US8460243B2 (en) | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US8467972B2 (en) | 2009-04-28 | 2013-06-18 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US8512246B2 (en) | 2003-04-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
USD691258S1 (en) | 2010-05-27 | 2013-10-08 | Asante Solutions, Inc. | Infusion pump |
US8551046B2 (en) | 2006-09-18 | 2013-10-08 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
US8573027B2 (en) | 2009-02-27 | 2013-11-05 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US8585657B2 (en) | 2011-06-21 | 2013-11-19 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8638220B2 (en) | 2005-10-31 | 2014-01-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US8795230B2 (en) | 2010-11-30 | 2014-08-05 | Becton, Dickinson And Company | Adjustable height needle infusion device |
US8798934B2 (en) | 2009-07-23 | 2014-08-05 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US8808230B2 (en) | 2011-09-07 | 2014-08-19 | Asante Solutions, Inc. | Occlusion detection for an infusion pump system |
US8814831B2 (en) | 2010-11-30 | 2014-08-26 | Becton, Dickinson And Company | Ballistic microneedle infusion device |
US8852152B2 (en) | 2011-02-09 | 2014-10-07 | Asante Solutions, Inc. | Infusion pump systems and methods |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US9211378B2 (en) | 2010-10-22 | 2015-12-15 | Cequr Sa | Methods and systems for dosing a medicament |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US9416775B2 (en) | 2014-07-02 | 2016-08-16 | Becton, Dickinson And Company | Internal cam metering pump |
US9427523B2 (en) | 2012-12-10 | 2016-08-30 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9446186B2 (en) | 2013-03-01 | 2016-09-20 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US9446187B2 (en) | 2013-06-03 | 2016-09-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9457141B2 (en) | 2013-06-03 | 2016-10-04 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9623173B2 (en) | 2012-03-05 | 2017-04-18 | Becton, Dickinson And Company | Wireless communication for on-body medical devices |
US9629901B2 (en) | 2014-07-01 | 2017-04-25 | Bigfoot Biomedical, Inc. | Glucagon administration system and methods |
US9750444B2 (en) | 2009-09-30 | 2017-09-05 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9782536B2 (en) | 2009-01-12 | 2017-10-10 | Becton, Dickinson And Company | Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment |
USD809134S1 (en) | 2016-03-10 | 2018-01-30 | Bigfoot Biomedical, Inc. | Infusion pump assembly |
US9878097B2 (en) | 2015-04-29 | 2018-01-30 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US9919096B2 (en) | 2014-08-26 | 2018-03-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9950109B2 (en) | 2010-11-30 | 2018-04-24 | Becton, Dickinson And Company | Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US10004845B2 (en) | 2014-04-18 | 2018-06-26 | Becton, Dickinson And Company | Split piston metering pump |
US10080841B2 (en) | 2015-11-18 | 2018-09-25 | President And Fellows Of Harvard College | Systems and methods for monitoring, managing, and treating asthma and anaphylaxis |
US10137246B2 (en) | 2014-08-06 | 2018-11-27 | Bigfoot Biomedical, Inc. | Infusion pump assembly and method |
USD836769S1 (en) | 2016-12-12 | 2018-12-25 | Bigfoot Biomedical, Inc. | Insulin delivery controller |
USD839294S1 (en) | 2017-06-16 | 2019-01-29 | Bigfoot Biomedical, Inc. | Display screen with graphical user interface for closed-loop medication delivery |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US10342926B2 (en) | 2016-05-26 | 2019-07-09 | Insulet Corporation | Single dose drug delivery device |
US10363372B2 (en) | 2016-08-12 | 2019-07-30 | Insulet Corporation | Plunger for drug delivery device |
US10426896B2 (en) | 2016-09-27 | 2019-10-01 | Bigfoot Biomedical, Inc. | Medicine injection and disease management systems, devices, and methods |
US10441723B2 (en) | 2016-08-14 | 2019-10-15 | Insulet Corporation | Variable fill drug delivery device |
US10449294B1 (en) | 2016-01-05 | 2019-10-22 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US10569015B2 (en) | 2013-12-02 | 2020-02-25 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10603440B2 (en) | 2017-01-19 | 2020-03-31 | Insulet Corporation | Cartridge hold-up volume reduction |
US10695485B2 (en) | 2017-03-07 | 2020-06-30 | Insulet Corporation | Very high volume user filled drug delivery device |
US10751478B2 (en) | 2016-10-07 | 2020-08-25 | Insulet Corporation | Multi-stage delivery system |
US10780217B2 (en) | 2016-11-10 | 2020-09-22 | Insulet Corporation | Ratchet drive for on body delivery system |
US10874803B2 (en) | 2018-05-31 | 2020-12-29 | Insulet Corporation | Drug cartridge with drive system |
US10963417B2 (en) | 2004-06-04 | 2021-03-30 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US10973978B2 (en) | 2017-08-03 | 2021-04-13 | Insulet Corporation | Fluid flow regulation arrangements for drug delivery devices |
US10987468B2 (en) | 2016-01-05 | 2021-04-27 | Bigfoot Biomedical, Inc. | Operating multi-modal medicine delivery systems |
US11096624B2 (en) | 2016-12-12 | 2021-08-24 | Bigfoot Biomedical, Inc. | Alarms and alerts for medication delivery devices and systems |
US11229741B2 (en) | 2012-03-30 | 2022-01-25 | Insulet Corporation | Fluid delivery device, transcutaneous access tool and fluid drive mechanism for use therewith |
US11229736B2 (en) | 2018-06-06 | 2022-01-25 | Insulet Corporation | Linear shuttle pump for drug delivery |
US11260169B2 (en) | 2013-03-14 | 2022-03-01 | Bigfoot Biomedical, Inc. | Infusion pump system and methods |
US11280327B2 (en) | 2017-08-03 | 2022-03-22 | Insulet Corporation | Micro piston pump |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11369735B2 (en) | 2019-11-05 | 2022-06-28 | Insulet Corporation | Component positioning of a linear shuttle pump |
US11389088B2 (en) | 2017-07-13 | 2022-07-19 | Bigfoot Biomedical, Inc. | Multi-scale display of blood glucose information |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11446435B2 (en) | 2018-11-28 | 2022-09-20 | Insulet Corporation | Drug delivery shuttle pump system and valve assembly |
US11464899B2 (en) | 2014-08-28 | 2022-10-11 | Becton, Dickinson And Company | Wireless communication for on-body medical devices |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11534089B2 (en) | 2011-02-28 | 2022-12-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11786668B2 (en) | 2017-09-25 | 2023-10-17 | Insulet Corporation | Drug delivery devices, systems, and methods with force transfer elements |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US11911590B2 (en) | 2013-12-26 | 2024-02-27 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
Families Citing this family (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6682521B2 (en) * | 2000-03-23 | 2004-01-27 | Dennis N. Petrakis | Temperature activated systems |
US7655001B2 (en) | 2001-03-23 | 2010-02-02 | Petrakis Dennis N | Temperature responsive systems |
US7445616B2 (en) * | 2001-03-23 | 2008-11-04 | Petrakis Dennis N | Temperature responsive systems |
US7607402B2 (en) | 2001-03-23 | 2009-10-27 | Petrakis Dennis N | Temperature responsive systems |
US7018360B2 (en) * | 2002-07-16 | 2006-03-28 | Insulet Corporation | Flow restriction system and method for patient infusion device |
US7476224B2 (en) * | 2003-03-17 | 2009-01-13 | Petrakis Dennis N | Temperature responsive systems |
US7146977B2 (en) | 2003-09-25 | 2006-12-12 | Deka Products Limited Partnership | Valve system and method for aerosol delivery |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US9636450B2 (en) * | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US20060166629A1 (en) * | 2005-01-24 | 2006-07-27 | Therasense, Inc. | Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems |
US8512288B2 (en) * | 2006-08-23 | 2013-08-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US8277415B2 (en) * | 2006-08-23 | 2012-10-02 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US20080097291A1 (en) * | 2006-08-23 | 2008-04-24 | Hanson Ian B | Infusion pumps and methods and delivery devices and methods with same |
US7699833B2 (en) | 2005-05-06 | 2010-04-20 | Moberg Sheldon B | Pump assembly and method for infusion device |
US7905868B2 (en) * | 2006-08-23 | 2011-03-15 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US8840586B2 (en) * | 2006-08-23 | 2014-09-23 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US8137314B2 (en) * | 2006-08-23 | 2012-03-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with compressible or curved reservoir or conduit |
EP1881820B1 (en) * | 2005-05-17 | 2020-06-17 | Roche Diabetes Care GmbH | Disposable dispenser for patient infusion |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US8478557B2 (en) | 2009-07-31 | 2013-07-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US20080004601A1 (en) * | 2006-06-28 | 2008-01-03 | Abbott Diabetes Care, Inc. | Analyte Monitoring and Therapy Management System and Methods Therefor |
US7828764B2 (en) * | 2006-08-23 | 2010-11-09 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7789857B2 (en) * | 2006-08-23 | 2010-09-07 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US7811262B2 (en) * | 2006-08-23 | 2010-10-12 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7794434B2 (en) * | 2006-08-23 | 2010-09-14 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US20080051765A1 (en) * | 2006-08-23 | 2008-02-28 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US8352042B2 (en) * | 2006-11-28 | 2013-01-08 | The Alfred E. Mann Foundation For Scientific Research | Remote controls and ambulatory medical systems including the same |
US8352041B2 (en) * | 2006-11-28 | 2013-01-08 | The Alfred E. Mann Foundation For Scientific Research | Remote controls and ambulatory medical systems including the same |
JP4886535B2 (en) * | 2007-01-30 | 2012-02-29 | 日本コヴィディエン株式会社 | Connector cap |
US8613725B2 (en) | 2007-04-30 | 2013-12-24 | Medtronic Minimed, Inc. | Reservoir systems and methods |
US8597243B2 (en) | 2007-04-30 | 2013-12-03 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir air bubble management |
US8434528B2 (en) * | 2007-04-30 | 2013-05-07 | Medtronic Minimed, Inc. | Systems and methods for reservoir filling |
CA2685474C (en) * | 2007-04-30 | 2014-07-08 | Medtronic Minimed, Inc. | Reservoir filling, bubble management, and infusion medium delivery systems and methods with same |
US8323250B2 (en) * | 2007-04-30 | 2012-12-04 | Medtronic Minimed, Inc. | Adhesive patch systems and methods |
US7963954B2 (en) | 2007-04-30 | 2011-06-21 | Medtronic Minimed, Inc. | Automated filling systems and methods |
US7959715B2 (en) * | 2007-04-30 | 2011-06-14 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir air bubble management |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20090063402A1 (en) * | 2007-08-31 | 2009-03-05 | Abbott Diabetes Care, Inc. | Method and System for Providing Medication Level Determination |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US20090164251A1 (en) * | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Method and apparatus for providing treatment profile management |
US20090164239A1 (en) * | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
JP5506780B2 (en) | 2008-04-09 | 2014-05-28 | エフ.ホフマン−ラ ロシュ アーゲー | System, apparatus and method for delivering fluid |
WO2010009172A1 (en) | 2008-07-14 | 2010-01-21 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US20100057040A1 (en) * | 2008-08-31 | 2010-03-04 | Abbott Diabetes Care, Inc. | Robust Closed Loop Control And Methods |
US8622988B2 (en) * | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US9943644B2 (en) * | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US12097357B2 (en) | 2008-09-15 | 2024-09-24 | West Pharma. Services IL, Ltd. | Stabilized pen injector |
US9833569B2 (en) | 2008-10-10 | 2017-12-05 | Deka Products Limited Partnership | Infusion pump assembly |
US8728024B2 (en) | 2008-10-10 | 2014-05-20 | Deka Products Limited Partnership | Infusion pump methods, systems and apparatus |
US20100198196A1 (en) * | 2009-01-30 | 2010-08-05 | Abbott Diabetes Care, Inc. | Therapy Delivery Device Programming Tool |
US8308679B2 (en) * | 2009-12-30 | 2012-11-13 | Medtronic Minimed, Inc. | Alignment systems and methods |
US8900190B2 (en) * | 2009-09-02 | 2014-12-02 | Medtronic Minimed, Inc. | Insertion device systems and methods |
US8882710B2 (en) | 2009-09-02 | 2014-11-11 | Medtronic Minimed, Inc. | Insertion device systems and methods |
USD811584S1 (en) | 2009-09-15 | 2018-02-27 | Medimop Medical Projects Ltd. | Injector device |
US8157769B2 (en) | 2009-09-15 | 2012-04-17 | Medimop Medical Projects Ltd. | Cartridge insertion assembly for drug delivery system |
US10071198B2 (en) | 2012-11-02 | 2018-09-11 | West Pharma. Servicees IL, Ltd. | Adhesive structure for medical device |
US9039653B2 (en) * | 2009-12-29 | 2015-05-26 | Medtronic Minimed, Inc. | Retention systems and methods |
US8998858B2 (en) * | 2009-12-29 | 2015-04-07 | Medtronic Minimed, Inc. | Alignment and connection systems and methods |
US8858500B2 (en) | 2009-12-30 | 2014-10-14 | Medtronic Minimed, Inc. | Engagement and sensing systems and methods |
US8998840B2 (en) | 2009-12-30 | 2015-04-07 | Medtronic Minimed, Inc. | Connection and alignment systems and methods |
US8435209B2 (en) * | 2009-12-30 | 2013-05-07 | Medtronic Minimed, Inc. | Connection and alignment detection systems and methods |
US9421321B2 (en) * | 2009-12-30 | 2016-08-23 | Medtronic Minimed, Inc. | Connection and alignment systems and methods |
US20120215163A1 (en) | 2009-12-30 | 2012-08-23 | Medtronic Minimed, Inc. | Sensing systems and methods |
US11497850B2 (en) | 2009-12-30 | 2022-11-15 | Medtronic Minimed, Inc. | Connection and alignment detection systems and methods |
US11660392B2 (en) | 2010-02-05 | 2023-05-30 | Deka Products Limited Partnership | Devices, methods and systems for wireless control of medical devices |
US9662438B2 (en) | 2010-02-05 | 2017-05-30 | Deka Products Limited Partnership | Devices, methods and systems for wireless control of medical devices |
WO2011126895A2 (en) * | 2010-03-30 | 2011-10-13 | Deka Products Limited Partnership | Infusion pump methods, systems and apparatus |
FI2575935T4 (en) | 2010-06-07 | 2023-11-23 | Amgen Inc | Drug delivery device |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US8814829B2 (en) | 2010-08-12 | 2014-08-26 | Baxter International Inc. | Drug delivery device for fluid restricted patients |
WO2012048168A2 (en) | 2010-10-07 | 2012-04-12 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9421323B2 (en) | 2013-01-03 | 2016-08-23 | Medimop Medical Projects Ltd. | Door and doorstop for portable one use drug delivery apparatus |
CN105682718A (en) | 2013-09-30 | 2016-06-15 | 麦迪麦珀医疗工程有限公司 | Stabilized pen injector |
GB2523989B (en) | 2014-01-30 | 2020-07-29 | Insulet Netherlands B V | Therapeutic product delivery system and method of pairing |
US10220161B2 (en) | 2014-02-14 | 2019-03-05 | Ailnh, Llc | Gas removal systems and methods |
US10874805B2 (en) | 2014-02-14 | 2020-12-29 | Ailnh, Llc | Gas removal apparatus and related methods |
DE202014001525U1 (en) * | 2014-02-19 | 2014-03-27 | H & B Electronic Gmbh & Co. Kg | Continuous infusion device |
US10441717B2 (en) | 2014-04-15 | 2019-10-15 | Insulet Corporation | Monitoring a physiological parameter associated with tissue of a host to confirm delivery of medication |
KR102506249B1 (en) * | 2014-06-03 | 2023-03-03 | 암겐 인코포레이티드 | Drug delivery system and method of use |
US20160144108A1 (en) * | 2014-11-26 | 2016-05-26 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US20160175544A1 (en) * | 2014-12-18 | 2016-06-23 | Marc Andrew Koska | Single use injection system |
CN111905188B (en) | 2015-02-18 | 2022-07-22 | 英赛罗公司 | Fluid delivery and infusion device and method of use |
US11207465B2 (en) | 2015-06-04 | 2021-12-28 | West Pharma. Services Il. Ltd. | Cartridge insertion for drug delivery device |
WO2016201415A1 (en) | 2015-06-12 | 2016-12-15 | Insulet Corporation | Confirmation of delivery of medication to a host |
EP3352815B1 (en) * | 2015-09-21 | 2020-12-30 | Becton, Dickinson And Company | Fluid interconnection scheme between reservoir, pump and filling member |
US10716896B2 (en) | 2015-11-24 | 2020-07-21 | Insulet Corporation | Wearable automated medication delivery system |
US10413665B2 (en) | 2015-11-25 | 2019-09-17 | Insulet Corporation | Wearable medication delivery device |
KR101764813B1 (en) * | 2016-02-29 | 2017-08-03 | 중소기업은행 | Cover and device for infusing medical liquid including the same |
WO2017187262A1 (en) | 2016-04-25 | 2017-11-02 | Marc Andrew Koska | Medical delivery system |
WO2017210448A1 (en) | 2016-06-02 | 2017-12-07 | Medimop Medical Projects Ltd. | Three position needle retraction |
AU2017286812B2 (en) * | 2016-06-17 | 2021-09-16 | Becton, Dickinson And Company | Method and apparatus for wetting internal fluid path surfaces of a fluid port to increase ultrasonic signal transmission |
EP3490635B1 (en) | 2016-08-01 | 2021-11-17 | West Pharma. Services Il, Ltd. | Partial door closure prevention spring |
US10765807B2 (en) | 2016-09-23 | 2020-09-08 | Insulet Corporation | Fluid delivery device with sensor |
US11045603B2 (en) | 2017-02-22 | 2021-06-29 | Insulet Corporation | Needle insertion mechanisms for drug containers |
US11766525B2 (en) * | 2017-05-19 | 2023-09-26 | Porex Corporation | Infusion device with a hydrophilic sintered porous plastic or hydrophilic porous fiber air stop filter |
EP3630226A1 (en) | 2017-05-30 | 2020-04-08 | West Pharma. Services Il, Ltd. | Modular drive train for wearable injector |
US10814062B2 (en) | 2017-08-31 | 2020-10-27 | Becton, Dickinson And Company | Reservoir with low volume sensor |
US10898656B2 (en) | 2017-09-26 | 2021-01-26 | Insulet Corporation | Needle mechanism module for drug delivery device |
US11147931B2 (en) | 2017-11-17 | 2021-10-19 | Insulet Corporation | Drug delivery device with air and backflow elimination |
EP3727514A1 (en) | 2017-12-22 | 2020-10-28 | West Pharma Services IL, Ltd. | Injector usable with different dimension cartridges |
US11583633B2 (en) | 2018-04-03 | 2023-02-21 | Amgen Inc. | Systems and methods for delayed drug delivery |
CN118750687A (en) | 2018-05-04 | 2024-10-11 | 英赛罗公司 | Safety constraints for drug delivery systems based on control algorithms |
WO2020009921A1 (en) | 2018-07-06 | 2020-01-09 | Becton, Dickinson And Company | Flow sensor and method for adjusting fluid flow measurement |
US11241532B2 (en) | 2018-08-29 | 2022-02-08 | Insulet Corporation | Drug delivery system with sensor having optimized communication and infusion site |
EP3856285A1 (en) | 2018-09-28 | 2021-08-04 | Insulet Corporation | Activity mode for artificial pancreas system |
EP3864668A1 (en) | 2018-10-11 | 2021-08-18 | Insulet Corporation | Event detection for drug delivery system |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
EP4069082B1 (en) | 2019-12-06 | 2024-06-05 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
EP4088286A1 (en) | 2020-01-06 | 2022-11-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
KR102524040B1 (en) * | 2020-02-28 | 2023-04-21 | 이오플로우(주) | Cover and device for infusing medical liquid including the same |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
EP3928812A1 (en) | 2020-06-23 | 2021-12-29 | TecMed AG | Wearable drug delivery device |
EP3928814A1 (en) | 2020-06-23 | 2021-12-29 | TecMed AG | Wearable drug delivery device |
EP3928813A1 (en) | 2020-06-23 | 2021-12-29 | TecMed AG | Wearable drug delivery device |
EP3928811A1 (en) | 2020-06-23 | 2021-12-29 | TecMed AG | Wearable drug delivery device |
WO2022020197A1 (en) | 2020-07-22 | 2022-01-27 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US12128215B2 (en) | 2020-09-30 | 2024-10-29 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
EP4221588A1 (en) | 2020-09-30 | 2023-08-09 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US11160925B1 (en) | 2021-01-29 | 2021-11-02 | Insulet Corporation | Automatic drug delivery system for delivery of a GLP-1 therapeutic |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
EP4409581A1 (en) | 2021-09-27 | 2024-08-07 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) * | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US3812843A (en) * | 1973-03-12 | 1974-05-28 | Lear Siegler Inc | Method and apparatus for injecting contrast media into the vascular system |
US4067000A (en) * | 1976-05-28 | 1978-01-03 | Rca Corporation | Remote control transmitter with an audible battery life indicator |
US4108177A (en) * | 1976-04-23 | 1978-08-22 | Michel Louis Paul Pistor | Automatic injector device |
US4151845A (en) * | 1977-11-25 | 1979-05-01 | Miles Laboratories, Inc. | Blood glucose control apparatus |
US4193397A (en) * | 1977-12-01 | 1980-03-18 | Metal Bellows Corporation | Infusion apparatus and method |
US4211998A (en) * | 1977-08-25 | 1980-07-08 | Stierlen-Maquet Aktiengesellschaft | Method of and remote control apparatus for remotely controlling a medical appliance |
US4268150A (en) * | 1980-01-28 | 1981-05-19 | Laurence Chen | Disposable camera with simplified film advance and indicator |
US4342311A (en) * | 1979-01-08 | 1982-08-03 | Whitney Douglass G | Injector with programming means |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4424720A (en) * | 1980-12-15 | 1984-01-10 | Ivac Corporation | Mechanism for screw drive and syringe plunger engagement/disengagement |
US4435173A (en) * | 1982-03-05 | 1984-03-06 | Delta Medical Industries | Variable rate syringe pump for insulin delivery |
US4498843A (en) * | 1982-08-02 | 1985-02-12 | Schneider Philip H | Insulin infusion pump |
US4507115A (en) * | 1981-04-01 | 1985-03-26 | Olympus Optical Co., Ltd. | Medical capsule device |
US4514732A (en) * | 1982-08-23 | 1985-04-30 | General Electric Company | Technique for increasing battery life in remote control transmitters |
US4529401A (en) * | 1982-01-11 | 1985-07-16 | Cardiac Pacemakers, Inc. | Ambulatory infusion pump having programmable parameters |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4585439A (en) * | 1983-09-07 | 1986-04-29 | Disetronic Ag. | Portable infusion unit |
US4601707A (en) * | 1980-06-03 | 1986-07-22 | Albisser Anthony M | Insulin infusion device |
US4634427A (en) * | 1984-09-04 | 1987-01-06 | American Hospital Supply Company | Implantable demand medication delivery assembly |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4684368A (en) * | 1984-06-01 | 1987-08-04 | Parker Hannifin Corporation | Inverted pump |
US4685903A (en) * | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4734092A (en) * | 1987-02-18 | 1988-03-29 | Ivac Corporation | Ambulatory drug delivery device |
US4801857A (en) * | 1986-08-27 | 1989-01-31 | Sundstrand Corporation | Servo loop control system with dynamic limiting |
US4808161A (en) * | 1986-03-04 | 1989-02-28 | Kamen Dean L | Pressure-measurement flow control system |
US4836752A (en) * | 1987-11-02 | 1989-06-06 | Fisher Scientific Company | Partial restriction detector |
US4898578A (en) * | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
US4898579A (en) * | 1987-06-26 | 1990-02-06 | Pump Controller Corporation | Infusion pump |
USD306691S (en) * | 1986-05-23 | 1990-03-20 | Fuji Photo Film Co., Ltd. | Disposable camera |
US4944659A (en) * | 1987-01-27 | 1990-07-31 | Kabivitrum Ab | Implantable piezoelectric pump system |
USD315727S (en) * | 1986-06-30 | 1991-03-26 | Fuji Photo Film Co., Ltd. | Disposable camera |
US5007458A (en) * | 1990-04-23 | 1991-04-16 | Parker Hannifin Corporation | Poppet diaphragm valve |
US5109850A (en) * | 1990-02-09 | 1992-05-05 | Massachusetts Institute Of Technology | Automatic blood monitoring for medication delivery method and apparatus |
US5125412A (en) * | 1990-07-23 | 1992-06-30 | Thornton William E | Musculoskeletal activity monitor |
US5176662A (en) * | 1990-08-23 | 1993-01-05 | Minimed Technologies, Ltd. | Subcutaneous injection set with improved cannula mounting arrangement |
US5178609A (en) * | 1990-06-19 | 1993-01-12 | Kato Hatsujo Kaisha, Ltd. | Medical liquid injector for continuous transfusion |
US5189609A (en) * | 1987-10-09 | 1993-02-23 | Hewlett-Packard Company | Medical monitoring system with softkey control |
US5205819A (en) * | 1989-05-11 | 1993-04-27 | Bespak Plc | Pump apparatus for biomedical use |
US5213483A (en) * | 1991-06-19 | 1993-05-25 | Strato Medical Corporation | Peristaltic infusion pump with removable cassette and mechanically keyed tube set |
US5281202A (en) * | 1991-09-03 | 1994-01-25 | Fresenius Ag | Device for draining a flexible fluid container |
US5308335A (en) * | 1991-06-25 | 1994-05-03 | Medication Delivery Devices | Infusion pump, treatment fluid bag therefor, and method for the use thereof |
US5312337A (en) * | 1990-10-10 | 1994-05-17 | Strato Medical Corporation | Catheter attachment device |
US5318540A (en) * | 1990-04-02 | 1994-06-07 | Pharmetrix Corporation | Controlled release infusion device |
US5385662A (en) * | 1991-11-27 | 1995-01-31 | Electro Chemical Engineering Gmbh | Method of producing oxide ceramic layers on barrier layer-forming metals and articles produced by the method |
US5411480A (en) * | 1989-06-16 | 1995-05-02 | Science Incorporated | Fluid delivery apparatus |
US5426404A (en) * | 1994-01-28 | 1995-06-20 | Motorola, Inc. | Electrical circuit using low volume multilayer transmission line devices |
US5433710A (en) * | 1993-03-16 | 1995-07-18 | Minimed, Inc. | Medication infusion pump with fluoropolymer valve seat |
US5492534A (en) * | 1990-04-02 | 1996-02-20 | Pharmetrix Corporation | Controlled release portable pump |
US5505709A (en) * | 1994-09-15 | 1996-04-09 | Minimed, Inc., A Delaware Corporation | Mated infusion pump and syringe |
US5507288A (en) * | 1994-05-05 | 1996-04-16 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5514096A (en) * | 1993-12-28 | 1996-05-07 | Nissho Corporation | Apparatus and balloon for dosing a liquid medicine |
US5533389A (en) * | 1986-03-04 | 1996-07-09 | Deka Products Limited Partnership | Method and system for measuring volume and controlling flow |
US5630710A (en) * | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
US5637095A (en) * | 1995-01-13 | 1997-06-10 | Minimed Inc. | Medication infusion pump with flexible drive plunger |
US5647853A (en) * | 1995-03-03 | 1997-07-15 | Minimed Inc. | Rapid response occlusion detector for a medication infusion pump |
US5704520A (en) * | 1993-07-19 | 1998-01-06 | Elan Medical Technologies, Limited | Liquid material dispenser and valve |
US5726751A (en) * | 1995-09-27 | 1998-03-10 | University Of Washington | Silicon microchannel optical flow cytometer |
US5741228A (en) * | 1995-02-17 | 1998-04-21 | Strato/Infusaid | Implantable access device |
US5747350A (en) * | 1993-04-02 | 1998-05-05 | Boehringer Mannheim Gmbh | System for dosing liquids |
US5748827A (en) * | 1996-10-23 | 1998-05-05 | University Of Washington | Two-stage kinematic mount |
US5755682A (en) * | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
US5764159A (en) * | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
US5776103A (en) * | 1995-10-11 | 1998-07-07 | Science Incorporated | Fluid delivery device with bolus injection site |
US5779696A (en) * | 1990-07-23 | 1998-07-14 | Sunrise Technologies International, Inc. | Method and apparatus for performing corneal reshaping to correct ocular refractive errors |
US5785688A (en) * | 1996-05-07 | 1998-07-28 | Ceramatec, Inc. | Fluid delivery apparatus and method |
US5785681A (en) * | 1997-02-25 | 1998-07-28 | Minimed Inc. | Flow rate controller for a medication infusion pump |
US5858005A (en) * | 1997-08-27 | 1999-01-12 | Science Incorporated | Subcutaneous infusion set with dynamic needle |
US5858239A (en) * | 1997-02-14 | 1999-01-12 | Aksys, Ltd. | Methods and apparatus for adjustment of blood drip chamber of dialysis machines using touchscreen interface |
US5865806A (en) * | 1996-04-04 | 1999-02-02 | Becton Dickinson And Company | One step catheter advancement automatic needle retraction system |
USD405524S (en) * | 1998-05-01 | 1999-02-09 | Elan Medical Technologies Limited | Drug delivery device |
US5871470A (en) * | 1997-04-18 | 1999-02-16 | Becton Dickinson And Company | Combined spinal epidural needle set |
US5875393A (en) * | 1997-02-28 | 1999-02-23 | Randice-Lisa Altschul | Disposable wireless telephone and method |
US5886647A (en) * | 1996-12-20 | 1999-03-23 | Badger; Berkley C. | Apparatus and method for wireless, remote control of multiple devices |
US5891097A (en) * | 1994-08-12 | 1999-04-06 | Japan Storage Battery Co., Ltd. | Electrochemical fluid delivery device |
US5897530A (en) * | 1997-12-24 | 1999-04-27 | Baxter International Inc. | Enclosed ambulatory pump |
US5906597A (en) * | 1998-06-09 | 1999-05-25 | I-Flow Corporation | Patient-controlled drug administration device |
US5919167A (en) * | 1998-04-08 | 1999-07-06 | Ferring Pharmaceuticals | Disposable micropump |
US6019747A (en) * | 1997-10-21 | 2000-02-01 | I-Flow Corporation | Spring-actuated infusion syringe |
US6024539A (en) * | 1992-09-09 | 2000-02-15 | Sims Deltec, Inc. | Systems and methods for communicating with ambulatory medical devices such as drug delivery devices |
US6061580A (en) * | 1997-02-28 | 2000-05-09 | Randice-Lisa Altschul | Disposable wireless telephone and method for call-out only |
US6071292A (en) * | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US6174300B1 (en) * | 1997-08-27 | 2001-01-16 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
US6190359B1 (en) * | 1996-04-30 | 2001-02-20 | Medtronic, Inc. | Method and apparatus for drug infusion |
US6206850B1 (en) * | 1996-03-14 | 2001-03-27 | Christine O'Neil | Patient controllable drug delivery system flow regulating means |
US6244776B1 (en) * | 1998-01-05 | 2001-06-12 | Lien J. Wiley | Applicators for health and beauty products |
US6363609B1 (en) * | 2000-10-20 | 2002-04-02 | Short Block Technologies, Inc. | Method and apparatus for aligning crankshaft sections |
US6375638B2 (en) * | 1999-02-12 | 2002-04-23 | Medtronic Minimed, Inc. | Incremental motion pump mechanisms powered by shape memory alloy wire or the like |
US6427088B1 (en) * | 2000-01-21 | 2002-07-30 | Medtronic Minimed, Inc. | Ambulatory medical apparatus and method using telemetry system with predefined reception listening periods |
US6520936B1 (en) * | 1999-06-08 | 2003-02-18 | Medtronic Minimed, Inc. | Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device |
US6527744B1 (en) * | 1997-08-27 | 2003-03-04 | Science Incorporated | Fluid delivery device with light activated energy source |
US6572585B2 (en) * | 2001-07-12 | 2003-06-03 | Soo Bong Choi | Remote-controlled portable automatic syringe device |
US6585707B2 (en) * | 1998-05-21 | 2003-07-01 | Elan Pharma International Limited | Drug delivery device having improved adhesion and attachment system for drug delivery device |
US6692457B2 (en) * | 2002-03-01 | 2004-02-17 | Insulet Corporation | Flow condition sensor assembly for patient infusion device |
US6706159B2 (en) * | 2000-03-02 | 2004-03-16 | Diabetes Diagnostics | Combined lancet and electrochemical analyte-testing apparatus |
US20040068224A1 (en) * | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
US6723072B2 (en) * | 2002-06-06 | 2004-04-20 | Insulet Corporation | Plunger assembly for patient infusion device |
US6740059B2 (en) * | 2000-09-08 | 2004-05-25 | Insulet Corporation | Devices, systems and methods for patient infusion |
US7018360B2 (en) * | 2002-07-16 | 2006-03-28 | Insulet Corporation | Flow restriction system and method for patient infusion device |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935099A (en) * | 1992-09-09 | 1999-08-10 | Sims Deltec, Inc. | Drug pump systems and methods |
US3885662A (en) | 1973-12-26 | 1975-05-27 | Ibm | Steerable follower selection mechanism |
DE2738155A1 (en) | 1977-08-24 | 1979-03-08 | Stierlen Maquet Ag | REMOTE CONTROL ARRANGEMENT FOR A MEDICAL DEVICE |
US4559037A (en) | 1977-12-28 | 1985-12-17 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
AU546785B2 (en) | 1980-07-23 | 1985-09-19 | Commonwealth Of Australia, The | Open-loop controlled infusion of diabetics |
US4559033A (en) | 1980-10-27 | 1985-12-17 | University Of Utah Research Foundation | Apparatus and methods for minimizing peritoneal injection catheter obstruction |
US4364385A (en) | 1981-03-13 | 1982-12-21 | Lossef Steven V | Insulin delivery device |
JPS57211361A (en) | 1981-06-23 | 1982-12-25 | Terumo Corp | Liquid injecting apparatus |
US4551134A (en) | 1982-08-06 | 1985-11-05 | Nuvatec, Inc. | Intravenous set |
US4624661A (en) | 1982-11-16 | 1986-11-25 | Surgidev Corp. | Drug dispensing system |
DE3314664C2 (en) | 1983-04-22 | 1985-02-21 | B. Braun Melsungen Ag, 3508 Melsungen | Procedure for triggering a pre-alarm in a pressure infusion apparatus |
US4781693A (en) | 1983-09-02 | 1988-11-01 | Minntech Corporation | Insulin dispenser for peritoneal cavity |
US4743243A (en) * | 1984-01-03 | 1988-05-10 | Vaillancourt Vincent L | Needle with vent filter assembly |
US4855746A (en) | 1984-07-30 | 1989-08-08 | Zenith Electronics Corporation | Multiple device remote control transmitter |
CA1254091A (en) * | 1984-09-28 | 1989-05-16 | Vladimir Feingold | Implantable medication infusion system |
US4755173A (en) | 1986-02-25 | 1988-07-05 | Pacesetter Infusion, Ltd. | Soft cannula subcutaneous injection set |
AT384737B (en) | 1986-04-04 | 1987-12-28 | Thoma Dipl Ing Dr Techn Herwig | DEVICE FOR CONTINUOUSLY DELIVERING LIQUID MEDICINAL PRODUCTS |
USD303013S (en) | 1986-06-19 | 1989-08-22 | Pacesetter Infusion, Ltd. | Female luer connector |
USD311735S (en) | 1986-06-30 | 1990-10-30 | Fuji Photo Film Co., Ltd. | Disposable camera |
US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
WO1988009187A1 (en) | 1987-05-18 | 1988-12-01 | Disetronic Ag | Infusion apparatus |
JPH021276A (en) * | 1987-10-30 | 1990-01-05 | Issei Suzuki | Plug device of drip bottle |
US4801957A (en) | 1988-02-18 | 1989-01-31 | Eastman Kodak Company | Disposable single-use camera and accessory re-usable electronic flash unit |
US5062841A (en) | 1988-08-12 | 1991-11-05 | The Regents Of The University Of California | Implantable, self-regulating mechanochemical insulin pump |
US4882600A (en) | 1989-04-07 | 1989-11-21 | Eastman Kodak Company | Underwater disposable single-use camera |
US5045871A (en) | 1989-06-30 | 1991-09-03 | Reinholdson Mark R | Disposable camera |
US4973998A (en) | 1990-01-16 | 1990-11-27 | Eastman Kodak Company | Disposable single-use camera and accessory re-usable electronic flash unit |
US5125415A (en) * | 1990-06-19 | 1992-06-30 | Smiths Industries Medical Systems, Inc. | Syringe tip cap with self-sealing filter |
US5242406A (en) | 1990-10-19 | 1993-09-07 | Sil Medics Ltd. | Liquid delivery device particularly useful for delivering drugs |
TW279133B (en) * | 1990-12-13 | 1996-06-21 | Elan Med Tech | |
US5245447A (en) | 1991-05-20 | 1993-09-14 | Xerox Corporation | Indexing mechanism for compact scanner |
US5239326A (en) | 1991-08-07 | 1993-08-24 | Kabushiki Kaisha Senshukai | Film-loaded disposable camera |
US5244463A (en) | 1991-12-06 | 1993-09-14 | Block Medical, Inc. | Programmable infusion pump |
US5911716A (en) * | 1992-01-24 | 1999-06-15 | I-Flow Corporation | Platen pump |
US5267956A (en) | 1992-02-05 | 1993-12-07 | Alcon Surgical, Inc. | Surgical cassette |
US5346476A (en) * | 1992-04-29 | 1994-09-13 | Edward E. Elson | Fluid delivery system |
US5254096A (en) | 1992-09-23 | 1993-10-19 | Becton, Dickinson And Company | Syringe pump with graphical display or error conditions |
US5232439A (en) | 1992-11-02 | 1993-08-03 | Infusion Technologies Corporation | Method for pumping fluid from a flexible, variable geometry reservoir |
US5342313A (en) | 1992-11-02 | 1994-08-30 | Infusion Technologies Corporation | Fluid pump for a flexible, variable geometry reservoir |
US5257980A (en) | 1993-04-05 | 1993-11-02 | Minimed Technologies, Ltd. | Subcutaneous injection set with crimp-free soft cannula |
EP0733169B1 (en) | 1993-10-04 | 2003-01-08 | Research International, Inc. | Micromachined fluid handling apparatus comprising a filter and a flow regulator |
US5997501A (en) * | 1993-11-18 | 1999-12-07 | Elan Corporation, Plc | Intradermal drug delivery device |
US5643213A (en) | 1994-03-09 | 1997-07-01 | I-Flow Corporation | Elastomeric syringe actuation device |
US5576781A (en) | 1994-05-16 | 1996-11-19 | Deleeuw; Paul | Disposable camera |
US5452033A (en) | 1994-06-06 | 1995-09-19 | Eastman Kodak Company | Single use photographic film package and camera |
US5582593A (en) | 1994-07-21 | 1996-12-10 | Hultman; Barry W. | Ambulatory medication delivery system |
US5545152A (en) | 1994-10-28 | 1996-08-13 | Minimed Inc. | Quick-connect coupling for a medication infusion system |
US5665070A (en) | 1995-01-19 | 1997-09-09 | I-Flow Corporation | Infusion pump with magnetic bag compression |
US5575770A (en) | 1995-04-05 | 1996-11-19 | Therex Corporation | Implantable drug infusion system with safe bolus capability |
US5665065A (en) | 1995-05-26 | 1997-09-09 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5584813A (en) | 1995-06-07 | 1996-12-17 | Minimed Inc. | Subcutaneous injection set |
US5702363A (en) * | 1995-06-07 | 1997-12-30 | Flaherty; J. Christopher | Septumless implantable treatment material device |
US5695490A (en) | 1995-06-07 | 1997-12-09 | Strato/Infusaid, Inc. | Implantable treatment material device |
US5810015A (en) * | 1995-09-01 | 1998-09-22 | Strato/Infusaid, Inc. | Power supply for implantable device |
IE77523B1 (en) * | 1995-09-11 | 1997-12-17 | Elan Med Tech | Medicament delivery device |
US5779676A (en) * | 1995-10-11 | 1998-07-14 | Science Incorporated | Fluid delivery device with bolus injection site |
US5800405A (en) * | 1995-12-01 | 1998-09-01 | I-Flow Corporation | Syringe actuation device |
US5830187A (en) * | 1995-12-22 | 1998-11-03 | Science Incorporated | Fluid delivery device with conformable ullage and fill assembly |
US5726404A (en) | 1996-05-31 | 1998-03-10 | University Of Washington | Valveless liquid microswitch |
IL118689A (en) * | 1996-06-20 | 2000-10-31 | Gadot Amir | Intravenous infusion apparatus |
US5851197A (en) * | 1997-02-05 | 1998-12-22 | Minimed Inc. | Injector for a subcutaneous infusion set |
US5845218A (en) * | 1997-02-28 | 1998-12-01 | Altschul; Randice-Lisa | Disposable wireless telephone and method |
US5957890A (en) * | 1997-06-09 | 1999-09-28 | Minimed Inc. | Constant flow medication infusion pump |
US5965848A (en) * | 1997-07-22 | 1999-10-12 | Randice-Lisa Altschul | Disposable portable electronic devices and method of making |
US5983094A (en) * | 1997-10-27 | 1999-11-09 | Randice-Lisa Altschul | Wireless telephone with credited airtime and method |
US6126637A (en) * | 1998-04-15 | 2000-10-03 | Science Incorporated | Fluid delivery device with collapsible needle cover |
US6152898A (en) * | 1999-04-30 | 2000-11-28 | Medtronic, Inc. | Overfill protection systems for implantable drug delivery devices |
US6537249B2 (en) * | 2000-12-18 | 2003-03-25 | Science, Incorporated | Multiple canopy |
-
2002
- 2002-07-16 US US10/198,690 patent/US7018360B2/en not_active Expired - Fee Related
-
2003
- 2003-06-23 AU AU2003251600A patent/AU2003251600A1/en not_active Abandoned
- 2003-06-23 WO PCT/US2003/019756 patent/WO2004006981A2/en not_active Application Discontinuation
-
2005
- 2005-10-11 US US11/163,234 patent/US20060041229A1/en not_active Abandoned
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) * | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US3812843A (en) * | 1973-03-12 | 1974-05-28 | Lear Siegler Inc | Method and apparatus for injecting contrast media into the vascular system |
US4108177A (en) * | 1976-04-23 | 1978-08-22 | Michel Louis Paul Pistor | Automatic injector device |
US4067000A (en) * | 1976-05-28 | 1978-01-03 | Rca Corporation | Remote control transmitter with an audible battery life indicator |
US4211998A (en) * | 1977-08-25 | 1980-07-08 | Stierlen-Maquet Aktiengesellschaft | Method of and remote control apparatus for remotely controlling a medical appliance |
US4151845A (en) * | 1977-11-25 | 1979-05-01 | Miles Laboratories, Inc. | Blood glucose control apparatus |
US4193397A (en) * | 1977-12-01 | 1980-03-18 | Metal Bellows Corporation | Infusion apparatus and method |
US4342311A (en) * | 1979-01-08 | 1982-08-03 | Whitney Douglass G | Injector with programming means |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4373527B1 (en) * | 1979-04-27 | 1995-06-27 | Univ Johns Hopkins | Implantable programmable medication infusion system |
US4268150A (en) * | 1980-01-28 | 1981-05-19 | Laurence Chen | Disposable camera with simplified film advance and indicator |
US4601707A (en) * | 1980-06-03 | 1986-07-22 | Albisser Anthony M | Insulin infusion device |
US4424720A (en) * | 1980-12-15 | 1984-01-10 | Ivac Corporation | Mechanism for screw drive and syringe plunger engagement/disengagement |
US4507115A (en) * | 1981-04-01 | 1985-03-26 | Olympus Optical Co., Ltd. | Medical capsule device |
US4529401A (en) * | 1982-01-11 | 1985-07-16 | Cardiac Pacemakers, Inc. | Ambulatory infusion pump having programmable parameters |
US4435173A (en) * | 1982-03-05 | 1984-03-06 | Delta Medical Industries | Variable rate syringe pump for insulin delivery |
US4498843A (en) * | 1982-08-02 | 1985-02-12 | Schneider Philip H | Insulin infusion pump |
US4514732A (en) * | 1982-08-23 | 1985-04-30 | General Electric Company | Technique for increasing battery life in remote control transmitters |
US4585439A (en) * | 1983-09-07 | 1986-04-29 | Disetronic Ag. | Portable infusion unit |
US4685903A (en) * | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4684368A (en) * | 1984-06-01 | 1987-08-04 | Parker Hannifin Corporation | Inverted pump |
US4634427A (en) * | 1984-09-04 | 1987-01-06 | American Hospital Supply Company | Implantable demand medication delivery assembly |
US4808161A (en) * | 1986-03-04 | 1989-02-28 | Kamen Dean L | Pressure-measurement flow control system |
US5533389A (en) * | 1986-03-04 | 1996-07-09 | Deka Products Limited Partnership | Method and system for measuring volume and controlling flow |
USD306691S (en) * | 1986-05-23 | 1990-03-20 | Fuji Photo Film Co., Ltd. | Disposable camera |
USD315727S (en) * | 1986-06-30 | 1991-03-26 | Fuji Photo Film Co., Ltd. | Disposable camera |
US4801857A (en) * | 1986-08-27 | 1989-01-31 | Sundstrand Corporation | Servo loop control system with dynamic limiting |
US4944659A (en) * | 1987-01-27 | 1990-07-31 | Kabivitrum Ab | Implantable piezoelectric pump system |
US4734092A (en) * | 1987-02-18 | 1988-03-29 | Ivac Corporation | Ambulatory drug delivery device |
US4898579A (en) * | 1987-06-26 | 1990-02-06 | Pump Controller Corporation | Infusion pump |
US5189609A (en) * | 1987-10-09 | 1993-02-23 | Hewlett-Packard Company | Medical monitoring system with softkey control |
US4836752A (en) * | 1987-11-02 | 1989-06-06 | Fisher Scientific Company | Partial restriction detector |
US4898578A (en) * | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
US5205819A (en) * | 1989-05-11 | 1993-04-27 | Bespak Plc | Pump apparatus for biomedical use |
US5411480A (en) * | 1989-06-16 | 1995-05-02 | Science Incorporated | Fluid delivery apparatus |
US5109850A (en) * | 1990-02-09 | 1992-05-05 | Massachusetts Institute Of Technology | Automatic blood monitoring for medication delivery method and apparatus |
US5318540A (en) * | 1990-04-02 | 1994-06-07 | Pharmetrix Corporation | Controlled release infusion device |
US5492534A (en) * | 1990-04-02 | 1996-02-20 | Pharmetrix Corporation | Controlled release portable pump |
US5007458A (en) * | 1990-04-23 | 1991-04-16 | Parker Hannifin Corporation | Poppet diaphragm valve |
US5178609A (en) * | 1990-06-19 | 1993-01-12 | Kato Hatsujo Kaisha, Ltd. | Medical liquid injector for continuous transfusion |
US5779696A (en) * | 1990-07-23 | 1998-07-14 | Sunrise Technologies International, Inc. | Method and apparatus for performing corneal reshaping to correct ocular refractive errors |
US5125412A (en) * | 1990-07-23 | 1992-06-30 | Thornton William E | Musculoskeletal activity monitor |
US5176662A (en) * | 1990-08-23 | 1993-01-05 | Minimed Technologies, Ltd. | Subcutaneous injection set with improved cannula mounting arrangement |
US5312337A (en) * | 1990-10-10 | 1994-05-17 | Strato Medical Corporation | Catheter attachment device |
US5213483A (en) * | 1991-06-19 | 1993-05-25 | Strato Medical Corporation | Peristaltic infusion pump with removable cassette and mechanically keyed tube set |
US5308335A (en) * | 1991-06-25 | 1994-05-03 | Medication Delivery Devices | Infusion pump, treatment fluid bag therefor, and method for the use thereof |
US5281202A (en) * | 1991-09-03 | 1994-01-25 | Fresenius Ag | Device for draining a flexible fluid container |
US5385662A (en) * | 1991-11-27 | 1995-01-31 | Electro Chemical Engineering Gmbh | Method of producing oxide ceramic layers on barrier layer-forming metals and articles produced by the method |
US6024539A (en) * | 1992-09-09 | 2000-02-15 | Sims Deltec, Inc. | Systems and methods for communicating with ambulatory medical devices such as drug delivery devices |
US5433710A (en) * | 1993-03-16 | 1995-07-18 | Minimed, Inc. | Medication infusion pump with fluoropolymer valve seat |
US5747350A (en) * | 1993-04-02 | 1998-05-05 | Boehringer Mannheim Gmbh | System for dosing liquids |
US5704520A (en) * | 1993-07-19 | 1998-01-06 | Elan Medical Technologies, Limited | Liquid material dispenser and valve |
US5514096A (en) * | 1993-12-28 | 1996-05-07 | Nissho Corporation | Apparatus and balloon for dosing a liquid medicine |
US5426404A (en) * | 1994-01-28 | 1995-06-20 | Motorola, Inc. | Electrical circuit using low volume multilayer transmission line devices |
US5764159A (en) * | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
US5630710A (en) * | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
US5507288A (en) * | 1994-05-05 | 1996-04-16 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5507288B1 (en) * | 1994-05-05 | 1997-07-08 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5891097A (en) * | 1994-08-12 | 1999-04-06 | Japan Storage Battery Co., Ltd. | Electrochemical fluid delivery device |
US5505709A (en) * | 1994-09-15 | 1996-04-09 | Minimed, Inc., A Delaware Corporation | Mated infusion pump and syringe |
US5637095A (en) * | 1995-01-13 | 1997-06-10 | Minimed Inc. | Medication infusion pump with flexible drive plunger |
US5741228A (en) * | 1995-02-17 | 1998-04-21 | Strato/Infusaid | Implantable access device |
US5647853A (en) * | 1995-03-03 | 1997-07-15 | Minimed Inc. | Rapid response occlusion detector for a medication infusion pump |
US5726751A (en) * | 1995-09-27 | 1998-03-10 | University Of Washington | Silicon microchannel optical flow cytometer |
US5776103A (en) * | 1995-10-11 | 1998-07-07 | Science Incorporated | Fluid delivery device with bolus injection site |
US6206850B1 (en) * | 1996-03-14 | 2001-03-27 | Christine O'Neil | Patient controllable drug delivery system flow regulating means |
US5865806A (en) * | 1996-04-04 | 1999-02-02 | Becton Dickinson And Company | One step catheter advancement automatic needle retraction system |
US6190359B1 (en) * | 1996-04-30 | 2001-02-20 | Medtronic, Inc. | Method and apparatus for drug infusion |
US5785688A (en) * | 1996-05-07 | 1998-07-28 | Ceramatec, Inc. | Fluid delivery apparatus and method |
US5755682A (en) * | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
US5748827A (en) * | 1996-10-23 | 1998-05-05 | University Of Washington | Two-stage kinematic mount |
US5886647A (en) * | 1996-12-20 | 1999-03-23 | Badger; Berkley C. | Apparatus and method for wireless, remote control of multiple devices |
US5858239A (en) * | 1997-02-14 | 1999-01-12 | Aksys, Ltd. | Methods and apparatus for adjustment of blood drip chamber of dialysis machines using touchscreen interface |
US5785681A (en) * | 1997-02-25 | 1998-07-28 | Minimed Inc. | Flow rate controller for a medication infusion pump |
US6061580A (en) * | 1997-02-28 | 2000-05-09 | Randice-Lisa Altschul | Disposable wireless telephone and method for call-out only |
US5875393A (en) * | 1997-02-28 | 1999-02-23 | Randice-Lisa Altschul | Disposable wireless telephone and method |
US5871470A (en) * | 1997-04-18 | 1999-02-16 | Becton Dickinson And Company | Combined spinal epidural needle set |
US6071292A (en) * | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US5858005A (en) * | 1997-08-27 | 1999-01-12 | Science Incorporated | Subcutaneous infusion set with dynamic needle |
US6174300B1 (en) * | 1997-08-27 | 2001-01-16 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
US6527744B1 (en) * | 1997-08-27 | 2003-03-04 | Science Incorporated | Fluid delivery device with light activated energy source |
US6019747A (en) * | 1997-10-21 | 2000-02-01 | I-Flow Corporation | Spring-actuated infusion syringe |
US5897530A (en) * | 1997-12-24 | 1999-04-27 | Baxter International Inc. | Enclosed ambulatory pump |
US6244776B1 (en) * | 1998-01-05 | 2001-06-12 | Lien J. Wiley | Applicators for health and beauty products |
US5919167A (en) * | 1998-04-08 | 1999-07-06 | Ferring Pharmaceuticals | Disposable micropump |
USD405524S (en) * | 1998-05-01 | 1999-02-09 | Elan Medical Technologies Limited | Drug delivery device |
US6585707B2 (en) * | 1998-05-21 | 2003-07-01 | Elan Pharma International Limited | Drug delivery device having improved adhesion and attachment system for drug delivery device |
US5906597A (en) * | 1998-06-09 | 1999-05-25 | I-Flow Corporation | Patient-controlled drug administration device |
US6375638B2 (en) * | 1999-02-12 | 2002-04-23 | Medtronic Minimed, Inc. | Incremental motion pump mechanisms powered by shape memory alloy wire or the like |
US6520936B1 (en) * | 1999-06-08 | 2003-02-18 | Medtronic Minimed, Inc. | Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device |
US6427088B1 (en) * | 2000-01-21 | 2002-07-30 | Medtronic Minimed, Inc. | Ambulatory medical apparatus and method using telemetry system with predefined reception listening periods |
US6706159B2 (en) * | 2000-03-02 | 2004-03-16 | Diabetes Diagnostics | Combined lancet and electrochemical analyte-testing apparatus |
US6740059B2 (en) * | 2000-09-08 | 2004-05-25 | Insulet Corporation | Devices, systems and methods for patient infusion |
US6363609B1 (en) * | 2000-10-20 | 2002-04-02 | Short Block Technologies, Inc. | Method and apparatus for aligning crankshaft sections |
US6572585B2 (en) * | 2001-07-12 | 2003-06-03 | Soo Bong Choi | Remote-controlled portable automatic syringe device |
US6692457B2 (en) * | 2002-03-01 | 2004-02-17 | Insulet Corporation | Flow condition sensor assembly for patient infusion device |
US6723072B2 (en) * | 2002-06-06 | 2004-04-20 | Insulet Corporation | Plunger assembly for patient infusion device |
US7018360B2 (en) * | 2002-07-16 | 2006-03-28 | Insulet Corporation | Flow restriction system and method for patient infusion device |
US20040068224A1 (en) * | 2002-10-02 | 2004-04-08 | Couvillon Lucien Alfred | Electroactive polymer actuated medication infusion pumps |
Cited By (449)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034026B2 (en) | 2001-05-18 | 2011-10-11 | Deka Products Limited Partnership | Infusion pump assembly |
US20090099523A1 (en) * | 2001-05-18 | 2009-04-16 | Grant Kevin L | Infusion pump assembly |
US20070049870A1 (en) * | 2001-05-18 | 2007-03-01 | Deka Products Limited Partnership | Infusion Set for a Fluid Pump |
US9173996B2 (en) | 2001-05-18 | 2015-11-03 | Deka Products Limited Partnership | Infusion set for a fluid pump |
US20050160858A1 (en) * | 2002-07-24 | 2005-07-28 | M 2 Medical A/S | Shape memory alloy actuator |
US20050192561A1 (en) * | 2002-07-24 | 2005-09-01 | M 2 Medical A/S | Infusion pump system, an infusion pump unit and an infusion pump |
US8597244B2 (en) | 2002-07-24 | 2013-12-03 | Asante Solutions, Inc. | Infusion pump system, an infusion pump unit and an infusion pump |
US8961462B2 (en) | 2002-07-24 | 2015-02-24 | Asante Solutions, Inc. | Infusion pump system, an infusion pump unit and an infusion pump |
US9463272B2 (en) | 2002-07-24 | 2016-10-11 | Bigfoot Biomedical, Inc. | Infusion pump system, an infusion pump unit and an infusion pump |
US20100100042A1 (en) * | 2002-10-09 | 2010-04-22 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100114073A1 (en) * | 2002-10-09 | 2010-05-06 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US7922458B2 (en) | 2002-10-09 | 2011-04-12 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US20100241076A1 (en) * | 2002-10-09 | 2010-09-23 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US7951114B2 (en) | 2002-10-09 | 2011-05-31 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US7959606B2 (en) | 2002-10-09 | 2011-06-14 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US7993108B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7993109B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8727745B2 (en) | 2002-10-09 | 2014-05-20 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US8029250B2 (en) | 2002-10-09 | 2011-10-04 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US20100114028A1 (en) * | 2002-10-09 | 2010-05-06 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100114029A1 (en) * | 2002-10-09 | 2010-05-06 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100100041A1 (en) * | 2002-10-09 | 2010-04-22 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US8029245B2 (en) | 2002-10-09 | 2011-10-04 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8047811B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US20100076371A1 (en) * | 2002-10-09 | 2010-03-25 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US20100068072A1 (en) * | 2002-10-09 | 2010-03-18 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US8343093B2 (en) | 2002-10-09 | 2013-01-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US20100063446A1 (en) * | 2002-10-09 | 2010-03-11 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100057038A1 (en) * | 2002-10-09 | 2010-03-04 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100057007A1 (en) * | 2002-10-09 | 2010-03-04 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US20100049131A1 (en) * | 2002-10-09 | 2010-02-25 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US20100049132A1 (en) * | 2002-10-09 | 2010-02-25 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US20100049133A1 (en) * | 2002-10-09 | 2010-02-25 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US8172800B2 (en) | 2002-10-09 | 2012-05-08 | Abbott Diabetes Care, Inc. | Device and method employing shape memory alloy |
US20100008794A1 (en) * | 2002-10-09 | 2010-01-14 | Abbott Diabetes Care, Inc. | Device and Method Employing Shape Memory Alloy |
US8083718B2 (en) | 2002-10-09 | 2011-12-27 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US8079984B2 (en) | 2002-10-09 | 2011-12-20 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US8047812B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8066665B2 (en) | 2002-10-09 | 2011-11-29 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US8079983B2 (en) | 2002-10-09 | 2011-12-20 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US8075527B2 (en) | 2002-10-09 | 2011-12-13 | Abbott Diabetes Care Inc. | Device and method employing shape memory alloy |
US8801655B2 (en) | 2002-11-05 | 2014-08-12 | Asante Solutions, Inc. | Wearable insulin dispensing device, and a combination of such a device and a programming controller |
US9295777B2 (en) | 2002-11-05 | 2016-03-29 | Bigfoot Biomedical, Inc. | Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US7887511B2 (en) | 2002-11-05 | 2011-02-15 | Asante Solutions, Inc. | Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US9308319B2 (en) | 2002-11-05 | 2016-04-12 | Bigfoot Biomedical, Inc. | Wearable insulin dispensing device, and a combination of such a device and a programming controller |
US9757512B2 (en) | 2002-11-05 | 2017-09-12 | Bigfoot Biomedical, Inc. | Wearable insulin dispensing device, and a combination of such a device and a programming controller |
US20050245878A1 (en) * | 2002-11-05 | 2005-11-03 | M 2 Medical A/S | Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US8795233B2 (en) | 2002-11-05 | 2014-08-05 | Asante Solutions, Inc. | Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US20100256565A1 (en) * | 2002-12-23 | 2010-10-07 | Asante Solutions, Inc. | Disposable, Wearable Insulin Dispensing Device, a Combination of Such a Device and a Programming Controller and a Method of Controlling the Operation of Such a Device |
US8469920B2 (en) | 2002-12-23 | 2013-06-25 | Asante Solutions, Inc. | Wearable insulin dispensing device, and a combination of such a device and a programming controller |
US20050251097A1 (en) * | 2002-12-23 | 2005-11-10 | M 2 Medical A/S | Flexible piston rod |
US20050273059A1 (en) * | 2002-12-23 | 2005-12-08 | M 2 Medical A/S | Disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US20070203459A1 (en) * | 2002-12-23 | 2007-08-30 | M2 Medical A/S | Flexible Piston Rod |
US7785288B2 (en) | 2002-12-23 | 2010-08-31 | Asante Solutions, Inc. | Disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US8512246B2 (en) | 2003-04-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US8460243B2 (en) | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US20090048501A1 (en) * | 2003-07-15 | 2009-02-19 | Therasense, Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US8029443B2 (en) | 2003-07-15 | 2011-10-04 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US7722536B2 (en) | 2003-07-15 | 2010-05-25 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US7753879B2 (en) | 2004-01-29 | 2010-07-13 | M2 Group Holdings, Inc. | Disposable medicine dispensing device |
US10963417B2 (en) | 2004-06-04 | 2021-03-30 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11507530B2 (en) | 2004-06-04 | 2022-11-22 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11182332B2 (en) | 2004-06-04 | 2021-11-23 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US12056079B2 (en) | 2004-06-04 | 2024-08-06 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US8358210B2 (en) | 2005-02-08 | 2013-01-22 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8542122B2 (en) | 2005-02-08 | 2013-09-24 | Abbott Diabetes Care Inc. | Glucose measurement device and methods using RFID |
US8390455B2 (en) | 2005-02-08 | 2013-03-05 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8223021B2 (en) | 2005-02-08 | 2012-07-17 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8029459B2 (en) | 2005-03-21 | 2011-10-04 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8029460B2 (en) | 2005-03-21 | 2011-10-04 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8343092B2 (en) | 2005-03-21 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US7713238B2 (en) | 2005-04-06 | 2010-05-11 | M2 Group Holdings, Inc. | Medicine dispensing device |
US8905995B2 (en) | 2005-04-06 | 2014-12-09 | Asante Solutions, Inc. | Medicine dispensing device |
US10105483B2 (en) | 2005-04-06 | 2018-10-23 | Bigfoot Biomedical, Inc. | Medicine dispensing device |
US20070185449A1 (en) * | 2005-04-06 | 2007-08-09 | Morten Mernoe | Actuator with string drive #1 |
US8226608B2 (en) | 2005-04-06 | 2012-07-24 | Asante Solutions, Inc. | Medicine dispensing device |
US8471714B2 (en) | 2005-05-17 | 2013-06-25 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7884729B2 (en) | 2005-05-17 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8089363B2 (en) | 2005-05-17 | 2012-01-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US10206611B2 (en) | 2005-05-17 | 2019-02-19 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US9750440B2 (en) | 2005-05-17 | 2017-09-05 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8653977B2 (en) | 2005-05-17 | 2014-02-18 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US9332944B2 (en) | 2005-05-17 | 2016-05-10 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8112138B2 (en) | 2005-06-03 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US8622966B2 (en) | 2005-09-26 | 2014-01-07 | Asante Solutions, Inc. | Operating an infusion pump system |
US7794428B2 (en) | 2005-09-26 | 2010-09-14 | Asante Solutions, Inc. | Operating an infusion pump system |
US7887512B2 (en) | 2005-09-26 | 2011-02-15 | Asante Solutions, Inc. | Operating an infusion pump system |
US20070156092A1 (en) * | 2005-09-26 | 2007-07-05 | M2 Medical A/S | Operating an Infusion Pump System |
US9314569B2 (en) | 2005-09-26 | 2016-04-19 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US20070167912A1 (en) * | 2005-09-26 | 2007-07-19 | M2 Medical A/S | Operating an Infusion Pump System |
US8282601B2 (en) | 2005-09-26 | 2012-10-09 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US20070167905A1 (en) * | 2005-09-26 | 2007-07-19 | M2 Medical A/S | Operating an Infusion Pump System |
US8747368B2 (en) | 2005-09-26 | 2014-06-10 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8747369B2 (en) | 2005-09-26 | 2014-06-10 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US7922708B2 (en) | 2005-09-26 | 2011-04-12 | Asante Solutions, Inc. | Operating an infusion pump system |
US20070073236A1 (en) * | 2005-09-26 | 2007-03-29 | Morten Mernoe | Dispensing fluid from an infusion pump system |
US8105279B2 (en) | 2005-09-26 | 2012-01-31 | M2 Group Holdings, Inc. | Dispensing fluid from an infusion pump system |
US8696633B2 (en) | 2005-09-26 | 2014-04-15 | Asante Solutions, Inc. | Operating an infusion pump system |
US7938803B2 (en) | 2005-09-26 | 2011-05-10 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US20110112504A1 (en) * | 2005-09-26 | 2011-05-12 | Asante Solutions, Inc. | Operating an Infusion Pump System |
US9517301B2 (en) | 2005-09-26 | 2016-12-13 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US10603431B2 (en) | 2005-09-26 | 2020-03-31 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US9539388B2 (en) | 2005-09-26 | 2017-01-10 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US7794427B2 (en) | 2005-09-26 | 2010-09-14 | Asante Solutions, Inc. | Operating an infusion pump system |
US8409142B2 (en) | 2005-09-26 | 2013-04-02 | Asante Solutions, Inc. | Operating an infusion pump system |
US7981084B2 (en) | 2005-09-26 | 2011-07-19 | Asante Solutions, Inc. | Operating an infusion pump system |
US10307536B2 (en) | 2005-09-26 | 2019-06-04 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US20090198186A1 (en) * | 2005-09-26 | 2009-08-06 | M2 Group Holdings, Inc. | Dispensing Fluid from an Infusion Pump System |
US20110190705A1 (en) * | 2005-09-26 | 2011-08-04 | Asante Solutions, Inc. | Dispensing Fluid from an Infusion Pump System |
US20070073228A1 (en) * | 2005-09-26 | 2007-03-29 | Morten Mernoe | Dispensing fluid from an infusion pump system |
US7789859B2 (en) | 2005-09-26 | 2010-09-07 | Asante Solutions, Inc. | Operating an infusion pump system |
US10064993B2 (en) | 2005-09-26 | 2018-09-04 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US8057436B2 (en) | 2005-09-26 | 2011-11-15 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US7776030B2 (en) | 2005-09-26 | 2010-08-17 | Asante Solutions, Inc. | Operating an infusion pump system |
US9814830B2 (en) | 2005-09-26 | 2017-11-14 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US20070073235A1 (en) * | 2005-09-26 | 2007-03-29 | Estes Mark C | Operating an infusion pump system |
US9872957B2 (en) | 2005-09-26 | 2018-01-23 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US7708717B2 (en) | 2005-09-26 | 2010-05-04 | M2 Group Holdings, Inc. | Operating an infusion pump system |
US20080045904A1 (en) * | 2005-09-26 | 2008-02-21 | M2 Medical A/S | Operating an Infusion Pump System |
US8480623B2 (en) | 2005-09-26 | 2013-07-09 | Asante Solutions, Inc. | Method for dispensing fluid from an infusion pump system |
US20080045931A1 (en) * | 2005-09-26 | 2008-02-21 | M2 Medical A/S | Operating an Infusion Pump System |
US20100274108A1 (en) * | 2005-09-30 | 2010-10-28 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Rechargeable Power in Data Monitoring and Management Systems |
US8638220B2 (en) | 2005-10-31 | 2014-01-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US8430847B2 (en) | 2005-11-08 | 2013-04-30 | Asante Solutions, Inc. | Infusion pump system |
US20100256598A1 (en) * | 2005-11-08 | 2010-10-07 | Asante Solutions, Inc. | Infusion Pump System |
US8192394B2 (en) | 2005-11-08 | 2012-06-05 | Asante Solutions, Inc. | Method and system for manual and autonomous control of an infusion pump |
US9205192B2 (en) | 2005-11-08 | 2015-12-08 | Bigfoot Biomedical, Inc. | Method and system for manual and autonomous control of an infusion pump |
US8475408B2 (en) | 2005-11-08 | 2013-07-02 | Asante Solutions, Inc. | Infusion pump system |
US20070124002A1 (en) * | 2005-11-08 | 2007-05-31 | M2 Medical A/S | Method and System for Manual and Autonomous Control of an Infusion Pump |
US8679060B2 (en) | 2005-11-08 | 2014-03-25 | Asante Solutions, Inc. | Infusion pump system |
US9114209B2 (en) | 2005-11-08 | 2015-08-25 | Bigfoot Biomedical, Inc. | Method and system for manual and autonomous control of an infusion pump |
US20100256563A1 (en) * | 2005-11-08 | 2010-10-07 | Asante Solutions, Inc. | Infusion Pump System |
US8372039B2 (en) | 2005-11-08 | 2013-02-12 | Asante Solutions, Inc. | Infusion pump system |
US20100256564A1 (en) * | 2005-11-08 | 2010-10-07 | Asante Solutions, Inc. | Infusion Pump System |
US20070123819A1 (en) * | 2005-11-08 | 2007-05-31 | M2 Medical A/S | Infusion Pump System |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US8585377B2 (en) | 2006-02-09 | 2013-11-19 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US8545445B2 (en) | 2006-02-09 | 2013-10-01 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11844926B2 (en) | 2006-02-09 | 2023-12-19 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US20070219597A1 (en) * | 2006-02-09 | 2007-09-20 | Dean Kamen | Adhesive and peripheral systems and methods for medical devices |
US11534543B2 (en) | 2006-02-09 | 2022-12-27 | Deka Products Limited Partnership | Method for making patch-sized fluid delivery systems |
US20070219480A1 (en) * | 2006-02-09 | 2007-09-20 | Dean Kamen | Patch-sized fluid delivery systems and methods |
US11408414B2 (en) | 2006-02-09 | 2022-08-09 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11406753B2 (en) | 2006-02-09 | 2022-08-09 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11491273B2 (en) | 2006-02-09 | 2022-11-08 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11391273B2 (en) | 2006-02-09 | 2022-07-19 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US8113244B2 (en) | 2006-02-09 | 2012-02-14 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11339774B2 (en) | 2006-02-09 | 2022-05-24 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US20070228071A1 (en) * | 2006-02-09 | 2007-10-04 | Dean Kamen | Fluid delivery systems and methods |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11786651B2 (en) | 2006-02-09 | 2023-10-17 | Deka Products Limited Partnership | Patch-sized fluid delivery system |
US11738139B2 (en) | 2006-02-09 | 2023-08-29 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11717609B2 (en) | 2006-02-09 | 2023-08-08 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11413391B2 (en) | 2006-02-09 | 2022-08-16 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11559625B2 (en) | 2006-02-09 | 2023-01-24 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11904134B2 (en) | 2006-02-09 | 2024-02-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11712513B2 (en) | 2006-02-09 | 2023-08-01 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US8414522B2 (en) | 2006-02-09 | 2013-04-09 | Deka Products Limited Partnership | Fluid delivery systems and methods |
US11617826B2 (en) | 2006-02-09 | 2023-04-04 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US12036387B2 (en) | 2006-02-09 | 2024-07-16 | Deka Products Limited Partnership | Device to determine volume of fluid dispensed |
US11992650B2 (en) | 2006-02-09 | 2024-05-28 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11690952B2 (en) | 2006-02-09 | 2023-07-04 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US20070213657A1 (en) * | 2006-02-28 | 2007-09-13 | Abbott Diabetes Care, Inc | Smart messages and alerts for an infusion delivery and management system |
US7981034B2 (en) | 2006-02-28 | 2011-07-19 | Abbott Diabetes Care Inc. | Smart messages and alerts for an infusion delivery and management system |
US9782076B2 (en) | 2006-02-28 | 2017-10-10 | Abbott Diabetes Care Inc. | Smart messages and alerts for an infusion delivery and management system |
US10448834B2 (en) | 2006-02-28 | 2019-10-22 | Abbott Diabetes Care Inc. | Smart messages and alerts for an infusion delivery and management system |
US20090171269A1 (en) * | 2006-06-29 | 2009-07-02 | Abbott Diabetes Care, Inc. | Infusion Device and Methods Therefor |
US9119582B2 (en) | 2006-06-30 | 2015-09-01 | Abbott Diabetes Care, Inc. | Integrated analyte sensor and infusion device and methods therefor |
US20080004515A1 (en) * | 2006-06-30 | 2008-01-03 | Abbott Diabetes Care, Inc. | Integrated Analyte Sensor and Infusion Device and Methods Therefor |
US8512244B2 (en) | 2006-06-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated analyte sensor and infusion device and methods therefor |
US20090054750A1 (en) * | 2006-08-07 | 2009-02-26 | Abbott Diabetes Care, Inc. | Method and System for Providing Integrated Analyte Monitoring and Infusion System Therapy Management |
US9697332B2 (en) | 2006-08-07 | 2017-07-04 | Abbott Diabetes Care Inc. | Method and system for providing data management in integrated analyte monitoring and infusion system |
US11967408B2 (en) | 2006-08-07 | 2024-04-23 | Abbott Diabetes Care Inc. | Method and system for providing integrated analyte monitoring and infusion system therapy management |
US20090054745A1 (en) * | 2006-08-07 | 2009-02-26 | Abbott Diabetes Care, Inc. | Method and System for Providing Data Management in Integrated Analyte Monitoring and Infusion System |
US11806110B2 (en) | 2006-08-07 | 2023-11-07 | Abbott Diabetes Care Inc. | Method and system for providing data management in integrated analyte monitoring and infusion system |
US8727982B2 (en) | 2006-08-07 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing integrated analyte monitoring and infusion system therapy management |
US11445910B2 (en) | 2006-08-07 | 2022-09-20 | Abbott Diabetes Care Inc. | Method and system for providing data management in integrated analyte monitoring and infusion system |
US10206629B2 (en) | 2006-08-07 | 2019-02-19 | Abbott Diabetes Care Inc. | Method and system for providing integrated analyte monitoring and infusion system therapy management |
US8206296B2 (en) | 2006-08-07 | 2012-06-26 | Abbott Diabetes Care Inc. | Method and system for providing integrated analyte monitoring and infusion system therapy management |
US8932216B2 (en) | 2006-08-07 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for providing data management in integrated analyte monitoring and infusion system |
US8551046B2 (en) | 2006-09-18 | 2013-10-08 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US20080086086A1 (en) * | 2006-10-10 | 2008-04-10 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US8202267B2 (en) | 2006-10-10 | 2012-06-19 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US11043300B2 (en) | 2006-10-31 | 2021-06-22 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US9064107B2 (en) | 2006-10-31 | 2015-06-23 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US11837358B2 (en) | 2006-10-31 | 2023-12-05 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US10007759B2 (en) | 2006-10-31 | 2018-06-26 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US11508476B2 (en) | 2006-10-31 | 2022-11-22 | Abbott Diabetes Care, Inc. | Infusion devices and methods |
US12073941B2 (en) | 2006-10-31 | 2024-08-27 | Abbott Diabetes Care Inc. | Infusion device and methods |
US20110184389A1 (en) * | 2006-11-01 | 2011-07-28 | Medtronic, Inc. | Osmotic pump apparatus and associated methods |
US20080102119A1 (en) * | 2006-11-01 | 2008-05-01 | Medtronic, Inc. | Osmotic pump apparatus and associated methods |
US20080161754A1 (en) * | 2006-12-29 | 2008-07-03 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US8152765B2 (en) | 2007-05-21 | 2012-04-10 | Asante Solutions, Inc. | Infusion pump system with contamination-resistant features |
US8647302B2 (en) | 2007-05-21 | 2014-02-11 | Asante Solutions, Inc. | Infusion pump system with contamination-resistant features |
US9440021B2 (en) | 2007-05-21 | 2016-09-13 | Bigfoot Biomedical, Inc. | Removable controller for an infusion pump |
US9480793B2 (en) | 2007-05-21 | 2016-11-01 | Bigfoot Biomedical, Inc. | Occlusion sensing for an infusion pump |
US9474854B2 (en) | 2007-05-21 | 2016-10-25 | Bigfoot Biomedical, Inc. | Occlusion sensing for an infusion pump |
US8641673B2 (en) | 2007-05-21 | 2014-02-04 | Asante Solutions, Inc. | Removable controller for an infusion pump |
US7981102B2 (en) | 2007-05-21 | 2011-07-19 | Asante Solutions, Inc. | Removable controller for an infusion pump |
US9717849B2 (en) | 2007-05-21 | 2017-08-01 | Bigfoot Biomedical, Inc. | Occlusion sensing for an infusion pump |
US8454575B2 (en) | 2007-05-21 | 2013-06-04 | Asante Solutions, Inc. | Illumination instrument for an infusion pump |
US8211062B2 (en) | 2007-05-21 | 2012-07-03 | Asante Solutions, Inc. | Illumination instrument for an infusion pump |
US20080294108A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Infusion Pump System with Contamination-Resistant Features |
US20110118662A1 (en) * | 2007-05-21 | 2011-05-19 | Asante Solutions, Inc. | Occlusion Sensing for an Infusion Pump |
US9962482B2 (en) | 2007-05-21 | 2018-05-08 | Bigfoot Biomedical, Inc. | Removable controller for an infusion pump |
US7833196B2 (en) | 2007-05-21 | 2010-11-16 | Asante Solutions, Inc. | Illumination instrument for an infusion pump |
US7892199B2 (en) | 2007-05-21 | 2011-02-22 | Asante Solutions, Inc. | Occlusion sensing for an infusion pump |
US20080294109A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Illumination Instrument for an Infusion Pump |
US8834420B2 (en) | 2007-05-21 | 2014-09-16 | Asante Solutions, Inc. | Illumination instrument for an infusion pump |
US20080294094A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Occlusion Sensing for an Infusion Pump |
US8852141B2 (en) | 2007-05-21 | 2014-10-07 | Asante Solutions, Inc. | Occlusion sensing for an infusion pump |
US20080294142A1 (en) * | 2007-05-21 | 2008-11-27 | M2 Medical Group Holdings, Inc. | Removable Controller for an Infusion Pump |
US20110021992A1 (en) * | 2007-05-21 | 2011-01-27 | Asante Solutions, Inc. | Illumination Instrument for an Infusion Pump |
US7794426B2 (en) | 2007-05-21 | 2010-09-14 | Asante Solutions, Inc. | Infusion pump system with contamination-resistant features |
US8641618B2 (en) | 2007-06-27 | 2014-02-04 | Abbott Diabetes Care Inc. | Method and structure for securing a monitoring device element |
US20090012377A1 (en) * | 2007-06-27 | 2009-01-08 | Abbott Diabetes Care, Inc. | Method and structure for securing a monitoring device element |
US20090002179A1 (en) * | 2007-06-28 | 2009-01-01 | Abbott Diabetes Care, Inc. | Signal converting cradle for medical condition monitoring and management system |
US8085151B2 (en) | 2007-06-28 | 2011-12-27 | Abbott Diabetes Care Inc. | Signal converting cradle for medical condition monitoring and management system |
US8502682B2 (en) | 2007-06-28 | 2013-08-06 | Abbott Diabetes Care Inc. | Signal converting cradle for medical condition monitoring and management system |
US8870853B2 (en) | 2007-09-06 | 2014-10-28 | Asante Solutions, Inc. | Operating a portable medical device |
US8109921B2 (en) | 2007-09-06 | 2012-02-07 | Asante Solutions, Inc. | Operating a portable medical device |
US7717903B2 (en) | 2007-09-06 | 2010-05-18 | M2 Group Holdings, Inc. | Operating an infusion pump system |
US7828528B2 (en) | 2007-09-06 | 2010-11-09 | Asante Solutions, Inc. | Occlusion sensing system for infusion pumps |
US10226572B2 (en) | 2007-09-06 | 2019-03-12 | Bigfoot Biomedical, Inc. | Operating a portable medical device |
US20090067989A1 (en) * | 2007-09-06 | 2009-03-12 | M2 Medical Group Holdings, Inc. | Occlusion Sensing System for Infusion Pumps |
US11000645B2 (en) | 2007-09-06 | 2021-05-11 | Bigfoot Biomedical, Inc. | Operating a portable medical device |
US20090069787A1 (en) * | 2007-09-07 | 2009-03-12 | M2 Medical | Activity Sensing Techniques for an Infusion Pump System |
US8622990B2 (en) | 2007-09-07 | 2014-01-07 | Asante Solutions, Inc. | Activity sensing techniques for an infusion pump system |
US8328754B2 (en) | 2007-09-07 | 2012-12-11 | Asante Solutions, Inc. | Activity sensing techniques for an infusion pump system |
US8551070B2 (en) | 2007-09-07 | 2013-10-08 | Asante Solutions, Inc. | User profile backup system for an infusion pump device |
US8894628B2 (en) | 2007-09-07 | 2014-11-25 | Asante Solutions, Inc. | Activity sensing techniques for an infusion pump system |
US8032226B2 (en) | 2007-09-07 | 2011-10-04 | Asante Solutions, Inc. | User profile backup system for an infusion pump device |
US20110202004A1 (en) * | 2007-09-07 | 2011-08-18 | Asante Solutions, Inc. | Data Storage for an Infusion Pump System |
US8211093B2 (en) | 2007-09-07 | 2012-07-03 | Asante Solutions, Inc. | Data storage for an infusion pump system |
US9254362B2 (en) | 2007-09-07 | 2016-02-09 | Bigfoot Biomedical, Inc. | Activity sensing techniques for an infusion pump system |
US10632257B2 (en) | 2007-09-07 | 2020-04-28 | Bigfoot Biomedical, Inc. | Activity sensing techniques for an infusion pump system |
US20110130716A1 (en) * | 2007-09-07 | 2011-06-02 | Asante Solutions, Inc. | Activity Sensing Techniques for an Infusion Pump System |
US7935105B2 (en) | 2007-09-07 | 2011-05-03 | Asante Solutions, Inc. | Data storage for an infusion pump system |
US11241534B2 (en) | 2007-09-07 | 2022-02-08 | Bigfoot Biomedical, Inc. | Power management techniques for an infusion pump system |
US7935076B2 (en) | 2007-09-07 | 2011-05-03 | Asante Solutions, Inc. | Activity sensing techniques for an infusion pump system |
US9522232B2 (en) | 2007-09-07 | 2016-12-20 | Bigfoot Biomedical, Inc. | Data storage for an infusion pump system |
US8287514B2 (en) | 2007-09-07 | 2012-10-16 | Asante Solutions, Inc. | Power management techniques for an infusion pump system |
US9381302B2 (en) | 2007-09-07 | 2016-07-05 | Bigfoot Biomedical, Inc. | User profile backup system for an infusion pump device |
US10117993B2 (en) | 2007-09-07 | 2018-11-06 | Bigfoot Biomedical, Inc. | Activity sensing techniques for an infusion pump system |
US9415158B2 (en) | 2007-09-07 | 2016-08-16 | Bigfoot Biomedical, Inc. | Power management techniques for an infusion pump system |
US8685002B2 (en) | 2007-09-07 | 2014-04-01 | Asante Solutions, Inc. | Data storage for an infusion pump system |
US7879026B2 (en) | 2007-09-07 | 2011-02-01 | Asante Solutions, Inc. | Controlled adjustment of medicine dispensation from an infusion pump device |
US10226575B2 (en) | 2007-09-07 | 2019-03-12 | Bigfoot Biomedical, Inc. | Power management techniques for an infusion pump system |
US20090069746A1 (en) * | 2007-09-07 | 2009-03-12 | M2 Medical Group Holdings, Inc. | Data Storage for an Infusion Pump System |
US20110040252A1 (en) * | 2007-10-16 | 2011-02-17 | Peter Gravesen | Cannula Insertion Device and Related Methods |
US9005169B2 (en) | 2007-10-16 | 2015-04-14 | Cequr Sa | Cannula insertion device and related methods |
US9968747B2 (en) | 2007-10-16 | 2018-05-15 | Cequr Sa | Cannula insertion device and related methods |
US10376634B2 (en) | 2007-12-12 | 2019-08-13 | Bigfoot Biomedical, Inc. | Portable infusion pump and media player |
US20090156990A1 (en) * | 2007-12-12 | 2009-06-18 | M2 Medical Group Holdings, Inc. | Portable Infusion Pump and Media Player |
US8282626B2 (en) | 2007-12-12 | 2012-10-09 | Asante Solutions, Inc. | Portable infusion pump and media player |
US9314566B2 (en) | 2007-12-12 | 2016-04-19 | Bigfoot Biomedical, Inc. | Portable infusion pump and media player |
US20110082439A1 (en) * | 2007-12-12 | 2011-04-07 | Asante Solutions, Inc. | Portable Infusion Pump and Media Player |
US7875022B2 (en) | 2007-12-12 | 2011-01-25 | Asante Solutions, Inc. | Portable infusion pump and media player |
US12121497B2 (en) | 2007-12-31 | 2024-10-22 | Deka Products Limited Partnership | Method for fluid delivery |
US9526830B2 (en) | 2007-12-31 | 2016-12-27 | Deka Products Limited Partnership | Wearable pump assembly |
US20090299289A1 (en) * | 2007-12-31 | 2009-12-03 | Dean Kamen | Pump assembly with switch |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11894609B2 (en) | 2007-12-31 | 2024-02-06 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11701300B2 (en) | 2007-12-31 | 2023-07-18 | Deka Products Limited Partnership | Method for fluid delivery |
US12128006B2 (en) | 2007-12-31 | 2024-10-29 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US20090281497A1 (en) * | 2007-12-31 | 2009-11-12 | Dean Kamen | Wearable pump assembly |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US8414563B2 (en) | 2007-12-31 | 2013-04-09 | Deka Products Limited Partnership | Pump assembly with switch |
US8491570B2 (en) | 2007-12-31 | 2013-07-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US20100331826A1 (en) * | 2008-01-28 | 2010-12-30 | Medsolve Technologies, Inc. | Apparatus for infusing liquid to a body |
US8708961B2 (en) | 2008-01-28 | 2014-04-29 | Medsolve Technologies, Inc. | Apparatus for infusing liquid to a body |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
US8448824B2 (en) | 2008-09-16 | 2013-05-28 | Tandem Diabetes Care, Inc. | Slideable flow metering devices and related methods |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US8708376B2 (en) | 2008-10-10 | 2014-04-29 | Deka Products Limited Partnership | Medium connector |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
US20100089475A1 (en) * | 2008-10-10 | 2010-04-15 | Tracey Brian D | Medium connector |
US8016789B2 (en) | 2008-10-10 | 2011-09-13 | Deka Products Limited Partnership | Pump assembly with a removable cover assembly |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US20100094222A1 (en) * | 2008-10-10 | 2010-04-15 | Grant Kevin L | Infusion pump assembly |
US20100094215A1 (en) * | 2008-10-10 | 2010-04-15 | Grant Kevin L | Pump assembly with a removable cover assembly |
US8262616B2 (en) | 2008-10-10 | 2012-09-11 | Deka Products Limited Partnership | Infusion pump assembly |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US9782536B2 (en) | 2009-01-12 | 2017-10-10 | Becton, Dickinson And Company | Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment |
US11839739B2 (en) | 2009-01-12 | 2023-12-12 | Becton, Dickinson And Company | Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment |
US11013854B2 (en) | 2009-01-12 | 2021-05-25 | Becton, Dickinson And Company | Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
US8573027B2 (en) | 2009-02-27 | 2013-11-05 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US8467972B2 (en) | 2009-04-28 | 2013-06-18 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US11052190B2 (en) | 2009-07-23 | 2021-07-06 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US8939928B2 (en) | 2009-07-23 | 2015-01-27 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US11951280B2 (en) | 2009-07-23 | 2024-04-09 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US8798934B2 (en) | 2009-07-23 | 2014-08-05 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US9764083B1 (en) | 2009-07-23 | 2017-09-19 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US20110022025A1 (en) * | 2009-07-23 | 2011-01-27 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
US10872102B2 (en) | 2009-07-23 | 2020-12-22 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US11135362B2 (en) | 2009-07-30 | 2021-10-05 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8298184B2 (en) | 2009-07-30 | 2012-10-30 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US12042627B2 (en) | 2009-07-30 | 2024-07-23 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8758323B2 (en) | 2009-07-30 | 2014-06-24 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8926561B2 (en) | 2009-07-30 | 2015-01-06 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9211377B2 (en) | 2009-07-30 | 2015-12-15 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11285263B2 (en) | 2009-07-30 | 2022-03-29 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US10226588B2 (en) | 2009-08-18 | 2019-03-12 | Cequr Sa | Methods for detecting failure states in a medicine delivery device |
US20110046558A1 (en) * | 2009-08-18 | 2011-02-24 | Peter Gravesen | Medicine delivery device having detachable pressure sensing unit |
US9174009B2 (en) | 2009-08-18 | 2015-11-03 | Cequr Sa | Methods for detecting failure states in a medicine delivery device |
US10300196B2 (en) | 2009-08-18 | 2019-05-28 | Cequr Sa | Medicine delivery device having detachable pressure sensing unit |
US8672873B2 (en) | 2009-08-18 | 2014-03-18 | Cequr Sa | Medicine delivery device having detachable pressure sensing unit |
US9039654B2 (en) | 2009-08-18 | 2015-05-26 | Cequr Sa | Medicine delivery device having detachable pressure sensing unit |
US8547239B2 (en) | 2009-08-18 | 2013-10-01 | Cequr Sa | Methods for detecting failure states in a medicine delivery device |
US9022972B2 (en) | 2009-08-18 | 2015-05-05 | Cequr Sa | Medicine delivery device having detachable pressure sensing unit |
US20110043357A1 (en) * | 2009-08-18 | 2011-02-24 | Greg Peatfield | Methods for detecting failure states in a medicine delivery device |
US9694147B2 (en) | 2009-08-18 | 2017-07-04 | Cequr Sa | Methods for detecting failure states in a medicine delivery device |
US20110054285A1 (en) * | 2009-09-02 | 2011-03-03 | Becton, Dickinson And Company | Flexible and Conformal Patch Pump |
US9375529B2 (en) | 2009-09-02 | 2016-06-28 | Becton, Dickinson And Company | Extended use medical device |
US10092691B2 (en) | 2009-09-02 | 2018-10-09 | Becton, Dickinson And Company | Flexible and conformal patch pump |
US11744937B2 (en) | 2009-09-02 | 2023-09-05 | Becton, Dickinson And Company | Flexible and conformal patch pump |
US11052189B2 (en) | 2009-09-02 | 2021-07-06 | Becton, Dickinson And Company | Flexible and conformal patch pump |
US20110054390A1 (en) * | 2009-09-02 | 2011-03-03 | Becton, Dickinson And Company | Extended Use Medical Device |
US11471592B2 (en) | 2009-09-02 | 2022-10-18 | Becton, Dickinson And Company | Extended use medical device |
US10765351B2 (en) | 2009-09-30 | 2020-09-08 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US11259725B2 (en) | 2009-09-30 | 2022-03-01 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9750444B2 (en) | 2009-09-30 | 2017-09-05 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
USD691258S1 (en) | 2010-05-27 | 2013-10-08 | Asante Solutions, Inc. | Infusion pump |
US9211378B2 (en) | 2010-10-22 | 2015-12-15 | Cequr Sa | Methods and systems for dosing a medicament |
US8814831B2 (en) | 2010-11-30 | 2014-08-26 | Becton, Dickinson And Company | Ballistic microneedle infusion device |
US10828418B2 (en) | 2010-11-30 | 2020-11-10 | Becton, Dickinson And Company | Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion |
US8795230B2 (en) | 2010-11-30 | 2014-08-05 | Becton, Dickinson And Company | Adjustable height needle infusion device |
US9480792B2 (en) | 2010-11-30 | 2016-11-01 | Becton, Dickinson And Company | Ballistic microneedle infusion device |
US9950109B2 (en) | 2010-11-30 | 2018-04-24 | Becton, Dickinson And Company | Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion |
US9844635B2 (en) | 2010-11-30 | 2017-12-19 | Becton, Dickinson And Company | Adjustable height needle infusion device |
US9259529B2 (en) | 2011-02-09 | 2016-02-16 | Bigfoot Biomedical, Inc. | Infusion pump systems and methods |
US8852152B2 (en) | 2011-02-09 | 2014-10-07 | Asante Solutions, Inc. | Infusion pump systems and methods |
US11534089B2 (en) | 2011-02-28 | 2022-12-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9132234B2 (en) | 2011-03-16 | 2015-09-15 | Bigfoot Biomedical, Inc. | Infusion pump systems and methods |
US10576204B2 (en) | 2011-03-16 | 2020-03-03 | Bigfoot Biomedical, Inc. | Infusion pump systems and methods |
US9801997B2 (en) | 2011-03-16 | 2017-10-31 | Bigfoot Biomedical, Inc. | Infusion pump systems and methods |
US8454581B2 (en) | 2011-03-16 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump systems and methods |
US8585657B2 (en) | 2011-06-21 | 2013-11-19 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US9610404B2 (en) | 2011-09-07 | 2017-04-04 | Bigfoot Biomedical, Inc. | Method for occlusion detection for an infusion pump system |
US8808230B2 (en) | 2011-09-07 | 2014-08-19 | Asante Solutions, Inc. | Occlusion detection for an infusion pump system |
US10625017B2 (en) | 2012-03-05 | 2020-04-21 | Becton, Dickinson And Company | Wireless communication for on-body medical devices |
US9623173B2 (en) | 2012-03-05 | 2017-04-18 | Becton, Dickinson And Company | Wireless communication for on-body medical devices |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11229741B2 (en) | 2012-03-30 | 2022-01-25 | Insulet Corporation | Fluid delivery device, transcutaneous access tool and fluid drive mechanism for use therewith |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US9545476B2 (en) | 2012-07-19 | 2017-01-17 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US8945044B2 (en) | 2012-07-19 | 2015-02-03 | Asante Solutions, Inc. | Infusion pump system and method |
US8454557B1 (en) | 2012-07-19 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
US8454562B1 (en) | 2012-07-20 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
US9517300B2 (en) | 2012-07-20 | 2016-12-13 | Bigfoot Biomedical, Inc. | Pump system and method |
US11191891B2 (en) | 2012-12-10 | 2021-12-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9427523B2 (en) | 2012-12-10 | 2016-08-30 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10232108B2 (en) | 2012-12-10 | 2019-03-19 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9446186B2 (en) | 2013-03-01 | 2016-09-20 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US10661007B2 (en) | 2013-03-01 | 2020-05-26 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US11260169B2 (en) | 2013-03-14 | 2022-03-01 | Bigfoot Biomedical, Inc. | Infusion pump system and methods |
US9446187B2 (en) | 2013-06-03 | 2016-09-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9956339B2 (en) | 2013-06-03 | 2018-05-01 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9457141B2 (en) | 2013-06-03 | 2016-10-04 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10716895B2 (en) | 2013-06-03 | 2020-07-21 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US12012241B2 (en) | 2013-07-03 | 2024-06-18 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10207047B2 (en) | 2013-07-19 | 2019-02-19 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US11147914B2 (en) | 2013-07-19 | 2021-10-19 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US12064591B2 (en) | 2013-07-19 | 2024-08-20 | Insulet Corporation | Infusion pump system and method |
US11464906B2 (en) | 2013-12-02 | 2022-10-11 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10569015B2 (en) | 2013-12-02 | 2020-02-25 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US11911590B2 (en) | 2013-12-26 | 2024-02-27 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US11793929B2 (en) | 2014-04-18 | 2023-10-24 | Becton, Dickinson And Company | Split piston metering pump |
US10004845B2 (en) | 2014-04-18 | 2018-06-26 | Becton, Dickinson And Company | Split piston metering pump |
US10512719B2 (en) | 2014-04-18 | 2019-12-24 | Becton, Dickinson And Company | Split piston metering pump |
US9629901B2 (en) | 2014-07-01 | 2017-04-25 | Bigfoot Biomedical, Inc. | Glucagon administration system and methods |
US10549037B2 (en) | 2014-07-01 | 2020-02-04 | Bigfoot Biomedical, Inc. | Glucagon administration system and methods |
US9416775B2 (en) | 2014-07-02 | 2016-08-16 | Becton, Dickinson And Company | Internal cam metering pump |
US10994078B2 (en) | 2014-08-06 | 2021-05-04 | Bigfoot Biomedical, Inc. | Infusion pump assembly and method |
US10137246B2 (en) | 2014-08-06 | 2018-11-27 | Bigfoot Biomedical, Inc. | Infusion pump assembly and method |
US12053615B2 (en) | 2014-08-06 | 2024-08-06 | Insulet Corporation | Infusion pump assembly and method |
US9919096B2 (en) | 2014-08-26 | 2018-03-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10661008B2 (en) | 2014-08-26 | 2020-05-26 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US11464899B2 (en) | 2014-08-28 | 2022-10-11 | Becton, Dickinson And Company | Wireless communication for on-body medical devices |
US10603433B2 (en) | 2015-04-29 | 2020-03-31 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US11471598B2 (en) | 2015-04-29 | 2022-10-18 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US9878097B2 (en) | 2015-04-29 | 2018-01-30 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US10080841B2 (en) | 2015-11-18 | 2018-09-25 | President And Fellows Of Harvard College | Systems and methods for monitoring, managing, and treating asthma and anaphylaxis |
US10987468B2 (en) | 2016-01-05 | 2021-04-27 | Bigfoot Biomedical, Inc. | Operating multi-modal medicine delivery systems |
US10449294B1 (en) | 2016-01-05 | 2019-10-22 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
USD809134S1 (en) | 2016-03-10 | 2018-01-30 | Bigfoot Biomedical, Inc. | Infusion pump assembly |
US10342926B2 (en) | 2016-05-26 | 2019-07-09 | Insulet Corporation | Single dose drug delivery device |
US10363374B2 (en) | 2016-05-26 | 2019-07-30 | Insulet Corporation | Multi-dose drug delivery device |
US10363372B2 (en) | 2016-08-12 | 2019-07-30 | Insulet Corporation | Plunger for drug delivery device |
US11497856B2 (en) | 2016-08-14 | 2022-11-15 | Insulet Corporation | Drug delivery device with indicator |
US10561797B2 (en) | 2016-08-14 | 2020-02-18 | Insulet Corporation | Drug delivery device with indicator |
US11439765B2 (en) | 2016-08-14 | 2022-09-13 | Insulet Corporation | Variable fill drug delivery device |
US10441723B2 (en) | 2016-08-14 | 2019-10-15 | Insulet Corporation | Variable fill drug delivery device |
US11957888B2 (en) | 2016-09-27 | 2024-04-16 | Bigfoot Biomedical, Inc. | Personalizing preset meal sizes in insulin delivery system |
US11806514B2 (en) | 2016-09-27 | 2023-11-07 | Bigfoot Biomedical, Inc. | Medicine injection and disease management systems, devices, and methods |
US10426896B2 (en) | 2016-09-27 | 2019-10-01 | Bigfoot Biomedical, Inc. | Medicine injection and disease management systems, devices, and methods |
US11229751B2 (en) | 2016-09-27 | 2022-01-25 | Bigfoot Biomedical, Inc. | Personalizing preset meal sizes in insulin delivery system |
US10751478B2 (en) | 2016-10-07 | 2020-08-25 | Insulet Corporation | Multi-stage delivery system |
US10780217B2 (en) | 2016-11-10 | 2020-09-22 | Insulet Corporation | Ratchet drive for on body delivery system |
US11096624B2 (en) | 2016-12-12 | 2021-08-24 | Bigfoot Biomedical, Inc. | Alarms and alerts for medication delivery devices and systems |
US12076160B2 (en) | 2016-12-12 | 2024-09-03 | Insulet Corporation | Alarms and alerts for medication delivery devices and systems |
USD836769S1 (en) | 2016-12-12 | 2018-12-25 | Bigfoot Biomedical, Inc. | Insulin delivery controller |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US11633541B2 (en) | 2017-01-19 | 2023-04-25 | Insulet Corporation | Cartridge hold-up volume reduction |
US10603440B2 (en) | 2017-01-19 | 2020-03-31 | Insulet Corporation | Cartridge hold-up volume reduction |
US10695485B2 (en) | 2017-03-07 | 2020-06-30 | Insulet Corporation | Very high volume user filled drug delivery device |
USD839294S1 (en) | 2017-06-16 | 2019-01-29 | Bigfoot Biomedical, Inc. | Display screen with graphical user interface for closed-loop medication delivery |
USD852837S1 (en) | 2017-06-16 | 2019-07-02 | Bigfoot Biomedical, Inc. | Display screen with graphical user interface for closed-loop medication delivery |
US11389088B2 (en) | 2017-07-13 | 2022-07-19 | Bigfoot Biomedical, Inc. | Multi-scale display of blood glucose information |
US11280327B2 (en) | 2017-08-03 | 2022-03-22 | Insulet Corporation | Micro piston pump |
US10973978B2 (en) | 2017-08-03 | 2021-04-13 | Insulet Corporation | Fluid flow regulation arrangements for drug delivery devices |
US11786668B2 (en) | 2017-09-25 | 2023-10-17 | Insulet Corporation | Drug delivery devices, systems, and methods with force transfer elements |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US10874803B2 (en) | 2018-05-31 | 2020-12-29 | Insulet Corporation | Drug cartridge with drive system |
US11229736B2 (en) | 2018-06-06 | 2022-01-25 | Insulet Corporation | Linear shuttle pump for drug delivery |
US11446435B2 (en) | 2018-11-28 | 2022-09-20 | Insulet Corporation | Drug delivery shuttle pump system and valve assembly |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11369735B2 (en) | 2019-11-05 | 2022-06-28 | Insulet Corporation | Component positioning of a linear shuttle pump |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
Also Published As
Publication number | Publication date |
---|---|
US7018360B2 (en) | 2006-03-28 |
WO2004006981A2 (en) | 2004-01-22 |
WO2004006981A3 (en) | 2009-08-06 |
US20040015131A1 (en) | 2004-01-22 |
AU2003251600A1 (en) | 2004-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7018360B2 (en) | Flow restriction system and method for patient infusion device | |
US6692457B2 (en) | Flow condition sensor assembly for patient infusion device | |
EP1549382B1 (en) | Transcutaneous access tool for patient infusion device | |
US6830558B2 (en) | Flow condition sensor assembly for patient infusion device | |
US6669669B2 (en) | Laminated patient infusion device | |
US6656159B2 (en) | Dispenser for patient infusion device | |
EP1341569B1 (en) | Transcutaneous delivery means | |
US20040092865A1 (en) | Transcutaneous delivery means | |
AU2010207762A1 (en) | Transcutaneous delivery means | |
AU2002331913A1 (en) | Laminated patient infusion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INSULET CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORONEY, RICHARD MORGAN;GARIBOTTO, JOHN;FLAHERTY, J. CHRISTOPHER;AND OTHERS;REEL/FRAME:016636/0479;SIGNING DATES FROM 20050716 TO 20050718 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: INSULET CORPORATION, MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEERFIELD PRIVATE DESIGN FUND, L.P., DEERFIELD PRIVATE DESIGN INTERNATIONAL, L.P., DEERFIELD PARTNERS, L.P. AND DEERFIELD INTERNATIONAL LIMITED;REEL/FRAME:044592/0728 Effective date: 20120930 |