US20060015097A1 - Helical needle apparatus for creating a virtual electrode used for the ablation of tissue - Google Patents
Helical needle apparatus for creating a virtual electrode used for the ablation of tissue Download PDFInfo
- Publication number
- US20060015097A1 US20060015097A1 US11/146,178 US14617805A US2006015097A1 US 20060015097 A1 US20060015097 A1 US 20060015097A1 US 14617805 A US14617805 A US 14617805A US 2006015097 A1 US2006015097 A1 US 2006015097A1
- Authority
- US
- United States
- Prior art keywords
- helical needle
- helical
- needle
- conductive fluid
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- HRSBIYASWAILIF-UHFFFAOYSA-N CCCC1CC(C)CC1 Chemical compound CCCC1CC(C)CC1 HRSBIYASWAILIF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1435—Spiral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1472—Probes or electrodes therefor for use with liquid electrolyte, e.g. virtual electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
Definitions
- the present invention relates generally to an apparatus for creating a virtual electrode. More particularly, the present invention relates to an apparatus for the creation of a virtual electrode that is useful for the ablation of soft tissue and neoplasms.
- radiofrequency or radiofrequency (RF) current current having a frequency from about 3 kilohertz to about 300 gigahertz, which is generally known as radiofrequency or radiofrequency (RF) current
- RF radiofrequency
- Destruction, that is, killing, of tissue using an RF current is commonly known as radiofrequency ablation.
- radiofrequency ablation is performed as a minimally invasive procedure and is thus known as radiofrequency catheter ablation because the procedure is performed through and with the use of a catheter.
- radiofrequency catheter ablation has been used to ablate cardiac tissue responsible for irregular heart beats or arrythniias.
- a metal electrode is applied to the tissue desired to be affected and a generated electric current is passed through the electrode to the tissue.
- a commonly known example of an instrument having such an operating characteristic is an electrosurgical instrument known as a “bovie” knife.
- This instrument includes a cutting/coagulating blade electrically attached to a current generator. The blade is applied to the tissue of a patient and the current passes through the blade into the tissue and through the patient's body to a metal base electrode or ground plate usually placed underneath and in electrical contact with the patient. The base electrode is in turn electrically connected to the current generator so as to provide a complete circuit.
- the resistance provided by the tissue creates heat.
- a sufficient application of power through the bovie knife to the tissue causes the fluid within the cell to turn to steam, creating a sufficient overpressure so as to burst the cell walls.
- the cells then dry up, desiccate, and carbonize, resulting in localized shrinking and an opening in the tissue.
- the bovie knife can be applied to bleeding vessels to heat and coagulate the blood flowing therefrom and thus stop the bleeding.
- transurethral needle ablation Another procedure using RF ablation is transurethral needle ablation, or TUNA, which is used to create a lesion in the prostate gland for the treatment of benign prostatic hypertrophy (BPH) or the enlargement of the prostate gland.
- TUNA transurethral needle ablation
- a needle having an exposed conductive tip is inserted into the prostate gland and current is applied to the prostate gland via the needle.
- the tissue of the prostate gland heats locally surrounding the needle tip as the current passes from the needle to the base electrode.
- a lesion is created as the tissue heats and the destroyed cells may be reabsorbed by the body, infiltrated with scar tissue, or just become non-functional.
- a typical lesion created with a dry electrode using RF current and a single insertion will normally not exceed one centimeter in diameter.
- This small size often too small to be of much or any therapeutic benefit—stems from the fact that the tissue surrounding the needle electrode tends to desiccate as the temperature of the tissue increases, leading to the creation of a high resistance to the further passage of current from the needle electrode into the tissue, all as previously noted with regard to the formation of coagulum on an electrosurgical scalpel.
- a typical procedure with a dry electrode may involve placing the needle electrode at a first desired location; energizing the electrode to ablate the tissue; continue applying current until the generator measures a high impedance and shuts down; moving the needle to a new location closely adjacent to the first location; and applying current again to the tissue through the needle electrode.
- This cycle of electrode placement, electrode energization, generator shut down, electrode re-emplacement, and electrode re-energization will be continued until a lesion of the desired size has been created. As noted, this increases the length of the procedure for the patient.
- multiple insertions increases the risk of at least one of the placements being in the wrong location and, consequently, the risk that healthy tissue may be undesirably affected while diseased tissue may be left untreated.
- the traditional RF ablation procedure of using a dry ablation therefore includes several patient risk factors that both patient and physician would prefer to reduce or eliminate.
- RF current could be increased if a larger lesion could be created safely with a single positioning of the current-supplying electrode.
- a single positioning would allow the procedure to be carried out more expeditiously and more efficiently, reducing the time involved in the procedure.
- Larger lesions can be created in at least two ways. First, simply continuing to apply current to the patient with sufficiently increasing voltage to overcome the impedance rises will create a larger lesion, though almost always with undesirable results to the patient. Second, a larger lesion can be created if the current density, that is, the applied electrical energy, could be spread more efficiently throughout a larger volume of tissue. Spreading the current density over a larger tissue volume would correspondingly cause a larger volume of tissue to heat in the first instance.
- the tissue would heat more uniformly over a larger volume, which would help to reduce the likelihood of generator shutdown due to high impedance conditions.
- the applied power then, will cause the larger volume of tissue to be ablated safely, efficiently, and quickly.
- a virtual electrode can be created by the introduction of a conductive fluid, such as isotonic or hypertonic saline, into or onto the tissue to be ablated.
- the conductive fluid will facilitate the spread of the current density substantially equally throughout the extent of the flow of the conductive fluid, thus creating an electrode—a virtual electrode—substantially equal in extent to the size of the delivered conductive fluid.
- RF current can then be passed through the virtual electrode into the tissue.
- a virtual electrode can be substantially larger in volume than the needle tip electrode typically used in RF interstitial ablation procedures and thus can create a larger lesion than can a dry, needle tip electrode. That is, the virtual electrode spreads or conducts the RF current density outward from the RF current source—such as a current carrying needle, forceps or other current delivery device—into or onto a larger volume of tissue than is possible with instruments that rely on the use of a dry electrode. Stated otherwise, the creation of the virtual electrode enables the current to flow with reduced resistance or impedance throughout a larger volume of tissue, thus spreading the resistive heating created by the current flow through a larger volume of tissue and thereby creating a larger lesion than could otherwise be created with a dry electrode.
- the RF current source such as a current carrying needle, forceps or other current delivery device
- the surgical apparatus comprises an elongated device forming a helical needle assembly.
- the helical needle assembly includes a helical needle configured to engage bodily tissue.
- the helical needle is hollow for delivering conductive fluid from a fluid source and forms a needle tip.
- an electrode is associated with the helical needle assembly for applying a current to conductive fluid delivered from the helical needle assembly.
- the helical needle assembly is maneuvered into contact with bodily tissue at a desired location.
- Conductive fluid is delivered to the tissue via the hollow helical needle.
- the electrode applies a current to the so-delivered conductive fluid, thereby creating a virtual electrode for ablating the bodily tissue.
- the present invention relates to a surgical system for creating a virtual electrode to ablate bodily tissue.
- the system includes a fluid source, a current source and a surgical instrument.
- the fluid source maintains a supply of conductive fluid.
- the current source is configured to selectively supply a current.
- the surgical instrument includes an elongated device forming a helical needle and an electrode associated with the helical needle.
- the helical needle is configured to engage bodily tissue.
- the helical needle is hollow and is fluidly connected to the fluid source for delivering the conductive fluid.
- the helical needle terminates in a needle tip.
- the electrode is associated with the helical needle and is connected to the current source.
- the helical needle is maneuvered into engagement with a desired location of bodily tissue.
- Conductive fluid is delivered to the bodily tissue via the helical needle.
- the current source is then activated to supply a current to the electrode, in turn applying a current to the conductive fluid delivered from the helical needle.
- Application of the current to the delivered conductive fluid creates a virtual electrode, thereby ablating bodily tissue in contact therewith.
- FIG. 1 is a block diagram of a surgical system for creating a virtual electrode to ablate bodily tissue in accordance with the present invention
- FIG. 2 is an enlarged, side view of a helical needle portion of a surgical instrument used with the system of FIG. 1 ;
- FIG. 3 is a side view of an alternative helical needle in accordance with the present invention.
- FIG. 4 is an enlarged, side view of an alternative helical needle in accordance with the present invention.
- FIG. 5 is an enlarged, side view of an alternative helical needle in accordance with the present invention.
- FIG. 6 is an enlarged, side view of an alternative helical needle in accordance with the present invention.
- FIG. 7 is an enlarged, exploded view of an alternative helical needle assembly in accordance with the present invention.
- FIG. 8 is an enlarged, side view of an alternative helical needle assembly in accordance with the present invention.
- FIG. 9 is an enlarged, side view of an alternative helical needle assembly in accordance with the present invention.
- FIG. 10 is an enlarged, perspective view of an alternative helical needle in accordance with the present invention.
- FIG. 11 is an enlarged, perspective view of an alternative helical needle assembly in accordance with the present invention.
- FIG. 12 is an enlarged, cross-sectional view of an alternative helical needle in accordance with the present invention.
- FIG. 13 is an enlarged, side view of an alternative helical needle in accordance with the present invention.
- FIG. 14 is an enlarged, cross-sectional view of an alternative helical needle in accordance with the present invention.
- FIG. 15 is an enlarged, perspective view of an alternative helical needle assembly in accordance with the present invention.
- FIG. 1 illustrates in block form a surgical system 20 for RF ablation useful with the present invention.
- the surgical system 20 includes a current source of radiofrequency alternating electric current 22 , a fluid source of RF ablating fluid 24 , including but not limited to saline and other conductive solutions, and a surgical instrument 26 for delivering the RF current and the ablation fluid to a tissue site (not shown) for ablation purposes.
- the surgical instrument 26 is connected to the current source 22 and the fluid source 24 .
- the current source 22 and the fluid source 24 may be combined into a single operational structure controlled by an appropriate microprocessor for a controlled delivery of ablating fluid and a controlled application of RF current, both based upon measured parameters such as but not limited to, flow rate, tissue temperature at the ablation site and at areas surrounding the ablation site, impedance, the rate of change of the impedance, the detection of arcing between the surgical instrument and the tissue, the time period during which the ablation procedure has been operating, and additional factors as desired.
- the surgical instrument 26 is shown as being connected to both the current source 22 and the fluid source 24 , the present system is not so limited but could include separate instruments for those purposes.
- a separate needle or similar apparatus could be used to deliver the current and a separate needle or needles could be used to deliver fluid to the target tissue.
- the application of the surgical system 20 illustrated in FIG. 1 is not limited to the use of straight needles or helical needles as surgical instruments but could find use with any type of instrument wherein a conductive solution is delivered to a tissue and an RF current is applied to the tissue through the conductive fluid.
- Such instruments thus would include straight needles, helical needles, forceps, roller balls, or other instruments for the treatment of vascular disorders, and any other instrument.
- the surgical instrument 26 may assume a wide variety of forms.
- the surgical instrument includes an elongated device terminating in a helical needle assembly configured to deliver the conductive fluid as well as to apply a current to the so-delivered fluid.
- a helical needle assembly configured to deliver the conductive fluid as well as to apply a current to the so-delivered fluid.
- FIGS. 2-15 Various embodiments of acceptable helical needle configurations are shown in FIGS. 2-15 .
- FIG. 2 illustrates one embodiment of a helical needle or helical needle assembly 30 .
- the helical needle 30 is preferably hollow, terminating in a needle tip 32 at a distal end 34 thereof.
- the needle tip 32 defines an opening (not shown) for delivering conductive fluid supplied to the helical needle via the fluid source 24 ( FIG. 1 ).
- the helical needle 30 is preferably configured to serve as an electrode for applying a current, via the current source 22 ( FIG. 1 ), to the delivered conductive fluid.
- the helical needle defines a pitch P between adjacent coils 36 that increases in the distal direction. This varying pitch facilitates first the engagement of the needle tip 32 with tissue (not shown) at a target site and its initial threading therein. As the pitch between adjacent coils 36 of the helical needle 30 decreases in the proximal direction, the adjacent coils 36 more tightly engage the tissue, thereby providing a better seal between the tissue and the needle coils 36 .
- This greater sealing ability reduces the likelihood that the conductive fluid, which is heated during the ablation process to a temperature capable of killing cells, will not leak back along the track in the tissue made by the helical needle 30 .
- the conductive solution will tend to stay closely adjacent to the needle tip 32 rather than leak backwards along the needle track and unintentionally and undesirably damage or destroy other healthy tissue.
- Both helical needles 40 and 50 are hollow, terminating in a needle tip 42 , 52 , respectively, and have a variable diameter that changes in the proximal to distal direction.
- an outer diameter of the helical needle 40 increases in the proximal to distal direction, whereas with the helical needle 50 , the outer diameter decreases in the proximal to distal direction. Varying the diameter in this manner may allow for better sealing of the tissue (not shown) in the affected region against the coils comprising the respective helical needle 40 or 50 .
- alternating the diameter in the manner shown increases the loading of the tissue across the various coils unlike a uniformly coiled needle, wherein the tissue loading is uniform across the coils. Varying the diameter will also affect the amount of torque that must be applied by a surgeon to screw the needle tip 42 , 52 into the tissue to be ablated.
- the torque necessary to rotate the needle tip 42 increases because the coils force the engaged tissue into a smaller diameter, thus substantially sealing a resulting needle track against leakage of heated conductive fluid there along.
- the helical needle 50 first engages a relatively small portion of tissue and subsequently forces the larger diameter coils into the same needle track as followed by the initially small diameter needle tip 52 .
- the helical needle 60 is hollow to provide a flow path for conductive fluid, and defines a needle tip 62 through which the conductive fluid exits the helical needle 60 . Additionally, the helical needle 60 has a diameter that first increases in the proximal to distal direction and then decreases to a diameter somewhat similar to the initial coil diameter at the needle tip 62 .
- FIG. 6 Yet another alternative embodiment of a helical needle 70 is shown in FIG. 6 .
- the helical needle 70 has a coil diameter that decreases in the proximal to distal direction for a predefined predetermined distance and then increases to a diameter substantially equal to the original diameter.
- the helical needle 70 is hollow and has a needle tip 72 defining an opening for the outflow of conductive fluid.
- Both of the embodiments 60 and 70 shown in FIGS. 5 and 6 provide for a varying torque and increased sealing ability due to the action of the helical needle 60 and 70 forcing the tissue (not shown) to follow the coils through the tissue as the diameter thereof varies.
- the helical needle assembly 80 comprises a plurality of concentric helical needles 82 , 84 and 86 .
- the use of a plurality of concentrically disposed helical needles 82 , 84 and 86 allows the physician to engage thinner tissues (not shown), such as the atrial wall.
- the concentric helical needles 82 , 84 and 86 are preferably wound in the same direction to facilitate insertion and capture of the tissue.
- Each helical needle 82 , 84 and 86 includes a needle tip 83 , 85 and 87 , respectively.
- the helical needles 82 , 84 and 86 are hollow to provide a fluid path for conductive fluid from the fluid source 24 ( FIG. 1 ) with the fluid exiting through needle tips 83 , 85 and 87 respectively. That is, one or more of the helical needles 82 , 84 or 86 could be used to provide fluid to the tissue to be ablated. Additionally, one or more of the helical needles 82 , 84 or 86 may be used as a suction path for removal of conductive fluid.
- the helical needle assembly 90 comprises a plurality of helical needles, here 92 and 94 , wound parallel to one another.
- each of the helical needles 92 and 94 are preferably hollow, terminating in an open, needle tip 96 and 98 , respectively.
- the use of a parallel assembly would enable the physician performing an ablation procedure to use one of the helical needles 92 or 94 as a fluid path for providing conductive fluid from the fluid source 24 ( FIG. 1 ) to the tissue (not shown) to be ablated and the second helical needle 92 or 94 as a vacuum source for removal of the conductive fluid.
- the use of suction to remove the ablation fluid either during or at the end of the procedure will reduce the likelihood of leakage of the hot conductive fluid backwards along the needle track.
- FIG. 9 Yet another alternative embodiment of a helical needle assembly 100 is shown in FIG. 9 .
- the helical needle assembly 100 is similar to the helical needle assembly 80 ( FIG. 7 ) previously described.
- the helical needle assembly 100 includes outer and inner helical needles 102 and 104 concentrically arranged.
- the concentric helical needles 102 , 104 may be used to deliver fluid at different depths in a tissue (not shown) or one or more flow paths could be used to provide suction and removal of the ablating solution from the tissue during or subsequent to the termination of the application of RF power to the tissue, via the current source 22 ( FIG. 1 ).
- FIG. 9 only two such concentric helical needles 102 , 104 are shown, though multiple coils in excess of two could be used.
- variable pitch shown in FIG. 2 could be combined with the variable diameters shown in FIGS. 3-5 and 8 .
- variable diameter structure shown in FIGS. 3-6 could be combined with the parallel assembly construction shown in FIG. 8 .
- the helical needle assembly 110 is an archimedes type screw comprising a central shaft 112 about which a helical flight 114 is wound.
- the central shaft 112 is preferably hollow for delivering conductive fluid from the fluid source 24 ( FIG. 1 ).
- the helical needle assembly 120 has a substantially straight fluid and current delivery portion 122 mounted substantially centrally of a disc 124 having a plurality of starting threads 126 .
- the starting threads 126 will engage the tissue (not shown), such as a cardiac wall, and will anchor the helical needle assembly 120 thereto.
- the straight needle portion 122 would penetrate the tissue wall to deliver fluid and electric current from the fluid source 24 ( FIG. 1 ) and the current source 22 ( FIG. 1 ), respectively.
- each embodiment described would deliver conductive fluid through a single aperture at the needle tip.
- the present invention is not so limited however.
- the fluid could be delivered to the tissue (not shown) by laser drilling a plurality of holes along the length of the various coiled needle configurations. These laser drilled fluid delivery apertures could be configured as desired in terms of size and well as number and distance from each other along the longitudinal extent of the helical needle.
- FIGS. 12-14 illustrate yet additional fluid delivery methods.
- a helical needle 130 could include openings 132 extending along part of an outer diameter of the helical needle 130 .
- a helical needle 140 is shown in FIG.
- a helical needle 150 is depicted in FIG. 14 as having a coil structure wherein a fluid delivery aperture or slit 152 extends along the inner diameter of the needle coils.
- FIG. 15 illustrates yet another alternative embodiment of a helical needle assembly 160 in accordance with the present invention including a pair of concentric helical needles 162 and 164 .
- the first helical needle 162 is a large diameter needle whose end 166 (shown partially) is used to anchor the instrument in tissue 168 .
- the second helical needle 164 has a smaller diameter than the first helical needle 162 and is disposed substantially coaxially therewith.
- Each of the helical needles 162 and 164 may include a hollow interior to provide a flow path for conductive fluid from the fluid source 24 ( FIG. 1 ) and each could be electrically active, via the current source 22 ( FIG. 1 ), through known appropriate connections.
- Either or both of the helical needles 162 , 164 may be used to deliver conductive fluid and either of the helical needles 162 , 164 could be electrically active.
- the helical needles 162 and 164 could form a bipolar needle wherein the helical needles 162 , 164 have opposing polarities and the current provided by one travels to the other.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/091,969, filed on Jul. 7, 1998.
- The present invention relates generally to an apparatus for creating a virtual electrode. More particularly, the present invention relates to an apparatus for the creation of a virtual electrode that is useful for the ablation of soft tissue and neoplasms.
- The utilization of an electric current to produce an ameliorative effect on a bodily tissue has a long history, reportedly extending back to the ancient Greeks. The effects on bodily tissue from an applied electric current, and thus the dividing line between harmful and curative effects, will vary depending upon the voltage levels, current levels, the length of time the current is applied, and the tissue involved. One such effect resulting from the passage of an electric current through tissue is heat generation.
- Body tissue, like all non-superconducting materials, conducts current with some degree of resistance. This resistance creates localized heating of the tissue through which the current is being conducted. The amount of heat generated will vary with the power P deposited in the tissue, which is a function of the product of the square of the current I and the resistance R of the tissue to the passage of the current through it (P=I2R.).
- As current is applied to tissue, then, heat is generated due to the inherent resistance of the tissue. Deleterious effects in the cells making up the tissue begin to occur at about 42° Celsius. As the temperature of the tissue increases due to heat generated by the tissue's resistance, the tissue will undergo profound changes and eventually, as the temperature becomes high enough, that is, generally greater than 45° C., the cells will die. The zone of cell death is known as a lesion and the procedure followed to create the lesion is commonly called an ablation. As the temperature increases beyond cell death temperature, complete disintegration of the cell walls and cells caused by boiling off of the tissue's water can occur. Cell death temperatures can vary somewhat with the type of tissue to which the power is being applied, but generally will begin to occur within the range of 45° to 60° C., though actual cell death of certain tissue cells may occur at a higher temperature.
- In recent times, electric current has found advantageous use in surgery, with the development of a variety of surgical instruments for cutting tissue or for coagulating blood. Still more recently, the use of alternating electric current to ablate, that is, kill, various tissues has been explored. Typically, current having a frequency from about 3 kilohertz to about 300 gigahertz, which is generally known as radiofrequency or radiofrequency (RF) current, is used for this procedure. Destruction, that is, killing, of tissue using an RF current is commonly known as radiofrequency ablation. Often radiofrequency ablation is performed as a minimally invasive procedure and is thus known as radiofrequency catheter ablation because the procedure is performed through and with the use of a catheter. By way of example, radiofrequency catheter ablation has been used to ablate cardiac tissue responsible for irregular heart beats or arrythniias.
- The prior art applications of current to tissue have typically involved applying the current using a “dry” electrode. That is, a metal electrode is applied to the tissue desired to be affected and a generated electric current is passed through the electrode to the tissue. A commonly known example of an instrument having such an operating characteristic is an electrosurgical instrument known as a “bovie” knife. This instrument includes a cutting/coagulating blade electrically attached to a current generator. The blade is applied to the tissue of a patient and the current passes through the blade into the tissue and through the patient's body to a metal base electrode or ground plate usually placed underneath and in electrical contact with the patient. The base electrode is in turn electrically connected to the current generator so as to provide a complete circuit.
- As the current from the bovie knife passes from the blade into the tissue, the resistance provided by the tissue creates heat. In the cutting mode, a sufficient application of power through the bovie knife to the tissue causes the fluid within the cell to turn to steam, creating a sufficient overpressure so as to burst the cell walls. The cells then dry up, desiccate, and carbonize, resulting in localized shrinking and an opening in the tissue. Alternatively, the bovie knife can be applied to bleeding vessels to heat and coagulate the blood flowing therefrom and thus stop the bleeding.
- As previously noted, another use for electrical instruments in the treatment of the body is in the ablation of tissue. To expand further on the brief description given earlier of the ablation of cardiac tissue, it has long been known that a certain kind of heart tissue known as sino-atrial and atrio-ventricular nodes spontaneously generate an electrical signal that is propagated throughout the heart along conductive pathways to cause it to beat. Occasionally, certain heart tissue will “misfire,” causing the heart to beat irregularly. If the errant electrical pathways can be determined, the tissue pathways can be ablated and the irregular heartbeat remedied. In such a procedure, an electrode is placed via a catheter into contact with the tissue and then current is applied to the tissue via the electrode from a generator of RF current. The applied current will cause the tissue in contact with the electrode to heat. Power will continue to be applied until the tissue reaches a temperature where the heart tissue dies, thereby destroying the errant electrical pathway and the cause of the irregular heartbeat.
- Another procedure using RF ablation is transurethral needle ablation, or TUNA, which is used to create a lesion in the prostate gland for the treatment of benign prostatic hypertrophy (BPH) or the enlargement of the prostate gland. In a TUNA procedure, a needle having an exposed conductive tip is inserted into the prostate gland and current is applied to the prostate gland via the needle. As noted previously, the tissue of the prostate gland heats locally surrounding the needle tip as the current passes from the needle to the base electrode. A lesion is created as the tissue heats and the destroyed cells may be reabsorbed by the body, infiltrated with scar tissue, or just become non-functional.
- While there are advantages and uses for such “dry” electrode instruments, there are also several notable disadvantages. One of these disadvantages is that during a procedure, coagulum-dried blood cells and tissue cells-will form on the electrode engaging the tissue. Coagulum acts as an insulator and effectively functions to prevent current transfer from the blade to the tissue. This coagulum “insulation” can be overcome with more voltage so as to keep the current flowing, but only at the risk of arcing and injuring the patient. Thus, during surgery when the tissue is cut with an electrosurgical scalpel, a build-up of coagulated blood
- A typical lesion created with a dry electrode using RF current and a single insertion will normally not exceed one centimeter in diameter. This small size—often too small to be of much or any therapeutic benefit—stems from the fact that the tissue surrounding the needle electrode tends to desiccate as the temperature of the tissue increases, leading to the creation of a high resistance to the further passage of current from the needle electrode into the tissue, all as previously noted with regard to the formation of coagulum on an electrosurgical scalpel. This high resistance—more properly termed impedance since typically an alternating current is being used—between the needle electrode and the base electrode is commonly measured by the RF current generator. When the measured impedance reaches a pre-determined level, some prior art generators will discontinue current generation. Discontinuance of the ablation procedure under these circumstances is necessary to avoid injury to the patient.
- Thus, a typical procedure with a dry electrode may involve placing the needle electrode at a first desired location; energizing the electrode to ablate the tissue; continue applying current until the generator measures a high impedance and shuts down; moving the needle to a new location closely adjacent to the first location; and applying current again to the tissue through the needle electrode. This cycle of electrode placement, electrode energization, generator shut down, electrode re-emplacement, and electrode re-energization, will be continued until a lesion of the desired size has been created. As noted, this increases the length of the procedure for the patient. Additionally, multiple insertions increases the risk of at least one of the placements being in the wrong location and, consequently, the risk that healthy tissue may be undesirably affected while diseased tissue may be left untreated. The traditional RF ablation procedure of using a dry ablation therefore includes several patient risk factors that both patient and physician would prefer to reduce or eliminate.
- The therapeutic advantages of RF current could be increased if a larger lesion could be created safely with a single positioning of the current-supplying electrode. A single positioning would allow the procedure to be carried out more expeditiously and more efficiently, reducing the time involved in the procedure. Larger lesions can be created in at least two ways. First, simply continuing to apply current to the patient with sufficiently increasing voltage to overcome the impedance rises will create a larger lesion, though almost always with undesirable results to the patient. Second, a larger lesion can be created if the current density, that is, the applied electrical energy, could be spread more efficiently throughout a larger volume of tissue. Spreading the current density over a larger tissue volume would correspondingly cause a larger volume of tissue to heat in the first instance. That is, by spreading the applied power throughout a larger tissue volume, the tissue would heat more uniformly over a larger volume, which would help to reduce the likelihood of generator shutdown due to high impedance conditions. The applied power, then, will cause the larger volume of tissue to be ablated safely, efficiently, and quickly.
- Research conducted under the auspices of the assignee of the present invention has focused on spreading the current density throughout a larger tissue volume through the creation, maintenance, and control of a “virtual electrode” within or adjacent to the tissue to be ablated. A virtual electrode can be created by the introduction of a conductive fluid, such as isotonic or hypertonic saline, into or onto the tissue to be ablated. The conductive fluid will facilitate the spread of the current density substantially equally throughout the extent of the flow of the conductive fluid, thus creating an electrode—a virtual electrode—substantially equal in extent to the size of the delivered conductive fluid. RF current can then be passed through the virtual electrode into the tissue.
- A virtual electrode can be substantially larger in volume than the needle tip electrode typically used in RF interstitial ablation procedures and thus can create a larger lesion than can a dry, needle tip electrode. That is, the virtual electrode spreads or conducts the RF current density outward from the RF current source—such as a current carrying needle, forceps or other current delivery device—into or onto a larger volume of tissue than is possible with instruments that rely on the use of a dry electrode. Stated otherwise, the creation of the virtual electrode enables the current to flow with reduced resistance or impedance throughout a larger volume of tissue, thus spreading the resistive heating created by the current flow through a larger volume of tissue and thereby creating a larger lesion than could otherwise be created with a dry electrode.
- While the efficacy of RF current ablation techniques using a virtual electrode has been demonstrated in several studies, the currently available instruments useful in such procedures lags behind the research into and development of hoped-for useful treatment modalities for the ablation of soft tissue and malignancies.
- It would be desirable to have an apparatus capable of creating a virtual electrode for the controlled application of tissue ablating RF electric current to a tissue of interest so as to produce a lesion of desired size and configuration.
- One aspect of the present invention provides a surgical apparatus for delivering conductive fluid to a target site for subsequent formation of a virtual electrode to ablate bodily tissue at the target site by applying a current to the delivered conductive fluid. The surgical apparatus comprises an elongated device forming a helical needle assembly. The helical needle assembly includes a helical needle configured to engage bodily tissue. The helical needle is hollow for delivering conductive fluid from a fluid source and forms a needle tip. In one preferred embodiment, an electrode is associated with the helical needle assembly for applying a current to conductive fluid delivered from the helical needle assembly. During use, the helical needle assembly is maneuvered into contact with bodily tissue at a desired location. Conductive fluid is delivered to the tissue via the hollow helical needle. The electrode applies a current to the so-delivered conductive fluid, thereby creating a virtual electrode for ablating the bodily tissue.
- Another aspect of the present invention relates to a surgical system for creating a virtual electrode to ablate bodily tissue. The system includes a fluid source, a current source and a surgical instrument. The fluid source maintains a supply of conductive fluid. The current source is configured to selectively supply a current. Finally, the surgical instrument includes an elongated device forming a helical needle and an electrode associated with the helical needle. The helical needle is configured to engage bodily tissue. Further, the helical needle is hollow and is fluidly connected to the fluid source for delivering the conductive fluid. Finally, the helical needle terminates in a needle tip. The electrode is associated with the helical needle and is connected to the current source. With this configuration, during use, the helical needle is maneuvered into engagement with a desired location of bodily tissue. Conductive fluid is delivered to the bodily tissue via the helical needle. The current source is then activated to supply a current to the electrode, in turn applying a current to the conductive fluid delivered from the helical needle. Application of the current to the delivered conductive fluid creates a virtual electrode, thereby ablating bodily tissue in contact therewith.
-
FIG. 1 is a block diagram of a surgical system for creating a virtual electrode to ablate bodily tissue in accordance with the present invention; -
FIG. 2 is an enlarged, side view of a helical needle portion of a surgical instrument used with the system ofFIG. 1 ; -
FIG. 3 is a side view of an alternative helical needle in accordance with the present invention; -
FIG. 4 is an enlarged, side view of an alternative helical needle in accordance with the present invention; -
FIG. 5 is an enlarged, side view of an alternative helical needle in accordance with the present invention; -
FIG. 6 is an enlarged, side view of an alternative helical needle in accordance with the present invention; -
FIG. 7 is an enlarged, exploded view of an alternative helical needle assembly in accordance with the present invention; -
FIG. 8 is an enlarged, side view of an alternative helical needle assembly in accordance with the present invention; -
FIG. 9 is an enlarged, side view of an alternative helical needle assembly in accordance with the present invention; -
FIG. 10 is an enlarged, perspective view of an alternative helical needle in accordance with the present invention; -
FIG. 11 is an enlarged, perspective view of an alternative helical needle assembly in accordance with the present invention; -
FIG. 12 is an enlarged, cross-sectional view of an alternative helical needle in accordance with the present invention; -
FIG. 13 is an enlarged, side view of an alternative helical needle in accordance with the present invention; -
FIG. 14 is an enlarged, cross-sectional view of an alternative helical needle in accordance with the present invention; and -
FIG. 15 is an enlarged, perspective view of an alternative helical needle assembly in accordance with the present invention. -
FIG. 1 illustrates in block form asurgical system 20 for RF ablation useful with the present invention. Thesurgical system 20 includes a current source of radiofrequency alternating electric current 22, a fluid source ofRF ablating fluid 24, including but not limited to saline and other conductive solutions, and asurgical instrument 26 for delivering the RF current and the ablation fluid to a tissue site (not shown) for ablation purposes. In one preferred embodiment, thesurgical instrument 26 is connected to thecurrent source 22 and thefluid source 24. It will be understood that thecurrent source 22 and thefluid source 24 may be combined into a single operational structure controlled by an appropriate microprocessor for a controlled delivery of ablating fluid and a controlled application of RF current, both based upon measured parameters such as but not limited to, flow rate, tissue temperature at the ablation site and at areas surrounding the ablation site, impedance, the rate of change of the impedance, the detection of arcing between the surgical instrument and the tissue, the time period during which the ablation procedure has been operating, and additional factors as desired. - While the
surgical instrument 26 is shown as being connected to both thecurrent source 22 and thefluid source 24, the present system is not so limited but could include separate instruments for those purposes. For example, a separate needle or similar apparatus could be used to deliver the current and a separate needle or needles could be used to deliver fluid to the target tissue. In addition, the application of thesurgical system 20 illustrated inFIG. 1 is not limited to the use of straight needles or helical needles as surgical instruments but could find use with any type of instrument wherein a conductive solution is delivered to a tissue and an RF current is applied to the tissue through the conductive fluid. Such instruments thus would include straight needles, helical needles, forceps, roller balls, or other instruments for the treatment of vascular disorders, and any other instrument. - As described above, the
surgical instrument 26 may assume a wide variety of forms. In accordance with the present invention, however, the surgical instrument includes an elongated device terminating in a helical needle assembly configured to deliver the conductive fluid as well as to apply a current to the so-delivered fluid. Various embodiments of acceptable helical needle configurations are shown inFIGS. 2-15 . For example,FIG. 2 illustrates one embodiment of a helical needle orhelical needle assembly 30. Thehelical needle 30 is preferably hollow, terminating in aneedle tip 32 at adistal end 34 thereof. Theneedle tip 32 defines an opening (not shown) for delivering conductive fluid supplied to the helical needle via the fluid source 24 (FIG. 1 ). Further, as previously described, thehelical needle 30 is preferably configured to serve as an electrode for applying a current, via the current source 22 (FIG. 1 ), to the delivered conductive fluid. With the above in mind, the helical needle defines a pitch P betweenadjacent coils 36 that increases in the distal direction. This varying pitch facilitates first the engagement of theneedle tip 32 with tissue (not shown) at a target site and its initial threading therein. As the pitch betweenadjacent coils 36 of thehelical needle 30 decreases in the proximal direction, theadjacent coils 36 more tightly engage the tissue, thereby providing a better seal between the tissue and the needle coils 36. This greater sealing ability reduces the likelihood that the conductive fluid, which is heated during the ablation process to a temperature capable of killing cells, will not leak back along the track in the tissue made by thehelical needle 30. Thus, the conductive solution will tend to stay closely adjacent to theneedle tip 32 rather than leak backwards along the needle track and unintentionally and undesirably damage or destroy other healthy tissue. - Referring now to
FIGS. 3 and 4 , alternative embodiments of a fluid and RF current deliveryhelical needle helical needles needle tip helical needle 40, an outer diameter of thehelical needle 40 increases in the proximal to distal direction, whereas with thehelical needle 50, the outer diameter decreases in the proximal to distal direction. Varying the diameter in this manner may allow for better sealing of the tissue (not shown) in the affected region against the coils comprising the respectivehelical needle needle tip helical needle 40, as thehelical needle 40 is turned into the tissue, the torque necessary to rotate theneedle tip 42 increases because the coils force the engaged tissue into a smaller diameter, thus substantially sealing a resulting needle track against leakage of heated conductive fluid there along. Similarly, with respect to thehelical needle 50 as shown inFIG. 4 , thehelical needle 50 first engages a relatively small portion of tissue and subsequently forces the larger diameter coils into the same needle track as followed by the initially smalldiameter needle tip 52. - Referring now to
FIG. 5 , an alternate embodiment ofhelical needle 60 useful in an RF ablation procedure is shown. As with previous embodiments, thehelical needle 60 is hollow to provide a flow path for conductive fluid, and defines aneedle tip 62 through which the conductive fluid exits thehelical needle 60. Additionally, thehelical needle 60 has a diameter that first increases in the proximal to distal direction and then decreases to a diameter somewhat similar to the initial coil diameter at theneedle tip 62. - Yet another alternative embodiment of a
helical needle 70 is shown inFIG. 6 . Thehelical needle 70 has a coil diameter that decreases in the proximal to distal direction for a predefined predetermined distance and then increases to a diameter substantially equal to the original diameter. Once again, thehelical needle 70 is hollow and has aneedle tip 72 defining an opening for the outflow of conductive fluid. Both of theembodiments FIGS. 5 and 6 provide for a varying torque and increased sealing ability due to the action of thehelical needle - Yet another alternate embodiment of a
helical needle assembly 80 is shown in exploded view inFIG. 7 . Thehelical needle assembly 80 comprises a plurality of concentrichelical needles helical needles helical needles helical needle needle tip helical needles FIG. 1 ) with the fluid exiting throughneedle tips helical needles helical needles - Yet another alternative embodiment of a
helical needle assembly 90 is depicted inFIG. 8 . In general terms, thehelical needle assembly 90 comprises a plurality of helical needles, here 92 and 94, wound parallel to one another. As with previous embodiments, each of thehelical needles helical needles FIG. 1 ) to the tissue (not shown) to be ablated and the secondhelical needle - Yet another alternative embodiment of a
helical needle assembly 100 is shown inFIG. 9 . Thehelical needle assembly 100 is similar to the helical needle assembly 80 (FIG. 7 ) previously described. Thehelical needle assembly 100 includes outer and innerhelical needles FIG. 7 , the concentrichelical needles FIG. 1 ). As shown inFIG. 9 , only two such concentrichelical needles - It will be understood that the various configurations could be combined in several of the embodiments shown. For example, the variable pitch shown in
FIG. 2 could be combined with the variable diameters shown inFIGS. 3-5 and 8. In addition, the variable diameter structure shown inFIGS. 3-6 could be combined with the parallel assembly construction shown inFIG. 8 . - Referring now to
FIGS. 10 and 11 , alternate embodiments ofhelical needle assemblies FIG. 10 , thehelical needle assembly 110 is an archimedes type screw comprising acentral shaft 112 about which ahelical flight 114 is wound. Thecentral shaft 112 is preferably hollow for delivering conductive fluid from the fluid source 24 (FIG. 1 ). Thehelical needle assembly 120 has a substantially straight fluid andcurrent delivery portion 122 mounted substantially centrally of adisc 124 having a plurality of startingthreads 126. The startingthreads 126 will engage the tissue (not shown), such as a cardiac wall, and will anchor thehelical needle assembly 120 thereto. Though it be understood that thestraight needle portion 122 would penetrate the tissue wall to deliver fluid and electric current from the fluid source 24 (FIG. 1 ) and the current source 22 (FIG. 1 ), respectively. - In the discussion of
FIGS. 2-11 , it has been understood that each embodiment described would deliver conductive fluid through a single aperture at the needle tip. The present invention is not so limited however. Thus, the fluid could be delivered to the tissue (not shown) by laser drilling a plurality of holes along the length of the various coiled needle configurations. These laser drilled fluid delivery apertures could be configured as desired in terms of size and well as number and distance from each other along the longitudinal extent of the helical needle.FIGS. 12-14 illustrate yet additional fluid delivery methods. Thus, as shown atFIG. 12 , ahelical needle 130 could includeopenings 132 extending along part of an outer diameter of thehelical needle 130. Alternatively, ahelical needle 140 is shown inFIG. 13 as including anopen slit 142 extending along an outer diameter thereof. Conversely, ahelical needle 150 is depicted inFIG. 14 as having a coil structure wherein a fluid delivery aperture or slit 152 extends along the inner diameter of the needle coils. -
FIG. 15 illustrates yet another alternative embodiment of ahelical needle assembly 160 in accordance with the present invention including a pair of concentrichelical needles helical needle 162 is a large diameter needle whose end 166 (shown partially) is used to anchor the instrument intissue 168. The secondhelical needle 164 has a smaller diameter than the firsthelical needle 162 and is disposed substantially coaxially therewith. Each of thehelical needles FIG. 1 ) and each could be electrically active, via the current source 22 (FIG. 1 ), through known appropriate connections. Either or both of thehelical needles helical needles helical needles helical needles - Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/014,388 US6911019B2 (en) | 1998-07-07 | 2001-10-22 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/146,178 US20060015097A1 (en) | 1998-07-07 | 2005-06-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/169,275 US7309325B2 (en) | 1998-07-07 | 2005-06-28 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9196998P | 1998-07-07 | 1998-07-07 | |
US09/347,752 US6537248B2 (en) | 1998-07-07 | 1999-07-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US10/014,388 US6911019B2 (en) | 1998-07-07 | 2001-10-22 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/146,178 US20060015097A1 (en) | 1998-07-07 | 2005-06-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/169,275 US7309325B2 (en) | 1998-07-07 | 2005-06-28 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/014,388 Continuation US6911019B2 (en) | 1998-07-07 | 2001-10-22 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060015097A1 true US20060015097A1 (en) | 2006-01-19 |
Family
ID=26784524
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/347,752 Expired - Lifetime US6537248B2 (en) | 1998-07-07 | 1999-07-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US10/014,388 Expired - Lifetime US6911019B2 (en) | 1998-07-07 | 2001-10-22 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/146,178 Abandoned US20060015097A1 (en) | 1998-07-07 | 2005-06-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/169,275 Expired - Lifetime US7309325B2 (en) | 1998-07-07 | 2005-06-28 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/998,743 Expired - Fee Related US7699805B2 (en) | 1998-07-07 | 2007-11-30 | Helical coil apparatus for ablation of tissue |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/347,752 Expired - Lifetime US6537248B2 (en) | 1998-07-07 | 1999-07-06 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US10/014,388 Expired - Lifetime US6911019B2 (en) | 1998-07-07 | 2001-10-22 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/169,275 Expired - Lifetime US7309325B2 (en) | 1998-07-07 | 2005-06-28 | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US11/998,743 Expired - Fee Related US7699805B2 (en) | 1998-07-07 | 2007-11-30 | Helical coil apparatus for ablation of tissue |
Country Status (1)
Country | Link |
---|---|
US (5) | US6537248B2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030114850A1 (en) * | 2000-09-22 | 2003-06-19 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US20040138655A1 (en) * | 2000-03-06 | 2004-07-15 | Tissuelink Medical, Inc. | Fluid delivery system and controller for electrosurgical devices |
US20040267326A1 (en) * | 2002-01-25 | 2004-12-30 | Ocel Jon M | Cardiac mapping instrument with shapeable electrode |
US20060079888A1 (en) * | 1997-07-18 | 2006-04-13 | Mulier Peter M J | Device and method for ablating tissue |
US20060085042A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US20060085039A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US20060106379A1 (en) * | 2000-03-06 | 2006-05-18 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US20070135883A1 (en) * | 2005-12-09 | 2007-06-14 | Boston Scientific Scimed, Inc. | Cardiac Stimulation system |
US20070150009A1 (en) * | 2005-12-22 | 2007-06-28 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US20070203484A1 (en) * | 2006-01-27 | 2007-08-30 | David Kim | Methods of using ablation device and of guiding ablation device into body |
US20070208332A1 (en) * | 1995-02-22 | 2007-09-06 | Mulier Peter M | Pen-type electrosurgical instrument |
US20070239248A1 (en) * | 2006-03-31 | 2007-10-11 | Hastings Roger N | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US20080021505A1 (en) * | 2006-07-21 | 2008-01-24 | Roger Hastings | Electrical stimulation of body tissue using interconnected electrode assemblies |
US20080021532A1 (en) * | 2006-07-21 | 2008-01-24 | Kveen Graig L | Delivery of cardiac stimulation devices |
US20080091194A1 (en) * | 1998-07-07 | 2008-04-17 | Mulier Peter M | Helical coil apparatus for ablation of tissue |
US20080097429A1 (en) * | 2001-12-12 | 2008-04-24 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US20090018599A1 (en) * | 2006-09-13 | 2009-01-15 | Boston Scientific Scimed, Inc. | Cardiac Stimulation Using Leadless Electrode Assemblies |
US20090204170A1 (en) * | 2008-02-07 | 2009-08-13 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US7727232B1 (en) | 2004-02-04 | 2010-06-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and methods |
US7811282B2 (en) | 2000-03-06 | 2010-10-12 | Salient Surgical Technologies, Inc. | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
US7951148B2 (en) | 2001-03-08 | 2011-05-31 | Salient Surgical Technologies, Inc. | Electrosurgical device having a tissue reduction sensor |
US8340780B2 (en) | 2004-10-20 | 2012-12-25 | Scimed Life Systems, Inc. | Leadless cardiac stimulation systems |
US8475455B2 (en) | 2002-10-29 | 2013-07-02 | Medtronic Advanced Energy Llc | Fluid-assisted electrosurgical scissors and methods |
US20140194871A1 (en) * | 2012-04-20 | 2014-07-10 | Olympus Medical Systems Corp. | Surgical device |
US20170071777A1 (en) * | 2001-05-22 | 2017-03-16 | Sanostec Corp | Nasal congestion, obstruction relief, and drug delivery |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
Families Citing this family (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6409722B1 (en) * | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
NL1003024C2 (en) * | 1996-05-03 | 1997-11-06 | Tjong Hauw Sie | Stimulus conduction blocking instrument. |
US6613059B2 (en) * | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6945980B2 (en) * | 1998-06-03 | 2005-09-20 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US6706039B2 (en) * | 1998-07-07 | 2004-03-16 | Medtronic, Inc. | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
US8285393B2 (en) * | 1999-04-16 | 2012-10-09 | Laufer Michael D | Device for shaping infarcted heart tissue and method of using the device |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US7229469B1 (en) * | 1999-10-02 | 2007-06-12 | Quantumcor, Inc. | Methods for treating and repairing mitral valve annulus |
US6926730B1 (en) | 2000-10-10 | 2005-08-09 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US7706882B2 (en) * | 2000-01-19 | 2010-04-27 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US8221402B2 (en) * | 2000-01-19 | 2012-07-17 | Medtronic, Inc. | Method for guiding a medical device |
US6595934B1 (en) * | 2000-01-19 | 2003-07-22 | Medtronic Xomed, Inc. | Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6447443B1 (en) * | 2001-01-13 | 2002-09-10 | Medtronic, Inc. | Method for organ positioning and stabilization |
US6692450B1 (en) * | 2000-01-19 | 2004-02-17 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same |
US6953461B2 (en) * | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US6551332B1 (en) | 2000-03-31 | 2003-04-22 | Coalescent Surgical, Inc. | Multiple bias surgical fastener |
US6514250B1 (en) | 2000-04-27 | 2003-02-04 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
AU2001253654A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
AU2001249874A1 (en) * | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
US6926669B1 (en) | 2000-10-10 | 2005-08-09 | Medtronic, Inc. | Heart wall ablation/mapping catheter and method |
US20040138621A1 (en) * | 2003-01-14 | 2004-07-15 | Jahns Scott E. | Devices and methods for interstitial injection of biologic agents into tissue |
US7740623B2 (en) | 2001-01-13 | 2010-06-22 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
US6663627B2 (en) | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
US6699240B2 (en) * | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US6807968B2 (en) * | 2001-04-26 | 2004-10-26 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US7959626B2 (en) | 2001-04-26 | 2011-06-14 | Medtronic, Inc. | Transmural ablation systems and methods |
US6648883B2 (en) * | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US20030130713A1 (en) * | 2001-05-21 | 2003-07-10 | Stewart Mark T. | Trans-septal catheter with retention mechanism |
EP1435867B1 (en) | 2001-09-05 | 2010-11-17 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and systems |
US7128739B2 (en) | 2001-11-02 | 2006-10-31 | Vivant Medical, Inc. | High-strength microwave antenna assemblies and methods of use |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US6656175B2 (en) * | 2001-12-11 | 2003-12-02 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US20080275439A1 (en) * | 2002-01-25 | 2008-11-06 | David Francischelli | Cardiac ablation and electrical interface system and instrument |
US6827715B2 (en) * | 2002-01-25 | 2004-12-07 | Medtronic, Inc. | System and method of performing an electrosurgical procedure |
US7294143B2 (en) * | 2002-05-16 | 2007-11-13 | Medtronic, Inc. | Device and method for ablation of cardiac tissue |
US7118566B2 (en) * | 2002-05-16 | 2006-10-10 | Medtronic, Inc. | Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue |
US8066724B2 (en) * | 2002-09-12 | 2011-11-29 | Medtronic, Inc. | Anastomosis apparatus and methods |
US7083620B2 (en) * | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US7497857B2 (en) * | 2003-04-29 | 2009-03-03 | Medtronic, Inc. | Endocardial dispersive electrode for use with a monopolar RF ablation pen |
US9655676B2 (en) | 2003-05-16 | 2017-05-23 | Trod Medical | Method of percutaneous localized or focal treatment of prostate lesions using radio frequency |
EP1631209B2 (en) * | 2003-05-16 | 2015-10-07 | Trod Medical | Medical device using a coiled electrode |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
US7156843B2 (en) * | 2003-09-08 | 2007-01-02 | Medtronic, Inc. | Irrigated focal ablation tip |
US20050096550A1 (en) * | 2003-10-31 | 2005-05-05 | Medtronic, Inc. | Techniques for transrectal delivery of a denervating agent to the prostate gland |
US20050096629A1 (en) * | 2003-10-31 | 2005-05-05 | Medtronic, Inc. | Techniques for transurethral delivery of a denervating agent to the prostate gland |
US20050096549A1 (en) * | 2003-10-31 | 2005-05-05 | Medtronic, Inc. | Techniques for transperineal delivery of a denervating agent to the prostate gland |
US7879047B2 (en) * | 2003-12-10 | 2011-02-01 | Medtronic, Inc. | Surgical connection apparatus and methods |
US7771420B2 (en) * | 2004-03-05 | 2010-08-10 | Medelec-Minimeca S.A. | Saline-enhanced catheter for radiofrequency tumor ablation |
US7976539B2 (en) | 2004-03-05 | 2011-07-12 | Hansen Medical, Inc. | System and method for denaturing and fixing collagenous tissue |
US7066935B2 (en) * | 2004-04-30 | 2006-06-27 | Medtronic, Inc. | Ion eluting tuna device |
US8333764B2 (en) * | 2004-05-12 | 2012-12-18 | Medtronic, Inc. | Device and method for determining tissue thickness and creating cardiac ablation lesions |
US20060009756A1 (en) * | 2004-05-14 | 2006-01-12 | Francischelli David E | Method and devices for treating atrial fibrillation by mass ablation |
WO2005120374A1 (en) * | 2004-06-02 | 2005-12-22 | Medtronic, Inc. | Compound bipolar ablation device and method |
EP1750608B1 (en) | 2004-06-02 | 2012-10-03 | Medtronic, Inc. | Ablation device with jaws |
US20100145331A1 (en) * | 2004-06-02 | 2010-06-10 | Chrisitian Steven C | Loop Ablation Apparatus and Method |
EP1750607A2 (en) * | 2004-06-02 | 2007-02-14 | Medtronic, Inc. | Loop ablation apparatus and method |
EP1761188B1 (en) * | 2004-06-02 | 2011-07-20 | Medtronic, Inc. | Clamping ablation tool |
EP1768575B1 (en) * | 2004-06-18 | 2019-01-16 | Medtronic, Inc. | Devices for occlusion of an atrial appendage |
US8926635B2 (en) | 2004-06-18 | 2015-01-06 | Medtronic, Inc. | Methods and devices for occlusion of an atrial appendage |
US8663245B2 (en) | 2004-06-18 | 2014-03-04 | Medtronic, Inc. | Device for occlusion of a left atrial appendage |
US8409219B2 (en) | 2004-06-18 | 2013-04-02 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US8005537B2 (en) * | 2004-07-19 | 2011-08-23 | Hansen Medical, Inc. | Robotically controlled intravascular tissue injection system |
US8911438B2 (en) * | 2004-08-10 | 2014-12-16 | Medtronic, Inc. | Tuna device with integrated saline reservoir |
US7322974B2 (en) * | 2004-08-10 | 2008-01-29 | Medtronic, Inc. | TUNA device with integrated saline reservoir |
WO2006023348A1 (en) * | 2004-08-16 | 2006-03-02 | Zimmer Spine, Inc. | Helical suturing device |
US7261709B2 (en) * | 2004-10-13 | 2007-08-28 | Medtronic, Inc. | Transurethral needle ablation system with automatic needle retraction |
US20060079881A1 (en) * | 2004-10-13 | 2006-04-13 | Christopherson Mark A | Single-use transurethral needle ablation |
US7335197B2 (en) * | 2004-10-13 | 2008-02-26 | Medtronic, Inc. | Transurethral needle ablation system with flexible catheter tip |
US7261710B2 (en) * | 2004-10-13 | 2007-08-28 | Medtronic, Inc. | Transurethral needle ablation system |
US20070156210A1 (en) * | 2005-01-14 | 2007-07-05 | Co-Repair, Inc., A California Corporation | Method for the treatment of heart tissue |
US20070156209A1 (en) * | 2005-01-14 | 2007-07-05 | Co-Repair, Inc. | System for the treatment of heart tissue |
US7455670B2 (en) * | 2005-01-14 | 2008-11-25 | Co-Repair, Inc. | System and method for the treatment of heart tissue |
DE102005013847B4 (en) * | 2005-03-24 | 2009-08-06 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
US7799019B2 (en) | 2005-05-10 | 2010-09-21 | Vivant Medical, Inc. | Reinforced high strength microwave antenna |
US7794458B2 (en) * | 2005-07-22 | 2010-09-14 | Boston Scientific Scimed, Inc. | Bipolar radio frequency ablation device with retractable insulator |
US20070179491A1 (en) * | 2006-01-31 | 2007-08-02 | Medtronic, Inc. | Sensing needle for ablation therapy |
EP2010085A1 (en) * | 2006-03-31 | 2009-01-07 | Breval S.R.L. | Device and method for the thermal ablation of tumors by means of high-frequency electromagnetic energy under overpressure conditions |
WO2007113866A1 (en) | 2006-03-31 | 2007-10-11 | Breval S.R.L. | Device and method for the thermal ablation of tumors by means of high-frequency electromagnetic energy |
ATE440558T1 (en) | 2006-03-31 | 2009-09-15 | Breval S R L | DEVICE FOR THE CONTROLLED HEAT ABLATION OF TUMORS USING ELECTROMAGNETIC HIGH FREQUENCY ENERGY |
EP2007300A4 (en) * | 2006-04-04 | 2013-02-27 | Univ Health Network | A coil electrode apparatus for thermal therapy |
US20070282254A1 (en) * | 2006-05-16 | 2007-12-06 | Mina Chow | Needle devices and methods |
WO2007140331A2 (en) * | 2006-05-25 | 2007-12-06 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
DE102006039696A1 (en) * | 2006-08-21 | 2008-02-28 | Hamou, Jacques, Dr. | Apparatus for resection and / or ablation of organic tissue by means of high frequency current and resectoscope |
US8048069B2 (en) | 2006-09-29 | 2011-11-01 | Medtronic, Inc. | User interface for ablation therapy |
US7655004B2 (en) * | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US7998139B2 (en) | 2007-04-25 | 2011-08-16 | Vivant Medical, Inc. | Cooled helical antenna for microwave ablation |
US8075572B2 (en) * | 2007-04-26 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus |
US8945114B2 (en) * | 2007-04-26 | 2015-02-03 | Medtronic, Inc. | Fluid sensor for ablation therapy |
EP2142070B1 (en) * | 2007-04-27 | 2021-01-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter |
US8100922B2 (en) | 2007-04-27 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Curved needle suturing tool |
US8814856B2 (en) * | 2007-04-30 | 2014-08-26 | Medtronic, Inc. | Extension and retraction mechanism for a hand-held device |
US20080275440A1 (en) * | 2007-05-03 | 2008-11-06 | Medtronic, Inc. | Post-ablation verification of lesion size |
FR2915872B1 (en) * | 2007-05-10 | 2009-07-10 | Ct D Etude Et De Rech Medicale | INSTALLATION FOR THE INJECTION OF WATER VAPOR IN A HUMAN OR ANIMAL BLOOD VESSEL |
US8353901B2 (en) | 2007-05-22 | 2013-01-15 | Vivant Medical, Inc. | Energy delivery conduits for use with electrosurgical devices |
US9186207B2 (en) * | 2007-06-14 | 2015-11-17 | Medtronic, Inc. | Distal viewing window of a medical catheter |
US9023024B2 (en) | 2007-06-20 | 2015-05-05 | Covidien Lp | Reflective power monitoring for microwave applications |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US20090112059A1 (en) | 2007-10-31 | 2009-04-30 | Nobis Rudolph H | Apparatus and methods for closing a gastrotomy |
WO2009070079A1 (en) * | 2007-11-29 | 2009-06-04 | St. Jude Medical Ab | An active fixation helix and a medical implantable lead |
WO2009070074A1 (en) * | 2007-11-29 | 2009-06-04 | St. Jude Medical Ab | Active fixation element |
WO2009086448A1 (en) | 2007-12-28 | 2009-07-09 | Salient Surgical Technologies, Inc. | Fluid-assisted electrosurgical devices, methods and systems |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
CA3161692A1 (en) | 2008-03-31 | 2009-10-08 | Applied Medical Resources Corporation | Electrosurgical system |
EP2303171A2 (en) * | 2008-05-13 | 2011-04-06 | Medtronic, Inc. | Tissue lesion evaluation |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8114072B2 (en) | 2008-05-30 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Electrical ablation device |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8070759B2 (en) | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
US8652150B2 (en) | 2008-05-30 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Multifunction surgical device |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8480689B2 (en) | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8114119B2 (en) | 2008-09-09 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
ES2670724T3 (en) | 2008-11-06 | 2018-05-31 | Nxthera, Inc. | Systems and procedures for the treatment of prostate tissue |
CA2742566A1 (en) | 2008-11-06 | 2010-05-14 | Nxthera, Inc. | Systems and methods for treatment of bph |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US8172772B2 (en) | 2008-12-11 | 2012-05-08 | Ethicon Endo-Surgery, Inc. | Specimen retrieval device |
US8600472B2 (en) * | 2008-12-30 | 2013-12-03 | Biosense Webster (Israel), Ltd. | Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes |
US8475450B2 (en) | 2008-12-30 | 2013-07-02 | Biosense Webster, Inc. | Dual-purpose lasso catheter with irrigation |
US8361066B2 (en) | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
US9254168B2 (en) | 2009-02-02 | 2016-02-09 | Medtronic Advanced Energy Llc | Electro-thermotherapy of tissue using penetrating microelectrode array |
US8632533B2 (en) | 2009-02-23 | 2014-01-21 | Medtronic Advanced Energy Llc | Fluid-assisted electrosurgical device |
US20100249700A1 (en) * | 2009-03-27 | 2010-09-30 | Ethicon Endo-Surgery, Inc. | Surgical instruments for in vivo assembly |
JP5218647B2 (en) * | 2009-04-14 | 2013-06-26 | パナソニック株式会社 | Syringe drive device |
US9833277B2 (en) * | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
EP2475320B1 (en) | 2009-09-08 | 2018-02-21 | Salient Surgical Technologies, Inc. | Cartridge assembly for electrosurgical devices and corresponding electrosurgical unit |
US20110098704A1 (en) | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US8920415B2 (en) | 2009-12-16 | 2014-12-30 | Biosense Webster (Israel) Ltd. | Catheter with helical electrode |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8608735B2 (en) | 2009-12-30 | 2013-12-17 | Biosense Webster (Israel) Ltd. | Catheter with arcuate end section |
WO2011088471A1 (en) * | 2010-01-15 | 2011-07-21 | Bayer Healthcare Llc | Device |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US20110190764A1 (en) * | 2010-01-29 | 2011-08-04 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
WO2011112991A1 (en) | 2010-03-11 | 2011-09-15 | Salient Surgical Technologies, Inc. | Bipolar electrosurgical cutter with position insensitive return electrode contact |
CN105832403B (en) | 2010-03-25 | 2019-06-18 | 恩克斯特拉公司 | System and method for prostate treatment |
US20110295249A1 (en) * | 2010-05-28 | 2011-12-01 | Salient Surgical Technologies, Inc. | Fluid-Assisted Electrosurgical Devices, and Methods of Manufacture Thereof |
US9138289B2 (en) | 2010-06-28 | 2015-09-22 | Medtronic Advanced Energy Llc | Electrode sheath for electrosurgical device |
US8920417B2 (en) | 2010-06-30 | 2014-12-30 | Medtronic Advanced Energy Llc | Electrosurgical devices and methods of use thereof |
US8906012B2 (en) | 2010-06-30 | 2014-12-09 | Medtronic Advanced Energy Llc | Electrosurgical devices with wire electrode |
WO2012036914A1 (en) * | 2010-09-15 | 2012-03-22 | Icecure Medical Ltd. | Cryosurgical instrument for treating large volume of tissue |
WO2012045095A1 (en) | 2010-10-01 | 2012-04-05 | Applied Medical Resources Corporation | Electrosurgical instruments with jaws and/or an electrode and amplifiers for electrosurgery |
US9023040B2 (en) | 2010-10-26 | 2015-05-05 | Medtronic Advanced Energy Llc | Electrosurgical cutting devices |
US20120215212A1 (en) * | 2010-11-17 | 2012-08-23 | Selzer Michael M | Treatment for pulmonary disorders |
US10166390B2 (en) * | 2010-11-30 | 2019-01-01 | Fabian Hermann Urban Fueglister | Helical inserter |
US8465504B2 (en) | 2011-01-25 | 2013-06-18 | Isuturing, Llc | Devices and methods for continuous surgical suturing |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US9775602B2 (en) | 2011-01-25 | 2017-10-03 | Isuturing, Llc | Devices and methods for continuous surgical suturing |
US9943360B2 (en) | 2011-01-30 | 2018-04-17 | University Health Network | Coil electrode for thermal therapy |
US8974401B2 (en) * | 2011-02-24 | 2015-03-10 | Syntervention, Inc. | Helical clip and method of using the same |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9427281B2 (en) | 2011-03-11 | 2016-08-30 | Medtronic Advanced Energy Llc | Bronchoscope-compatible catheter provided with electrosurgical device |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US20120330122A1 (en) * | 2011-06-24 | 2012-12-27 | Sen Ji | Cardiac Lead for Epicardial, Endocardial and Trans-Coronary Sinus Placement |
US9220433B2 (en) | 2011-06-30 | 2015-12-29 | Biosense Webster (Israel), Ltd. | Catheter with variable arcuate distal section |
US9662169B2 (en) | 2011-07-30 | 2017-05-30 | Biosense Webster (Israel) Ltd. | Catheter with flow balancing valve |
CN103917200B (en) | 2011-09-13 | 2016-03-30 | 恩克斯特拉公司 | For the system and method for prostate treatment |
US9750565B2 (en) | 2011-09-30 | 2017-09-05 | Medtronic Advanced Energy Llc | Electrosurgical balloons |
EP2765939B1 (en) | 2011-10-15 | 2018-09-26 | Diros Technology Inc. | Apparatus for precisely controlling the size and shape of radiofrequency ablations |
US8870864B2 (en) | 2011-10-28 | 2014-10-28 | Medtronic Advanced Energy Llc | Single instrument electrosurgery apparatus and its method of use |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
WO2013152119A1 (en) | 2012-04-03 | 2013-10-10 | Nxthera, Inc. | Induction coil vapor generator |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US9226792B2 (en) | 2012-06-12 | 2016-01-05 | Medtronic Advanced Energy Llc | Debridement device and method |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US11234760B2 (en) | 2012-10-05 | 2022-02-01 | Medtronic Advanced Energy Llc | Electrosurgical device for cutting and removing tissue |
US9017352B2 (en) * | 2012-10-12 | 2015-04-28 | Cook Medical Technologies Llc | Helical fibrin removal tool |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
EP2967503A4 (en) | 2013-03-14 | 2017-01-18 | Nxthera, Inc. | Systems and methods for treating prostate cancer |
US10631914B2 (en) | 2013-09-30 | 2020-04-28 | Covidien Lp | Bipolar electrosurgical instrument with movable electrode and related systems and methods |
US20150148795A1 (en) * | 2013-11-26 | 2015-05-28 | Boston Scientific Scimed, Inc. | Radio frequency ablation coil |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
WO2015089190A1 (en) | 2013-12-10 | 2015-06-18 | Nxthera, Inc. | Vapor ablation systems and methods |
US10314647B2 (en) | 2013-12-23 | 2019-06-11 | Medtronic Advanced Energy Llc | Electrosurgical cutting instrument |
US10813686B2 (en) | 2014-02-26 | 2020-10-27 | Medtronic Advanced Energy Llc | Electrosurgical cutting instrument |
KR102709391B1 (en) | 2014-05-16 | 2024-09-24 | 어플라이드 메디컬 리소시스 코포레이션 | Electrosurgical system |
AU2015266619B2 (en) | 2014-05-30 | 2020-02-06 | Applied Medical Resources Corporation | Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator |
US10799283B2 (en) | 2014-07-28 | 2020-10-13 | Boston Scientific Scimed, Inc. | Multiple lead electrode probe for controlled tissue ablation |
US9974599B2 (en) | 2014-08-15 | 2018-05-22 | Medtronic Ps Medical, Inc. | Multipurpose electrosurgical device |
US9839766B2 (en) * | 2014-10-20 | 2017-12-12 | Medtronic Cryocath Lp | Centering coiled guide |
US9956029B2 (en) | 2014-10-31 | 2018-05-01 | Medtronic Advanced Energy Llc | Telescoping device with saline irrigation line |
EP3603557A1 (en) | 2014-12-23 | 2020-02-05 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
USD748259S1 (en) | 2014-12-29 | 2016-01-26 | Applied Medical Resources Corporation | Electrosurgical instrument |
JP6757732B2 (en) | 2015-01-29 | 2020-09-23 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Steam cutting system and method |
US10376302B2 (en) | 2015-02-18 | 2019-08-13 | Medtronic Xomed, Inc. | Rotating electrical connector for RF energy enabled tissue debridement device |
KR20170117440A (en) | 2015-02-18 | 2017-10-23 | 메드트로닉 좀드 인코퍼레이티드 | Tissue ablation devices that can use RF energy |
US10188456B2 (en) | 2015-02-18 | 2019-01-29 | Medtronic Xomed, Inc. | Electrode assembly for RF energy enabled tissue debridement device |
JP6704989B2 (en) | 2015-04-29 | 2020-06-03 | イノブレイティブ デザインズ, インコーポレイテッド | Cavity tissue ablation |
JP6823603B2 (en) | 2015-05-13 | 2021-02-03 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Systems and methods for treating the bladder with condensed vapors |
US11389227B2 (en) | 2015-08-20 | 2022-07-19 | Medtronic Advanced Energy Llc | Electrosurgical device with multivariate control |
US11051875B2 (en) | 2015-08-24 | 2021-07-06 | Medtronic Advanced Energy Llc | Multipurpose electrosurgical device |
WO2017075366A1 (en) | 2015-10-29 | 2017-05-04 | Innoblative Designs, Inc. | Screen sphere tissue ablation devices and methods |
US10716612B2 (en) | 2015-12-18 | 2020-07-21 | Medtronic Advanced Energy Llc | Electrosurgical device with multiple monopolar electrode assembly |
US20170215947A1 (en) | 2016-02-02 | 2017-08-03 | Innoblative Designs, Inc. | Cavitary tissue ablation system |
US10869714B2 (en) | 2016-03-01 | 2020-12-22 | Innoblative Designs, Inc. | Resecting and coagulating tissue |
WO2017192510A2 (en) | 2016-05-02 | 2017-11-09 | Affera, Inc. | Pulsed radiofrequency ablation |
JP2019536509A (en) | 2016-10-17 | 2019-12-19 | イノブレイティブ デザインズ, インコーポレイテッド | Treatment device and method |
US10912602B2 (en) | 2016-11-08 | 2021-02-09 | Innoblative Designs, Inc. | Electrosurgical tissue and vessel sealing device |
EP3558139A4 (en) | 2016-12-21 | 2020-08-12 | Nxthera, Inc. | Vapor ablation systems and methods |
AU2018205314B2 (en) | 2017-01-06 | 2023-06-15 | Boston Scientific Scimed, Inc. | Transperineal vapor ablation systems and methods |
WO2018184012A1 (en) | 2017-03-31 | 2018-10-04 | Capillary Biomedical, Inc. | Helical insertion infusion device |
JP2020530785A (en) | 2017-07-26 | 2020-10-29 | イノブレイティブ デザインズ, インコーポレイテッド | Minimally invasive joint motion assembly with ablation capability |
US12023082B2 (en) | 2017-10-06 | 2024-07-02 | Medtronic Advanced Energy Llc | Hemostatic thermal sealer |
US20200100941A1 (en) * | 2018-08-25 | 2020-04-02 | Thad Anthony Labbe | Ophthalmic surgical instruments for removal of lens materials and methods of use |
AU2019335013A1 (en) | 2018-09-05 | 2021-03-25 | Applied Medical Resources Corporation | Electrosurgical generator control system |
AU2019381617A1 (en) | 2018-11-16 | 2021-05-20 | Applied Medical Resources Corporation | Electrosurgical system |
CN111329579B (en) * | 2018-12-18 | 2022-10-04 | 上海蓝盎医学科技发展有限公司 | Multilayer concentric electrode |
US11547471B2 (en) | 2019-03-27 | 2023-01-10 | Gyrus Acmi, Inc. | Device with loop electrodes for treatment of menorrhagia |
WO2020224972A1 (en) * | 2019-05-07 | 2020-11-12 | Vascomed Gmbh | Mapping and ablation catheter with multiple loop segments |
US10667855B1 (en) | 2019-05-10 | 2020-06-02 | Trod Medical Us, Llc | Dual coil ablation devices |
USD1014762S1 (en) | 2021-06-16 | 2024-02-13 | Affera, Inc. | Catheter tip with electrode panel(s) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911019B2 (en) * | 1998-07-07 | 2005-06-28 | Medtronic, Inc. | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Family Cites Families (341)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3750650A (en) * | 1970-12-15 | 1973-08-07 | Hewlett Packard Gmbh | Double spiral electrode for intra-cavity attachment |
US3823575A (en) | 1971-06-07 | 1974-07-16 | Univ Melbourne | Cryogenic apparatus |
US3736936A (en) | 1971-12-13 | 1973-06-05 | Hughes Aircraft Co | Cryogenic heat transfer device |
GB1438759A (en) | 1972-06-02 | 1976-06-09 | Spembly Ltd | Cryo-surgical apparatus |
US3807403A (en) | 1972-06-14 | 1974-04-30 | Frigitronics Of Conn Inc | Cryosurgical apparatus |
US3886945A (en) | 1972-06-14 | 1975-06-03 | Frigitronics Of Conn Inc | Cryosurgical apparatus |
US3830239A (en) | 1972-09-12 | 1974-08-20 | Frigitronics Of Conn Inc | Cryosurgical device |
US3823718A (en) | 1972-09-15 | 1974-07-16 | T Tromovitch | Portable cryosurgical apparatus |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
US3924628A (en) | 1972-12-01 | 1975-12-09 | William Droegemueller | Cyrogenic bladder for necrosing tissue cells |
NL176833C (en) | 1973-04-26 | 1985-06-17 | Draegerwerk Ag | HEAT-INSULATING FLEXIBLE PIPE. |
US3859986A (en) | 1973-06-20 | 1975-01-14 | Jiro Okada | Surgical device |
US3907339A (en) | 1973-07-23 | 1975-09-23 | Frigitronics Of Conn Inc | Cryogenic delivery line |
US3862627A (en) | 1973-08-16 | 1975-01-28 | Sr Wendel J Hans | Suction electrode |
US4022215A (en) | 1973-12-10 | 1977-05-10 | Benson Jerrel W | Cryosurgical system |
GB1513565A (en) | 1975-04-22 | 1978-06-07 | Spembly Ltd | Cryosurgical instruments |
US4018227A (en) | 1975-10-09 | 1977-04-19 | Cryomedics, Inc. | Cryosurgical instrument |
US4072152A (en) | 1976-02-23 | 1978-02-07 | Linehan John H | Orthopedic cryosurgical apparatus |
GB1534162A (en) | 1976-07-21 | 1978-11-29 | Lloyd J | Cyosurgical probe |
US4061135A (en) | 1976-09-27 | 1977-12-06 | Jerrold Widran | Binocular endoscope |
US4275734A (en) | 1977-08-12 | 1981-06-30 | Valleylab, Inc. | Cryosurgical apparatus and method |
US4321931A (en) * | 1978-04-10 | 1982-03-30 | Hon Edward D | Electrode structure and applicator therefor |
DE2831199C3 (en) | 1978-07-15 | 1981-01-08 | Erbe Elektromedizin Gmbh & Co Kg, 7400 Tuebingen | Cryosurgical device |
US4248224A (en) | 1978-08-01 | 1981-02-03 | Jones James W | Double venous cannula |
CA1129015A (en) | 1980-06-11 | 1982-08-03 | Timofei S. Gudkin | Thermoelectric cryoprobe |
US4355642A (en) * | 1980-11-14 | 1982-10-26 | Physio-Control Corporation | Multipolar electrode for body tissue |
US4377168A (en) | 1981-02-27 | 1983-03-22 | Wallach Surgical Instruments, Inc. | Cryosurgical instrument |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5421819A (en) | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5435805A (en) | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5542915A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US4598698A (en) | 1983-01-20 | 1986-07-08 | Warner-Lambert Technologies, Inc. | Diagnostic device |
US4601290A (en) | 1983-10-11 | 1986-07-22 | Cabot Medical Corporation | Surgical instrument for cutting body tissue from a body area having a restricted space |
US5143073A (en) | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
US4664110A (en) | 1985-03-18 | 1987-05-12 | University Of Southern California | Controlled rate freezing for cryorefractive surgery |
SE8502048D0 (en) | 1985-04-26 | 1985-04-26 | Astra Tech Ab | VACUUM FIXED HALLS FOR MEDICAL USE |
US4917095A (en) | 1985-11-18 | 1990-04-17 | Indianapolis Center For Advanced Research, Inc. | Ultrasound location and therapy method and apparatus for calculi in the body |
US4872346A (en) | 1986-07-18 | 1989-10-10 | Indianapolis Center For Advanced Research | Multiple frequencies from single crystal |
US5231995A (en) | 1986-11-14 | 1993-08-03 | Desai Jawahar M | Method for catheter mapping and ablation |
US5044165A (en) | 1986-12-03 | 1991-09-03 | Board Of Regents, The University Of Texas | Cryo-slammer |
US4779611A (en) | 1987-02-24 | 1988-10-25 | Grooters Ronald K | Disposable surgical scope guide |
US4802475A (en) | 1987-06-22 | 1989-02-07 | Weshahy Ahmed H A G | Methods and apparatus of applying intra-lesional cryotherapy |
US4815470A (en) | 1987-11-13 | 1989-03-28 | Advanced Diagnostic Medical Systems, Inc. | Inflatable sheath for ultrasound probe |
US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5029574A (en) | 1988-04-14 | 1991-07-09 | Okamoto Industries, Inc. | Endoscopic balloon with a protective film thereon |
US5147355A (en) | 1988-09-23 | 1992-09-15 | Brigham And Womens Hospital | Cryoablation catheter and method of performing cryoablation |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
GB2226497B (en) | 1988-12-01 | 1992-07-01 | Spembly Medical Ltd | Cryosurgical probe |
GB8829525D0 (en) | 1988-12-17 | 1989-02-01 | Spembly Medical Ltd | Cryosurgical apparatus |
US4936281A (en) | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US5125928A (en) * | 1989-04-13 | 1992-06-30 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US4946460A (en) | 1989-04-26 | 1990-08-07 | Cryo Instruments, Inc. | Apparatus for cryosurgery |
US4916922A (en) | 1989-05-09 | 1990-04-17 | Mullens Patrick L | Rapid freezing apparatus |
US5516505A (en) | 1989-07-18 | 1996-05-14 | Mcdow; Ronald A. | Method for using cryogenic agents for treating skin lesions |
US5100388A (en) | 1989-09-15 | 1992-03-31 | Interventional Thermodynamics, Inc. | Method and device for thermal ablation of hollow body organs |
GB9004427D0 (en) | 1990-02-28 | 1990-04-25 | Nat Res Dev | Cryogenic cooling apparatus |
US5013312A (en) | 1990-03-19 | 1991-05-07 | Everest Medical Corporation | Bipolar scalpel for harvesting internal mammary artery |
US5080660A (en) | 1990-05-11 | 1992-01-14 | Applied Urology, Inc. | Electrosurgical electrode |
ZA917281B (en) | 1990-09-26 | 1992-08-26 | Cryomedical Sciences Inc | Cryosurgical instrument and system and method of cryosurgery |
US5269291A (en) | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5324255A (en) | 1991-01-11 | 1994-06-28 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5409453A (en) | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5316000A (en) | 1991-03-05 | 1994-05-31 | Technomed International (Societe Anonyme) | Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy |
US5178133A (en) | 1991-03-26 | 1993-01-12 | Pena Louis T | Laparoscopic retractor and sheath |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
US5542928A (en) | 1991-05-17 | 1996-08-06 | Innerdyne, Inc. | Method and device for thermal ablation having improved heat transfer |
WO1992020290A1 (en) | 1991-05-17 | 1992-11-26 | Innerdyne Medical, Inc. | Method and device for thermal ablation |
US5361752A (en) | 1991-05-29 | 1994-11-08 | Origin Medsystems, Inc. | Retraction apparatus and methods for endoscopic surgery |
ATE168545T1 (en) | 1991-05-29 | 1998-08-15 | Origin Medsystems Inc | RETRACTOR DEVICE FOR ENDOSCOPIC SURGERY |
US5370134A (en) | 1991-05-29 | 1994-12-06 | Orgin Medsystems, Inc. | Method and apparatus for body structure manipulation and dissection |
US5232516A (en) | 1991-06-04 | 1993-08-03 | Implemed, Inc. | Thermoelectric device with recuperative heat exchangers |
US5217860A (en) | 1991-07-08 | 1993-06-08 | The American National Red Cross | Method for preserving organs for transplantation by vitrification |
US5735290A (en) * | 1993-02-22 | 1998-04-07 | Heartport, Inc. | Methods and systems for performing thoracoscopic coronary bypass and other procedures |
US5571215A (en) | 1993-02-22 | 1996-11-05 | Heartport, Inc. | Devices and methods for intracardiac procedures |
US5452733A (en) | 1993-02-22 | 1995-09-26 | Stanford Surgical Technologies, Inc. | Methods for performing thoracoscopic coronary artery bypass |
US5520682A (en) | 1991-09-06 | 1996-05-28 | Cryomedical Sciences, Inc. | Cryosurgical instrument with vent means and method using same |
US5254116A (en) | 1991-09-06 | 1993-10-19 | Cryomedical Sciences, Inc. | Cryosurgical instrument with vent holes and method using same |
US5697281A (en) | 1991-10-09 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5697909A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | Methods and apparatus for surgical cutting |
US5217001A (en) | 1991-12-09 | 1993-06-08 | Nakao Naomi L | Endoscope sheath and related method |
US5228923A (en) | 1991-12-13 | 1993-07-20 | Implemed, Inc. | Cylindrical thermoelectric cells |
FR2685872A1 (en) | 1992-01-07 | 1993-07-09 | Edap Int | APPARATUS OF EXTRACORPOREAL ULTRASONIC HYPERTHERMIA WITH VERY HIGH POWER AND ITS OPERATING METHOD. |
US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5683366A (en) * | 1992-01-07 | 1997-11-04 | Arthrocare Corporation | System and method for electrosurgical tissue canalization |
US5400770A (en) | 1992-01-15 | 1995-03-28 | Nakao; Naomi L. | Device utilizable with endoscope and related method |
US5486193A (en) * | 1992-01-22 | 1996-01-23 | C. R. Bard, Inc. | System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder |
US5222501A (en) | 1992-01-31 | 1993-06-29 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
US5555883A (en) * | 1992-02-24 | 1996-09-17 | Avitall; Boaz | Loop electrode array mapping and ablation catheter for cardiac chambers |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
WO1993020878A1 (en) | 1992-04-10 | 1993-10-28 | Cardiorhythm | Shapable handle for steerable electrode catheter |
WO1993020768A1 (en) * | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation |
US5281215A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Cryogenic catheter |
US5423807A (en) | 1992-04-16 | 1995-06-13 | Implemed, Inc. | Cryogenic mapping and ablation catheter |
US5281213A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Catheter for ice mapping and ablation |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5277201A (en) | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5443470A (en) * | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Method and apparatus for endometrial ablation |
US5562720A (en) | 1992-05-01 | 1996-10-08 | Vesta Medical, Inc. | Bipolar/monopolar endometrial ablation device and method |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5330521A (en) * | 1992-06-29 | 1994-07-19 | Cohen Donald M | Low resistance implantable electrical leads |
US5275595A (en) | 1992-07-06 | 1994-01-04 | Dobak Iii John D | Cryosurgical instrument |
WO1994002077A2 (en) * | 1992-07-15 | 1994-02-03 | Angelase, Inc. | Ablation catheter system |
US5435308A (en) | 1992-07-16 | 1995-07-25 | Abbott Laboratories | Multi-purpose multi-parameter cardiac catheter |
GB2269107B (en) | 1992-07-31 | 1996-05-08 | Spembly Medical Ltd | Cryosurgical ablation |
US5720718A (en) | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5630794A (en) | 1992-08-12 | 1997-05-20 | Vidamed, Inc. | Catheter tip and method of manufacturing |
US5667488A (en) | 1992-08-12 | 1997-09-16 | Vidamed, Inc. | Transurethral needle ablation device and method for the treatment of the prostate |
US5556377A (en) | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US5672153A (en) | 1992-08-12 | 1997-09-30 | Vidamed, Inc. | Medical probe device and method |
US5484400A (en) | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5687737A (en) | 1992-10-09 | 1997-11-18 | Washington University | Computerized three-dimensional cardiac mapping with interactive visual displays |
US5322520A (en) | 1992-11-12 | 1994-06-21 | Implemed, Inc. | Iontophoretic structure for medical devices |
US5334193A (en) | 1992-11-13 | 1994-08-02 | American Cardiac Ablation Co., Inc. | Fluid cooled ablation catheter |
US5676693A (en) | 1992-11-13 | 1997-10-14 | Scimed Life Systems, Inc. | Electrophysiology device |
DE4338758C2 (en) | 1992-11-13 | 2001-08-09 | Scimed Life Systems Inc | Catheter assembly |
CA2109980A1 (en) | 1992-12-01 | 1994-06-02 | Mir A. Imran | Steerable catheter with adjustable bend location and/or radius and method |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5469853A (en) | 1992-12-11 | 1995-11-28 | Tetrad Corporation | Bendable ultrasonic probe and sheath for use therewith |
US5558671A (en) | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5324286A (en) | 1993-01-21 | 1994-06-28 | Arthur A. Fowle, Inc. | Entrained cryogenic droplet transfer method and cryosurgical instrument |
US5409483A (en) | 1993-01-22 | 1995-04-25 | Jeffrey H. Reese | Direct visualization surgical probe |
IL104506A (en) | 1993-01-25 | 1997-11-20 | Israel State | Fast changing heating- cooling device and method, particularly for cryogenic and/or surgical use |
US5645082A (en) * | 1993-01-29 | 1997-07-08 | Cardima, Inc. | Intravascular method and system for treating arrhythmia |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US6161543A (en) | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US5403311A (en) | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
US5766153A (en) | 1993-05-10 | 1998-06-16 | Arthrocare Corporation | Methods and apparatus for surgical cutting |
ATE284650T1 (en) | 1993-06-10 | 2005-01-15 | Mir A Imran | URETHRAL DEVICE FOR ABLATION USING HIGH FREQUENCY |
US5630837A (en) | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5571088A (en) | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
US5545200A (en) | 1993-07-20 | 1996-08-13 | Medtronic Cardiorhythm | Steerable electrophysiology catheter |
US5487757A (en) * | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5385148A (en) | 1993-07-30 | 1995-01-31 | The Regents Of The University Of California | Cardiac imaging and ablation catheter |
US5928191A (en) | 1993-07-30 | 1999-07-27 | E.P. Technologies, Inc. | Variable curve electrophysiology catheter |
US5921982A (en) | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
WO1995005212A2 (en) * | 1993-08-11 | 1995-02-23 | Electro-Catheter Corporation | Improved ablation electrode |
US5405376A (en) | 1993-08-27 | 1995-04-11 | Medtronic, Inc. | Method and apparatus for ablation |
US5431649A (en) * | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5807395A (en) * | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5396887A (en) | 1993-09-23 | 1995-03-14 | Cardiac Pathways Corporation | Apparatus and method for detecting contact pressure |
US5607462A (en) * | 1993-09-24 | 1997-03-04 | Cardiac Pathways Corporation | Catheter assembly, catheter and multi-catheter introducer for use therewith |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5400783A (en) | 1993-10-12 | 1995-03-28 | Cardiac Pathways Corporation | Endocardial mapping apparatus with rotatable arm and method |
US5673695A (en) | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5582609A (en) | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
WO1995010225A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Multiple electrode element for mapping and ablating |
WO1995010322A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Creating complex lesion patterns in body tissue |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5545193A (en) * | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5497774A (en) * | 1993-11-03 | 1996-03-12 | Daig Corporation | Guiding introducer for left atrium |
US5722400A (en) * | 1995-02-16 | 1998-03-03 | Daig Corporation | Guiding introducers for use in the treatment of left ventricular tachycardia |
US5575766A (en) | 1993-11-03 | 1996-11-19 | Daig Corporation | Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers |
US5427119A (en) | 1993-11-03 | 1995-06-27 | Daig Corporation | Guiding introducer for right atrium |
US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5487385A (en) | 1993-12-03 | 1996-01-30 | Avitall; Boaz | Atrial mapping and ablation catheter system |
US5730127A (en) | 1993-12-03 | 1998-03-24 | Avitall; Boaz | Mapping and ablation catheter system |
US5921924A (en) | 1993-12-03 | 1999-07-13 | Avitall; Boaz | Mapping and ablation catheter system utilizing multiple control elements |
US5462521A (en) | 1993-12-21 | 1995-10-31 | Angeion Corporation | Fluid cooled and perfused tip for a catheter |
US5840030A (en) | 1993-12-22 | 1998-11-24 | Sulzer Osypka Gmbh | Ultrasonic marked cardiac ablation catheter |
US5462545A (en) | 1994-01-31 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Catheter electrodes |
GB2287375B (en) | 1994-03-11 | 1998-04-15 | Intravascular Res Ltd | Ultrasonic transducer array and method of manufacturing the same |
US5478309A (en) | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
US5560362A (en) | 1994-06-13 | 1996-10-01 | Acuson Corporation | Active thermal control of ultrasound transducers |
US5617854A (en) * | 1994-06-22 | 1997-04-08 | Munsif; Anand | Shaped catheter device and method |
US5681278A (en) | 1994-06-23 | 1997-10-28 | Cormedics Corp. | Coronary vasculature treatment method |
US5505730A (en) * | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
US5681308A (en) | 1994-06-24 | 1997-10-28 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
US5575788A (en) | 1994-06-24 | 1996-11-19 | Stuart D. Edwards | Thin layer ablation apparatus |
US5452582A (en) | 1994-07-06 | 1995-09-26 | Apd Cryogenics, Inc. | Cryo-probe |
US5680860A (en) | 1994-07-07 | 1997-10-28 | Cardiac Pathways Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
US5690611A (en) | 1994-07-08 | 1997-11-25 | Daig Corporation | Process for the treatment of atrial arrhythima using a catheter guided by shaped giding introducers |
US5545195A (en) | 1994-08-01 | 1996-08-13 | Boston Scientific Corporation | Interstitial heating of tissue |
US5810802A (en) | 1994-08-08 | 1998-09-22 | E.P. Technologies, Inc. | Systems and methods for controlling tissue ablation using multiple temperature sensing elements |
US5609151A (en) | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US5876398A (en) | 1994-09-08 | 1999-03-02 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5545171A (en) | 1994-09-22 | 1996-08-13 | Vidamed, Inc. | Anastomosis catheter |
US5558673A (en) | 1994-09-30 | 1996-09-24 | Vidamed, Inc. | Medical probe device and method having a flexible resilient tape stylet |
US6152920A (en) | 1997-10-10 | 2000-11-28 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US6464700B1 (en) | 1994-10-07 | 2002-10-15 | Scimed Life Systems, Inc. | Loop structures for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US5885278A (en) * | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
US5836947A (en) | 1994-10-07 | 1998-11-17 | Ep Technologies, Inc. | Flexible structures having movable splines for supporting electrode elements |
US5722402A (en) * | 1994-10-11 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
US5573532A (en) | 1995-01-13 | 1996-11-12 | Cryomedical Sciences, Inc. | Cryogenic surgical instrument and method of manufacturing the same |
US5595183A (en) * | 1995-02-17 | 1997-01-21 | Ep Technologies, Inc. | Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes |
US5897553A (en) * | 1995-11-02 | 1999-04-27 | Medtronic, Inc. | Ball point fluid-assisted electrocautery device |
US6409722B1 (en) * | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6063081A (en) | 1995-02-22 | 2000-05-16 | Medtronic, Inc. | Fluid-assisted electrocautery device |
US5676662A (en) | 1995-03-17 | 1997-10-14 | Daig Corporation | Ablation catheter |
US5688267A (en) | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
WO1996034646A1 (en) | 1995-05-01 | 1996-11-07 | Medtronic Cardiorhythm | Dual curve ablation catheter and method |
US5735280A (en) * | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
EP0957792A4 (en) | 1995-05-02 | 2000-09-20 | Heart Rhythm Tech Inc | System for controlling the energy delivered to a patient for ablation |
US5827216A (en) | 1995-06-07 | 1998-10-27 | Cormedics Corp. | Method and apparatus for accessing the pericardial space |
US5718241A (en) * | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
US6022346A (en) | 1995-06-07 | 2000-02-08 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods using self-heated electrodes |
US6293943B1 (en) | 1995-06-07 | 2001-09-25 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
US6113592A (en) | 1995-06-09 | 2000-09-05 | Engineering & Research Associates, Inc. | Apparatus and method for controlling ablation depth |
US5697925A (en) | 1995-06-09 | 1997-12-16 | Engineering & Research Associates, Inc. | Apparatus and method for thermal ablation |
US6607529B1 (en) | 1995-06-19 | 2003-08-19 | Medtronic Vidamed, Inc. | Electrosurgical device |
US5849011A (en) | 1995-06-19 | 1998-12-15 | Vidamed, Inc. | Medical device with trigger actuation assembly |
US5678550A (en) | 1995-08-11 | 1997-10-21 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Apparatus and method for in situ detection of areas of cardiac electrical activity |
US5653692A (en) | 1995-09-07 | 1997-08-05 | Innerdyne Medical, Inc. | Method and system for direct heating of fluid solution in a hollow body organ |
US5836311A (en) | 1995-09-20 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for temporarily immobilizing a local area of tissue |
US5590657A (en) * | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
US5716389A (en) * | 1995-11-13 | 1998-02-10 | Walinsky; Paul | Cardiac ablation catheter arrangement with movable guidewire |
US5707355A (en) | 1995-11-15 | 1998-01-13 | Zimmon Science Corporation | Apparatus and method for the treatment of esophageal varices and mucosal neoplasms |
US5733280A (en) * | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5906606A (en) | 1995-12-04 | 1999-05-25 | Target Therapuetics, Inc. | Braided body balloon catheter |
US5671747A (en) | 1996-01-24 | 1997-09-30 | Hewlett-Packard Company | Ultrasound probe having interchangeable accessories |
US5904711A (en) | 1996-02-08 | 1999-05-18 | Heartport, Inc. | Expandable thoracoscopic defibrillation catheter system and method |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US5895417A (en) | 1996-03-06 | 1999-04-20 | Cardiac Pathways Corporation | Deflectable loop design for a linear lesion ablation apparatus |
US5755760A (en) | 1996-03-11 | 1998-05-26 | Medtronic, Inc. | Deflectable catheter |
US5676692A (en) | 1996-03-28 | 1997-10-14 | Indianapolis Center For Advanced Research, Inc. | Focussed ultrasound tissue treatment method |
US6302880B1 (en) | 1996-04-08 | 2001-10-16 | Cardima, Inc. | Linear ablation assembly |
US6449507B1 (en) * | 1996-04-30 | 2002-09-10 | Medtronic, Inc. | Method and system for nerve stimulation prior to and during a medical procedure |
US7225019B2 (en) | 1996-04-30 | 2007-05-29 | Medtronic, Inc. | Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure |
NL1003024C2 (en) * | 1996-05-03 | 1997-11-06 | Tjong Hauw Sie | Stimulus conduction blocking instrument. |
US5800428A (en) | 1996-05-16 | 1998-09-01 | Angeion Corporation | Linear catheter ablation system |
US5730074A (en) * | 1996-06-07 | 1998-03-24 | Farmer Fabrications, Inc. | Liquid dispenser for seed planter |
US5800486A (en) | 1996-06-17 | 1998-09-01 | Urologix, Inc. | Device for transurethral thermal therapy with cooling balloon |
US5882346A (en) * | 1996-07-15 | 1999-03-16 | Cardiac Pathways Corporation | Shapable catheter using exchangeable core and method of use |
US5720775A (en) * | 1996-07-31 | 1998-02-24 | Cordis Corporation | Percutaneous atrial line ablation catheter |
US5993447A (en) | 1996-08-16 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US5846187A (en) | 1996-09-13 | 1998-12-08 | Genzyme Corporation | Redo sternotomy retractor |
US5697928A (en) | 1996-09-23 | 1997-12-16 | Uab Research Foundation | Cardic electrode catheter |
US6237605B1 (en) | 1996-10-22 | 2001-05-29 | Epicor, Inc. | Methods of epicardial ablation |
US6311692B1 (en) | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US5893848A (en) * | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5785706A (en) | 1996-11-18 | 1998-07-28 | Daig Corporation | Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings |
US5910150A (en) | 1996-12-02 | 1999-06-08 | Angiotrax, Inc. | Apparatus for performing surgery |
US5931810A (en) | 1996-12-05 | 1999-08-03 | Comedicus Incorporated | Method for accessing the pericardial space |
US5782828A (en) | 1996-12-11 | 1998-07-21 | Irvine Biomedical, Inc. | Ablation catheter with multiple flexible curves |
US6071279A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Branched structures for supporting multiple electrode elements |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5913854A (en) | 1997-02-04 | 1999-06-22 | Medtronic, Inc. | Fluid cooled ablation catheter and method for making |
US5844349A (en) | 1997-02-11 | 1998-12-01 | Tetrad Corporation | Composite autoclavable ultrasonic transducers and methods of making |
US5788636A (en) | 1997-02-25 | 1998-08-04 | Acuson Corporation | Method and system for forming an ultrasound image of a tissue while simultaneously ablating the tissue |
US5899898A (en) | 1997-02-27 | 1999-05-04 | Cryocath Technologies Inc. | Cryosurgical linear ablation |
US5897554A (en) * | 1997-03-01 | 1999-04-27 | Irvine Biomedical, Inc. | Steerable catheter having a loop electrode |
US5873845A (en) * | 1997-03-17 | 1999-02-23 | General Electric Company | Ultrasound transducer with focused ultrasound refraction plate |
US5954661A (en) | 1997-03-31 | 1999-09-21 | Thomas Jefferson University | Tissue characterization and treatment using pacing |
US5879295A (en) * | 1997-04-02 | 1999-03-09 | Medtronic, Inc. | Enhanced contact steerable bowing electrode catheter assembly |
US5873877A (en) | 1997-04-11 | 1999-02-23 | Vidamed, Inc. | Medical probe device with transparent distal extremity |
US5871481A (en) | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US5906580A (en) | 1997-05-05 | 1999-05-25 | Creare Inc. | Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements |
US5971983A (en) | 1997-05-09 | 1999-10-26 | The Regents Of The University Of California | Tissue ablation device and method of use |
US6012457A (en) * | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US5792140A (en) | 1997-05-15 | 1998-08-11 | Irvine Biomedical, Inc. | Catheter having cooled multiple-needle electrode |
US5849028A (en) | 1997-05-16 | 1998-12-15 | Irvine Biomedical, Inc. | Catheter and method for radiofrequency ablation of cardiac tissue |
US6217576B1 (en) * | 1997-05-19 | 2001-04-17 | Irvine Biomedical Inc. | Catheter probe for treating focal atrial fibrillation in pulmonary veins |
US5876399A (en) * | 1997-05-28 | 1999-03-02 | Irvine Biomedical, Inc. | Catheter system and methods thereof |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6245064B1 (en) | 1997-07-08 | 2001-06-12 | Atrionix, Inc. | Circumferential ablation device assembly |
US6096037A (en) | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US5908029A (en) | 1997-08-15 | 1999-06-01 | Heartstent Corporation | Coronary artery bypass with reverse flow |
US6610055B1 (en) | 1997-10-10 | 2003-08-26 | Scimed Life Systems, Inc. | Surgical method for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US6120496A (en) | 1998-05-05 | 2000-09-19 | Scimed Life Systems, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and coupling device for use with same |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6120500A (en) | 1997-11-12 | 2000-09-19 | Daig Corporation | Rail catheter ablation and mapping system |
US6270471B1 (en) | 1997-12-23 | 2001-08-07 | Misonix Incorporated | Ultrasonic probe with isolated outer cannula |
US6251092B1 (en) | 1997-12-30 | 2001-06-26 | Medtronic, Inc. | Deflectable guiding catheter |
US6142993A (en) | 1998-02-27 | 2000-11-07 | Ep Technologies, Inc. | Collapsible spline structure using a balloon as an expanding actuator |
US6527767B2 (en) * | 1998-05-20 | 2003-03-04 | New England Medical Center | Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization |
US6186951B1 (en) | 1998-05-26 | 2001-02-13 | Riverside Research Institute | Ultrasonic systems and methods for fluid perfusion and flow rate measurement |
US6231518B1 (en) | 1998-05-26 | 2001-05-15 | Comedicus Incorporated | Intrapericardial electrophysiological procedures |
US6322559B1 (en) * | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
US6706039B2 (en) * | 1998-07-07 | 2004-03-16 | Medtronic, Inc. | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue |
US6238393B1 (en) | 1998-07-07 | 2001-05-29 | Medtronic, Inc. | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue |
US6537272B2 (en) * | 1998-07-07 | 2003-03-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6016811A (en) * | 1998-09-01 | 2000-01-25 | Fidus Medical Technology Corporation | Method of using a microwave ablation catheter with a loop configuration |
US6251128B1 (en) | 1998-09-01 | 2001-06-26 | Fidus Medical Technology Corporation | Microwave ablation catheter with loop configuration |
US6042556A (en) * | 1998-09-04 | 2000-03-28 | University Of Washington | Method for determining phase advancement of transducer elements in high intensity focused ultrasound |
US6245065B1 (en) | 1998-09-10 | 2001-06-12 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6385472B1 (en) | 1999-09-10 | 2002-05-07 | Stereotaxis, Inc. | Magnetically navigable telescoping catheter and method of navigating telescoping catheter |
US6425867B1 (en) | 1998-09-18 | 2002-07-30 | University Of Washington | Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy |
US6245062B1 (en) * | 1998-10-23 | 2001-06-12 | Afx, Inc. | Directional reflector shield assembly for a microwave ablation instrument |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
CN1338909A (en) | 1999-02-02 | 2002-03-06 | 外科器械股份有限公司 | Intrabody HIFU applicator |
US6217528B1 (en) * | 1999-02-11 | 2001-04-17 | Scimed Life Systems, Inc. | Loop structure having improved tissue contact capability |
US6177168B1 (en) * | 1999-03-26 | 2001-01-23 | Warner Music Group, Inc. | DVD disc with four information layers, and method for making same |
US6325797B1 (en) | 1999-04-05 | 2001-12-04 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US20050010095A1 (en) * | 1999-04-05 | 2005-01-13 | Medtronic, Inc. | Multi-purpose catheter apparatus and method of use |
US6702811B2 (en) * | 1999-04-05 | 2004-03-09 | Medtronic, Inc. | Ablation catheter assembly with radially decreasing helix and method of use |
US20010007070A1 (en) | 1999-04-05 | 2001-07-05 | Medtronic, Inc. | Ablation catheter assembly and method for isolating a pulmonary vein |
US6235024B1 (en) | 1999-06-21 | 2001-05-22 | Hosheng Tu | Catheters system having dual ablation capability |
US6398792B1 (en) | 1999-06-21 | 2002-06-04 | O'connor Lawrence | Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use |
US6461356B1 (en) | 1999-07-01 | 2002-10-08 | C.R. Bard, Inc. | Medical device having an incrementally displaceable electrode |
US6371955B1 (en) | 1999-08-10 | 2002-04-16 | Biosense Webster, Inc. | Atrial branding iron catheter and a method for treating atrial fibrillation |
US6332881B1 (en) | 1999-09-01 | 2001-12-25 | Cardima, Inc. | Surgical ablation tool |
US6368275B1 (en) | 1999-10-07 | 2002-04-09 | Acuson Corporation | Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy |
US6645199B1 (en) | 1999-11-22 | 2003-11-11 | Scimed Life Systems, Inc. | Loop structures for supporting diagnostic and therapeutic elements contact with body tissue and expandable push devices for use with same |
US6413254B1 (en) | 2000-01-19 | 2002-07-02 | Medtronic Xomed, Inc. | Method of tongue reduction by thermal ablation using high intensity focused ultrasound |
US6692450B1 (en) * | 2000-01-19 | 2004-02-17 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same |
US6447443B1 (en) * | 2001-01-13 | 2002-09-10 | Medtronic, Inc. | Method for organ positioning and stabilization |
US6595934B1 (en) | 2000-01-19 | 2003-07-22 | Medtronic Xomed, Inc. | Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6361531B1 (en) * | 2000-01-21 | 2002-03-26 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having malleable handle shafts and methods of using the same |
US6605084B2 (en) | 2000-03-24 | 2003-08-12 | Transurgical, Inc. | Apparatus and methods for intrabody thermal treatment |
US6419648B1 (en) | 2000-04-21 | 2002-07-16 | Insightec-Txsonics Ltd. | Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system |
US6558382B2 (en) | 2000-04-27 | 2003-05-06 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US6488680B1 (en) | 2000-04-27 | 2002-12-03 | Medtronic, Inc. | Variable length electrodes for delivery of irrigated ablation |
AU2001249874A1 (en) * | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
AU2001253654A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
US6514250B1 (en) * | 2000-04-27 | 2003-02-04 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US6477396B1 (en) | 2000-07-07 | 2002-11-05 | Biosense Webster, Inc. | Mapping and ablation catheter |
EP1324709B1 (en) * | 2000-09-26 | 2006-07-12 | Medtronic, Inc. | Medical device for directing blood flow |
US6551300B1 (en) | 2000-10-04 | 2003-04-22 | Vidamed, Inc. | Device and method for delivery of topically applied local anesthetic to wall forming a passage in tissue |
US20040138621A1 (en) | 2003-01-14 | 2004-07-15 | Jahns Scott E. | Devices and methods for interstitial injection of biologic agents into tissue |
US7628780B2 (en) | 2001-01-13 | 2009-12-08 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
US6663627B2 (en) * | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
US6989010B2 (en) * | 2001-04-26 | 2006-01-24 | Medtronic, Inc. | Ablation system and method of use |
US7250048B2 (en) * | 2001-04-26 | 2007-07-31 | Medtronic, Inc. | Ablation system and method of use |
US6807968B2 (en) * | 2001-04-26 | 2004-10-26 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US6648883B2 (en) | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US6699240B2 (en) * | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US6656175B2 (en) | 2001-12-11 | 2003-12-02 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US6827715B2 (en) | 2002-01-25 | 2004-12-07 | Medtronic, Inc. | System and method of performing an electrosurgical procedure |
US7967816B2 (en) | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
US7311705B2 (en) | 2002-02-05 | 2007-12-25 | Medtronic, Inc. | Catheter apparatus for treatment of heart arrhythmia |
US7294143B2 (en) * | 2002-05-16 | 2007-11-13 | Medtronic, Inc. | Device and method for ablation of cardiac tissue |
US7118566B2 (en) | 2002-05-16 | 2006-10-10 | Medtronic, Inc. | Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue |
GB2389878A (en) * | 2002-06-18 | 2003-12-24 | Eaton Corp | Method of detecting false neutral in a transmission system |
US6730079B2 (en) | 2002-07-22 | 2004-05-04 | Medtronic Vidamed, Inc. | Method for calculating impedance and apparatus utilizing same |
US6855141B2 (en) | 2002-07-22 | 2005-02-15 | Medtronic, Inc. | Method for monitoring impedance to control power and apparatus utilizing same |
US7083620B2 (en) * | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US7497857B2 (en) | 2003-04-29 | 2009-03-03 | Medtronic, Inc. | Endocardial dispersive electrode for use with a monopolar RF ablation pen |
US7104989B2 (en) | 2003-09-05 | 2006-09-12 | Medtronic, Inc. | RF ablation catheter including a virtual electrode assembly |
US7156843B2 (en) * | 2003-09-08 | 2007-01-02 | Medtronic, Inc. | Irrigated focal ablation tip |
US20050084804A1 (en) | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US8333764B2 (en) | 2004-05-12 | 2012-12-18 | Medtronic, Inc. | Device and method for determining tissue thickness and creating cardiac ablation lesions |
US20060009756A1 (en) * | 2004-05-14 | 2006-01-12 | Francischelli David E | Method and devices for treating atrial fibrillation by mass ablation |
EP1750608B1 (en) * | 2004-06-02 | 2012-10-03 | Medtronic, Inc. | Ablation device with jaws |
EP1750607A2 (en) * | 2004-06-02 | 2007-02-14 | Medtronic, Inc. | Loop ablation apparatus and method |
US7347888B2 (en) | 2005-04-29 | 2008-03-25 | Sylmark Holdings Limited | Air purifier |
-
1999
- 1999-07-06 US US09/347,752 patent/US6537248B2/en not_active Expired - Lifetime
-
2001
- 2001-10-22 US US10/014,388 patent/US6911019B2/en not_active Expired - Lifetime
-
2005
- 2005-06-06 US US11/146,178 patent/US20060015097A1/en not_active Abandoned
- 2005-06-28 US US11/169,275 patent/US7309325B2/en not_active Expired - Lifetime
-
2007
- 2007-11-30 US US11/998,743 patent/US7699805B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911019B2 (en) * | 1998-07-07 | 2005-06-28 | Medtronic, Inc. | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794460B2 (en) | 1995-02-22 | 2010-09-14 | Medtronic, Inc. | Method of ablating tissue |
US20070208332A1 (en) * | 1995-02-22 | 2007-09-06 | Mulier Peter M | Pen-type electrosurgical instrument |
US20060079888A1 (en) * | 1997-07-18 | 2006-04-13 | Mulier Peter M J | Device and method for ablating tissue |
US7678111B2 (en) | 1997-07-18 | 2010-03-16 | Medtronic, Inc. | Device and method for ablating tissue |
US7699805B2 (en) | 1998-07-07 | 2010-04-20 | Medtronic, Inc. | Helical coil apparatus for ablation of tissue |
US20080091194A1 (en) * | 1998-07-07 | 2008-04-17 | Mulier Peter M | Helical coil apparatus for ablation of tissue |
US8361068B2 (en) | 2000-03-06 | 2013-01-29 | Medtronic Advanced Energy Llc | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
US20110028965A1 (en) * | 2000-03-06 | 2011-02-03 | Salient Surgical Technologies, Inc. | Fluid-Assisted Electrosurgical Devices, Electrosurgical Unit With Pump And Methods Of Use Thereof |
US20070049920A1 (en) * | 2000-03-06 | 2007-03-01 | Tissuelink Medical, Inc. | Fluid-Assisted Medical Devices, Fluid Delivery Systems and Controllers for Such Devices, and Methods |
US20040138655A1 (en) * | 2000-03-06 | 2004-07-15 | Tissuelink Medical, Inc. | Fluid delivery system and controller for electrosurgical devices |
US8048070B2 (en) | 2000-03-06 | 2011-11-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
US8038670B2 (en) | 2000-03-06 | 2011-10-18 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
US7811282B2 (en) | 2000-03-06 | 2010-10-12 | Salient Surgical Technologies, Inc. | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
US7815634B2 (en) | 2000-03-06 | 2010-10-19 | Salient Surgical Technologies, Inc. | Fluid delivery system and controller for electrosurgical devices |
US20060106379A1 (en) * | 2000-03-06 | 2006-05-18 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US7651494B2 (en) | 2000-09-22 | 2010-01-26 | Salient Surgical Technologies, Inc. | Fluid-assisted medical device |
US20030114850A1 (en) * | 2000-09-22 | 2003-06-19 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US20100100095A1 (en) * | 2000-09-22 | 2010-04-22 | Salient Surgical Technologies, Inc. | Fluid-assisted medical device |
US7645277B2 (en) | 2000-09-22 | 2010-01-12 | Salient Surgical Technologies, Inc. | Fluid-assisted medical device |
US7951148B2 (en) | 2001-03-08 | 2011-05-31 | Salient Surgical Technologies, Inc. | Electrosurgical device having a tissue reduction sensor |
US20170071777A1 (en) * | 2001-05-22 | 2017-03-16 | Sanostec Corp | Nasal congestion, obstruction relief, and drug delivery |
US20080097429A1 (en) * | 2001-12-12 | 2008-04-24 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US20040267326A1 (en) * | 2002-01-25 | 2004-12-30 | Ocel Jon M | Cardiac mapping instrument with shapeable electrode |
US7998140B2 (en) | 2002-02-12 | 2011-08-16 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
US8475455B2 (en) | 2002-10-29 | 2013-07-02 | Medtronic Advanced Energy Llc | Fluid-assisted electrosurgical scissors and methods |
US7727232B1 (en) | 2004-02-04 | 2010-06-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and methods |
US8075557B2 (en) | 2004-02-04 | 2011-12-13 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and methods |
US20070150038A1 (en) * | 2004-10-20 | 2007-06-28 | Hastings Roger N | Leadless Cardiac Stimulation Systems |
US20060085042A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US7650186B2 (en) | 2004-10-20 | 2010-01-19 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10076658B2 (en) | 2004-10-20 | 2018-09-18 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US10493288B2 (en) | 2004-10-20 | 2019-12-03 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US7532933B2 (en) | 2004-10-20 | 2009-05-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10850092B2 (en) | 2004-10-20 | 2020-12-01 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US8478408B2 (en) | 2004-10-20 | 2013-07-02 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US7647109B2 (en) | 2004-10-20 | 2010-01-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US9925386B2 (en) | 2004-10-20 | 2018-03-27 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US20070219590A1 (en) * | 2004-10-20 | 2007-09-20 | Scimed Life Systems, Inc. | Leadless Cardiac Stimulation Systems |
US10029092B2 (en) | 2004-10-20 | 2018-07-24 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US20060085039A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US8340780B2 (en) | 2004-10-20 | 2012-12-25 | Scimed Life Systems, Inc. | Leadless cardiac stimulation systems |
US8332036B2 (en) | 2004-10-20 | 2012-12-11 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US9545513B2 (en) | 2004-10-20 | 2017-01-17 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US9072911B2 (en) | 2004-10-20 | 2015-07-07 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US20070150037A1 (en) * | 2004-10-20 | 2007-06-28 | Hastings Roger N | Leadless Cardiac Stimulation Systems |
US20060085041A1 (en) * | 2004-10-20 | 2006-04-20 | Hastings Roger N | Leadless cardiac stimulation systems |
US11766219B2 (en) | 2005-12-09 | 2023-09-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US20070135883A1 (en) * | 2005-12-09 | 2007-06-14 | Boston Scientific Scimed, Inc. | Cardiac Stimulation system |
US20070135882A1 (en) * | 2005-12-09 | 2007-06-14 | Drasler William J | Cardiac stimulation system |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US7848823B2 (en) | 2005-12-09 | 2010-12-07 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US12076164B2 (en) | 2005-12-09 | 2024-09-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11154247B2 (en) | 2005-12-09 | 2021-10-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US8050774B2 (en) | 2005-12-22 | 2011-11-01 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US20070150009A1 (en) * | 2005-12-22 | 2007-06-28 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US20070203484A1 (en) * | 2006-01-27 | 2007-08-30 | David Kim | Methods of using ablation device and of guiding ablation device into body |
US20070208336A1 (en) * | 2006-01-27 | 2007-09-06 | David Kim | Ablation device and system for guiding ablation device into body |
US7937161B2 (en) | 2006-03-31 | 2011-05-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US20070239248A1 (en) * | 2006-03-31 | 2007-10-11 | Hastings Roger N | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US20110034939A1 (en) * | 2006-07-21 | 2011-02-10 | Kveen Graig L | Delivery of cardiac stimulation devices |
US12102822B2 (en) | 2006-07-21 | 2024-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US20080021505A1 (en) * | 2006-07-21 | 2008-01-24 | Roger Hastings | Electrical stimulation of body tissue using interconnected electrode assemblies |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US11338130B2 (en) | 2006-07-21 | 2022-05-24 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
US20080021532A1 (en) * | 2006-07-21 | 2008-01-24 | Kveen Graig L | Delivery of cardiac stimulation devices |
US10426952B2 (en) | 2006-07-21 | 2019-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9662487B2 (en) | 2006-07-21 | 2017-05-30 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US7840281B2 (en) | 2006-07-21 | 2010-11-23 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US8185213B2 (en) | 2006-07-21 | 2012-05-22 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9956401B2 (en) | 2006-09-13 | 2018-05-01 | Boston Scientific Scimed, Inc. | Cardiac stimulation using intravascularly-deliverable electrode assemblies |
US20090018599A1 (en) * | 2006-09-13 | 2009-01-15 | Boston Scientific Scimed, Inc. | Cardiac Stimulation Using Leadless Electrode Assemblies |
US8644934B2 (en) | 2006-09-13 | 2014-02-04 | Boston Scientific Scimed Inc. | Cardiac stimulation using leadless electrode assemblies |
US9393405B2 (en) | 2008-02-07 | 2016-07-19 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US10307604B2 (en) | 2008-02-07 | 2019-06-04 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US8204605B2 (en) | 2008-02-07 | 2012-06-19 | Cardiac Pacemakers, Inc. | Multi-site atrial electrostimulation |
US20090204170A1 (en) * | 2008-02-07 | 2009-08-13 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US20090234407A1 (en) * | 2008-02-07 | 2009-09-17 | Roger Hastings | Multi-site atrial electrostimulation |
US8738147B2 (en) | 2008-02-07 | 2014-05-27 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US9795797B2 (en) | 2008-02-07 | 2017-10-24 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US9566106B2 (en) * | 2012-04-20 | 2017-02-14 | Olympus Corporation | Surgical device |
CN104135957A (en) * | 2012-04-20 | 2014-11-05 | 奥林巴斯医疗株式会社 | Surgical device |
US20140194871A1 (en) * | 2012-04-20 | 2014-07-10 | Olympus Medical Systems Corp. | Surgical device |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
Also Published As
Publication number | Publication date |
---|---|
US20020183733A1 (en) | 2002-12-05 |
US7699805B2 (en) | 2010-04-20 |
US6911019B2 (en) | 2005-06-28 |
US6537248B2 (en) | 2003-03-25 |
US7309325B2 (en) | 2007-12-18 |
US20080091194A1 (en) | 2008-04-17 |
US20020049439A1 (en) | 2002-04-25 |
US20060052770A1 (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6537248B2 (en) | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue | |
US6623515B2 (en) | Straight needle apparatus for creating a virtual electrode used for the ablation of tissue | |
US6962589B2 (en) | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue | |
US6315777B1 (en) | Method and apparatus for creating a virtual electrode used for the ablation of tissue | |
US6238393B1 (en) | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue | |
US6494902B2 (en) | Method for creating a virtual electrode for the ablation of tissue and for selected protection of tissue during an ablation | |
US7357799B2 (en) | Thermal coagulation using hyperconductive fluids | |
US7591815B2 (en) | Surgical treatment for atrial fibrillation using radiofrequency technology | |
US20100152725A1 (en) | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation | |
US20050245923A1 (en) | Biopolar virtual electrode for transurethral needle ablation | |
EP1450712A1 (en) | Feedback system for rf ablation by means of a virtual electrode and cooling protection, method therefor | |
Benias et al. | Principles of electrosurgery | |
Dasgupta et al. | Electrosurgery of the prostate: improvements in electrosurgical unit, transurethral vaporization of the prostate, and bipolar resection | |
Moore et al. | Energy Sources in Hysteroscopy | |
Farin et al. | Principles of electrosurgery, laser, and argon plasma coagulation with particular regard to colonoscopy | |
Dunkin et al. | Thermal Methods to | |
DiFrancesco et al. | Technological advances in minimally invasive radiofrequency ablation of cardiac tissues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RIVERVEST VENTURE PARTNERS I, LLC,MISSOURI Free format text: SECURITY AGREEMENT;ASSIGNOR:TISSUELINK MEDICAL, INC.;REEL/FRAME:018207/0252 Effective date: 20060905 Owner name: RIVERVEST VENTURE PARTNERS I, LLC, MISSOURI Free format text: SECURITY AGREEMENT;ASSIGNOR:TISSUELINK MEDICAL, INC.;REEL/FRAME:018207/0252 Effective date: 20060905 |
|
AS | Assignment |
Owner name: TISSUELINK MEDICAL, INC.,NEW HAMPSHIRE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:RIVERVEST VENTURE PARTNERS I, LLC;REEL/FRAME:019407/0213 Effective date: 20070212 Owner name: TISSUELINK MEDICAL, INC., NEW HAMPSHIRE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:RIVERVEST VENTURE PARTNERS I, LLC;REEL/FRAME:019407/0213 Effective date: 20070212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |