US20050244672A1 - Organic light-emitting devices - Google Patents
Organic light-emitting devices Download PDFInfo
- Publication number
- US20050244672A1 US20050244672A1 US10/835,481 US83548104A US2005244672A1 US 20050244672 A1 US20050244672 A1 US 20050244672A1 US 83548104 A US83548104 A US 83548104A US 2005244672 A1 US2005244672 A1 US 2005244672A1
- Authority
- US
- United States
- Prior art keywords
- dopant
- organic light
- emitting device
- emissive layer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003446 ligand Substances 0.000 claims abstract description 67
- 239000000463 material Substances 0.000 claims abstract description 29
- 150000003624 transition metals Chemical class 0.000 claims abstract description 23
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 20
- 239000002019 doping agent Substances 0.000 claims description 187
- 239000010410 layer Substances 0.000 claims description 99
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 claims description 23
- 229910052757 nitrogen Chemical group 0.000 claims description 21
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 238000005401 electroluminescence Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- HPDNGBIRSIWOST-UHFFFAOYSA-N 2-pyridin-2-ylphenol Chemical compound OC1=CC=CC=C1C1=CC=CC=N1 HPDNGBIRSIWOST-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- BLFVVZKSHYCRDR-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-2-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-2-amine Chemical compound C1=CC=CC=C1N(C=1C=C2C=CC=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC=CC3=CC=2)C=C1 BLFVVZKSHYCRDR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 claims description 3
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 claims description 3
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 claims description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 3
- 238000001771 vacuum deposition Methods 0.000 claims description 2
- 239000011247 coating layer Substances 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 238000000859 sublimation Methods 0.000 claims 1
- 230000008022 sublimation Effects 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 35
- 238000001194 electroluminescence spectrum Methods 0.000 description 24
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 22
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 20
- 229910052721 tungsten Inorganic materials 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 229910052727 yttrium Inorganic materials 0.000 description 15
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000005424 photoluminescence Methods 0.000 description 11
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 11
- 230000005284 excitation Effects 0.000 description 10
- 0 [1*]C1=N([12*])C2(N3C([4*])=C([3*])C([2*])=C13)N1C([5*])=C([6*])C([7*])=C1/C([8*])=N\2[12*].[1*]C1=N([12*])C2(N3C([4*])=C([3*])C([2*])=C13)N1C([5*])=C([6*])C([7*])=C1C([8*])=N2[12*].[1*]C1=N2[11*]N3=C([8*])C4=C([7*])C([6*])=C([5*])N4C23N2C([4*])=C([3*])C([2*])=C12 Chemical compound [1*]C1=N([12*])C2(N3C([4*])=C([3*])C([2*])=C13)N1C([5*])=C([6*])C([7*])=C1/C([8*])=N\2[12*].[1*]C1=N([12*])C2(N3C([4*])=C([3*])C([2*])=C13)N1C([5*])=C([6*])C([7*])=C1C([8*])=N2[12*].[1*]C1=N2[11*]N3=C([8*])C4=C([7*])C([6*])=C([5*])N4C23N2C([4*])=C([3*])C([2*])=C12 0.000 description 9
- 125000004093 cyano group Chemical group *C#N 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000000295 emission spectrum Methods 0.000 description 7
- 238000000695 excitation spectrum Methods 0.000 description 7
- 239000000370 acceptor Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 5
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PENMOLDZBDZXQB-UHFFFAOYSA-N CC(C1=CC=CC=C1)C(C)C1=CC=CC=C1.CC(C1CCCCC1)C(C)C1CCCCC1.CC1=CC=C2C=CC=CC2=C1C1=C(C)C=CC2=C1C=CC=C2.CC1=CC=CC=C1C.CC1CCCCC1C Chemical compound CC(C1=CC=CC=C1)C(C)C1=CC=CC=C1.CC(C1CCCCC1)C(C)C1CCCCC1.CC1=CC=C2C=CC=CC2=C1C1=C(C)C=CC2=C1C=CC=C2.CC1=CC=CC=C1C.CC1CCCCC1C PENMOLDZBDZXQB-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 125000004442 acylamino group Chemical group 0.000 description 4
- 125000004423 acyloxy group Chemical group 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 4
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 4
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000000879 imine group Chemical group 0.000 description 4
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 125000005504 styryl group Chemical group 0.000 description 4
- 125000004149 thio group Chemical group *S* 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical group C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VSPWUMRSGKNRHA-MYSIUNHISA-D C/C1=N2\CC/N3=C(\C)C4=CC=CC=C4O[Pt]23OC2=CC=CC=C21.C1=CC=C2O[Pt]34OC5=CC=CC=C5/C=N\3CC/N4=C/C2=C1.C1=CC=C2O[Pt]34OC5=CC=CC=C5C=N3C3=C(C=CC=C3)N4=CC2=C1.C1=CN2C(=C1)C=N1CCN3=CC4=CC=CN4[Pt]213.CC1(C)N2=CC3=CC=CC=C3O[Pt]23OC2=CC=CC=C2C=N3C1(C)C.CC1(C)N2=CC3=CC=CN3[Pt]23N2C=CC=C2C=N3C1(C)C.CC1=C(C)C=C2C(=C1)N1=CC3=CC=CN3[Pt]13N1C=CC=C1C=N23.CC1=CC2=C(C=C1)N1=CC3=CC=CC=C3O[Pt]13OC1=CC=CC=C1C=N23 Chemical compound C/C1=N2\CC/N3=C(\C)C4=CC=CC=C4O[Pt]23OC2=CC=CC=C21.C1=CC=C2O[Pt]34OC5=CC=CC=C5/C=N\3CC/N4=C/C2=C1.C1=CC=C2O[Pt]34OC5=CC=CC=C5C=N3C3=C(C=CC=C3)N4=CC2=C1.C1=CN2C(=C1)C=N1CCN3=CC4=CC=CN4[Pt]213.CC1(C)N2=CC3=CC=CC=C3O[Pt]23OC2=CC=CC=C2C=N3C1(C)C.CC1(C)N2=CC3=CC=CN3[Pt]23N2C=CC=C2C=N3C1(C)C.CC1=C(C)C=C2C(=C1)N1=CC3=CC=CN3[Pt]13N1C=CC=C1C=N23.CC1=CC2=C(C=C1)N1=CC3=CC=CC=C3O[Pt]13OC1=CC=CC=C1C=N23 VSPWUMRSGKNRHA-MYSIUNHISA-D 0.000 description 2
- XELYRSCPTFQMGC-RUACYTINSA-N C1=NN2C(=N1)C=N1CCN3=CC4=NC=NN4[Pt]213 Chemical compound C1=NN2C(=N1)C=N1CCN3=CC4=NC=NN4[Pt]213 XELYRSCPTFQMGC-RUACYTINSA-N 0.000 description 2
- OIBYLBYUWCFZCR-ITOWEXLMSA-N CN1=CC2=NC=NN2[Pt]12N1N=CN=C1C=N2C Chemical compound CN1=CC2=NC=NN2[Pt]12N1N=CN=C1C=N2C OIBYLBYUWCFZCR-ITOWEXLMSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical group OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- HKDGIZZHRDSLHF-UHFFFAOYSA-N 1-n,3-n,5-n-tris(3-methylphenyl)-1-n,3-n,5-n-triphenylbenzene-1,3,5-triamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=C(C=C(C=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 HKDGIZZHRDSLHF-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- KYHIIIOFBQPSFY-UHFFFAOYSA-N 2-[3,5-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=C(C=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 KYHIIIOFBQPSFY-UHFFFAOYSA-N 0.000 description 1
- LLTSIOOHJBUDCP-UHFFFAOYSA-N 3,4,5-triphenyl-1,2,4-triazole Chemical compound C1=CC=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=CC=C1 LLTSIOOHJBUDCP-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- ZPHQFGUXWQWWAA-UHFFFAOYSA-N 9-(2-phenylphenyl)carbazole Chemical group C1=CC=CC=C1C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 ZPHQFGUXWQWWAA-UHFFFAOYSA-N 0.000 description 1
- BFUQPAKSBLBOOJ-RUACYTINSA-N C1=C2C=N3CCN4=CC5=CN=NN5[Pt]34N2N=N1 Chemical compound C1=C2C=N3CCN4=CC5=CN=NN5[Pt]34N2N=N1 BFUQPAKSBLBOOJ-RUACYTINSA-N 0.000 description 1
- HNRVTGPCKUIPOE-GHCZSDNOSA-N C1=CC=C(C2C(C3=CC=CC=C3)N3=CC4=CC=CN4[Pt]34N3C=CC=C3C=N24)C=C1 Chemical compound C1=CC=C(C2C(C3=CC=CC=C3)N3=CC4=CC=CN4[Pt]34N3C=CC=C3C=N24)C=C1 HNRVTGPCKUIPOE-GHCZSDNOSA-N 0.000 description 1
- DIPORHMKEPJSRW-BYCVLTJGSA-N C1=CN2C(=C1)C=N1C3CCCCC3N3=CC4=CC=CN4[Pt]213 Chemical compound C1=CN2C(=C1)C=N1C3CCCCC3N3=CC4=CC=CN4[Pt]213 DIPORHMKEPJSRW-BYCVLTJGSA-N 0.000 description 1
- OPINNHRAIUTKSJ-ALGRVRKVSA-N C1=CN2C(=C1)C=N1CCN3=CC4=CC=CN4[Pt]213 Chemical compound C1=CN2C(=C1)C=N1CCN3=CC4=CC=CN4[Pt]213 OPINNHRAIUTKSJ-ALGRVRKVSA-N 0.000 description 1
- CNJPBADPJDTNDA-GCHDFIKQSA-N C1=CN2C(=N1)C=N1CCN3=CC4=NC=CN4[Pt]213 Chemical compound C1=CN2C(=N1)C=N1CCN3=CC4=NC=CN4[Pt]213 CNJPBADPJDTNDA-GCHDFIKQSA-N 0.000 description 1
- ZJAXNSSMYPVCKN-FLVPNXLJSA-N C1=NC=C2C=N3CCN4=CC5=CN=CN5[Pt]34N12 Chemical compound C1=NC=C2C=N3CCN4=CC5=CN=CN5[Pt]34N12 ZJAXNSSMYPVCKN-FLVPNXLJSA-N 0.000 description 1
- SETLBYSQLHSJOG-GCHDFIKQSA-N C1=NN2C(=C1)C=N1CCN3=CC4=CC=NN4[Pt]213 Chemical compound C1=NN2C(=C1)C=N1CCN3=CC4=CC=NN4[Pt]213 SETLBYSQLHSJOG-GCHDFIKQSA-N 0.000 description 1
- YNSXVLVWWAAHGT-BYCVLTJGSA-N CC1(C)N2=CC3=CC=CN3[Pt]23N2C=CC=C2C=N3C1(C)C Chemical compound CC1(C)N2=CC3=CC=CN3[Pt]23N2C=CC=C2C=N3C1(C)C YNSXVLVWWAAHGT-BYCVLTJGSA-N 0.000 description 1
- AZYHRXQJQOQZFU-XHPUXTPKSA-N CC1=C(C)C=C2C(=C1)N1=CC3=CC=CN3[Pt]13N1C=CC=C1C=N23 Chemical compound CC1=C(C)C=C2C(=C1)N1=CC3=CC=CN3[Pt]13N1C=CC=C1C=N23 AZYHRXQJQOQZFU-XHPUXTPKSA-N 0.000 description 1
- SSNRRATVQQCMHN-UHFFFAOYSA-J CC1=CC=C2C(=C1)O[Pt]1(N=C2C)N=C(C)C2=CC=C(C)C=C2O1.CC1=CC=C2C(=C1)O[Pt]1(OC3=CC(C)=CC=C3C(C)=N1[Y])N([Y])=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]1(N=C2C)N=C(C)C2=CC=C(C)C=C2O1.CC1=CC=C2C(=C1)O[Pt]1(OC3=CC(C)=CC=C3C(C)=N1[Y])N([Y])=C2C SSNRRATVQQCMHN-UHFFFAOYSA-J 0.000 description 1
- UIKSLZVRYZAFCF-HVWCHSRPSA-L CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C)(C)C(C)(C)N3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C)(C)C(C)(C)N3=C2C UIKSLZVRYZAFCF-HVWCHSRPSA-L 0.000 description 1
- IYMAUAHIGIJQIU-LVCRDXQXSA-J CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C1=CC=CC=C1)C(C1=CC=CC=C1)N3=C2C.CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CCN3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C1=CC=CC=C1)C(C1=CC=CC=C1)N3=C2C.CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CCN3=C2C IYMAUAHIGIJQIU-LVCRDXQXSA-J 0.000 description 1
- LJTGHEDAEXOYFP-KKSXEPMBSA-L CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C1CCCCC1)C(C1CCCCC1)N3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C(C1CCCCC1)C(C1CCCCC1)N3=C2C LJTGHEDAEXOYFP-KKSXEPMBSA-L 0.000 description 1
- XEDAMDXKMKIOHY-BIKDIBRTSA-J CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C1=C(C=CC([W])=C1)N3=C2C.CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CCN3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C1=C(C=CC([W])=C1)N3=C2C.CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CCN3=C2C XEDAMDXKMKIOHY-BIKDIBRTSA-J 0.000 description 1
- KEAOZHMOBPSFQQ-HVWCHSRPSA-L CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C1CCCCC1N3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1C1CCCCC1N3=C2C KEAOZHMOBPSFQQ-HVWCHSRPSA-L 0.000 description 1
- ZPJTXQQCYVVRKZ-JICTWDTMSA-L CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CN3=C2C Chemical compound CC1=CC=C2C(=C1)O[Pt]13OC4=CC(C)=CC=C4C(C)=N1CN3=C2C ZPJTXQQCYVVRKZ-JICTWDTMSA-L 0.000 description 1
- JFFVCEUNLUIFEU-XXXYRMOLSA-N CN1=CC2=CC=CN2[Pt]12N1C=CC=C1C=N2C Chemical compound CN1=CC2=CC=CN2[Pt]12N1C=CC=C1C=N2C JFFVCEUNLUIFEU-XXXYRMOLSA-N 0.000 description 1
- XFLIHZACQWVLPM-NVWHPRHESA-N CN1=CC2=CC=NN2[Pt]12N1N=CC=C1C=N2C Chemical compound CN1=CC2=CC=NN2[Pt]12N1N=CC=C1C=N2C XFLIHZACQWVLPM-NVWHPRHESA-N 0.000 description 1
- WHBCCGMSZVYIAM-LAZNYTCVSA-N CN1=CC2=CN=CN2[Pt]12N1C=NC=C1C=N2C Chemical compound CN1=CC2=CN=CN2[Pt]12N1C=NC=C1C=N2C WHBCCGMSZVYIAM-LAZNYTCVSA-N 0.000 description 1
- JBBPQTXNRHKHIJ-NVWHPRHESA-N CN1=CC2=NC=CN2[Pt]12N1C=CN=C1C=N2C Chemical compound CN1=CC2=NC=CN2[Pt]12N1C=CN=C1C=N2C JBBPQTXNRHKHIJ-NVWHPRHESA-N 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910020427 K2PtCl4 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910006068 SO3F Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- HRQXKKFGTIWTCA-UHFFFAOYSA-L beryllium;2-pyridin-2-ylphenolate Chemical compound [Be+2].[O-]C1=CC=CC=C1C1=CC=CC=N1.[O-]C1=CC=CC=C1C1=CC=CC=N1 HRQXKKFGTIWTCA-UHFFFAOYSA-L 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- GMFTYFSOONOZOH-MCTJRNESSA-K europium(3+) 1,10-phenanthroline (Z)-4,4,4-trifluoro-3-oxo-1-thiophen-2-ylbut-1-en-1-olate Chemical compound [Eu+3].[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.c1cnc2c(c1)ccc1cccnc21 GMFTYFSOONOZOH-MCTJRNESSA-K 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- ZBKIUFWVEIBQRT-UHFFFAOYSA-N gold(1+) Chemical compound [Au+] ZBKIUFWVEIBQRT-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229940031993 lithium benzoate Drugs 0.000 description 1
- LDJNSLOKTFFLSL-UHFFFAOYSA-M lithium;benzoate Chemical compound [Li+].[O-]C(=O)C1=CC=CC=C1 LDJNSLOKTFFLSL-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- TXBBUSUXYMIVOS-UHFFFAOYSA-N thenoyltrifluoroacetone Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CS1 TXBBUSUXYMIVOS-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/346—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- the present invention relates to efficient organic light-emitting devices (OLEDs) which comprise a transition metal complex, wherein the transition metal complex, of either geometrical isomers, comprises two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand, and a transition metal atom as the electrophosphorescent emitter.
- OLEDs organic light-emitting devices
- the invention also relates to methods for preparing thin film OLEDs and their applications such as in liquid crystal displays, plasma panel displays and light-emitting diodes.
- OLEDs Organic light-emitting devices
- FPDs next-generation flat-panel displays
- LCDs liquid crystal displays
- PDPs plasma display panels
- An organic light-emitting device is an energy conversion device which emits light when current is applied.
- a multilayer OLED is generally comprised of hole and electron injection layers, hole- and electron-transporting layers, an emissive layer, metal oxide layer and metal electrodes.
- the use of organic small molecules and polymers in the emissive layer has attracted much attention due to their potential applications in full-color large-area flat-panel displays. Tang and VanSlyke first disclosed that organic small molecules can be prepared as thin-films by vacuum deposition to form multilayer organic light-emitting devices (OLEDs) (see Tang et al., Appl. Phys. Lett. 51:913, (1987)).
- the main objective of this invention is to provide organic light-emitting devices (OLEDs) comprising an emissive layer, which employs at least one dopant complex as an electrophosphorescent emitter.
- OLEDs organic light-emitting devices
- the devices should exhibit low turn-on voltages, high luminance, high efficiencies, and desirable colors.
- Another objective of the present invention is to provide an OLED structure, which employs an emissive layer comprising at least one electrophosphorescent dopant complex and at least one host material.
- Yet another objective is to provide OLEDs that emit desirable colors by varying concentration of the dopant complex in the emissive layer under different applied voltages. It is concerned with the efficiencies of the selected dopant complexes, which can be used at low concentration levels in OLEDs.
- the invention relates to a heterostructured organic light-emitting device comprising:
- the invention relates to OLED comprising an emissive layer which contains at least one transition metal complex.
- the transition metal complexes contain two bidentate NN-type ligand, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand, and a transition metal as the electrophosphorescent dopant complexes.
- the invention relates to a heterostructured OLED comprising one or more dopant complexes of following formulae: or mixtures thereof, wherein
- the present invention relates to a method of preparing heterostructured organic light emitting devices with yellow, orange or red color emissions.
- the method includes the steps of
- the present invention includes, but is not limited to, OLEDs comprising heterostructures for producing red, orange or yellow electroluminescence; the devices contain an anode (ITO glass substance), a hole-transporting layer (N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine ( ⁇ -NPB)), an emissive layer comprising a host material (4,4′-bis(carbazol-9-yl)biphenyl (CBP)) and an electrophosphorescent dopant complex as illustrated in Formulae I, II, III or IV herein), a hole-blocking layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)), an electron-transporting layer (tris(8-hydroxyquinolato) aluminum (Alq 3 )), a charge injection layer (lithium fluoride) and a cathode (aluminum metal).
- ITO glass substance anode
- ⁇ -NPB hole-transporting
- the OLEDs employing electrophosphorescent dopant complexes as illustrated in Formulae I, II, III or IV herein demonstrate red, orange or yellow emission while a current is applied.
- the high efficiency OLEDs can be applied to the field of electronic flat panel display, display board for sign lamp or light source.
- FIG. 1 Absorption, excitation and emission spectra of dopant complex 1 in CH 3 CN
- FIG. 2 Absorption, excitation and emission spectra of dopant complex 2 in CH 3 CN
- FIG. 3 Absorption, excitation and emission spectra of dopant complex 4 in CH 3 CN
- FIG. 4 Schematic diagram of OLED in present invention
- FIG. 5 EL spectra of OLED A with 4.0 wt. % dopant 1 at different dopant concentrations under 8 V
- FIG. 6 EL spectra of OLED A with 4.0 wt. % dopant 1 at different applied voltages
- FIG. 7 V-I-B curve of OLED A with 4.0 wt. % dopant 1
- FIG. 8 External quantum efficiency and luminous efficiency of OLED A with 4.0 wt % dopant 1
- FIG. 9 EL spectra of OLED B with 5 wt. % dopant 2 at different dopant concentrations at 8 V
- FIG. 10 EL spectra of OLED B with 5 wt. % dopant 2 at different applied voltages
- FIG. 11 V-I-B curve of OLED B with 5 wt. % dopant 2
- FIG. 12 The external quantum efficiency and luminous efficiency of OLED B with 5.0 wt. % dopant 2
- FIG. 13 EL spectra of OLED C with 3 wt. % dopant 19 at different dopant concentrations at 8 V
- FIG. 14 EL spectra of OLED C with 3 wt. % dopant 19 at different applied voltages
- FIG. 15 V-I-B curve of OLED C with 3 wt. % dopant 19
- FIG. 16 The external quantum efficiency and luminous efficiency of OLED C with 3.0 wt. % dopant 19
- FIG. 17 EL spectra of OLED D with 4 wt. % dopant 51 at different dopant concentrations at 8 V
- FIG. 18 EL spectra of OLED D with 4 wt. % dopant 51 at different applied voltages
- FIG. 19 V-I-B curve of OLED D with 4 wt. % dopant 51
- FIG. 20 The external quantum efficiency and luminous efficiency of OLED D with 4.0 wt. % dopant 51
- FIG. 21 EL spectra of OLED E with 1.5 wt. % dopant 99 at different dopant concentrations at 8 V
- FIG. 22 EL spectra of OLED E with 1.5 wt. % dopant 99 at different applied voltages
- FIG. 23 V-I-B curve of OLED E with 1.5 wt. % dopant 99
- FIG. 24 External quantum efficiency and luminous efficiency of OLED E with 1.5 wt. % dopant 99
- FIG. 25 EL spectra of OLED F with 1.6 wt. % dopant 104 at different dopant concentrations at 8 V
- FIG. 26 EL spectra of OLED F with 1.6 wt. % dopant 104 at different applied voltages
- FIG. 27 V-I-B curve of OLED F with 1.6 wt. % dopant 104
- FIG. 28 External quantum efficiency and luminous efficiency of OLED F with 1.6 wt. % dopant 104
- NN-type ligands refers to a molecule containing an imine group and either a pyrrol group, a pyrazol group, an imidazol group, or a triazol group, which ligand is coordinated to a metal through the nitrogen atoms of these groups.
- identity NO-type ligands refers to a molecule containing an imine group and a phenoxide group, which ligand is coordinated to a metal through the nitrogen and oxygen atoms of these groups.
- tetradentate NNNN-type ligand refers to a molecule containing a two imine groups and either two pyrrol groups, two pyrazol groups, two imidazol groups, or two triazol groups, which ligand is coordinated to a metal through the nitrogen atoms of these groups.
- tetradentate NOON-type ligand refers to a molecule containing two imine groups and two phenoxide groups, which ligand is coordinated to a metal through the nitrogen and oxygen atoms of these groups.
- the phrase “light-emitting device” refers to structures presenting an assymetric impedance to current. Typically, such a device allows current to flow more easily in one direction when it is said to be forward biased. However, in some devices of the present invention, significant current may flow in the reverse biased state as well with generation of light.
- the present invention is related to a heterostructured OLED comprising an emissive layer, wherein the emissive layer comprises at least one host material and at least one emissive material.
- the emissive material is a dopant complex, of either geometrical isomers, comprising a transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand.
- the dopant complex can be present as a monomer, a dimer, an oligomer, or mixtures thereof.
- the invention relates to a heterostructured organic light-emitting device comprising:
- the emissive materials are dopant complexes, of either geometrical isomers, comprising two bidentate NN-type ligands or two bidentate NO-type ligands or a tetradentate NNNN-type ligand or a tetradentate NOON-type ligand and a transition metal atom. More preferably, the emissive materials include dopant complexes of the following formulae: or mixtures thereof, wherein
- the compounds of formulae (I), (II), (III) or (IV) may comprise R 1 -R 10 groups that are electron donors.
- electron donor groups are amines including —N(R 14 ) 2 and —OR 14 .
- the compounds of formulae (I), (II), (III) or (IV) may comprise R 1 -R 10 groups that are electron acceptors.
- electron acceptor groups include —F, —Cl, —Br, —I, —NO 2 , —C(O)(C 1 -C 6 ), —C(O)O(C 1 -C 6 ), —SCN, —SO 3 F and —CN.
- Non-limiting examples of bidentate NN-type ligands include those shown above for dopant complexes 3 and 14 to 18 .
- NN-type ligands are selected from ligands consisting of at least an unsubstituted 5-membered or 6-membered ring or substituted 5-membered or 6-membered ring; wherein the substituted 5-membered or 6-membered ring includes at least one substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryloxycarbony
- Non-limiting examples of bidentate NO-type ligands include those shown above for dopant complexes 67 to 98 .
- NO-type ligands are selected from ligands consisting of at least an un-substituted 6-membered or 5-membered ring or substituted 6-membered or 5-membered ring; wherein the substituted 6-membered or 5-membered ring includes at least one substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryloxycarbonyl
- Non-limiting examples NNNN-type ligands include those shown above for dopant complexes 1 - 2 and 4 - 13 .
- NNNN-type ligands are selected from ligands consisting of at least an unsubstituted 5-membered or 6-membered ring or substituted 5-membered or 6-membered ring; wherein those substituted 5-membered or 6-membered ring includes at least a substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryl
- NOON-type ligands include those shown above for dopant complexes 19 - 66 and 99 - 178 .
- NOON-type ligands are selected from ligands consisting of at least an unsubstituted 6-membered or 5-membered ring or substituted 6-membered or 5-membered ring; wherein those substituted 6-membered or 5-membered ring includes at least a substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a ,styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an ary
- the present invention is also directed to methods for preparation of OLEDs that can be fabricated by a vapor deposition process.
- OLEDs contain an anode, a hole-transporting layer, an emissive layer comprising at least one host material and at least one dopant complex, a hole-blocking layer, an electron-transporting layer, a charge injection layer and a cathode.
- Non-limiting examples of an anode useful for OLEDs are indium-tin-oxide (ITO) and doped polyaniline.
- Non-limiting examples of hole-transporting materials useful in the present invention are beryllium bis(2-(2′-hydroxyphenyl)pyridine, 4,4 40 -bis(carbazol-9-yl)biphenyl (CBP), N,N-diphenyl-N,N′-bis(1-naphthalene)benzidine ( ⁇ -NPB), N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine ( ⁇ 2 -NPB), N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD), 4,4′,4′′-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-TDATA) and tetrakis(diarylamino)-9,9′-spirobifluorenes.
- CBP carboxyphenyl
- ⁇ -NPB N,N-diphenyl-N,N′-bis
- Non-limiting examples of host materials useful in the present invention include beryllium bis(2-(2′-hydroxyphenyl)pyridine, 4,4′-bis(carbazol-9-yl)biphenyl (CBP), N,N′-diphenyl-N,N′-bis(1-naphthalene)benzidine ( ⁇ -NPB), N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine ( ⁇ -NPB), N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD), 4,4′,4′′-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-TDATA) tetrakis(diarylamino)-9,9′-spirobifluorenes, beryllium bis(2-(2′-hydroxyphenyl)pyridine (Bepp 2 ), 3-phenyl-4-(1′-nap
- At least one suitable host material was employed in an emissive layer together with at least one dopant complex.
- Non-limiting examples of dopant complexes of either geometrical isomers, comprising a transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand include those shown for dopant complexes 1 - 178 in Table 1 and 2 above.
- the dopant complexes are selected from the groups consisting of dopant complexes 1 - 18 , 19 , 22 , 24 - 25 , 27 , 30 , 32 - 33 , 35 , 38 , 40 - 41 , 43 , 46 , 48 - 49 , 51 , 54 , 56 - 57 , 59 , 62 , 64 - 65 , 99 , 102 , 104 - 105 , 107 , 110 , 112 - 113 , 115 , 118 , 120 - 121 , 123 , 126 , 128 - 129 and mixtures thereof More preferably, the dopant complexs are 1 , 2 , 4 , 19 , 35 , 51 , 99 and 104 .
- Non-limiting examples of hole-blocking layer suitable for the present invention include 3,4,5-triphenyl-1,2,4-triazole, 3-(biphenyl-4-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 1,3.5-tris[5-(4-(1,1-dimethylethyl)phenyl)-1,3,4-oxadiazol-2-yl]benzene (TBOP).
- Non-limiting examples of electron-transporting materials for the present invention include tris(8-hydroxyquinolato) aluminum (Alq 3 ) and 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole.
- Non-limiting examples of charge injection layer suitable for the present invention include lithium fluoride, cesium fluoride and lithium benzoate.
- Non-limiting examples of low work function metals for use as cathode in the present invention include aluminum, potassium, lithium, magnesium, silver, gold, rubidium, beryllium and cesium.
- the, OLED described herein comprises heterostructures for producing electroluminescence which contain an anode (ITO glass substance), a hole-transporting layer (N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine ( ⁇ -NPB)), a matrix emissive layer including a host material 4,4′-bis(carbazol-9-yl)biphenyl (CBP)) and an electrophosphorescent dopant complex as illustrated in Formulae I, II, III or IV herein, a hole-blocking layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)), an electron-transporting layer (tris(8-hydroxyquinolato) aluminum (Alq 3 )), a charge injection layer (lithium fluoride) and a cathode (aluminum metal).
- anode ITO glass substance
- a hole-transporting layer N,N′-diphenyl-N,N′-bis(
- OLEDs comprising dopant complexes as illustrated in Formula I, II, III or IV herein exhibit red, orange or yellow electroluminescence.
- concentration of the dopant complexes in the emissive layer can range from 0.5 to 8.0 wt. % based on the efficiency of energy conversion between dopant complexes and host materials and molecular structure of dopant complexes. However, other concentrations can be used.
- Example 1 shows the synthesis of dopant complex 1.
- the tetradentate NNNN-type ligand was prepared according to modification of literature procedures (see Bacchi et al., InorganicaChimica Acta. 342:229, (2003); Male et al., J. Chem. Soc., Dalton Trans. 2487, (1997)).
- Example 2 shows the photophysical properties of non-limiting illustrative emissive materials corresponding to dopant complexes 1 , 2 and 4 of the present invention.
- the absorption and photoluminescence properties of dopant complexes are provided in Table 3.
- UV/vis absorption, excitation and emission spectra of dopant complexes 1 , 2 and 4 are shown in FIGS. 1 to 3 respectively.
- the photoluminescence (PL) spectrum is substantially independent of excitation wavelength from 300 to 450 nm.
- strong PL emissions are obtained with quantum yields ( ⁇ ) up to 0.110 in CH 3 CN.
- the emission lifetimes of the dopant complexes range from 0.57 to 4.25 ⁇ s. TABLE 3 Physical characterization of dopant complexes 1, 2 and 4.
- FIG. 1 shows representative U/vis absorption, excitation and emission spectra of dopant complex 1 in CH 3 CN solution.
- PL photoluminescence
- PL quantum yield ( ⁇ ) of complex 1 is 0.097.
- FIG. 2 depicts the UV/vis, excitation and emission spectra of dopant complex 2 in CH 3 CN solution.
- the dopant complex 2 exhibits an orange PL emission bands at ⁇ max 563 nm and 656 nm while the excitation wavelength is at 431 nm.
- PL quantum yield (D) of complex 2 is 0.1 10.
- FIG. 3 shows the UV/vis absorption, excitation and emission spectra of dopant complex 4 in CH 3 CN solution.
- the PL spectrum of dopant 4 in CH 3 CN shows a deep red emission at ⁇ max 680 nm and 740 nm.
- PL quantum yield (( ⁇ ) of complex 4 is 0.001.
- Example 3 illustrates a non-limiting method for preparing an OLED of the present invention.
- the electroluminescent devices were prepared on patterned indium-tin-oxide (ITO) glass with a sheet resistance of 20 ⁇ /square.
- the glass was cleaned sequentially in detergent solution, deionized water, ethanol and acetone. After the wet-cleaning process, the ITO glass was dried at 130° C. for 1 h and treated in UV ozone cleaner for 10 mins.
- the device configuration is ITO/NPB (40 nm)/CBP:X wt.
- % dopant complex as illustrated in formulae (I), (II), (III) or (IV) (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm); all of the layers were grown sequentially by thermal deposition at a deposition rate of about 0.2 ⁇ /sec or about 5 ⁇ /sec under a vacuum of 1 ⁇ 10 ⁇ 6 Torr.
- the configuration of OLED in the present invention is schematically shown in FIG. 4 .
- the device has multiple layers as shown.
- anode layer 410 preferably comprising indium-tin-oxide is deposited upon substrate layer 405 .
- the substrate can be glass or other material through which the electroluminescence can traverse.
- Hole-transporting layer 415 comprising NPB is placed on top of layer 410 .
- Emissive layer 420 employing CBP host and dopant complex is in contact with hole-transporting layer 415 .
- a hole-blocking layer 425 containing BCP is deposited on the emissive layer 420 .
- Adjacent to the hole-blocking layer 425 an electron-transporting layer 430 , preferably Alq 3 , is placed on it.
- a charge injection layer 435 comprising LiF is then deposited on the layer 430 .
- a cathode layer 440 is fabricated.
- the thickness for NPB is 40 nm (hole-transporting layer 415 ) and the emissive layer 420 is about 30 nm thick; the hole-blocking layer 425 is 20 nm and electron-transporting layer 430 is 30 nm.
- the charge transport layer 435 is 0.5 nm thick and cathode layer 440 is preferably about 150 nm thick.
- the emissive area of device is 3 ⁇ 3 mm 2 , which is defined by overlapping area between cathode and anode.
- glass substrate 405 need not be flat in all embodiments of the invention.
- the glass substrate 405 is shaped, for instance, in a concave shape to focus the light generated in emissive layer 420 , which provides even greater light intensity in a small region.
- the glass substrate 405 is shaped, for instance, in a convex shape that spreads the generated light more diffusely.
- Example 4 shows a red OLED A employing dopant complex 1 as dopant in a CBP host.
- the configuration of device A is ITO/NPB (40 nm)/CBP:4 wt. % dopant 1 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ), luminous efficiency ( ⁇ L ), power efficiency ( ⁇ P ) and brightness of the device are 6.5%, 9.0 cd/A, 4.0 Im/W and 11 000 cd/m 2 , respectively.
- FIG. 5 shows EL spectra of the OLED A with 4.0 wt. % dopant 1 at different dopant concentrations under 8 V.
- FIG. 6 shows EL spectra of the OLED A with 4.0 wt. % dopant 1 at different applied voltage.
- FIG. 7 depicts V-I-B curve of the OLED A with 4.0 wt. % dopant 1 .
- FIG. 8 shows external quantum efficiency and luminous efficiency of the OLED A with 4.0 wt. % dopant 1 .
- Table 4 shows the EL performance of OLED A with 4.0 wt. % dopant 1 at different dopant concentrations. TABLE 4 EL performance of OLED A with dopant 1 at different dopant concentrations Dopant V on B max ⁇ ext,max ⁇ L,max ⁇ P,max (wt. %) (V) (cd/m 2 ) (%) (cd/A) (lm/W) 0.5 3.5 8 030 4.1 7.1 3.1 1.0 3.4 9 700 5.5 7.4 3.5 2.0 3.5 10 050 5.9 8.6 3.8 4.0 3.2 11 000 6.5 9.0 4.0 6.0 3.3 9 500 5.6 7.5 3.3
- Example 5 demonstrates an orange OLED B employing dopant complex 2 as dopant in a CBP host.
- the device configuration is ITO/NPB (40 nm)/CBP:5 wt. % dopant 2 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ), luminous efficiency ( ⁇ L ), power efficiency ( ⁇ P ) and brightness of the device are 4.9%, 13.1 cd/A, 5.9 Im/W and 10120 cd/m 2 , respectively.
- FIG. 9 shows the EL spectra of OLED B with 5 wt. % dopant 2 at different dopant concentrations at 8 V.
- FIG. 10 shows the EL spectra of OLEDs B with 5 wt. % dopant 2 at different applied voltages.
- FIG. 11 shows the V-I-B curve of OLED B with 5 wt. % dopant 2 .
- FIG. 12 shows the external quantum efficiency and luminous efficiency of OLED B with 5.0 wt. % dopant 2 .
- Table 5 shows the EL performance of OLED B with dopant 2 at different dopant concentrations. TABLE 5 The EL performance of OLED B with dopant 2 at different dopant concentrations Dopant V on B max ⁇ ext,max ⁇ L,max ⁇ P,max (wt. %) (V) (cd/m 2 ) (%) (cd/A) (lm/W) 1.0 3.3 8 200 3.9 10.2 4.8 3.0 3.2 9 150 4.4 11.9 5.3 5.0 2.9 10 120 4.9 13.1 5.9 8.0 3.0 9 250 4.2 11.6 5.1
- Example 6 shows a yellow OLED C employing dopant complex 19 as dopant in a CBP host.
- the configuration of device C is ITO/NPB (40 nm)/CBP:3 wt. % dopant 19 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ), luminous efficiency ( ⁇ L ), power efficiency ( ⁇ P ) and brightness of the device are 2.3%, 6.1 cd/A, 2.4 lm/W and 9370 cd/m 2 , respectively.
- FIG. 13 shows the EL spectra of OLED C with 3 wt. % dopant 19 at different dopant concentrations at 8 V.
- FIG. 14 shows the EL spectra of OLED C with 3 wt. % dopant 19 at different applied voltages.
- FIG. 15 shows the V-I-B curve of OLED C with 3 wt. % dopant 19 .
- FIG. 16 shows the external quantum efficiency and luminous efficiency of OLED C with 3.0 wt. % dopant 19 .
- Table 6 shows the EL performance of OLED C with dopant 19 at different dopant concentrations. TABLE 6 EL performance of OLED C with dopant 19 at different dopant concentrations.
- Example 7 shows a yellow OLED D employing dopant complex 51 as dopant in a CBP host.
- the configuration of device D is ITO/NPB (40 nm)/CBP:4 wt. % dopant 51 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ), luminous efficiency ( ⁇ L ), power efficiency ( ⁇ P ) and brightness of the device are 11%, 31 cd/A, 14 lm/W and 23000 cd/m 2 , respectively.
- FIG. 17 shows the EL spectra of OLED D with 4 wt. % dopant 51 at different dopant concentrations at 8 V.
- FIG. 18 shows the EL spectra of OLED D with 4 wt. % dopant 51 at different applied voltages.
- FIG. 19 shows the V-I-B curve of OLED D with 4 wt. % dopant 51 .
- FIG. 20 shows the external quantum efficiency and luminous efficiency of
- Table 7 shows the EL performance of OLED D with dopant 51 at different dopant concentrations. TABLE 7 EL performance of OLED D with dopant 51 at different dopant concentrations.
- Example 8 shows a red OLED E employing dopant complex 99 as dopant in a CBP host.
- the configuration of device E is ITO/NPB (40 nm)/CBP: 1.5 wt. % dopant 99 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ), luminous efficiency ( ⁇ L ), power efficiency (77P) and brightness of the device are 9.4%, 11 cd/A, 4.91 m/W and 17900 cd/m 2 , respectively.
- FIG. 21 shows the EL spectra of OLED E with 1.5 wt. % dopant 99 at different dopant concentrations at 8 V.
- FIG. 22 shows the EL spectra of OLED E with 1.5 wt. % dopant 99 at different applied voltages.
- FIG. 23 shows the V-I-B curve of OLED E with 1.5 wt. % dopant 99 .
- FIG. 24 shows the external quantum efficiency and luminous efficiency of OLED E with 1.5 wt. % dopant 99 .
- Table 8 shows the EL performance of OLED E with dopant 99 at different dopant concentrations. TABLE 8 EL performance of OLED E with dopant 99 at different dopant concentrations.
- Example 9 shows a red OLED F employing dopant complex 104 as dopant in a CBP host.
- the configuration of device F is ITO/NPB (40 nm)/CBP: 1.6 wt. % dopant 104 (30 nm)/BCP (20 nm)/Alq 3 (30 nm)/LiF (0.5 nm)/Al (150 nm).
- the maximum external quantum efficiency ( ⁇ ext ) luminous efficiency ( ⁇ L ), power efficiency ( ⁇ P ) and brightness of the device are 6.4%, 7.5 cd/A, 3.4 lm/W and 13600 cd/m 2 , respectively.
- FIG. 25 shows the EL spectra of OLED F with 1.6 wt. % dopant 104 at different dopant concentrations at 8 V.
- FIG. 26 shows the EL spectra of OLED F with 1.6 wt. % dopant 104 at different applied voltages.
- FIG. 27 shows the V-I-B curve of OLED F with 1.6 wt. % dopant 104 .
- FIG. 28 shows the external quantum efficiency and luminous efficiency of OLED F with 1.6 wt. % dopant 104 .
- Table 9 shows the EL performance of OLED F with dopant 104 at different dopant concentrations. TABLE 9 EL performance of OLED F with dopant 104 at different dopant concentrations.
- an advantage of the OLEDs of the present invention is that the color of the emitted light may be tuned during fabrication by changing the concentration of the dopant complex.
- the color and/or intensity of the emission of the OLEDs of the present invention may be changed by the use of filters, as is known in the art.
- filters as is known in the art.
- Various contemplated alternative embodiments and modifications that are suited to a particular use are within the scope of the invention. It is intended that the scope of the invention be defined by the accompanying claims and their equivalents.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
- The present invention relates to efficient organic light-emitting devices (OLEDs) which comprise a transition metal complex, wherein the transition metal complex, of either geometrical isomers, comprises two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand, and a transition metal atom as the electrophosphorescent emitter. The invention also relates to methods for preparing thin film OLEDs and their applications such as in liquid crystal displays, plasma panel displays and light-emitting diodes.
- Organic light-emitting devices (OLEDs) are finding applications as next-generation flat-panel displays (FPDs), liquid crystal displays (LCDs), and plasma display panels (PDPs). This has been driven by their favorable properties including lightweight, fast video response and low power consumption. To this end, organometallic compounds exhibiting electroluminescence are particularly attractive for electrophosphorescent applications, since both the ligand structure and the central metal atom can be varied to modify the properties of the device using these compounds.
- An organic light-emitting device (OLED) is an energy conversion device which emits light when current is applied. A multilayer OLED is generally comprised of hole and electron injection layers, hole- and electron-transporting layers, an emissive layer, metal oxide layer and metal electrodes. The use of organic small molecules and polymers in the emissive layer has attracted much attention due to their potential applications in full-color large-area flat-panel displays. Tang and VanSlyke first disclosed that organic small molecules can be prepared as thin-films by vacuum deposition to form multilayer organic light-emitting devices (OLEDs) (see Tang et al., Appl. Phys. Lett. 51:913, (1987)).
- Investigations on organic small molecules have been made in order to improve the performance of OLEDs. In general, fluorescent and phosphorescent materials are employed as light emitters in the emissive layer of OLEDs. Light emission from a fluorescent compound occurs as a result of formation of singlet excitons in the emissive layer of the electroluminescent device. U.S. Pat. No. 6,310,360 disclosed that theoretically 25% singlet excitons and 75% triplet excitons are produced after recombination of holes and electrons in the emissive layer of an electroluminescent device. The singlet excitons transfer their energy to the singlet excited state while the triplet excitons transfer their energy to triplet excited state. Most of the organic small molecules exhibit fluorescence; hence, only 25% of the generated excitons are utilized resulting in the device with low external efficiency.
- In contrast to fluorescent compounds, a series of effective phosphorescent iridium complexes with different color emissions has been reported jointly by Thompson et al. at the University of Southern California and Forrest et al. at Princeton University (see U.S. Pat. No. 6,515,298 B2; U.S. patent application Publication No.20020182441 A1; Lamansky et al., J. Am. Chem. Soc., 123:4304 (2001); and Xie et al., Adv. Mat., 13:1245 (2001)). Che et al. also demonstrated the use of organic metal complexes employing various metal centres such as platinum(II), copper(I), gold(I), and zinc(II) as OLED emitters (see U.S. patent application Publication No. 23205707 A1; U.S. patent application Publication No. 22179885 A1; Y.-Y. Lin et al., Chem. Eur. J., 29:1263 (2003); Lu et al., Chem. Commun., 206 (2002); Ma et al., New J. Chem., 263 (1999); Ma et al., Appl. Phys. Lett., 74:1361 (1999); Ho et al., Chem. Commun., 2101 (1998); and Ma et al., Chem. Commun., 2491 (1998)).
- A variety of light-emitting compounds, especially red emitters, have been investigated as active emitters in a number of device structures. U.S. Pat. No. 6,048,630 disclosed OLEDs based on phosphorescent Pt(OEP) complex (H2OEP=octylethylporphyrin) which emits saturated red electroluminescence. Thompson and Forrest et al. reported a red phosphorescent material (bis(2-(2′-benzo[4,5-a]thienyl)pyridinato-N, C3) iridium (acetylacetonate) [Btp2Ir(acac)]) with high-efficiency (ηext=7.0±0.5%) (see Adachi et al., Appl. Phys. Lett., 78:1622 (2001)). In addition, europium complex employed as red emissive dopant in OLED (Eu(TTA)3phen, TTA=thenoyltrifluoroacetone; phen=1,10-phenanthroline) was also reported to show sharp red electroluminescence (see Adachi et al., J. Appl. Phys., 87:8049, (2000)).
- Efforts in the development of red phosphorescent emitters with high efficiency for OLEDs are geared towards the full-color flat panel display application. Even though remarkable progress has been made, challenges such as optimization of stability and efficiency of OLEDs need to be met before commercialization. It is, therefore, particularly contemplated to develop phosphorescent materials, which exhibit electroluminescent (EL) emissions in visible light region, with high efficiencies and good stabilities.
- The main objective of this invention is to provide organic light-emitting devices (OLEDs) comprising an emissive layer, which employs at least one dopant complex as an electrophosphorescent emitter. The devices should exhibit low turn-on voltages, high luminance, high efficiencies, and desirable colors.
- Another objective of the present invention is to provide an OLED structure, which employs an emissive layer comprising at least one electrophosphorescent dopant complex and at least one host material.
- Yet another objective is to provide OLEDs that emit desirable colors by varying concentration of the dopant complex in the emissive layer under different applied voltages. It is concerned with the efficiencies of the selected dopant complexes, which can be used at low concentration levels in OLEDs.
- In one embodiment, the invention relates to a heterostructured organic light-emitting device comprising:
-
- a substrate upon which a first electrode is placed;
- a hole-transporting layer;
- at least one emissive layer comprising at least one host material and at least one dopant complex; the dopant complex, of either geometrical isomers, comprising at least one transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand;
- a hole-blocking layer;
- an electron-transporting layer;
- a charge injection layer; and
- a second electrode sandwiching the hole-transporting layer, emissive layer, hole-blocking layer, electron-transporting layer and charge injection layer between the first and the second electrode.
- In preferred embodiments, the invention relates to OLED comprising an emissive layer which contains at least one transition metal complex. The transition metal complexes, of either geometrical isomers, contain two bidentate NN-type ligand, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand, and a transition metal as the electrophosphorescent dopant complexes.
-
-
- M is a transition metal selected from the group consisting of Ni, Pd and Pt;
- each R1-R10 is independently —H, —OH, —NH2, -halogen, —CN, —NO2, —R13, —OR14,
- —NHR14, or —N(R14)2;
- R11 is —(C(R15)2)n,
each R12 is independently —H, —(C1-C6)alkyl, -phenyl, -naphthyl; -halogen, or —CN; - R13 is —(C1-C6)alkyl, -phenyl, or -naphthyl, each of which is unsubstituted or substituted with one or more —(C1-C6)alkyl, -phenyl, or -naphthyl;
- R14 is defined as above for R13;
- R15 is defined as above for R1;
- x is independently a carbon or nitrogen atom; and
- n is an integer number from 1 to 6.
- Another embodiment, the present invention relates to a method of preparing heterostructured organic light emitting devices with yellow, orange or red color emissions. The method includes the steps of
-
- providing a substrate upon which a first electrode is placed;
- providing a hole-transporting layer on top of the first electrode;
- forming an emissive layer on top of the hole-transporting layer, the emissive layer comprising at least one host material and at least one dopant complex, the dopant complex, of either geometrical isomers, comprising a transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand.
- providing a hole-blocking layer on top of the emissive layer;
- providing an electron-transporting layer on top of the hole-blocking layer;
- providing a charge injection layer on top of the electron-transporting layer; and
- providing a second electrode on top of the charge injection layer.
- In a preferred embodiments of the present invention includes, but is not limited to, OLEDs comprising heterostructures for producing red, orange or yellow electroluminescence; the devices contain an anode (ITO glass substance), a hole-transporting layer (N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine (β-NPB)), an emissive layer comprising a host material (4,4′-bis(carbazol-9-yl)biphenyl (CBP)) and an electrophosphorescent dopant complex as illustrated in Formulae I, II, III or IV herein), a hole-blocking layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)), an electron-transporting layer (tris(8-hydroxyquinolato) aluminum (Alq3)), a charge injection layer (lithium fluoride) and a cathode (aluminum metal).
- More preferably, the OLEDs employing electrophosphorescent dopant complexes as illustrated in Formulae I, II, III or IV herein demonstrate red, orange or yellow emission while a current is applied.
- In according with the present invention, the high efficiency OLEDs can be applied to the field of electronic flat panel display, display board for sign lamp or light source.
-
FIG. 1 . Absorption, excitation and emission spectra ofdopant complex 1 in CH3CN -
FIG. 2 . Absorption, excitation and emission spectra ofdopant complex 2 in CH3CN -
FIG. 3 . Absorption, excitation and emission spectra ofdopant complex 4 in CH3CN -
FIG. 4 . Schematic diagram of OLED in present invention -
FIG. 5 . EL spectra of OLED A with 4.0 wt.% dopant 1 at different dopant concentrations under 8 V -
FIG. 6 . EL spectra of OLED A with 4.0 wt.% dopant 1 at different applied voltages -
FIG. 7 . V-I-B curve of OLED A with 4.0 wt.% dopant 1 -
FIG. 8 . External quantum efficiency and luminous efficiency of OLED A with 4.0wt % dopant 1 -
FIG. 9 . EL spectra of OLED B with 5 wt.% dopant 2 at different dopant concentrations at 8 V -
FIG. 10 . EL spectra of OLED B with 5 wt.% dopant 2 at different applied voltages -
FIG. 11 . V-I-B curve of OLED B with 5 wt.% dopant 2 -
FIG. 12 . The external quantum efficiency and luminous efficiency of OLED B with 5.0 wt.% dopant 2 -
FIG. 13 . EL spectra of OLED C with 3 wt. % dopant 19 at different dopant concentrations at 8 V -
FIG. 14 . EL spectra of OLED C with 3 wt. % dopant 19 at different applied voltages -
FIG. 15 . V-I-B curve of OLED C with 3 wt. % dopant 19 -
FIG. 16 . The external quantum efficiency and luminous efficiency of OLED C with 3.0 wt. % dopant 19 -
FIG. 17 . EL spectra of OLED D with 4 wt. % dopant 51 at different dopant concentrations at 8 V -
FIG. 18 . EL spectra of OLED D with 4 wt. % dopant 51 at different applied voltages -
FIG. 19 . V-I-B curve of OLED D with 4 wt. % dopant 51 -
FIG. 20 . The external quantum efficiency and luminous efficiency of OLED D with 4.0 wt. % dopant 51 -
FIG. 21 EL spectra of OLED E with 1.5 wt. % dopant 99 at different dopant concentrations at 8 V -
FIG. 22 EL spectra of OLED E with 1.5 wt. % dopant 99 at different applied voltages -
FIG. 23 V-I-B curve of OLED E with 1.5 wt. % dopant 99 -
FIG. 24 External quantum efficiency and luminous efficiency of OLED E with 1.5 wt. % dopant 99 -
FIG. 25 EL spectra of OLED F with 1.6 wt.% dopant 104 at different dopant concentrations at 8 V -
FIG. 26 EL spectra of OLED F with 1.6 wt.% dopant 104 at different applied voltages -
FIG. 27 V-I-B curve of OLED F with 1.6 wt.% dopant 104 -
FIG. 28 External quantum efficiency and luminous efficiency of OLED F with 1.6 wt.% dopant 104 - Some definitions useful for describing the present invention are provided below:
- As used herein, the phrase “bidentate NN-type ligands” refers to a molecule containing an imine group and either a pyrrol group, a pyrazol group, an imidazol group, or a triazol group, which ligand is coordinated to a metal through the nitrogen atoms of these groups.
- As used herein, the phrase “bidentate NO-type ligands” refers to a molecule containing an imine group and a phenoxide group, which ligand is coordinated to a metal through the nitrogen and oxygen atoms of these groups.
- As used herein, the phrase “tetradentate NNNN-type ligand” refers to a molecule containing a two imine groups and either two pyrrol groups, two pyrazol groups, two imidazol groups, or two triazol groups, which ligand is coordinated to a metal through the nitrogen atoms of these groups.
- As used herein, the phrase “tetradentate NOON-type ligand” refers to a molecule containing two imine groups and two phenoxide groups, which ligand is coordinated to a metal through the nitrogen and oxygen atoms of these groups.
- As used herein, the phrase “light-emitting device” refers to structures presenting an assymetric impedance to current. Typically, such a device allows current to flow more easily in one direction when it is said to be forward biased. However, in some devices of the present invention, significant current may flow in the reverse biased state as well with generation of light.
- The present invention is related to a heterostructured OLED comprising an emissive layer, wherein the emissive layer comprises at least one host material and at least one emissive material. Preferably, the emissive material is a dopant complex, of either geometrical isomers, comprising a transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand. The dopant complex can be present as a monomer, a dimer, an oligomer, or mixtures thereof.
- In one embodiment, the invention relates to a heterostructured organic light-emitting device comprising:
-
- a substrate upon which a first electrode is placed;
- a hole-transporting layer;
- at least one an emissive layer comprising at least one host material and at least one dopant complex; the dopant complex, of either geometrical isomers, comprising at least one transition metal coordinated to two bidentate NN-type ligands or two bidentate NO-type ligands or a tetradentate NNNN-type ligand or a tetradentate NOON-type ligand;
- a hole-blocking layer;
- an electron-transporting layer;
- a charge injection layer; and
- a second electrode sandwiching the hole-transporting layer, emissive layer, hole-blocking layer, electron-transporting layer and charge injection layer between the first and the second electrode.
- Preferably, the emissive materials are dopant complexes, of either geometrical isomers, comprising two bidentate NN-type ligands or two bidentate NO-type ligands or a tetradentate NNNN-type ligand or a tetradentate NOON-type ligand and a transition metal atom. More preferably, the emissive materials include dopant complexes of the following formulae:
or mixtures thereof, wherein -
- M is a transition metal selected from the group consisting of Ni, Pd and Pt;
- each R1-R10 is independently —H, —OH, —NH2, -halogen, —CN, —NO2, —R13, —OR14,
- NHR14, or —N(R14)2;
- R11 is —(C(R15)2)n-,
each R12 is independently —H, —(C1-C6)alkyl, -phenyl, -naphthyl; -halogen, or —CN; - R13 is —(C1-C6)alkyl, -phenyl, or -naphthyl, each of which is unsubstituted or substituted with one or more —(C1-C6)alkyl, -phenyl, or -naphthyl;
- R14 is defined as above for R13; and
- R15 is defined as above for R1;
- x is independently carbon or nitrogen atom; and
- n is an integer from 1 to 6.
- In some embodiments, the compounds of formulae (I), (II), (III) or (IV) may comprise R1-R10 groups that are electron donors. Non-limiting examples of electron donor groups are amines including —N(R14)2 and —OR14.
- In some embodiments, the compounds of formulae (I), (II), (III) or (IV) may comprise R1-R10 groups that are electron acceptors. Non-limiting examples of electron acceptor groups include —F, —Cl, —Br, —I, —NO2, —C(O)(C1-C6), —C(O)O(C1-C6), —SCN, —SO3F and —CN.
-
- Some illustrative examples and exemplary compounds of formulas (III) and (IV) are listed below in Table 2:
TABLE 2 Structure Dopant Complex 19: n = 2, X = H, Z = H 20: n = 2, X = H, Z = Cl 21: n = 2, X = H, Z = Br 22: n = 2, X = H, Z = F 23: n = 2, X = H, Z = I 24: n = 2, X = H, Z = CH325: n = 2, X = H, Z = t-butyl 26: n = 2, X = H, Z = NO227: n = 3, #X = H, Z = H 28: n = 3, X = H, Z = Cl 29: n = 3, X = H, Z = Br 30: n = 3, X = H, Z = F 31: n = 3, X = H, Z = I 32: n = 3, X = H, Z = CH333: n = 3, X = H, Z = t-butyl 34: n = 3, X = H, Z = NO235: n = 2, X = CH3, #Z = H 36: n = 2, X = CH3, Z = Cl 37: n = 2, X = CH3, Z = Br 38: n = 2, X = CH3, Z = F 39: n = 2, X = CH3, Z = I 40: n = 2, X = CH3, Z = CH341: n = 2, X = CH3, Z = t-butyl 42: n = 2, X = CH3, Z = NO243: #n = 3, X = CH3, Z = H 44: n = 3, X = CH3, Z = Cl 45: n = 3, X = CH3, Z = Br 46: n = 3, X = CH3, Z = F 47: n = 3, X = CH3, Z = I 48: n = 3, X = CH3, Z = CH349: n = 3, X = CH3, Z = t-butyl 50: n = 3, X = CH3, #Z = NO2 51: X = H, Z = H 52: X = H, Z = Cl 53: X = H, Z = Br 54: X = H, Z = F 55: X = H, Z = I 56: X = H, Z = CH357: X = H, Z = t-butyl 58: X = H, Z = NO259: X = CH3, Z = H 60: X = CH3, Z = Cl 61: X = CH3, #Z = Br 62: X = CH3, Z = F 63: X = CH3, Z = I 64: X = CH3, Z = CH365: X = CH3, Z = t-butyl 66: X = CH3, Z = NO2 67: X = H, Y = CH3, Z = H 68: X = H, Y = CH3, Z = Cl 69: X = H, Y = CH3, Z = Br 70: X = H, Y = CH3, Z = F 71: X = H, Y = CH3, Z = I 72: X = H, Y = CH3, Z = CH373: X = H, Y = CH3, Z = t-butyl 74: X = H, #Y =CH3, Z = NO275: X = CH3, Y = CH3, Z = H 76: X = CH3, Y = CH3, Z = Cl 77: X = CH3, Y = CH3, Z = Br 78: X = CH3, Y = CH3, Z = F 79: X = CH3, Y = CH3, Z = I 80: X = CH3, Y = CH3, #Z =CH381: X = CH3, Y = CH3, Z = t-butyl 82: X = CH3, Y = CH3, Z = NO283: X = CH3, Y = CN, Z = H 84: X = CH3, Y = CN, Z = Cl 85: X = CH3, Y = CN, Z = Br 86: X = CH3, Y = CN, Z = F 87: X = CH3, #Y = CN, Z = I 88: X = CH3, Y = CN, Z = CH389: X = CH3, Y = CN, Z = t-butyl 90: X = CH3, Y = CN, Z = NO291: X = H, Y = CN, Z = H 92: X = H, Y = CN, Z = Cl 93: X = H, Y = CN, Z = Br 94: X = H, Y = CN, Z = F 95: X = H, Y = CN, #Z = I 96: X = H, Y = CN, Z = CH397: X = H, Y = CN, Z = t-butyl 98: X = H, Y = CN, Z = NO2 99: X = H, W = H, Z = H 100: X = H, W = H, Z = Cl 101: X = H, W = H, Z = Br 102: X = H, W = H, Z = F 103: X = H, W = H, Z = I 104: X = H, W = H, Z = CH3105: X = H, W = H, Z = t-butyl 106: X = H, W = H, Z = NO2107: X = #CH3, W =H, Z = H 108: X = CH3, W = H, Z = Cl 109: X = CH3, W = H, Z = Br 110: X = CH3, W = H, Z = F 111: X = CH3, W = H, Z = I 112: X = CH3, W = H, Z = CH3113: X = CH3, W = H, Z = t-butyl 114: X = CH3, #W = H, Z = NO2115: X = H, W = CH3, Z = H 116: X = H, W = CH3, Z = Cl 117: X = H, W = CH3, Z = Br 118: X = H, W = CH3, Z = F 119: X = H, W = CH3, Z = I 120: X = H, W = CH3, Z = CH3121: X = H, W = CH3, Z = #t-butyl 122: X = H, W = CH3, Z = NO2123: X = CH3, W = CH3, Z = H 124: X = CH3, W = CH3, Z = Cl 125: X = CH3, W = CH3, Z = Br 126: X = CH3, W = CH3, Z = F 127: X = CH3, W = CH3, Z = I 128: #X = CH3, W = CH3, Z = CH3129: X = CH3, W = CH3, Z = t-butyl 130: X = CH3, W = CH3, Z = NO2 131: X = H, Z = H 132: X = H, Z = Cl 133: X = H, Z = Br 134: X = H, Z = F 135: X = H, Z = I 136: X = H, Z = CH3137: X = H, Z = t-butyl 138: X = H, Z = NO2139: X = CH3, Z = H 140: X = CH3, Z = Cl 141: X = CH3, #Z = Br 142: X = CH3, Z = F 143: X = CH3, Z = I 144: X = CH3, Z = CH3145: X = CH3, Z = t-butyl 146: X = CH3, Z = NO2 147: X = H, Z = H 148: X = H, Z = Cl 149: X = H, Z = Br 150: X = H, Z = F 151: X = H, Z = I 152: X = H, Z = CH3153: X = H, Z = t-butyl 154: X = H, Z = NO2155: X = CH3, Z = H 156: X = CH3, Z = Cl 157: X = CH3, #Z = Br 158: X = CH3, Z = F 159: X = CH3, Z = I 160: X = CH3, Z = CH3161: X = CH3, Z = t-butyl 162: X = CH3, Z = NO2 163: X = H, Z = H 164: X = H, Z = Cl 165: X = H, Z = Br 166: X = H, Z = F 167: X = H, Z = I 168: X = H, Z = CH3169: X = H, Z = t-butyl 170: X = H, Z = NO2171: X = CH3, Z = H 172: X = CH3, Z = Cl 173: X = CH3, #Z = Br 174: X = CH3, Z = F 175: X = CH3, Z = I 176: X = CH3, Z = CH3177: X = CH3, Z = t-butyl 178: X = CH3, Z = NO2 - Non-limiting examples of bidentate NN-type ligands include those shown above for
dopant complexes - Non-limiting examples of bidentate NO-type ligands include those shown above for dopant complexes 67 to 98. For example, NO-type ligands are selected from ligands consisting of at least an un-substituted 6-membered or 5-membered ring or substituted 6-membered or 5-membered ring; wherein the substituted 6-membered or 5-membered ring includes at least one substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryloxycarbonyl group, a xylyloxycarbonyl group, a phenoxycarbonyl group or an alkoxycarbonyl group as well as recognized donor or acceptor groups; wherein the substituents, for example, an aryl group, may combine together to form a substituted or unsubstituted, saturated or unsaturated ring with any number of members. In a preferred embodiment, the transition metal is Pt.
- Non-limiting examples NNNN-type ligands include those shown above for dopant complexes 1-2 and 4-13. For example, NNNN-type ligands are selected from ligands consisting of at least an unsubstituted 5-membered or 6-membered ring or substituted 5-membered or 6-membered ring; wherein those substituted 5-membered or 6-membered ring includes at least a substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryloxycarbonyl group, a xylyloxycarbonyl group, a phenoxycarbonyl group or an alkoxycarbonyl group as well as recognized donor or acceptor groups; wherein the substituents, for example, an aryl group, may combine together to form a substituted or unsubstituted, saturated or unsaturated ring with any number of members. In a preferred embodiment, the transition metal is Pt.
- Non-limiting examples NOON-type ligands include those shown above for dopant complexes 19-66 and 99-178. For example, NOON-type ligands are selected from ligands consisting of at least an unsubstituted 6-membered or 5-membered ring or substituted 6-membered or 5-membered ring; wherein those substituted 6-membered or 5-membered ring includes at least a substituent selected from the groups; a hydrogen, a halogen, a hydroxyl group, an alkyl group, a cycloalkyl group, an aryl group, an acyl group, an alkoxy, an acyloxy group, an amino group, an acyl amino group, an aralkyl group, a cyano group, a carboxyl group, a thio group, a vinyl group, a ,styryl group, an aminocarbonyl group, a carbonyl group, an aranyl group, an aryloxycarbonyl group, a xylyloxycarbonyl group, a phenoxycarbonyl group or an alkoxycarbonyl group as well as recognized donor or acceptor groups; wherein the substituents, for example, an aryl group, may combine together to form a substituted or unsubstituted, saturated or unsaturated ring with any number of members. In a preferred embodiment, the transition metal is Pt.
- The present invention is also directed to methods for preparation of OLEDs that can be fabricated by a vapor deposition process.
- In one embodiment, OLEDs contain an anode, a hole-transporting layer, an emissive layer comprising at least one host material and at least one dopant complex, a hole-blocking layer, an electron-transporting layer, a charge injection layer and a cathode.
- Non-limiting examples of an anode useful for OLEDs are indium-tin-oxide (ITO) and doped polyaniline.
- Non-limiting examples of hole-transporting materials useful in the present invention are beryllium bis(2-(2′-hydroxyphenyl)pyridine, 4,440 -bis(carbazol-9-yl)biphenyl (CBP), N,N-diphenyl-N,N′-bis(1-naphthalene)benzidine (α-NPB), N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine (≢2-NPB), N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD), 4,4′,4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-TDATA) and tetrakis(diarylamino)-9,9′-spirobifluorenes.
- Non-limiting examples of host materials useful in the present invention include beryllium bis(2-(2′-hydroxyphenyl)pyridine, 4,4′-bis(carbazol-9-yl)biphenyl (CBP), N,N′-diphenyl-N,N′-bis(1-naphthalene)benzidine (α-NPB), N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine (β-NPB), N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD), 4,4′,4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-TDATA) tetrakis(diarylamino)-9,9′-spirobifluorenes, beryllium bis(2-(2′-hydroxyphenyl)pyridine (Bepp2), 3-phenyl-4-(1′-naphthyl)-5-phenyl-1,2,4-triazole (TAZ); 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 1,3-bis(N,N-t-butyl-phenyl)-1,3,4-oxadiazole (OXD7), and 1,3,5-tris(3-methyldiphenylamino)benzene (m-MTDAB).
- In this invention, at least one suitable host material was employed in an emissive layer together with at least one dopant complex.
- Non-limiting examples of dopant complexes, of either geometrical isomers, comprising a transition metal coordinated to two bidentate NN-type ligands, or two bidentate NO-type ligands, or a tetradentate NNNN-type ligand, or a tetradentate NOON-type ligand include those shown for dopant complexes 1-178 in Table 1 and 2 above. In a preferred embodiment, the dopant complexes are selected from the groups consisting of dopant complexes 1-18, 19, 22, 24-25, 27, 30, 32-33, 35, 38, 40-41, 43, 46, 48-49, 51, 54, 56-57, 59, 62, 64-65, 99, 102, 104-105, 107, 110, 112-113, 115, 118, 120-121, 123, 126, 128-129 and mixtures thereof More preferably, the dopant complexs are 1, 2, 4, 19, 35, 51, 99 and 104.
- Non-limiting examples of hole-blocking layer suitable for the present invention include 3,4,5-triphenyl-1,2,4-triazole, 3-(biphenyl-4-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 1,3.5-tris[5-(4-(1,1-dimethylethyl)phenyl)-1,3,4-oxadiazol-2-yl]benzene (TBOP).
- Non-limiting examples of electron-transporting materials for the present invention include tris(8-hydroxyquinolato) aluminum (Alq3) and 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole.
- Non-limiting examples of charge injection layer suitable for the present invention include lithium fluoride, cesium fluoride and lithium benzoate.
- Non-limiting examples of low work function metals for use as cathode in the present invention include aluminum, potassium, lithium, magnesium, silver, gold, rubidium, beryllium and cesium.
- In one preferred embodiment, the, OLED described herein comprises heterostructures for producing electroluminescence which contain an anode (ITO glass substance), a hole-transporting layer (N,N′-diphenyl-N,N′-bis(2-naphthalene)benzidine (β-NPB)), a matrix emissive layer including a
host material - Preferably, in present invention, OLEDs comprising dopant complexes as illustrated in Formula I, II, III or IV herein exhibit red, orange or yellow electroluminescence. The concentration of the dopant complexes in the emissive layer can range from 0.5 to 8.0 wt. % based on the efficiency of energy conversion between dopant complexes and host materials and molecular structure of dopant complexes. However, other concentrations can be used.
- The following examples are set forth to aid in understanding of the inventions but are not intended to, and should not be interpreted to, limit in any way the claimed invention.
- Example 1 shows the synthesis of
dopant complex 1. The tetradentate NNNN-type ligand was prepared according to modification of literature procedures (see Bacchi et al., InorganicaChimica Acta. 342:229, (2003); Male et al., J. Chem. Soc., Dalton Trans. 2487, (1997)). - Synthesis of
Dopant Complex 1 - Sodium acetate (0.077 g, 0.94 mmol) was suspended in a DMF (10 mL) solution of bidentate ligand, N,N-Bis-( 1H-pyrrol-2-ylmethylene)-ethane-1,2-diamine (0.1 g, 0.47 mmol). K2PtCl4 (0.19 g, 0.47 mmol) dissolved in DMSO (1 mL) was dropwise added to the suspension at 80° C. dropwise. The resulting yellow solution turned orange-red after being stirred at 80° C. for 4 hours. After cooling, distilled water (50 mL) was then added to the orange-red mixture to afford an orange-brown precipitate. The solid product was filtered and washed with H2O (2×10 mL) to give an orange-brown solid, which was then purified by silica gel column chromatography with CH2Cl2 as the eluent. Removal of solvent gave an orange solid. Orange red crystals were obtained by slow evaporation of acetonitrile solution of the orange solid.
- Yield: 42 mg (22%). 1H NMR (CDCl3): δ=7.67 (s, 2H, HC═N), 7.10 (m, 2H, pyrrole), 6.71 (d, J=3.3 Hz, 2H, pyrrole), 6.29 (dd, J=3.9, 1.8 Hz, 2H, pyrrole), 4.18 (s, 4H, CH2). 13C NMR (CDCl3): δ=155.7, 145.4, 137.7, 119.0, 110.7, 59.4. FAB-MS (m-NBA) (m/z): 407 {M+}. IR (KBr): v=3107, 3095, 3028, 2998, 2913, 1582, 1570 cm−1. Anal. Calcd (%) for C12H12N4Pt: C, 35.38; H, 2.97; N, 13.75. Found: C, 34.89; H, 2.98; N, 13.29.
- Example 2 shows the photophysical properties of non-limiting illustrative emissive materials corresponding to
dopant complexes dopant complexes TABLE 3 Physical characterization of dopant complexes Dopant λabs, sol. (nm) λem, sol. a τ (μs)b Complex [ε (10−4 dm3 mol−1cm−1)]a (nm) [Φem, sol.] 1 278 [1.52], 307 [1.47], 566 (max), 4.25 [0.097] 317 [1.56], 372 [sh, 1.34], 613 388 [1.85], 438 [0.45], 459 [sh, 0.36] 2 279 [1.45], 316 [1.64], 563 (max), 3.60 [0.110] 367 [1.36], 383 [1.82], 606, 656 431 [0.48], 448 [sh, 0.41] 4 246 [1.19], 310 [sh, 1.94], 680 (max), 0.57 [0.001] 324 [2.57], 379 [1.99], 740, 822 390 [sh, 1.80], 478 [sh, 1.20], 498 [1.30], 520 [sh, 1.06]
aUV/vis and PL emission was measured in acetonitrile (CH3CN)
bLifetime was measured at peak maximum
-
FIG. 1 shows representative U/vis absorption, excitation and emission spectra ofdopant complex 1 in CH3CN solution. The solution exhibits strong absorption bands ranged from 278 to 388 nm (ε=1.52 to 1.85×10−4 dm3 mol−1 cm−1) and moderately intense absorption bands from 438 to 459 nm (ε=0.45 to 0.36×10−4 dm3 mol −1 cm−1). Upon excitation at 459 nm, an orange photoluminescence (PL) emission is obtained with λmax 566 nm and 613 nm. PL quantum yield (Φ) ofcomplex 1 is 0.097. -
FIG. 2 depicts the UV/vis, excitation and emission spectra ofdopant complex 2 in CH3CN solution. The solution exhibits several vibronic absorption transitions ranged from 279 to 383 nm (ε=1.45 to 1.82×10−4 dm3 mol−1 cm−) and moderately intense absorption bands from 431 to 448 nm (ε=0.48 to 0.41×10−4 dm3 mol−1 cm−1). Thedopant complex 2 exhibits an orange PL emission bands at λmax 563 nm and 656 nm while the excitation wavelength is at 431 nm. PL quantum yield (D) ofcomplex 2 is 0.1 10. -
FIG. 3 shows the UV/vis absorption, excitation and emission spectra ofdopant complex 4 in CH3CN solution. The UV/vis absorption spectrum shows vibronic absorption transitions ranged 246 to 390 nm (ε=1.19 to 1.80×10−4 dm3 mol−1 cm−1) and moderately intense absorption bands from 478 to 520 nm (ε=1.20 to 1.06×10−4 dm3 mol−1 cm−1). The PL spectrum ofdopant 4 in CH3CN shows a deep red emission at λmax 680 nm and 740 nm. PL quantum yield ((Φ) ofcomplex 4 is 0.001. - Example 3 illustrates a non-limiting method for preparing an OLED of the present invention. The electroluminescent devices were prepared on patterned indium-tin-oxide (ITO) glass with a sheet resistance of 20 Ω/square. The glass was cleaned sequentially in detergent solution, deionized water, ethanol and acetone. After the wet-cleaning process, the ITO glass was dried at 130° C. for 1 h and treated in UV ozone cleaner for 10 mins. In the practice of the present invention of this example, the device configuration is ITO/NPB (40 nm)/CBP:X wt. % dopant complex as illustrated in formulae (I), (II), (III) or (IV) (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm); all of the layers were grown sequentially by thermal deposition at a deposition rate of about 0.2 Å/sec or about 5 Å/sec under a vacuum of 1×10−6 Torr.
- The configuration of OLED in the present invention is schematically shown in
FIG. 4 . The device has multiple layers as shown. In particular,anode layer 410 preferably comprising indium-tin-oxide is deposited uponsubstrate layer 405. The substrate can be glass or other material through which the electroluminescence can traverse. Hole-transportinglayer 415 comprising NPB is placed on top oflayer 410.Emissive layer 420 employing CBP host and dopant complex is in contact with hole-transportinglayer 415. A hole-blocking layer 425 containing BCP is deposited on theemissive layer 420. Adjacent to the hole-blocking layer 425, an electron-transportinglayer 430, preferably Alq3, is placed on it. Acharge injection layer 435 comprising LiF is then deposited on thelayer 430. On top of thelayer 435, acathode layer 440 is fabricated. Preferably, the thickness for NPB is 40 nm (hole-transporting layer 415) and theemissive layer 420 is about 30 nm thick; the hole-blocking layer 425 is 20 nm and electron-transportinglayer 430 is 30 nm. Thecharge transport layer 435 is 0.5 nm thick andcathode layer 440 is preferably about 150 nm thick. The emissive area of device is 3×3 mm2, which is defined by overlapping area between cathode and anode. Although not shown,glass substrate 405 need not be flat in all embodiments of the invention. In one embodiment, theglass substrate 405 is shaped, for instance, in a concave shape to focus the light generated inemissive layer 420, which provides even greater light intensity in a small region. In another embodiment, theglass substrate 405 is shaped, for instance, in a convex shape that spreads the generated light more diffusely. - Example 4 shows a red OLED A employing
dopant complex 1 as dopant in a CBP host. The configuration of device A is ITO/NPB (40 nm)/CBP:4 wt. % dopant 1 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 4 wt. % dopant concentration, there was a red EL emission with a peak maximum at 620 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—1931) coordinates of x=0.62 and y=0.38 is obtained at 8V. The maximum external quantum efficiency (λext), luminous efficiency (λL), power efficiency (λP) and brightness of the device are 6.5%, 9.0 cd/A, 4.0 Im/W and 11 000 cd/m2, respectively. -
FIG. 5 shows EL spectra of the OLED A with 4.0 wt.% dopant 1 at different dopant concentrations under 8 V. -
FIG. 6 shows EL spectra of the OLED A with 4.0 wt.% dopant 1 at different applied voltage. -
FIG. 7 depicts V-I-B curve of the OLED A with 4.0 wt.% dopant 1. -
FIG. 8 shows external quantum efficiency and luminous efficiency of the OLED A with 4.0 wt.% dopant 1. - Table 4 shows the EL performance of OLED A with 4.0 wt.
% dopant 1 at different dopant concentrations.TABLE 4 EL performance of OLED A with dopant 1 at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 0.5 3.5 8 030 4.1 7.1 3.1 1.0 3.4 9 700 5.5 7.4 3.5 2.0 3.5 10 050 5.9 8.6 3.8 4.0 3.2 11 000 6.5 9.0 4.0 6.0 3.3 9 500 5.6 7.5 3.3 - Example 5 demonstrates an orange OLED B employing
dopant complex 2 as dopant in a CBP host. The device configuration is ITO/NPB (40 nm)/CBP:5 wt. % dopant 2 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 5 wt. % dopant concentration, there was a orange EL emission with a peak maximum and a shoulder at 568 and 616 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—193 1) coordinates of x=0.52 and y=0.48 is obtained at 8V. The maximum external quantum efficiency (λext), luminous efficiency (λL), power efficiency (λP) and brightness of the device are 4.9%, 13.1 cd/A, 5.9 Im/W and 10120 cd/m2, respectively. -
FIG. 9 shows the EL spectra of OLED B with 5 wt.% dopant 2 at different dopant concentrations at 8 V. -
FIG. 10 shows the EL spectra of OLEDs B with 5 wt.% dopant 2 at different applied voltages. -
FIG. 11 shows the V-I-B curve of OLED B with 5 wt.% dopant 2. -
FIG. 12 shows the external quantum efficiency and luminous efficiency of OLED B with 5.0 wt.% dopant 2. - Table 5 shows the EL performance of OLED B with
dopant 2 at different dopant concentrations.TABLE 5 The EL performance of OLED B with dopant 2 at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 1.0 3.3 8 200 3.9 10.2 4.8 3.0 3.2 9 150 4.4 11.9 5.3 5.0 2.9 10 120 4.9 13.1 5.9 8.0 3.0 9 250 4.2 11.6 5.1 - Example 6 shows a yellow OLED C employing dopant complex 19 as dopant in a CBP host. The configuration of device C is ITO/NPB (40 nm)/CBP:3 wt. % dopant 19 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 3 wt. % dopant concentration, there was a yellow EL emission with a peak maximum at 620 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—1931) coordinates of x=0.49 and y=0.50 is obtained at 8V. The maximum external quantum efficiency (λext), luminous efficiency (λL), power efficiency (λP) and brightness of the device are 2.3%, 6.1 cd/A, 2.4 lm/W and 9370 cd/m2, respectively.
-
FIG. 13 shows the EL spectra of OLED C with 3 wt. % dopant 19 at different dopant concentrations at 8 V. -
FIG. 14 shows the EL spectra of OLED C with 3 wt. % dopant 19 at different applied voltages. -
FIG. 15 shows the V-I-B curve of OLED C with 3 wt. % dopant 19. -
FIG. 16 shows the external quantum efficiency and luminous efficiency of OLED C with 3.0 wt. % dopant 19. - Table 6 shows the EL performance of OLED C with dopant 19 at different dopant concentrations.
TABLE 6 EL performance of OLED C with dopant 19 at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 1.0 3.4 9 050 2.2 5.9 2.3 3.0 3.4 9 370 2.3 6.1 2.4 5.0 3.5 6 120 1.4 3.8 1.4 8.0 3.6 3 460 0.81 2.1 0.85 - Example 7 shows a yellow OLED D employing dopant complex 51 as dopant in a CBP host. The configuration of device D is ITO/NPB (40 nm)/CBP:4 wt. % dopant 51 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 4 wt. % dopant concentration, there was a yellow EL emission with a peak maximum and a shoulder at 550 and 590 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—1931) coordinates of x=0.48 and y=0.52 is obtained at 8V. The maximum external quantum efficiency (λext), luminous efficiency (λL), power efficiency (λP) and brightness of the device are 11%, 31 cd/A, 14 lm/W and 23000 cd/m2, respectively.
-
FIG. 17 shows the EL spectra of OLED D with 4 wt. % dopant 51 at different dopant concentrations at 8 V. -
FIG. 18 shows the EL spectra of OLED D with 4 wt. % dopant 51 at different applied voltages. -
FIG. 19 shows the V-I-B curve of OLED D with 4 wt. % dopant 51. -
FIG. 20 shows the external quantum efficiency and luminous efficiency of - Table 7 shows the EL performance of OLED D with dopant 51 at different dopant concentrations.
TABLE 7 EL performance of OLED D with dopant 51 at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 0.5 3.8 4 500 2.0 2.8 1.2 1.0 3.3 11 000 5.4 14 6.2 2.0 2.9 20 500 10 28 13 4.0 2.8 23 000 11 31 14 - Example 8 shows a red OLED E employing dopant complex 99 as dopant in a CBP host. The configuration of device E is ITO/NPB (40 nm)/CBP: 1.5 wt. % dopant 99 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 1.5 wt. % dopant concentration, there was a red EL emission with a peak maximum at 636 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—1931) coordinates of x=0.65 and y=0.35 is obtained at 8V. The maximum external quantum efficiency (λext), luminous efficiency (λL), power efficiency (77P) and brightness of the device are 9.4%, 11 cd/A, 4.91 m/W and 17900 cd/m2, respectively.
-
FIG. 21 shows the EL spectra of OLED E with 1.5 wt. % dopant 99 at different dopant concentrations at 8 V. -
FIG. 22 shows the EL spectra of OLED E with 1.5 wt. % dopant 99 at different applied voltages. -
FIG. 23 shows the V-I-B curve of OLED E with 1.5 wt. % dopant 99. -
FIG. 24 shows the external quantum efficiency and luminous efficiency of OLED E with 1.5 wt. % dopant 99. - Table 8 shows the EL performance of OLED E with dopant 99 at different dopant concentrations.
TABLE 8 EL performance of OLED E with dopant 99 at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 0.5 3.2 12 200 6.1 7.2 3.3 1.0 3.2 14 300 7.3 8.5 3.7 1.5 3.1 17 900 9.4 11 4.9 2.5 3.3 15 100 8.1 9.4 3.8 5.0 3.2 10 500 5.5 6.7 2.5 - Example 9 shows a red OLED F employing
dopant complex 104 as dopant in a CBP host. The configuration of device F is ITO/NPB (40 nm)/CBP: 1.6 wt. % dopant 104 (30 nm)/BCP (20 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (150 nm). At 1.6 wt. % dopant concentration, there was a red EL emission with a peak maximum at 628 nm corresponding to the 1931 Commission Internationale de L'Eclairage (CIE—1931) coordinates of x=0.64 and y=0.35 is obtained at 8V. The maximum external quantum efficiency (λext) luminous efficiency (λL), power efficiency (λP) and brightness of the device are 6.4%, 7.5 cd/A, 3.4 lm/W and 13600 cd/m2, respectively. -
FIG. 25 shows the EL spectra of OLED F with 1.6 wt.% dopant 104 at different dopant concentrations at 8 V. -
FIG. 26 shows the EL spectra of OLED F with 1.6 wt.% dopant 104 at different applied voltages. -
FIG. 27 shows the V-I-B curve of OLED F with 1.6 wt.% dopant 104. -
FIG. 28 shows the external quantum efficiency and luminous efficiency of OLED F with 1.6 wt.% dopant 104. - Table 9 shows the EL performance of OLED F with
dopant 104 at different dopant concentrations.TABLE 9 EL performance of OLED F with dopant 104at different dopant concentrations Dopant Von Bmax ηext,max ηL,max ηP,max (wt. %) (V) (cd/m2) (%) (cd/A) (lm/W) 1.0 3.1 11 300 5.1 6.1 2.7 1.6 3.0 13 600 6.4 7.5 3.4 2.8 3.1 10 100 4.7 5.5 2.5 5.0 3.0 8 500 4.1 4.7 2.2 - The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and explanation. The various cited references and documents in the preceding description are all incorporated herein by reference in their entirety for all purposes. The description is not intended to be exhaustive nor to limit the invention to the precise form disclosed. As is expected, many modifications and variations will be apparent to those skilled in the art since the embodiments were chosen and described in order to explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention. For example, an advantage of the OLEDs of the present invention is that the color of the emitted light may be tuned during fabrication by changing the concentration of the dopant complex. In other embodiments, the color and/or intensity of the emission of the OLEDs of the present invention may be changed by the use of filters, as is known in the art. Various contemplated alternative embodiments and modifications that are suited to a particular use are within the scope of the invention. It is intended that the scope of the invention be defined by the accompanying claims and their equivalents.
Claims (21)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/835,481 US20050244672A1 (en) | 2004-04-30 | 2004-04-30 | Organic light-emitting devices |
CNB2005800222010A CN100487943C (en) | 2004-04-30 | 2005-04-18 | Organic light-emitting devices |
JP2007509853A JP5149000B2 (en) | 2004-04-30 | 2005-04-18 | Organic light emitting device |
DE112005000865T DE112005000865B4 (en) | 2004-04-30 | 2005-04-18 | Organic light-emitting components |
PCT/CN2005/000522 WO2005107332A1 (en) | 2004-04-30 | 2005-04-18 | Organic light-emitting devices |
US11/713,755 US7691495B2 (en) | 2004-04-30 | 2007-03-05 | Organic light-emitting devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/835,481 US20050244672A1 (en) | 2004-04-30 | 2004-04-30 | Organic light-emitting devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/713,755 Continuation US7691495B2 (en) | 2004-04-30 | 2007-03-05 | Organic light-emitting devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050244672A1 true US20050244672A1 (en) | 2005-11-03 |
Family
ID=35187456
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/835,481 Abandoned US20050244672A1 (en) | 2004-04-30 | 2004-04-30 | Organic light-emitting devices |
US11/713,755 Expired - Lifetime US7691495B2 (en) | 2004-04-30 | 2007-03-05 | Organic light-emitting devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/713,755 Expired - Lifetime US7691495B2 (en) | 2004-04-30 | 2007-03-05 | Organic light-emitting devices |
Country Status (5)
Country | Link |
---|---|
US (2) | US20050244672A1 (en) |
JP (1) | JP5149000B2 (en) |
CN (1) | CN100487943C (en) |
DE (1) | DE112005000865B4 (en) |
WO (1) | WO2005107332A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060141285A1 (en) * | 2004-11-10 | 2006-06-29 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US20080074039A1 (en) * | 2006-09-27 | 2008-03-27 | Seiko Epson Corporation | Organic electroluminescent device and method of manufacturing organic electroluminescent device |
WO2009021663A1 (en) * | 2007-08-10 | 2009-02-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Doped semiconductor material and use thereof |
WO2009062578A1 (en) * | 2007-11-12 | 2009-05-22 | Merck Patent Gmbh | Organic electroluminescent devices comprising azomethine-metal complexes |
US20100259967A1 (en) * | 2007-11-29 | 2010-10-14 | Sony Corporation | Memory cell |
US20100314994A1 (en) * | 2009-06-16 | 2010-12-16 | Chi Ming Che | Platinum (II) Isoqulinoline-Pyridine-Benzene Based Complexes, Methods for Making Same, and Organic Light-Emitting Diodes Including Such Complexes |
US20120298932A1 (en) * | 2009-07-31 | 2012-11-29 | Tokyo Institute Of Technology | Metal complex, composition comprising same and light-emitting element using same |
WO2013014048A1 (en) * | 2011-07-26 | 2013-01-31 | Eberhard Karls Universität Tübingen | Complex compounds having tetradentate ligands and use thereof in the optoelectronic field |
US20130119425A1 (en) * | 2004-07-23 | 2013-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element and light emitting device using the same |
US20150125605A1 (en) * | 2012-11-08 | 2015-05-07 | Applied Materials, Inc. | Method Of Atomic Layer Deposition Of Elemental Metal |
US9082990B2 (en) | 2011-07-26 | 2015-07-14 | Merck Patent Gmbh | Complex compounds having a ligand containing an N donor and a P donor and the use thereof in the opto-electronic field |
US9178159B2 (en) | 2011-07-25 | 2015-11-03 | Merck Patent Gmbh | Copolymers with functionalized side chains |
US9246103B2 (en) | 2011-07-25 | 2016-01-26 | Merck Patent Gmbh | Polymers and oligomers with functionalized side groups |
US9425398B2 (en) | 2011-07-26 | 2016-08-23 | Merck Patent Gmbh | Complex compounds having anionic ligands containing two P donors and the use thereof in the opto-electronic field |
US20170309838A1 (en) * | 2016-04-22 | 2017-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20170338421A1 (en) * | 2016-04-22 | 2017-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10592742B1 (en) * | 2015-09-28 | 2020-03-17 | Amazon Technologies, Inc. | Agent re-identification |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5008974B2 (en) * | 2004-05-18 | 2012-08-22 | 日本放送協会 | Light emitting element |
DE102008057050B4 (en) * | 2008-11-13 | 2021-06-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102008057051B4 (en) * | 2008-11-13 | 2021-06-17 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US8877353B2 (en) | 2010-07-21 | 2014-11-04 | Versitech Limited | Platinum (II) tetradentate ONCN complexes for organic light-emitting diode applications |
US8957217B2 (en) | 2011-05-31 | 2015-02-17 | The University Of Hong Kong | Phosphorescent material, their preparations and applications |
WO2013035359A1 (en) * | 2011-09-08 | 2013-03-14 | 国立大学法人大阪大学 | Platinum complex |
JPWO2015053291A1 (en) * | 2013-10-11 | 2017-03-09 | 国立大学法人大阪大学 | Luminescent material containing platinum complex |
JP6319888B2 (en) * | 2014-03-11 | 2018-05-09 | 国立大学法人大阪大学 | Platinum complex and luminescent material containing the same |
CN105273712B (en) * | 2014-07-11 | 2017-07-25 | 广东阿格蕾雅光电材料有限公司 | Luminescent material for light emitting diode |
KR102344885B1 (en) * | 2015-01-09 | 2021-12-29 | 삼성전자주식회사 | Organometallic compound and organic light-emitting device including the same |
CN106431968A (en) * | 2016-09-18 | 2017-02-22 | 台州学院 | Platinum complex organic light-emitting material and application thereof |
CN106478451A (en) * | 2016-09-18 | 2017-03-08 | 台州学院 | A kind of orange light luminescent material and preparation method thereof |
JP6925620B2 (en) * | 2017-09-27 | 2021-08-25 | 国立大学法人大阪大学 | Platinum complex and luminescent material containing it |
EP3856751B1 (en) * | 2018-10-31 | 2023-05-24 | Sichuan Knowledge Express Institute for Innovative Technologies Co., Ltd. | Platinum (ii) schiff base complexes with increased emission quantum yield for red oled applications |
WO2020196624A1 (en) * | 2019-03-26 | 2020-10-01 | 国立大学法人大阪大学 | Organic electroluminescent element |
KR20210137305A (en) * | 2020-05-07 | 2021-11-17 | 삼성디스플레이 주식회사 | Organic light emitting device and electronic apparatus including the same |
CN112358430B (en) * | 2020-11-02 | 2022-09-09 | 南方科技大学 | Schiff base metal complex and preparation method thereof, perovskite solar cell and preparation method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3963708A (en) * | 1974-07-31 | 1976-06-15 | Ciba-Geigy Corporation | Bis-azomethine metal complex colorants from hydroxycoumarin derivatives or hydroxychromone derivatives |
US4008225A (en) * | 1974-07-31 | 1977-02-15 | Ciba-Geigy Corporation | Process for the manufacture of bis-azomethine metal complex colorants |
US4861904A (en) * | 1986-04-17 | 1989-08-29 | Agency Of Industrial Science And Technology | Schiff base metal complex compounds, and organometallic ultrathin film composed thereof and oxygen separation films composed thereof |
US5432014A (en) * | 1991-11-28 | 1995-07-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent element and a method for producing the same |
US5755999A (en) * | 1997-05-16 | 1998-05-26 | Eastman Kodak Company | Blue luminescent materials for organic electroluminescent devices |
US20030054198A1 (en) * | 2000-12-01 | 2003-03-20 | Akira Tsuboyama | Metal coordination compound, luminescence device and display apparatus |
US6579633B2 (en) * | 1998-06-23 | 2003-06-17 | Nessdisplay Co., Ltd. | Organometallic luminescent materials and organic electroluminescent device containing same |
US20030205707A1 (en) * | 2002-05-01 | 2003-11-06 | Che Chi-Ming | Electroluminescent materials |
US6800380B2 (en) * | 1998-06-23 | 2004-10-05 | Nessdisplay Co., Ltd. | Organometallic luminescent materials and organic electroluminescent device containing same |
US20060068222A1 (en) * | 2004-09-27 | 2006-03-30 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US20060210828A1 (en) * | 2003-04-30 | 2006-09-21 | Yuji Nakayama | Light-emitting device |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69514495T2 (en) * | 1994-08-11 | 2000-08-10 | Koninklijke Philips Electronics N.V., Eindhoven | SOLID STATE IMAGE AMPLIFIER AND X-RAY EXAMINER WITH A SOLID STATE IMAGE AMPLIFIER |
US5552547A (en) * | 1995-02-13 | 1996-09-03 | Shi; Song Q. | Organometallic complexes with built-in fluorescent dyes for use in light emitting devices |
DE19625993A1 (en) * | 1996-06-28 | 1998-01-02 | Philips Patentverwaltung | Organic electroluminescent device with charge transport layer |
US6048630A (en) * | 1996-07-02 | 2000-04-11 | The Trustees Of Princeton University | Red-emitting organic light emitting devices (OLED's) |
JP3651135B2 (en) * | 1996-08-29 | 2005-05-25 | 双葉電子工業株式会社 | Dope material for organic electroluminescence device and organic electroluminescence device |
JPH11185958A (en) * | 1997-12-17 | 1999-07-09 | Fuji Photo Film Co Ltd | Organic electroluminescent element material and organic electroluminescent element employing the material |
JP2000229966A (en) * | 1999-02-09 | 2000-08-22 | Fuji Photo Film Co Ltd | Azole derivative and its use |
EP1181842B1 (en) | 1999-03-23 | 2016-05-25 | University Of Southern California | Cyclometallated metal complexes as phosphorescent dopants in organic leds |
US6310360B1 (en) * | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
US6565994B2 (en) * | 2000-02-10 | 2003-05-20 | Fuji Photo Film Co., Ltd. | Light emitting device material comprising iridium complex and light emitting device using same material |
JP4504512B2 (en) * | 2000-05-30 | 2010-07-14 | 三井化学株式会社 | Organic electroluminescence device |
US6939624B2 (en) * | 2000-08-11 | 2005-09-06 | Universal Display Corporation | Organometallic compounds and emission-shifting organic electrophosphorescence |
JP3812730B2 (en) * | 2001-02-01 | 2006-08-23 | 富士写真フイルム株式会社 | Transition metal complex and light emitting device |
US7026480B2 (en) * | 2001-03-08 | 2006-04-11 | The University Of Hong Kong | Organometallic light-emitting material |
DE60239198D1 (en) * | 2001-05-16 | 2011-03-31 | Univ Princeton | HIGHLY EFFICIENT MULTI-COLORED ELECTROPHOSPHORESCENT OLEDS |
EP2256838B1 (en) * | 2001-08-29 | 2018-12-12 | The Trustees of Princeton University | Organic light emitting devices having charge carrier blocking layers comprising metalcomplexes |
JP3840085B2 (en) * | 2001-10-09 | 2006-11-01 | キヤノン株式会社 | Organic light emitting device |
JP2003123981A (en) | 2001-10-12 | 2003-04-25 | Canon Inc | Organic light emitting element |
JP2003332074A (en) * | 2002-05-09 | 2003-11-21 | Canon Inc | Light emitting element using metal coordination compound |
EP1398363B1 (en) * | 2002-08-29 | 2016-03-23 | UDC Ireland Limited | Light emitting element and iridium complex |
JP3963811B2 (en) * | 2002-09-30 | 2007-08-22 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4365196B2 (en) * | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4365199B2 (en) * | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | Organic electroluminescence device |
JP2004256612A (en) | 2003-02-25 | 2004-09-16 | Hitachi Maxell Ltd | Red luminescent material and organic electroluminescent element having the material |
JP2004331508A (en) | 2003-04-30 | 2004-11-25 | Takasago Internatl Corp | Platinum complex |
JP2005317213A (en) * | 2004-04-26 | 2005-11-10 | Fuji Photo Film Co Ltd | Electroluminescent element |
JP4762527B2 (en) * | 2004-11-10 | 2011-08-31 | 富士フイルム株式会社 | Organic electroluminescence device |
JP2006140218A (en) * | 2004-11-10 | 2006-06-01 | Fuji Photo Film Co Ltd | Organic electroluminescent elemnt |
JP2006140182A (en) * | 2004-11-10 | 2006-06-01 | Fuji Photo Film Co Ltd | Organic electroluminescent element |
JP2006140059A (en) | 2004-11-12 | 2006-06-01 | Fuji Photo Film Co Ltd | Production method for organic electroluminescent element, and organic electroluminescent element |
JP2007110067A (en) * | 2005-09-14 | 2007-04-26 | Fujifilm Corp | Composition for organic electroluminescence element, method of manufacturing organic electroluminescence element, and organic electroluminescence element |
-
2004
- 2004-04-30 US US10/835,481 patent/US20050244672A1/en not_active Abandoned
-
2005
- 2005-04-18 WO PCT/CN2005/000522 patent/WO2005107332A1/en active Application Filing
- 2005-04-18 DE DE112005000865T patent/DE112005000865B4/en active Active
- 2005-04-18 JP JP2007509853A patent/JP5149000B2/en active Active
- 2005-04-18 CN CNB2005800222010A patent/CN100487943C/en active Active
-
2007
- 2007-03-05 US US11/713,755 patent/US7691495B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3963708A (en) * | 1974-07-31 | 1976-06-15 | Ciba-Geigy Corporation | Bis-azomethine metal complex colorants from hydroxycoumarin derivatives or hydroxychromone derivatives |
US4008225A (en) * | 1974-07-31 | 1977-02-15 | Ciba-Geigy Corporation | Process for the manufacture of bis-azomethine metal complex colorants |
US4861904A (en) * | 1986-04-17 | 1989-08-29 | Agency Of Industrial Science And Technology | Schiff base metal complex compounds, and organometallic ultrathin film composed thereof and oxygen separation films composed thereof |
US5432014A (en) * | 1991-11-28 | 1995-07-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent element and a method for producing the same |
US5755999A (en) * | 1997-05-16 | 1998-05-26 | Eastman Kodak Company | Blue luminescent materials for organic electroluminescent devices |
US6579633B2 (en) * | 1998-06-23 | 2003-06-17 | Nessdisplay Co., Ltd. | Organometallic luminescent materials and organic electroluminescent device containing same |
US6800380B2 (en) * | 1998-06-23 | 2004-10-05 | Nessdisplay Co., Ltd. | Organometallic luminescent materials and organic electroluminescent device containing same |
US20030054198A1 (en) * | 2000-12-01 | 2003-03-20 | Akira Tsuboyama | Metal coordination compound, luminescence device and display apparatus |
US20030205707A1 (en) * | 2002-05-01 | 2003-11-06 | Che Chi-Ming | Electroluminescent materials |
US6653654B1 (en) * | 2002-05-01 | 2003-11-25 | The University Of Hong Kong | Electroluminescent materials |
US20060210828A1 (en) * | 2003-04-30 | 2006-09-21 | Yuji Nakayama | Light-emitting device |
US20060068222A1 (en) * | 2004-09-27 | 2006-03-30 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130119425A1 (en) * | 2004-07-23 | 2013-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element and light emitting device using the same |
US8872169B2 (en) * | 2004-07-23 | 2014-10-28 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element and light emitting device using the same |
US9520532B2 (en) | 2004-07-23 | 2016-12-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element and light emitting device using the same |
US10069091B2 (en) | 2004-11-10 | 2018-09-04 | Udc Ireland Limited | Organic electroluminescent device |
US20060141285A1 (en) * | 2004-11-10 | 2006-06-29 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US8815409B2 (en) * | 2004-11-10 | 2014-08-26 | Udc Ireland Limited | Organic electroluminescent device |
US8430706B2 (en) * | 2006-09-27 | 2013-04-30 | Seiko Epson Corporation | Organic electroluminescent device and method of manufacturing organic electroluminescent device |
US20080074039A1 (en) * | 2006-09-27 | 2008-03-27 | Seiko Epson Corporation | Organic electroluminescent device and method of manufacturing organic electroluminescent device |
WO2009021663A1 (en) * | 2007-08-10 | 2009-02-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Doped semiconductor material and use thereof |
WO2009062578A1 (en) * | 2007-11-12 | 2009-05-22 | Merck Patent Gmbh | Organic electroluminescent devices comprising azomethine-metal complexes |
US8487300B2 (en) | 2007-11-12 | 2013-07-16 | Merck Patent Gmbh | Organic electroluminescent devices comprising azomethine-metal complexes |
KR101571178B1 (en) | 2007-11-12 | 2015-11-23 | 메르크 파텐트 게엠베하 | Organic electroluminescent devices comprising azomethine-metal complexes |
US20100259967A1 (en) * | 2007-11-29 | 2010-10-14 | Sony Corporation | Memory cell |
WO2010145190A1 (en) | 2009-06-16 | 2010-12-23 | The University Of Hong Kong | Platinum (ii) isoquinoline-pyridine-benzene based complexes, preparing method thereof, and organic light-emitting diodes made therefrom |
US20100314994A1 (en) * | 2009-06-16 | 2010-12-16 | Chi Ming Che | Platinum (II) Isoqulinoline-Pyridine-Benzene Based Complexes, Methods for Making Same, and Organic Light-Emitting Diodes Including Such Complexes |
US20120298932A1 (en) * | 2009-07-31 | 2012-11-29 | Tokyo Institute Of Technology | Metal complex, composition comprising same and light-emitting element using same |
US9246103B2 (en) | 2011-07-25 | 2016-01-26 | Merck Patent Gmbh | Polymers and oligomers with functionalized side groups |
US9178159B2 (en) | 2011-07-25 | 2015-11-03 | Merck Patent Gmbh | Copolymers with functionalized side chains |
US9082990B2 (en) | 2011-07-26 | 2015-07-14 | Merck Patent Gmbh | Complex compounds having a ligand containing an N donor and a P donor and the use thereof in the opto-electronic field |
US9425398B2 (en) | 2011-07-26 | 2016-08-23 | Merck Patent Gmbh | Complex compounds having anionic ligands containing two P donors and the use thereof in the opto-electronic field |
US20140186984A1 (en) * | 2011-07-26 | 2014-07-03 | Merck Patent Gmbh | Complex compounds having tetradentate ligands and the use thereof in the opto-electronic field |
US9553276B2 (en) * | 2011-07-26 | 2017-01-24 | Merck Patent Gmbh | Complex compounds having tetradentate ligands and the use thereof in the opto-electronic field |
WO2013014048A1 (en) * | 2011-07-26 | 2013-01-31 | Eberhard Karls Universität Tübingen | Complex compounds having tetradentate ligands and use thereof in the optoelectronic field |
US20150125605A1 (en) * | 2012-11-08 | 2015-05-07 | Applied Materials, Inc. | Method Of Atomic Layer Deposition Of Elemental Metal |
US9234274B2 (en) * | 2012-11-08 | 2016-01-12 | Applied Materials, Inc. | Method of atomic layer deposition of elemental metal |
US11462005B1 (en) | 2015-09-28 | 2022-10-04 | Amazon Technologies, Inc. | Image partitioning for re-identification |
US11875570B1 (en) | 2015-09-28 | 2024-01-16 | Amazon Technologies, Inc. | Updating agent position information |
US10592742B1 (en) * | 2015-09-28 | 2020-03-17 | Amazon Technologies, Inc. | Agent re-identification |
US20170338421A1 (en) * | 2016-04-22 | 2017-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228002B2 (en) * | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228003B2 (en) * | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20170309838A1 (en) * | 2016-04-22 | 2017-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
Also Published As
Publication number | Publication date |
---|---|
JP2007535807A (en) | 2007-12-06 |
JP5149000B2 (en) | 2013-02-20 |
US20070148495A1 (en) | 2007-06-28 |
WO2005107332A1 (en) | 2005-11-10 |
US7691495B2 (en) | 2010-04-06 |
CN1981560A (en) | 2007-06-13 |
CN100487943C (en) | 2009-05-13 |
DE112005000865B4 (en) | 2012-10-18 |
DE112005000865T5 (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691495B2 (en) | Organic light-emitting devices | |
KR100991874B1 (en) | Electroluminescent materials | |
JP4673744B2 (en) | Organic electroluminescence device | |
US7361415B2 (en) | System and method for producing light with organic light-emitting devices | |
WO2009136596A1 (en) | Organic electroluminescent element | |
JP5684247B2 (en) | Platinum (II) isoquinoline-pyridine-benzene complex, method for producing the same, and organic light-emitting diode prepared therefrom | |
JP2005011610A (en) | Organic electroluminescent element | |
JP2001284056A (en) | Organic electroluminescent element | |
KR20170118113A (en) | Phosphorescent compound, manufacturing method and organic light emitting diode device | |
KR102073138B1 (en) | Blue phosphorescence composition and organic light emitting diode comprising the same | |
WO2003083009A1 (en) | Organic electroluminescence element | |
JP5031575B2 (en) | Organic electroluminescence device | |
KR101546089B1 (en) | Organic thin film Materials for Organic Electroluminescent Device and Organic Electroluminescent Device | |
EP1784470B1 (en) | New luminescent material and organic electroluminescent device using the same | |
JP4864708B2 (en) | Organic electroluminescence device | |
KR100649283B1 (en) | Phosphorescent host compound and organic electroluminescent device comprising same | |
KR101948789B1 (en) | Novel Organic Electroluminescent Compounds And Organic Light-Emitting Diodes Containing The Same | |
KR100611852B1 (en) | Phosphorescent red-emitting iridium complex and organic electroluminescent device comprising same | |
KR20050005084A (en) | Green color emitting compounds for organic electroluminescent device, process for preparing them and organic electroluminescent device using them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE UNIVERSITY OF HONG KONG, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHE, CHI-MING;CHAN, SIU-CHUNG;REEL/FRAME:015762/0655;SIGNING DATES FROM 20040513 TO 20040514 |
|
AS | Assignment |
Owner name: UNIVERSITY OF HONG KONG, THE, CHINA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF ASSIGNEE PREVIOUSLY RECORDED ON REEL 015762 FRAME 0655;ASSIGNORS:CHE, CHI-MING;CHAN, SIU-CHUNG;REEL/FRAME:016021/0287;SIGNING DATES FROM 20040513 TO 20040514 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |