US20050238714A1 - Anti-fungal composition - Google Patents
Anti-fungal composition Download PDFInfo
- Publication number
- US20050238714A1 US20050238714A1 US11/124,335 US12433505A US2005238714A1 US 20050238714 A1 US20050238714 A1 US 20050238714A1 US 12433505 A US12433505 A US 12433505A US 2005238714 A1 US2005238714 A1 US 2005238714A1
- Authority
- US
- United States
- Prior art keywords
- fungal
- product
- dosage form
- host
- released
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012871 anti-fungal composition Substances 0.000 title description 10
- 230000000843 anti-fungal effect Effects 0.000 claims abstract description 248
- 239000002552 dosage form Substances 0.000 claims abstract description 181
- 229940121375 antifungal agent Drugs 0.000 claims abstract description 78
- 210000002966 serum Anatomy 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 40
- 230000003111 delayed effect Effects 0.000 claims description 38
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 33
- 208000031888 Mycoses Diseases 0.000 claims description 22
- 239000003429 antifungal agent Substances 0.000 claims description 20
- 239000003937 drug carrier Substances 0.000 claims description 9
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 238000013268 sustained release Methods 0.000 claims description 4
- 239000012730 sustained-release form Substances 0.000 claims description 4
- 239000006186 oral dosage form Substances 0.000 claims 2
- 239000008188 pellet Substances 0.000 description 79
- 239000000203 mixture Substances 0.000 description 78
- 239000006185 dispersion Substances 0.000 description 58
- 238000000576 coating method Methods 0.000 description 36
- 239000011248 coating agent Substances 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 239000011159 matrix material Substances 0.000 description 26
- 238000003756 stirring Methods 0.000 description 25
- 229920003141 Eudragit® S 100 Polymers 0.000 description 23
- 229920003138 Eudragit® L 30 D-55 Polymers 0.000 description 21
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 20
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 19
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 19
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 19
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 19
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 19
- 239000000454 talc Substances 0.000 description 18
- 229910052623 talc Inorganic materials 0.000 description 18
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 16
- 229960004884 fluconazole Drugs 0.000 description 16
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 16
- 229940016286 microcrystalline cellulose Drugs 0.000 description 16
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 16
- 239000008108 microcrystalline cellulose Substances 0.000 description 16
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 15
- 229960004125 ketoconazole Drugs 0.000 description 15
- 238000009472 formulation Methods 0.000 description 14
- 239000001069 triethyl citrate Substances 0.000 description 14
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 14
- 235000013769 triethyl citrate Nutrition 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 13
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 13
- 229920002785 Croscarmellose sodium Polymers 0.000 description 11
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 11
- 229960001681 croscarmellose sodium Drugs 0.000 description 11
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000004584 weight gain Effects 0.000 description 11
- 235000019786 weight gain Nutrition 0.000 description 11
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 10
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 10
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 10
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 10
- 229960002867 griseofulvin Drugs 0.000 description 10
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 10
- 239000008101 lactose Substances 0.000 description 10
- 229940057838 polyethylene glycol 4000 Drugs 0.000 description 10
- 239000012530 fluid Substances 0.000 description 9
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 9
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 9
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 9
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000008213 purified water Substances 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 6
- 239000000908 ammonium hydroxide Substances 0.000 description 6
- 229920002301 cellulose acetate Polymers 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 229940069328 povidone Drugs 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229960002722 terbinafine Drugs 0.000 description 6
- 239000002775 capsule Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000001856 Ethyl cellulose Substances 0.000 description 4
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 4
- 239000004353 Polyethylene glycol 8000 Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 235000019325 ethyl cellulose Nutrition 0.000 description 4
- 229920001249 ethyl cellulose Polymers 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229940085678 polyethylene glycol 8000 Drugs 0.000 description 4
- 235000019446 polyethylene glycol 8000 Nutrition 0.000 description 4
- 238000011200 topical administration Methods 0.000 description 4
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 3
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 3
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 239000004815 dispersion polymer Substances 0.000 description 3
- 239000007888 film coating Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 101100422090 Arabidopsis thaliana SPH20 gene Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229920003134 Eudragit® polymer Polymers 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229960002737 fructose Drugs 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229960000699 terbinafine hydrochloride Drugs 0.000 description 2
- 229960002703 undecylenic acid Drugs 0.000 description 2
- 239000007762 w/o emulsion Substances 0.000 description 2
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 1
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- SUMAWDZJEIQACJ-UHFFFAOYSA-N 2-methylpyridine-4-carbaldehyde Chemical compound CC1=CC(C=O)=CC=N1 SUMAWDZJEIQACJ-UHFFFAOYSA-N 0.000 description 1
- HZLHRDBTVSZCBS-UVJJDBRNSA-N 4-[(e)-(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-2-methylaniline;hydrochloride Chemical compound Cl.C1=CC(=N)C(C)=C\C1=C(C=1C=C(C)C(N)=CC=1)/C1=CC=C(N)C=C1 HZLHRDBTVSZCBS-UVJJDBRNSA-N 0.000 description 1
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 1
- SODWJACROGQSMM-UHFFFAOYSA-N 5,6,7,8-tetrahydronaphthalen-1-amine Chemical compound C1CCCC2=C1C=CC=C2N SODWJACROGQSMM-UHFFFAOYSA-N 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003157 Eudragit® RL 30 D Polymers 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- OLUNPKFOFGZHRT-YGCVIUNWSA-N Naftifine hydrochloride Chemical compound Cl.C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OLUNPKFOFGZHRT-YGCVIUNWSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CRKGMGQUHDNAPB-UHFFFAOYSA-N Sulconazole nitrate Chemical compound O[N+]([O-])=O.C1=CC(Cl)=CC=C1CSC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 CRKGMGQUHDNAPB-UHFFFAOYSA-N 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- WYLQRHZSKIDFEP-UHFFFAOYSA-N benzene-1,4-dithiol Chemical compound SC1=CC=C(S)C=C1 WYLQRHZSKIDFEP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960003273 butenafine hydrochloride Drugs 0.000 description 1
- 229960002120 butoconazole nitrate Drugs 0.000 description 1
- ZHPWRQIPPNZNML-UHFFFAOYSA-N butoconazole nitrate Chemical compound O[N+]([O-])=O.C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 ZHPWRQIPPNZNML-UHFFFAOYSA-N 0.000 description 1
- 229940118258 calcium undecylenate Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229960005443 chloroxylenol Drugs 0.000 description 1
- 229960003749 ciclopirox Drugs 0.000 description 1
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 1
- 229960005228 clioquinol Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- BKACVSPFRDCXGK-JGMJEEPBSA-L copper;(e)-undec-2-enoate Chemical compound [Cu+2].CCCCCCCC\C=C\C([O-])=O.CCCCCCCC\C=C\C([O-])=O BKACVSPFRDCXGK-JGMJEEPBSA-L 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229960003645 econazole nitrate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229960001235 gentian violet Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002664 inhalation therapy Methods 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960005040 miconazole nitrate Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- RIEABXYBQSLTFR-UHFFFAOYSA-N monobutyrin Chemical compound CCCC(=O)OCC(O)CO RIEABXYBQSLTFR-UHFFFAOYSA-N 0.000 description 1
- 229960003979 naftifine hydrochloride Drugs 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 229960002894 oxiconazole nitrate Drugs 0.000 description 1
- WVNOAGNOIPTWPT-NDUABGMUSA-N oxiconazole nitrate Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)/CN1C=NC=C1 WVNOAGNOIPTWPT-NDUABGMUSA-N 0.000 description 1
- 229940056211 paraffin Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- -1 rice starch Substances 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 description 1
- 229960005265 selenium sulfide Drugs 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- IUEMQUIQAPPJDL-UHFFFAOYSA-M sodium;2,3-dihydroxypropanoate Chemical compound [Na+].OCC(O)C([O-])=O IUEMQUIQAPPJDL-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960004718 sulconazole nitrate Drugs 0.000 description 1
- 229960000580 terconazole Drugs 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- GAAKLDANOSASAM-UHFFFAOYSA-N undec-10-enoic acid;zinc Chemical compound [Zn].OC(=O)CCCCCCCCC=C GAAKLDANOSASAM-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229940045860 white wax Drugs 0.000 description 1
- 229940118257 zinc undecylenate Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4808—Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5084—Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
Definitions
- This invention relates to anti-fungal compositions and the use thereof. More particularly, this invention relates to a composition for the delivery of two or more anti-fungals, and the use thereof.
- the present invention is directed to a new and improved composition that delivers two or more anti-fungals, and the use thereof.
- an anti-fungal product for delivering at least two different anti-fungals that is comprised of at least three dosage forms each comprised of at least one anti-fungal agent and a pharmaceutically acceptable carrier, with one of the dosage forms including at least one of the at least two anti-fungals and at least one dosage form including at least a second anti-fungal of the at least two anti-fungals.
- each of the dosage forms may include two or more anti-fungals, or one or two of the dosage forms may include only one of the two or more anti-fungals and each of the remaining dosage forms may include only one or more of the different anti-fungals or two or more of the anti-fungals.
- an anti-fungal product for delivering at least two different anti-fungals wherein the product includes at least three dosage forms wherein each of the at least two anti-fungals is present in at least one of the three dosage forms.
- each of the dosage forms has a different release profile, with one of the dosage forms being an immediate release dosage form.
- the present invention is directed to treating a fungus infection by administering to a host in need thereof an anti-fungal product as hereinabove and hereinafter described.
- a single or unitary anti-fungal product that has contained therein at least three anti-fungal dosage forms, each of which has a different release profile, whereby the anti-fungal contained in each of the at least three dosage forms is released at different times, and wherein at least one of the dosage forms includes at least a first anti-fungal and at least one of the dosage forms includes at least a second anti-fungal different from the first anti-fungal.
- the anti-fungal product may be comprised of at least four different dosage forms, each of which starts to release the anti-fungal contained therein at different times after administration of the anti-fungal product.
- the anti-fungal product generally does not include more than five dosage forms with different release times.
- the anti-fungal product has an overall release profile such that when administered the maximum serum concentration of the total anti-fungal released from the product is reached in less than twelve hours, preferably in less than eleven hours. In an embodiment, the maximum serum concentration of the total anti-fungal released from the anti-fungal product is achieved no earlier than four hours after administration.
- one of the at least three dosage forms is an immediate release dosage form whereby initiation of release of anti-fungal therefrom is not substantially delayed after administration of the anti-fungal product.
- the second and third of the at least three dosage forms is a delayed dosage form (which may be a pH sensitive or a non-pH sensitive delayed dosage form, depending on the type of anti-fungal product), whereby anti-fungal released therefrom is delayed until after initiation of release of anti-fungal from the immediate release dosage form.
- anti-fungal release from the second of the at least two dosage forms achieves a C max (maximum serum concentration in the serum) at a time after anti-fungal released from the first of the at least three dosage forms achieves a C max in the serum, and anti-fungal released from the third dosage form achieves a C max in the serum after the C max of anti-fungal released from the second dosage form.
- C max maximum serum concentration in the serum
- the second of the at least two dosage forms initiates release of anti-fungal contained therein at least one hour after the first dosage form, with the initiation of the release therefrom generally occurring no more than six hours after initiation of release of anti-fungal from the first dosage form of the at least three dosage forms.
- the immediate release dosage form produces a C max for anti-fungal released therefrom within from about 0.5 to about 2 hours, with the second dosage form of the at least three dosage forms producing a C max for anti-fungal released therefrom in no more than about four hours.
- the C max for such second dosage form is achieved no earlier than two hours after administration of the anti-fungal product; however, it is possible within the scope of the invention to achieve C max in a shorter period of time.
- the anti-fungal product may contain at least three or at least four or more different dosage forms.
- the anti-fungal released from the third dosage form reaches a C max at a time later than the C max is achieved for anti-fungal released from each of the first and second dosage forms.
- release of anti-fungal from the third dosage form is started after initiation of release of anti-fungal from both the first dosage form and the second dosage form.
- C max for anti-fungal release from the third dosage form is achieved within eight hours.
- the anti-fungal product contains at least four dosage forms, with each of the at least four dosage forms having different release profiles, whereby anti-fungal released from each of the at least four different dosage forms achieves a C max at a different time.
- C max for all the anti-fungal released from the anti-fungal product is achieved in less than twelve hours, and more generally is achieved in less than eleven hours.
- the anti-fungal product is a once a day product, whereby after administration of the anti-fungal product, no further product is administered during the day; i.e., the preferred regimen is that the product is administered only once over a twenty-four hour period.
- the preferred regimen is that the product is administered only once over a twenty-four hour period.
- a single dosage anti-fungal product comprised of at least three anti-fungal dosage forms each having a different release profile with each of the dosage forms including at least one of a first or second anti-fungal and at least one of the three dosage forms including at least the first anti-fungal and at least one of the dosage forms including at least the second anti-fungal.
- Each of the dosage forms of anti-fungal in a pharmaceutically acceptable carrier may have one or more anti-fungals.
- the fourth of the at least four dosage form may be a sustained release dosage form or a delayed release dosage form. If the fourth dosage form is a sustained release dosage form, even though C max of the fourth dosage form of the at least four dosage forms is reached after the C max of each of the other dosage forms is reached, anti-fungal release from such fourth dosage form may be initiated prior to or after release from the second or third dosage form.
- an anti-fungal composition that is a mixture of anti-fungal compositions or dosage forms wherein said composition contains a first composition or dosage form comprising a first anti-fungal and a pharmaceutically acceptable carrier; a second composition or dosage form comprising the first anti-fungal and a pharmaceutically acceptable carrier; a third composition or dosage form comprising a second anti-fungal different from the first anti-fungal and a pharmaceutically acceptable carrier; and a fourth composition or dosage form comprising the second anti-fungal and a pharmaceutically acceptable carrier; wherein the second and third compositions each have a release profile that provides a maximum serum concentration of the first anti-fungal released from the second composition and a maximum serum concentration for the second anti-fungal released from the third composition at a time after the first anti-fungal released from the first composition reaches a maximum serum concentration, and wherein the fourth composition has a release profile that provides for a maximum serum concentration of the second anti-fungal released from the fourth composition at a time after the
- the release profiles of the second and third composition are such that the maximum serum concentration of the first anti-fungal released from the second composition, and the maximum serum concentration of the second anti-fungal released from the third composition are reached at approximately the same time, or where the first anti-fungal reaches a maximum serum concentration before or after the second anti-fungal reaches a maximum serum concentration.
- a first pulse in which a first anti-fungal reaches a maximum serum concentration
- a second pulse wherein a further dosage of the first anti-fungal, and an initial dosage of the second anti-fungal reach a maximum serum concentration at a time after the first pulse of the first anti-fungal reaches a maximum serum concentration
- a third pulse wherein an additional dosage of the second anti-fungal reaches a maximum serum concentration at a time after the maximum serum concentration is reached for each of the first and second anti-fungal dosages provided in the second pulse.
- the first dosage of the first anti-fungal achieves a maximum serum concentration within four hours after administration of the anti-fungal composition; the second dosage of the first anti-fungal and the first dosage of the second anti-fungal each reach a maximum serum concentration within four to eight hours after administration of the anti-fungal composition; and the second dosage of the second anti-fungal reaches a maximum serum concentration within twelve hours after administration of the anti-fungal composition.
- an anti-fungal composition that includes four different dosage forms, with the first dosage form providing an initial dosage of a first anti-fungal, the second dosage form providing a further dosage of the first anti-fungal; the third dosage form providing an initial dosage of a second anti-fungal; and the fourth dosage form providing an additional dosage of the second anti-fungal, wherein the anti-fungals released from the second and third dosage forms reach a maximum serum concentration at a time after the anti-fungal released from the first dosage form reaches a maximum serum concentration, and the anti-fungal released from the fourth dosage form reaching a maximum serum concentration at a time after the times at which the anti-fungals released from each of the first, second, and third dosage forms reach a maximum serum concentration.
- the first dosage form provides for immediate release
- the second and third dosage forms provide for a delayed release (pH or non pH dependent, with the second dosage form preferably being a pH dependent release)
- the fourth dosage form provides for pH dependent or non pH dependent release preferably non pH dependent release.
- the first dosage form generally contains from about 30 percent to about 80 percent of the first anti-fungal; the second dosage form contains from about 30 percent to about 80 percent of the first anti-fungal; the third dosage form contains from about 30 percent to about 80 percent of the second anti-fungal, and the fourth anti-fungal dosage form contains from about 30 percent to about 80 percent of the second anti-fungal.
- each unit or dosage form is present in an amount of at least 20 percent by weight, with each dosage form or unit being present in the overall composition in an amount that generally does not exceed 60 percent by weight.
- Each of the first and second dosage forms include from 20% to 80% of the total dosage of the first anti-fungal to be provided by the composition, and each of the first and second dosage forms may include the same or different dosages of the first anti-fungal.
- Each of the third and fourth dosage forms include from 20% to 80% of the total dosage of the second anti-fungal to be delivered by the composition, and each of the third and fourth units may have the same or different dosages of the anti-fungal.
- the immediate release dosage form of the product generally provides from about 20% to about 50% of the total dosage of anti-fungal to be delivered by the product, with such immediate release dosage form generally providing at least 25% of the total dosage of the anti-fungal to be delivered by the product.
- the immediate release dosage form provides from about 20% to about 30% of the total dosage of anti-fungal to be delivered by the product; however, in some cases it may be desirable to have the immediate release dosage form provide for about 45% to about 50% of the total dosage of anti-fungal to be delivered by the product.
- each of the delayed release dosage forms may provide about equal amounts of anti-fungal; however, they may also be formulated so as to provide different amounts.
- the immediate release component provides from 20% to 35% (preferably 20% to 30%), by weight, of the total anti-fungal; where there is three delayed release components, the immediate release component provides from 15% to 30%, by weight, of the total anti-fungal; and where there are four delayed release components, the immediate release component provides from 10% to 25%, by weight, of the total anti-fungal.
- the first delayed release component (the one released earlier in time) provides from 30% to 60%, by weight, of the total anti-fungal provided by the two delayed release components with the second delayed release component providing the remainder of the anti-fungal.
- the earliest released component provides 20% to 35% by weight of the total anti-fungal provided by the three delayed release components
- the next in time delayed release component provides from 20% to 40%, by weight, of the anti-fungal provided by the three delayed release components and the last in time providing the remainder of the anti-fungal provided by the three delayed release components.
- the earliest delayed release component provides from 15% to 30%, by weight
- the next in time delayed release component provides from 15% to 30%
- the next in time delayed release component provides from 20% to 35%, by weight
- the last in time delayed release component provides from 20% to 35%, by weight, in each case of the total anti-fungal provided by the four delayed release components.
- the overall composition includes each of the anti-fungals in a therapeutically effective amount.
- the specific amount(s) is dependant on the anti-fungal used, the disease or infection to be treated, and the number of times of day that the composition is to be administered.
- the anti-fungal composition of the present invention may be administered for example, by any one of the following routes of administration: sublingual, transmucosal, transdermal, parenteral, oral, preferably by oral administration.
- the anti-fungal product of the present invention may be formulated for administration by a variety of routes of administration.
- the anti-fungal product may be formulated in a way that is suitable for topical administration; administration in the eye or the ear; rectal or vaginal administration; as nose drops; by inhalation; as an injectable; or for oral administration.
- the anti-fungal product is formulated in a manner such that it is suitable for oral administration.
- the at least two different dosage forms may be formulated for topical administration by including such dosage forms in an oil-in-water emulsion, or a water-in-oil emulsion.
- the immediate release dosage form is in the continuous phase
- the delayed release dosage form is in a discontinuous phase.
- the formulation may also be produced in a manner for delivery of three dosage forms as hereinabove described.
- an oil-in-water-in-oil emulsion with oil being a continuous phase that contains the immediate release component, water dispersed in the oil containing a first delayed release dosage form, and oil dispersed in the water containing a third delayed release dosage form.
- an anti-fungal product in the form of a patch which includes anti-fungal dosage forms having different release profiles, as hereinabove described.
- the anti-fungal product may be formulated for use in the eye or ear or nose, for example, as a liquid emulsion.
- the dosage form may be coated with a hydrophobic polymer whereby a dosage form is in the oil phase of the emulsion, and a dosage form may be coated with hydrophilic polymer, whereby a dosage form is in the water phase of the emulsion.
- the anti-fungal product with at least three different dosage forms with different release profiles may be formulated for rectal or vaginal administration, as known in the art. This may take the form of a cream or emulsion, or other dissolvable dosage form similar to those used for topical administration.
- the anti-fungal product may be formulated for use in inhalation therapy by coating the particles and micronizing the particles for inhalation.
- the anti-fungal product is formulated in a manner suitable for oral administration.
- each of the dosage forms may be used as a pellet or a particle, with a pellet or particle then being formed into a unitary pharmaceutical product, for example, in a capsule, or embedded in a tablet, or suspended in a liquid for oral administration.
- each of the dosage forms of the product may be formulated as a tablet, with each of the tablets being put into a capsule to produce a unitary anti-fungal product.
- anti-fungal products may include a first dosage form in the form of a tablet that is an immediate release tablet, and may also include two or more additional tablets, each of which provides for a delayed release of the anti-fungal, as hereinabove described, whereby the C max of the anti-fungal released from each of the tablets is reached at different times, with the C max of the total anti-fungal released from the anti-fungal product being achieved in less than twelve hours.
- an anti-fungal product including at least three dosage forms with different release profiles for different routes of administration is deemed to be within the skill of the art from the teachings herein.
- the time of release can be controlled by the concentration of anti-fungals in the coating and/or the thickness of the coating.
- the immediate release portion of this system can be a mixture of ingredients that breaks down quickly after administration to release the anti-fungal. This can take the form of either a discrete pellet or granule that is mixed in with, or compressed with, the other three components.
- the materials to be added to the anti-fungals for the immediate release component can be, but are not limited to, microcrystalline cellulose, corn starch, pregelatinized starch, potato starch, rice starch, sodium carboxymethyl starch, hydroxypropylcellulose, ydroxypropylmethylcellulose, hydroxyethylcellulose, ethylcellulose, chitosan, hydroxychitosan, hydroxymethylatedchitosan, cross-linked chitosan, cross-linked hydroxymethyl chitosan, maltodextrin, mannitol, sorbitol, dextrose, maltose, fructose, glucose, levulose, sucrose, polyvinylpyrrolidone (PVP), acrylic acid derivatives (Carbopol, Eudragit, etc.), polyethylene glycols, such a low molecular weight PEGs (PEG2000-10000) and high molecular weight PEGs (Polyox) with molecular weights above 20,000
- ingredients in this system may be useful to have other ingredients in this system to aid in the dissolution of the drug, or the breakdown of the component after ingestion or administration.
- These ingredients can be surfactants, such as sodium lauryl sulfate, sodium monoglycerate, sorbitan monooleate, sorbitan monooleate, polyoxyethylene sorbitan monooleate, glyceryl monostearate, glyceryl monooleate, glyceryl monobutyrate, one of the non-ionic surfactants such as the Pluronic line of surfactants, or any other material with surface active properties, or any combination of the above.
- surfactants such as sodium lauryl sulfate, sodium monoglycerate, sorbitan monooleate, sorbitan monooleate, polyoxyethylene sorbitan monooleate, glyceryl monostearate, glyceryl monooleate, glyceryl monobutyrate, one of the non-ionic
- These materials may be present in the rate of 0.05-15% (W/W).
- compositions in this composition are the same immediate release unit, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
- Materials that can be used to obtain a delay in release suitable for this component of the invention can be, but are not limited to, polyethylene glycol (PEG) with molecular weight above 4,000 daltons (Carbowax, Polyox), waxes such as white wax or bees wax, paraffin, acrylic acid derivatives (Eudragit), propylene glycol, and ethylcellulose.
- PEG polyethylene glycol
- Carbowax, Polyox polyethylene glycol
- waxes such as white wax or bees wax
- paraffin acrylic acid derivatives
- acrylic acid derivatives Eudragit
- propylene glycol and ethylcellulose
- these materials can be present in the range of 0.5-25% (W/W) of this component.
- compositions in this composition are the same as the immediate release component, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
- the kind of materials useful for this purpose can be, but are not limited to, cellulose acetate pthalate, Eudragit L, and other pthalate salts of cellulose derivatives.
- These materials can be present in concentrations from 4-20% (W/W).
- amphotericin B flucytosine, fluconazole, griseofulvin, miconazole nitrate, terbinafine hydrochloride, ketoconazole, itraconazole, undecylenic acid and chloroxylenol, ciclopirox, clotrimazole, butenafine hydrochloride, nystatin, naftifine hydrochloride, oxiconazole nitrate, selenium sulfide, econazole nitrate, terconazole, butoconazole nitrate, carbol-fuchsin, clioquinol, methylrosaniline chloride, sodium thiosulfate, sulconazole nitrate, terbinafine hydrochloride, tioconazole, tolnaftate, undecylenic acid and undecylenate salts (calc
- Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a dry blend. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven.
- a suitable pharmaceutical drier such as a vacuum oven or forced-air oven.
- the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
- Example 1 Fluconazole 65% (W/W) Microcrystalline cellulose 20 Povidone 10 Croscarmellose sodium 5
- Example 2 Fluconazole 55% (W/W) Microcrystalline cellulose 25 Povidone 10 Croscarmellose sodium 10
- Example 3 Fluconazole 65% (W/W) Microcrystalline cellulose 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5
- Example 4 Fluconazole 75% (W/W) Polyethylene glycol 4000 10 Polyethylene glycol 2000 10 Hydroxypropylcellulose 5
- Example 5 Fluconazole 75% (W/W) Polyethylene glycol 8000 20 Polyvinylpyrrolidone 5
- Example 6 Ketoconazole 65% (W/W) Microcrystalline cellulose 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5
- Example 7 Ketoconazole 75% (W/W) Microcrystalline cellulose 15 Hydroxypropylcellulose 5 Croscarmellose sodium 5
- Example 8 Ketoconazole 75% (W/W) Polyethylene glycol 4000 10
- Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
- a suitable pharmaceutical drier such as a vacuum oven or forced-air oven.
- Example 16 Fluconazole 65% (W/W) Microcrystalline cellulose 20 Polyox 10 Croscarmellose sodium 5
- Example 17 Fluconazole 55% (W/W) Microcrystalline cellulose 25
- Example 18 Fluconazole 65% (W/W) Polyox 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5
- Example 19 Ketoconazole 70% (W/W) Polyox 20 Hydroxypropylcellulose 5 Croscarmellose sodium 5 Enteric Release Component
- Formulate the ingredients by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
- a suitable pharmaceutical drier such as a vacuum oven or forced-air oven.
- Example 20 Fluconazole 65% (W/W) Microcrystalline cellulose 20 Cellulose Acetate Pthalate 15
- Example 21 Fluconazole 55% (W/W) Microcrystalline cellulose 25
- Example 22 Fluconazole 65% (W/W) Polyox 20 Hydroxypropylcellulose pthalate 10 Eudragit L30D 5
- Example 23 Fluconazole 40% (W/W) Microcrystalline Cellulose 40 Cellulose Acetate Pthalate 10
- Example 24 Ketoconazole 70% (W/W) Hydroxypropylcellulose pthalate 15 Croscarmellose sodium 10
- Example 25 Ketoconazole 75% (W/W) Polyethylene glycol 2000 10 Eudragit L 30D 15
- Example 26 Ketoconazole 40% (W/W) Lactose 50 Eudgragit L 30D 10
- Example 27 Griseofulvin 65% (W/W) Microcrystalline Cellulose 20 Eudragit L 30D 10
- Example 28 Griseofulvin 65% (W/W) Microcrystalline Cellulose 20
- Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
- a suitable pharmaceutical drier such as a vacuum oven or forced-air oven.
- Example 33 Fluconazole 65% (W/W) Ethylcellulose 20 Polyox 10 Hydroxypropylmethylcellulose 5
- Example 34 Fluconazole 55% (W/W) Lactose 25 Polyox 10 Glyceryl monooleate 10
- Example 35 Fluconazole 70% (W/W) Polyox 20 Hydroxypropylcellulose 10
- Example 36 Ketoconazole 75% (W/W) Lactose 15 Hydroxypropylcellulose 5 Ethylcellulose 5
- Example 37 Ketoconazole 75% (W/W) Polyethylene glycol 4000 10 Lactose 10 Eudragit RL 30D 5
- Example 38 Ketoconazole 80% (W/W) Polyethylene glycol 8000 10 Hydroxypropylmethylcellulose 5 Eudgragit RS 30D 5
- Example 39 Griseofulvin 75% (W/W) Hydroxyethylcellulose 10 Polyethylene glycol 4000 10 Hydroxypropylcellulose 5
- Example 40 Griseofulvin 75% (W/W) Lac
- composition of the antifungal matrix pellets provided in Table 1. TABLE 1 Composition of Antifungal Pellets Component Percentage (%) Antifungal 50 Avicel PH 101 20 Lactose 20 PVP K29/32* 10 Purified Water Total 100 *PVP K29/32 was added as a 20% w/w aqueous solution during wet massing.
- the TEC/talc suspension is then homogenized using a PowerGen 700 high shear mixer.
- the composition of the aqueous Eudragit® S 100 dispersion applied to the antifungal matrix pellets is provided below in Table 3. TABLE 3 Eudragit ® S 100 Aqueous Coating Dispersion Component Percentage (%) Part A Eudragit ® S 100 12.0 1 N Ammonium Hydroxide 6.1 Triethyl Citrate 6.0 Purified Water 65.9 Part B Talc 2.0 Purified Water 8.0 Solid Content 20.0 Polymer Content 12.0
- Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- the following coating parameters are used to coat matrix pellets with each of the Eudragit® L 30 D-55 and Eudragit® S 100 aqueous film coating.
- Coating Equipment STREA 1 TM Table Top Laboratory Fluid Bed Coater Spray nozzle diameter 1.0 mm Material Charge 300 gram Inlet Air Temperature 40 to 45° C. Outlet Air Temperature 30 to 33° C. Atomization Air Pressure 1.8 Bar Pump Rate 2 gram per minute
- Pellets are filled into size 00 hard gelatin capsules at a ratio of 30%: 30%: 40%: Immediate-release matrix pellets uncoated, L30 D-55 coated pellets and S100 coated pellets respectively.
- the capsule is filled with the three different pellets to achieve a the desire dosage.
- the immediate release matrix pellets include the first antifungal, the L30 D-55 coated pellets are made by coating matrix pellets that contain the second antifungal and the S1100 coated pellets are made by coating matrix pellets that contain the first antifungal.
- composition of the Antifungaltrihydrate matrix pellets provided in Table 4.
- TABLE 4 Composition of AntifungalMatrix Pellets Component Percentage (%) AntifungalTrihydrate powder 92 Avicel PH 101 7.0 Hydroxypropyl methylcellulose, NF* 1.0 Total 100 *Hydroxypropyl methylcellulose was added as a 2.9% w/w aqueous solution during wet massing. 47.2 Preparation Procedure for AntifungalMatrix Pellets
- the composition of the aqueous Eudragit L30D-55 dispersion applied to the Antifungalmatrix pellets is provided below in Table 5.
- Table 5 The composition of the aqueous Eudragit L30D-55 dispersion applied to the Antifungalmatrix pellets is provided below in Table 5.
- Table 5 The composition of the aqueous Eudragit L30D-55 dispersion applied to the Antifungalmatrix pellets is provided below in Table 5.
- Table 5 The composition of the aqueous Eudragit ® L 30 D-55 Aqueous Coating Dispersion Component Percentage (%) Eudragit ® L 30 D-55 41.6 Triethyl Citrate 2.5 Talc 5.0 Purified Water 50.9 Solids Content 20.0 Polymer Content 12.5 47.4 Preparation Procedure for an Eudragit® L 30 D-55 Aqueous Dispersion
- the TEC/talc suspension is mixed using laboratory mixer.
- the composition of the aqueous Eudragit® S 100 dispersion applied to the Antifungalmatrix pellets is provided below in Table 6.
- Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- the fill weight should be adjusted to achieve the desired dosage.
- composition of the antifungal matrix pellets provided in Table 9. TABLE 9 Composition of Antifungal Pellets Component Percentage (%) Antifungal 50 Avicel PH 101 20 Lactose 20 PVP K29/32* 10 Purified Water Total 100 *PVP K29/32 was added as a 20% w/w aqueous solution during wet massing. 48.2 Preparation Procedure for Antifungal Matrix Pellets
- the composition of the aqueous Eudragit L30D-55 dispersion applied to the antifungal matrix pellets is provided below in Table 10.
- Table 10 The composition of the aqueous Eudragit L30D-55 dispersion applied to the antifungal matrix pellets is provided below in Table 10.
- Table 10 The composition of the aqueous Eudragit L30D-55 dispersion applied to the antifungal matrix pellets is provided below in Table 10.
- Table 10 TABLE 10 Eudragit ® L 30 D-55 Aqueous Coating Dispersion Component Percentage (%) Eudragit ® L 30 D-55 55.0 Triethyl Citrate 1.6 Talc 8.0 Purified Water 37.4 Solids Content 25.5 Polymer Content 15.9 48.4 Preparation Procedure for an Eudragit® L 30 D-55 Aqueous Dispersion
- the TEC/talc suspension is then homogenized using a PowerGen 700 high shear mixer.
- the composition of the aqueous Eudragit® S 100 dispersion applied to the antifungal matrix pellets is provided below in Table 11. TABLE 11 Eudragit ® S 100 Aqueous Coating Dispersion Component Percentage (%) Part A Eudragit ® S 100 12.0 1 N Ammonium Hydroxide 6.1 Triethyl Citrate 6.0 Purified Water 65.9 Part B Talc 2.0 Purified Water 8.0 Solid Content 20.0 Polymer Content 12.0 48.6 Preparation Procedure for an Eudragit® S 100 Aqueous Dispersion
- Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- the following coating parameters are used for coating with each of the Eudragit® L 30 D-55 and Eudragit® S 100 aqueous film coatings.
- Coating Equipment STREA 1 TM Table Top Laboratory Fluid Bed Coater Spray nozzle diameter 1.0 mm Material Charge 300 gram Inlet Air Temperature 40 to 45° C. Outlet Air Temperature 30 to 33° C. Atomization Air Pressure 1.8 Bar Pump Rate 2 gram per minute
- Pellets are filled into size 00 hard gelatin capsules at a ratio of 20%: 30%: 20%: 30% Immediate-release matrix pellets (uncoated), L30 D-55 coated pellets 12% weight gain, L30 D-55 coated pellets 30% weight gain and S100 coated pellets respectively.
- the capsule is filled with the four different pellets to achieve the desired dosage.
- the immediate release pellets contain the first antifungal; the L30 D-55 12% weight gain coated pellets containe the second antifungal; the L30 D-55 30% weight gain coated pellets contain the first antifungal and the S100 coated pellets contain the second antifungal.
- the present invention is advantageous in that a synergistic anti-fungal will be dosed in an alternate pulse to another, synergistic anti-fungal. This will alternate the exposure to the fungus in such a way as to make both anti-fungals more effective than if they were co-administered.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a continuation of prior U.S. application Ser. No. 10/320,113, filed on Dec. 16, 2002, which is a continuation of prior U.S. application Ser. No. 09/791,284, filed on Feb. 23, 2001, the disclosures of each of which are hereby incorporated herein by reference in their entireties.
- This invention relates to anti-fungal compositions and the use thereof. More particularly, this invention relates to a composition for the delivery of two or more anti-fungals, and the use thereof.
- In many cases, it is desirable to employ two different anti-fungals in the treatment of a fungus infection, in that such anti-fungals may have complementary mechanisms of action that facilitate treatment of the fungus infection.
- The present invention is directed to a new and improved composition that delivers two or more anti-fungals, and the use thereof.
- In accordance with an aspect of the present invention, there is provided an anti-fungal product for delivering at least two different anti-fungals that is comprised of at least three dosage forms each comprised of at least one anti-fungal agent and a pharmaceutically acceptable carrier, with one of the dosage forms including at least one of the at least two anti-fungals and at least one dosage form including at least a second anti-fungal of the at least two anti-fungals.
- Thus, for example, each of the dosage forms may include two or more anti-fungals, or one or two of the dosage forms may include only one of the two or more anti-fungals and each of the remaining dosage forms may include only one or more of the different anti-fungals or two or more of the anti-fungals. Thus, in accordance with this aspect of the invention, there is an anti-fungal product for delivering at least two different anti-fungals wherein the product includes at least three dosage forms wherein each of the at least two anti-fungals is present in at least one of the three dosage forms.
- In a preferred embodiment each of the dosage forms has a different release profile, with one of the dosage forms being an immediate release dosage form.
- In another aspect, the present invention is directed to treating a fungus infection by administering to a host in need thereof an anti-fungal product as hereinabove and hereinafter described.
- Thus, in accordance with an aspect of the present invention, there is provided a single or unitary anti-fungal product that has contained therein at least three anti-fungal dosage forms, each of which has a different release profile, whereby the anti-fungal contained in each of the at least three dosage forms is released at different times, and wherein at least one of the dosage forms includes at least a first anti-fungal and at least one of the dosage forms includes at least a second anti-fungal different from the first anti-fungal.
- In accordance with a further aspect of the invention, the anti-fungal product may be comprised of at least four different dosage forms, each of which starts to release the anti-fungal contained therein at different times after administration of the anti-fungal product.
- The anti-fungal product generally does not include more than five dosage forms with different release times.
- In accordance with a preferred embodiment, the anti-fungal product has an overall release profile such that when administered the maximum serum concentration of the total anti-fungal released from the product is reached in less than twelve hours, preferably in less than eleven hours. In an embodiment, the maximum serum concentration of the total anti-fungal released from the anti-fungal product is achieved no earlier than four hours after administration.
- In accordance with one preferred embodiment of the invention, one of the at least three dosage forms is an immediate release dosage form whereby initiation of release of anti-fungal therefrom is not substantially delayed after administration of the anti-fungal product. The second and third of the at least three dosage forms is a delayed dosage form (which may be a pH sensitive or a non-pH sensitive delayed dosage form, depending on the type of anti-fungal product), whereby anti-fungal released therefrom is delayed until after initiation of release of anti-fungal from the immediate release dosage form. More particularly, anti-fungal release from the second of the at least two dosage forms achieves a Cmax (maximum serum concentration in the serum) at a time after anti-fungal released from the first of the at least three dosage forms achieves a Cmax in the serum, and anti-fungal released from the third dosage form achieves a Cmax in the serum after the Cmax of anti-fungal released from the second dosage form.
- In one embodiment, the second of the at least two dosage forms initiates release of anti-fungal contained therein at least one hour after the first dosage form, with the initiation of the release therefrom generally occurring no more than six hours after initiation of release of anti-fungal from the first dosage form of the at least three dosage forms.
- In general, the immediate release dosage form produces a Cmax for anti-fungal released therefrom within from about 0.5 to about 2 hours, with the second dosage form of the at least three dosage forms producing a Cmax for anti-fungal released therefrom in no more than about four hours. In general, the Cmax for such second dosage form is achieved no earlier than two hours after administration of the anti-fungal product; however, it is possible within the scope of the invention to achieve Cmax in a shorter period of time.
- As hereinabove indicated, the anti-fungal product may contain at least three or at least four or more different dosage forms. For example, the anti-fungal released from the third dosage form reaches a Cmax at a time later than the Cmax is achieved for anti-fungal released from each of the first and second dosage forms. In a preferred embodiment, release of anti-fungal from the third dosage form is started after initiation of release of anti-fungal from both the first dosage form and the second dosage form. In one embodiment, Cmax for anti-fungal release from the third dosage form is achieved within eight hours.
- In another embodiment, the anti-fungal product contains at least four dosage forms, with each of the at least four dosage forms having different release profiles, whereby anti-fungal released from each of the at least four different dosage forms achieves a Cmax at a different time.
- As hereinabove indicated, in a preferred embodiment, irrespective of whether the anti-fungal contains at least three or at least four different dosage forms each with a different release profile, Cmax for all the anti-fungal released from the anti-fungal product is achieved in less than twelve hours, and more generally is achieved in less than eleven hours.
- In a preferred embodiment, the anti-fungal product is a once a day product, whereby after administration of the anti-fungal product, no further product is administered during the day; i.e., the preferred regimen is that the product is administered only once over a twenty-four hour period. Thus, in accordance with the present invention, there is a single administration of an anti-fungal product with the anti-fungal being released in a manner such that overall anti-fungal release is effected with different release profiles in a manner such that the overall Cmax for the anti-fungal product is reached in less than twelve hours. The term single administration means that the total anti-fungal administered over a twenty-four hour period is administered at the same time, which can be a single tablet or capsule or two or more thereof, provided that they are administered at essentially the same time.
- Thus in accordance with an aspect of the invention, there is provided a single dosage anti-fungal product comprised of at least three anti-fungal dosage forms each having a different release profile with each of the dosage forms including at least one of a first or second anti-fungal and at least one of the three dosage forms including at least the first anti-fungal and at least one of the dosage forms including at least the second anti-fungal. Each of the dosage forms of anti-fungal in a pharmaceutically acceptable carrier may have one or more anti-fungals.
- It is to be understood that when it is disclosed herein that a dosage form initiates release after another dosage form, such terminology means that the dosage form is designed and is intended to produce such later initiated release. It is known in the art, however, notwithstanding such design and intent, some “leakage” of anti-fungal may occur. Such “leakage” is not “release” as used herein.
- If at least four dosage forms are used, the fourth of the at least four dosage form may be a sustained release dosage form or a delayed release dosage form. If the fourth dosage form is a sustained release dosage form, even though Cmax of the fourth dosage form of the at least four dosage forms is reached after the Cmax of each of the other dosage forms is reached, anti-fungal release from such fourth dosage form may be initiated prior to or after release from the second or third dosage form.
- In accordance with an aspect of the present invention, there is provided an anti-fungal composition that is a mixture of anti-fungal compositions or dosage forms wherein said composition contains a first composition or dosage form comprising a first anti-fungal and a pharmaceutically acceptable carrier; a second composition or dosage form comprising the first anti-fungal and a pharmaceutically acceptable carrier; a third composition or dosage form comprising a second anti-fungal different from the first anti-fungal and a pharmaceutically acceptable carrier; and a fourth composition or dosage form comprising the second anti-fungal and a pharmaceutically acceptable carrier; wherein the second and third compositions each have a release profile that provides a maximum serum concentration of the first anti-fungal released from the second composition and a maximum serum concentration for the second anti-fungal released from the third composition at a time after the first anti-fungal released from the first composition reaches a maximum serum concentration, and wherein the fourth composition has a release profile that provides for a maximum serum concentration of the second anti-fungal released from the fourth composition at a time after the anti-fungals released from the second and third compositions reach a maximum serum concentration.
- In one embodiment, the release profiles of the second and third composition are such that the maximum serum concentration of the first anti-fungal released from the second composition, and the maximum serum concentration of the second anti-fungal released from the third composition are reached at approximately the same time, or where the first anti-fungal reaches a maximum serum concentration before or after the second anti-fungal reaches a maximum serum concentration.
- In effect, in accordance with a preferred embodiment of the present invention, there is provided a first pulse in which a first anti-fungal reaches a maximum serum concentration, a second pulse wherein a further dosage of the first anti-fungal, and an initial dosage of the second anti-fungal reach a maximum serum concentration at a time after the first pulse of the first anti-fungal reaches a maximum serum concentration, and a third pulse wherein an additional dosage of the second anti-fungal reaches a maximum serum concentration at a time after the maximum serum concentration is reached for each of the first and second anti-fungal dosages provided in the second pulse.
- In a preferred embodiment of the present invention, the first dosage of the first anti-fungal achieves a maximum serum concentration within four hours after administration of the anti-fungal composition; the second dosage of the first anti-fungal and the first dosage of the second anti-fungal each reach a maximum serum concentration within four to eight hours after administration of the anti-fungal composition; and the second dosage of the second anti-fungal reaches a maximum serum concentration within twelve hours after administration of the anti-fungal composition.
- Thus, in accordance with an aspect of the present invention, there is provided an anti-fungal composition that includes four different dosage forms, with the first dosage form providing an initial dosage of a first anti-fungal, the second dosage form providing a further dosage of the first anti-fungal; the third dosage form providing an initial dosage of a second anti-fungal; and the fourth dosage form providing an additional dosage of the second anti-fungal, wherein the anti-fungals released from the second and third dosage forms reach a maximum serum concentration at a time after the anti-fungal released from the first dosage form reaches a maximum serum concentration, and the anti-fungal released from the fourth dosage form reaching a maximum serum concentration at a time after the times at which the anti-fungals released from each of the first, second, and third dosage forms reach a maximum serum concentration.
- In one embodiment of the invention, the first dosage form provides for immediate release, the second and third dosage forms provide for a delayed release (pH or non pH dependent, with the second dosage form preferably being a pH dependent release), and the fourth dosage form provides for pH dependent or non pH dependent release preferably non pH dependent release.
- In formulating the anti-fungal composition of the present invention, which contains four different dosage forms, as hereinabove described, the first dosage form generally contains from about 30 percent to about 80 percent of the first anti-fungal; the second dosage form contains from about 30 percent to about 80 percent of the first anti-fungal; the third dosage form contains from about 30 percent to about 80 percent of the second anti-fungal, and the fourth anti-fungal dosage form contains from about 30 percent to about 80 percent of the second anti-fungal. In formulating a composition comprised of such four dosage forms or units, each unit or dosage form is present in an amount of at least 20 percent by weight, with each dosage form or unit being present in the overall composition in an amount that generally does not exceed 60 percent by weight.
- Each of the first and second dosage forms include from 20% to 80% of the total dosage of the first anti-fungal to be provided by the composition, and each of the first and second dosage forms may include the same or different dosages of the first anti-fungal.
- Each of the third and fourth dosage forms include from 20% to 80% of the total dosage of the second anti-fungal to be delivered by the composition, and each of the third and fourth units may have the same or different dosages of the anti-fungal.
- In formulating an anti-fungal product in accordance with the invention, in one embodiment, the immediate release dosage form of the product generally provides from about 20% to about 50% of the total dosage of anti-fungal to be delivered by the product, with such immediate release dosage form generally providing at least 25% of the total dosage of the anti-fungal to be delivered by the product. In many cases, the immediate release dosage form provides from about 20% to about 30% of the total dosage of anti-fungal to be delivered by the product; however, in some cases it may be desirable to have the immediate release dosage form provide for about 45% to about 50% of the total dosage of anti-fungal to be delivered by the product.
- The remaining dosage forms deliver the remainder of the anti-fungal. If more than one delayed release dosage form is used, in one embodiment, each of the delayed release dosage forms may provide about equal amounts of anti-fungal; however, they may also be formulated so as to provide different amounts.
- In one embodiment, where the composition contains one immediate release component and two delayed release components, the immediate release component provides from 20% to 35% (preferably 20% to 30%), by weight, of the total anti-fungal; where there is three delayed release components, the immediate release component provides from 15% to 30%, by weight, of the total anti-fungal; and where there are four delayed release components, the immediate release component provides from 10% to 25%, by weight, of the total anti-fungal.
- With respect to the delayed release components, where there are two delayed release components, the first delayed release component (the one released earlier in time) provides from 30% to 60%, by weight, of the total anti-fungal provided by the two delayed release components with the second delayed release component providing the remainder of the anti-fungal.
- Where there are three delayed release components, the earliest released component provides 20% to 35% by weight of the total anti-fungal provided by the three delayed release components, the next in time delayed release component provides from 20% to 40%, by weight, of the anti-fungal provided by the three delayed release components and the last in time providing the remainder of the anti-fungal provided by the three delayed release components.
- When there are four delayed release components, the earliest delayed release component provides from 15% to 30%, by weight, the next in time delayed release component provides from 15% to 30%, the next in time delayed release component provides from 20% to 35%, by weight, and the last in time delayed release component provides from 20% to 35%, by weight, in each case of the total anti-fungal provided by the four delayed release components.
- The overall composition includes each of the anti-fungals in a therapeutically effective amount. The specific amount(s) is dependant on the anti-fungal used, the disease or infection to be treated, and the number of times of day that the composition is to be administered.
- The anti-fungal composition of the present invention may be administered for example, by any one of the following routes of administration: sublingual, transmucosal, transdermal, parenteral, oral, preferably by oral administration.
- The anti-fungal product of the present invention, as hereinabove described, may be formulated for administration by a variety of routes of administration. For example, the anti-fungal product may be formulated in a way that is suitable for topical administration; administration in the eye or the ear; rectal or vaginal administration; as nose drops; by inhalation; as an injectable; or for oral administration. In a preferred embodiment, the anti-fungal product is formulated in a manner such that it is suitable for oral administration.
- For example, in formulating the anti-fungal product for topical administration, such as by application to the skin, the at least two different dosage forms, each of which contains an anti-fungal, may be formulated for topical administration by including such dosage forms in an oil-in-water emulsion, or a water-in-oil emulsion. In such a formulation, the immediate release dosage form is in the continuous phase, and the delayed release dosage form is in a discontinuous phase. The formulation may also be produced in a manner for delivery of three dosage forms as hereinabove described. For example, there may be provided an oil-in-water-in-oil emulsion, with oil being a continuous phase that contains the immediate release component, water dispersed in the oil containing a first delayed release dosage form, and oil dispersed in the water containing a third delayed release dosage form.
- It is also within the scope of the invention to provide an anti-fungal product in the form of a patch, which includes anti-fungal dosage forms having different release profiles, as hereinabove described.
- In addition, the anti-fungal product may be formulated for use in the eye or ear or nose, for example, as a liquid emulsion. For example, the dosage form may be coated with a hydrophobic polymer whereby a dosage form is in the oil phase of the emulsion, and a dosage form may be coated with hydrophilic polymer, whereby a dosage form is in the water phase of the emulsion.
- Furthermore, the anti-fungal product with at least three different dosage forms with different release profiles may be formulated for rectal or vaginal administration, as known in the art. This may take the form of a cream or emulsion, or other dissolvable dosage form similar to those used for topical administration.
- As a further embodiment, the anti-fungal product may be formulated for use in inhalation therapy by coating the particles and micronizing the particles for inhalation.
- In a preferred embodiment, the anti-fungal product is formulated in a manner suitable for oral administration. Thus, for example, for oral administration, each of the dosage forms may be used as a pellet or a particle, with a pellet or particle then being formed into a unitary pharmaceutical product, for example, in a capsule, or embedded in a tablet, or suspended in a liquid for oral administration.
- Alternatively, in formulating an oral delivery system, each of the dosage forms of the product may be formulated as a tablet, with each of the tablets being put into a capsule to produce a unitary anti-fungal product. Thus, for example, anti-fungal products may include a first dosage form in the form of a tablet that is an immediate release tablet, and may also include two or more additional tablets, each of which provides for a delayed release of the anti-fungal, as hereinabove described, whereby the Cmax of the anti-fungal released from each of the tablets is reached at different times, with the Cmax of the total anti-fungal released from the anti-fungal product being achieved in less than twelve hours.
- The formulation of an anti-fungal product including at least three dosage forms with different release profiles for different routes of administration is deemed to be within the skill of the art from the teachings herein. As known in the art, with respect to delayed release, the time of release can be controlled by the concentration of anti-fungals in the coating and/or the thickness of the coating.
- The Immediate Release Component
- The immediate release portion of this system can be a mixture of ingredients that breaks down quickly after administration to release the anti-fungal. This can take the form of either a discrete pellet or granule that is mixed in with, or compressed with, the other three components.
- The materials to be added to the anti-fungals for the immediate release component can be, but are not limited to, microcrystalline cellulose, corn starch, pregelatinized starch, potato starch, rice starch, sodium carboxymethyl starch, hydroxypropylcellulose, ydroxypropylmethylcellulose, hydroxyethylcellulose, ethylcellulose, chitosan, hydroxychitosan, hydroxymethylatedchitosan, cross-linked chitosan, cross-linked hydroxymethyl chitosan, maltodextrin, mannitol, sorbitol, dextrose, maltose, fructose, glucose, levulose, sucrose, polyvinylpyrrolidone (PVP), acrylic acid derivatives (Carbopol, Eudragit, etc.), polyethylene glycols, such a low molecular weight PEGs (PEG2000-10000) and high molecular weight PEGs (Polyox) with molecular weights above 20,000 daltons.
- It may be useful to have these materials present in the range of 1.0 to 60% (W/W).
- In addition, it may be useful to have other ingredients in this system to aid in the dissolution of the drug, or the breakdown of the component after ingestion or administration. These ingredients can be surfactants, such as sodium lauryl sulfate, sodium monoglycerate, sorbitan monooleate, sorbitan monooleate, polyoxyethylene sorbitan monooleate, glyceryl monostearate, glyceryl monooleate, glyceryl monobutyrate, one of the non-ionic surfactants such as the Pluronic line of surfactants, or any other material with surface active properties, or any combination of the above.
- These materials may be present in the rate of 0.05-15% (W/W).
- The Delayed Release Component
- The components in this composition are the same immediate release unit, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
- Materials that can be used to obtain a delay in release suitable for this component of the invention can be, but are not limited to, polyethylene glycol (PEG) with molecular weight above 4,000 daltons (Carbowax, Polyox), waxes such as white wax or bees wax, paraffin, acrylic acid derivatives (Eudragit), propylene glycol, and ethylcellulose.
- Typically these materials can be present in the range of 0.5-25% (W/W) of this component.
- The Enteric Release Component
- The components in this composition are the same as the immediate release component, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
- The kind of materials useful for this purpose can be, but are not limited to, cellulose acetate pthalate, Eudragit L, and other pthalate salts of cellulose derivatives.
- These materials can be present in concentrations from 4-20% (W/W).
- The following are representative examples of some antifungals that can be employed in the composition of the invention: amphotericin B, flucytosine, fluconazole, griseofulvin, miconazole nitrate, terbinafine hydrochloride, ketoconazole, itraconazole, undecylenic acid and chloroxylenol, ciclopirox, clotrimazole, butenafine hydrochloride, nystatin, naftifine hydrochloride, oxiconazole nitrate, selenium sulfide, econazole nitrate, terconazole, butoconazole nitrate, carbol-fuchsin, clioquinol, methylrosaniline chloride, sodium thiosulfate, sulconazole nitrate, terbinafine hydrochloride, tioconazole, tolnaftate, undecylenic acid and undecylenate salts (calcium undecylenate, copper undecylenate, zinc undecylenate)
- The invention will be further described with respect to the following examples; however, the scope of the invention is not limited thereby. All percentages in this specification, unless otherwise specified, are by weight.
- Immediate Release Component
- Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a dry blend. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. The product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
Example 1: Fluconazole 65% (W/W) Microcrystalline cellulose 20 Povidone 10 Croscarmellose sodium 5 Example 2: Fluconazole 55% (W/W) Microcrystalline cellulose 25 Povidone 10 Croscarmellose sodium 10 Example 3: Fluconazole 65% (W/W) Microcrystalline cellulose 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5 Example 4: Fluconazole 75% (W/W) Polyethylene glycol 4000 10 Polyethylene glycol 2000 10 Hydroxypropylcellulose 5 Example 5: Fluconazole 75% (W/W) Polyethylene glycol 8000 20 Polyvinylpyrrolidone 5 Example 6: Ketoconazole 65% (W/W) Microcrystalline cellulose 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5 Example 7: Ketoconazole 75% (W/W) Microcrystalline cellulose 15 Hydroxypropylcellulose 5 Croscarmellose sodium 5 Example 8: Ketoconazole 75% (W/W) Polyethylene glycol 4000 10 Polyethylene glycol 2000 10 Hydroxypropylcellulose 5 Example 9: Ketoconazole 75% (W/W) Polyethylene glycol 8000 20 Polyvinylpyrrolidone 5 Example 10: Griseofulvin 65% (W/W) Microcrystalline cellulose 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5 Example 11: Griseofulvin 75% (W/W) Microcrystalline cellulose 15 Hydroxypropylcellulose 5 Croscarmellose sodium 5 Example 12: Griseofulvin 75% (W/W) Polyethylene glycol 4000 10 Polytheylene glycol 2000 10 Hydroxypropylcellulose 5 Example 13: Cirpofloxacin 75% (W/W) Polyethylene glycol 8000 20 Polyvinylpyrrolidone 5 Example 14: Terbinafine HCl 75% (W/W) Polyethylene glycol 4000 10 Polyethylene glycol 2000 10 Hydroxypropylcellulose 5 Example 15: Terbinafine HCl 75% (W/W) Polyethylene Glycol 4000 20 Polyvinylpyrrolidone 5
Non pH Sensitive Delayed Release Component - Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
Ingredient Conc. (% W/W) Example 16: Fluconazole 65% (W/W) Microcrystalline cellulose 20 Polyox 10 Croscarmellose sodium 5 Example 17: Fluconazole 55% (W/W) Microcrystalline cellulose 25 Polyox 10 Glyceryl monooleate 10 Example 18: Fluconazole 65% (W/W) Polyox 20 Hydroxypropylcellulose 10 Croscarmellose sodium 5 Example 19: Ketoconazole 70% (W/W) Polyox 20 Hydroxypropylcellulose 5 Croscarmellose sodium 5
Enteric Release Component - Formulate the ingredients by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
Ingredient Conc. (% W/W) Example 20: Fluconazole 65% (W/W) Microcrystalline cellulose 20 Cellulose Acetate Pthalate 15 Example 21: Fluconazole 55% (W/W) Microcrystalline cellulose 25 Cellulose Acetate Pthalate 10 Hydroxypropylmethylcellulose 10 Example 22: Fluconazole 65% (W/W) Polyox 20 Hydroxypropylcellulose pthalate 10 Eudragit L30D 5 Example 23: Fluconazole 40% (W/W) Microcrystalline Cellulose 40 Cellulose Acetate Pthalate 10 Example 24: Ketoconazole 70% (W/W) Hydroxypropylcellulose pthalate 15 Croscarmellose sodium 10 Example 25: Ketoconazole 75% (W/W) Polyethylene glycol 2000 10 Eudragit L 30D 15 Example 26: Ketoconazole 40% (W/W) Lactose 50 Eudgragit L 30D 10 Example 27: Griseofulvin 65% (W/W) Microcrystalline Cellulose 20 Eudragit L 30D 10 Example 28: Griseofulvin 75% (W/W) Microcrystalline Cellulose 15 Hydroxypropylcellulose pthalate 10 Example 29: Griseofulvin 80% (W/W) Lactose 10 Eudragit L 30D 10 Example 30: Griseofulvin 70% (W/W) Polyethylene glycol 4000 20 Cellulose acetate pthalate 10 Example 31: Terbinafine HCl 60% (W/W) Polyethylene glycol 2000 10 Lactose 20 Eudragit L 30D 10 Example 32: Terbinafine HCl 70% (W/W) Microcrystalline cellulose 20 Cellulose acetate pthalate 10
Sustained Release Component - Formulate the composition by mixing the ingredients in a suitable pharmaceutical mixer or granulator such as a planetary mixer, high-shear granulator, fluid bed granulator, or extruder, in the presence of water or other solvent, or in a hot melt process. If water or other solvent was used, dry the blend in a suitable pharmaceutical drier, such as a vacuum oven or forced-air oven. Allow the product to cool, the product may be sieved or granulated, and compressed using a suitable tablet press, such as a rotary tablet press.
Ingredient Conc. (% W/W) Example 33: Fluconazole 65% (W/W) Ethylcellulose 20 Polyox 10 Hydroxypropylmethylcellulose 5 Example 34: Fluconazole 55% (W/W) Lactose 25 Polyox 10 Glyceryl monooleate 10 Example 35: Fluconazole 70% (W/W) Polyox 20 Hydroxypropylcellulose 10 Example 36: Ketoconazole 75% (W/W) Lactose 15 Hydroxypropylcellulose 5 Ethylcellulose 5 Example 37: Ketoconazole 75% (W/W) Polyethylene glycol 4000 10 Lactose 10 Eudragit RL 30D 5 Example 38: Ketoconazole 80% (W/W) Polyethylene glycol 8000 10 Hydroxypropylmethylcellulose 5 Eudgragit RS 30D 5 Example 39: Griseofulvin 75% (W/W) Hydroxyethylcellulose 10 Polyethylene glycol 4000 10 Hydroxypropylcellulose 5 Example 40: Griseofulvin 75% (W/W) Lactose 10 Povidone (PVP) 10 Polyethylene glycol 2000 5 Example 41: Terbinafine HCl 75% (W/W) Polyethylene glycol 4000 10 Povidone (PVP) 10 Hydroxypropylcellulose 5 Example 42: Terbinafine HCl 75% (W/W) Lactose 15 Polyethylene glycol 4000 5 Polyvinylpyrrolidone 5 Example 43: Ketoconazole 40% (W/W) Eudragit S100 50 Triethyl Citrate 10 Example 44: Ketoconazole 50% (W/W) Sureteric 50 Example 45: Ketoconazole 50% (W/W) Eudragit S100 45 Triethyl Citrate 5
Three Pulses - 1. Antifungal Matrix Pellet Formulation and Preparation Procedure (Immediate Release)
- A. Pellet Formulation
- The composition of the antifungal matrix pellets provided in Table 1.
TABLE 1 Composition of Antifungal Pellets Component Percentage (%) Antifungal 50 Avicel PH 101 20 Lactose 20 PVP K29/32* 10 Purified Water Total 100
*PVP K29/32 was added as a 20% w/w aqueous solution during wet massing.
- B. Preparation Procedure for Antifungal Matrix Pellets
- 1.2.1 Blend metronidazole and Avicel® PH 101 using a Robot Coupe high shear granulator.
- 1.2.2 Add 20% Povidone K29/32 binder solution slowly into the powder blend under continuous mixing.
- 1.2.3 Extrude the wet mass using an LCI Bench Top Granulator. The diameter of the screen of the Bench Top Granulator was 1.0 mm.
- 1.2.4 Spheronize the extrudate using a Model SPH20 Caleva Spheronizer.
- 1.2.5 Dry the spheronized pellets at 50° C. overnight.
- 1.2.6 Pellets between 16 and 30 Mesh were collected for further processing.
- The above procedure is used to make pellets of a first antifungal and pellets of a second different antifungal.
- 1.3 Preparation of an Eudragit® L 30 D-55 Aqueous Coating Dispersion
- A. Dispersion Formulation
- The composition of the aqueous Eudragit L30D-55 dispersion applied to the antifungal matrix pellets is provided below in Table 2.
TABLE 2 Eudragit ® L 30 D-55 Aqueous Coating Dispersion Component Percentage (%) Eudragit ® L 30 D-55 55.0 Triethyl Citrate 1.6 Talc 8.0 Purified Water 37.4 Solids Content 25.5 Polymer Content 15.9 - B. Preparation Procedure for an Eudragit® L 30 D-55 Aqueous Dispersion
- 1.3.1 Suspend triethyl citrate and talc in deionized water.
- 1.3.2 The TEC/talc suspension is then homogenized using a PowerGen 700 high shear mixer.
- 1.3.3 Add the TEC/talc suspension slowly to the Eudragit® L 30 D-55 latex dispersion while stirring.
- 1.3.4 Allow the coating dispersion to stir for one hour prior to application onto the antifungal matrix pellets.
- 1.4 Preparation of an Eudragit® S 100 Aqueous Coating Dispersion
- A. Dispersion Formulation
- The composition of the aqueous Eudragit® S 100 dispersion applied to the antifungal matrix pellets is provided below in Table 3.
TABLE 3 Eudragit ® S 100 Aqueous Coating Dispersion Component Percentage (%) Part A Eudragit ® S 100 12.0 1 N Ammonium Hydroxide 6.1 Triethyl Citrate 6.0 Purified Water 65.9 Part B Talc 2.0 Purified Water 8.0 Solid Content 20.0 Polymer Content 12.0 - B. Preparation Procedure for an Eudragit® S 100 Aqueous Dispersion
- Part I:
- (i) Dispense Eudragit® S 100 powder in deionized water with stirring.
- (ii) Add ammonium hydroxide solution drop-wise into the dispersion with stirring.
- (iii) Allow the partially neutralized dispersion to stir for 60 minutes.
- (iv) Add triethyl citrate drop-wise into the dispersion with stirring. Stir for about 2 hours prior to the addition of Part B.
- Part II:
- (i) Disperse talc in the required amount of water
- (ii) Homogenize the dispersion using a PowerGen 700D high shear mixer.
- (iii) Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- 1.5 Coating Conditions for the Application of Aqueous Coating Dispersions
- The following coating parameters are used to coat matrix pellets with each of the Eudragit® L 30 D-55 and Eudragit® S 100 aqueous film coating.
Coating Equipment STREA 1 ™ Table Top Laboratory Fluid Bed Coater Spray nozzle diameter 1.0 mm Material Charge 300 gram Inlet Air Temperature 40 to 45° C. Outlet Air Temperature 30 to 33° C. Atomization Air Pressure 1.8 Bar Pump Rate 2 gram per minute - (i) Coat matrix pellets with L30 D-55 dispersion such that you apply 12% coat weight gain to the pellets.
- (ii) Coat matrix pellets with S100 dispersion such that you apply 20% coat weight gain to the pellets.
- 1.6 Encapsulation of the Antifungal Pellets
- Pellets are filled into size 00 hard gelatin capsules at a ratio of 30%: 30%: 40%: Immediate-release matrix pellets uncoated, L30 D-55 coated pellets and S100 coated pellets respectively. The capsule is filled with the three different pellets to achieve a the desire dosage.
- The immediate release matrix pellets include the first antifungal, the L30 D-55 coated pellets are made by coating matrix pellets that contain the second antifungal and the S1100 coated pellets are made by coating matrix pellets that contain the first antifungal.
- Three Pulses
- Antifungal Pellet Formulation and Preparation Procedure
- 47.1 Pellet Formulations for Subsequent Coating
- The composition of the Antifungaltrihydrate matrix pellets provided in Table 4.
TABLE 4 Composition of AntifungalMatrix Pellets Component Percentage (%) AntifungalTrihydrate powder 92 Avicel PH 101 7.0 Hydroxypropyl methylcellulose, NF* 1.0 Total 100
*Hydroxypropyl methylcellulose was added as a 2.9% w/w aqueous solution during wet massing.
47.2 Preparation Procedure for AntifungalMatrix Pellets - 47.2.1 Blend Antifungaland Avicel® PH 101 using a low shear blender.
- 47.2.2 Add the hydroxypropyl methylcellulose binder solution slowly into the powder blend under continuous mixing.
- 47.2.3 Extrude the wet mass using an LCI Bench Top Granulator. The diameter of the screen of the Bench Top Granulator is 0.8 mm.
- 47.2.4 Spheronize the extrudate using a QJ-230 Spheronizer using a small cross section plate.
- 47.2.5 Dry the spheronized pellets at 60° C. using a fluid bed dryer until the exhaust temperature reaches 40° C.
- 47.2.6 Pellets between 20 and 40 Mesh were collected for further processing.
- 47.2.7 The above procedure is used to produce pellets that contain a first antifungal and pellets that contain a second and different antifungal.
- 47.3 Preparation of an Eudragit® L 30 D-55 Aqueous Coating Dispersion
- 47.3.1 Dispersion Formulation
- The composition of the aqueous Eudragit L30D-55 dispersion applied to the Antifungalmatrix pellets is provided below in Table 5.
TABLE 5 Eudragit ® L 30 D-55 Aqueous Coating Dispersion Component Percentage (%) Eudragit ® L 30 D-55 41.6 Triethyl Citrate 2.5 Talc 5.0 Purified Water 50.9 Solids Content 20.0 Polymer Content 12.5
47.4 Preparation Procedure for an Eudragit® L 30 D-55 Aqueous Dispersion - 47.4.1 Suspend triethyl citrate and talc in deionized water.
- 47.4.2 The TEC/talc suspension is mixed using laboratory mixer.
- 47.4.3 Add the TEC/talc suspension from slowly to the Eudragit® L 30 D-55 latex dispersion while stirring.
- 47.4.4 Allow the coating dispersion to stir for one hour prior to application onto the Antifungalmatrix pellets.
- 47.5 Preparation of an Eudragit® S 100 Aqueous Coating Dispersion
- 47.5.1 Dispersion Formulation
- The composition of the aqueous Eudragit® S 100 dispersion applied to the Antifungalmatrix pellets is provided below in Table 6.
TABLE 6 Eudragit ® S 100 Aqueous Coating Dispersion Component Percentage (%) Part A Eudragit ® S 100 10.0 1 N Ammonium Hydroxide 5.1 Triethyl Citrate 5.0 Water 64.9 Part B Talc 5.0 Water 10.0 Solid Content 25.0 Polymer Content 10.0
47.6 Preparation Procedure for an Eudragit® S 100 Aqueous Dispersion - Part A:
- 47.6.1 Dispense Eudragit® S 100 powder in deionized water with stirring.
- 47.6.2 Add ammonium hydroxide solution drop-wise into the dispersion with stirring.
- 47.6.3 Allow the partially neutralized dispersion to stir for 60 minutes.
- 47.6.4 Add triethyl citrate drop-wise into the dispersion with stirring and let stir overnight prior to the addition of Part B.
- Part B:
- 47.6.5 Disperse talc in the required amount of water
- 47.6.6 Stir the dispersion using an overhead laboratory mixer.
- 47.6.7 Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- 47.7 Coating Conditions for the Application of Aqueous Coating Dispersions
- The following coating parameters are used for both the Eudragit® L 30 D-55 and Eudragit® S 100 aqueous film coating processes.
Coating Equipment STREA 1 ™ Table Top Laboratory Fluid Bed Coater Spray nozzle diameter 1.0 mm Material Charge 300 gram Inlet Air Temperature 40 to 45° C. Outlet Air Temperature 30 to 33° C. Atomization Air Pressure 1.8 Bar Pump Rate 2-6 gram per minute - 47.7.1 Coat matrix pellets with L30 D-55 dispersion such that you apply 20% coat weight gain to the pellets.
- 47.7.2 Coat matrix pellets with S100 dispersion such that you apply 37% coat weight gain to the pellets.
- 47.8 Preparation of AntifungalGranulation (Immediate Release Component) for Tabletting
TABLE 7 Composition of AntifungalGranulation Component Percentage (%) AntifungalTrihydrate powder 92 Avicel PH 101 7.0 Hydroxypropyl methylcellulose, NF* 1.0 Total 100
*Hydroxypropyl methylcellulose was added as a 2.9% w/w aqueous solution during wet massing.
- 47.8.1 Blend Antifungaland Avicel® PH 101 using a low shear blender.
- 47.8.2 Add the hydroxypropyl methylcellulose binder solution slowly into the powder blend under continuous mixing.
- 47.8.3 Dry the granulation at 60° C. using a fluid bed dryer until the exhaust temperature reaches 40° C.
- 47.8.4 Granules between 20 and 40 Mesh are collected for further processing.
- 47.9 Tabletting of the AntifungalPellets
TABLE 8 Composition of AntifungalTablets Component Percentage (%) First antifungalgranules 32.5 Avicel PH 200 5.0 Second antifungalL30D-55 coated pellets 30 First antifungalS100 coated pellets 30 Colloidal silicon dioxide 1.5 Magnesium stearate 1.0 Total 100 - 47.9.1 Blend the Antifungalgranules, Avicel PH-200, Antifungalpellets and colloidal silicon dioxide for 15 minutes in a tumble blender.
- 47.9.2 Add the magnesium stearate to the blender, and blend for 5 minutes.
- 47.9.3 Compress the blend on a rotary tablet press.
- 47.9.4 The fill weight should be adjusted to achieve the desired dosage.
- Four Pulses
- 1 Antifungal Matrix Pellet Formulation and Preparation Procedure
- 48.1 Pellet Formulation
- The composition of the antifungal matrix pellets provided in Table 9.
TABLE 9 Composition of Antifungal Pellets Component Percentage (%) Antifungal 50 Avicel PH 101 20 Lactose 20 PVP K29/32* 10 Purified Water Total 100
*PVP K29/32 was added as a 20% w/w aqueous solution during wet massing.
48.2 Preparation Procedure for Antifungal Matrix Pellets - 48.2.1 Blend antifungal and Avicel® PH 101 using a Robot Coupe high shear granulator.
- 48.2.2 Add 20% Povidone K29/32 binder solution slowly into the powder blend under continuous mixing.
- 48.2.3 Extrude the wet mass using an LCI Bench Top Granulator. The diameter of the screen of the Bench Top Granulator was 1.0 mm.
- 48.2.4 Spheronize the extrudate using a Model SPH20 Caleva Spheronizer.
- 48.2.5 Dry the spheronized pellets at 50° C. overnight.
- 48.2.6 Pellets between 16 and 30 Mesh were collected for further processing.
- 48.2.7 The above procedure is used to prepare pellets that contain a first antifungal and pellets that contain a second antifungal.
- 48.3 Preparation of an Eudragit® L 30 D-55 Aqueous Coating Dispersion
- 48.3.1 Dispersion Formulation
- The composition of the aqueous Eudragit L30D-55 dispersion applied to the antifungal matrix pellets is provided below in Table 10.
TABLE 10 Eudragit ® L 30 D-55 Aqueous Coating Dispersion Component Percentage (%) Eudragit ® L 30 D-55 55.0 Triethyl Citrate 1.6 Talc 8.0 Purified Water 37.4 Solids Content 25.5 Polymer Content 15.9
48.4 Preparation Procedure for an Eudragit® L 30 D-55 Aqueous Dispersion - 48.4.1 Suspend triethyl citrate and talc in deionized water.
- 48.4.2 The TEC/talc suspension is then homogenized using a PowerGen 700 high shear mixer.
- 48.4.3 Add the TEC/talc suspension slowly to the Eudragit® L 30 D-55 latex dispersion while stirring.
- 48.4.4 Allow the coating dispersion to stir for one hour prior to application onto the antifungal matrix pellets.
- 48.5 Preparation of an Eudragit® S 100 Aqueous Coating Dispersion
- 48.5.1 Dispersion Formulation
- The composition of the aqueous Eudragit® S 100 dispersion applied to the antifungal matrix pellets is provided below in Table 11.
TABLE 11 Eudragit ® S 100 Aqueous Coating Dispersion Component Percentage (%) Part A Eudragit ® S 100 12.0 1 N Ammonium Hydroxide 6.1 Triethyl Citrate 6.0 Purified Water 65.9 Part B Talc 2.0 Purified Water 8.0 Solid Content 20.0 Polymer Content 12.0
48.6 Preparation Procedure for an Eudragit® S 100 Aqueous Dispersion - Part A:
- 48.6.1 Dispense Eudragit® S 100 powder in deionized water with stirring.
- 48.6.2 Add ammonium hydroxide solution drop-wise into the dispersion with stirring.
- 48.6.3 Allow the partially neutralized dispersion to stir for 60 minutes.
- 48.6.4 Add triethyl citrate drop-wise into the dispersion with stirring. Stir for about 2 hours prior to the addition of Part B.
- Part B:
- 48.6.5 Disperse talc in the required amount of water
- 48.6.6 Homogenize the dispersion using a PowerGen 700D high shear mixer.
- 48.6.7 Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
- 48.7 Coating Conditions for the Application of Aqueous Coating Dispersions
- The following coating parameters are used for coating with each of the Eudragit® L 30 D-55 and Eudragit® S 100 aqueous film coatings.
Coating Equipment STREA 1 ™ Table Top Laboratory Fluid Bed Coater Spray nozzle diameter 1.0 mm Material Charge 300 gram Inlet Air Temperature 40 to 45° C. Outlet Air Temperature 30 to 33° C. Atomization Air Pressure 1.8 Bar Pump Rate 2 gram per minute - 48.7.1 Coat matrix pellets with L30 D-55 dispersion such that you apply 12% coat weight gain to the pellets.
- 48.7.2 Coat matrix pellets with L30 D-55 dispersion such that you apply 30% coat weight gain to the pellets.
- 48.7.3 Coat matrix pellets with S100 dispersion such that you apply 20% coat weight gain to the pellets.
- 48.8 Encapsulation of the Antifungal Pellets
- Pellets are filled into size 00 hard gelatin capsules at a ratio of 20%: 30%: 20%: 30% Immediate-release matrix pellets (uncoated), L30 D-55 coated pellets 12% weight gain, L30 D-55 coated pellets 30% weight gain and S100 coated pellets respectively.
- The capsule is filled with the four different pellets to achieve the desired dosage.
- The immediate release pellets contain the first antifungal; the L30 D-55 12% weight gain coated pellets containe the second antifungal; the L30 D-55 30% weight gain coated pellets contain the first antifungal and the S100 coated pellets contain the second antifungal.
- The present invention is advantageous in that a synergistic anti-fungal will be dosed in an alternate pulse to another, synergistic anti-fungal. This will alternate the exposure to the fungus in such a way as to make both anti-fungals more effective than if they were co-administered.
- Numerous modifications and variations of the present invention are possible in light of the above teachings; therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.
Claims (39)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/124,335 US20050238714A1 (en) | 2001-02-23 | 2005-05-06 | Anti-fungal composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/791,284 US20020197314A1 (en) | 2001-02-23 | 2001-02-23 | Anti-fungal composition |
US10/320,113 US6929804B2 (en) | 2001-02-23 | 2002-12-16 | Anti-fungal composition |
US11/124,335 US20050238714A1 (en) | 2001-02-23 | 2005-05-06 | Anti-fungal composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/320,113 Continuation US6929804B2 (en) | 2001-02-23 | 2002-12-16 | Anti-fungal composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050238714A1 true US20050238714A1 (en) | 2005-10-27 |
Family
ID=25153224
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/791,284 Abandoned US20020197314A1 (en) | 2001-02-23 | 2001-02-23 | Anti-fungal composition |
US10/320,113 Expired - Lifetime US6929804B2 (en) | 2001-02-23 | 2002-12-16 | Anti-fungal composition |
US11/124,335 Abandoned US20050238714A1 (en) | 2001-02-23 | 2005-05-06 | Anti-fungal composition |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/791,284 Abandoned US20020197314A1 (en) | 2001-02-23 | 2001-02-23 | Anti-fungal composition |
US10/320,113 Expired - Lifetime US6929804B2 (en) | 2001-02-23 | 2002-12-16 | Anti-fungal composition |
Country Status (1)
Country | Link |
---|---|
US (3) | US20020197314A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050048114A1 (en) * | 2003-08-29 | 2005-03-03 | Burnside Beth A. | Antibiotic product, use and formulation thereof |
US8062672B2 (en) | 2003-08-12 | 2011-11-22 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8299052B2 (en) | 2006-05-05 | 2012-10-30 | Shionogi Inc. | Pharmaceutical compositions and methods for improved bacterial eradication |
US8303988B2 (en) | 2000-10-13 | 2012-11-06 | Shionogi Inc. | Antifungal once-a-day product, use and formulation thereof |
US8313776B2 (en) | 2003-07-21 | 2012-11-20 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8313775B2 (en) | 2003-07-21 | 2012-11-20 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8357394B2 (en) | 2005-12-08 | 2013-01-22 | Shionogi Inc. | Compositions and methods for improved efficacy of penicillin-type antibiotics |
US8425936B2 (en) | 2003-07-21 | 2013-04-23 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8460710B2 (en) | 2003-09-15 | 2013-06-11 | Shionogi, Inc. | Antibiotic product, use and formulation thereof |
US8715727B2 (en) | 2004-07-02 | 2014-05-06 | Shionogi Inc. | Tablet for pulsed delivery |
US8758820B2 (en) | 2003-08-11 | 2014-06-24 | Shionogi Inc. | Robust pellet |
US8778924B2 (en) | 2006-12-04 | 2014-07-15 | Shionogi Inc. | Modified release amoxicillin products |
US8889187B2 (en) | 2000-02-24 | 2014-11-18 | Shionogi Inc. | Once a day amoxicillin product comprising immediate and delayed release dosage forms |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991807B2 (en) * | 2000-02-24 | 2006-01-31 | Advancis Pharmaceutical, Corp. | Antibiotic composition |
US6541014B2 (en) * | 2000-10-13 | 2003-04-01 | Advancis Pharmaceutical Corp. | Antiviral product, use and formulation thereof |
US20020197314A1 (en) | 2001-02-23 | 2002-12-26 | Rudnic Edward M. | Anti-fungal composition |
US6713504B2 (en) * | 2002-03-19 | 2004-03-30 | Council Of Scientific & Industrial Research | Antifungal molecule 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate |
US20040114368A1 (en) * | 2002-12-13 | 2004-06-17 | Shyu Shing Jy | Light device having rotatable or movable view |
US20060140990A1 (en) * | 2003-09-19 | 2006-06-29 | Drugtech Corporation | Composition for topical treatment of mixed vaginal infections |
AU2004274000B2 (en) | 2003-09-19 | 2009-07-30 | Drugtech Corporation | Pharmaceutical delivery system |
CA2605341A1 (en) * | 2005-05-09 | 2006-11-16 | Drugtech Corporation | Modified-release pharmaceutical compositions |
JP2009522360A (en) * | 2006-01-05 | 2009-06-11 | ドラッグテック コーポレイション | Composition and method of use thereof |
US9314524B2 (en) * | 2007-12-31 | 2016-04-19 | Calla Therapeutics Llc | Topical formulations of Flucytosine |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870790A (en) * | 1970-01-22 | 1975-03-11 | Forest Laboratories | Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose |
US4007174A (en) * | 1973-07-06 | 1977-02-08 | Glaxo Laboratories Limited | Cephalosporin compounds |
US4008246A (en) * | 1974-08-09 | 1977-02-15 | Takeda Chemical Industries, Ltd. | Aminothiazole derivatives |
US4018918A (en) * | 1975-05-20 | 1977-04-19 | The Upjohn Company | Topical clindamycin preparations |
US4250166A (en) * | 1977-05-27 | 1981-02-10 | Shionogi & Co., Ltd. | Long acting preparation of cefalexin for effective treatments of bacterial infection sensitive to cefalexin |
US4331803A (en) * | 1980-06-04 | 1982-05-25 | Taisho Pharmaceutical Co., Ltd. | Novel erythromycin compounds |
US4369172A (en) * | 1981-12-18 | 1983-01-18 | Forest Laboratories Inc. | Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose |
US4430495A (en) * | 1982-09-17 | 1984-02-07 | The Upjohn Company | Process for preparing lincomycin and clindamycin ribonucleotides |
US4435173A (en) * | 1982-03-05 | 1984-03-06 | Delta Medical Industries | Variable rate syringe pump for insulin delivery |
US4517359A (en) * | 1981-03-06 | 1985-05-14 | Sour Pliva Farmaceutska, Kemijska Prehrambena I Kozmeticka Industrija, N.Sol.O. | 11-Methyl-11-aza-4-0-cladinosyl-6-0-desosaminyl-15-ethyl-7,13,14-trihydroxy-3,5,7,9,12,14-hexamethyl-oxacyclopentadecane-2-one and derivatives thereof |
US4568741A (en) * | 1984-05-15 | 1986-02-04 | The Upjohn Company | Synthesis of 7-halo-7-deoxylincomycins |
US4634697A (en) * | 1983-10-04 | 1987-01-06 | Shionogi & Co., Ltd. | Carboxyalkenamidocephalosporins |
US4644031A (en) * | 1984-02-15 | 1987-02-17 | Rohm Gmbh | Coating for pharmaceutical dosage forms |
US4723958A (en) * | 1986-05-23 | 1988-02-09 | Merck & Co., Inc. | Pulsatile drug delivery system |
US4808411A (en) * | 1987-06-05 | 1989-02-28 | Abbott Laboratories | Antibiotic-polymer compositions |
US4812561A (en) * | 1986-07-02 | 1989-03-14 | Shionogi & Co., Ltd. | Crystalline hydrate of oral cephalosporin and its composition |
US4828836A (en) * | 1986-06-05 | 1989-05-09 | Euroceltique S.A. | Controlled release pharmaceutical composition |
US4831025A (en) * | 1980-10-31 | 1989-05-16 | Leo Pharmaceutical Products Ltd. | Crystalline penicillin derivative tosylate hydrates |
US4835140A (en) * | 1987-08-20 | 1989-05-30 | Indiana University Foundation | Method for treating pneumocystis carinii pneumonia patients with clindamycin and primaquine |
US4894119A (en) * | 1985-04-10 | 1990-01-16 | Drew Chemical Corporation | Retention and/or drainage and/or dewatering aid |
US4895934A (en) * | 1988-08-22 | 1990-01-23 | E. I. Du Pont De Nemours And Company | Process for the preparation of clindamycin phosphate |
US4904476A (en) * | 1986-03-04 | 1990-02-27 | American Home Products Corporation | Formulations providing three distinct releases |
US4915953A (en) * | 1987-09-03 | 1990-04-10 | Alza Corporation | Dosage form for delivering acetaminophen or phenylpropanolamine |
US4990602A (en) * | 1986-12-17 | 1991-02-05 | Taisho Pharmaceutical Co., Ltd. | Erythromycin A derivatives |
US5011692A (en) * | 1985-12-28 | 1991-04-30 | Sumitomo Pharmaceuticals Company, Limited | Sustained pulsewise release pharmaceutical preparation |
US5110597A (en) * | 1987-06-25 | 1992-05-05 | Alza Corporation | Multi-unit delivery system |
US5110598A (en) * | 1989-06-30 | 1992-05-05 | Smithkline Beecham Corp. | Intermittent release dosage form |
US5178777A (en) * | 1990-11-19 | 1993-01-12 | Outomec Oy | Method for removing a filter cake |
US5182374A (en) * | 1990-03-21 | 1993-01-26 | American Cyanamid Company | Clindamycin phosphate synthesis |
US5204055A (en) * | 1989-12-08 | 1993-04-20 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5213808A (en) * | 1989-09-22 | 1993-05-25 | Buhk Meditec A/A | Controlled release article with pulsatile release |
US5288503A (en) * | 1992-01-16 | 1994-02-22 | Srchem Incorporated | Cryogel oral pharmaceutical composition containing therapeutic agent |
US5387380A (en) * | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5393765A (en) * | 1993-12-13 | 1995-02-28 | Hoffmann-La Roche Inc. | Pharmaceutical compositions with constant erosion volume for zero order controlled release |
US5395626A (en) * | 1994-03-23 | 1995-03-07 | Ortho Pharmaceutical Corporation | Multilayered controlled release pharmaceutical dosage form |
US5395628A (en) * | 1989-12-28 | 1995-03-07 | Tanabe Seiyaku Co., Ltd. | Controlled release succinic acid microcapsules coated with aqueous acrylics |
US5399723A (en) * | 1993-02-01 | 1995-03-21 | Tsujimoto Kagaku Kogyo Co., Ltd. | Anti-MRSA compound |
US5401512A (en) * | 1991-02-22 | 1995-03-28 | Rhodes; John | Delayed release oral dosage forms for treatment of intestinal disorders |
US5413777A (en) * | 1989-09-21 | 1995-05-09 | American Cyanamid Company | Pulsatile once-a-day delivery systems for minocycline |
US5490962A (en) * | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US5508040A (en) * | 1992-05-04 | 1996-04-16 | Andrx Pharmaceuticals, Inc. | Multiparticulate pulsatile drug delivery system |
US5599557A (en) * | 1992-04-30 | 1997-02-04 | Schering Corporation | Stable hydrated cephalosporin dry powder for oral suspension formulation |
US5607685A (en) * | 1994-02-09 | 1997-03-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Protracted-release adminstration forms containing clindamycin palmitate |
US5705190A (en) * | 1995-12-19 | 1998-01-06 | Abbott Laboratories | Controlled release formulation for poorly soluble basic drugs |
US5707646A (en) * | 1992-03-12 | 1998-01-13 | Taisho Pharmaceutical Co., Ltd. | Taste masking pharmaceutical composition |
US5719132A (en) * | 1996-06-27 | 1998-02-17 | Bristol-Myers Squibb Company | Compositions and methods of treating HIV with d4T, 5-fluorouracil/tegafur, and uracil |
US5719272A (en) * | 1996-04-02 | 1998-02-17 | Abbott Laboratories | 2'-protected 3'-dimethylamine, 9-etheroxime erythromycin A derivatives |
US5725553A (en) * | 1996-02-29 | 1998-03-10 | Moenning; Stephen P. | Apparatus and method for protecting a port site opening in the wall of a body cavity |
US5733886A (en) * | 1992-02-18 | 1998-03-31 | Lloyd J. Baroody | Compositions of clindamycin and benzoyl peroxide for acne treatment |
US5858986A (en) * | 1996-07-29 | 1999-01-12 | Abbott Laboratories | Crystal form I of clarithromycin |
US5864023A (en) * | 1997-02-13 | 1999-01-26 | Abbott Laboratories | 3'-N'oxide, 3'-n-dimethylamine, 9-oxime erythromycin a derivatives |
US5872229A (en) * | 1995-11-21 | 1999-02-16 | Abbott Laboratories | Process for 6-O-alkylation of erythromycin derivatives |
US5872104A (en) * | 1994-12-27 | 1999-02-16 | Oridigm Corporation | Combinations and methods for reducing antimicrobial resistance |
US5877243A (en) * | 1997-05-05 | 1999-03-02 | Icet, Inc. | Encrustation and bacterial resistant coatings for medical applications |
US5883079A (en) * | 1992-07-31 | 1999-03-16 | Neose Technologies, Inc. | Method for inhibiting H. pylori infection in mammalian tissue |
US5892008A (en) * | 1997-12-16 | 1999-04-06 | Abbott Laboratories | Process for the preparation of 6-O-methyl erythromycin a using 9-hydroxy erythromycin derivatives |
US6010718A (en) * | 1997-04-11 | 2000-01-04 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6013507A (en) * | 1995-07-10 | 2000-01-11 | The Rockefeller University | Auxiliary genes and proteins of methicillin resistant bacteria and antagonists thereof |
US6027748A (en) * | 1997-01-08 | 2000-02-22 | Jagotec Ag | Pharmaceutical tablet, completely coated, for controlled release of active principles that present problems of bio-availability linked to gastro-intestinal absorption |
US6031093A (en) * | 1975-04-17 | 2000-02-29 | Smithkline Beecham P.L.C. | Solid salts of clavulanic acid |
US6051255A (en) * | 1994-04-23 | 2000-04-18 | Smithkline Beecham Plc | Polymer coated tablet comprising amoxycillin and clavulanate |
US6183778B1 (en) * | 1993-09-21 | 2001-02-06 | Jagotec Ag | Pharmaceutical tablet capable of liberating one or more drugs at different release rates |
US6187768B1 (en) * | 1999-06-01 | 2001-02-13 | Becton, Dickinson And Company | Kit for flushing medical devices and method of preparation |
US6214359B1 (en) * | 1996-08-24 | 2001-04-10 | Smithkline Beecham P.L.C. | Use of a combination of amoxycillin and clavulanate in the manufacture of a medicament for the treatment drug-resistant Streptococcus pneumoniae |
US6218380B1 (en) * | 1975-04-17 | 2001-04-17 | Smithkline Beecham P.L.C. | Pharmaceutical compositions |
US20020004499A1 (en) * | 2000-02-24 | 2002-01-10 | Rudnic Edward M. | Antibiotic composition |
US6340475B2 (en) * | 1997-06-06 | 2002-01-22 | Depomed, Inc. | Extending the duration of drug release within the stomach during the fed mode |
US6352720B1 (en) * | 1991-05-08 | 2002-03-05 | Laboratorios Beecham Sa | Pharmaceutical formulations comprised of compacted amoxicillin granulates |
US6358528B1 (en) * | 1994-04-14 | 2002-03-19 | Smithkline Beecham P.L.C. | Pharmaceutical formulation |
US6358525B1 (en) * | 1997-04-28 | 2002-03-19 | Hercules Incorporated | Sustained release polymer blend for pharmaceutical applications |
US6503709B1 (en) * | 1997-07-03 | 2003-01-07 | Id Biomedical Corporation | Methods for rapidly detecting methicillin resistant staphylococci |
US6506886B1 (en) * | 1998-09-09 | 2003-01-14 | Hanmi Pharm. Co., Ltd. | Method of preparing form II crystals of clarithromycin |
US6515116B2 (en) * | 2000-03-15 | 2003-02-04 | Hanmi Pharm. Co., | Method of preparing form II crystals of clarithromycin |
US6515010B1 (en) * | 1999-11-15 | 2003-02-04 | Smithkline Beecham Corporation | Carvedilol methanesulfonate |
US6514518B2 (en) * | 1993-10-18 | 2003-02-04 | Therics, Inc. | Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof |
US6541014B2 (en) * | 2000-10-13 | 2003-04-01 | Advancis Pharmaceutical Corp. | Antiviral product, use and formulation thereof |
US6544555B2 (en) * | 2000-02-24 | 2003-04-08 | Advancis Pharmaceutical Corp. | Antibiotic product, use and formulation thereof |
US6548084B2 (en) * | 1995-07-20 | 2003-04-15 | Smithkline Beecham Plc | Controlled release compositions |
US6551616B1 (en) * | 1997-04-11 | 2003-04-22 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6550955B2 (en) * | 2000-05-03 | 2003-04-22 | D'silva Joe | Process for producing liquid dosage formulations of medicinal compounds on demand from tablets and capsules using a mixing cup with an abrasive interior surface |
US6551584B2 (en) * | 2000-10-10 | 2003-04-22 | Pharmacia & Upjohn Company | Topical antibiotic composition for treatment of eye infection |
US6673369B2 (en) * | 2001-08-29 | 2004-01-06 | Ranbaxy Laboratories Limited | Controlled release formulation |
US6682759B2 (en) * | 2002-02-01 | 2004-01-27 | Depomed, Inc. | Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs |
US6696426B2 (en) * | 2000-08-22 | 2004-02-24 | Pharmacia Corporation | Preservative free ophthalmic oxazolidinone antibiotic drug delivery systems |
US6702803B2 (en) * | 2000-01-20 | 2004-03-09 | Delsys Pharmaceutical Corporation | Multi-step drug dosage forms |
US6706273B1 (en) * | 1999-08-14 | 2004-03-16 | Ivoclar Vivadent Ag | Composition for implantation into the human and animal body |
US6723340B2 (en) * | 2001-10-25 | 2004-04-20 | Depomed, Inc. | Optimal polymer mixtures for gastric retentive tablets |
US6878387B1 (en) * | 1998-10-02 | 2005-04-12 | Roehm Gmbh & Co Kg | Coated medicament forms with controlled active substance release |
US20060019986A1 (en) * | 2004-07-22 | 2006-01-26 | Cumbre Inc. | (R/S) rifamycin derivatives, their preparations and pharmaceutical compositions |
US6991807B2 (en) * | 2000-02-24 | 2006-01-31 | Advancis Pharmaceutical, Corp. | Antibiotic composition |
US7008633B2 (en) * | 2000-12-18 | 2006-03-07 | Board Of Regents, The University Of Texas System | Local regional chemotherapy and radiotherapy using in situ hydrogel |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4616008A (en) | 1984-05-02 | 1986-10-07 | Takeda Chemical Industries, Ltd. | Antibacterial solid composition for oral administration |
US4794001A (en) | 1986-03-04 | 1988-12-27 | American Home Products Corporation | Formulations providing three distinct releases |
US5200193A (en) | 1987-04-22 | 1993-04-06 | Mcneilab, Inc. | Pharmaceutical sustained release matrix and process |
US4971805A (en) | 1987-12-23 | 1990-11-20 | Teysan Pharmaceuticals Co., Ltd. | Slow-releasing granules and long acting mixed granules comprising the same |
US5133974A (en) | 1989-05-05 | 1992-07-28 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US5229131A (en) | 1990-02-05 | 1993-07-20 | University Of Michigan | Pulsatile drug delivery system |
US5260069A (en) | 1992-11-27 | 1993-11-09 | Anda Sr Pharmaceuticals Inc. | Pulsatile particles drug delivery system |
US5414014A (en) | 1993-04-08 | 1995-05-09 | Innova Biomed, Inc. | Methods for efficacious removal of attached, sucking antropods from human dermis |
IL109770A0 (en) | 1993-05-29 | 1994-11-28 | Smithkline Beecham Corp | Thermal infusion process for preparing controlled release solid dosage forms of medicaments for oral administration and controlled release solid dosage forms of medicaments prepared thereby |
WO1996010996A1 (en) | 1993-07-21 | 1996-04-18 | The University Of Kentucky Research Foundation | A multicompartment hard capsule with control release properties |
CA2101241C (en) | 1993-07-23 | 1998-12-22 | Jonathan P. Wong | Liposome-encapsulated ciprofloxacin |
US5538954A (en) | 1994-06-24 | 1996-07-23 | A/S Dumex (Dumex Ltd.) | Salts of tetracyclines |
GB9402203D0 (en) | 1994-02-04 | 1994-03-30 | Smithkline Beecham Plc | Pharmaceutical formulation |
US6068859A (en) | 1994-05-06 | 2000-05-30 | Pfizer Inc. | Controlled-release dosage forms of Azithromycin |
GB9416600D0 (en) | 1994-08-17 | 1994-10-12 | Smithkline Beecham Plc | Pharmaceutical formulation |
US5827531A (en) | 1994-12-02 | 1998-10-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Microcapsules and methods for making |
US5567441A (en) | 1995-03-24 | 1996-10-22 | Andrx Pharmaceuticals Inc. | Diltiazem controlled release formulation |
SE9600072D0 (en) | 1996-01-08 | 1996-01-08 | Astra Ab | New oral formulation of two active ingredients II |
IL119627A (en) | 1996-11-17 | 2002-03-10 | Yissum Res Dev Co | PHARMACEUTICAL PREPARATIONS FOR THE CONTROLLED-RELEASE OF AN ACTIVE AGENT COMPRISING AT LEAST ONE β-LACTAM ANTIBIOTIC AGENT |
US5840329A (en) | 1997-05-15 | 1998-11-24 | Bioadvances Llc | Pulsatile drug delivery system |
US6120803A (en) | 1997-08-11 | 2000-09-19 | Alza Corporation | Prolonged release active agent dosage form adapted for gastric retention |
JPH1164608A (en) * | 1997-08-26 | 1999-03-05 | Dainippon Printing Co Ltd | Lenticular lens |
US6159491A (en) * | 1999-02-12 | 2000-12-12 | Biovector Technologies, Inc. | Prolonged release bioadhesive vaginal gel dosage form |
US6294199B1 (en) | 1999-04-13 | 2001-09-25 | Beecham Pharmaceuticals (Pte) Limited | Method of treating a bacterial infection comprising administering amoxycillin |
US7025989B2 (en) | 2000-02-24 | 2006-04-11 | Advancis Pharmaceutical Corp. | Multiple-delayed released antibiotic product, use and formulation thereof |
US20020004070A1 (en) | 2000-02-24 | 2002-01-10 | Rudnic Edward M. | Antineoplastic product, use and formulation thereof |
US6610328B2 (en) | 2000-02-24 | 2003-08-26 | Advancis Pharmaceutical Corp. | Amoxicillin-clarithromycin antibiotic composition |
US6638532B2 (en) | 2000-02-24 | 2003-10-28 | Advancis Pharmaceutical Corp. | Tetracycline—doxycycline antibiotic composition |
US6663891B2 (en) | 2000-02-24 | 2003-12-16 | Advancis Pharmaceutical Corp. | Erythromyacin antibiotic product, use and formulation thereof |
US6667042B2 (en) | 2000-02-24 | 2003-12-23 | Advancis Pharmaceutical Corp. | Fluroquinilone antibiotic product, use and formulation thereof |
US6623758B2 (en) | 2000-02-24 | 2003-09-23 | Advancis Pharmaceutical Corp. | Cephalosporin-metronidazole antibiotic composition |
US6667057B2 (en) | 2000-02-24 | 2003-12-23 | Advancis Pharmaceutical Corp. | Levofloxacin antibiotic product, use and formulation thereof |
US6669948B2 (en) | 2000-02-24 | 2003-12-30 | Advancis Pharmaceutical Corp. | Antibiotic product, use and formulation thereof |
US6565882B2 (en) | 2000-02-24 | 2003-05-20 | Advancis Pharmaceutical Corp | Antibiotic composition with inhibitor |
US6627222B2 (en) | 2000-02-24 | 2003-09-30 | Advancis Pharmaceutical Corp. | Amoxicillin-dicloxacillin antibiotic composition |
US6632453B2 (en) | 2000-02-24 | 2003-10-14 | Advancis Pharmaceutical Corp. | Ciprofoxacin-metronidazole antibiotic composition |
US6730320B2 (en) | 2000-02-24 | 2004-05-04 | Advancis Pharmaceutical Corp. | Tetracycline antibiotic product, use and formulation thereof |
US7105174B2 (en) | 2000-10-13 | 2006-09-12 | Advancis Pharmaceutical Corporation | Multiple-delayed release anti-neoplastic product, use and formulation thereof |
US20020068078A1 (en) | 2000-10-13 | 2002-06-06 | Rudnic Edward M. | Antifungal product, use and formulation thereof |
US7108859B2 (en) | 2000-10-13 | 2006-09-19 | Advancis Pharmaceutical Corporation | Antineoplastic product, use and formulation thereof |
US7074417B2 (en) | 2000-10-13 | 2006-07-11 | Advancis Pharmaceutical Corporation | Multiple-delayed release anti-viral product, use and formulation thereof |
US20020119168A1 (en) | 2001-02-20 | 2002-08-29 | Rudnic Edward M. | Therapeutic agent delivery |
US20020197314A1 (en) | 2001-02-23 | 2002-12-26 | Rudnic Edward M. | Anti-fungal composition |
US6538185B1 (en) | 2001-10-10 | 2003-03-25 | Mks Professional Stage Products, Inc. | Pedal board assembly |
-
2001
- 2001-02-23 US US09/791,284 patent/US20020197314A1/en not_active Abandoned
-
2002
- 2002-12-16 US US10/320,113 patent/US6929804B2/en not_active Expired - Lifetime
-
2005
- 2005-05-06 US US11/124,335 patent/US20050238714A1/en not_active Abandoned
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870790A (en) * | 1970-01-22 | 1975-03-11 | Forest Laboratories | Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose |
US4007174A (en) * | 1973-07-06 | 1977-02-08 | Glaxo Laboratories Limited | Cephalosporin compounds |
US4008246A (en) * | 1974-08-09 | 1977-02-15 | Takeda Chemical Industries, Ltd. | Aminothiazole derivatives |
US6218380B1 (en) * | 1975-04-17 | 2001-04-17 | Smithkline Beecham P.L.C. | Pharmaceutical compositions |
US6051703C1 (en) * | 1975-04-17 | 2001-10-06 | Smithkline Beecham Plc | Purified clavulanic acid and salts thereof |
US6031093A (en) * | 1975-04-17 | 2000-02-29 | Smithkline Beecham P.L.C. | Solid salts of clavulanic acid |
US6048977A (en) * | 1975-04-17 | 2000-04-11 | Smithkline Beecham P.L.C. | Clavulanic acid and salts thereof |
US6051703A (en) * | 1975-04-17 | 2000-04-18 | Smithkline Beecham P.L.C. | Purified clavulanic acid and salts thereof |
US6031093C1 (en) * | 1975-04-17 | 2001-10-16 | Smithkline Beecham Plc | Solid salts of clavulanic acid |
US6048977C1 (en) * | 1975-04-17 | 2001-10-16 | Smithkline Beecham Plc | Clavulanic acid and salts thereof |
US4018918A (en) * | 1975-05-20 | 1977-04-19 | The Upjohn Company | Topical clindamycin preparations |
US4250166A (en) * | 1977-05-27 | 1981-02-10 | Shionogi & Co., Ltd. | Long acting preparation of cefalexin for effective treatments of bacterial infection sensitive to cefalexin |
US4331803A (en) * | 1980-06-04 | 1982-05-25 | Taisho Pharmaceutical Co., Ltd. | Novel erythromycin compounds |
US4831025A (en) * | 1980-10-31 | 1989-05-16 | Leo Pharmaceutical Products Ltd. | Crystalline penicillin derivative tosylate hydrates |
US4517359A (en) * | 1981-03-06 | 1985-05-14 | Sour Pliva Farmaceutska, Kemijska Prehrambena I Kozmeticka Industrija, N.Sol.O. | 11-Methyl-11-aza-4-0-cladinosyl-6-0-desosaminyl-15-ethyl-7,13,14-trihydroxy-3,5,7,9,12,14-hexamethyl-oxacyclopentadecane-2-one and derivatives thereof |
US4369172A (en) * | 1981-12-18 | 1983-01-18 | Forest Laboratories Inc. | Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose |
US4435173A (en) * | 1982-03-05 | 1984-03-06 | Delta Medical Industries | Variable rate syringe pump for insulin delivery |
US4430495A (en) * | 1982-09-17 | 1984-02-07 | The Upjohn Company | Process for preparing lincomycin and clindamycin ribonucleotides |
US4634697A (en) * | 1983-10-04 | 1987-01-06 | Shionogi & Co., Ltd. | Carboxyalkenamidocephalosporins |
US4644031A (en) * | 1984-02-15 | 1987-02-17 | Rohm Gmbh | Coating for pharmaceutical dosage forms |
US4568741A (en) * | 1984-05-15 | 1986-02-04 | The Upjohn Company | Synthesis of 7-halo-7-deoxylincomycins |
US4894119A (en) * | 1985-04-10 | 1990-01-16 | Drew Chemical Corporation | Retention and/or drainage and/or dewatering aid |
US5011692A (en) * | 1985-12-28 | 1991-04-30 | Sumitomo Pharmaceuticals Company, Limited | Sustained pulsewise release pharmaceutical preparation |
US4904476A (en) * | 1986-03-04 | 1990-02-27 | American Home Products Corporation | Formulations providing three distinct releases |
US4723958A (en) * | 1986-05-23 | 1988-02-09 | Merck & Co., Inc. | Pulsatile drug delivery system |
US4828836A (en) * | 1986-06-05 | 1989-05-09 | Euroceltique S.A. | Controlled release pharmaceutical composition |
US4812561A (en) * | 1986-07-02 | 1989-03-14 | Shionogi & Co., Ltd. | Crystalline hydrate of oral cephalosporin and its composition |
US4990602A (en) * | 1986-12-17 | 1991-02-05 | Taisho Pharmaceutical Co., Ltd. | Erythromycin A derivatives |
US4808411A (en) * | 1987-06-05 | 1989-02-28 | Abbott Laboratories | Antibiotic-polymer compositions |
US5110597A (en) * | 1987-06-25 | 1992-05-05 | Alza Corporation | Multi-unit delivery system |
US4835140A (en) * | 1987-08-20 | 1989-05-30 | Indiana University Foundation | Method for treating pneumocystis carinii pneumonia patients with clindamycin and primaquine |
US4915953A (en) * | 1987-09-03 | 1990-04-10 | Alza Corporation | Dosage form for delivering acetaminophen or phenylpropanolamine |
US4895934A (en) * | 1988-08-22 | 1990-01-23 | E. I. Du Pont De Nemours And Company | Process for the preparation of clindamycin phosphate |
US5110598A (en) * | 1989-06-30 | 1992-05-05 | Smithkline Beecham Corp. | Intermittent release dosage form |
US5413777A (en) * | 1989-09-21 | 1995-05-09 | American Cyanamid Company | Pulsatile once-a-day delivery systems for minocycline |
US5213808A (en) * | 1989-09-22 | 1993-05-25 | Buhk Meditec A/A | Controlled release article with pulsatile release |
US5204055A (en) * | 1989-12-08 | 1993-04-20 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5387380A (en) * | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5395628A (en) * | 1989-12-28 | 1995-03-07 | Tanabe Seiyaku Co., Ltd. | Controlled release succinic acid microcapsules coated with aqueous acrylics |
US5182374A (en) * | 1990-03-21 | 1993-01-26 | American Cyanamid Company | Clindamycin phosphate synthesis |
US5178777A (en) * | 1990-11-19 | 1993-01-12 | Outomec Oy | Method for removing a filter cake |
US5401512A (en) * | 1991-02-22 | 1995-03-28 | Rhodes; John | Delayed release oral dosage forms for treatment of intestinal disorders |
US6352720B1 (en) * | 1991-05-08 | 2002-03-05 | Laboratorios Beecham Sa | Pharmaceutical formulations comprised of compacted amoxicillin granulates |
US5288503A (en) * | 1992-01-16 | 1994-02-22 | Srchem Incorporated | Cryogel oral pharmaceutical composition containing therapeutic agent |
US5733886A (en) * | 1992-02-18 | 1998-03-31 | Lloyd J. Baroody | Compositions of clindamycin and benzoyl peroxide for acne treatment |
US5707646A (en) * | 1992-03-12 | 1998-01-13 | Taisho Pharmaceutical Co., Ltd. | Taste masking pharmaceutical composition |
US5599557A (en) * | 1992-04-30 | 1997-02-04 | Schering Corporation | Stable hydrated cephalosporin dry powder for oral suspension formulation |
US5508040A (en) * | 1992-05-04 | 1996-04-16 | Andrx Pharmaceuticals, Inc. | Multiparticulate pulsatile drug delivery system |
US5883079A (en) * | 1992-07-31 | 1999-03-16 | Neose Technologies, Inc. | Method for inhibiting H. pylori infection in mammalian tissue |
US5399723A (en) * | 1993-02-01 | 1995-03-21 | Tsujimoto Kagaku Kogyo Co., Ltd. | Anti-MRSA compound |
US6183778B1 (en) * | 1993-09-21 | 2001-02-06 | Jagotec Ag | Pharmaceutical tablet capable of liberating one or more drugs at different release rates |
US5490962A (en) * | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US5869170A (en) * | 1993-10-18 | 1999-02-09 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US6514518B2 (en) * | 1993-10-18 | 2003-02-04 | Therics, Inc. | Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof |
US6530958B1 (en) * | 1993-10-18 | 2003-03-11 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free-form fabrication techniques |
US5393765A (en) * | 1993-12-13 | 1995-02-28 | Hoffmann-La Roche Inc. | Pharmaceutical compositions with constant erosion volume for zero order controlled release |
US5607685A (en) * | 1994-02-09 | 1997-03-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Protracted-release adminstration forms containing clindamycin palmitate |
US5395626A (en) * | 1994-03-23 | 1995-03-07 | Ortho Pharmaceutical Corporation | Multilayered controlled release pharmaceutical dosage form |
US6358528B1 (en) * | 1994-04-14 | 2002-03-19 | Smithkline Beecham P.L.C. | Pharmaceutical formulation |
US6051255A (en) * | 1994-04-23 | 2000-04-18 | Smithkline Beecham Plc | Polymer coated tablet comprising amoxycillin and clavulanate |
US5872104A (en) * | 1994-12-27 | 1999-02-16 | Oridigm Corporation | Combinations and methods for reducing antimicrobial resistance |
US6013507A (en) * | 1995-07-10 | 2000-01-11 | The Rockefeller University | Auxiliary genes and proteins of methicillin resistant bacteria and antagonists thereof |
US6548084B2 (en) * | 1995-07-20 | 2003-04-15 | Smithkline Beecham Plc | Controlled release compositions |
US5872229A (en) * | 1995-11-21 | 1999-02-16 | Abbott Laboratories | Process for 6-O-alkylation of erythromycin derivatives |
US5705190A (en) * | 1995-12-19 | 1998-01-06 | Abbott Laboratories | Controlled release formulation for poorly soluble basic drugs |
US5725553A (en) * | 1996-02-29 | 1998-03-10 | Moenning; Stephen P. | Apparatus and method for protecting a port site opening in the wall of a body cavity |
US5719272A (en) * | 1996-04-02 | 1998-02-17 | Abbott Laboratories | 2'-protected 3'-dimethylamine, 9-etheroxime erythromycin A derivatives |
US5719132A (en) * | 1996-06-27 | 1998-02-17 | Bristol-Myers Squibb Company | Compositions and methods of treating HIV with d4T, 5-fluorouracil/tegafur, and uracil |
US5858986A (en) * | 1996-07-29 | 1999-01-12 | Abbott Laboratories | Crystal form I of clarithromycin |
US6214359B1 (en) * | 1996-08-24 | 2001-04-10 | Smithkline Beecham P.L.C. | Use of a combination of amoxycillin and clavulanate in the manufacture of a medicament for the treatment drug-resistant Streptococcus pneumoniae |
US6027748A (en) * | 1997-01-08 | 2000-02-22 | Jagotec Ag | Pharmaceutical tablet, completely coated, for controlled release of active principles that present problems of bio-availability linked to gastro-intestinal absorption |
US5864023A (en) * | 1997-02-13 | 1999-01-26 | Abbott Laboratories | 3'-N'oxide, 3'-n-dimethylamine, 9-oxime erythromycin a derivatives |
US6872407B2 (en) * | 1997-04-11 | 2005-03-29 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6551616B1 (en) * | 1997-04-11 | 2003-04-22 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6010718A (en) * | 1997-04-11 | 2000-01-04 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6358525B1 (en) * | 1997-04-28 | 2002-03-19 | Hercules Incorporated | Sustained release polymer blend for pharmaceutical applications |
US5877243A (en) * | 1997-05-05 | 1999-03-02 | Icet, Inc. | Encrustation and bacterial resistant coatings for medical applications |
US6340475B2 (en) * | 1997-06-06 | 2002-01-22 | Depomed, Inc. | Extending the duration of drug release within the stomach during the fed mode |
US6503709B1 (en) * | 1997-07-03 | 2003-01-07 | Id Biomedical Corporation | Methods for rapidly detecting methicillin resistant staphylococci |
US5892008A (en) * | 1997-12-16 | 1999-04-06 | Abbott Laboratories | Process for the preparation of 6-O-methyl erythromycin a using 9-hydroxy erythromycin derivatives |
US6506886B1 (en) * | 1998-09-09 | 2003-01-14 | Hanmi Pharm. Co., Ltd. | Method of preparing form II crystals of clarithromycin |
US6878387B1 (en) * | 1998-10-02 | 2005-04-12 | Roehm Gmbh & Co Kg | Coated medicament forms with controlled active substance release |
US6187768B1 (en) * | 1999-06-01 | 2001-02-13 | Becton, Dickinson And Company | Kit for flushing medical devices and method of preparation |
US6706273B1 (en) * | 1999-08-14 | 2004-03-16 | Ivoclar Vivadent Ag | Composition for implantation into the human and animal body |
US6515010B1 (en) * | 1999-11-15 | 2003-02-04 | Smithkline Beecham Corporation | Carvedilol methanesulfonate |
US6702803B2 (en) * | 2000-01-20 | 2004-03-09 | Delsys Pharmaceutical Corporation | Multi-step drug dosage forms |
US6991807B2 (en) * | 2000-02-24 | 2006-01-31 | Advancis Pharmaceutical, Corp. | Antibiotic composition |
US20020004499A1 (en) * | 2000-02-24 | 2002-01-10 | Rudnic Edward M. | Antibiotic composition |
US6723341B2 (en) * | 2000-02-24 | 2004-04-20 | Advancis Pharmaceutical Corp. | Antibiotic product, use and formulation thereof |
US6544555B2 (en) * | 2000-02-24 | 2003-04-08 | Advancis Pharmaceutical Corp. | Antibiotic product, use and formulation thereof |
US6515116B2 (en) * | 2000-03-15 | 2003-02-04 | Hanmi Pharm. Co., | Method of preparing form II crystals of clarithromycin |
US6550955B2 (en) * | 2000-05-03 | 2003-04-22 | D'silva Joe | Process for producing liquid dosage formulations of medicinal compounds on demand from tablets and capsules using a mixing cup with an abrasive interior surface |
US6696426B2 (en) * | 2000-08-22 | 2004-02-24 | Pharmacia Corporation | Preservative free ophthalmic oxazolidinone antibiotic drug delivery systems |
US6551584B2 (en) * | 2000-10-10 | 2003-04-22 | Pharmacia & Upjohn Company | Topical antibiotic composition for treatment of eye infection |
US6541014B2 (en) * | 2000-10-13 | 2003-04-01 | Advancis Pharmaceutical Corp. | Antiviral product, use and formulation thereof |
US6984401B2 (en) * | 2000-10-13 | 2006-01-10 | Advancis Pharmaceutical Corp. | Antiviral product, use and formulation thereof |
US7008633B2 (en) * | 2000-12-18 | 2006-03-07 | Board Of Regents, The University Of Texas System | Local regional chemotherapy and radiotherapy using in situ hydrogel |
US6673369B2 (en) * | 2001-08-29 | 2004-01-06 | Ranbaxy Laboratories Limited | Controlled release formulation |
US6723340B2 (en) * | 2001-10-25 | 2004-04-20 | Depomed, Inc. | Optimal polymer mixtures for gastric retentive tablets |
US6682759B2 (en) * | 2002-02-01 | 2004-01-27 | Depomed, Inc. | Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs |
US20060019985A1 (en) * | 2004-07-22 | 2006-01-26 | Cumbre Inc. | Rifamycin derivatives |
US20060019986A1 (en) * | 2004-07-22 | 2006-01-26 | Cumbre Inc. | (R/S) rifamycin derivatives, their preparations and pharmaceutical compositions |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8889187B2 (en) | 2000-02-24 | 2014-11-18 | Shionogi Inc. | Once a day amoxicillin product comprising immediate and delayed release dosage forms |
US8303988B2 (en) | 2000-10-13 | 2012-11-06 | Shionogi Inc. | Antifungal once-a-day product, use and formulation thereof |
US8313776B2 (en) | 2003-07-21 | 2012-11-20 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8313775B2 (en) | 2003-07-21 | 2012-11-20 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8425936B2 (en) | 2003-07-21 | 2013-04-23 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8758820B2 (en) | 2003-08-11 | 2014-06-24 | Shionogi Inc. | Robust pellet |
US8062672B2 (en) | 2003-08-12 | 2011-11-22 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US9144548B2 (en) | 2003-08-12 | 2015-09-29 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US8246996B2 (en) | 2003-08-29 | 2012-08-21 | Shionogi Inc. | Antibiotic product, use and formulation thereof |
US20050048114A1 (en) * | 2003-08-29 | 2005-03-03 | Burnside Beth A. | Antibiotic product, use and formulation thereof |
US8460710B2 (en) | 2003-09-15 | 2013-06-11 | Shionogi, Inc. | Antibiotic product, use and formulation thereof |
US8715727B2 (en) | 2004-07-02 | 2014-05-06 | Shionogi Inc. | Tablet for pulsed delivery |
US8357394B2 (en) | 2005-12-08 | 2013-01-22 | Shionogi Inc. | Compositions and methods for improved efficacy of penicillin-type antibiotics |
US8299052B2 (en) | 2006-05-05 | 2012-10-30 | Shionogi Inc. | Pharmaceutical compositions and methods for improved bacterial eradication |
US8778924B2 (en) | 2006-12-04 | 2014-07-15 | Shionogi Inc. | Modified release amoxicillin products |
Also Published As
Publication number | Publication date |
---|---|
US20020197314A1 (en) | 2002-12-26 |
US20030203023A1 (en) | 2003-10-30 |
US6929804B2 (en) | 2005-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2400818C (en) | Antibiotic and antifungal compositions | |
US8303988B2 (en) | Antifungal once-a-day product, use and formulation thereof | |
US20050238714A1 (en) | Anti-fungal composition | |
AU2001239841A1 (en) | Antibiotic and antifungal compositions | |
US6610328B2 (en) | Amoxicillin-clarithromycin antibiotic composition | |
US6541014B2 (en) | Antiviral product, use and formulation thereof | |
US6638532B2 (en) | Tetracycline—doxycycline antibiotic composition | |
US6991807B2 (en) | Antibiotic composition | |
US20020004070A1 (en) | Antineoplastic product, use and formulation thereof | |
US6627222B2 (en) | Amoxicillin-dicloxacillin antibiotic composition | |
US6663891B2 (en) | Erythromyacin antibiotic product, use and formulation thereof | |
US6623758B2 (en) | Cephalosporin-metronidazole antibiotic composition | |
US6667042B2 (en) | Fluroquinilone antibiotic product, use and formulation thereof | |
US6632453B2 (en) | Ciprofoxacin-metronidazole antibiotic composition | |
US7157095B2 (en) | Multiple-delayed release antifungal product, use and formulation thereof | |
WO2004012713A1 (en) | Delayed release anti-viral product, use and formulation thereof | |
US7108859B2 (en) | Antineoplastic product, use and formulation thereof | |
JP2005526059A (en) | Antibiotic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCIS PHARMACEUTICAL CORPORATION, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUDNIC, EDWARD M.;ISBISTER, JAMES D.;TREACY, DONALD J. JR.;AND OTHERS;REEL/FRAME:016454/0713;SIGNING DATES FROM 20050610 TO 20050614 |
|
AS | Assignment |
Owner name: MIDDLEBROOK PHARMACEUTICALS, INC., MARYLAND Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCIS PHARMACEUTICAL CORPORATION;REEL/FRAME:020089/0910 Effective date: 20070628 Owner name: MIDDLEBROOK PHARMACEUTICALS, INC.,MARYLAND Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCIS PHARMACEUTICAL CORPORATION;REEL/FRAME:020089/0910 Effective date: 20070628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |