US20050223521A1 - Upright vacuum cleaner with spring loaded nozzle - Google Patents
Upright vacuum cleaner with spring loaded nozzle Download PDFInfo
- Publication number
- US20050223521A1 US20050223521A1 US11/144,436 US14443605A US2005223521A1 US 20050223521 A1 US20050223521 A1 US 20050223521A1 US 14443605 A US14443605 A US 14443605A US 2005223521 A1 US2005223521 A1 US 2005223521A1
- Authority
- US
- United States
- Prior art keywords
- vacuum cleaner
- nozzle assembly
- assembly
- canister
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L5/00—Structural features of suction cleaners
- A47L5/12—Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
- A47L5/22—Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
- A47L5/28—Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
- A47L5/34—Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with height adjustment of nozzles or dust-loosening tools
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/0081—Means for exhaust-air diffusion; Means for sound or vibration damping
Definitions
- the present invention relates generally to the vacuum cleaner art and, more particularly, to an upright vacuum cleaner incorporating a spring loaded nozzle.
- the upright vacuum cleaners in all of their designs and permutations have become increasingly popular over the years.
- the upright vacuum cleaners generally incorporate a nozzle assembly and a canister assembly pivotally mounted to the nozzle assembly. Wheels on the nozzle and canister assemblies allow the vacuum cleaner to smoothly ride over the surface to be cleaned.
- the canister assembly includes an operating handle that is manipulated by the user to move the vacuum cleaner back-and-forth across the floor.
- the canister assembly also includes either a bag-like filter or a cyclonic separation chamber and filter combination that trap dirt and debris while substantially clean air is exhausted by a fan that is driven by an onboard electric motor. It is this fan and motor arrangement that generates the drop in air pressure necessary to provide the desired cleaning action.
- a rotary agitator is also provided in the nozzle assembly.
- the rotary agitator includes tufts of bristles, brushes, beater bars or the like to beat dirt and debris from the nap of a carpet being cleaned while the pressure drop or vacuum is used to force air entrained with this dirt and debris into the nozzle of the vacuum cleaner.
- an improved upright vacuum cleaner includes a nozzle assembly and a canister assembly pivotally mounted to the nozzle assembly.
- a suction fan and motor are carried on one of the nozzle assembly and the canister assembly.
- the upright vacuum cleaner includes a means, such as a biaser, having a first end engaging the nozzle assembly and a second end engaging the canister assembly. This biaser provides a positive downforce urging a forward end of the nozzle assembly toward the surface to be cleaned. This urging not only enhances cleaning efficiency but also serves to dampen vibration.
- the biaser may be a torsion spring.
- the nozzle assembly may include a hollow stub shaft received within a cooperating groove in the canister assembly. That stub shaft defines an axis for pivoting movement of the canister assembly with respect to the nozzle assembly as the vacuum cleaner is manipulated by the user. At least a portion of the spring is received in this hollow stub shaft.
- the canister assembly may include a channel adjacent the groove and the second end of the spring is elongated and received in that channel.
- the channel may be formed, for example, by a box rib on the wall of the canister assembly.
- the hollow stub shaft may include a slot in the side wall thereof through which the end of the spring extends into the channel.
- the spring is selected to provide between about 1.2 and about 3.2 lbs/sq. in. of preload and more typically between about 2.0 and about 2.4 lbs/sq. in. of preload. Such a spring provides between about 0.2 and 3.0 lbs/sq. in. of downforce on a forward end of the nozzle assembly.
- the spring is selected to provide a downforce of between about 0.8 and about 1.6 lbs/sq. in. (e.g. about 1.2 lbs/sq. in.) of downforce on a forward end of the nozzle assembly when the canister assembly is positioned at about a 135° included working angle with respect to the nozzle assembly: that is, when the canister assembly forms an included angle of about 45° with the floor being cleaned.
- the resulting downforce reduces the vibration of the nozzle assembly and advantageously increases the cleaning efficiency of the vacuum cleaner by maintaining the nozzle assembly in close engagement with the surface being cleaned. This is a particular advantage as vibration may even be controlled in canister and nozzle assemblies constructed from lighter weight materials. Such materials allow the production of more lightweight vacuum cleaners that are particularly favored by consumers since they are easier to handle and require less muscle effort to use.
- the invention also includes a method of increasing the cleaning efficiency of a vacuum cleaner by providing a downforce on the nozzle assembly of the vacuum cleaner to urge the nozzle assembly toward the floor being cleaned.
- the invention also includes a method of reducing vibration in a vacuum cleaner by providing a biasing force between the nozzle assembly and the canister assembly to dampen vibration produced by engagement of the rotary agitator with the surface being cleaned.
- FIG. 1 is a perspective view of an vacuum cleaner constructed in accordance with the teachings of the present invention
- FIGS. 2 a and 2 b are detailed perspective views from each side showing the positioning of the spring for providing the desired downforce on the nozzle assembly;
- FIGS. 3 a - 3 c are detailed, schematical side elevational views showing the orientation of the spring in the hollow stub shaft with the first end engaging the nozzle assembly and the second end engaging a box rib on the canister assembly when the canister assembly is in fully down, operating and fully upright storage positions;
- FIG. 4 is a detailed perspective view showing the receipt of the stub shaft on the nozzle assembly in the cooperating notch on the canister assembly.
- the upright vacuum cleaner 10 includes a nozzle assembly 14 and a canister assembly 16 .
- the canister assembly 16 further includes a control handle 18 and a hand grip 20 .
- a control switch 22 is provided for turning the vacuum cleaner on and off.
- electrical power is supplied to the vacuum cleaner 10 from a standard electrical wall outlet through a cord (not shown).
- a foot latch 30 functions to lock the canister assembly 16 in an upright position as shown in FIG. 1 . When the foot latch 30 is released, the canister assembly 16 may be pivoted relative to the nozzle assembly 14 as the vacuum cleaner 10 is manipulated back-and-forth to clean the floor.
- the canister assembly 16 includes a cavity 32 adapted to receive and hold a dirt collection vessel or dust bag 12 .
- the vacuum cleaner 10 could be equipped with a dust collection cup such as found on cyclonic type models if desired.
- the canister assembly 16 carries a suction fan 34 and suction fan drive motor 35 . Together, the suction fan 34 and its cooperating drive motor 35 function to generate a vacuum airstream for drawing dirt and debris from the surface to be cleaned. While the suction fan 34 and suction fan drive motor 35 are illustrated as being carried on the canister assembly 16 , it should be appreciated that they could likewise be carried on the nozzle assembly 14 if desired.
- the nozzle assembly 14 includes a nozzle and agitator cavity 36 that houses a pair of rotating agitator brushes 38 a , 38 b .
- the agitator brushes 38 a , 38 b shown are rotatably driven by the drive motor 35 through a cooperating belt and gear drive (not shown).
- the scrubbing action of the rotary agitator brushes 38 a , 38 b and the negative air pressure created by the suction fan 34 and drive motor 35 cooperate to brush and beat dirt and dust from the nap of the carpet being cleaned and then draw the dirt and dust laden air from the agitator cavity 36 to the dust bag 12 .
- the dirt and dust laden air passes serially through one of the hoses 46 and an integrally molded conduit in the nozzle assembly 14 and/or canister assembly 16 as is known in the art.
- the dust bag 12 which serves to trap the suspended dirt, dust and other particles inside while allowing the now clean air to pass freely through to the suction fan 34 , a final filtration cartridge (not shown) and ultimately to the environment through the exhaust port (not shown).
- the nozzle assembly 14 includes a hollow stub shaft 52 at one side thereof.
- This stub shaft 52 is received and nests in a cooperating groove 54 provided in the canister assembly 16 .
- both portions of the canister assembly 16 are shown in FIG. 3 a . Only the rear portion is shown in FIGS. 3 b , 3 c and 4 .
- the two portions of the canister assembly 16 mate along the centerline of the groove 54 to aid in the overall assembly of the vacuum cleaner 10 . While not shown, it should be appreciated that a similar structural configuration may be provided on the other side of the vacuum cleaner 10 to provide the same function.
- the two stub shafts or trunnions 52 are aligned to provide a single axis about which the nozzle assembly 14 pivots relative to the canister assembly 16 during vacuum cleaner operation.
- a biaser in the form of a torsion spring 56 , is partially received in the stub shaft 52 . More specifically, the coiled portion 58 of the spring 56 is positioned in the stub shaft 52 . A first end 60 of the spring is received in an aperture 62 in the metal reinforcing plate 64 of the nozzle assembly 14 . A second end 66 of the spring 56 extends through a slot 68 in the wall of the stub shaft 52 downwardly into a channel 70 formed by a box rib 72 on the wall 74 of the canister assembly 16 . When the canister assembly 16 is in the full down position (see FIG.
- the slot 68 cut in the stub shaft 52 provides sufficient clearance to allow free passage of the end 66 of the spring 56 into the channel 70 in all the various angular orientations that the canister assembly 16 may assume with the nozzle assembly 14 .
- the spring 56 provides in all operating positions between about 1.2 and about 3.2 and more typically between about 2.0 and about 2.4 lbs/sq. in. of preload. This converts to between about 0.2 and 3.0 lbs/sq. in. of downforce on the forward end of the nozzle assembly 14 .
- the spring may provide a downforce of between about 0.8 and about 1.6 lbs/sq. in. and more typically about 1.2 lbs/sq. in. on the forward end of the nozzle assembly 14 .
- the downforce the spring 56 exerts on the nozzle assembly 14 serves a dual function. First, it resists any tendency of the nozzle assembly 14 to be lifted from the floor being cleaned as the vacuum cleaner 10 is manipulated or pushed and pulled back-and-forth by the operator. As a consequence, the agitators 38 a and 38 b are better maintained in contact with the floor. This promotes more efficient and effective cleaning. Second, it has a tendency to dampen any vibration resulting from the engagement of the agitators 38 a , 38 b or the brushes, beater bars or other cleaning structures carried thereon with the surface being cleaned.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nozzles For Electric Vacuum Cleaners (AREA)
Abstract
An upright vacuum cleaner includes a nozzle assembly, a canister assembly pivotally mounted to said nozzle assembly, a suction fan and motor and a biaser. The biaser has a first end that engages the nozzle assembly and a second end that engages the canister assembly. The biaser provides a positive downforce urging the forward end of the nozzle assembly toward the surface being cleaned.
Description
- This application is a continuation of U.S. utility patent application Ser. No. 10/878,294, filed on Jun. 28, 2004 which is a continuation of U.S. utility patent application Ser. No. 10/090,656, filed on Mar. 5, 2002 and now issued as U.S. Pat. No. 6,772,474 which claims the benefit of U.S. Provisional Patent Application No. 60/275,065, filed on Mar. 12, 2001.
- The present invention relates generally to the vacuum cleaner art and, more particularly, to an upright vacuum cleaner incorporating a spring loaded nozzle.
- Upright vacuum cleaners in all of their designs and permutations have become increasingly popular over the years. The upright vacuum cleaners generally incorporate a nozzle assembly and a canister assembly pivotally mounted to the nozzle assembly. Wheels on the nozzle and canister assemblies allow the vacuum cleaner to smoothly ride over the surface to be cleaned.
- The canister assembly includes an operating handle that is manipulated by the user to move the vacuum cleaner back-and-forth across the floor. The canister assembly also includes either a bag-like filter or a cyclonic separation chamber and filter combination that trap dirt and debris while substantially clean air is exhausted by a fan that is driven by an onboard electric motor. It is this fan and motor arrangement that generates the drop in air pressure necessary to provide the desired cleaning action.
- In most upright vacuum cleaners sold today, a rotary agitator is also provided in the nozzle assembly. The rotary agitator includes tufts of bristles, brushes, beater bars or the like to beat dirt and debris from the nap of a carpet being cleaned while the pressure drop or vacuum is used to force air entrained with this dirt and debris into the nozzle of the vacuum cleaner.
- As the vacuum cleaner is manipulated back-and-forth by the operator with the handle on the canister assembly, the nozzle assembly is periodically lifted slightly from the floor. This lifting action adversely affects the cleaning efficiency of the vacuum cleaner. Further, during the cleaning of certain surfaces there is a tendency for vibration to develop in the vacuum cleaner as a result of the engagement of the rotary agitator against the particular surface being cleaned. This vibration is often transmitted through the control handle and is often annoying to the user. A need is therefore identified for an upright vacuum cleaner that addresses these problems in a manner to provide enhanced cleaning efficiency as well as vibration reduction.
- In accordance with the purposes of the present invention as described herein, an improved upright vacuum cleaner is provided. That vacuum cleaner includes a nozzle assembly and a canister assembly pivotally mounted to the nozzle assembly. A suction fan and motor are carried on one of the nozzle assembly and the canister assembly. Additionally, the upright vacuum cleaner includes a means, such as a biaser, having a first end engaging the nozzle assembly and a second end engaging the canister assembly. This biaser provides a positive downforce urging a forward end of the nozzle assembly toward the surface to be cleaned. This urging not only enhances cleaning efficiency but also serves to dampen vibration.
- In accordance with additional aspects of the present invention, the biaser may be a torsion spring. Further, the nozzle assembly may include a hollow stub shaft received within a cooperating groove in the canister assembly. That stub shaft defines an axis for pivoting movement of the canister assembly with respect to the nozzle assembly as the vacuum cleaner is manipulated by the user. At least a portion of the spring is received in this hollow stub shaft.
- Still further, the canister assembly may include a channel adjacent the groove and the second end of the spring is elongated and received in that channel. The channel may be formed, for example, by a box rib on the wall of the canister assembly. Additionally, the hollow stub shaft may include a slot in the side wall thereof through which the end of the spring extends into the channel.
- The spring is selected to provide between about 1.2 and about 3.2 lbs/sq. in. of preload and more typically between about 2.0 and about 2.4 lbs/sq. in. of preload. Such a spring provides between about 0.2 and 3.0 lbs/sq. in. of downforce on a forward end of the nozzle assembly. In a typical arrangement, the spring is selected to provide a downforce of between about 0.8 and about 1.6 lbs/sq. in. (e.g. about 1.2 lbs/sq. in.) of downforce on a forward end of the nozzle assembly when the canister assembly is positioned at about a 135° included working angle with respect to the nozzle assembly: that is, when the canister assembly forms an included angle of about 45° with the floor being cleaned.
- The resulting downforce reduces the vibration of the nozzle assembly and advantageously increases the cleaning efficiency of the vacuum cleaner by maintaining the nozzle assembly in close engagement with the surface being cleaned. This is a particular advantage as vibration may even be controlled in canister and nozzle assemblies constructed from lighter weight materials. Such materials allow the production of more lightweight vacuum cleaners that are particularly favored by consumers since they are easier to handle and require less muscle effort to use.
- The invention also includes a method of increasing the cleaning efficiency of a vacuum cleaner by providing a downforce on the nozzle assembly of the vacuum cleaner to urge the nozzle assembly toward the floor being cleaned.
- Still further, the invention also includes a method of reducing vibration in a vacuum cleaner by providing a biasing force between the nozzle assembly and the canister assembly to dampen vibration produced by engagement of the rotary agitator with the surface being cleaned.
- In the following description there is shown and described one possible embodiment of this invention, simply by way of illustration of one of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments, and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
- The accompanying drawing incorporated in and forming a part of the specification, illustrates several aspects of the present invention, and together with the description serves to explain certain principles of the invention. In the drawing:
-
FIG. 1 is a perspective view of an vacuum cleaner constructed in accordance with the teachings of the present invention; -
FIGS. 2 a and 2 b are detailed perspective views from each side showing the positioning of the spring for providing the desired downforce on the nozzle assembly; -
FIGS. 3 a-3 c are detailed, schematical side elevational views showing the orientation of the spring in the hollow stub shaft with the first end engaging the nozzle assembly and the second end engaging a box rib on the canister assembly when the canister assembly is in fully down, operating and fully upright storage positions; and -
FIG. 4 is a detailed perspective view showing the receipt of the stub shaft on the nozzle assembly in the cooperating notch on the canister assembly. - Reference will now be made in detail to the present preferred embodiment of the invention, an example of which is illustrated in the accompanying drawing.
- Reference is now made to
FIG. 1 showing theupright vacuum cleaner 10 of the present invention. Theupright vacuum cleaner 10 includes anozzle assembly 14 and acanister assembly 16. Thecanister assembly 16 further includes acontrol handle 18 and ahand grip 20. Acontrol switch 22 is provided for turning the vacuum cleaner on and off. Of course, electrical power is supplied to thevacuum cleaner 10 from a standard electrical wall outlet through a cord (not shown). - As is known in the art, sets of front and rear wheels (not shown) are provided, respectively, on the
nozzle assembly 14 andcanister assembly 16 to support the weight of thevacuum cleaner 10. Together, these two sets of wheels allow thevacuum cleaner 10 to roll smoothly across the surface being cleaned. To allow for convenient storage of thevacuum cleaner 10, afoot latch 30 functions to lock thecanister assembly 16 in an upright position as shown inFIG. 1 . When thefoot latch 30 is released, thecanister assembly 16 may be pivoted relative to thenozzle assembly 14 as thevacuum cleaner 10 is manipulated back-and-forth to clean the floor. - The
canister assembly 16 includes acavity 32 adapted to receive and hold a dirt collection vessel ordust bag 12. Alternatively, thevacuum cleaner 10 could be equipped with a dust collection cup such as found on cyclonic type models if desired. Additionally, thecanister assembly 16 carries asuction fan 34 and suctionfan drive motor 35. Together, thesuction fan 34 and its cooperatingdrive motor 35 function to generate a vacuum airstream for drawing dirt and debris from the surface to be cleaned. While thesuction fan 34 and suctionfan drive motor 35 are illustrated as being carried on thecanister assembly 16, it should be appreciated that they could likewise be carried on thenozzle assembly 14 if desired. - The
nozzle assembly 14 includes a nozzle andagitator cavity 36 that houses a pair of rotating agitator brushes 38 a, 38 b. The agitator brushes 38 a, 38 b shown are rotatably driven by thedrive motor 35 through a cooperating belt and gear drive (not shown). In the illustratedvacuum cleaner 10, the scrubbing action of the rotary agitator brushes 38 a, 38 b and the negative air pressure created by thesuction fan 34 and drivemotor 35 cooperate to brush and beat dirt and dust from the nap of the carpet being cleaned and then draw the dirt and dust laden air from theagitator cavity 36 to thedust bag 12. Specifically, the dirt and dust laden air passes serially through one of thehoses 46 and an integrally molded conduit in thenozzle assembly 14 and/orcanister assembly 16 as is known in the art. Next, it is delivered into thedust bag 12 which serves to trap the suspended dirt, dust and other particles inside while allowing the now clean air to pass freely through to thesuction fan 34, a final filtration cartridge (not shown) and ultimately to the environment through the exhaust port (not shown). - As best shown in
FIGS. 2 a and 2 b, thenozzle assembly 14 includes ahollow stub shaft 52 at one side thereof. Thisstub shaft 52 is received and nests in a cooperatinggroove 54 provided in thecanister assembly 16. For clarity of illustration both portions of thecanister assembly 16 are shown inFIG. 3 a. Only the rear portion is shown inFIGS. 3 b, 3 c and 4. The two portions of thecanister assembly 16 mate along the centerline of thegroove 54 to aid in the overall assembly of thevacuum cleaner 10. While not shown, it should be appreciated that a similar structural configuration may be provided on the other side of thevacuum cleaner 10 to provide the same function. The two stub shafts ortrunnions 52 are aligned to provide a single axis about which thenozzle assembly 14 pivots relative to thecanister assembly 16 during vacuum cleaner operation. - As further illustrated, a biaser, in the form of a
torsion spring 56, is partially received in thestub shaft 52. More specifically, the coiledportion 58 of thespring 56 is positioned in thestub shaft 52. Afirst end 60 of the spring is received in anaperture 62 in themetal reinforcing plate 64 of thenozzle assembly 14. Asecond end 66 of thespring 56 extends through aslot 68 in the wall of thestub shaft 52 downwardly into achannel 70 formed by abox rib 72 on thewall 74 of thecanister assembly 16. When thecanister assembly 16 is in the full down position (seeFIG. 3 a) forming an included angle with thenozzle assembly 14 of approximately 170°-178°, thesecond end 66 of thespring 56 projects downwardly just inside the forward edge 76 of thegroove 68 and provides the necessary spring force to urge the nozzle assembly downwardly into engagement with the surface being cleaned. - As the control handle 18 and
canister assembly 16 are pivoted upwardly to an included working angle of approximately 135° with thenozzle assembly 14, (i.e. into an angular orientation commonly employed during use of the vacuum cleaner by the operator) shown inFIG. 3 b, theforward wall 78 of thebox rib 72 partially winds thetorsion spring 56. This further increases the downforce on the forward end of thenozzle assembly 14 so as to better insure that thenozzle assembly 14 stays down in engagement with the ground as the vacuum cleaner is moved back-and-forth by means of the handle. - As the
handle 18 andcanister assembly 16 are pivoted still further with respect to thenozzle assembly 14 toward the upright position, further winding of thetorsion spring 56 occurs (seeFIG. 3 c). It should be appreciated that theslot 68 cut in thestub shaft 52 provides sufficient clearance to allow free passage of theend 66 of thespring 56 into thechannel 70 in all the various angular orientations that thecanister assembly 16 may assume with thenozzle assembly 14. Thus thespring 56 provides in all operating positions between about 1.2 and about 3.2 and more typically between about 2.0 and about 2.4 lbs/sq. in. of preload. This converts to between about 0.2 and 3.0 lbs/sq. in. of downforce on the forward end of thenozzle assembly 14. Thus, when thecanister assembly 16 is positioned at about a 135° working angle with the nozzle assembly 14 (seeFIG. 3 b), the spring may provide a downforce of between about 0.8 and about 1.6 lbs/sq. in. and more typically about 1.2 lbs/sq. in. on the forward end of thenozzle assembly 14. These specific ranges are, of course, only mentioned to be illustrative of the invention and are not to be considered restrictive. - Numerous benefits result from employing the concepts of the present invention. The downforce the
spring 56 exerts on thenozzle assembly 14 serves a dual function. First, it resists any tendency of thenozzle assembly 14 to be lifted from the floor being cleaned as thevacuum cleaner 10 is manipulated or pushed and pulled back-and-forth by the operator. As a consequence, theagitators agitators - The foregoing description of the preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, while a vacuum cleaner with dual agitators is illustrated, the invention is equally applicable to a vacuum cleaner with one agitator or more than two agitators. The embodiment was chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
Claims (5)
1. An upright vacuum cleaner, comprising:
a housing including a nozzle assembly and a canister assembly;
a suction generator carried on said housing;
a dirt collection vessel carried on said housing;
a torsion spring carried on said housing and biasing said nozzle assembly toward a surface to be cleaned.
2. The vacuum cleaner of claim 1 wherein said canister assembly is pivotally connected to said nozzle assembly.
3. The vacuum cleaner of claim 1 , wherein a rotary agitator is carried by said nozzle assembly.
4. An upright vacuum cleaner, comprising:
a housing including a nozzle assembly and a canister assembly;
a pair of stub shafts for pivotally connecting said nozzle assembly with said canister assembly;
a suction generator carried on said housing;
a dirt collection vessel carried on said housing;
a torsion spring carried on said housing and biasing said nozzle assembly toward a surface to be cleaned.
5. The vacuum cleaner of claim 4 , wherein a rotary agitator is carried by said nozzle assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/144,436 US20050223521A1 (en) | 2001-03-12 | 2005-06-03 | Upright vacuum cleaner with spring loaded nozzle |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27506501P | 2001-03-12 | 2001-03-12 | |
US10/090,656 US6772474B2 (en) | 2001-03-12 | 2002-03-05 | Upright vacuum cleaner with spring loaded nozzle |
US10/878,294 US6957473B2 (en) | 2001-03-12 | 2004-06-28 | Upright vacuum cleaner with spring loaded nozzle |
US11/144,436 US20050223521A1 (en) | 2001-03-12 | 2005-06-03 | Upright vacuum cleaner with spring loaded nozzle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/878,294 Continuation US6957473B2 (en) | 2001-03-12 | 2004-06-28 | Upright vacuum cleaner with spring loaded nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050223521A1 true US20050223521A1 (en) | 2005-10-13 |
Family
ID=23050744
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/090,656 Expired - Lifetime US6772474B2 (en) | 2001-03-12 | 2002-03-05 | Upright vacuum cleaner with spring loaded nozzle |
US10/878,294 Expired - Fee Related US6957473B2 (en) | 2001-03-12 | 2004-06-28 | Upright vacuum cleaner with spring loaded nozzle |
US10/885,053 Expired - Fee Related US7340798B2 (en) | 2001-03-12 | 2004-07-06 | Upright vacuum cleaner with spring loaded nozzle |
US11/144,436 Abandoned US20050223521A1 (en) | 2001-03-12 | 2005-06-03 | Upright vacuum cleaner with spring loaded nozzle |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/090,656 Expired - Lifetime US6772474B2 (en) | 2001-03-12 | 2002-03-05 | Upright vacuum cleaner with spring loaded nozzle |
US10/878,294 Expired - Fee Related US6957473B2 (en) | 2001-03-12 | 2004-06-28 | Upright vacuum cleaner with spring loaded nozzle |
US10/885,053 Expired - Fee Related US7340798B2 (en) | 2001-03-12 | 2004-07-06 | Upright vacuum cleaner with spring loaded nozzle |
Country Status (2)
Country | Link |
---|---|
US (4) | US6772474B2 (en) |
CA (1) | CA2375000C (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772474B2 (en) * | 2001-03-12 | 2004-08-10 | Matsushita Electric Corporation Of America | Upright vacuum cleaner with spring loaded nozzle |
GB2391459A (en) * | 2002-08-09 | 2004-02-11 | Dyson Ltd | A surface treating appliance with increased manoeuverability |
US7290308B2 (en) * | 2003-01-03 | 2007-11-06 | Panasonic Corporation Of North America | Vacuum cleaner equipped with pivotally mounted agitator section |
US7310855B2 (en) * | 2004-07-09 | 2007-12-25 | Tacony Corporation | Vacuum cleaner counter-balance mechanism |
EP2117402B1 (en) * | 2006-12-13 | 2015-05-27 | Aktiebolaget Electrolux | Wet/dry floor cleaning device |
GB2467540B (en) * | 2009-02-04 | 2012-08-22 | Dyson Technology Ltd | Surface treating head assembly |
US8631057B2 (en) * | 2009-08-25 | 2014-01-14 | International Business Machines Corporation | Alignment of multiple liquid chromatography-mass spectrometry runs |
GB2474465B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB2474471B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB2474468B (en) * | 2009-10-15 | 2013-11-27 | Dyson Technology Ltd | A surface treating appliance |
GB2474472B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB2474469B (en) * | 2009-10-15 | 2013-11-13 | Dyson Technology Ltd | A surface treating appliance |
GB2474464B (en) * | 2009-10-15 | 2013-11-20 | Dyson Technology Ltd | A surface treating appliance |
GB2474475B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB2474473B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB0918027D0 (en) * | 2009-10-15 | 2009-12-02 | Dyson Technology Ltd | A surface trating appliance |
GB2474463B (en) * | 2009-10-15 | 2013-11-13 | Dyson Technology Ltd | A surface treating appliance |
GB2474462B (en) | 2009-10-15 | 2013-12-11 | Dyson Technology Ltd | A surface treating appliance with domed-shaped wheels |
GB2474470B (en) * | 2009-10-15 | 2013-10-23 | Dyson Technology Ltd | A surface treating appliance |
GB2474466B (en) * | 2009-10-15 | 2014-03-05 | Dyson Technology Ltd | A surface treating appliance |
US9345371B2 (en) | 2012-12-12 | 2016-05-24 | Electrolux Home Care Products, Inc. | Vacuum cleaner base assembly |
US20140157543A1 (en) | 2012-12-12 | 2014-06-12 | Electrolux Home Care Products, Inc. | Vacuum cleaner base assembly |
KR101378376B1 (en) * | 2012-12-28 | 2014-03-27 | 한경희 | Vacuum cleaner |
EP2929820B1 (en) * | 2014-04-11 | 2018-09-12 | Black & Decker Inc. | A vacuum cleaning device |
AU2016101525A4 (en) * | 2015-09-14 | 2016-09-29 | Bissell Inc. | Surface cleaning apparatus |
CA2971499A1 (en) * | 2015-12-10 | 2017-06-15 | Jiangsu Midea Cleaning Appliances Co., Ltd. | Upright vacuum cleaner |
US10238249B2 (en) * | 2016-01-08 | 2019-03-26 | Omachron Intellectual Property Inc. | Hand carryable surface cleaning apparatus |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2103101A (en) * | 1936-05-18 | 1937-12-21 | Hoover Co | Suction cleaner |
US2583054A (en) * | 1946-04-22 | 1952-01-22 | James B Kirby | Automatic nozzle adjusting device for vacuum cleaners |
US2632915A (en) * | 1950-06-10 | 1953-03-31 | Hoover Co | Suction cleaner nozzle height adjustment |
US2677850A (en) * | 1951-09-01 | 1954-05-11 | Hoover Co | Suction cleaner with converter facility |
US3163439A (en) * | 1963-07-05 | 1964-12-29 | Singer Co | Vacuum cleaner with nozzle height adjusting mechanism |
US3217351A (en) * | 1962-10-09 | 1965-11-16 | Gen Electric | Vacuum cleaner |
US3262147A (en) * | 1964-08-24 | 1966-07-26 | Westinghouse Electric Corp | Vacuum cleaner |
US3772727A (en) * | 1970-04-18 | 1973-11-20 | Mauz & Pfeiffer Progress | Sweeping machine |
US3827103A (en) * | 1970-05-19 | 1974-08-06 | Whirlpool Co | Vacuum cleaner |
US4014068A (en) * | 1975-04-03 | 1977-03-29 | The Hoover Company | Brush mounting and torsion spring support for powered nozzle |
US4446594A (en) * | 1981-06-03 | 1984-05-08 | Hitachi, Ltd. | Upright type electric cleaner |
US4724574A (en) * | 1987-03-19 | 1988-02-16 | Sara Lee Corporation | Suction cleaner |
US5080525A (en) * | 1986-12-22 | 1992-01-14 | Tennant Company | Floor paving machine and method |
US5467502A (en) * | 1992-06-04 | 1995-11-21 | Matsushita Applicane Corporation | Height adjusting system for upright vacuum cleaner |
US5819370A (en) * | 1995-02-16 | 1998-10-13 | Stein & Co. Gmbh | Floorcare machines such as vacuum cleaners |
US5970576A (en) * | 1997-03-26 | 1999-10-26 | The Hoover Company | Vacuum cleaner height adjustment |
US5985156A (en) * | 1996-06-26 | 1999-11-16 | Henkin; Melvyn L. | Automatic swimming pool cleaning system |
US6591447B2 (en) * | 2001-03-19 | 2003-07-15 | The Hoover Company | Spring loaded vacuum cleaner nozzle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1052924B1 (en) * | 1998-01-09 | 2010-03-24 | Royal Appliance Manufacturing Co. | Upright vacuum cleaner with cyclonic airflow |
US6772474B2 (en) * | 2001-03-12 | 2004-08-10 | Matsushita Electric Corporation Of America | Upright vacuum cleaner with spring loaded nozzle |
-
2002
- 2002-03-05 US US10/090,656 patent/US6772474B2/en not_active Expired - Lifetime
- 2002-03-07 CA CA002375000A patent/CA2375000C/en not_active Expired - Fee Related
-
2004
- 2004-06-28 US US10/878,294 patent/US6957473B2/en not_active Expired - Fee Related
- 2004-07-06 US US10/885,053 patent/US7340798B2/en not_active Expired - Fee Related
-
2005
- 2005-06-03 US US11/144,436 patent/US20050223521A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2103101A (en) * | 1936-05-18 | 1937-12-21 | Hoover Co | Suction cleaner |
US2583054A (en) * | 1946-04-22 | 1952-01-22 | James B Kirby | Automatic nozzle adjusting device for vacuum cleaners |
US2632915A (en) * | 1950-06-10 | 1953-03-31 | Hoover Co | Suction cleaner nozzle height adjustment |
US2677850A (en) * | 1951-09-01 | 1954-05-11 | Hoover Co | Suction cleaner with converter facility |
US3217351A (en) * | 1962-10-09 | 1965-11-16 | Gen Electric | Vacuum cleaner |
US3163439A (en) * | 1963-07-05 | 1964-12-29 | Singer Co | Vacuum cleaner with nozzle height adjusting mechanism |
US3262147A (en) * | 1964-08-24 | 1966-07-26 | Westinghouse Electric Corp | Vacuum cleaner |
US3772727A (en) * | 1970-04-18 | 1973-11-20 | Mauz & Pfeiffer Progress | Sweeping machine |
US3827103A (en) * | 1970-05-19 | 1974-08-06 | Whirlpool Co | Vacuum cleaner |
US4014068A (en) * | 1975-04-03 | 1977-03-29 | The Hoover Company | Brush mounting and torsion spring support for powered nozzle |
US4446594A (en) * | 1981-06-03 | 1984-05-08 | Hitachi, Ltd. | Upright type electric cleaner |
US5080525A (en) * | 1986-12-22 | 1992-01-14 | Tennant Company | Floor paving machine and method |
US4724574A (en) * | 1987-03-19 | 1988-02-16 | Sara Lee Corporation | Suction cleaner |
US5467502A (en) * | 1992-06-04 | 1995-11-21 | Matsushita Applicane Corporation | Height adjusting system for upright vacuum cleaner |
US5819370A (en) * | 1995-02-16 | 1998-10-13 | Stein & Co. Gmbh | Floorcare machines such as vacuum cleaners |
US5985156A (en) * | 1996-06-26 | 1999-11-16 | Henkin; Melvyn L. | Automatic swimming pool cleaning system |
US5970576A (en) * | 1997-03-26 | 1999-10-26 | The Hoover Company | Vacuum cleaner height adjustment |
US6591447B2 (en) * | 2001-03-19 | 2003-07-15 | The Hoover Company | Spring loaded vacuum cleaner nozzle |
Also Published As
Publication number | Publication date |
---|---|
CA2375000A1 (en) | 2002-09-12 |
US6957473B2 (en) | 2005-10-25 |
US20040237249A1 (en) | 2004-12-02 |
US20040231094A1 (en) | 2004-11-25 |
US20020124344A1 (en) | 2002-09-12 |
US6772474B2 (en) | 2004-08-10 |
CA2375000C (en) | 2008-06-03 |
US7340798B2 (en) | 2008-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6957473B2 (en) | Upright vacuum cleaner with spring loaded nozzle | |
CA2367174C (en) | Hand-held vacuum cleaner with a detachable head | |
US6766559B2 (en) | Telescoping handle for upright vacuum cleaner | |
US7318250B2 (en) | Bare floor shifter for vacuum cleaner | |
US6915544B2 (en) | Agitator drive system with bare floor shifter | |
CA2448457C (en) | Removable dirt cup assembly with external filter | |
US7281297B2 (en) | Floor cleaning apparatus equipped with multiple agitators and an agitator hood with baffle | |
US7290308B2 (en) | Vacuum cleaner equipped with pivotally mounted agitator section | |
US6918155B2 (en) | Dual agitator drive system with worm gear | |
US20070028413A1 (en) | Upright vacuum cleaner with removable air path cover for canister assembly | |
US8505159B2 (en) | Agitator cavity fitting for floor care cleaning apparatus | |
US20040078922A1 (en) | Suction nozzle for vacuum cleaner | |
CA2464577C (en) | Holder for alternately receiving wand or cleaning tool | |
CA2526665C (en) | Hand-held vacuum cleaner with a detachable head | |
US7636983B2 (en) | Floor care apparatus with telescoping handle stalk | |
CA2528732A1 (en) | Rotary agitator providing low noise operation | |
JP2019193708A (en) | Brush nozzle for vacuum cleaner and vacuum cleaner comprising the same | |
WO2015109493A1 (en) | Vacuum cleaner with ratcheting height adjustment mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |