Nothing Special   »   [go: up one dir, main page]

US20050171171A1 - Amide derivatives as FLT-3 modulators - Google Patents

Amide derivatives as FLT-3 modulators Download PDF

Info

Publication number
US20050171171A1
US20050171171A1 US10/989,766 US98976604A US2005171171A1 US 20050171171 A1 US20050171171 A1 US 20050171171A1 US 98976604 A US98976604 A US 98976604A US 2005171171 A1 US2005171171 A1 US 2005171171A1
Authority
US
United States
Prior art keywords
substituted
unsubstituted
compound
alkylene
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/989,766
Inventor
Shamal Mehta
Robert Grotzfeld
Zdravko Milanov
Andiliy Lai
Hitesh Patel
David Lockhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ambit Bioscience Corp
Original Assignee
Ambit Bioscience Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ambit Bioscience Corp filed Critical Ambit Bioscience Corp
Priority to US10/989,766 priority Critical patent/US20050171171A1/en
Assigned to AMBIT BIOSCIENCES CORPORATION reassignment AMBIT BIOSCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GROTZFELD, ROBERT M., MILANOV, ZDRAVKO V., LAI, ANDILIY G., LOCKHART, DAVID J., MEHTA, SHAMAL A., PATEL, HITESH K.
Publication of US20050171171A1 publication Critical patent/US20050171171A1/en
Assigned to HORIZON TECHNOLOGY FUNDING COMPANY LLC reassignment HORIZON TECHNOLOGY FUNDING COMPANY LLC SECURITY AGREEMENT Assignors: AMBIT BIOSCIENCES CORPORATION
Assigned to AMBIT BIOSCIENCES CORPORATION reassignment AMBIT BIOSCIENCES CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HORIZON TECHNOLOGY FUNDING COMPANY LLC
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/38Nitrogen atoms
    • C07D231/40Acylated on said nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/08Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/18Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • C07D277/46Acylated amino or imino radicals by carboxylic acids, or sulfur or nitrogen analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/82Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • PKs Protein kinases
  • PKs are enzymes that catalyze the phosphorylation of hydroxy groups on tyrosine, serine and threonine residues of proteins, and can be conveniently broken down into two classes, the protein tyrosine kinases (PTKs) and the serine-threonine kinases (STKs).
  • PTKs protein tyrosine kinases
  • STKs serine-threonine kinases
  • Growth factor receptors with PTK activity are known as receptor tyrosine kinases.
  • Protein receptor tyrosine kinases are a family of tightly regulated enzymes, and the aberrant activation of various members of the family is one of the hallmarks of cancer.
  • the protein-tyrosine kinase family which includes Bcr-Abl tyrosine kinase, can be divided into subgroups that have similar structural organization and sequence similarity within the kinase domain.
  • the members of the type III group of receptor tyrosine kinases include the platelet-derived growth factor (PDGF) receptors (PDGF receptors ⁇ and ⁇ ), colony-stimulating factor (CSF-1) receptor (CSF-1R, c-Fms), FLT-3, and stem cell or steel factor receptor (c-kit).
  • Hematologic cancers also known as hematologic or hematopoietic malignancies, are cancers of the blood or bone marrow; including leukemia and lymphoma.
  • Acute myelogenous leukemia AML is a clonal hematopoietic stem cell leukemia that represents ⁇ 90% of all acute leukemias in adults. See e.g., Lowenberg et al., N. Eng. J. Med. 341:1051-62 (1999).
  • chemotherapy can result in complete remissions, the long term disease-free survival rate for AML is about 14% with about 7,400 deaths from AML each year in the United States.
  • the single most commonly mutated gene in AML is FLT3 kinase.
  • the compounds provided by the present invention are urea derivatives of substituted aryls and hetroaryls, e.g., isoxazoles, pyrazoles and isothiazoles.
  • Urea derivatives of pyrazoles have been reported to be selective p38 kinase inhibitors by Dumas, J., et al., Bioorg. Medic. Chem. Lett. 10:2051-2054 (2000).
  • Oxazoles and isopyrazoles are suggested as blockers of cytokine production in WO 00/43384 published 27 Jul. 2000.
  • Urea derivatives of isoxazole and pyrazoles are described as inhibitors of RAF kinase in WO 99/32106 published 1 Jul. 1999.
  • the present invention provides compounds which modulate kinase activity, and in some embodiments inhibit protein tyrosine kinases or a specific kinase or kinase class.
  • the compositions and methods for treating and preventing conditions and diseases such as cancer, hematologic malignancies, cardiovascular disease, inflammation or multiple sclerosis.
  • the compounds of the invention can be delivered alone or in combination with additional agents, and are used for the treatment and/or prevention of conditions and diseases. Unless otherwise stated, each of the substituents is as previously defined.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein Z 1 is CR 3 or N; and Z 2 is O or S.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein Z 1 is O or S; and Z 2 is CR 3 or N.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • L of said compound is a covalent bond —C(O)NH(substituted or unsubstituted alkylene), —NHC(O)—, —NHC(O)(substituted or unsubstituted alkylene)-, —NH—, or —O(substituted or unsubstituted alkylene)-.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • B of said compound is a substituted or unsubstituted five-membered arylene or heteroarylene.
  • B is substituted or unsubstituted thiophenylene.
  • B is substituted or unsubstituted imidazolylene.
  • B is substituted or unsubstituted pyrrolylene.
  • B of said compound is a substituted or unsubstituted 6-membered arylene or heteroarylene.
  • B is substituted or unsubstituted phenylene.
  • B is substituted or unsubstituted pyridinylene, pyrimidinylene, or pyridazine.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • B of said compound is a substituted or unsubstituted six-membered heteroarylene.
  • the six-membered heteroarylene is substituted or unsubstituted pyrimidinylene.
  • L of said compound —OCH 2 —.
  • L of said compound is —C(O)NH.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • L of said compound is a covalent bond, —C(O)NH—, or —O(substituted or unsubstituted alkylene)-.
  • of said compound is selected from the group consisting of:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a-flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein L is —O(substituted or unsubstituted alkylene)- or —(O)(substituted or unsubstituted alkenylene)-.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • L of said compound is —O(substituted or unsubstituted alkylene)- or —O(substituted or unsubstituted alkenylene)-.
  • L of said compound is —NHC(O)—.
  • L of said compound is a covalent bond, substituted or unsubstituted alkylene, —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —NH(alkylene)-, —NHC(O)CH 2 SCH 2 C(O)NH—, and —NHC(O)(substituted alkylene)S—.
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure: wherein:
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
  • the protein tyrosine kinase is selected from the fetus liver kinase (“flk”) receptor subfamily, which includes kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1), flk-1R, flk-4 and fms-like tyrosine kinase 1 (flt-1).
  • flk fetus liver kinase
  • the protein tyrosine kinase is selected from the fibroblast growth factor (“FGF”) receptor subgroup, which includes the receptors FGFR1, FGFR 2, FGFR3, and FGFR4, and the ligands, FGF1, FGF2, FGF3, FGF4, FGF5, FGF6,and FGF7.
  • FGF fibroblast growth factor
  • the protein tyrosine kinase is the tyrosine kinase growth factor receptor family, c-Met.
  • the protein tyrosine kinase is an fins-like tyrosine kinase 3 receptor kinase (FLT-3 kinase).
  • the compounds and compositions disclosed herein may be used for the prevention or treatment of cancers such as stomach, gastric, bone, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, ovarian, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, leukemia, glioma, colorectal cancer, genitourinary cancer gastrointestinal cancer, or pancreatic cancer.
  • cancers such as stomach, gastric, bone, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, ovarian, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, lung cancer, bladder cancer, head and neck cancer, melanoma,
  • the cancer is acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • AML acute myelogenous leukemia
  • B-precursor cell acute lymphoblastic leukemias myelodysplastic leukemias
  • T-cell acute lymphoblastic leukemias T-cell acute lymphoblastic leukemias
  • CMLs chronic myelogenous leukemias
  • compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of an fms-like tyrosine kinase 3 (FLT-3) receptor modulating compound are provided herein.
  • the disease is cancer.
  • the cancer is a malignant tumor, or a hematologic malignancy such as leukemia and lymphoma.
  • the leukemia is acute myelogenous leukemia (AML), a B-precursor cell acute lymphoblastic leukemia, myelodysplastic leukemia, T-cell acute lymphoblastic leukemia or chronic myelogenous leukemia (CML).
  • modulator means a molecule that interacts with a target either directly or indirectly.
  • the interactions include, but are not limited to, agonist, antagonist, and the like.
  • agonist means a molecule such as a compound, a drug, an enzyme activator or a hormone that enhances the activity of another molecule or the activity of a receptor site etiehr directly or indirectly.
  • antagonist means a molecule such as a compound, a drug, an enzyme inhibitor, or a hormone, that diminishes or prevents the action of another molecule or the activity of a receptor site either directly or indirectly.
  • an “effective amount” or “therapeutically effective amount” refer to a sufficient amount of the agent to provide the desired biological result. That result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system.
  • an “effective amount” for therapeutic use is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in a disease.
  • An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
  • the terms “treat” or “treatment” are synonymous with the term “prevent” and are meant to indicate a postponement of development of diseases, preventing the development of diseases, and/or reducing severity of such symptoms that will or are expected to develop.
  • these terms include ameliorating existing disease symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disorder or disease, e.g., arresting the development of the disorder or disease, relieving the disorder or disease, causing regression of the disorder or disease, relieving a condition caused by the disease or disorder, or stopping the symptoms of the disease or disorder.
  • pharmaceutically acceptable or “pharmacologically acceptable” is meant a material which is not biologically or otherwise undesirable, i.e., the material may be administered to an individual without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.
  • Carrier materials include any commonly used excipients in pharmaceutics and should be selected on the basis of compatibility and the release profile properties of the desired dosage form.
  • Exemplary carrier materials include, e.g., binders, suspending agents, disintegration agents, filling agents, surfactants, solubilizers, stabilizers, lubricants, wetting agents, diluents, and the like.
  • “Pharmaceutically compatible carrier materials” may comprise, e.g., acacia, gelatin, colloidal silicon dioxide, calcium glycerophosphate, calcium lactate, maltodextrin, glycerine, magnesium silicate, sodium caseinate, soy lecithin, sodium chloride, tricalcium phosphate, dipotassium phosphate, sodium stearoyl lactylate, carrageenan, monoglyceride, diglyceride, pregelatinized starch, and the like. See, e.g., Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa.
  • the term “subject” encompasses mammals and non-mammals.
  • mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.
  • non-mammals include, but are not limited to, birds, fish and the like.
  • the mammal is a human.
  • salts for example, include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulf
  • Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
  • Acceptable inorganic bases include aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like.
  • a reference to a pharmaceutically acceptable salt includes the solvent addition forms or crystal forms thereof, particularly solvates or polymorphs.
  • Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and are often formed during the process of crystallization. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol.
  • Polymorphs include the different crystal packing arrangements of the same elemental composition of a compound.
  • Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility. Various factors such as the recrystallization solvent, rate of crystallization, and storage temperature may cause a single crystal form to dominate.
  • biological sample is broadly defined to include any cell, tissue, organ or multicellular organism.
  • a biological sample can be derived, for example, from cell or tissue cultures in vitro.
  • a biological sample can be derived from a living organism or from a population of single cell organisms.
  • linker means any divalent linking moiety used to connect, join, or attach two chemical groups.
  • linkers may be used to join two cyclic groups, such as to join two aryl groups (e.g., phenyl), an aryl group to a cycloalkyl group, an aryl group to a heterocyclyl group, a cycloalkyl group to a cycloalkyl group, a cycloalkyl group to a heterocyclyl group, and the like.
  • linkers include, but are not limited to, a covalent bond, -(substituted or unsubstituted alkylene)-, -(substituted or unsubstituted alkenylene)-, -(substituted or unsubstituted alkynylene)-, -(substituted or unsubstituted cycloalkylene)-, -(substituted or unsubstituted heterocyclylene)-, -(substituted or unsubstituted arylene)-, and -(substituted or unsubstituted heteroarylene)-.
  • Exemplary linkers also include —O—, —S—, —S(O)—, —S(O) 2 —, —S(O) 3 —, —C(O)—, —NH—, —N ⁇ , —N ⁇ N—, ⁇ N—N ⁇ , —C(O)NH—, —S(O)NH—, and the like.
  • linkers include —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkylene)-, —C(O)(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—, —NHC(O)(substituted or unsubstituted alkenylene)-, and the like.
  • Linkers as represented herein, embrace divalent moieties in any chemically feasible directionality.
  • compounds comprising a linker —C(O)NH— which attaches two aryl groups, Ar 1 to Ar 2 include Ar 1 —C(O)NH—Ar 2 as well as Ar 1 —NHC(O)—Ar 2 .
  • halogen includes fluorine, chlorine, bromine, and iodine.
  • alkyl means a straight chain or branched, saturated or unsaturated chain having from 1 to 10 carbon atoms.
  • Representative saturated alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, n-pentyl, isopentyl, neopentyl, and n-he
  • alkyl group can be unsubstituted or substituted.
  • Unsaturated alkyl groups include alkenyl groups and alkynyl groups, discussed below.
  • Alkyl groups containing three or more carbon atoms may be straight, branched or cyclized.
  • lower alkyl means an alkyl having from 1 to 5 carbon atoms.
  • an “alkenyl group” includes a monovalent unbranched or branched hydrocarbon chain having one or more double bonds therein.
  • the double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group.
  • Suitable alkenyl groups include, but are not limited to, (C 2 -C 8 ) alkenyl groups, such as vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-butene)-pentenyl.
  • An alkenyl group can be unsubstituted or substituted.
  • alkynyl group includes a monovalent unbranched or branched hydrocarbon chain having one or more triple bonds therein.
  • the triple bond of an alkynyl group can be unconjugated or conjugated to another unsaturated group.
  • Suitable alkynyl groups include, but are not limited to, (C 2 -C 6 )alkynyl groups, such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4-methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl.
  • An alkynyl group can be unsubstituted or substituted.
  • trifluoromethyl include CF 3 , SO 3 H, and CO 2 H, respectively.
  • alkoxy as used herein includes —O-(alkyl), wherein alkyl is defined above.
  • alkoxyalkoxy includes —O-(alkyl)-O-(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • alkoxycarbonyl includes-C(O)O-(alkyl), wherein alkyl is defined above.
  • alkoxycarbonylalkyl includes -(alkyl)-C(O)O-(alkyl), wherein alkyl is defined above.
  • alkoxyalkyl means -(alkyl)-O-(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • aryl refers to a monocyclic, or fused or spiro polycyclic, aromatic carbocycle (ring structure having ring atoms that are all carbon) having from 3 to 12 ring atoms per ring.
  • aryl groups include the following moieties:
  • heteroaryl refers to a monocyclic, or fused or spiro polycyclic, aromatic heterocycle (ring structure having ring atoms selected from carbon atoms as well as nitrogen, oxygen, and sulfur heteroatoms) having from 3 to 12 ring atoms per ring.
  • aryl groups include the following moieties:
  • cycloalkyl refers to a saturated or partially saturated, monocyclic or fused or Spiro polycyclic, carbocycle having from 3 to 12 ring atoms per ring.
  • Illustrative examples of cycloalkyl groups include the following moieties:
  • heterocycloalkyl refers to a monocyclic, or fused or spiro polycyclic, ring structure that is saturated or partially saturated and has from 3 to 12 ring atoms per ring selected from C atoms and N, O, and S heteroatoms.
  • ring atoms per ring selected from C atoms and N, O, and S heteroatoms.
  • heterocycloalkyl groups include:
  • aryloxy includes —O-aryl group, wherein aryl is as defined above.
  • An aryloxy group can be unsubstituted or substituted.
  • arylalkyl includes -(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • arylalkyloxy includes —O-(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • cycloalkyl includes a monocyclic or polycyclic saturated ring comprising carbon and hydrogen atoms and having no carbon-carbon multiple bonds.
  • cycloalkyl groups include, but are not limited to, (C 3 -C 7 )cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, and saturated cyclic and bicyclic terpenes.
  • a cycloalkyl group can be unsubstituted or substituted.
  • the cycloalkyl group is a monocyclic ring or bicyclic ring.
  • cycloalkyloxy includes —O-(cycloalkyl), wherein cycloalkyl is defined above.
  • cycloalkylalkyloxy includes —O-(alkyl)-(cycloalkyl), wherein cycloalkyl and alkyl are defined above.
  • alkylidene includes the divalent radical —C n H 2n —, wherein n is an integer from 1 to 8, such as —CH 2 —, —CH 2 CH 2 —, —CH 2 —CH 2 —CH 2 —, —CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 —, and the like, unsubstituted or substituted with one or more alkyl groups.
  • heteroatom-containing alkylidene includes an alkylidene wherein at least one carbon atom is replaced by a heteroatom selected from nitrogen, oxygen, or sulfur, such as —CH 2 CH 2 OCH 2 CH 2 —, and the like, unsubstituted or substituted with one or more alkyl groups.
  • aminoalkoxy includes —O-(alkyl)-NH 2 , wherein alkyl is defined above.
  • “mono-alkylamino” includes —NH(alkyl), wherein alkyl is defined above.
  • di-alkylamino includes —N(alkyl)(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • “mono-alkylaminoalkoxy” includes —O-(alkyl)-NH(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • di-alkylaminoalkoxy includes —O-(alkyl)N(alkyl)(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • arylamino includes —NH(aryl), wherein aryl is defined above.
  • arylalkylamino includes —NH-(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • alkylamino includes —NH(alkyl), wherein alkyl is defined above.
  • cycloalkylamino includes —NH-(cycloalkyl), wherein cyclohexyl is defined above.
  • cycloalkylalkylamino includes —NH-(alkyl)-(cycloalkyl), wherein alkyl and cycloalkyl are defined above.
  • aminoalkyl includes -(alkyl)-NH 2 , wherein alkyl is defined above.
  • “mono-alkylaminoalkyl” includes -(alkyl)-NH(alkyl),wherein each “alkyl” is independently an alkyl group defined above.
  • di-alkylaminoalkyl includes -(alkyl)-N(alkyl)(alkyl),wherein each “alkyl” is independently an alkyl group defined above.
  • whole integer is intended to include whole numbers. For example, a whole integer from 0 to 4 would include 0, 1, 2, 3, and 4.
  • Sulfonyl refers to the presence of a sulfur atom, which is optionally linked to another moiety such as an aliphatic group, an aromatic group, an aryl group, an alicyclic group, or a heterocyclic group.
  • Aryl or alkyl sulfonyl moieties have the formula —SO 2 R d
  • alkoxy moieties have the formula —O—R d —, wherein R d is alkyl, as defined above, or is aryl wherein aryl is phenyl, optionally substituted with 1-3 substituents independently selected from halo (fluoro, chloro, bromo or iodo), lower alkyl (1-6C) and lower alkoxy (1-6C).
  • substituted means that the specified group or moiety bears one or more suitable substituents.
  • Molecular embodiments of the present invention may possess one or more chiral centers and each center may exist in the R or S configuration.
  • the present invention includes all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof.
  • Stereoisomers may be obtained, if desired, by methods known in the art as, for example, the separation of stereoisomers by chiral chromatographic columns.
  • the compounds of the present invention may exist as geometric isomers.
  • the present invention includes all cis, trans, syn, anti,
  • E
  • Z cis, trans, anti,
  • isomers as well as the appropriate mixtures thereof.
  • Certain functional groups contained within the compounds of the present invention can be substituted for bioisosteric groups, that is, groups which have similar spatial or electronic requirements to the parent group, but exhibit differing or improved physicochemical or other properties. Suitable examples are well known to those of skill in the art, and include, but are not limited to moieties described in Patini et al., Chem, Rev, 1996, 96, 3147-3176 and references cited therein.
  • the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like.
  • the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
  • the present invention is directed to compounds, compositions, and methods for treating conditions associated with abnormal kinase activity.
  • compounds useful in the invention are derivatives of isoxazoles, pyrazoles and isothiazoles.
  • the invention includes optically pure forms as well as mixtures of stereoisomers or enantiomers.
  • the invention provides methods for modulating various kinases by providing an effective amount of a compound of the formulas described herein.
  • Salts of the compounds may be used for therapeutic and prophylactic purposes, where the salt is preferably a pharmaceutically acceptable salt.
  • pharmaceutically acceptable salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulphuric acids, and organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic and methanesulphonic and arylsulphonic, for example Q-toluenesulphonic, acids.
  • mineral acids such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulphuric acids
  • organic acids such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic and methanesulphonic and arylsulphonic, for example
  • a “prodrug” refers to a drug or compound in which the pharmacological action results from conversion by metabolic processes within the body.
  • Prodrugs are generally drug precursors that, following administration to a subject and subsequent absorption, are converted to an active, or a more active species via some process, such as conversion by a metabolic pathway.
  • Some prodrugs have a chemical group present on the prodrug that renders it less active and/or confers solubility or some other property to the drug. Once the chemical group has been cleaved and/or modified from the prodrug the active drug is generated.
  • Prodrugs may be designed as reversible drug derivatives, for use as modifiers to enhance drug transport to site-specific tissues.
  • prodrugs can increase the effective water solubility of the therapeutic compound for targeting to regions where water is the principal solvent. See, e.g., Fedorak et al., Am. J. Physiol., 269:G210-218 (1995); McLoed et al., Gastroenterol, 106:405-413 (1994); Hochhaus et al., Biomed. Chrom., 6:283-286 (1992); J. Larsen and H. Bundgaard, Int. J. Pharmaceutics, 37, 87 (1987); J. Larsen et al., Int. J. Pharmaceutics, 47, 103 (1988); Sinkula et al., J. Pharm.
  • Prodrug forms of the above described compounds, wherein the prodrug is metabolized in vivo to produce a derivative as set forth above are included within the scope of the claims. Indeed, some of the above-described derivatives may be a prodrug for another derivative or active compound.
  • the invention further provides for the optical isomers of the compounds disclosed herein, especially those resulting from the chiral carbon atoms in the molecule.
  • optical isomers of the compounds disclosed herein especially those resulting from the chiral carbon atoms in the molecule.
  • mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion may also be useful for the applications described herein.
  • compositions containing the above described analogs and derivatives are provided.
  • the compositions are formulated to be suitable for pharmaceutical or clinical use by the inclusion of appropriate carriers or excipients.
  • substituents include, for example, trifluoromethyl, difluoromethyl and fluoromethyl (alkyl substituted by halo) and trifluoromethoxy, difluoromethoxy and fluoromethoxy (alkyl where one carbon is replaced by O and is further substituted by halo).
  • compositions of the invention which contain carboxyl groups or which contain amino groups may be supplied in the forms of their pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts of carboxylic acids include inorganic salts such as salts of sodium, potassium, calcium, magnesium and the like or salts formed with organic bases such as caffeine.
  • Salts of amines are acid addition salts formed from inorganic acids such as hydrochloric, sulfuric, phosphoric acids or may be salts of organic acids such as acetates, maleates, propionates, and the like.
  • the invention also provides prodrug forms of the compounds described herein, wherein the prodrug is metabolized in vivo to produce a derivative as set forth above. Indeed, some of the above described derivatives may be a prodrug for another derivative or active compound.
  • the invention further provides for the optical isomers of the compounds disclosed herein, especially those resulting from the chiral carbon atoms in the molecule. In additional embodiments of the invention, mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion are provided.
  • compositions containing the above described analogs and derivatives are provided.
  • the compositions are formulated to be suitable for pharmaceutical or clinical use by the inclusion of appropriate carriers or excipients.
  • compositions comprising at least one compound described above, or a pharmaceutically acceptable salt or solvate thereof, together with one or more pharmaceutically acceptable carriers, diluents or excipients.
  • the compounds of the invention may be “conjugated”—that is they may be coupled to additional moieties that do not destroy their ability to modulate kinases.
  • the compounds might be coupled to a label such as a radioactive label, a fluorescent label and the like, or may be coupled to targeting agents such as antibodies or fragments, or to fragments to aid purification such as FLAG or a histidine tag.
  • the compounds may also be coupled to specific binding partners such as biotin for use in assay procedures or to moieties that alter their biological half-lives such as polyethylene glycol.
  • the methods of the invention employ the invention compounds per se as well as conjugates thereof.
  • the compounds of the invention are synthesized by methods well known in the art.
  • the compounds of the invention are ureas or cyclic forms thereof and can be synthesized using generally known procedures for urea synthesis.
  • an amine is reacted with an isocyanate in an aprotic solvent.
  • an aprotic solvent typically, in some embodiments, a molar excess of the amine is used in the presence of an aprotic solvent and the reaction is conducted at room temperature. The reaction mixture is then poured into water and precipitated with salt to recover the crude product which is then purified according to standard methods.
  • the ureas are formed from two separate amine reactants in the presence of a condensing agent such as 1,1,carbonyldiimidazole (CDI) in the presence of an inert nonpolar solvent such as dichloromethane.
  • a condensing agent such as 1,1,carbonyldiimidazole (CDI)
  • CDI 1,1,carbonyldiimidazole
  • an inert nonpolar solvent such as dichloromethane
  • one of the amines is added in an aprotic solvent to a solution of triphosgene and then treated with the other amine reactant dissolved in an inert solvent in the presence of base such as triethylamine. After reaction at room temperature, the mixture may be diluted with, for example, ethylacetate and washed with water and brine, dried and purified.
  • one of the amine components is treated with 4-nitrophenylchloroformate in the presence of mild base in a solvent such as N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the urea may be formed by the reaction of an amine with the counterpart halo acylamine which is formed from the parent amine by treatment with phosgene and base in an inert solvent such as methylene dichloride or by reacting an amine with its counterpart amine with an acyl amine containing an alternate leaving group formed by reaction of that amine with 4-nitrophenylchloroformate in the presence of an amine base and in an inert solvent.
  • an inert solvent such as methylene dichloride
  • Cyclized forms of the ureas may be obtained by treating the formed urea with dibromo derivatives of the bridge, typically in the presence of a strong base and in an inert aprotic polar solvent.
  • the ureas may be converted to thioureas by treating with Lawesson's reagent in the presence of toluene.
  • Ar 1 -L-Ar 2 For compounds having the moiety Ar 1 -L-Ar 2 is obtained by first protecting the amino group of p-hydroxy aniline destined to become Ar 1 with a protecting agent such as Boc and then coupling the hydroxy group of Ar 1 to an aryl alkyl halide. This coupling is conducted in the presence of strong base and in an aprotic solvent. After deprotection, the urea is formed by reaction with the isoxazole isocyanate.
  • carbon electrophiles are susceptible to attack by complementary nucleophiles, including carbon nucleophiles, wherein an attacking nucleophile brings an electron pair to the carbon electrophile in order to form a new bond between the nucleophile and the carbon electrophile.
  • Suitable carbon nucleophiles include, but are not limited to alkyl, alkenyl, aryl and alkynyl Grignard, organolithium, organozinc, alkyl-, alkenyl , aryl- and alkynyl-tin reagents (organostannanes), alkyl-, alkenyl-, aryl- and alkynyl-borane reagents (organoboranes and organoboronates); these carbon nucleophiles have the advantage of being kinetically stable in water or polar organic solvents.
  • carbon nucleophiles include phosphorus ylids, enol and enolate reagents; these carbon nucleophiles have the advantage of being relatively easy to generate from precursors well known to those skilled in the art of synthetic organic chemistry. Carbon nucleophiles, when used in conjunction with carbon electrophiles, engender new carbon-carbon bonds between the carbon nucleophile and carbon electrophile.
  • Non-carbon nucleophiles suitable for coupling to carbon electrophiles include but are not limited to primary and secondary amines, thiols, thiolates, and thioethers, alcohols, alkoxides, azides, semicarbazides, and the like. These non-carbon nucleophiles, when used in conjunction with carbon electrophiles, typically generate heteroatom linkages (C—X—C), wherein X is a hetereoatom, e.g, oxygen or nitrogen.
  • protecting group refers to chemical moieties that block some or all reactive moieties and prevent such groups from participating in chemical reactions until the protective group is removed. It is preferred that each protective group be removable by a different means. Protective groups that are cleaved under totally disparate reaction conditions fulfill the requirement of differential removal. Protective groups can be removed by acid, base, and hydrogenolysis. Groups such as trityl, dimethoxytrityl, acetal and t-butyldimethylsilyl are acid labile and may be used to protect carboxy and hydroxy reactive moieties in the presence of amino groups protected with Cbz groups, which are removable by hydrogenolysis, and Fmoc groups, which are base labile.
  • Carboxylic acid and hydroxy reactive moieties may be blocked with base labile groups such as, without limitation, methyl, ethyl, and acetyl in the presence of amines blocked with acid labile groups such as t-butyl carbamate or with carbamates that are both acid and base stable but hydrolytically removable.
  • base labile groups such as, without limitation, methyl, ethyl, and acetyl in the presence of amines blocked with acid labile groups such as t-butyl carbamate or with carbamates that are both acid and base stable but hydrolytically removable.
  • Carboxylic acid and hydroxy reactive moieties may also be blocked with hydrolytically removable protective groups such as the benzyl group, while amine groups capable of hydrogen bonding with acids may be blocked with base labile groups such as Fmoc.
  • Carboxylic acid reactive moieties may be protected by conversion to simple ester derivatives as exemplified herein, or they may be blocked with oxidatively-removable protective groups such as 2,4-dimethoxybenzyl, while co-existing amino groups may be blocked with fluoride labile silyl carbamates.
  • Allyl blocking groups are useful in then presence of acid- and base-protecting groups since the former are stable and can be subsequently removed by metal or pi-acid catalysts.
  • an allyl-blocked carboxylic acid can be deprotected with a Pdo-catalyzed reaction in the presence of acid labile t-butyl carbamate or base-labile acetate amine protecting groups.
  • Yet another form of protecting group is a resin to which a compound or intermediate may be attached. As long as the residue is attached to the resin, that functional group is blocked and cannot react. Once released from the resin, the functional group is available to react.
  • blocking/protecting groups may be selected from:
  • PKs Protein kinases
  • Abnormal PK activity has been related to disorders ranging from relatively non life threatening diseases such as psoriasis to extremely virulent diseases such as glioblastoma (brain cancer).
  • a variety of tumor types have dysfunctional growth factor receptor tyrosine kinases, resulting in inappropriate mitogenic signaling. Protein kinases are believed to be involved in many different cellular signal transduction pathways.
  • protein tyrosine kinases are attractive targets in the search for therapeutic agents, not only for cancer, but also against many other diseases.
  • Blocking or regulating the kinase phosphorylation process in a signaling cascade may help treat conditions such as cancer or inflammatory processes.
  • Protein tyrosine kinases are a family of tightly regulated enzymes, and the aberrant activation of various members of the family is one of the hallmarks of cancer.
  • the protein-tyrosine kinase family includes Bcr-Abl tyrosine kinase, and can be divided into subgroups that have similar structural organization and sequence similarity within the kinase domain.
  • the members of the type III group of receptor tyrosine kinases include the platelet-derived growth factor (PDGF) receptors (PDGF receptors ⁇ and ⁇ ), colony-stimulating factor (CSF-1) receptor (CSF-1R, c-Fms), FLT-3, and stem cell or steel factor receptor (c-kit).
  • compositions and methods provided herein are useful to modulate the activity of kinases including, but not limited to, ERBB2, ABL1, AURKA, CDK2, EGFR, FGFR1, LCK, MAPK14, PDGFR, KDR, ABL1, BRAF, ERBB4, FLT3, KIT, and RAF1.
  • the compositions and methods provided herein modulate the activity of a mutant kinase.
  • Inhibition by the compounds provided herein can be determined using any suitable assay. In one embodiment, inhibition is determined in vitro. In a specific embodiment, inhibition is assessed by phosphorylation assays. Any suitable phosphorylation assay can be employed. For example, membrane autophosphorylation assays, receptor autophosphorylation assays in intact cells, and ELISA's can be employed. See, e.g., Gazit, et al., J. Med. Chem. (1996) 39:2170-2177, Chapter 18 in C URRENT P ROTOCOLS IN M OLECULAR B IOLOGY (Ausubel, et al., eds. 2001). Cells useful in such assays include cells with wildtype or mutated forms.
  • the wildtype is a kinase that is not constitutively active, but is activated with upon dimerization.
  • the mutant FLT3 kinase is constitutively active via internal tandem duplication mutations or point mutations in the activation domain.
  • Suitable cells include those derived through cell culture from patient samples as well as cells derived using routine molecular biology techniques, e.g., retroviral transduction, transfection, mutagenesis, etc.
  • Exemplary cells include Ba/F3 or 32Dc13 cells transduced with, e.g., MSCV retroviral constructs FLT3-ITD (Kelly et al., 2002); Molm-13 and Molm14 cell line (Fujisaki Cell Center, Okayama, Japan); HL60 (AML-M3), AML193 (AML-M5), KG-1, KG-1a, CRL-1873, CRL-9591, and THP-1 (American Tissue Culture Collection, Bethesda, Md.); or any suitable cell line derived from a patient with a hematopoietic malignancy.
  • the compounds described herein significantly inhibit receptor tyrosine kinases.
  • a significant inhibition of a receptor tyrosine kinase activity refers to an IC 50 of less than or equal to 100 ⁇ M.
  • the compound can inhibit activity with an IC 50 of less than or equal to 50 ⁇ M, more preferably less than or equal to 10 ⁇ M, more preferably less than 1 ⁇ M, or less than 100 nM, most preferably less than 50 nM.
  • Lower IC 50 's are preferred because the IC 50 provides an indication as to the in vivo effectiveness of the compound.
  • Other factors known in the art, such as compound half-life, biodistribution, and toxicity should also be considered for therapeutic uses.
  • a compound that inhibits activity is administered at a dose where the effective tyrosine phosphorylation, i.e., IC 50 , is less than its cytotoxic effects, LD 50 .
  • the compounds selectively inhibit one or more kinases.
  • Selective inhibition of a kinase such as FLT3, p38 kinase, STK10, MKNK2, Bcr-Abl, c-kit, or PDGFR, is achieved by inhibiting activity of one kinase, while having an insignificant effect on other members of the superfamily.
  • FLT3 kinase is a tyrosine kinase receptor involved in the regulation and stimulation of cellular proliferation. See e.g., Gilliland et al., Blood 100:1532-42 (2002).
  • the FLT3 kinase is a member of the class III receptor tyrosine kinase (RTKIII) receptor family and belongs to the same subfamily of tyrosine kinases as c-kit, c-fms, and the platelet-derived growth factor a and B receptors.
  • RTKIII receptor tyrosine kinase
  • the FLT3 kinase has five immunoglobulin-like domains in its extracellular region as well as an insert region of 75-100 amino acids in the middle of its cytoplasmic domain. FLT3 kinase is activated upon the binding of the FLT3 ligand, which causes receptor dimerization. Dimerization of the FLT3 kinase by FLT3 ligand activates the intracellular kinase activity as well as a cascade of downstream substrates including Stat5, Ras, phosphatidylinositol-3-kinase (PI3K), PLC ⁇ , Erk2, Akt, MAPK, SHC, SHP2, and SHIP.
  • PI3K phosphatidylinositol-3-kinase
  • FLT3 kinase In normal cells, immature hematopoietic cells, typically CD34+ cells, placenta, gonads, and brain express FLT3 kinase. See, e.g., Rosnet, et al., Blood 82:1110-19 (1993); Small et al., Proc. Natl. Acad. Sci. U.S.A. 91:459-63 (1994); and Rosnet et al., Leukemia 10:238-48 (1 996). However, efficient stimulation of proliferation via FLT3 kinase typically requires other hematopoietic growth factors or interleukins. FLT3 kinase also plays a critical role in immune function through its regulation of dendritic cell proliferation and dilferentiation. See e.g., McKenna et al., Blood 95:3489-97 (2000).
  • FLT3 kinase Numerous hematologic malignancies express FLT3 kinase, the most prominent of which is AML. See e.g., Yokota et al., Leukemia 11:1605-09 (1997).
  • FLT3 expressing malignancies include B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias. See e.g., Rasko et al., Leukemia 9:2058-66 (1995).
  • FLT3 kinase mutations associated with hematologic malignancies are activating mutations.
  • the FLT3 kinase is constitutively activated without the need for binding and dimerization by FLT3 ligand, and therefore stimulates the cell to grow continuously.
  • VEGF receptor VEGFR
  • PDGF receptor PDGFR
  • kit receptor kinases e.g., Mendel et al., Clin. Cancer Res. 9:327-37 (2003); O'Farrell et al., Blood 101:3597-605 (2003); and Sun et al., J. Med. Chem. 46:1116-19 (2003).
  • Such compounds effectively inhibit FLT3 kinase-mediated phosphorylation, cytokine production, cellular proliferation, resulting in the induction of apoptosis. See e.g., Spiekermann et al., Blood 101:1494-1504 (2003).
  • such compounds have potent antitumor activity in vitro and in vivo.
  • the kinase is a class III receptor tyrosine kinase (RTKIII).
  • RTKIII class III receptor tyrosine kinase
  • the kinase is a tyrosine kinase receptor intimately involved in the regulation and stimulation of cellular proliferation.
  • the kinase is a fms-like tyrosine kinase 3 receptor (FLT-3 kinase).
  • inhibition and reduction of the activity of FLT-3 kinase refers to a lower level of measured activity relative to a control experiment in which the protein, cell, or subject is not treated with the test compound, whereas an increase in the activity of FLT-3 kinase refers to a higher level of measured activity relative to a control experiment.
  • the reduction or increase is at least 10%.
  • reduction or increase in the activity of FLT-3 kinase of at least 20%, 50%, 75%, 90% or 100% or any integer between 10% and 100% may be preferred for particular applications.
  • FLT3 activity includes, but is not limited to, enhanced FLT3 activity resulting from increased or de novo expression of FLT3 in cells, increased FLT3 expression or activity, and FLT3 mutations resulting in constitutive activation.
  • the existence of inappropriate or abnormal FLT3 ligand and FLT3 levels or activity can be determined using well known methods in the art. For example, abnormally high FLT3 levels can be determined using commercially available ELISA kits. FLT3 levels can be determined using flow cytometric analysis, immunohistochemical analysis, and in situ hybridization techniques.
  • An inappropriate activation of the FLT3 can be determined by an increase in one or more of the activities occurring subsequent to FLT3 binding: (1) phosphorylation or autophosphorylation of FLT3; (2) phosphorylation of a FLT3 substrate, e.g., Stat5, Ras; (3) activation of a related complex, e.g., PI3K; (4) activation of an adaptor molecule; and (5) cellular proliferation. These activities are readily measured by well known methods in the art.
  • the compounds described herein can be used to prepare a medicament, such as by formulation into pharmaceutical compositions for administration to a subject using techniques generally known in the art. A summary of such pharmaceutical compositions may be found, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa.
  • the compounds of the invention can be used singly or as components of mixtures. Preferred forms of the compounds are those for systemic administration as well as those for topical or transdermal administration. Formulations designed for timed release are also within the scope of the invention. Formulation in unit dosage form is also preferred for the practice of the invention.
  • the formulation is divided into unit doses containing appropriate quantities of one or more compounds.
  • the unit dosage may be in the form of a package containing discrete quantities of the formulation.
  • Non-limiting examples are packeted tablets or capsules, and powders in vials or ampoules.
  • the compounds described herein may be labeled isotopically (e.g. with a radioisotope) or by any other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.
  • the compositions may be in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions.
  • Suitable excipients or carriers are, for example, water, saline, dextrose, glycerol, alcohols, aloe vera gel, allantoin, glycerin, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.
  • these compositions may also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and so forth.
  • compositions comprising the compounds described herein include formulating the derivatives with one or more inert, pharmaceutically acceptable carriers to form either a solid or liquid.
  • Solid compositions include, but are not limited to, powders, tablets, dispersible granules, capsules, cachets, and suppositories.
  • Liquid compositions include solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein.
  • a carrier of the invention can be one or more substances which also serve to act as a diluent, flavoring agent, solubilizer, lubricant, suspending agent, binder, or tablet disintegrating agent.
  • a carrier can also be an encapsulating material.
  • the carrier is preferably a finely divided solid in powder form which is interdispersed as a mixture with a finely divided powder from of one or more compound.
  • the carrier In tablet forms of the compositions, one or more compounds is intermixed with a carrier with appropriate binding properties in suitable proportions followed by compaction into the shape and size desired.
  • Powder and tablet form compositions preferably contain between about 5 to about 70% by weight of one or more compound.
  • Carriers that may be used in the practice of the invention include, but are not limited to, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.
  • the compounds of the invention may also be encapsulated or microencapsulated by an encapsulating material, which may thus serve as a carrier, to provide a capsule in which the derivatives, with or without other carriers, is surrounded by the encapsulating material.
  • encapsulating material which may thus serve as a carrier, to provide a capsule in which the derivatives, with or without other carriers, is surrounded by the encapsulating material.
  • cachets comprising one or more compounds are also provided by the instant invention. Tablet, powder, capsule, and cachet forms of the invention can be formulated as single or unit dosage forms suitable for administration, optionally conducted orally.
  • a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter is first melted.
  • One or more compounds are then dispersed into the melted material by, as a non-limiting example, stirring.
  • the non-solid mixture is then placed into molds as desired and allowed to cool and solidify.
  • Non-limiting compositions in liquid form include solutions suitable for oral or parenteral administration, as well as suspensions and emulsions suitable for oral administration.
  • Sterile aqueous based solutions of one or more compounds, optionally in the presence of an agent to increase solubility of the derivative(s), are also provided.
  • Non-limiting examples of sterile solutions include those comprising water, ethanol, and/or propylene glycol in forms suitable for parenteral administration.
  • a sterile solution of the invention may be prepared by dissolving one or more compounds in a desired solvent followed by sterilization, such as by filtration through a sterilizing membrane filter as a non-limiting example. In another embodiment, one or more compounds are dissolved into a previously sterilized solvent under sterile conditions.
  • a water based solution suitable for oral administration can be prepared by dissolving one or more compounds in water and adding suitable flavoring agents, coloring agents, stabilizers, and thickening agents as desired.
  • Water based suspensions for oral use can be made by dispersing one or more compounds in water together with a viscous material such as, but not limited to, natural or synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidone, and other suspending agents known to the pharmaceutical field.
  • the compounds of the invention are administered to a subject at dosage levels of from about 0.5 mg/kg to about 8.0 mg/kg of body weight per day.
  • dosage levels of from about 0.5 mg/kg to about 8.0 mg/kg of body weight per day.
  • a human subject of approximately 70 kg this is a dosage of from 35 mg to 560 mg per day.
  • Such dosages may be altered depending on a number of variables, not limited to the activity of the compound used, the condition to be treated, the mode of administration, the requirements of the individual subject, the severity of the condition being treated, and the judgment of the practitioner.
  • the compounds disclosed herein can be used to treat a variety of diseases. Suitable conditions characterized by undesirable protein-kinase activity can be treated by the compounds presented herein.
  • the term “condition” refers to a disease, disorder, or related symptom where inappropriate kinase activity is present. In some embodiments, these conditions are characterized by aggressive neovasculaturization including tumors, especially acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • AML acute myelogenous leukemia
  • B-precursor cell acute lymphoblastic leukemias myelodysplastic leukemias
  • T-cell acute lymphoblastic leukemias T-cell acute lymphoblastic leukemias
  • CMLs chronic myelogenous leukemias
  • a FLT3 modulating compounds may be used to treat tumors.
  • the ability of compounds that inhibit FLT3 kinase activity to treat tumors has been established.
  • Compounds having this property include SU5416 (Sugen), PKC412 (Novartis), GTP-14564 and CT53518 (Millennium). See e.g., Giles et al., Blood 102:795-801 (2003); Weisberg et al., Cancer Cell 1:433-43 (2002); Murata et al., J. Biol. Chem. 278:32892-98 (2003); and Kelly et al., Cancer Cell 1:421-32 (2002).
  • Compounds presented herein are useful in the treatment of a variety of biologically aberrant conditions or disorders related to tyrosine kinase signal transduction. Such disorders pertain to abnormal cell proliferation, differentiation, and/or metabolism. Abnormal cell proliferation may result in a wide array of diseases, including the development of neoplasia such as carcinoma, sarcoma, leukemia, glioblastoma, hemangioma, psoriasis, arteriosclerosis, arthritis and diabetic retinopathy (or other disorders related to uncontrolled angiogenesis and/or vasculogenesis).
  • neoplasia such as carcinoma, sarcoma, leukemia, glioblastoma, hemangioma, psoriasis, arteriosclerosis, arthritis and diabetic retinopathy (or other disorders related to uncontrolled angiogenesis and/or vasculogenesis).
  • compounds presented herein regulate, modulate, and/or inhibit disorders associated with abnormal cell proliferation by affecting the enzymatic activity of one or more tyrosine kinases and interfering with the signal transduced by said kinase. More particularly, the present invention is directed to compounds which regulate, modulate said kinase mediated signal transduction pathways as a therapeutic approach to cure leukemia and many kinds of solid tumors, including but not limited to carcinoma, sarcoma, erythroblastoma, glioblastoma, meningioma, astrocytoma, melanoma and myoblastoma. Indications may include, but are not limited to brain cancers, bladder cancers, ovarian cancers, gastric cancers, pancreas cancers, colon cancers, blood cancers, lung cancers and bone cancers.
  • compounds herein are useful in the treatment of cell proliferative disorders including cancers, blood vessel proliferative disorders, fibrotic disorders, and mesangial cell proliferative disorders.
  • Blood vessel proliferation disorders refer to angiogenic and vasculogenic disorders generally resulting in abnormal proliferation of blood vessels.
  • the formation and spreading of blood vessels, or vasculogenesis and angiogenesis, respectively, play important roles in a variety of physiological processes such as embryonic development, corpus luteum formation, wound healing and organ regeneration. They also play a pivotal role in cancer development.
  • blood vessel proliferation disorders include arthritis, where new capillary blood vessels invade the joint and destroy cartilage, and ocular diseases, like diabetic retinopathy, where new capillaries in the retina invade the vitreous, bleed and cause blindness.
  • ocular diseases like diabetic retinopathy, where new capillaries in the retina invade the vitreous, bleed and cause blindness.
  • disorders related to the shrinkage, contraction or closing of blood vessels, such as restenosis are also implicated.
  • Fibrotic disorders refer to the abnormal formation of extracellular matrix. Examples of fibrotic disorders include hepatic cirrhosis and mesangial cell proliferative disorders. Hepatic cirrhosis is characterized by the increase in extracellular matrix constituents resulting in the formation of a hepatic scar. Hepatic cirrhosis can cause diseases such as cirrhosis of the liver. An increased extracellular matrix resulting in a hepatic scar can also be caused by viral infection such as hepatitis. Lipocytes appear to play a major role in hepatic cirrhosis. Other fibrotic disorders implicated include atherosclerosis (see, below).
  • Mesangial cell proliferative disorders refer to disorders brought about by abnormal proliferation of mesangial cells.
  • Mesangial proliferative disorders include various human renal diseases, such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes, transplant rejection, and glomerulopathies.
  • the cell proliferative disorders which are indications of the present invention are not necessarily independent.
  • fibrotic disorders may be related to, or overlap, with blood vessel proliferative disorders.
  • atherosclerosis results, in part, in the abnormal formation of fibrous tissue within blood vessels.
  • Compounds of the invention can be-administered to a subject upon determination of the subject as having a disease or unwanted condition that would benefit by treatment with said derivative.
  • the determination can be made by medical or clinical personnel as part of a diagnosis of a disease or condition in a subject.
  • Non-limiting examples include determination of a risk of acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • the methods of the invention can comprise the administration of an effective amount of one or more compounds as disclosed herein, optionally in combination with one or more other active agents for the treatment of a disease or unwanted condition as disclosed herein.
  • the subject is preferably human, and repeated administration over time is within the scope of the present invention.
  • the present invention thus also provides compounds described above and their salts or solvates and pharmaceutically acceptable salts or solvates thereof for use in the prevention or treatment of disorders mediated by aberrant protein tyrosine kinase activity such as human malignancies and the other disorders mentioned above.
  • the compounds of the present invention are especially useful for the treatment of disorders caused by aberrant kinase activity such as breast, ovarian, gastric, pancreatic, non-small cell lung, bladder, head and neck cancers, and psoriasis.
  • the cancers include hematologic cancers, for example, acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • AML acute myelogenous leukemia
  • B-precursor cell acute lymphoblastic leukemias for example, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • CMLs chronic myelogenous leukemias
  • a further aspect of the invention provides a method of treatment of a human or animal subject suffering from a disorder mediated by aberrant protein tyrosine kinase activity, including susceptible malignancies, which comprises administering to the subject an effective amount of a compound described above or a pharmaceutically acceptable salt or solvate thereof.
  • a further aspect of the present invention provides the use of a compound described above, or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament for the treatment of cancer and malignant tumors.
  • the cancer can be stomach, gastric, bone, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, ovarian, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, leukemia, acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs), glioma, colorectal cancer, genitourinary cancer gastrointestinal cancer
  • compounds provided herein are useful for preventing and treating conditions associated with ischemic cell death, such as myocardial infarction, stroke, glaucoma, and other neurodegenerative conditions.
  • ischemic cell death such as myocardial infarction, stroke, glaucoma, and other neurodegenerative conditions.
  • Various neurodegenerative conditions which may involve apoptotic cell death include, but are not limited to, Alzheimer's Disease, ALS and motor neuron degeneration, Parkinson's disease, peripheral neuropathies, Down's Syndrome, age related macular degeneration (ARMD), traumatic brain injury, spinal cord injury, Huntington's Disease, spinal muscular atrophy, and HIV encephalitis.
  • the compounds described in detail above can be used in methods and compositions for imparting neuroprotection and for treating neurodegenerative diseases.
  • the compounds described herein can be used in a pharmaceutical composition for the prevention and/or the treatment of a condition selected from the group consisting of arthritis (including osteoarthritis, degenerative joint disease, spondyloarthropathies, gouty arthritis, systemic lupus erythematosus, juvenile arthritis and rheumatoid arthritis), common cold, dysmenorrhea, menstrual cramps, inflammatory bowel disease, Crohn's disease, emphysema, acute respiratory distress syndrome, asthma, bronchitis, chronic obstructive pulmonary disease, Alzheimer's disease, organ transplant toxicity, cachexia, allergic reactions, allergic contact hypersensitivity, cancer (such as solid tumor cancer including colon cancer, breast cancer, lung cancer and prostrate cancer; hematopoietic malignancies including leukemias and lymphomas; Hodgkin's disease; aplastic anemia, skin cancer and familiar adenomatous polyposis), tissue ulceration, peptic ulcers, gastritis, regional
  • a further aspect of the present invention provides the use of a compound described above, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for the treatment of psoriasis.
  • the compounds can be administered before, during or after the occurrence of a condition or a disease, and the timing of administering the composition containing a compound can vary.
  • the compounds can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions and diseases in order to prevent the occurrence of the disorder.
  • the compounds and compositions can be administered to a subject during or as soon as possible after the onset of the symptoms.
  • the administration of the compounds can be initiated within the first 48 hours of the onset of the symptoms, preferably within the first 48 hours of the onset of the symptoms, more preferably within the first 6 hours of the onset of the symptoms, and most preferably within 3 hours of the onset of the symptoms.
  • the initial administration can be via any route practical, such as, for example, an intravenous injection, a bolus injection, infusion over 5 min. to about 5 hours, a pill, a capsule, transdermal patch, buccal delivery, and the like, or a combination thereof.
  • a compound is preferably administered as soon as is practicable after the onset of a condition or a disease is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months.
  • the length of treatment can vary for each subject, and the length can be determined using the known criteria.
  • the compound or a formulation containing the compound can be administered for at least 2 weeks, preferably about 1 month to about 5 years, and more preferably from about 1 month to about 3 years.
  • kits and articles of manufacture are also within the scope of the invention.
  • Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in a method of the invention.
  • Suitable containers include, for example, bottles, vials, syringes, and test tubes.
  • the containers can be formed from a variety of materials such as glass or plastic.
  • the container(s) can comprise one or more compounds of the invention, optionally in a composition or in combination with another agent as disclosed herein.
  • the container(s) optionally have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • kits optionally comprising a compound with an identifying description or label or instructions relating to its use in the methods of the present invention.
  • a kit of the invention will typically may comprise one or more additional containers, each with one or more of various materials (such as reagents, optionally in concentrated form, and/or devices) desirable from a commercial and user standpoint for use of a compound of the invention.
  • materials include, but not limited to, buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.
  • a set of instructions will also typically be included.
  • a label can be on or associated with the container.
  • a label can be on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert.
  • a label can be used to indicate that the contents are to be used for a specific therapeutic application. The label can also indicate directions for use of the contents, such as in the methods described herein.
  • Compound C1 was prepared in strict analogy to compound B1 using 2-amino-5-methylthiazole as starting material instead of 3-tert-butyl-isoxazol-5-ylamine.
  • Compound E1 was prepared in strict analogy to compound B1 using 5-methyl-2-phenyl-2H-pyrazol-3-ylamine and 4-fluorophenylacetic acid as starting materials.
  • the components of the assays include human kinases expressed as fusions to T7 bacteriophage particles and immobilized ligands that bind to the ATP site of the kinases.
  • phage-displayed kinases and immobilized ATP site ligands are combined with the compound to be tested.
  • test compound binds the kinase it competes with the immobilized ligand and prevents binding to the solid support. If the compound does not bind the kinase, phage-displayed proteins are free to bind to the solid support through the interaction between the kinase and the immobilized ligand.
  • the results are read out by quantitating the amount of fusion protein bound to the solid support, which is accomplished by either traditional phage plaque assays or by quantitative PCR (qPCR) using the phage genome as a template.
  • the amount of phage-displayed kinase bound to the solid support is quantitated as a function of test compound concentration.
  • concentration of test molecule that reduces the number of phage bound to the solid support by 50% is equal to the K d for the interaction between the kinase and the test molecule.
  • data are collected for twelve concentrations of test compound and, the resultant binding curve is fit to a non-cooperative binding isotherm to calculate K d .
  • Binding values are reported as follows “+” for representative compounds exhibiting a binding dissociation constant (Kd) of 10,000 nM or higher; “++”for representative compounds exhibiting a Kd of 1,000 nM to 10,000 nM; “+++”for representative compounds exhibiting a Kd of 100 nM to 1,000 nM; and “++++”for representative compounds exhibiting a Kd of less than 100 nM.
  • Kd binding dissociation constant
  • ND represents non-determined values.
  • MV4:11 was a cell line derived from a patient with acute myelogenous leukemia. It expressed a mutant FLT3 protein that was constitutively active. MV4:11 cells were grown in the presence of candidate FLT3 inhibitor molecules, resulting in significantly decreased proliferation of the leukemia-derived cells in the presence of compound. Inhibition of FLT3 kinase activity prevented proliferation of these cells, and thus the MV4:11 cell line can be used a model for cellular activity of small molecule inhibitors of FLT3.
  • MV4,11 cells were grown in an incubator @ 37° C. in 5% CO 2 in Medium 2 (RPM 10% FBS, 4 mM glutamine, Penn/Strep). The cells were counted daily and the cell density was kept between 1e5 and 8e5 cells/ml.
  • Day Two The cells were counted and enough medium 3 was added to decrease density to 2e5 cells/ml. 50 ul (10,000 cells) was aliquoted into each well of a 96 well optical plate using multichannel pipetman. The compound plate was then set up by aliquoting 3 ⁇ l of negative control (DMSO) into column 1 of a 96 well 300 ul polypropylene plate, aliquoting 3 ⁇ l of positive control (10 mM AB20121) into column 12 of plate, and aliquoting 3 ⁇ l of appropriate compounds from serial dilutions into columns 2-11. To each well, 150 ⁇ l of Medium 3 was added and 50 ⁇ l of compound/medium mixture from compound plate into rows of optical plate in duplicate. The cells were then incubated @ 37° C. in 5% CO 2 for 3 days.
  • DMSO negative control
  • positive control 10 mM AB20121
  • MTS was thawed in a H 2 O bath. 20 ⁇ l of MTS was added to each well of optical plate and the cells were incubated @ 37° C. in 5% CO 2 for 2 hours. The plate was then placed on a plate shaker for 30 seconds on high speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Hydrogenated Pyridines (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The invention provides methods and compositions for treating conditions mediated by flt-3 wherein derivatives of amide compounds are employed. The invention also provides methods of using the compounds and/or compositions in the treatment of a variety of diseases and unwanted conditions in subjects.

Description

  • This application claims priority to U.S. Provisional Application No. 60/520,273, filed Nov. 13, 2003, U.S. Provisional Application No. 60/527,094, filed Dec. 3, 2003, U.S. Provisional Application No. 60/531,243, filed Dec. 18, 2003, and U.S. Provisional Application No. 60/531,082, filed Dec. 18, 2003, the contents of which are incorporated herein by reference in their entirety.
  • BACKGROUND
  • Protein kinases (PKs) play a role in signal transduction pathways regulating a number of cellular functions, such as cell growth, differentiation, and cell death. PKs are enzymes that catalyze the phosphorylation of hydroxy groups on tyrosine, serine and threonine residues of proteins, and can be conveniently broken down into two classes, the protein tyrosine kinases (PTKs) and the serine-threonine kinases (STKs). Growth factor receptors with PTK activity are known as receptor tyrosine kinases. Protein receptor tyrosine kinases are a family of tightly regulated enzymes, and the aberrant activation of various members of the family is one of the hallmarks of cancer. The protein-tyrosine kinase family, which includes Bcr-Abl tyrosine kinase, can be divided into subgroups that have similar structural organization and sequence similarity within the kinase domain. The members of the type III group of receptor tyrosine kinases include the platelet-derived growth factor (PDGF) receptors (PDGF receptors α and β), colony-stimulating factor (CSF-1) receptor (CSF-1R, c-Fms), FLT-3, and stem cell or steel factor receptor (c-kit). A more complete listing of the known Protein receptor tyrosine kinases subfamilies is described in Plowman et al., DN&P, 7(6):334-339 (1994), which is incorporated by reference, including any drawings, as if fully set forth herein. Furthermore, for a more detailed discussion of “non-receptor tyrosine kinases”, see Bolen, Oncogene, 8:2025-2031 (1993), which is incorporated by reference, including any drawings, as if fully set forth herein.
  • Hematologic cancers, also known as hematologic or hematopoietic malignancies, are cancers of the blood or bone marrow; including leukemia and lymphoma. Acute myelogenous leukemia (AML) is a clonal hematopoietic stem cell leukemia that represents ˜90% of all acute leukemias in adults. See e.g., Lowenberg et al., N. Eng. J. Med. 341:1051-62 (1999). While chemotherapy can result in complete remissions, the long term disease-free survival rate for AML is about 14% with about 7,400 deaths from AML each year in the United States. The single most commonly mutated gene in AML is FLT3 kinase. See e.g., Abu-Duhier et al., Br. J. Haemotol. 111:190-05 (2000); Kiyoi et al., Blood 93:3074-80 (1999); Kottaridis et al., Blood 98:1752-59 (2001); Stirewalt et al., Blood 97:3589-95 (2001). Such mutations also indicate a poor prognosis for the patient.
  • The compounds provided by the present invention are urea derivatives of substituted aryls and hetroaryls, e.g., isoxazoles, pyrazoles and isothiazoles. Urea derivatives of pyrazoles have been reported to be selective p38 kinase inhibitors by Dumas, J., et al., Bioorg. Medic. Chem. Lett. 10:2051-2054 (2000). Oxazoles and isopyrazoles are suggested as blockers of cytokine production in WO 00/43384 published 27 Jul. 2000. Urea derivatives of isoxazole and pyrazoles are described as inhibitors of RAF kinase in WO 99/32106 published 1 Jul. 1999. Such compounds are also described as p38 kinase inhibitors by Dumas, J., et al., Bioorg. Medic. Chem. Lett. 10:2047-2050 (2000). These compounds are also suggested as p38 kinase inhibitors in PCT publication WO 99/32111 published 1 Jul. 1999.
  • There remains a need for additional compounds that are effective in inhibiting kinase activity. Given the complexities of signal transduction with the redundancy and crosstalk between various pathways, the identification of specific kinase inhibitors permits accurate targeting with limited inhibition of other pathways, thus reducing the toxicity of such inhibitory compounds.
  • SUMMARY OF THE INVENTION
  • The present invention provides compounds which modulate kinase activity, and in some embodiments inhibit protein tyrosine kinases or a specific kinase or kinase class. In some embodiments, the compositions and methods for treating and preventing conditions and diseases, such as cancer, hematologic malignancies, cardiovascular disease, inflammation or multiple sclerosis. The compounds of the invention can be delivered alone or in combination with additional agents, and are used for the treatment and/or prevention of conditions and diseases. Unless otherwise stated, each of the substituents is as previously defined.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00001

    wherein:
      • (a) Aa1 is N—R3a or C—R(3a)2 and Aa2 is N—R3a or C—R(3a)2, wherein one of Aa1 or Aa2 is N and one is C wherein each R3a is independently a suitable substituent selected from hydrogen, or an alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl group unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of: halogens; —CN; and —NO2; and alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, —(CH2)zCN where z is a whole integer, preferably from 0 to 4, ═NH, —NHOH, —OH, —C(O)H, —OC(O)H, —C(O)OH, —OC(O)OH, —OC(O)OC(O)H, —OOH, —C(NH)NH2, —NHC(NH)NH2, —C(S)NH2, —NHC(S)NH2, —NHC(O)NH2, —S(O2)H, —S(O)H, —NH2, —C(O)NH2, —OC(O)NH2, —NHC(O)H, —NHC(O)OH,—C(O)NHC(O)H, —OS(O2)H, —OS(O)H, —OSH, —SC(O)H, —S(O)C(O)OH, —SO2C(O)OH, —NHSH, —NHS(O)H, —NHSO2H, —C(O)SH, —C(O)S(O)H, —C(O)S(O2)H, —C(S)H, —C(S)OH, —C(SO)OH, —C(SO2)OH, —NHC(S)H, —OC(S)H, —OC(S)OH, —OC(SO2)H, —S(O2)NH2, —S(O)NH2, —SNH2, —NHCS(O2)H, —NHC(SO)H, —NHC(S)H, and —SH groups unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of halogens, ═O, —NO2, —CN, —(CH2)z—CN where z is a whole integer, preferably from 0 to 4, —ORc, —NRcORc, —NRcRc,—C(O)NRc, —C(O)ORc, —C(O)Rc, —NRcC(O)NRcRc,—NRcC(O)Rc, —OC(O)ORc, —OC(O)NRcRc, —SRc, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more substituents cyclize to form a fused or spiro polycyclic cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group, where each Rc is indepenently selected from hydrogen, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more Rc groups together cyclize to form part of a heteroaryl or heterocycloalkyl group unsubstituted or substituted with an unsubstituted alkyl group; or two R3a's cyclize to form part of a heteroaryl or heterocycloalkyl group unsubstituted or substituted with one two or three suitable substituents selected from halogen, ═O; ═S; —CN; —NO2, or an alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl group unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of: halogens; ═O; ═S; —CN; and —NO2; and alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, —(CH2)zCN where z is a whole integer, preferably from 0 to 4,
      • ═NH, —NHOH, —OH, —C(O)H, —OC(O)H, —C(O)OH, —OC(O)OH, —OC(O)OC(O)H, —OOH, —C(NH)NH2, —NHC(NH)NH2, —C(S)NH2, —NHC(S)NH2, —NHC(O)NH2, —S(O2)H, —S(O)H, —NH2, —C(O)NH2, —OC(O)NH2, —NHC(O)H, —NHC(O)OH, —C(O)NHC(O)H, —OS(O2)H, —OS(O)H, —OSH, —SC(O)H, —S(O)C(O)OH, —SO2C(O)OH, —NHSH, —NHS(O)H, —NHSO2H, —C(O)SH, —C(O)S(O)H, —C(O)S(O2)H, —C(S)H, —C(S)OH, —C(SO)OH, —C(SO2)OH, —NHC(S)H, —OC(S)H, —OC(S)OH, —OC(SO2)H, —S(O2)NH2, —S(O)NH2, —SNH2, —NHCS(O2)H, —NHC(SO)H, —NHC(S)H, and —SH groups unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of halogens, ═O, —NO2, —CN, —(CH2)z—CN where z is a whole integer, preferably from 0 to 4, —ORc, —NRcORc, —NRcRc, —C(O)NRc, —C(O)ORc, —C(O)Rc, —NRcC(O)NRcRc, —NRcC(O)Rc, —OC(O)ORc, —OC(O)NRcRc, —SRc, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more substituents cyclize to form a fused or spiro polycyclic cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group, where each Rc is independently selected from hydrogen, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more Rc groups together cyclize to form part of a heteroaryl or heterocycloalkyl group unsubstituted or substituted with an unsubstituted alkyl group;
      • (b) Ar1, Ar2 and Ar3 are each independently an aryl, heteroaryl, cycloalkyl or heterocycloalkyl group unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of: halogens; ═O; ═S; —CN; and —NO2; and alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, —(CH2)zCN where z is a whole integer, preferably from 0 to 4, ═NH, —NHOH, —OH, —C(O)H, —OC(O)H, —C(O)OH, —OC(O)OH, —OC(O)OC(O)H, —OOH, —C(NH)NH2, —NHC(NH)NH2, —C(S)NH2, —NHC(S)NH2, —NHC(O)NH2, —S(O2)H, —S(O)H, —NH2, —C(O)NH2, —OC(O)NH2, —NHC(O)H, —NHC(O)OH, —C(O)NHC(O)H, —OS(O2)H, —OS(O)H, —OSH, —SC(O)H, —S(O)C(O)OH, —SO2C(O)OH, —NHSH, —NHS(O)H, —NHSO2H, —C(O)SH, —C(O)S(O)H, —C(O)S(O2)H, —C(S)H, —C(S)OH, —C(SO)OH, —C(SO2)OH, —NHC(S)H, —OC(S)H, —OC(S)OH, —OC(SO2)H, —S(O2)NH2, —S(O)NH2, —SNH2, —NHCS(O2)H, —NHC(SO)H, —NHC(S)H, and —SH groups unsubstituted or substituted with one or more suitable substituents independently selected from the group consisting of halogens, ═O, —NO2, —CN, —(CH2)z—CN where z is a whole integer, preferably from 0 to 4, —ORc, —NRcORc, —NRcRc, —C(O)NRc, —C(O)ORc, —C(O)Rc, —NRcC(O)NRcRc, —NRcC(O)Rc, —OC(O)ORc, —OC(O)NRcRc, —SRc, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more substituents cyclize to form a fused or spiro polycyclic cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group, where each Rc is independently selected from hydrogen, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, and unsubstituted heteroaryl, or two or more Rc groups together cyclize to form part of a heteroaryl or heterocycloalkyl group unsubstituted or substituted with an unsubstituted alkyl group;
      • (c) n, is 0, 1, 2, 3 or 4;
      • (d) n2 is 0, 1, 2, 3 or 4;
      • (e) n3 is 0, 1, 2, 3 or 4;
      • (f) Za is a bond or is selected from S, O, N, NRc, C(O)NRc, NRcC(O), and CRc, wherein Rc is a suitable substituent selected from hydrogen, unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted aryl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, or unsubstituted heteroaryl group; and
      • (g) Wa is S or O;
      • or a pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, isomer, derivative, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00002

    wherein:
      • M is substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl;
      • N is a substituted or unsubstituted aryl, or substituted or unsubstituted hetroaryl; and
      • K is
        Figure US20050171171A1-20050804-C00003
      • Y is O or S;
      • each Rk is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)R2, —NO2, —N(R2)2, —SR2, —C(O)R2, —C(O)2R2, —C(O)N(R2)2, or —N(R2)C(O)R2,
      • each R2 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or wherein two R2 groups are linked together by an optionally substituted alkylene; and
      • each n is independently 0, 1, 2, 3 or 4;
        or an active metabolite, or a pharmaceutically acceptable prodrug, isomer, pharmaceutically acceptable salt or solvate thereof.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00004

    wherein:
      • each Z is independently C, CR3, N, NR3, O, or S, provided that no more than two Z's are heteroatoms and wherein no two adjacent Z's are O or S,
        • where R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl; and
      • each R1 is independently H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —ORc —OH, —OC(O)Rc, —NO2, —N(Rc)2, —SRc, S(O)jRc where j is 1 or 2, —NRcC(O)Rc, —C(O)N(Rc)2, C(O)2Rc, or —C(O)Rc; or two adjacent R1's, are taken together to form a substituted or unsubstituted aryl or heteroaryl, where
        • each Rc is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00005
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00006

    wherein Z1 is CR3 or N; and Z2 is O or S.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00007

    wherein:
      • each R1 is independently H, halogen, substituted or unsubstituted alkyl, —O(substituted or unsubstituted alkyl), —O(substituted or unsubstituted alkenyl), —NRc(O)O(substituted or unsubstituted alkyl), —NRcC(O) (substituted or unsubstituted alkyl), —NRcC(O)(substituted or unsubstituted alkenyl), —C(O)NRc(substituted or unsubstituted alkyl), —C(O)NRc(substituted or unsubstituted alkenyl), —NO2, —S(═O)Rc, —SRc, C(O)2Rc, or —C(O)Rc; and
      • each R2 is independently H or substituted or unsubstituted alkyl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00008
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00009

    wherein Z1 is O or S; and Z2 is CR3 or N.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00010

    wherein:
      • each R1 is independently H, halogen, substituted or unsubstituted. alkyl, —O(substituted or unsubstituted alkyl), —O(substituted or unsubstituted alkenyl), —NRcC(O)O(substituted or unsubstituted alkyl), —NRcC(O) (substituted or unsubstituted alkyl), —NRcC(O)(substituted or unsubstituted alkenyl), —C(O)NRc(substituted or unsubstituted alkyl), —C(O)NRc(substituted or unsubstituted alkenyl), —NO2, —S(═O)Rc, —SRc, C(O)2Rc, or —C(O)Rc; and
      • each R2 is independently H or substituted or unsubstituted alkyl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00011
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00012

    wherein:
      • L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, C(O)NH(substituted or unsubstituted alkylene), C(O)NH(substituted or unsubstituted alkenylene) —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
      • T is a mono-, bi, -or tricyclic, substituted or unsubstituted cycloalkyl, heterocyclyl, aryl, or heteroaryl.
        In some embodiments, T is
        Figure US20050171171A1-20050804-C00013

        wherein A is a substituted or unsubstituted five or six-membered heterocyclyl, aryl, or heteroaryl; and B is a substituted or unsubstituted five or six-membered heterocyclene, arylene, or heteroarylene, wherein A and B together form a fused two ring moiety.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00014

    In some embodiments, L of said compound is a covalent bond —C(O)NH(substituted or unsubstituted alkylene), —NHC(O)—, —NHC(O)(substituted or unsubstituted alkylene)-, —NH—, or —O(substituted or unsubstituted alkylene)-.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00015

    In some embodiments, B of said compound is a substituted or unsubstituted five-membered arylene or heteroarylene. In other embodiments, B is substituted or unsubstituted thiophenylene. In still other embodiments, B is substituted or unsubstituted imidazolylene. In yet other embodiments, B is substituted or unsubstituted pyrrolylene. In still other embodiments, B of said compound is a substituted or unsubstituted 6-membered arylene or heteroarylene. In some embodiments, B is substituted or unsubstituted phenylene. In other embodiments, B is substituted or unsubstituted pyridinylene, pyrimidinylene, or pyridazine.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00016

    In some embodiments, B of said compound is a substituted or unsubstituted six-membered heteroarylene. In other embodiments, the six-membered heteroarylene is substituted or unsubstituted pyrimidinylene. In still other embodiments, L of said compound —OCH2—. In yet other embodiments, L of said compound is —C(O)NH.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00017

    wherein:
      • L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
      • each of X1-X5 is independently C, CR, N, NR, S, or O, wherein no more than three of X1-X5 is a heteroatom, and no two adjacent ring atoms are O or S; where each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2, or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
        • each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00018

    In some embodiments, L of said compound is a covalent bond, —C(O)NH—, or —O(substituted or unsubstituted alkylene)-. In other embodiments,
    Figure US20050171171A1-20050804-C00019

    of said compound is selected from the group consisting of:
    Figure US20050171171A1-20050804-C00020
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00021

    wherein:
      • L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
      • each of X1-X5 is independently C, CR, N—O, or N, wherein no more than two of X1-X5 is N, where
      • each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2, or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
        • each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00022
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00023
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a-flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00024
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00025

    wherein L is —O(substituted or unsubstituted alkylene)- or —(O)(substituted or unsubstituted alkenylene)-.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00026
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00027
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00028

    In some embodiments, L of said compound is —O(substituted or unsubstituted alkylene)- or —O(substituted or unsubstituted alkenylene)-. In other embodiments, L of said compound is —NHC(O)—. In still other embodiments, L of said compound is a covalent bond, substituted or unsubstituted alkylene, —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —NH(alkylene)-, —NHC(O)CH2SCH2C(O)NH—, and —NHC(O)(substituted alkylene)S—.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00029

    wherein:
      • L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
      • each of X1-X5 is independently C, CR, or N, wherein no more than two of X1-X5 is N, where
      • each R is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2 or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
        • each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
      • Z1 is O or S; and
      • Z2 is CR3 or N.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00030
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00031

    wherein:
      • each of L and L1 is independently a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted-or unsubstituted alkylene), —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—;
      • U is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; and
      • V is a substituted or unsubstituted cycloalkylene, heterocyclene, arylene, or heteroarylene.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00032
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00033
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00034

    wherein:
      • each of X1-X5 is independently C, CR, N, NR, S, or O, wherein no more than three of X1-X5 is a heteroatom, and no two adjacent ring atoms are O or S; and
        • each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2 or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
        • each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
          In some embodiments, U is a substituted or unsubstituted five-membered heteroaryl, substituted or unsubstituted phenyl, or substituted or unsubstituted six-membered heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00035

    wherein:
      • Z3 is NR3, O, or S; and
      • Z4 is N or CR3.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00036
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00037

    wherein:
      • L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
      • T is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, aryl, or heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00038

    wherein:
      • each Z is independently C, CR3, N, NR3, O, or S, provided that no more than two Z's are heteroatoms where
        • R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl.
          • each Rk is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)R2, —NO2, —N(R2)2, —SR2, —C(O)R2, —C(O)2R2, —C(O)N(R2)2, or —N(R2)C(O)R2,
        • each R2 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or wherein two R2 groups are linked together by an optionally substituted alkylene; and
        • each R1 is independently H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —ORc —OH, —OC(O)Rc, —NO2, —N(Rc)2, —SRc, S(O)jRc where j is 1 or 2, —NRcC(O)Rc, —C(O)N(Rc)2, —C(O)2Rc, or —C(O)Rc; or two adjacent R1's, are taken together to form a substituted or unsubstituted aryl or heteroaryl, where
          • each Rc is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
  • Provided herein are compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of a flt-3 modulating compound having the structure:
    Figure US20050171171A1-20050804-C00039
  • In some embodiments, the protein tyrosine kinase is selected from the fetus liver kinase (“flk”) receptor subfamily, which includes kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1), flk-1R, flk-4 and fms-like tyrosine kinase 1 (flt-1). In further embodiments, the protein tyrosine kinase is selected from the fibroblast growth factor (“FGF”) receptor subgroup, which includes the receptors FGFR1, FGFR 2, FGFR3, and FGFR4, and the ligands, FGF1, FGF2, FGF3, FGF4, FGF5, FGF6,and FGF7. In a still further embodiment, the protein tyrosine kinase is the tyrosine kinase growth factor receptor family, c-Met. In some embodiments, the protein tyrosine kinase is an fins-like tyrosine kinase 3 receptor kinase (FLT-3 kinase).
  • The compounds and compositions disclosed herein may be used for the prevention or treatment of cancers such as stomach, gastric, bone, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, ovarian, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, leukemia, glioma, colorectal cancer, genitourinary cancer gastrointestinal cancer, or pancreatic cancer. In particular, the cancer is acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • Compositions and methods for treating a disease comprising administering to a subject in need thereof an effective amount of an fms-like tyrosine kinase 3 (FLT-3) receptor modulating compound are provided herein. In one embodiment, the disease is cancer. In other embodiments, the cancer is a malignant tumor, or a hematologic malignancy such as leukemia and lymphoma. In some embodiments, the leukemia is acute myelogenous leukemia (AML), a B-precursor cell acute lymphoblastic leukemia, myelodysplastic leukemia, T-cell acute lymphoblastic leukemia or chronic myelogenous leukemia (CML).
  • These and other aspects of the present invention will become evident upon reference to the following detailed description. In addition, various references are set forth herein which describe in more detail certain procedures or compositions, and are incorporated by reference in their entirety.
  • DISCLOSURE OF THE INVENTION
  • To more readily facilitate an understanding of the invention and its preferred embodiments, the meanings of terms used herein will become apparent from the context of this specification in view of common usage of various terms and the explicit definitions of other terms provided in the glossary below or in the ensuing description.
  • Glossary of Terms
  • Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Definition of standard chemistry terms may be found in reference works, including Carey and Sundberg (1992) “ADVANCED ORGANIC CHEMISTRY 3RD ED.” Vols. A and B, Plenum Press, New York. Unless otherwise indicated, conventional methods of mass spectroscopy, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art are employed.
  • The term “modulator” means a molecule that interacts with a target either directly or indirectly. The interactions include, but are not limited to, agonist, antagonist, and the like.
  • The term “agonist” means a molecule such as a compound, a drug, an enzyme activator or a hormone that enhances the activity of another molecule or the activity of a receptor site etiehr directly or indirectly.
  • The term “antagonist” means a molecule such as a compound, a drug, an enzyme inhibitor, or a hormone, that diminishes or prevents the action of another molecule or the activity of a receptor site either directly or indirectly.
  • The terms “effective amount” or “therapeutically effective amount” refer to a sufficient amount of the agent to provide the desired biological result. That result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an “effective amount” for therapeutic use is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in a disease. An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
  • As used herein, the terms “treat” or “treatment” are synonymous with the term “prevent” and are meant to indicate a postponement of development of diseases, preventing the development of diseases, and/or reducing severity of such symptoms that will or are expected to develop. Thus, these terms include ameliorating existing disease symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disorder or disease, e.g., arresting the development of the disorder or disease, relieving the disorder or disease, causing regression of the disorder or disease, relieving a condition caused by the disease or disorder, or stopping the symptoms of the disease or disorder.
  • By “pharmaceutically acceptable” or “pharmacologically acceptable” is meant a material which is not biologically or otherwise undesirable, i.e., the material may be administered to an individual without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.
  • “Carrier materials” include any commonly used excipients in pharmaceutics and should be selected on the basis of compatibility and the release profile properties of the desired dosage form. Exemplary carrier materials include, e.g., binders, suspending agents, disintegration agents, filling agents, surfactants, solubilizers, stabilizers, lubricants, wetting agents, diluents, and the like. “Pharmaceutically compatible carrier materials” may comprise, e.g., acacia, gelatin, colloidal silicon dioxide, calcium glycerophosphate, calcium lactate, maltodextrin, glycerine, magnesium silicate, sodium caseinate, soy lecithin, sodium chloride, tricalcium phosphate, dipotassium phosphate, sodium stearoyl lactylate, carrageenan, monoglyceride, diglyceride, pregelatinized starch, and the like. See, e.g., Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins1999).
  • As used herein, the term “subject” encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. Examples of non-mammals include, but are not limited to, birds, fish and the like. In one embodiment of the present invention, the mammal is a human.
  • The term “pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. Such salts, for example, include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo-[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4,-methylenebis-(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base. Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like. Acceptable inorganic bases include aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like. It should be understood that a reference to a pharmaceutically acceptable salt includes the solvent addition forms or crystal forms thereof, particularly solvates or polymorphs. Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and are often formed during the process of crystallization. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. Polymorphs include the different crystal packing arrangements of the same elemental composition of a compound. Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility. Various factors such as the recrystallization solvent, rate of crystallization, and storage temperature may cause a single crystal form to dominate.
  • As used herein, the term “biological sample” is broadly defined to include any cell, tissue, organ or multicellular organism. A biological sample can be derived, for example, from cell or tissue cultures in vitro. Alternatively, a biological sample can be derived from a living organism or from a population of single cell organisms.
  • As used herein, the term “linker” means any divalent linking moiety used to connect, join, or attach two chemical groups. For example, linkers may be used to join two cyclic groups, such as to join two aryl groups (e.g., phenyl), an aryl group to a cycloalkyl group, an aryl group to a heterocyclyl group, a cycloalkyl group to a cycloalkyl group, a cycloalkyl group to a heterocyclyl group, and the like. Representative linkers include, but are not limited to, a covalent bond, -(substituted or unsubstituted alkylene)-, -(substituted or unsubstituted alkenylene)-, -(substituted or unsubstituted alkynylene)-, -(substituted or unsubstituted cycloalkylene)-, -(substituted or unsubstituted heterocyclylene)-, -(substituted or unsubstituted arylene)-, and -(substituted or unsubstituted heteroarylene)-. Exemplary linkers also include —O—, —S—, —S(O)—, —S(O)2—, —S(O)3—, —C(O)—, —NH—, —N═, —N═N—, ═N—N═, —C(O)NH—, —S(O)NH—, and the like. Additional examples of linkers include —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkylene)-, —C(O)(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—, —NHC(O)(substituted or unsubstituted alkenylene)-, and the like. Linkers, as represented herein, embrace divalent moieties in any chemically feasible directionality. For example, compounds comprising a linker —C(O)NH— which attaches two aryl groups, Ar1 to Ar2, include Ar1—C(O)NH—Ar2 as well as Ar1—NHC(O)—Ar2.
  • As used herein, the term “halogen” includes fluorine, chlorine, bromine, and iodine.
  • As used herein, “alkyl” means a straight chain or branched, saturated or unsaturated chain having from 1 to 10 carbon atoms. Representative saturated alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl, and longer alkyl groups, such as heptyl, and octyl. An alkyl group can be unsubstituted or substituted. Unsaturated alkyl groups include alkenyl groups and alkynyl groups, discussed below. Alkyl groups containing three or more carbon atoms may be straight, branched or cyclized.
  • As used herein, “lower alkyl” means an alkyl having from 1 to 5 carbon atoms.
  • As used herein, an “alkenyl group” includes a monovalent unbranched or branched hydrocarbon chain having one or more double bonds therein. The double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group. Suitable alkenyl groups include, but are not limited to, (C2-C8) alkenyl groups, such as vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-butene)-pentenyl. An alkenyl group can be unsubstituted or substituted.
  • As used herein, “alkynyl group” includes a monovalent unbranched or branched hydrocarbon chain having one or more triple bonds therein. The triple bond of an alkynyl group can be unconjugated or conjugated to another unsaturated group. Suitable alkynyl groups include, but are not limited to, (C2-C6)alkynyl groups, such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4-methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl. An alkynyl group can be unsubstituted or substituted.
  • The terms “trifluoromethyl,” “sulfonyl,” and “carboxyl” include CF3, SO3H, and CO2H, respectively.
  • The term “alkoxy” as used herein includes —O-(alkyl), wherein alkyl is defined above.
  • As used herein, “alkoxyalkoxy” includes —O-(alkyl)-O-(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, “alkoxycarbonyl” includes-C(O)O-(alkyl), wherein alkyl is defined above.
  • As used herein, “alkoxycarbonylalkyl” includes -(alkyl)-C(O)O-(alkyl), wherein alkyl is defined above.
  • As used herein, “alkoxyalkyl” means -(alkyl)-O-(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, the term “aryl” (Ar) refers to a monocyclic, or fused or spiro polycyclic, aromatic carbocycle (ring structure having ring atoms that are all carbon) having from 3 to 12 ring atoms per ring. Illustrative examples of aryl groups include the following moieties:
    Figure US20050171171A1-20050804-C00040
  • As used herein, the term “heteroaryl” (heteroAr) refers to a monocyclic, or fused or spiro polycyclic, aromatic heterocycle (ring structure having ring atoms selected from carbon atoms as well as nitrogen, oxygen, and sulfur heteroatoms) having from 3 to 12 ring atoms per ring. Illustrative examples of aryl groups include the following moieties:
    Figure US20050171171A1-20050804-C00041
  • As used herein, the term “cycloalkyl” refers to a saturated or partially saturated, monocyclic or fused or Spiro polycyclic, carbocycle having from 3 to 12 ring atoms per ring. Illustrative examples of cycloalkyl groups include the following moieties:
    Figure US20050171171A1-20050804-C00042
  • As used herein, the term “heterocycloalkyl” refers to a monocyclic, or fused or spiro polycyclic, ring structure that is saturated or partially saturated and has from 3 to 12 ring atoms per ring selected from C atoms and N, O, and S heteroatoms. Illustrative examples of heterocycloalkyl groups include:
    Figure US20050171171A1-20050804-C00043
  • As used herein, “aryloxy” includes —O-aryl group, wherein aryl is as defined above. An aryloxy group can be unsubstituted or substituted.
  • As used herein, “arylalkyl” includes -(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • As used herein, “arylalkyloxy” includes —O-(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • As used herein, “cycloalkyl” includes a monocyclic or polycyclic saturated ring comprising carbon and hydrogen atoms and having no carbon-carbon multiple bonds. Examples of cycloalkyl groups include, but are not limited to, (C3-C7)cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, and saturated cyclic and bicyclic terpenes. A cycloalkyl group can be unsubstituted or substituted. Preferably, the cycloalkyl group is a monocyclic ring or bicyclic ring.
  • As used herein, “cycloalkyloxy” includes —O-(cycloalkyl), wherein cycloalkyl is defined above.
  • As used herein, “cycloalkylalkyloxy” includes —O-(alkyl)-(cycloalkyl), wherein cycloalkyl and alkyl are defined above.
  • As used herein, the term “alkylidene” includes the divalent radical —CnH2n—, wherein n is an integer from 1 to 8, such as —CH2—, —CH2CH2—, —CH2—CH2—CH2—, —CH2CH2CH2CH2—, —CH2CH2CH2CH2CH2—, and the like, unsubstituted or substituted with one or more alkyl groups.
  • As used herein, “heteroatom-containing alkylidene” includes an alkylidene wherein at least one carbon atom is replaced by a heteroatom selected from nitrogen, oxygen, or sulfur, such as —CH2CH2OCH2CH2—, and the like, unsubstituted or substituted with one or more alkyl groups.
  • As used herein, “aminoalkoxy” includes —O-(alkyl)-NH2, wherein alkyl is defined above.
  • As used herein, “mono-alkylamino” includes —NH(alkyl), wherein alkyl is defined above.
  • As used herein, “di-alkylamino” includes —N(alkyl)(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, “mono-alkylaminoalkoxy” includes —O-(alkyl)-NH(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, “di-alkylaminoalkoxy” includes —O-(alkyl)N(alkyl)(alkyl), wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, “arylamino” includes —NH(aryl), wherein aryl is defined above.
  • As used herein, “arylalkylamino” includes —NH-(alkyl)-(aryl), wherein alkyl and aryl are defined above.
  • As used herein, “alkylamino” includes —NH(alkyl), wherein alkyl is defined above.
  • As used herein, “cycloalkylamino” includes —NH-(cycloalkyl), wherein cyclohexyl is defined above.
  • As used herein, “cycloalkylalkylamino” includes —NH-(alkyl)-(cycloalkyl), wherein alkyl and cycloalkyl are defined above.
  • As used herein, “aminoalkyl” includes -(alkyl)-NH2, wherein alkyl is defined above.
  • As used herein, “mono-alkylaminoalkyl” includes -(alkyl)-NH(alkyl),wherein each “alkyl” is independently an alkyl group defined above.
  • As used herein, “di-alkylaminoalkyl” includes -(alkyl)-N(alkyl)(alkyl),wherein each “alkyl” is independently an alkyl group defined above.
  • The term “whole integer” is intended to include whole numbers. For example, a whole integer from 0 to 4 would include 0, 1, 2, 3, and 4.
  • Sulfonyl refers to the presence of a sulfur atom, which is optionally linked to another moiety such as an aliphatic group, an aromatic group, an aryl group, an alicyclic group, or a heterocyclic group. Aryl or alkyl sulfonyl moieties have the formula —SO2Rd, and alkoxy moieties have the formula —O—Rd—, wherein Rd is alkyl, as defined above, or is aryl wherein aryl is phenyl, optionally substituted with 1-3 substituents independently selected from halo (fluoro, chloro, bromo or iodo), lower alkyl (1-6C) and lower alkoxy (1-6C).
  • As used herein, the term “substituted” means that the specified group or moiety bears one or more suitable substituents.
  • As used herein, the term “unsubstituted” means that the specified group bears no substituents.
  • As used herein, the term “optionally substituted” means that the specified group is unsubstituted or substituted by one or more substituents.
  • Molecular embodiments of the present invention may possess one or more chiral centers and each center may exist in the R or S configuration. The present invention includes all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. Stereoisomers may be obtained, if desired, by methods known in the art as, for example, the separation of stereoisomers by chiral chromatographic columns. Additionally, the compounds of the present invention may exist as geometric isomers. The present invention includes all cis, trans, syn, anti, entgegen (E), and zusammen (Z) isomers as well as the appropriate mixtures thereof.
  • Certain functional groups contained within the compounds of the present invention can be substituted for bioisosteric groups, that is, groups which have similar spatial or electronic requirements to the parent group, but exhibit differing or improved physicochemical or other properties. Suitable examples are well known to those of skill in the art, and include, but are not limited to moieties described in Patini et al., Chem, Rev, 1996, 96, 3147-3176 and references cited therein.
  • In addition, the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
  • To more readily facilitate an understanding of the invention and its preferred embodiments, the meanings of terms used herein will become apparent from the context of this specification in view of common usage of various terms and the explicit definitions of other terms provided in the glossary below or in the ensuing description.
  • Compounds
  • In one aspect, the present invention is directed to compounds, compositions, and methods for treating conditions associated with abnormal kinase activity. In one embodiment, compounds useful in the invention are derivatives of isoxazoles, pyrazoles and isothiazoles. When the compounds of the invention contain one or more chiral centers, the invention includes optically pure forms as well as mixtures of stereoisomers or enantiomers.
  • Thus, the invention provides methods for modulating various kinases by providing an effective amount of a compound of the formulas described herein.
  • Salts of the compounds may be used for therapeutic and prophylactic purposes, where the salt is preferably a pharmaceutically acceptable salt. Examples of pharmaceutically acceptable salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulphuric acids, and organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic and methanesulphonic and arylsulphonic, for example Q-toluenesulphonic, acids.
  • A “prodrug” refers to a drug or compound in which the pharmacological action results from conversion by metabolic processes within the body. Prodrugs are generally drug precursors that, following administration to a subject and subsequent absorption, are converted to an active, or a more active species via some process, such as conversion by a metabolic pathway. Some prodrugs have a chemical group present on the prodrug that renders it less active and/or confers solubility or some other property to the drug. Once the chemical group has been cleaved and/or modified from the prodrug the active drug is generated. Prodrugs may be designed as reversible drug derivatives, for use as modifiers to enhance drug transport to site-specific tissues. Additionally, prodrugs can increase the effective water solubility of the therapeutic compound for targeting to regions where water is the principal solvent. See, e.g., Fedorak et al., Am. J. Physiol., 269:G210-218 (1995); McLoed et al., Gastroenterol, 106:405-413 (1994); Hochhaus et al., Biomed. Chrom., 6:283-286 (1992); J. Larsen and H. Bundgaard, Int. J. Pharmaceutics, 37, 87 (1987); J. Larsen et al., Int. J. Pharmaceutics, 47, 103 (1988); Sinkula et al., J. Pharm. Sci., 64:181-210 (1975); T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series; and Edward B. Roche, Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987. Prodrug forms of the above described compounds, wherein the prodrug is metabolized in vivo to produce a derivative as set forth above are included within the scope of the claims. Indeed, some of the above-described derivatives may be a prodrug for another derivative or active compound.
  • The invention further provides for the optical isomers of the compounds disclosed herein, especially those resulting from the chiral carbon atoms in the molecule. In additional embodiments of the invention, mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion may also be useful for the applications described herein.
  • In another aspect, compositions containing the above described analogs and derivatives are provided. Preferably, the compositions are formulated to be suitable for pharmaceutical or clinical use by the inclusion of appropriate carriers or excipients.
  • Groups such as carbonyl, carboxyl, alkoxy, amino, and cyano groups, etc., as shown in the formula above, need not be directly bound to the para position; they may be included elsewhere in the alkyl, alkenyl or alkynyl substituent. Thus, also acceptable substituents are the following representative forms:
      • —CH2NHCH3; —CH2OCH3; —CH2SCH3; —NHCH3; —CH2CH3; —OCH2CH3; —SCH2CH2CH3; —CH═CHCH2NH2; —CH2CH2OH;
        Figure US20050171171A1-20050804-C00044

        —CH2CH2CH2SH; —CH2OC(O)CH3; —CH2NHC(O)CH2C(O)CH3; —NHC(O)CH2CH2CH3 each of which may further be substituted with a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group.
  • It will also be evident that these substituents include, for example, trifluoromethyl, difluoromethyl and fluoromethyl (alkyl substituted by halo) and trifluoromethoxy, difluoromethoxy and fluoromethoxy (alkyl where one carbon is replaced by O and is further substituted by halo).
  • Compounds of the invention which contain carboxyl groups or which contain amino groups may be supplied in the forms of their pharmaceutically acceptable salts. Pharmaceutically acceptable salts of carboxylic acids include inorganic salts such as salts of sodium, potassium, calcium, magnesium and the like or salts formed with organic bases such as caffeine. Salts of amines are acid addition salts formed from inorganic acids such as hydrochloric, sulfuric, phosphoric acids or may be salts of organic acids such as acetates, maleates, propionates, and the like.
  • The invention also provides prodrug forms of the compounds described herein, wherein the prodrug is metabolized in vivo to produce a derivative as set forth above. Indeed, some of the above described derivatives may be a prodrug for another derivative or active compound. The invention further provides for the optical isomers of the compounds disclosed herein, especially those resulting from the chiral carbon atoms in the molecule. In additional embodiments of the invention, mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion are provided.
  • In another aspect of the invention, compositions containing the above described analogs and derivatives are provided. Preferably, the compositions are formulated to be suitable for pharmaceutical or clinical use by the inclusion of appropriate carriers or excipients.
  • In yet another aspect of the invention, pharmaceutical formulations are provided comprising at least one compound described above, or a pharmaceutically acceptable salt or solvate thereof, together with one or more pharmaceutically acceptable carriers, diluents or excipients.
  • The compounds of the invention, especially when used in the invention methods and compositions, may be “conjugated”—that is they may be coupled to additional moieties that do not destroy their ability to modulate kinases. For example, the compounds might be coupled to a label such as a radioactive label, a fluorescent label and the like, or may be coupled to targeting agents such as antibodies or fragments, or to fragments to aid purification such as FLAG or a histidine tag. The compounds may also be coupled to specific binding partners such as biotin for use in assay procedures or to moieties that alter their biological half-lives such as polyethylene glycol. Thus, the methods of the invention employ the invention compounds per se as well as conjugates thereof.
  • Synthesis of Compounds
  • Compounds of the present invention may be synthesized using standard synthetic techniques known to those of skill in the art or using methods known in the art in combination with methods described herein. See, e.g., March, ADVANCED ORGANIC CHEMISTRY 4th Ed., (Wiley 1992); Carey and Sundberg, ADVANCED ORGANIC CHEMISTRY 3rd Ed., Vols. A and B (Plenum 1992), and Green and Wuts, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS 2nd Ed. (Wiley 1991). General methods for the preparation of compound as disclosed herein may be derived from known reactions in the field, and the reactions may be modified by the use of appropriate reagents and conditions, as would be recognized by the skilled person, for the introduction of the various moieties found in the formulae as provided herein.
  • The compounds of the invention are synthesized by methods well known in the art. The compounds of the invention are ureas or cyclic forms thereof and can be synthesized using generally known procedures for urea synthesis.
  • In one group of methods, an amine is reacted with an isocyanate in an aprotic solvent. Typically, in some embodiments, a molar excess of the amine is used in the presence of an aprotic solvent and the reaction is conducted at room temperature. The reaction mixture is then poured into water and precipitated with salt to recover the crude product which is then purified according to standard methods.
  • In alternative methods, the ureas are formed from two separate amine reactants in the presence of a condensing agent such as 1,1,carbonyldiimidazole (CDI) in the presence of an inert nonpolar solvent such as dichloromethane. One of the amines is first added to a solution of CDI in solvent under cooling conditions and then stirred at room temperature with the other amine. After removal of solvent, the crude product can be purified using standard procedures.
  • In still another method, one of the amines is added in an aprotic solvent to a solution of triphosgene and then treated with the other amine reactant dissolved in an inert solvent in the presence of base such as triethylamine. After reaction at room temperature, the mixture may be diluted with, for example, ethylacetate and washed with water and brine, dried and purified.
  • In still another method, one of the amine components is treated with 4-nitrophenylchloroformate in the presence of mild base in a solvent such as N-methylpyrrolidone (NMP). The other amine is then added and the reaction mixture heated, then cooled, poured into water, extracted into chloroform and further purified.
  • Alternatively, the urea may be formed by the reaction of an amine with the counterpart halo acylamine which is formed from the parent amine by treatment with phosgene and base in an inert solvent such as methylene dichloride or by reacting an amine with its counterpart amine with an acyl amine containing an alternate leaving group formed by reaction of that amine with 4-nitrophenylchloroformate in the presence of an amine base and in an inert solvent.
  • Details of these methods can be found in Matsuno et al. J Med. Chem. 45:3057-66 (2002); Matsuno et al. J. Med. Chem. 45:4513-23 (2002); and and Pandley et al., J. Med. Chem. 45:3772-93 (2002).
  • Cyclized forms of the ureas may be obtained by treating the formed urea with dibromo derivatives of the bridge, typically in the presence of a strong base and in an inert aprotic polar solvent.
  • The ureas may be converted to thioureas by treating with Lawesson's reagent in the presence of toluene.
  • For compounds having the moiety Ar1-L-Ar2 is obtained by first protecting the amino group of p-hydroxy aniline destined to become Ar1 with a protecting agent such as Boc and then coupling the hydroxy group of Ar1 to an aryl alkyl halide. This coupling is conducted in the presence of strong base and in an aprotic solvent. After deprotection, the urea is formed by reaction with the isoxazole isocyanate. These techniques are exemplified below.
  • Selected examples of covalent linkages and precursor functional groups which yield them are given in the Table entitled “Examples of Covalent Linkages and Precursors Thereof.” Precursor functional groups are shown as electrophilic groups and nucleophilic groups. The functional group on the organic substance may be attached directly, or attached via any useful spacer or linker as defined below.
    TABLE 1
    Examples of Covalent Linkages and Precursors Thereof
    Covalent Linkage Product Electrophile Nucleophile
    Carboxamides Activated esters amines/anilines
    Carboxamides acyl azides amines/anilines
    Carboxamides acyl halides amines/anilines
    Esters acyl halides alcohols/phenols
    Esters acyl nitriles alcohols/phenols
    Carboxamides acyl nitriles amines/anilines
    Imines Aldehydes amines/anilines
    Hydrazones aldehydes or ketones Hydrazines
    Oximes aldehydes or ketones Hydroxylamines
    Alkyl amines alkyl halides amines/anilines
    Esters alkyl halides carboxylic acids
    Thioethers alkyl halides Thiols
    Ethers alkyl halides alcohols/phenols
    Thioethers alkyl sulfonates Thiols
    Esters alkyl sulfonates carboxylic acids
    Ethers alkyl sulfonates alcohols/phenols
    Esters Anhydrides alcohols/phenols
    Carboxamides Anhydrides amines/anilines
    Thiophenols aryl halides Thiols
    Aryl amines aryl halides Amines
    Thioethers Azindines Thiols
    Boronate esters Boronates Glycols
    Carboxamides carboxylic acids amines/anilines
    Esters carboxylic acids Alcohols
    hydrazines Hydrazides carboxylic acids
    N-acylureas or Anhydrides carbodiimides carboxylic acids
    Esters diazoalkanes carboxylic acids
    Thioethers Epoxides Thiols
    Thioethers haloacetamides Thiols
    Ammotriazines halotriazines amines/anilines
    Triazinyl ethers halotriazines alcohols/phenols
    Amidines imido esters amines/anilines
    Ureas Isocyanates amines/anilines
    Urethanes Isocyanates alcohols/phenols
    Thioureas isothiocyanates amines/anilines
    Thioethers Maleimides Thiols
    Phosphite esters phosphoramidites Alcohols
    Silyl ethers silyl halides Alcohols
    Alkyl amines sulfonate esters amines/anilines
    Thioethers sulfonate esters Thiols
    Esters sulfonate esters carboxylic acids
    Ethers sulfonate esters Alcohols
    Sulfonamides sulfonyl halides amines/anilines
    Sulfonate esters sulfonyl halides phenols/alcohols
  • In general, carbon electrophiles are susceptible to attack by complementary nucleophiles, including carbon nucleophiles, wherein an attacking nucleophile brings an electron pair to the carbon electrophile in order to form a new bond between the nucleophile and the carbon electrophile.
  • Suitable carbon nucleophiles include, but are not limited to alkyl, alkenyl, aryl and alkynyl Grignard, organolithium, organozinc, alkyl-, alkenyl , aryl- and alkynyl-tin reagents (organostannanes), alkyl-, alkenyl-, aryl- and alkynyl-borane reagents (organoboranes and organoboronates); these carbon nucleophiles have the advantage of being kinetically stable in water or polar organic solvents. Other carbon nucleophiles include phosphorus ylids, enol and enolate reagents; these carbon nucleophiles have the advantage of being relatively easy to generate from precursors well known to those skilled in the art of synthetic organic chemistry. Carbon nucleophiles, when used in conjunction with carbon electrophiles, engender new carbon-carbon bonds between the carbon nucleophile and carbon electrophile.
  • Non-carbon nucleophiles suitable for coupling to carbon electrophiles include but are not limited to primary and secondary amines, thiols, thiolates, and thioethers, alcohols, alkoxides, azides, semicarbazides, and the like. These non-carbon nucleophiles, when used in conjunction with carbon electrophiles, typically generate heteroatom linkages (C—X—C), wherein X is a hetereoatom, e.g, oxygen or nitrogen.
  • The term “protecting group” refers to chemical moieties that block some or all reactive moieties and prevent such groups from participating in chemical reactions until the protective group is removed. It is preferred that each protective group be removable by a different means. Protective groups that are cleaved under totally disparate reaction conditions fulfill the requirement of differential removal. Protective groups can be removed by acid, base, and hydrogenolysis. Groups such as trityl, dimethoxytrityl, acetal and t-butyldimethylsilyl are acid labile and may be used to protect carboxy and hydroxy reactive moieties in the presence of amino groups protected with Cbz groups, which are removable by hydrogenolysis, and Fmoc groups, which are base labile. Carboxylic acid and hydroxy reactive moieties may be blocked with base labile groups such as, without limitation, methyl, ethyl, and acetyl in the presence of amines blocked with acid labile groups such as t-butyl carbamate or with carbamates that are both acid and base stable but hydrolytically removable.
  • Carboxylic acid and hydroxy reactive moieties may also be blocked with hydrolytically removable protective groups such as the benzyl group, while amine groups capable of hydrogen bonding with acids may be blocked with base labile groups such as Fmoc. Carboxylic acid reactive moieties may be protected by conversion to simple ester derivatives as exemplified herein, or they may be blocked with oxidatively-removable protective groups such as 2,4-dimethoxybenzyl, while co-existing amino groups may be blocked with fluoride labile silyl carbamates.
  • Allyl blocking groups are useful in then presence of acid- and base-protecting groups since the former are stable and can be subsequently removed by metal or pi-acid catalysts. For example, an allyl-blocked carboxylic acid can be deprotected with a Pdo-catalyzed reaction in the presence of acid labile t-butyl carbamate or base-labile acetate amine protecting groups. Yet another form of protecting group is a resin to which a compound or intermediate may be attached. As long as the residue is attached to the resin, that functional group is blocked and cannot react. Once released from the resin, the functional group is available to react.
  • Typically blocking/protecting groups may be selected from:
    Figure US20050171171A1-20050804-C00045
  • Other protecting groups are described in Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, N.Y., 1999, which is incorporated herein by reference in its entirety.
  • Biological Activity
  • Protein kinases (PKs) play a role in signal transduction pathways regulating a number of cellular functions, such as cell growth, differentiation, and cell death. PKs are enzymes that catalyze the phosphorylation of hydroxy groups on tyrosine, serine and threonine residues of proteins. Abnormal PK activity has been related to disorders ranging from relatively non life threatening diseases such as psoriasis to extremely virulent diseases such as glioblastoma (brain cancer). In addition, a variety of tumor types have dysfunctional growth factor receptor tyrosine kinases, resulting in inappropriate mitogenic signaling. Protein kinases are believed to be involved in many different cellular signal transduction pathways. In particular, protein tyrosine kinases (PTK) are attractive targets in the search for therapeutic agents, not only for cancer, but also against many other diseases. Blocking or regulating the kinase phosphorylation process in a signaling cascade may help treat conditions such as cancer or inflammatory processes.
  • Protein tyrosine kinases are a family of tightly regulated enzymes, and the aberrant activation of various members of the family is one of the hallmarks of cancer. The protein-tyrosine kinase family includes Bcr-Abl tyrosine kinase, and can be divided into subgroups that have similar structural organization and sequence similarity within the kinase domain. The members of the type III group of receptor tyrosine kinases include the platelet-derived growth factor (PDGF) receptors (PDGF receptors α and β), colony-stimulating factor (CSF-1) receptor (CSF-1R, c-Fms), FLT-3, and stem cell or steel factor receptor (c-kit).
  • The compounds, compositions, and methods provided herein are useful to modulate the activity of kinases including, but not limited to, ERBB2, ABL1, AURKA, CDK2, EGFR, FGFR1, LCK, MAPK14, PDGFR, KDR, ABL1, BRAF, ERBB4, FLT3, KIT, and RAF1. In some embodiments, the compositions and methods provided herein modulate the activity of a mutant kinase.
  • Inhibition by the compounds provided herein can be determined using any suitable assay. In one embodiment, inhibition is determined in vitro. In a specific embodiment, inhibition is assessed by phosphorylation assays. Any suitable phosphorylation assay can be employed. For example, membrane autophosphorylation assays, receptor autophosphorylation assays in intact cells, and ELISA's can be employed. See, e.g., Gazit, et al., J. Med. Chem. (1996) 39:2170-2177, Chapter 18 in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Ausubel, et al., eds. 2001). Cells useful in such assays include cells with wildtype or mutated forms. In one embodiment, the wildtype is a kinase that is not constitutively active, but is activated with upon dimerization. For example, the mutant FLT3 kinase is constitutively active via internal tandem duplication mutations or point mutations in the activation domain. Suitable cells include those derived through cell culture from patient samples as well as cells derived using routine molecular biology techniques, e.g., retroviral transduction, transfection, mutagenesis, etc. Exemplary cells include Ba/F3 or 32Dc13 cells transduced with, e.g., MSCV retroviral constructs FLT3-ITD (Kelly et al., 2002); Molm-13 and Molm14 cell line (Fujisaki Cell Center, Okayama, Japan); HL60 (AML-M3), AML193 (AML-M5), KG-1, KG-1a, CRL-1873, CRL-9591, and THP-1 (American Tissue Culture Collection, Bethesda, Md.); or any suitable cell line derived from a patient with a hematopoietic malignancy.
  • In some embodiments, the compounds described herein significantly inhibit receptor tyrosine kinases. A significant inhibition of a receptor tyrosine kinase activity refers to an IC50 of less than or equal to 100 μM. Preferably, the compound can inhibit activity with an IC50 of less than or equal to 50 μM, more preferably less than or equal to 10 μM, more preferably less than 1 μM, or less than 100 nM, most preferably less than 50 nM. Lower IC50's are preferred because the IC50 provides an indication as to the in vivo effectiveness of the compound. Other factors known in the art, such as compound half-life, biodistribution, and toxicity should also be considered for therapeutic uses. Such factors may enable a compound with a lower IC50 to have greater in vivo efficacy than a compound having a higher IC50 Preferably, a compound that inhibits activity is administered at a dose where the effective tyrosine phosphorylation, i.e., IC50, is less than its cytotoxic effects, LD50.
  • In some embodiments, the compounds selectively inhibit one or more kinases. Selective inhibition of a kinase, such as FLT3, p38 kinase, STK10, MKNK2, Bcr-Abl, c-kit, or PDGFR, is achieved by inhibiting activity of one kinase, while having an insignificant effect on other members of the superfamily.
  • FLT-3
  • FLT3 kinase is a tyrosine kinase receptor involved in the regulation and stimulation of cellular proliferation. See e.g., Gilliland et al., Blood 100:1532-42 (2002). The FLT3 kinase is a member of the class III receptor tyrosine kinase (RTKIII) receptor family and belongs to the same subfamily of tyrosine kinases as c-kit, c-fms, and the platelet-derived growth factor a and B receptors. See e.g., Lyman et al., FLT3 Ligand in THE CYTOKINE HANDBOOK 989 (Thomson et al., eds. 4th Ed.) (2003). The FLT3 kinase has five immunoglobulin-like domains in its extracellular region as well as an insert region of 75-100 amino acids in the middle of its cytoplasmic domain. FLT3 kinase is activated upon the binding of the FLT3 ligand, which causes receptor dimerization. Dimerization of the FLT3 kinase by FLT3 ligand activates the intracellular kinase activity as well as a cascade of downstream substrates including Stat5, Ras, phosphatidylinositol-3-kinase (PI3K), PLCγ, Erk2, Akt, MAPK, SHC, SHP2, and SHIP. See e.g., Rosnet et al., Acta Haematol. 95:218 (1996); Hayakawa et al., Oncogene 19:624 (2000); Mizuki et al., Blood 96:3907 (2000); and Gilliand et al., Curr. Opin. Hematol. 9: 274-81 (2002). Both membrane-bound and soluble FLT3 ligand bind, dimerize, and subsequently activate the FLT3 kinase.
  • In normal cells, immature hematopoietic cells, typically CD34+ cells, placenta, gonads, and brain express FLT3 kinase. See, e.g., Rosnet, et al., Blood 82:1110-19 (1993); Small et al., Proc. Natl. Acad. Sci. U.S.A. 91:459-63 (1994); and Rosnet et al., Leukemia 10:238-48 (1 996). However, efficient stimulation of proliferation via FLT3 kinase typically requires other hematopoietic growth factors or interleukins. FLT3 kinase also plays a critical role in immune function through its regulation of dendritic cell proliferation and dilferentiation. See e.g., McKenna et al., Blood 95:3489-97 (2000).
  • Numerous hematologic malignancies express FLT3 kinase, the most prominent of which is AML. See e.g., Yokota et al., Leukemia 11:1605-09 (1997). Other FLT3 expressing malignancies include B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias. See e.g., Rasko et al., Leukemia 9:2058-66 (1995).
  • FLT3 kinase mutations associated with hematologic malignancies are activating mutations. In other words, the FLT3 kinase is constitutively activated without the need for binding and dimerization by FLT3 ligand, and therefore stimulates the cell to grow continuously.
  • Several studies have identified inhibitors of FLT3 kinase activity that also inhibit the kinase activity of related receptors, e.g., VEGF receptor (VEGFR), PDGF receptor (PDGFR), and kit receptor kinases. See e.g., Mendel et al., Clin. Cancer Res. 9:327-37 (2003); O'Farrell et al., Blood 101:3597-605 (2003); and Sun et al., J. Med. Chem. 46:1116-19 (2003). Such compounds effectively inhibit FLT3 kinase-mediated phosphorylation, cytokine production, cellular proliferation, resulting in the induction of apoptosis. See e.g., Spiekermann et al., Blood 101:1494-1504 (2003). Moreover, such compounds have potent antitumor activity in vitro and in vivo.
  • In some embodiments, the kinase is a class III receptor tyrosine kinase (RTKIII). In other embodiments, the kinase is a tyrosine kinase receptor intimately involved in the regulation and stimulation of cellular proliferation. In still other embodiments, the kinase is a fms-like tyrosine kinase 3 receptor (FLT-3 kinase). In this context, inhibition and reduction of the activity of FLT-3 kinase refers to a lower level of measured activity relative to a control experiment in which the protein, cell, or subject is not treated with the test compound, whereas an increase in the activity of FLT-3 kinase refers to a higher level of measured activity relative to a control experiment. In particular embodiments, the reduction or increase is at least 10%. One of skill in the art will appreciate that reduction or increase in the activity of FLT-3 kinase of at least 20%, 50%, 75%, 90% or 100% or any integer between 10% and 100% may be preferred for particular applications.
  • Compounds provided herein are useful in treating conditions characterized by inappropriate FLT3 activity such as proliferative disorders. FLT3 activity includes, but is not limited to, enhanced FLT3 activity resulting from increased or de novo expression of FLT3 in cells, increased FLT3 expression or activity, and FLT3 mutations resulting in constitutive activation. The existence of inappropriate or abnormal FLT3 ligand and FLT3 levels or activity can be determined using well known methods in the art. For example, abnormally high FLT3 levels can be determined using commercially available ELISA kits. FLT3 levels can be determined using flow cytometric analysis, immunohistochemical analysis, and in situ hybridization techniques.
  • An inappropriate activation of the FLT3 can be determined by an increase in one or more of the activities occurring subsequent to FLT3 binding: (1) phosphorylation or autophosphorylation of FLT3; (2) phosphorylation of a FLT3 substrate, e.g., Stat5, Ras; (3) activation of a related complex, e.g., PI3K; (4) activation of an adaptor molecule; and (5) cellular proliferation. These activities are readily measured by well known methods in the art.
  • Formulations
  • The compounds described herein can be used to prepare a medicament, such as by formulation into pharmaceutical compositions for administration to a subject using techniques generally known in the art. A summary of such pharmaceutical compositions may be found, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. The compounds of the invention can be used singly or as components of mixtures. Preferred forms of the compounds are those for systemic administration as well as those for topical or transdermal administration. Formulations designed for timed release are also within the scope of the invention. Formulation in unit dosage form is also preferred for the practice of the invention.
  • In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage may be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packeted tablets or capsules, and powders in vials or ampoules.
  • The compounds described herein may be labeled isotopically (e.g. with a radioisotope) or by any other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels. The compositions may be in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. Suitable excipients or carriers are, for example, water, saline, dextrose, glycerol, alcohols, aloe vera gel, allantoin, glycerin, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like. Of course, these compositions may also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and so forth.
  • Methods for the preparation of compositions comprising the compounds described herein include formulating the derivatives with one or more inert, pharmaceutically acceptable carriers to form either a solid or liquid. Solid compositions include, but are not limited to, powders, tablets, dispersible granules, capsules, cachets, and suppositories. Liquid compositions include solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein.
  • A carrier of the invention can be one or more substances which also serve to act as a diluent, flavoring agent, solubilizer, lubricant, suspending agent, binder, or tablet disintegrating agent. A carrier can also be an encapsulating material.
  • In powder forms of the invention's compositions, the carrier is preferably a finely divided solid in powder form which is interdispersed as a mixture with a finely divided powder from of one or more compound. In tablet forms of the compositions, one or more compounds is intermixed with a carrier with appropriate binding properties in suitable proportions followed by compaction into the shape and size desired. Powder and tablet form compositions preferably contain between about 5 to about 70% by weight of one or more compound. Carriers that may be used in the practice of the invention include, but are not limited to, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.
  • The compounds of the invention may also be encapsulated or microencapsulated by an encapsulating material, which may thus serve as a carrier, to provide a capsule in which the derivatives, with or without other carriers, is surrounded by the encapsulating material. In an analogous manner, cachets comprising one or more compounds are also provided by the instant invention. Tablet, powder, capsule, and cachet forms of the invention can be formulated as single or unit dosage forms suitable for administration, optionally conducted orally.
  • In suppository forms of the compositions, a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter is first melted. One or more compounds are then dispersed into the melted material by, as a non-limiting example, stirring. The non-solid mixture is then placed into molds as desired and allowed to cool and solidify.
  • Non-limiting compositions in liquid form include solutions suitable for oral or parenteral administration, as well as suspensions and emulsions suitable for oral administration. Sterile aqueous based solutions of one or more compounds, optionally in the presence of an agent to increase solubility of the derivative(s), are also provided. Non-limiting examples of sterile solutions include those comprising water, ethanol, and/or propylene glycol in forms suitable for parenteral administration. A sterile solution of the invention may be prepared by dissolving one or more compounds in a desired solvent followed by sterilization, such as by filtration through a sterilizing membrane filter as a non-limiting example. In another embodiment, one or more compounds are dissolved into a previously sterilized solvent under sterile conditions.
  • A water based solution suitable for oral administration can be prepared by dissolving one or more compounds in water and adding suitable flavoring agents, coloring agents, stabilizers, and thickening agents as desired. Water based suspensions for oral use can be made by dispersing one or more compounds in water together with a viscous material such as, but not limited to, natural or synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidone, and other suspending agents known to the pharmaceutical field.
  • In therapeutic use, the compounds of the invention are administered to a subject at dosage levels of from about 0.5 mg/kg to about 8.0 mg/kg of body weight per day. For example, a human subject of approximately 70 kg, this is a dosage of from 35 mg to 560 mg per day. Such dosages, however, may be altered depending on a number of variables, not limited to the activity of the compound used, the condition to be treated, the mode of administration, the requirements of the individual subject, the severity of the condition being treated, and the judgment of the practitioner.
  • The foregoing ranges are merely suggestive, as the number of variables in regard to an individual treatment regime is large, and considerable excursions from these recommended values are not uncommon.
  • Methods of Use
  • By modulating kinase activity, the compounds disclosed herein can be used to treat a variety of diseases. Suitable conditions characterized by undesirable protein-kinase activity can be treated by the compounds presented herein. As used herein, the term “condition” refers to a disease, disorder, or related symptom where inappropriate kinase activity is present. In some embodiments, these conditions are characterized by aggressive neovasculaturization including tumors, especially acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs). In some embodiments, a FLT3 modulating compounds may be used to treat tumors. The ability of compounds that inhibit FLT3 kinase activity to treat tumors has been established. Compounds having this property include SU5416 (Sugen), PKC412 (Novartis), GTP-14564 and CT53518 (Millennium). See e.g., Giles et al., Blood 102:795-801 (2003); Weisberg et al., Cancer Cell 1:433-43 (2002); Murata et al., J. Biol. Chem. 278:32892-98 (2003); and Kelly et al., Cancer Cell 1:421-32 (2002).
  • Compounds presented herein are useful in the treatment of a variety of biologically aberrant conditions or disorders related to tyrosine kinase signal transduction. Such disorders pertain to abnormal cell proliferation, differentiation, and/or metabolism. Abnormal cell proliferation may result in a wide array of diseases, including the development of neoplasia such as carcinoma, sarcoma, leukemia, glioblastoma, hemangioma, psoriasis, arteriosclerosis, arthritis and diabetic retinopathy (or other disorders related to uncontrolled angiogenesis and/or vasculogenesis).
  • In various embodiments, compounds presented herein regulate, modulate, and/or inhibit disorders associated with abnormal cell proliferation by affecting the enzymatic activity of one or more tyrosine kinases and interfering with the signal transduced by said kinase. More particularly, the present invention is directed to compounds which regulate, modulate said kinase mediated signal transduction pathways as a therapeutic approach to cure leukemia and many kinds of solid tumors, including but not limited to carcinoma, sarcoma, erythroblastoma, glioblastoma, meningioma, astrocytoma, melanoma and myoblastoma. Indications may include, but are not limited to brain cancers, bladder cancers, ovarian cancers, gastric cancers, pancreas cancers, colon cancers, blood cancers, lung cancers and bone cancers.
  • In other embodiments, compounds herein are useful in the treatment of cell proliferative disorders including cancers, blood vessel proliferative disorders, fibrotic disorders, and mesangial cell proliferative disorders. Blood vessel proliferation disorders refer to angiogenic and vasculogenic disorders generally resulting in abnormal proliferation of blood vessels. The formation and spreading of blood vessels, or vasculogenesis and angiogenesis, respectively, play important roles in a variety of physiological processes such as embryonic development, corpus luteum formation, wound healing and organ regeneration. They also play a pivotal role in cancer development. Other examples of blood vessel proliferation disorders include arthritis, where new capillary blood vessels invade the joint and destroy cartilage, and ocular diseases, like diabetic retinopathy, where new capillaries in the retina invade the vitreous, bleed and cause blindness. Conversely, disorders related to the shrinkage, contraction or closing of blood vessels, such as restenosis, are also implicated.
  • Fibrotic disorders refer to the abnormal formation of extracellular matrix. Examples of fibrotic disorders include hepatic cirrhosis and mesangial cell proliferative disorders. Hepatic cirrhosis is characterized by the increase in extracellular matrix constituents resulting in the formation of a hepatic scar. Hepatic cirrhosis can cause diseases such as cirrhosis of the liver. An increased extracellular matrix resulting in a hepatic scar can also be caused by viral infection such as hepatitis. Lipocytes appear to play a major role in hepatic cirrhosis. Other fibrotic disorders implicated include atherosclerosis (see, below).
  • Mesangial cell proliferative disorders refer to disorders brought about by abnormal proliferation of mesangial cells. Mesangial proliferative disorders include various human renal diseases, such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes, transplant rejection, and glomerulopathies. The cell proliferative disorders which are indications of the present invention are not necessarily independent. For example, fibrotic disorders may be related to, or overlap, with blood vessel proliferative disorders. For example, atherosclerosis results, in part, in the abnormal formation of fibrous tissue within blood vessels.
  • Compounds of the invention can be-administered to a subject upon determination of the subject as having a disease or unwanted condition that would benefit by treatment with said derivative. The determination can be made by medical or clinical personnel as part of a diagnosis of a disease or condition in a subject. Non-limiting examples include determination of a risk of acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • The methods of the invention can comprise the administration of an effective amount of one or more compounds as disclosed herein, optionally in combination with one or more other active agents for the treatment of a disease or unwanted condition as disclosed herein. The subject is preferably human, and repeated administration over time is within the scope of the present invention.
  • The present invention thus also provides compounds described above and their salts or solvates and pharmaceutically acceptable salts or solvates thereof for use in the prevention or treatment of disorders mediated by aberrant protein tyrosine kinase activity such as human malignancies and the other disorders mentioned above. The compounds of the present invention are especially useful for the treatment of disorders caused by aberrant kinase activity such as breast, ovarian, gastric, pancreatic, non-small cell lung, bladder, head and neck cancers, and psoriasis. The cancers include hematologic cancers, for example, acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs).
  • A further aspect of the invention provides a method of treatment of a human or animal subject suffering from a disorder mediated by aberrant protein tyrosine kinase activity, including susceptible malignancies, which comprises administering to the subject an effective amount of a compound described above or a pharmaceutically acceptable salt or solvate thereof.
  • A further aspect of the present invention provides the use of a compound described above, or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament for the treatment of cancer and malignant tumors. The cancer can be stomach, gastric, bone, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, ovarian, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, leukemia, acute myelogenous leukemia (AML), B-precursor cell acute lymphoblastic leukemias, myelodysplastic leukemias, T-cell acute lymphoblastic leukemias, and chronic myelogenous leukemias (CMLs), glioma, colorectal cancer, genitourinary cancer gastrointestinal cancer, or pancreatic cancer.
  • In accordance with the present invention, compounds provided herein are useful for preventing and treating conditions associated with ischemic cell death, such as myocardial infarction, stroke, glaucoma, and other neurodegenerative conditions. Various neurodegenerative conditions which may involve apoptotic cell death, include, but are not limited to, Alzheimer's Disease, ALS and motor neuron degeneration, Parkinson's disease, peripheral neuropathies, Down's Syndrome, age related macular degeneration (ARMD), traumatic brain injury, spinal cord injury, Huntington's Disease, spinal muscular atrophy, and HIV encephalitis. The compounds described in detail above can be used in methods and compositions for imparting neuroprotection and for treating neurodegenerative diseases.
  • The compounds described herein, can be used in a pharmaceutical composition for the prevention and/or the treatment of a condition selected from the group consisting of arthritis (including osteoarthritis, degenerative joint disease, spondyloarthropathies, gouty arthritis, systemic lupus erythematosus, juvenile arthritis and rheumatoid arthritis), common cold, dysmenorrhea, menstrual cramps, inflammatory bowel disease, Crohn's disease, emphysema, acute respiratory distress syndrome, asthma, bronchitis, chronic obstructive pulmonary disease, Alzheimer's disease, organ transplant toxicity, cachexia, allergic reactions, allergic contact hypersensitivity, cancer (such as solid tumor cancer including colon cancer, breast cancer, lung cancer and prostrate cancer; hematopoietic malignancies including leukemias and lymphomas; Hodgkin's disease; aplastic anemia, skin cancer and familiar adenomatous polyposis), tissue ulceration, peptic ulcers, gastritis, regional enteritis, ulcerative colitis, diverticulitis, recurrent gastrointestinal lesion, gastrointestinal bleeding, coagulation, anemia, synovitis, gout, ankylosing spondylitis, restenosis, periodontal disease, epidermolysis bullosa, osteoporosis, atherosclerosis (including atherosclerotic plaque rupture), aortic aneurysm (including abdominal aortic aneurysm and brain aortic aneurysm), periarteritis nodosa, congestive heart failure, myocardial infarction, stroke, cerebral ischemia, head trauma, spinal cord injury, neuralgia, neurodegenerative disorders (acute and chronic), autoimmune disorders, Huntington's disease, Parkinson's disease, migraine, depression, peripheral neuropathy, pain (including low back and neck pain, headache and toothache), gingivitis, cerebral amyloid angiopathy, nootropic or cognition enhancement, amyotrophic lateral sclerosis, multiple sclerosis, ocular angiogenesis, corneal injury, macular degeneration, conjunctivitis, abnormal wound healing, muscle or joint sprains or strains, tendonitis, skin disorders (such as psoriasis, eczema, scleroderma and dermatitis), myasthenia gravis, polymyositis, myositis, bursitis, burns, diabetes (including types I and II diabetes, diabetic retinopathy, neuropathy and nephropathy), tumor invasion, tumor growth, tumor metastasis, corneal scarring, scleritis, immunodeficiency diseases (such as AIDS in humans and FLV, FIV in cats), sepsis, premature labor, hypoprothrombinemia, hemophilia, thyroiditis, sarcoidosis, Behcet's syndrome, hypersensitivity, kidney disease, Rickettsial infections (such as Lyme disease, Erlichiosis), Protozoan diseases (such as malaria, giardia, coccidia), reproductive disorders, and septic shock, arthritis, fever, common cold, pain and cancer in a mammal, preferably a human, cat, livestock or a dog, comprising an amount of a compound described herein or a pharmaceutically acceptable salt thereof effective in such prevention and/or treatment optionally with a pharmaceutically acceptable carrier.
  • A further aspect of the present invention provides the use of a compound described above, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for the treatment of psoriasis.
  • As one of skill in the art will recognize, the compounds can be administered before, during or after the occurrence of a condition or a disease, and the timing of administering the composition containing a compound can vary. Thus, for example, the compounds can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions and diseases in order to prevent the occurrence of the disorder. The compounds and compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the compounds can be initiated within the first 48 hours of the onset of the symptoms, preferably within the first 48 hours of the onset of the symptoms, more preferably within the first 6 hours of the onset of the symptoms, and most preferably within 3 hours of the onset of the symptoms. The initial administration can be via any route practical, such as, for example, an intravenous injection, a bolus injection, infusion over 5 min. to about 5 hours, a pill, a capsule, transdermal patch, buccal delivery, and the like, or a combination thereof. A compound is preferably administered as soon as is practicable after the onset of a condition or a disease is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. As one of skill in the art will recognize, the length of treatment can vary for each subject, and the length can be determined using the known criteria. For example, the compound or a formulation containing the compound can be administered for at least 2 weeks, preferably about 1 month to about 5 years, and more preferably from about 1 month to about 3 years.
  • Kits/Articles of Manufacture
  • For use in the therapeutic applications described herein, kits and articles of manufacture are also within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in a method of the invention. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass or plastic.
  • For example, the container(s) can comprise one or more compounds of the invention, optionally in a composition or in combination with another agent as disclosed herein. The container(s) optionally have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). Such kits optionally comprising a compound with an identifying description or label or instructions relating to its use in the methods of the present invention.
  • A kit of the invention will typically may comprise one or more additional containers, each with one or more of various materials (such as reagents, optionally in concentrated form, and/or devices) desirable from a commercial and user standpoint for use of a compound of the invention. Non-limiting examples of such materials include, but not limited to, buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use. A set of instructions will also typically be included.
  • A label can be on or associated with the container. A label can be on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. A label can be used to indicate that the contents are to be used for a specific therapeutic application. The label can also indicate directions for use of the contents, such as in the methods described herein.
  • The terms “kit” and “article of manufacture” may be used as synonyms.
  • EXAMPLES
  • The present invention is further illustrated by the following examples, which should not be construed as limiting in any way. The experimental procedures to generate the data shown are discussed in more detail below. For all formulations herein, multiple doses may be proportionally compounded as is known in the art.
  • The invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of description rather than of limitation. Thus, it will be appreciated by those of skill in the art that conditions such as choice of solvent, temperature of reaction, volumes, reaction time may vary while still producing the desired compounds. In addition, one of skill in the art will also appreciate that many of the reagents provided in the following examples may be substituted with other suitable reagents. See, e.g., Smith & March, Advanced Organic Chemistry, 5th ed. (2001).
  • Example A Synthesis of Isoxazole-Amides
  • Compounds A1 through A240 are synthesized by methods known in the art or described herein. The structures are shown below in Table A:
    TABLE A
    NO. STRUCTURE
    A1
    Figure US20050171171A1-20050804-C00046
    A2
    Figure US20050171171A1-20050804-C00047
    A3
    Figure US20050171171A1-20050804-C00048
    A4
    Figure US20050171171A1-20050804-C00049
    A5
    Figure US20050171171A1-20050804-C00050
    A6
    Figure US20050171171A1-20050804-C00051
    A7
    Figure US20050171171A1-20050804-C00052
    A8
    Figure US20050171171A1-20050804-C00053
    A9
    Figure US20050171171A1-20050804-C00054
    A10
    Figure US20050171171A1-20050804-C00055
    A11
    Figure US20050171171A1-20050804-C00056
    A12
    Figure US20050171171A1-20050804-C00057
    A13
    Figure US20050171171A1-20050804-C00058
    A14
    Figure US20050171171A1-20050804-C00059
    A15
    Figure US20050171171A1-20050804-C00060
    A16
    Figure US20050171171A1-20050804-C00061
    A17
    Figure US20050171171A1-20050804-C00062
    A18
    Figure US20050171171A1-20050804-C00063
    A19
    Figure US20050171171A1-20050804-C00064
    A20
    Figure US20050171171A1-20050804-C00065
    A21
    Figure US20050171171A1-20050804-C00066
    A22
    Figure US20050171171A1-20050804-C00067
    A23
    Figure US20050171171A1-20050804-C00068
    A24
    Figure US20050171171A1-20050804-C00069
    A25
    Figure US20050171171A1-20050804-C00070
    A26
    Figure US20050171171A1-20050804-C00071
    A27
    Figure US20050171171A1-20050804-C00072
    A28
    Figure US20050171171A1-20050804-C00073
    A29
    Figure US20050171171A1-20050804-C00074
    A30
    Figure US20050171171A1-20050804-C00075
    A31
    Figure US20050171171A1-20050804-C00076
    A32
    Figure US20050171171A1-20050804-C00077
    A33
    Figure US20050171171A1-20050804-C00078
    A34
    Figure US20050171171A1-20050804-C00079
    A35
    Figure US20050171171A1-20050804-C00080
    A36
    Figure US20050171171A1-20050804-C00081
    A37
    Figure US20050171171A1-20050804-C00082
    A38
    Figure US20050171171A1-20050804-C00083
    A39
    Figure US20050171171A1-20050804-C00084
    A40
    Figure US20050171171A1-20050804-C00085
    A41
    Figure US20050171171A1-20050804-C00086
    A42
    Figure US20050171171A1-20050804-C00087
    A43
    Figure US20050171171A1-20050804-C00088
    A44
    Figure US20050171171A1-20050804-C00089
    A45
    Figure US20050171171A1-20050804-C00090
    A46
    Figure US20050171171A1-20050804-C00091
    A47
    Figure US20050171171A1-20050804-C00092
    A48
    Figure US20050171171A1-20050804-C00093
    A49
    Figure US20050171171A1-20050804-C00094
    A50
    Figure US20050171171A1-20050804-C00095
    A51
    Figure US20050171171A1-20050804-C00096
    A52
    Figure US20050171171A1-20050804-C00097
    A53
    Figure US20050171171A1-20050804-C00098
    A54
    Figure US20050171171A1-20050804-C00099
    A55
    Figure US20050171171A1-20050804-C00100
    A56
    Figure US20050171171A1-20050804-C00101
    A57
    Figure US20050171171A1-20050804-C00102
    A58
    Figure US20050171171A1-20050804-C00103
    A59
    Figure US20050171171A1-20050804-C00104
    A60
    Figure US20050171171A1-20050804-C00105
    A61
    Figure US20050171171A1-20050804-C00106
    A62
    Figure US20050171171A1-20050804-C00107
    A63
    Figure US20050171171A1-20050804-C00108
    A64
    Figure US20050171171A1-20050804-C00109
    A65
    Figure US20050171171A1-20050804-C00110
    A66
    Figure US20050171171A1-20050804-C00111
    67
    Figure US20050171171A1-20050804-C00112
    A68
    Figure US20050171171A1-20050804-C00113
    A69
    Figure US20050171171A1-20050804-C00114
    A70
    Figure US20050171171A1-20050804-C00115
    A71
    Figure US20050171171A1-20050804-C00116
    A72
    Figure US20050171171A1-20050804-C00117
    A73
    Figure US20050171171A1-20050804-C00118
    A74
    Figure US20050171171A1-20050804-C00119
    A75
    Figure US20050171171A1-20050804-C00120
    A76
    Figure US20050171171A1-20050804-C00121
    A77
    Figure US20050171171A1-20050804-C00122
    A78
    Figure US20050171171A1-20050804-C00123
    A79
    Figure US20050171171A1-20050804-C00124
    A80
    Figure US20050171171A1-20050804-C00125
    A81
    Figure US20050171171A1-20050804-C00126
    A82
    Figure US20050171171A1-20050804-C00127
    A83
    Figure US20050171171A1-20050804-C00128
    A84
    Figure US20050171171A1-20050804-C00129
    A85
    Figure US20050171171A1-20050804-C00130
    A86
    Figure US20050171171A1-20050804-C00131
    A87
    Figure US20050171171A1-20050804-C00132
    A88
    Figure US20050171171A1-20050804-C00133
    A89
    Figure US20050171171A1-20050804-C00134
    A90
    Figure US20050171171A1-20050804-C00135
    A91
    Figure US20050171171A1-20050804-C00136
    A92
    Figure US20050171171A1-20050804-C00137
    A93
    Figure US20050171171A1-20050804-C00138
    A94
    Figure US20050171171A1-20050804-C00139
    A95
    Figure US20050171171A1-20050804-C00140
    A96
    Figure US20050171171A1-20050804-C00141
    A97
    Figure US20050171171A1-20050804-C00142
    A98
    Figure US20050171171A1-20050804-C00143
    A99
    Figure US20050171171A1-20050804-C00144
    A100
    Figure US20050171171A1-20050804-C00145
    A101
    Figure US20050171171A1-20050804-C00146
    A102
    Figure US20050171171A1-20050804-C00147
    A103
    Figure US20050171171A1-20050804-C00148
    A104
    Figure US20050171171A1-20050804-C00149
    A105
    Figure US20050171171A1-20050804-C00150
    A106
    Figure US20050171171A1-20050804-C00151
    A107
    Figure US20050171171A1-20050804-C00152
    A108
    Figure US20050171171A1-20050804-C00153
    A109
    Figure US20050171171A1-20050804-C00154
    A110
    Figure US20050171171A1-20050804-C00155
    A111
    Figure US20050171171A1-20050804-C00156
    A112
    Figure US20050171171A1-20050804-C00157
    A113
    Figure US20050171171A1-20050804-C00158
    A114
    Figure US20050171171A1-20050804-C00159
    A115
    Figure US20050171171A1-20050804-C00160
    A116
    Figure US20050171171A1-20050804-C00161
    A117
    Figure US20050171171A1-20050804-C00162
    A118
    Figure US20050171171A1-20050804-C00163
    A119
    Figure US20050171171A1-20050804-C00164
    A120
    Figure US20050171171A1-20050804-C00165
    A121
    Figure US20050171171A1-20050804-C00166
    A122
    Figure US20050171171A1-20050804-C00167
    A123
    Figure US20050171171A1-20050804-C00168
    A124
    Figure US20050171171A1-20050804-C00169
    A125
    Figure US20050171171A1-20050804-C00170
    A126
    Figure US20050171171A1-20050804-C00171
    A127
    Figure US20050171171A1-20050804-C00172
    A128
    Figure US20050171171A1-20050804-C00173
    A129
    Figure US20050171171A1-20050804-C00174
    A130
    Figure US20050171171A1-20050804-C00175
    A131
    Figure US20050171171A1-20050804-C00176
    A132
    Figure US20050171171A1-20050804-C00177
    A133
    Figure US20050171171A1-20050804-C00178
    A134
    Figure US20050171171A1-20050804-C00179
    A135
    Figure US20050171171A1-20050804-C00180
    A136
    Figure US20050171171A1-20050804-C00181
    A137
    Figure US20050171171A1-20050804-C00182
    A138
    Figure US20050171171A1-20050804-C00183
    A139
    Figure US20050171171A1-20050804-C00184
    A140
    Figure US20050171171A1-20050804-C00185
    A141
    Figure US20050171171A1-20050804-C00186
    A142
    Figure US20050171171A1-20050804-C00187
    A143
    Figure US20050171171A1-20050804-C00188
    A144
    Figure US20050171171A1-20050804-C00189
    A145
    Figure US20050171171A1-20050804-C00190
    A146
    Figure US20050171171A1-20050804-C00191
    A147
    Figure US20050171171A1-20050804-C00192
    A148
    Figure US20050171171A1-20050804-C00193
    A149
    Figure US20050171171A1-20050804-C00194
    A150
    Figure US20050171171A1-20050804-C00195
    A151
    Figure US20050171171A1-20050804-C00196
    A152
    Figure US20050171171A1-20050804-C00197
    A153
    Figure US20050171171A1-20050804-C00198
    A154
    Figure US20050171171A1-20050804-C00199
    A155
    Figure US20050171171A1-20050804-C00200
    A156
    Figure US20050171171A1-20050804-C00201
    A157
    Figure US20050171171A1-20050804-C00202
    A158
    Figure US20050171171A1-20050804-C00203
    A159
    Figure US20050171171A1-20050804-C00204
    A160
    Figure US20050171171A1-20050804-C00205
    A161
    Figure US20050171171A1-20050804-C00206
    A162
    Figure US20050171171A1-20050804-C00207
    A163
    Figure US20050171171A1-20050804-C00208
    A164
    Figure US20050171171A1-20050804-C00209
    A165
    Figure US20050171171A1-20050804-C00210
    A166
    Figure US20050171171A1-20050804-C00211
    A167
    Figure US20050171171A1-20050804-C00212
    A168
    Figure US20050171171A1-20050804-C00213
    A169
    Figure US20050171171A1-20050804-C00214
    A170
    Figure US20050171171A1-20050804-C00215
    A171
    Figure US20050171171A1-20050804-C00216
    A172
    Figure US20050171171A1-20050804-C00217
    A173
    Figure US20050171171A1-20050804-C00218
    A174
    Figure US20050171171A1-20050804-C00219
    A175
    Figure US20050171171A1-20050804-C00220
    A176
    Figure US20050171171A1-20050804-C00221
    A177
    Figure US20050171171A1-20050804-C00222
    A178
    Figure US20050171171A1-20050804-C00223
    A179
    Figure US20050171171A1-20050804-C00224
    A180
    Figure US20050171171A1-20050804-C00225
    A181
    Figure US20050171171A1-20050804-C00226
    A182
    Figure US20050171171A1-20050804-C00227
    A183
    Figure US20050171171A1-20050804-C00228
    A184
    Figure US20050171171A1-20050804-C00229
    A185
    Figure US20050171171A1-20050804-C00230
    A186
    Figure US20050171171A1-20050804-C00231
    A187
    Figure US20050171171A1-20050804-C00232
    A188
    Figure US20050171171A1-20050804-C00233
    A189
    Figure US20050171171A1-20050804-C00234
    A190
    Figure US20050171171A1-20050804-C00235
    A191
    Figure US20050171171A1-20050804-C00236
    A192
    Figure US20050171171A1-20050804-C00237
    A193
    Figure US20050171171A1-20050804-C00238
    A194
    Figure US20050171171A1-20050804-C00239
    A195
    Figure US20050171171A1-20050804-C00240
    A196
    Figure US20050171171A1-20050804-C00241
    A197
    Figure US20050171171A1-20050804-C00242
    A198
    Figure US20050171171A1-20050804-C00243
    A199
    Figure US20050171171A1-20050804-C00244
    A200
    Figure US20050171171A1-20050804-C00245
    A201
    Figure US20050171171A1-20050804-C00246
    202
    Figure US20050171171A1-20050804-C00247
    A203
    Figure US20050171171A1-20050804-C00248
    A204
    Figure US20050171171A1-20050804-C00249
    A205
    Figure US20050171171A1-20050804-C00250
    A206
    Figure US20050171171A1-20050804-C00251
    A207
    Figure US20050171171A1-20050804-C00252
    A208
    Figure US20050171171A1-20050804-C00253
    A209
    Figure US20050171171A1-20050804-C00254
    A210
    Figure US20050171171A1-20050804-C00255
    A211
    Figure US20050171171A1-20050804-C00256
    A212
    Figure US20050171171A1-20050804-C00257
    A213
    Figure US20050171171A1-20050804-C00258
    A214
    Figure US20050171171A1-20050804-C00259
    A215
    Figure US20050171171A1-20050804-C00260
    A216
    Figure US20050171171A1-20050804-C00261
    A217
    Figure US20050171171A1-20050804-C00262
    A218
    Figure US20050171171A1-20050804-C00263
    A219
    Figure US20050171171A1-20050804-C00264
    A220
    Figure US20050171171A1-20050804-C00265
    A221
    Figure US20050171171A1-20050804-C00266
    A222
    Figure US20050171171A1-20050804-C00267
    A223
    Figure US20050171171A1-20050804-C00268
    A224
    Figure US20050171171A1-20050804-C00269
    A225
    Figure US20050171171A1-20050804-C00270
    A226
    Figure US20050171171A1-20050804-C00271
    A227
    Figure US20050171171A1-20050804-C00272
    A228
    Figure US20050171171A1-20050804-C00273
    A229
    Figure US20050171171A1-20050804-C00274
    A230
    Figure US20050171171A1-20050804-C00275
    A231
    Figure US20050171171A1-20050804-C00276
    A232
    Figure US20050171171A1-20050804-C00277
    A233
    Figure US20050171171A1-20050804-C00278
    A234
    Figure US20050171171A1-20050804-C00279
    A235
    Figure US20050171171A1-20050804-C00280
    A236
    Figure US20050171171A1-20050804-C00281
    A237
    Figure US20050171171A1-20050804-C00282
    A238
    Figure US20050171171A1-20050804-C00283
    A239
    Figure US20050171171A1-20050804-C00284
    A240
    Figure US20050171171A1-20050804-C00285
  • Example B Exemplary Synthesis of Isoxazole-Amides
  • Figure US20050171171A1-20050804-C00286
  • In a 40 mL vial, 1 mL of thionyl chloride was added to 0.2 mmol para-substituted phenylacetic acid. The vial was capped and stirred at 80° C. for approximately three hours. The completion of the reaction was checked by TLC. The excess thionyl chloride was removed in vacuo. The residue was dissolved in dichloromethane and added to a mixture of 3-tert-butyl-isoxazol-5-ylamine (0.2 mmol) and DIEA (0.2 mmol). The reaction was stirred overnight at 45° C. The solvent was removed under vacuum and the product was purified by HPLC.
  • Synthesis of Compound B1: N-(3-tert-butylisoxazol-5-yl)-2-(4-(benzyloxy)phenyl)acetamide
  • Figure US20050171171A1-20050804-C00287
  • (4-Benzyloxy-phenyl)-acetic acid (50 mg, 0.2 mmol, 1 eq) was stirred with 1 mL of thionyl chloride at 80° C. for approximately three hours. The completion of the reaction was checked by TLC. Excess thionyl chloride was removed in vacuo, the residue was dissolved in dichloromethane and added to a mixture of 3-tert-butyl-isoxazol-5-ylamine (28mg, 0.2 mmol, 1 eq) and DIEA (35 μL, 0.2 mmol, 1 eq). The reaction was stirred overnight at 45° C. The solvent was removed and the product purified by HPLC. Yield: 42 mg (57%), LC/MS [MH+]365.
  • Compounds B2 through B16 were synthesized in a manner analogous to Compound B1 using similar starting materials and reagents. The structures are shown below in Table B:
    TABLE B
    NO. CHEMICAL STRUCTURE
    B1
    Figure US20050171171A1-20050804-C00288
    B2
    Figure US20050171171A1-20050804-C00289
    B3
    Figure US20050171171A1-20050804-C00290
    B4
    Figure US20050171171A1-20050804-C00291
    B5
    Figure US20050171171A1-20050804-C00292
    B6
    Figure US20050171171A1-20050804-C00293
    B7
    Figure US20050171171A1-20050804-C00294
    B8
    Figure US20050171171A1-20050804-C00295
    B9
    Figure US20050171171A1-20050804-C00296
    B10
    Figure US20050171171A1-20050804-C00297
    B11
    Figure US20050171171A1-20050804-C00298
    B12
    Figure US20050171171A1-20050804-C00299
    B13
    Figure US20050171171A1-20050804-C00300
    B14
    Figure US20050171171A1-20050804-C00301
    B15
    Figure US20050171171A1-20050804-C00302
    B16
    Figure US20050171171A1-20050804-C00303
  • Example C Synthesis of thiazole-amides Synthesis of Compound C1: 2-(4-(benzyloxy)phenyl)-N-(5-methylthiazol-2-yl)acetamide
  • Figure US20050171171A1-20050804-C00304
  • Compound C1 was prepared in strict analogy to compound B1 using 2-amino-5-methylthiazole as starting material instead of 3-tert-butyl-isoxazol-5-ylamine.
  • Compounds C2 through C6 were synthesized in a manner analogous to Compound C1 using similar starting materials and reagents. The structures are shown below in Table C:
    TABLE C
    NO. CHEMICAL STRUCTURE
    C1
    Figure US20050171171A1-20050804-C00305
    C2
    Figure US20050171171A1-20050804-C00306
    C3
    Figure US20050171171A1-20050804-C00307
    C4
    Figure US20050171171A1-20050804-C00308
    C5
    Figure US20050171171A1-20050804-C00309
    C6
    Figure US20050171171A1-20050804-C00310
  • Example E Synthesis of Di-Phenyl Ureas Synthesis of Compound E1: 2-(4-Fluoro-phenyl)-N-(5-methyl-2-phenyl-2H-pyrazol-3-)-acetamide
  • Figure US20050171171A1-20050804-C00311
  • Compound E1 was prepared in strict analogy to compound B1 using 5-methyl-2-phenyl-2H-pyrazol-3-ylamine and 4-fluorophenylacetic acid as starting materials.
  • Compounds E2 through E20 were synthesized in a manner analogous to Compound E1 using similar starting materials and reagents. The structures are shown below in Table E:
    TABLE E
    NO. CHEMICAL STRUCTURE
    E1
    Figure US20050171171A1-20050804-C00312
    E2
    Figure US20050171171A1-20050804-C00313
    E3
    Figure US20050171171A1-20050804-C00314
    E4
    Figure US20050171171A1-20050804-C00315
    E5
    Figure US20050171171A1-20050804-C00316
    E6
    Figure US20050171171A1-20050804-C00317
    E7
    Figure US20050171171A1-20050804-C00318
    E8
    Figure US20050171171A1-20050804-C00319
    E9
    Figure US20050171171A1-20050804-C00320
    E10
    Figure US20050171171A1-20050804-C00321
    E11
    Figure US20050171171A1-20050804-C00322
    E12
    Figure US20050171171A1-20050804-C00323
    E13
    Figure US20050171171A1-20050804-C00324
    E14
    Figure US20050171171A1-20050804-C00325
    E15
    Figure US20050171171A1-20050804-C00326
    E16
    Figure US20050171171A1-20050804-C00327
    E17
    Figure US20050171171A1-20050804-C00328
    E18
    Figure US20050171171A1-20050804-C00329
    E19
    Figure US20050171171A1-20050804-C00330
    E20
    Figure US20050171171A1-20050804-C00331
  • Example F Synthesis of Isoxazole-Bis-Amides
  • Figure US20050171171A1-20050804-C00332
  • In a vial thionyl chloride was added to a para-substituted phenylacetic acid. The vial was capped and stirred at 80° C. for approximately three hours. The completion of the reaction was checked by TLC, and the excess thionyl chloride removed in vacuo. The residue was dissolved in dichloromethane and added to a mixture 5-tert-butyl-isoxazol-3-ylamine and DIEA. The reaction was stirred overnight at 45° C. The solvent was removed under vacuum and the product was purified by HPLC.
    Figure US20050171171A1-20050804-C00333
  • For the case of R═NO2, reduction to the amine was carried out prior to reaction with an activated carboxylic acid. 1.5 gm of 1-(5-tert-butyl-isoxazol-3-yl)-3-(4-nitro-phenyl)-amide was dissolved in 50 ml THF and 0.1 g of 10% Pd/C is added. The solution was stirred under hydrogen at 50 psi. for 24 hours then filtered through a Celite pad. The organic solvent was evaporated under vacuum and the resulting residue was triturated with ethyl acetate.
    Figure US20050171171A1-20050804-C00334
  • 1 equivalent of the carboxylic acid and 1.1 equivalent of CDI were dissolved in dry DMF and stirred at 40° C. for 2 h, then 1 equivalent of the substituted aniline was added. The reaction mixture was stirred at 40° C. overnight and the final product was purified by preparative HPLC.
    Figure US20050171171A1-20050804-C00335
  • Alternatively, 1 equivalent of the carboxylic acid and 1.1 equivalent of thionyl chloride were heated in a sealed tube at 50 C for 3 h. The excess thionyl chloride was evaporated, 1 equivalent of aniline in DMF was added, and the solution stirred at room temperature for 8 h. The final product was purified by preparative HPLC.
  • Compounds F1 through F5 are synthesized in a manner analogous to those shown above using similar starting materials and reagents. The structures are shown below in Table F:
    TABLE F
    NO. CHEMICAL STRUCTURE
    F1
    Figure US20050171171A1-20050804-C00336
    F2
    Figure US20050171171A1-20050804-C00337
    F3
    Figure US20050171171A1-20050804-C00338
    F4
    Figure US20050171171A1-20050804-C00339
    F5
    Figure US20050171171A1-20050804-C00340
  • Binding Constant (Kd) Measurements for Small-Molecule-Kinase Interactions
  • Methods for measuring binding affinities for interactions between small molecules and kinases including FLT3, c-KIT, ABL(T3341) [a.k.a. ABL(T315I)], VEGFR2 (a.k.a. KDR), and EGFR are described in detail in U.S. application Ser. No. 10/873,835, which is incorporated by reference herein in its entirety. The components of the assays include human kinases expressed as fusions to T7 bacteriophage particles and immobilized ligands that bind to the ATP site of the kinases. For the assay, phage-displayed kinases and immobilized ATP site ligands are combined with the compound to be tested. If the test compound binds the kinase it competes with the immobilized ligand and prevents binding to the solid support. If the compound does not bind the kinase, phage-displayed proteins are free to bind to the solid support through the interaction between the kinase and the immobilized ligand. The results are read out by quantitating the amount of fusion protein bound to the solid support, which is accomplished by either traditional phage plaque assays or by quantitative PCR (qPCR) using the phage genome as a template. To determine the affinity of the interactions between a test molecule and a ,kinase, the amount of phage-displayed kinase bound to the solid support is quantitated as a function of test compound concentration. The concentration of test molecule that reduces the number of phage bound to the solid support by 50% is equal to the Kd for the interaction between the kinase and the test molecule. Typically, data are collected for twelve concentrations of test compound and, the resultant binding curve is fit to a non-cooperative binding isotherm to calculate Kd.
  • Described in the exemplary assays below is data from binding with varying kinases. Binding values are reported as follows “+” for representative compounds exhibiting a binding dissociation constant (Kd) of 10,000 nM or higher; “++”for representative compounds exhibiting a Kd of 1,000 nM to 10,000 nM; “+++”for representative compounds exhibiting a Kd of 100 nM to 1,000 nM; and “++++”for representative compounds exhibiting a Kd of less than 100 nM. The term “ND” represents non-determined values.
  • The Affinity of the Compounds for FLT3
  • The ability of FLT3 kinase inhibitors to inhibit cellular proliferation was also examined. MV4:11 was a cell line derived from a patient with acute myelogenous leukemia. It expressed a mutant FLT3 protein that was constitutively active. MV4:11 cells were grown in the presence of candidate FLT3 inhibitor molecules, resulting in significantly decreased proliferation of the leukemia-derived cells in the presence of compound. Inhibition of FLT3 kinase activity prevented proliferation of these cells, and thus the MV4:11 cell line can be used a model for cellular activity of small molecule inhibitors of FLT3.
  • FLT3 Assay Using MV4,11 Cells
  • MV4,11 cells were grown in an incubator @ 37° C. in 5% CO2 in Medium 2 (RPM 10% FBS, 4 mM glutamine, Penn/Strep). The cells were counted daily and the cell density was kept between 1e5 and 8e5 cells/ml.
  • Day One: Enough cells were harvested for experiments to be conducted in 50 ml conical tubes. The harvested cells were spun at 500 g for 5 min at 4° C., the supernatant was then aspirated and the cells were resuspended in the starting volume of 1× PBS. The cells were again spun at 500 g for 5 min at 4° C. and the supernatant again aspirated. The cells were then resuspended in medium 3 (DMEM w/glut, 10% FBS, Penn/Strep) to a density of 4e5 cells/ml and incubated @ 37° C. in 5% CO2 O/N.
  • Day Two: The cells were counted and enough medium 3 was added to decrease density to 2e5 cells/ml. 50 ul (10,000 cells) was aliquoted into each well of a 96 well optical plate using multichannel pipetman. The compound plate was then set up by aliquoting 3 μl of negative control (DMSO) into column 1 of a 96 well 300 ul polypropylene plate, aliquoting 3 μl of positive control (10 mM AB20121) into column 12 of plate, and aliquoting 3 μl of appropriate compounds from serial dilutions into columns 2-11. To each well, 150 μl of Medium 3 was added and 50 μl of compound/medium mixture from compound plate into rows of optical plate in duplicate. The cells were then incubated @ 37° C. in 5% CO2 for 3 days.
  • Day Five: MTS was thawed in a H2O bath. 20 μl of MTS was added to each well of optical plate and the cells were incubated @ 37° C. in 5% CO2 for 2 hours. The plate was then placed on a plate shaker for 30 seconds on high speed.
  • Data for some of the compounds is provided below:
    Binding Cell
    Compound Assay: FLT Assay: CS
    Structure 3(DKIN) 0001: IC50
    Figure US20050171171A1-20050804-C00341
    ++++ ND
    Figure US20050171171A1-20050804-C00342
    ++++ ++++
    Figure US20050171171A1-20050804-C00343
    ++++ ND
    Figure US20050171171A1-20050804-C00344
    ++++ ND
    Figure US20050171171A1-20050804-C00345
    ++++ ND
    Binding
    Compound Assay: FLT
    Structure 3(DKIN)
    Figure US20050171171A1-20050804-C00346
    ++
    Figure US20050171171A1-20050804-C00347
    ++
    Figure US20050171171A1-20050804-C00348
    ++
    Figure US20050171171A1-20050804-C00349
    +++
    Figure US20050171171A1-20050804-C00350
    +++
    Binding
    Compound Assay: FLT
    Structure 3(DKIN)
    Figure US20050171171A1-20050804-C00351
    +
    Figure US20050171171A1-20050804-C00352
    +
    Figure US20050171171A1-20050804-C00353
    +
    Figure US20050171171A1-20050804-C00354
    +
    Figure US20050171171A1-20050804-C00355
    +
    Figure US20050171171A1-20050804-C00356
    +
    Binding Cell
    Compound Assay: FLT Assay: CS
    Structure 3(DKIN) 0001: IC50
    Figure US20050171171A1-20050804-C00357
    +++ ND
    Figure US20050171171A1-20050804-C00358
    + ++
    Figure US20050171171A1-20050804-C00359
    ++ ++
    Figure US20050171171A1-20050804-C00360
    + +
    Figure US20050171171A1-20050804-C00361
    + +
    Figure US20050171171A1-20050804-C00362
    + ++
    Binding Cell
    Compound Assay: FLT Assay: CS
    Figure US20050171171A1-20050804-C00363
    + +++
    Figure US20050171171A1-20050804-C00364
    + +++
    Figure US20050171171A1-20050804-C00365
    + +
    Figure US20050171171A1-20050804-C00366
    ++ ++
    Binding Cell Cell Cell Binding
    Compound Assay: FLT Assay: CS Assay: CS Assay: CS Assay: FLT
    Structure 3(DKIN) 0001: IC50 0005: IC50 0002: IC50 3(JMminus)
    Figure US20050171171A1-20050804-C00367
    ND +++ ND + ++++
    Figure US20050171171A1-20050804-C00368
    ND ++++ ND + ++++
    Figure US20050171171A1-20050804-C00369
    ND ++++ ND + ++++
    Figure US20050171171A1-20050804-C00370
    ND ++++ ND + ++++
    Figure US20050171171A1-20050804-C00371
    ND ++ ND + +++
    Figure US20050171171A1-20050804-C00372
    ND ++++ ND + ++++
  • All references cited herein, including patents, patent applications, and publications, are herby incorporated by reference in their entireties, whether previously specifically incorporated or not.
  • Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed within a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.
  • While this invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

Claims (88)

1. A method of modulating flt-3 kinase, said method comprising administering an effective amount of a compound corresponding to Formula (IA):
Figure US20050171171A1-20050804-C00373
wherein:
M is substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl;
N is a substituted or unsubstituted aryl, or substituted or unsubstituted hetroaryl; and
K is
Figure US20050171171A1-20050804-C00374
Y is O or S;
each Rk is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)R2, —NO2, —N(R2)2, —SR2, —C(O)R2, —C(O)2R2, —C(O)N(R2)2, or —N(R2)C(O)R2,
each R2 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or wherein two R2 groups are linked together by an optionally substituted alkylene; and
each n is independently 0, 1, 2, 3 or 4;
or an active metabolite, or a pharmaceutically acceptable prodrug, isomer, pharmaceutically acceptable salt or solvate thereof.
2. The method of claim 1, wherein said compound corresponds to Formula (IB):
Figure US20050171171A1-20050804-C00375
wherein:
each Z is independently C, CR3, N, NR3, O, or S, provided that no more than two Z's are heteroatoms and wherein no two adjacent Z's are O or S,
where R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl; and
each R1 is independently H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —ORc —OH, —OC(O)Rc, —NO2, —N(Rc)2, —SRc, S(O)jRc where j is 1 or 2, —NRcC(O)Rc, —C(O)N(Rc)2, C(O)2Rc, or —C(O)Rc; or two adjacent R1's, are taken together to form a substituted or unsubstituted aryl or heteroaryl, where
each Rc is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
3. The method of claim 2, wherein said compound corresponds to Formula (I):
Figure US20050171171A1-20050804-C00376
4. The method of claim 3, wherein said compound corresponds to Formula (II):
Figure US20050171171A1-20050804-C00377
5. The method of claim 4, wherein said compound corresponds to Formula (III):
Figure US20050171171A1-20050804-C00378
wherein Z1 is CR3 or N; and Z2 is O or S.
6. The method of claim 5, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00379
7. The method of claim 5, wherein said compound corresponds to Formula (IV):
Figure US20050171171A1-20050804-C00380
wherein:
each R1 is independently H, halogen, substituted or unsubstituted alkyl, —O(substituted or unsubstituted alkyl), —O(substituted or unsubstituted alkenyl), —NRcC(O)O(substituted or unsubstituted alkyl), —NRcC(O) (substituted or unsubstituted alkyl), —NRcC(O)(substituted or unsubstituted alkenyl), —C(O)NRc(substituted or unsubstituted alkyl), —C(O)NRc(substituted or unsubstituted alkenyl), —NO2, —S(═O)Rc, —SRc, C(O)2Rc, or —C(O)Rc; and
each R2 is independently H or substituted or unsubstituted alkyl.
8. The method of claim 7, wherein said compound corresponds to Formula (V):
Figure US20050171171A1-20050804-C00381
9. The method of claim 8, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00382
Figure US20050171171A1-20050804-C00383
Figure US20050171171A1-20050804-C00384
10. The method of claim 4, wherein said compound corresponds to Formula (VI):
Figure US20050171171A1-20050804-C00385
wherein Z1 is O or S; and Z2 is CR3 or N.
11. The method of claim 10, wherein said compound corresponds to Formula (VII):
Figure US20050171171A1-20050804-C00386
wherein:
each R1 is independently H, halogen, substituted or unsubstituted alkyl, —O(substituted or unsubstituted alkyl), —O(substituted or unsubstituted alkenyl), —NRcC(O)O(substituted or unsubstituted alkyl), —NRcC(O) (substituted or unsubstituted alkyl), —NRcC(O)(substituted or unsubstituted alkenyl), —C(O)NRc(substituted or unsubstituted alkyl), —C(O)NRc(substituted or unsubstituted alkenyl), —NO2, —S(═O)Rc, —SRc, C(O)2Rc, or —C(O)Rc; and
each R2 is independently H or substituted or unsubstituted alkyl.
12. The method of claim 10, wherein said compound corresponds to Formula (VIII):
Figure US20050171171A1-20050804-C00387
13. The method of claim 12, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00388
14. The method of claim 5, wherein said compound corresponds to Formula (IX):
Figure US20050171171A1-20050804-C00389
wherein:
L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
T is a mono-, bi, -or tricyclic, substituted or unsubstituted cycloalkyl, heterocyclyl, aryl, or heteroaryl.
15. The method of claim 14, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00390
Figure US20050171171A1-20050804-C00391
16. The method of claim 14, wherein T of said compound corresponds to Formula (X):
Figure US20050171171A1-20050804-C00392
wherein A is a substituted or unsubstituted five or six-membered heterocyclyl, aryl, or heteroaryl; and B is a substituted or unsubstituted five or six-membered heterocyclene, arylene, or heteroarylene, wherein A and B together form a fused two ring moiety.
17. The method of claim 16, wherein said compound corresponds to Formula (XI):
Figure US20050171171A1-20050804-C00393
18. The method of claim 17, wherein L of said compound is a covalent bond —C(O)NH(substituted or unsubstituted alkylene)-, —NHC(O)—, —NHC(O)(substituted or unsubstituted alkylene)-, —NH—, or —O(substituted or unsubstituted alkylene)-.
19. The method of claim 18, wherein said compound corresponds to Formula (XII):
Figure US20050171171A1-20050804-C00394
20. The method of claim 19, wherein B of said compound is a substituted or unsubstituted five-membered arylene or heteroarylene.
21. The method of claim 20, wherein said compound is:
Figure US20050171171A1-20050804-C00395
22. The method of claim 20, wherein B is substituted or unsubstituted thiophenylene.
23. The method of claim 22, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00396
24. The method of claim 20, wherein B is substituted or unsubstituted imidazolylene.
25. The method of claim 24, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00397
26. The method of claim 20, wherein B is substituted or unsubstituted pyrrolylene.
27. The method of claim 26, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00398
28. The method of claim 19, wherein B of said compound is a substituted or unsubstituted 6-membered arylene or heteroarylene.
29. The method of claim 28, wherein B is substituted or unsubstituted phenylene.
30. The method of claim 29, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00399
31. The method of claim 28, wherein B is substituted or unsubstituted pyridinylene, pyrimidinylene, or pyridazine.
32. The method of claim 31, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00400
Figure US20050171171A1-20050804-C00401
33. The method of claim 18, wherein said compound corresponds to Formula (XIII):
Figure US20050171171A1-20050804-C00402
34. The method of claim 33, wherein B of said compound is a substituted or unsubstituted six-membered heteroarylene.
35. The method of claim 34, wherein said six-membered heteroarylene is substituted or unsubstituted pyrimidinylene.
36. The method of claim 35, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00403
37. The method of claim 18, wherein L of said compound —OCR2—.
38. The method of claim 37, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00404
39. The method of claim 14, wherein L of said compound is —C(O)NH.
40. The method of claim 39, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00405
41. The method of claim 14, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00406
42. The method of claim 5, wherein said compound corresponds to Formula (XIV):
Figure US20050171171A1-20050804-C00407
wherein:
L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
each of X1-X5 is independently C, CR, N, NR, S, or O, wherein no more than three of X1-X5 is a heteroatom, and no two adjacent ring atoms are O or S; where each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2, or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
43. The method of claim 42, wherein said compound corresponds to Formula (XV):
Figure US20050171171A1-20050804-C00408
44. The method of claim 43, wherein L of said compound is a covalent bond, —C(O)NH—, or —O(substituted or unsubstituted alkylene)-.
45. The method of claim 44, wherein
Figure US20050171171A1-20050804-C00409
of said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00410
46. The method of claim 45, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00411
Figure US20050171171A1-20050804-C00412
Figure US20050171171A1-20050804-C00413
47. The method of claim 5, wherein said compound corresponds to Formula (XVI):
Figure US20050171171A1-20050804-C00414
wherein:
L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
each of X1-X5 is independently C, CR, N—O, or N, wherein no more than two of X1-X5 is N, where
each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Pd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2, or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
48. The method of claim 47, wherein said compound corresponds to Formula (XVII):
Figure US20050171171A1-20050804-C00415
49. The method of claim 48, wherein said compound is:
Figure US20050171171A1-20050804-C00416
50. The method of claim 48, wherein said compound corresponds to Formula (XVIII):
Figure US20050171171A1-20050804-C00417
51. The method of claim 50, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00418
Figure US20050171171A1-20050804-C00419
Figure US20050171171A1-20050804-C00420
52. The method of claim 48, wherein said compound corresponds to Formula (XXI):
Figure US20050171171A1-20050804-C00421
53. The method of claim 52, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00422
54. The method of claim 48, wherein said compound corresponds to Formula (XXII):
Figure US20050171171A1-20050804-C00423
wherein L is —O(substituted or unsubstituted alkylene)- or —(O)(substituted or unsubstituted alkenylene)-.
55. The method of claim 54, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00424
56. The method of claim 48, wherein said compound corresponds to Formula (XXIII):
Figure US20050171171A1-20050804-C00425
57. The method of claim 56, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00426
58. The method of claim 48, wherein said compound corresponds to Formula (XXIV):
Figure US20050171171A1-20050804-C00427
59. The method of claim 58, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00428
60. The method of claim 48, wherein said compound corresponds to Formula (XXV):
Figure US20050171171A1-20050804-C00429
61. The method of claim 60, wherein L of said compound is —O(substituted or unsubstituted alkylene)- or —O(substituted or unsubstituted alkenylene)-.
62. The method of claim 61, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00430
Figure US20050171171A1-20050804-C00431
Figure US20050171171A1-20050804-C00432
Figure US20050171171A1-20050804-C00433
63. The method of claim 60, wherein L of said compound is —NHC(O)—.
64. The method of claim 63, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00434
Figure US20050171171A1-20050804-C00435
Figure US20050171171A1-20050804-C00436
65. The method of claim 60, wherein L of said compound is a covalent bond, substituted or unsubstituted alkylene, —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —NH(alkylene)-, —NHC(O)CH2SCH2C(O)NH—, and —NHC(O)(substituted alkylene)S—.
66. The method of claim 65, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00437
Figure US20050171171A1-20050804-C00438
67. The method of claim 10, wherein said compound corresponds to Formula (XXVI):
Figure US20050171171A1-20050804-C00439
wherein:
L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
each of X1-X5 is independently C, CR, or N, wherein no more than two of X1-X5 is N, where
each R is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRdC(O)Rd, —C(O)2Rd, —C(O)N(Rd)2 or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
Z1 is O or S; and
Z2 is CR3 or N.
68. The method of claim 67, wherein said compound corresponds to Formula (XXVII):
Figure US20050171171A1-20050804-C00440
69. The method of claim 68, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00441
70. The method of claim 5, wherein said compound corresponds to Formula (XVIII):
Figure US20050171171A1-20050804-C00442
wherein:
each of L and L1 is independently a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene), —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—;
U is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; and
V is a substituted or unsubstituted cycloalkylene, heterocyclene, arylene, or heteroarylene.
71. The method of claim 70, wherein said compound corresponds to Formula (XIX):
Figure US20050171171A1-20050804-C00443
72. The method of claim 71, wherein said compound corresponds to Formula (XX):
Figure US20050171171A1-20050804-C00444
73. The method of claim 72, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00445
Figure US20050171171A1-20050804-C00446
Figure US20050171171A1-20050804-C00447
74. The method of claim 71, wherein said compound corresponds to Formula (XXXI):
Figure US20050171171A1-20050804-C00448
wherein:
each of X1-X5 is independently C, CR, N, NR, S, or O, wherein no more than three of X1-X5 is a heteroatom, and no two adjacent ring atoms are O or S; and
each R is independently H, halogen, substituted or unsubstituted alkyl, —ORd, substituted or unsubstituted alkoxy, —OC(O)Rd, —NO2, —N(Rd)2, —SRd, —S(O)jRd where j is 1 or 2, —NRd C(O)Rd, —C(O)2Rd, —C(O)N(Rd)2 or —C(O)Rd, or two adjacent R's are taken together to form a substituted or unsubstituted aryl or hetroaryl, where
each Rd is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.
76. The method of claim 75, wherein U is a substituted or unsubstituted five-membered heteroaryl, substituted or unsubstituted phenyl, or substituted or unsubstituted six-membered heteroaryl.
77. The method of claim 76, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00449
Figure US20050171171A1-20050804-C00450
Figure US20050171171A1-20050804-C00451
Figure US20050171171A1-20050804-C00452
78. The method of claim 71, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00453
Figure US20050171171A1-20050804-C00454
79. The method of claim 4, wherein said compound corresponds to Formula (XXIII):
Figure US20050171171A1-20050804-C00455
wherein:
Z3 is NR3, O, or S; and
Z4 is N or CR3.
80. The method of claim 79, wherein said compound corresponds to Formula (XXIV):
Figure US20050171171A1-20050804-C00456
81. The method of claim 80, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00457
82. The method of claim 80, wherein said compound corresponds to Formula (XXV)
Figure US20050171171A1-20050804-C00458
wherein:
L is a linker selected from the group consisting of a covalent bond, substituted or unsubstituted alkenylene, substituted or unsubstituted alkylene, —C(O)NH—, —C(O)—, —NH—, —O—, —S—, —O(substituted or unsubstituted alkylene)-, —N(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkylene)-, —C(O)NH(substituted or unsubstituted alkenylene)- —NHC(O)(substituted or unsubstituted alkylene)-, —NHC(O)(substituted or unsubstituted alkenylene)-, —C(O)(substituted or unsubstituted alkenylene)-, and —NHC(O)(substituted or unsubstituted alkylene)S(substituted or unsubstituted alkylene)C(O)NH—; and
T is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, aryl, or heteroaryl.
83. The method of claim 82, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00459
84. The method of claim 1, wherein said compound corresponds to Formula (A):
Figure US20050171171A1-20050804-C00460
wherein:
each Z is independently C, CR3, N, NR3, O, or S, provided that no more than two Z's are heteroatoms where
R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl.
each Rk is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)R2, —NO2, —N(R2)2, —SR2, —C(O)R2, —C(O)2R2, —C(O)N(R2)2, or —N(R2)C(O)R2,
each R2 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or wherein two R2 groups are linked together by an optionally substituted alkylene; and
each R1 is independently H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —ORc —OH, —OC(O)Rc, —NO2, —N(Rc)2, —SRc, S(O)jRc where j is 1 or 2, —NRcC(O)Rc, —C(O)N(Rc)2, C(O)2Rc, or —C(O)Rc; or two adjacent R1's, are taken together to form a substituted or unsubstituted aryl or heteroaryl, where
each Rc is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
85. The method of claim 84, wherein said compound corresponds to Formula (B):
Figure US20050171171A1-20050804-C00461
86. The method of claim 84, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00462
87. The method of claim 1, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00463
88. The method of claim 1, wherein said compound is selected from the group consisting of:
Figure US20050171171A1-20050804-C00464
Figure US20050171171A1-20050804-C00465
Figure US20050171171A1-20050804-C00466
Figure US20050171171A1-20050804-C00467
89. A method of treating a flt-3. mediated disease, said method comprising administering a therapeutically effective amount of a compound corresponding to Formula (IA):
Figure US20050171171A1-20050804-C00468
wherein:
M is substituted or unsubstituted heteroaryl, or substituted or unsubstituted aryl;
N is a substituted or unsubstituted aryl, or substituted or unsubstituted hetroaryl; and
K is
Figure US20050171171A1-20050804-C00469
Y is O or S;
each Rk is independently H, halogen, substituted or unsubstituted alkyl, —OH, substituted or unsubstituted alkoxy, —OC(O)R2, —NO2, —N(R2)2, —SR2, —C(O)R2, —C(O)2R2, —C(O)N(R2)2, or —N(R2)C(O)R2,
each R2 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or wherein two R2 groups are linked together by an optionally substituted alkylene; and
each n is independently 0, 1, 2, 3 or 4;
or an active metabolite, or a pharmaceutically acceptable prodrug, isomer, pharmaceutically acceptable salt or solvate thereof.
US10/989,766 2003-11-13 2004-11-15 Amide derivatives as FLT-3 modulators Abandoned US20050171171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/989,766 US20050171171A1 (en) 2003-11-13 2004-11-15 Amide derivatives as FLT-3 modulators

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US52027303P 2003-11-13 2003-11-13
US52709403P 2003-12-03 2003-12-03
US53124303P 2003-12-18 2003-12-18
US53108203P 2003-12-18 2003-12-18
US10/989,766 US20050171171A1 (en) 2003-11-13 2004-11-15 Amide derivatives as FLT-3 modulators

Publications (1)

Publication Number Publication Date
US20050171171A1 true US20050171171A1 (en) 2005-08-04

Family

ID=34623983

Family Applications (11)

Application Number Title Priority Date Filing Date
US10/989,824 Expired - Fee Related US7750160B2 (en) 2003-11-13 2004-11-15 Isoxazolyl urea derivatives as kinase modulators
US10/989,745 Abandoned US20050148605A1 (en) 2003-11-13 2004-11-15 Amide derivatives as ABL modulators
US10/990,195 Abandoned US20050192314A1 (en) 2003-11-13 2004-11-15 Urea derivatives as C-kit modulators
US10/989,623 Expired - Fee Related US7767670B2 (en) 2003-11-13 2004-11-15 Substituted 3-carboxamido isoxazoles as kinase modulators
US10/989,717 Abandoned US20050267182A1 (en) 2003-11-13 2004-11-15 Urea derivatives as FLT-3 modulators
US10/989,823 Abandoned US20050171172A1 (en) 2003-11-13 2004-11-15 Amide derivatives as PDGFR modulators
US10/989,766 Abandoned US20050171171A1 (en) 2003-11-13 2004-11-15 Amide derivatives as FLT-3 modulators
US10/989,814 Abandoned US20050165031A1 (en) 2003-11-13 2004-11-15 Urea derivatives as ABL modulators
US10/990,007 Abandoned US20050165074A1 (en) 2003-11-13 2004-11-15 Amide derivatives as C-KIT modulators
US10/990,194 Abandoned US20050197371A1 (en) 2003-11-13 2004-11-15 Urea derivatives as PDGFR modulators
US12/714,331 Abandoned US20100173917A1 (en) 2003-11-13 2010-02-26 Urea derivatives as abl modulators

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10/989,824 Expired - Fee Related US7750160B2 (en) 2003-11-13 2004-11-15 Isoxazolyl urea derivatives as kinase modulators
US10/989,745 Abandoned US20050148605A1 (en) 2003-11-13 2004-11-15 Amide derivatives as ABL modulators
US10/990,195 Abandoned US20050192314A1 (en) 2003-11-13 2004-11-15 Urea derivatives as C-kit modulators
US10/989,623 Expired - Fee Related US7767670B2 (en) 2003-11-13 2004-11-15 Substituted 3-carboxamido isoxazoles as kinase modulators
US10/989,717 Abandoned US20050267182A1 (en) 2003-11-13 2004-11-15 Urea derivatives as FLT-3 modulators
US10/989,823 Abandoned US20050171172A1 (en) 2003-11-13 2004-11-15 Amide derivatives as PDGFR modulators

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/989,814 Abandoned US20050165031A1 (en) 2003-11-13 2004-11-15 Urea derivatives as ABL modulators
US10/990,007 Abandoned US20050165074A1 (en) 2003-11-13 2004-11-15 Amide derivatives as C-KIT modulators
US10/990,194 Abandoned US20050197371A1 (en) 2003-11-13 2004-11-15 Urea derivatives as PDGFR modulators
US12/714,331 Abandoned US20100173917A1 (en) 2003-11-13 2010-02-26 Urea derivatives as abl modulators

Country Status (6)

Country Link
US (11) US7750160B2 (en)
EP (1) EP1684762A4 (en)
JP (1) JP2007512255A (en)
AU (1) AU2004291147A1 (en)
CA (1) CA2545711A1 (en)
WO (2) WO2005048948A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050148605A1 (en) * 2003-11-13 2005-07-07 Ambit Biosciences Corporation Amide derivatives as ABL modulators
US20060276459A1 (en) * 2005-04-18 2006-12-07 Rigel Pharmaceuticals, Inc. Methods of treating cell proliferative disorders
US20070038490A1 (en) * 2005-08-11 2007-02-15 Joodi Pirooz M Method and system for analyzing business architecture
US20080171734A1 (en) * 2006-10-23 2008-07-17 Astrazeneca Ab Chemical compounds
US20080207636A1 (en) * 2001-08-17 2008-08-28 Astrazeneca Ab Compounds Effecting Glucokinase
US20080234273A1 (en) * 2005-07-09 2008-09-25 Mckerrecher Darren Heteroaryl Benzamide Derivatives for Use as Glk Activators in the Treatment of Diabetes
US20080280874A1 (en) * 2004-10-16 2008-11-13 Craig Johnstone Phenoxy Benzamide Compounds with Utility in the Treatment of Type 2 Diabetes and Obesity
US20080312207A1 (en) * 2004-02-18 2008-12-18 Craig Johnstone Compounds
US20080318968A1 (en) * 2006-10-26 2008-12-25 Astrazeneca Ab Chemical Compounds
US20090029905A1 (en) * 2005-07-09 2009-01-29 Astrazeneca Ab Heteroaryl benzamide derivatives for use as glk activators in the treatment of diabetes
US20090105214A1 (en) * 2005-05-27 2009-04-23 Mckerrecher Darren Heteroaryl Benzamide Derivatives for Use as Glk Activators in the Treatment of Diabetes
US20090253676A1 (en) * 2004-06-05 2009-10-08 Astrazeneca Ab Heteroaryl Benzamide Derivatives for Use as GLK Activators in the Treatment of Diabetes
US7696191B2 (en) 2006-12-21 2010-04-13 Astrazeneca Ab Crystalline compound
US7700640B2 (en) 2004-10-16 2010-04-20 Astrazeneca Ab Process for making phenoxy benzamide compounds
US7709505B2 (en) 2002-11-19 2010-05-04 Astrazeneca Ab Benzofuran derivatives, process for their preparation and intermediates thereof
US20100210841A1 (en) * 2009-02-13 2010-08-19 Astrazeneca Ab Chemical process 632
US20100210621A1 (en) * 2009-02-13 2010-08-19 Astrazeneca Ab Crystalline polymorphic form 631
US20110034432A1 (en) * 2004-02-18 2011-02-10 Astrazeneca Ab Benzamide derivatives and their use as glucokinase activating agents
US20110053910A1 (en) * 2005-07-09 2011-03-03 Mckerrecher Darren 2 -heterocyclyloxybenzoyl amino heterocyclyl compounds as modulators of glucokinase for the treatment of type 2 diabetes
US20110059941A1 (en) * 2005-05-24 2011-03-10 Peter William Rodney Caulkett 2-phenyl substituted imidazol [4,5b] pyridine/pyrazine and purine derivatives as glucokinase modulators
US7973178B2 (en) 2005-11-28 2011-07-05 Astrazeneca Ab Chemical process for the preparation of an amido-phenoxybenzoic acid compound
US8071608B2 (en) * 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
US8071585B2 (en) 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
US8143263B2 (en) 2008-08-04 2012-03-27 Astrazeneca Ab Therapeutic agents
US8604069B2 (en) 2011-04-28 2013-12-10 Japan Tobacco Inc. Amide compound and medicinal use thereof
US8722731B2 (en) 2010-06-07 2014-05-13 Novomedix, Llc Furanyl compounds and the use thereof
US9771353B2 (en) 2013-04-02 2017-09-26 Topivert Pharma Limited Kinase inhibitors based upon N-alkyl pyrazoles
US9850233B2 (en) 2013-03-14 2017-12-26 Respivert Limited Kinase inhibitors
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11331313B2 (en) 2017-05-22 2022-05-17 Whitehead Institute For Biomedical Research KCC2 expression enhancing compounds and uses thereof
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11986463B2 (en) 2018-01-31 2024-05-21 Deciphera Pharmaceuticals, Llc Combination therapy for the treatment of gastrointestinal stromal tumor
US12102620B2 (en) 2018-01-31 2024-10-01 Deciphera Pharmaceuticals, Llc Combination therapy for the treatment of mastocytosis

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
ES2384160T3 (en) 1999-01-13 2012-07-02 Bayer Healthcare Llc Diphenyl ureas substituted with omega-carboxy aryl as kinase inhibitors p38
AU2003209119A1 (en) 2002-02-11 2003-09-04 Bayer Pharmaceuticals Corporation Pyridine, quinoline, and isoquinoline n-oxides as kinase inhibitors
EP2324825A1 (en) 2002-02-11 2011-05-25 Bayer Healthcare LLC Aryl ureas with angiogenesis inhibiting activity
JP4860474B2 (en) 2003-05-20 2012-01-25 バイエル、ファーマシューテイカルズ、コーポレイション Diarylureas for diseases mediated by PDGFR
EP1663978B1 (en) 2003-07-23 2007-11-28 Bayer Pharmaceuticals Corporation Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8247576B2 (en) * 2003-12-23 2012-08-21 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
RU2341522C2 (en) * 2004-04-12 2008-12-20 Торрент Фармасьютикалз Лтд 2-propen-1-ons as hsp-70 inductors
CN101010315A (en) 2004-04-30 2007-08-01 拜耳制药公司 Substituted pyrazolyl urea derivatives useful in the treatment of cancer
JP2008524213A (en) * 2004-12-20 2008-07-10 アストラゼネカ・アクチエボラーグ Novel pyrazole derivatives and their use as modulators of nicotinic acetylcholine receptors
AU2005321946B2 (en) 2004-12-23 2012-08-16 Deciphera Pharmaceuticals, Llc Enzyme modulators and treatments
WO2007060028A1 (en) * 2004-12-31 2007-05-31 Gpc Biotech Ag Napthyridine compounds as rock inhibitors
US7771382B2 (en) * 2005-01-19 2010-08-10 Gi Dynamics, Inc. Resistive anti-obesity devices
EP1919875A2 (en) * 2005-06-21 2008-05-14 Astex Therapeutics Limited Pyrazole derivatives and their use as pka and pkb modulators
EP1902032A1 (en) 2005-06-22 2008-03-26 Astex Therapeutics Limited Pharmaceutical compounds
US8541461B2 (en) 2005-06-23 2013-09-24 Astex Therapeutics Limited Pharmaceutical combinations comprising pyrazole derivatives as protein kinase modulators
EP1921078B1 (en) * 2005-08-05 2013-01-09 Chugai Seiyaku Kabushiki Kaisha Multikinase inhibitor
KR20080090381A (en) * 2005-08-29 2008-10-08 제라드 엠. 하우지 Theramutein modulators
PL1940844T3 (en) * 2005-10-28 2010-03-31 Irm Llc Compounds and compositions as protein kinase inhibitors
EP1968979A2 (en) * 2005-12-08 2008-09-17 Abbott Laboratories 9-membered heterobicyclic compounds as inhibitors of protein kinases
BRPI0620362A2 (en) * 2005-12-22 2012-07-03 Astrazeneca Ab compound or a pharmaceutically acceptable salt thereof, use thereof, methods for producing a csf-1r kinase inhibitory effect on a warm-blooded animal, for producing an anti-cancer effect on a warm-blooded animal and for treating disease, and pharmaceutical composition
UY30183A1 (en) * 2006-03-02 2007-10-31 Astrazeneca Ab QUINOLINE DERIVATIVES
KR101549364B1 (en) * 2006-03-17 2015-09-01 암비트 바이오사이언시즈 코포레이션 Imidazolothiazole compounds for the treatment of disease
DK1999114T3 (en) 2006-03-22 2015-08-03 Hoffmann La Roche Pyrazoles AS 11-BETA-HSD-1
EP2038272B8 (en) * 2006-06-30 2013-10-23 Sunesis Pharmaceuticals, Inc. Pyridinonyl pdk1 inhibitors
FR2903105A1 (en) 2006-07-03 2008-01-04 Sanofi Aventis Sa 2-BENZOYL-IMIDAZOPYRIDINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
FR2903107B1 (en) 2006-07-03 2008-08-22 Sanofi Aventis Sa IMIDAZOPYRIDINE-2-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
US8188113B2 (en) 2006-09-14 2012-05-29 Deciphera Pharmaceuticals, Inc. Dihydropyridopyrimidinyl, dihydronaphthyidinyl and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
US7790756B2 (en) * 2006-10-11 2010-09-07 Deciphera Pharmaceuticals, Llc Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
WO2008060866A1 (en) * 2006-11-14 2008-05-22 Smithkline Beecham Corporation Novel compounds
WO2008076356A1 (en) 2006-12-15 2008-06-26 Abbott Laboratories Novel oxadiazole compounds
US7737149B2 (en) 2006-12-21 2010-06-15 Astrazeneca Ab N-[5-[2-(3,5-dimethoxyphenyl)ethyl]-2H-pyrazol-3-yl]-4-(3,5-dimethylpiperazin-1-yl)benzamide and salts thereof
UY30892A1 (en) 2007-02-07 2008-09-02 Smithkline Beckman Corp AKT ACTIVITY INHIBITORS
GB0704932D0 (en) 2007-03-14 2007-04-25 Astex Therapeutics Ltd Pharmaceutical compounds
KR101424847B1 (en) * 2007-04-16 2016-07-08 허치슨 메디파르마 엔터프라이즈 리미티드 Pyrimidine derivatives
US20110189167A1 (en) * 2007-04-20 2011-08-04 Flynn Daniel L Methods and Compositions for the Treatment of Myeloproliferative Diseases and other Proliferative Diseases
WO2008140895A1 (en) * 2007-04-20 2008-11-20 Deciphera Pharmaceuticals, Llc Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
US8853392B2 (en) 2007-06-03 2014-10-07 Vanderbilt University Benzamide mGluR5 positive allosteric modulators and methods of making and using same
HUE027982T2 (en) 2007-09-19 2016-11-28 Ambit Biosciences Corp Solid forms comprising n-(5-tert-butyl-isoxazol-3-yl)-n'-{4-ý7-(2-morpholin-4-yl-ethoxy)imidazoý2,1-b¨ý1,3¨benzothiazol-2-yl¨phenyl}urea, compositions thereof, and uses therewith
US8034806B2 (en) 2007-11-02 2011-10-11 Vanderbilt University Bicyclic mGluR5 positive allosteric modulators and methods of making and using same
EP2070924A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2 hetarylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070916A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft 2-Arylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070925A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2-substituted tiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
FR2925900B1 (en) * 2008-01-02 2011-03-04 Sanofi Aventis DERIVATIVES OF N-PHENYL-IMIDAZO-1,2-α-PYRIDINE-2-CARBOXAMIDES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
DK2268623T3 (en) * 2008-03-17 2015-06-29 Ambit Biosciences Corp QUINAZOLINE DERIVATIVES AS RAF CHINESE MODULATORS AND PROCEDURES FOR USE THEREOF
US20110118234A1 (en) * 2008-05-05 2011-05-19 Kaustav Biswas Urea Compounds as Gamma Secretase Modulators
CN102123989A (en) * 2008-06-19 2011-07-13 阿斯利康(瑞典)有限公司 Pyrazole compounds 436
JP2011525538A (en) * 2008-06-24 2011-09-22 バレアント プハルマセウトイカルス インターナショナル Benzyloxyanilide derivatives useful as potassium channel modulators
NZ591427A (en) 2008-10-02 2012-12-21 Respivert Ltd P38 map kinase inhibitors
GB0818033D0 (en) 2008-10-02 2008-11-05 Respivert Ltd Novel compound
BRPI0920765A2 (en) 2008-10-29 2015-08-18 Deciphera Pharmaceuticals Llc Cilopropane amides and analogs that exhibit anticancer and antiproliferative activities
CN102333770B (en) 2008-12-11 2015-01-28 瑞斯比维特有限公司 P38 MAP kinase inhibitors
TWI503317B (en) * 2009-01-30 2015-10-11 Glaxosmithkline Llc Crystalline n-{(1s)-2-amino-1-((3-fluorophenyl)methyl)ethyl}-5-chloro-4-(4-chloro-1-methyl-1h-pyrazol-5-yl)-2-thiophenecarboxamide hydrochloride
TW201035088A (en) 2009-02-27 2010-10-01 Supergen Inc Cyclopentathiophene/cyclohexathiophene DNA methyltransferase inhibitors
GB0905955D0 (en) 2009-04-06 2009-05-20 Respivert Ltd Novel compounds
SI2427436T1 (en) 2009-05-07 2013-04-30 Grunenthal Gmbh Substituted aromatic carboxamide and urea derivatives as vanilloid receptor ligands
EP2316820A1 (en) * 2009-10-28 2011-05-04 Dompe S.p.A. 2-aryl-propionamide derivatives useful as bradykinin receptor antagonists and pharmaceutical compositions containing them
WO2011150201A2 (en) * 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
US9296722B2 (en) 2010-05-27 2016-03-29 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
EP2611777B1 (en) 2010-09-03 2016-05-11 Forma TM, LLC. N-(4-{[pyridin-3-yl-methyl)carbamoyl]amino}benzene-sulfone derivatives as nampt inhibitors for therapy of diseases such as cancer
CN102731413A (en) * 2011-04-15 2012-10-17 上海医药工业研究院 Urea compound and its preparation method, intermediate and use
ES2615738T3 (en) 2011-05-13 2017-06-08 Array Biopharma, Inc. Compounds of pyrrolidinyl urea, pyrrolidinyl thiourea and pyrrolidinyl guanidine as trkA kinase inhibitors
US8883819B2 (en) 2011-09-01 2014-11-11 Irm Llc Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension
CA2854932A1 (en) * 2011-11-09 2013-05-16 Grunenthal Gmbh Substituted pyrazolyl-based carboxamide and urea derivatives bearing a phenyl moiety substituted with an o-containing group as vanilloid receptor ligands
AU2012340200B2 (en) 2011-11-17 2017-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-Terminal Kinase (JNK)
CA2867175A1 (en) * 2012-03-28 2013-10-03 Neuropore Therapies, Inc. Phenyl-urea and phenyl-carbamate derivatives as inhibitors of protein aggregation
ES2617879T3 (en) 2012-04-26 2017-06-20 Bristol-Myers Squibb Company Imidazothiadiazole and imidazopyridazine derivatives as inhibitors of the protease activated receptor 4 (PAR4) for the treatment of platelet aggregation
KR102098804B1 (en) 2012-04-26 2020-04-08 브리스톨-마이어스 스큅 컴퍼니 Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (par4) inhibitors for treating platelet aggregation
US9862730B2 (en) 2012-04-26 2018-01-09 Bristol-Myers Squibb Company Imidazothiadiazole derivatives as protease activated receptor 4 (PAR4) inhibitors for treating platelet aggregation
US8461179B1 (en) 2012-06-07 2013-06-11 Deciphera Pharmaceuticals, Llc Dihydronaphthyridines and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
JP6397407B2 (en) * 2012-07-19 2018-09-26 ドレクセル ユニバーシティ Sigma receptor ligands for modulating cellular protein homeostasis
WO2014052914A1 (en) 2012-09-28 2014-04-03 University Of Washington Through Its Center For Commercialization Compounds and methods for preventing, treating and/or protecting against sensory hair cell death
US9822118B2 (en) 2012-11-13 2017-11-21 Array Biopharma Inc. Bicyclic heteroaryl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors
US9809578B2 (en) 2012-11-13 2017-11-07 Array Biopharma Inc. Pyrazolyl urea, thiourea, guanidine and cyanoguanidine compounds as trkA kinase inhibitors
WO2014078378A1 (en) 2012-11-13 2014-05-22 Array Biopharma Inc. Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as trka kinase inhibitors
WO2014078372A1 (en) 2012-11-13 2014-05-22 Array Biopharma Inc. Pyrrolidinyl urea, thiourea, guanidine and cyanoguanidine compounds as trka kinase inhibitors
US9981959B2 (en) 2012-11-13 2018-05-29 Array Biopharma Inc. Thiazolyl and oxazolyl urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors
US9969694B2 (en) 2012-11-13 2018-05-15 Array Biopharma Inc. N-(arylalkyl)-N′-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors
WO2014078454A1 (en) 2012-11-13 2014-05-22 Array Biopharma Inc. Bicyclic urea, thiourea, guanidine and cyanoguanidine compounds useful for the treatment of pain
WO2014078323A1 (en) 2012-11-13 2014-05-22 Array Biopharma Inc. N-pyrrolidinyl, n'-pyrazolyl- urea, thiourea, guanidine and cyanoguanidine compounds as trka kinase inhibitors
US9546156B2 (en) 2012-11-13 2017-01-17 Array Biopharma Inc. N-bicyclic aryl,N'-pyrazolyl urea, thiourea, guanidine cyanoguanidine compounds as TrkA kinase inhibitors
US9790210B2 (en) 2012-11-13 2017-10-17 Array Biopharma Inc. N-(monocyclic aryl),N'-pyrazolyl-urea, thiourea, guanidine and cyanoguanidine compounds as TrkA kinase inhibitors
US20140179712A1 (en) 2012-12-21 2014-06-26 Astrazeneca Ab Pharmaceutical formulation of n-[5-[2-(3,5-dimethoxyphenyl)ethyl]-2h-pyrazol-3-yl]-4-[(3r,5s)-3,5-dimethylpiperazin-1-yl]benzamide
US9073921B2 (en) 2013-03-01 2015-07-07 Novartis Ag Salt forms of bicyclic heterocyclic derivatives
WO2014176259A1 (en) 2013-04-22 2014-10-30 Icahn School Of Medicine At Mount Sinai Mutations in pdgfrb and notch3 as causes of autosomal dominant infantile myofibromatosis
PT3154959T (en) 2014-05-15 2019-09-24 Array Biopharma Inc 1-((3s,4r)-4-(3-fluorophenyl)-1-(2-methoxyethyl)pyrrolidin-3-yl)-3-(4-methyl-3-(2-methylpyrimidin-5-yl)-1-phenyl-1h-pyrazol-5-yl)urea as a trka kinase inhibitor
ES2742192T3 (en) * 2014-06-03 2020-02-13 Univ Arizona Benzimidazole derivatives
US10065934B2 (en) * 2014-07-17 2018-09-04 Sunshine Lake Pharma Co., Ltd. Substituted urea derivatives and pharmaceutical uses thereof
AR102537A1 (en) * 2014-11-05 2017-03-08 Flexus Biosciences Inc IMMUNOMODULATING AGENTS
DK3253766T3 (en) 2015-02-06 2019-12-09 Univ Washington RELATIONSHIPS AND PROCEDURES FOR PREVENTION OR TREATMENT OF SANCIAL HAIR CELL DEATH
SI3340796T1 (en) * 2015-08-28 2022-02-28 Chdi Foundation, Inc. Probes for imaging huntingtin protein
WO2018102455A1 (en) 2016-12-01 2018-06-07 Ignyta, Inc. Methods for the treatment of cancer
ES2888298T3 (en) 2017-04-27 2022-01-03 Astrazeneca Ab C5-anilinoquinazoline compounds and their use in the treatment of cancer
CA3066009A1 (en) * 2017-06-01 2018-12-06 Oncostellae, S.L. Pyridoquinazoline derivatives useful as protein kinase inhibitors
US11498903B2 (en) 2017-08-17 2022-11-15 Bristol-Myers Squibb Company 2-(1,1′-biphenyl)-1H-benzodimidazole derivatives and related compounds as apelin and APJ agonists for treating cardiovascular diseases
WO2019089902A1 (en) 2017-11-01 2019-05-09 Drexel University Compounds, compositions, and methods for treating diseases
WO2019126613A1 (en) * 2017-12-22 2019-06-27 Board Of Trustees Of Michigan State University Chemical inhibitors of mycobacterium tuberculosis dosrst signaling and persistence
WO2019241311A1 (en) * 2018-06-11 2019-12-19 Northeastern University Selective ligands for modulation of girk channels
JP7482122B2 (en) * 2018-07-03 2024-05-13 アイエフエム デュー インコーポレイテッド Compounds and compositions for treating conditions associated with STING activity
EP3870177A1 (en) * 2018-10-26 2021-09-01 Arrien Pharmaceuticals LLC Pyrazolyl compounds and methods of use thereof
AU2021280893A1 (en) 2020-05-08 2023-01-05 Halia Therapeutics, Inc. Inhibitors of NEK7 kinase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991071A (en) * 1973-06-21 1976-11-09 The Boots Company Limited Fungicidal compositions containing substituted imidazoles
US6645990B2 (en) * 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US556245A (en) * 1896-03-10 Box-fastener
CH579614A5 (en) 1972-08-17 1976-09-15 Ciba Geigy Ag
US4062861A (en) * 1973-07-27 1977-12-13 Shionogi & Co., Ltd. 3-Isoxazolylurea derivatives
JPS5031039A (en) 1973-07-27 1975-03-27
JPS53101372A (en) 1977-02-15 1978-09-04 Kanebo Ltd Preparation of imidazole-4(5)-carboxylic acid
JPS5386033A (en) 1977-10-20 1978-07-29 Shionogi & Co Ltd Herbicides
US6645969B1 (en) * 1991-05-10 2003-11-11 Aventis Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US5714493A (en) 1991-05-10 1998-02-03 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US5710158A (en) * 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5480883A (en) * 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5721237A (en) 1991-05-10 1998-02-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
AU661533B2 (en) * 1992-01-20 1995-07-27 Astrazeneca Ab Quinazoline derivatives
US5506245A (en) * 1992-10-12 1996-04-09 Adir Et Compagnie Thiazolidinedione compounds
US5656643A (en) * 1993-11-08 1997-08-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
GB9510757D0 (en) 1994-09-19 1995-07-19 Wellcome Found Therapeuticaly active compounds
TW321649B (en) 1994-11-12 1997-12-01 Zeneca Ltd
US5773459A (en) * 1995-06-07 1998-06-30 Sugen, Inc. Urea- and thiourea-type compounds
ZA986732B (en) 1997-07-29 1999-02-02 Warner Lambert Co Irreversible inhibitiors of tyrosine kinases
ES2154253T3 (en) 1997-12-22 2012-01-27 Bayer Healthcare Llc INHIBITION OF THE ACTIVITY OF P38 CINASA USING REPLACED HETEROCYCLIC UREAS.
RU2232015C2 (en) * 1997-12-22 2004-07-10 Байер Копэрейшн Method for inhibition of raf kinase-mediated growth of tumor cells, heterocyclic urea derivatives (variants), pharmaceutical composition (variants)
DE69834842T2 (en) * 1997-12-22 2007-05-10 Bayer Pharmaceuticals Corp., West Haven INHIBITION OF RAF-KINASE USING ARYL AND HETEROARYL SUBSTITUTED HETEROCYCLIC UREA
ES2154252T3 (en) 1997-12-22 2005-12-01 Bayer Pharmaceuticals Corp. INHIBITION OF QUINASA P38 USING DIFENYL-SIMETRIC AND ASYMMETRIC UREAS.
AU3476999A (en) * 1998-04-08 1999-10-25 Eli Lilly And Company Methods for inhibiting mrp1
US6303645B1 (en) * 1998-05-22 2001-10-16 Avanir Pharmaceuticals Benzimidazole derivatives as modulators of IgE
US6246702B1 (en) 1998-08-19 2001-06-12 Path 1 Network Technologies, Inc. Methods and apparatus for providing quality-of-service guarantees in computer networks
US6184226B1 (en) 1998-08-28 2001-02-06 Scios Inc. Quinazoline derivatives as inhibitors of P-38 α
US7928239B2 (en) 1999-01-13 2011-04-19 Bayer Healthcare Llc Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
UA73492C2 (en) 1999-01-19 2005-08-15 Aromatic heterocyclic compounds as antiinflammatory agents
EP1177186B1 (en) * 1999-05-05 2004-03-31 Aventis Pharma Limited Ureas and their use as cell adhesion modulators
WO2000068213A1 (en) * 1999-05-05 2000-11-16 Aventis Pharma Limited Substituted bicyclic compounds
WO2001021596A1 (en) 1999-09-21 2001-03-29 Astrazeneca Ab Quinazoline derivatives and their use as pharmaceuticals
JP2003509497A (en) 1999-09-21 2003-03-11 アストラゼネカ アクチボラグ Quinazoline compounds and pharmaceutical compositions containing them
KR20020084116A (en) 2000-02-07 2002-11-04 애보트 게엠베하 운트 콤파니 카게 2-Benzothiazolyl urea derivatives and their use as protein kinase inhibitors
JP3551905B2 (en) 2000-09-01 2004-08-11 オムロン株式会社 Management station, network system, and communication method in network system
US20030028018A1 (en) * 2000-09-11 2003-02-06 Chiron Coporation Quinolinone derivatives
BRPI0113757B1 (en) 2000-09-11 2017-05-23 Chiron Corp quinolinone derivatives as tyrosine kinase inhibitors
KR100589032B1 (en) * 2000-10-20 2006-06-14 에자이 가부시키가이샤 Nitrogenous aromatic ring compounds
WO2002044156A2 (en) * 2000-11-29 2002-06-06 Glaxo Group Limited Benzimidazole derivatives useful as tie-2 and/or vegfr-2 inhibitors
US7294629B2 (en) * 2001-02-21 2007-11-13 Mitsubishi Pharma Corporation Quinazoline derivatives
US20020135808A1 (en) * 2001-03-22 2002-09-26 Parry Travis J. Method and apparatus for printing video data
ATE396988T1 (en) * 2001-04-27 2008-06-15 Kirin Pharma Kk QUINOLINE AND CHIAZOLINE DERIVATIVES FOR THE TREATMENT OF TUMORS
WO2002100023A2 (en) 2001-06-05 2002-12-12 Cetacean Networks, Inc. Real-time network scheduled packet routing system
WO2003004488A1 (en) * 2001-07-03 2003-01-16 Chiron Corporation Indazole benzimidazole compounds as tyrosine and serine/threonine kinase inhibitors
JP2005501873A (en) 2001-07-31 2005-01-20 バイエル・ヘルスケア・アクチェンゲゼルシャフト Amine derivatives
EP1435948A1 (en) 2001-08-06 2004-07-14 Pharmacia Italia S.p.A. Aminoisoxazole derivatives active as kinase inhibitors
CA2810339A1 (en) 2001-08-10 2003-02-20 Novartis Ag Use of c-src inhibitors alone or in combination with sti571 for the treatment of leukaemia
AU2002333524A1 (en) * 2001-09-11 2003-03-24 Glaxosmithkline K.K. Furo-and thienopyrimidine derivatives as angiogenesis inhibitors
EP1612564A3 (en) * 2001-09-11 2009-12-09 JTEKT Corporation Magnetic pulser ring
EP1436384B1 (en) 2001-10-05 2009-06-17 Novartis AG Mutated abl kinase domains
CA2462950A1 (en) 2001-10-10 2003-04-17 Sugen, Inc. 3-[4-(substituted heterocyclyl)-pyrrol-2-ylmethylidene]-2-indolinone derivatives as kinase inhibitors
NZ532136A (en) 2001-10-30 2006-08-31 Novartis Ag Staurosporine derivatives as inhibitors of FLT3 receptor tyrosine kinase activity
ES2233878T3 (en) 2001-10-31 2005-06-16 Siemens Aktiengesellschaft PROCEDURE FOR COMMUNICATION OF A REAL-TIME DATA TRAFFIC IN A COMMUNICATIONS NETWORK BASED ON A COLLISION RECOGNITION, THE CORRESPONDING MEMORY ELEMENT AND COMMUNICATIONS NETWORK.
HUP0401646A2 (en) 2001-11-03 2004-12-28 Astrazeneca Ab, Quinazoline derivatives as antitumor agents, process for their preparation and pharmaceutical compositions containing them
JP2005527523A (en) 2002-03-15 2005-09-15 ノバルティス アクチエンゲゼルシャフト 4- (4-Methylpiperazin-1-ylmethyl) -N- [4-methyl-3- (4-pyridin-3-yl) pyrimidin-2-yl-amino] phenyl] for treating AngII-mediated diseases -Benzamide
US20030236287A1 (en) * 2002-05-03 2003-12-25 Piotrowski David W. Positive allosteric modulators of the nicotinic acetylcholine receptor
PE20040522A1 (en) 2002-05-29 2004-09-28 Novartis Ag DIARYLUREA DERIVATIVES DEPENDENT ON PROTEIN KINASE
JP4703183B2 (en) * 2002-07-15 2011-06-15 シンフォニー エボルーション, インク. Receptor kinase modulator and method of use thereof
AU2003247141A1 (en) 2002-08-01 2004-02-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem 4-anilido substituted quinazolines and use thereof as inhibitors of epidermal growth factor receptor kinases
WO2004030672A1 (en) 2002-10-02 2004-04-15 Merck Patent Gmbh Use of 4 amino-quinazolines as anti cancer agents
WO2004040003A2 (en) 2002-10-29 2004-05-13 Activx Biosciences, Inc. Nucleotide-binding protein-directed probes and methods of their synthesis and use
PA8603801A1 (en) * 2003-05-27 2004-12-16 Janssen Pharmaceutica Nv DERIVATIVES OF QUINAZOLINE
CA2531327A1 (en) 2003-07-03 2005-01-13 Myriad Genetics, Inc. Compounds and therapeutical use thereof
CA2531142A1 (en) 2003-07-03 2005-01-13 Cambridge University Technical Services Ltd Use of aurora kinase inhibitors for reducing the resistance of cancer cells
ATE517091T1 (en) * 2003-09-26 2011-08-15 Exelixis Inc C-MET MODULATORS AND METHODS OF USE
WO2005040125A1 (en) 2003-10-06 2005-05-06 Gpc Biotech Ag Quinazoline derivatives for the treatment of herpesviral infections
US7750160B2 (en) 2003-11-13 2010-07-06 Ambit Biosciences Corporation Isoxazolyl urea derivatives as kinase modulators
US7193838B2 (en) * 2003-12-23 2007-03-20 Motorola, Inc. Printed circuit dielectric foil and embedded capacitors
WO2005067644A2 (en) * 2004-01-07 2005-07-28 Ambit Biosciences Corporation Conjugated small molecules
US7875604B2 (en) 2004-02-04 2011-01-25 University Of Virginia Patent Foundation Compounds that inhibit HIV particle formation
EP1751136B1 (en) * 2004-05-07 2014-07-02 Amgen Inc. Nitrogenated heterocyclic derivatives as protein kinase modulators and use for the treatment of angiogenesis and cancer
US20070299092A1 (en) 2004-05-20 2007-12-27 Wyeth Quinone Substituted Quinazoline and Quinoline Kinase Inhibitors
US7810168B2 (en) * 2004-12-10 2010-10-12 L-3 Insight Technology Incorporated Method and apparatus for mounting a vision system
US7576090B2 (en) * 2004-12-27 2009-08-18 4Sc Ag Benzazole analogues and uses thereof
EP1833511A4 (en) 2005-01-03 2011-01-19 Myriad Genetics Inc Method of treating brain cancer
CA2592900A1 (en) 2005-01-03 2006-07-13 Myriad Genetics Inc. Nitrogen containing bicyclic compounds and therapeutical use thereof
EP1746096A1 (en) * 2005-07-15 2007-01-24 4Sc Ag 2-Arylbenzothiazole analogues and uses thereof in the treatment of cancer
JP4157564B2 (en) * 2006-03-09 2008-10-01 東芝サムスン ストレージ・テクノロジー株式会社 Optical disc apparatus and disc discrimination method
JP2010505386A (en) 2006-05-15 2010-02-25 セネックス バイオテクノロジー,インク. Identification of CDKI pathway inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991071A (en) * 1973-06-21 1976-11-09 The Boots Company Limited Fungicidal compositions containing substituted imidazoles
US6645990B2 (en) * 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227592A1 (en) * 2001-08-17 2009-09-10 Astrazeneca Ab Compounds effecting glucokinase
US7951830B2 (en) 2001-08-17 2011-05-31 Astrazeneca Ab Compounds effecting glucokinase
US20080207636A1 (en) * 2001-08-17 2008-08-28 Astrazeneca Ab Compounds Effecting Glucokinase
US7524957B2 (en) 2001-08-17 2009-04-28 Astrazeneca Ab Compounds effecting glucokinase
US7709505B2 (en) 2002-11-19 2010-05-04 Astrazeneca Ab Benzofuran derivatives, process for their preparation and intermediates thereof
US20050148605A1 (en) * 2003-11-13 2005-07-07 Ambit Biosciences Corporation Amide derivatives as ABL modulators
US20110034432A1 (en) * 2004-02-18 2011-02-10 Astrazeneca Ab Benzamide derivatives and their use as glucokinase activating agents
US20080312207A1 (en) * 2004-02-18 2008-12-18 Craig Johnstone Compounds
US7745475B2 (en) 2004-06-05 2010-06-29 Astrazeneca Ab Heteroaryl benzamide derivatives as GLK activators
US20090253676A1 (en) * 2004-06-05 2009-10-08 Astrazeneca Ab Heteroaryl Benzamide Derivatives for Use as GLK Activators in the Treatment of Diabetes
US20080280874A1 (en) * 2004-10-16 2008-11-13 Craig Johnstone Phenoxy Benzamide Compounds with Utility in the Treatment of Type 2 Diabetes and Obesity
US7700640B2 (en) 2004-10-16 2010-04-20 Astrazeneca Ab Process for making phenoxy benzamide compounds
US8481521B2 (en) 2005-04-18 2013-07-09 Rigel Pharmaceuticals, Inc. Methods of treating cell proliferative disorders
US20060276459A1 (en) * 2005-04-18 2006-12-07 Rigel Pharmaceuticals, Inc. Methods of treating cell proliferative disorders
US8227455B2 (en) * 2005-04-18 2012-07-24 Rigel Pharmaceuticals, Inc. Methods of treating cell proliferative disorders
US20110059941A1 (en) * 2005-05-24 2011-03-10 Peter William Rodney Caulkett 2-phenyl substituted imidazol [4,5b] pyridine/pyrazine and purine derivatives as glucokinase modulators
US20090105214A1 (en) * 2005-05-27 2009-04-23 Mckerrecher Darren Heteroaryl Benzamide Derivatives for Use as Glk Activators in the Treatment of Diabetes
US7943607B2 (en) 2005-05-27 2011-05-17 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US20110053910A1 (en) * 2005-07-09 2011-03-03 Mckerrecher Darren 2 -heterocyclyloxybenzoyl amino heterocyclyl compounds as modulators of glucokinase for the treatment of type 2 diabetes
US7842694B2 (en) 2005-07-09 2010-11-30 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US20090264336A1 (en) * 2005-07-09 2009-10-22 Astrazeneca Ab Heteroaryl benzamide derivatives for use as glk activators in the treatment of diabetes
US20090029905A1 (en) * 2005-07-09 2009-01-29 Astrazeneca Ab Heteroaryl benzamide derivatives for use as glk activators in the treatment of diabetes
US7977328B2 (en) 2005-07-09 2011-07-12 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US20080234273A1 (en) * 2005-07-09 2008-09-25 Mckerrecher Darren Heteroaryl Benzamide Derivatives for Use as Glk Activators in the Treatment of Diabetes
US7642259B2 (en) 2005-07-09 2010-01-05 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US20090111790A1 (en) * 2005-07-09 2009-04-30 Astrazeneca Ab Heteroaryl benzamide derivatives for use as glk activators in the treatment of diabetes
US7642263B2 (en) 2005-07-09 2010-01-05 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US20090118159A1 (en) * 2005-07-09 2009-05-07 Mckerrecher Darren Heteroaryl benzamide derivatives for use as glk activators in the treatment of diabetes
US20070038490A1 (en) * 2005-08-11 2007-02-15 Joodi Pirooz M Method and system for analyzing business architecture
US7973178B2 (en) 2005-11-28 2011-07-05 Astrazeneca Ab Chemical process for the preparation of an amido-phenoxybenzoic acid compound
US20080171734A1 (en) * 2006-10-23 2008-07-17 Astrazeneca Ab Chemical compounds
US7902200B2 (en) 2006-10-23 2011-03-08 Astrazeneca Ab Chemical compounds
US7671060B2 (en) 2006-10-26 2010-03-02 Astrazeneca Ab Heteroaryl benzamide derivatives
US20100173825A1 (en) * 2006-10-26 2010-07-08 Astrazeneca Ab Heteroaryl benzamide derivatives
US7964725B2 (en) 2006-10-26 2011-06-21 Astrazeneca Ab Heteroarylbenzamide derivatives for use in the treatment of diabetes
US20080318968A1 (en) * 2006-10-26 2008-12-25 Astrazeneca Ab Chemical Compounds
US7696191B2 (en) 2006-12-21 2010-04-13 Astrazeneca Ab Crystalline compound
US8143263B2 (en) 2008-08-04 2012-03-27 Astrazeneca Ab Therapeutic agents
US20100210621A1 (en) * 2009-02-13 2010-08-19 Astrazeneca Ab Crystalline polymorphic form 631
US8076481B2 (en) 2009-02-13 2011-12-13 Astrazeneca Ab Chemical process 632
US8093252B2 (en) 2009-02-13 2012-01-10 Astrazeneca Ab Crystalline polymorphic form of glucokinase activator
US20100210841A1 (en) * 2009-02-13 2010-08-19 Astrazeneca Ab Chemical process 632
US8071585B2 (en) 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
US8071608B2 (en) * 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
US8722731B2 (en) 2010-06-07 2014-05-13 Novomedix, Llc Furanyl compounds and the use thereof
US9149527B2 (en) 2010-06-07 2015-10-06 Novomedix, Llc Furanyl compounds and the use thereof
US9663483B2 (en) 2010-06-07 2017-05-30 Novomedix, Llc Furanyl compounds and the use thereof
US8604069B2 (en) 2011-04-28 2013-12-10 Japan Tobacco Inc. Amide compound and medicinal use thereof
US10301288B2 (en) 2013-03-14 2019-05-28 Topivert Pharma Limited Kinase inhibitors
US9850233B2 (en) 2013-03-14 2017-12-26 Respivert Limited Kinase inhibitors
US9771353B2 (en) 2013-04-02 2017-09-26 Topivert Pharma Limited Kinase inhibitors based upon N-alkyl pyrazoles
US12053465B2 (en) 2017-05-22 2024-08-06 Whitehead Institute For Biomedical Research KCC2 expression enhancing compounds and uses thereof
US11331313B2 (en) 2017-05-22 2022-05-17 Whitehead Institute For Biomedical Research KCC2 expression enhancing compounds and uses thereof
US12102620B2 (en) 2018-01-31 2024-10-01 Deciphera Pharmaceuticals, Llc Combination therapy for the treatment of mastocytosis
US11986463B2 (en) 2018-01-31 2024-05-21 Deciphera Pharmaceuticals, Llc Combination therapy for the treatment of gastrointestinal stromal tumor
US11813251B2 (en) 2019-08-12 2023-11-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11969414B2 (en) 2019-08-12 2024-04-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11426390B2 (en) 2019-08-12 2022-08-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11433056B1 (en) 2019-08-12 2022-09-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11529336B2 (en) 2019-08-12 2022-12-20 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11534432B2 (en) 2019-08-12 2022-12-27 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11576904B2 (en) 2019-08-12 2023-02-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US12059410B2 (en) 2019-08-12 2024-08-13 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US12059411B2 (en) 2019-08-12 2024-08-13 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US12023327B2 (en) 2019-08-12 2024-07-02 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US12023326B2 (en) 2019-08-12 2024-07-02 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11344536B1 (en) 2019-08-12 2022-05-31 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US12023325B2 (en) 2019-08-12 2024-07-02 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11612591B2 (en) 2019-12-30 2023-03-28 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11844788B1 (en) 2019-12-30 2023-12-19 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11903933B2 (en) 2019-12-30 2024-02-20 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11911370B1 (en) 2019-12-30 2024-02-27 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11918564B1 (en) 2019-12-30 2024-03-05 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11969415B1 (en) 2019-12-30 2024-04-30 Deciphera Pharmaceuticals, Llc (methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11850240B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11850241B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US12023328B2 (en) 2019-12-30 2024-07-02 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11896585B2 (en) 2019-12-30 2024-02-13 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11801237B2 (en) 2019-12-30 2023-10-31 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11793795B2 (en) 2019-12-30 2023-10-24 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11576903B2 (en) 2019-12-30 2023-02-14 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US12064422B2 (en) 2019-12-30 2024-08-20 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors

Also Published As

Publication number Publication date
WO2005048948A2 (en) 2005-06-02
WO2005048948A3 (en) 2005-07-28
JP2007512255A (en) 2007-05-17
EP1684762A2 (en) 2006-08-02
US7750160B2 (en) 2010-07-06
US7767670B2 (en) 2010-08-03
US20050192314A1 (en) 2005-09-01
WO2005048953A3 (en) 2006-02-23
US20050197371A1 (en) 2005-09-08
AU2004291147A1 (en) 2005-06-02
US20050148605A1 (en) 2005-07-07
US20050165074A1 (en) 2005-07-28
US20050165031A1 (en) 2005-07-28
EP1684762A4 (en) 2009-06-17
US20100173917A1 (en) 2010-07-08
WO2005048953A2 (en) 2005-06-02
US20050267182A1 (en) 2005-12-01
US20050171172A1 (en) 2005-08-04
CA2545711A1 (en) 2005-06-02
US20050165024A1 (en) 2005-07-28
US20050261315A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7767670B2 (en) Substituted 3-carboxamido isoxazoles as kinase modulators
US11059795B2 (en) Androgen receptor modulators and methods for their use
US20050153989A1 (en) Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases
CN104245675B (en) It is used as the cyclic amides of the inhibitor of MetAP 2
CN105026398B (en) For treating the triazol of diseases such as cancer [4,5-d] pyrimidine derivatives
US9896452B2 (en) Substituted prolines/piperidines as orexin receptor antagonists
AU2011316199B2 (en) Pyrrolidinones as MetAP2 inhibitors
US10683293B2 (en) Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases
US20110245247A1 (en) Novel small molecule potentiators of metabotropic glutamate receptors
CN102417508A (en) Fused aryl and heteroaryl derivatives as modulators of metabolism and the prevention and treatment of disorders related thereto
CN104066734B (en) Triazol [4,5 d] pyrimidine derivatives
TW201536777A (en) 2,3-dihydrobenzofuran-5-yl compounds as DYRK kinase inhibitors
CN102639513A (en) Sphingosine kinase inhibitors
US20220380378A1 (en) Androgen receptor modulators and methods for their use
US20100168097A1 (en) Non-Nucleoside Reverse Transcriptase Inhibitors
US20230406853A1 (en) Covalent cdk2-binding compounds for therapeutic purposes
US11384097B2 (en) Tetrahydroisoquinoline derivative, preparation method therefor and use thereof
RU2797622C2 (en) Androgen receptor modulators and methods for their use
WO2023205507A1 (en) Androgen receptor modulators and methods for their use
WO2024193640A1 (en) Cdk inhibitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMBIT BIOSCIENCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEHTA, SHAMAL A.;GROTZFELD, ROBERT M.;MILANOV, ZDRAVKO V.;AND OTHERS;REEL/FRAME:016012/0522;SIGNING DATES FROM 20041110 TO 20041112

AS Assignment

Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC, CONNECTICU

Free format text: SECURITY AGREEMENT;ASSIGNOR:AMBIT BIOSCIENCES CORPORATION;REEL/FRAME:017261/0630

Effective date: 20051006

AS Assignment

Owner name: AMBIT BIOSCIENCES CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HORIZON TECHNOLOGY FUNDING COMPANY LLC;REEL/FRAME:020619/0693

Effective date: 20080226

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION