US20050171557A1 - Miniature bone-attached surgical robot - Google Patents
Miniature bone-attached surgical robot Download PDFInfo
- Publication number
- US20050171557A1 US20050171557A1 US10/965,100 US96510004A US2005171557A1 US 20050171557 A1 US20050171557 A1 US 20050171557A1 US 96510004 A US96510004 A US 96510004A US 2005171557 A1 US2005171557 A1 US 2005171557A1
- Authority
- US
- United States
- Prior art keywords
- surgical
- robot
- bone
- dimensional image
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 47
- 238000001356 surgical procedure Methods 0.000 claims description 34
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 5
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims 2
- 238000005553 drilling Methods 0.000 claims 1
- 238000002591 computed tomography Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 4
- 206010073306 Exposure to radiation Diseases 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012829 orthopaedic surgery Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000011524 similarity measure Methods 0.000 description 1
- 238000002672 stereotactic surgery Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1757—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/72—Micromanipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/742—Joysticks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
Definitions
- the present invention relates to a robotic device. Particularly, this invention relates to a robotic device that attaches to a bone of the patient and aids or performs surgical procedures.
- robots are used in many different industries for many different applications.
- One industry for example, is the medical industry that uses robots in applications including assisting the surgeon during surgical procedures.
- Robots are especially suited for some surgical tasks because they can be constructed to be very steady, computer controlled, and precise in their movements. Characteristics such as these can be especially helpful during surgery on sensitive areas, such as, for example, the vertebral column but are applicable throughout the body.
- Typical vertebral column surgical procedures include vertebral fusion, insertion of medical devices such as pedicle screws, discography, percutaneous discectomy, or the like. These procedures typically require a large invasive operation that exposes the patient to a high risk of infection, excessive trauma, fluid loss, post operative pain, scaring, and a lengthy recovery time.
- Some difficulties relating to surgery on the vertebral column include micro-movement of the vertebral column during the operation, inherently small target objects of the procedure such as the pedicles, extremely delicate nearby nerve tissue, and limited operating room space because large equipment is needed to aid in the procedure, such as C-arm X-ray devices.
- the patient and operating room staff are exposed to large doses of radiation because these procedures require repeated X-raying and/or fluoroscoping of the surgical site so the surgeon can view the position of surgical tools or implants relative to non-visible body parts.
- Some prior art devices have attempted to accomplish this however, these devices are either too complicated, not sufficiently accurate, or consume too much operating room space.
- U.S. Pat. No. 6,226,548 This device combines a navigation system, a bone mounted apparatus, and surgical tools that communicate with the navigation system.
- This apparatus primarily consists of a clamp that attaches to the patient's spine and extends outward forming a reference arc bearing emitters or a tracking means. All the surgical tools used in this procedure are fitted with emitters or a tracking means similar to the reference arc.
- the surgical suite is fitted with a navigation system capable of recognizing the emitters or tracking means of the reference arc and surgical tools, a computer system for interpreting the location of the tools, and a video display for the surgeon.
- a CT or MRI is taken creating a three-dimensional image of the patient with the attached device.
- the navigation system locates the arc and the surgical tools and displays them, relative to each other, on the three-dimensional CT scan.
- the '548 patent system requires the patient to be put through a surgical procedure to affix the clamp and referencing arc, then the patient is transported to a CT or MRI, then transported back to the surgical suite in a non-sterile condition for the substantial portion of the procedure to commence.
- this system has many components, such as the navigation system and the computer output unit, that clutter up the already limited space in the surgical suite.
- the present invention is directed to a device and method for assisting in surgical procedures.
- a robot is disclosed that precisely positions a surgical tool with respect to a surgical site.
- the robot attaches to the bone of a patient with a clamp or with wires such as K-wires.
- Actuators extend from the robot base and move away from and toward the base member. This manipulates balls that rotate within spherical swivel joints that in turn align a sleeve.
- a surgical tool such as a screw driver or a drill bit is inserted through the sleeve and thus is precisely aligned with a site requiring surgery.
- the present invention also includes a method for using the robot to assist in surgical procedures. Initially, three dimensional images are taken of the patient and the surgeon performs pre-operative planning of the procedure to be done on the images. This creates parameters that will later be used to direct the robot to the location where the surgical procedure is required. The robot is then attached to the patient by the clamp or the k-wire. C-arm images are taken of the patient with the attached clamp and these images are co-registered and calibrated such that a precise image of the bone with the robot attached is generated. This image is then registered, or matched, with the three dimensional image. This is accomplished in a highly efficient and accurate manner by taking small windows of the images where the surgery is to take place and registering these small portions.
- the small windows are chosen off the images by locating the bone attached clamp and selecting a window according to pre-operative calculation of the bone-robot attachment location. After these windows are chosen and registered, the remaining bone is registered by aligning the registered windows. At this point the robot is located precisely on the bone of the patient in the three dimensional image and can be manipulated by the surgeon to a pre-operative planned location for percutaneous insertion of surgical tools, medical devices, or implants.
- FIG. 1 is an overview of an embodiment of a surgical system showing a control unit with a display, C-arm with a calibration phantom attached, and a robot used for aligning surgical tools attached to the patient according to the present invention
- FIG. 2 is a perspective view showing a miniature surgical robot attached to a bone and aligning a surgical tool in an embodiment of the invention
- FIG. 3 is a perspective view showing a clamp for attaching to a bone and adaptor for receiving a robot in an embodiment of the invention
- FIG. 4 is a cross-sectional view of FIG. 3 ;
- FIG. 5 is a flow chart of an embodiment of the method of using the present invention.
- FIG. 6 is a perspective view of an image referencing plate with three referencing markers attached
- FIG. 7 is a perspective view of a spacer used to extend the clamp.
- FIG. 8 is a perspective view showing a miniature surgical robot for aligning a surgical tool attached to a bone by K-wires in an embodiment of the invention.
- a preferred embodiment of the present invention generally includes an image guided, robot assisted, surgical system. Included in this system generally, as shown in FIG. 1 , is a bone attached surgical robot 30 ; a control unit 10 that matches data from CT scans and C-arm images to locate robot 30 on the patient's bone and allows a surgeon to control robot 30 , through the use of a mouse, joystick, touch screen, or the like; and video display 20 .
- Control unit 10 generally includes a cpu and user interface communicating with display 20 and robot 30 .
- FIG. 2 illustrates robot 30 according to one embodiment of the present invention attached with clamp 40 to vertebra 50 .
- Robot 30 aligns sleeve 60 through which surgical tool 70 such as a screwdriver, drill bit, Kirschner wire (K-wire), or the like can be inserted and precisely aligned with a site requiring a surgical procedure and thus, the operation can be conducted percutaneously or in traditional open procedures.
- surgical tool 70 such as a screwdriver, drill bit, Kirschner wire (K-wire), or the like can be inserted and precisely aligned with a site requiring a surgical procedure and thus, the operation can be conducted percutaneously or in traditional open procedures.
- robot 30 includes base 35 that sits vertically on clamp adaptor 45 .
- At least two pair of actuators 80 extend from base 35 .
- the actuators 80 extend from the base 35 forming a fixed angle 85 between base 35 and actuator 80 . This angle is generally between about 15-.pi.degrees and more preferably about 45 degrees.
- the points of attachment of actuators 80 are spaced apart by about 50 mm in the Z direction and about 50 mm in the Y direction.
- Each actuator 80 is capable of operating independently from the other actuators 80 .
- Actuator 80 is similar to known linear actuators and includes a housing, a motor, a lead screw, an electrical connection, and a position sensor such as an optical encoder, an LVDT, or the like. In a preferred embodiment each actuator is approximately 5 mm in diameter and approximately 35 mm in length.
- Hinge joint 90 links actuator 80 to rigid member 100 .
- member 100 is about 4 mm in diameter and 40 mm in length.
- Hinge joint 90 permits member 100 to freely rotate through about 270 degrees on an axis that runs parallel to base 35 .
- the other end of the rigid member 100 is fixed with solid connection 105 to ring member 110 . There is no movement between rigid member 100 and ring member 110 at solid connection 105 .
- Upper ring member 110 A and lower ring member 110 B solidly connected to individual rigid members 100 , come together at spherical swivel joint 120 .
- Each ring member 110 forms one half of an outer race of spherical swivel joint 120 .
- Ring members 110 are free to rotate with respect to one another, but are held fixedly from separating in the Z axis direction.
- Passing through ball 130 is sleeve 60 .
- Sleeve 60 passes through both upper and lower balls 130 , forming an aligning axis through which surgical tool 70 is passed.
- hinge joints 90 freely rotate about the Z axis and balls 130 swivel in the spherical swivel joints 120 formed by upper and lower ring members 110 .
- a hollow axis is formed by the sleeve passing through each of upper and lower balls 130 such that a surgical tool 70 can be inserted through and be accurately aligned with the working location.
- the above described robot 30 is just one example of a robot configured for surgical assistance that may be utilized with the system according to the present invention.
- Other robot configurations that could satisfy the same tasks include, for example, a parallel robot constructed to the required dimensions, such as that described in Simaan, N., Glozman, D., and Shoham, M.: “Design Considerations of new types of Six-Degrees-of-Freedom Parallel Manipulators,” IEEE International Conference on Robotics and Automation, Belgium, 1998, which is incorporated by reference herein.
- robot 30 is attached with the bone of a patient by clamp 40 .
- clamp 40 comprises bone clamping portion 42 and clamp adaptor 45 .
- handles 210 extend from clamp 40 and allow a user to hold, align, and affix clamp 40 onto a bone of the patient.
- the base of the handles 210 fit over nuts 220 , shown in FIG. 4 , located on clamp 40 .
- clamp 40 When clamp 40 is in place, the user pushes handles 210 toward each other to close jaws 230 onto the selected bone.
- a first locking (described below) occurs and clamp 40 is locked in place on the bone.
- connection pins 200 align with receiving holes in robot base 35 and when inserted lock robot 30 into place by some type of a snap ring or spring and ball bearing or plunger ball/pin.
- threaded studs 250 are embedded in levers 260 .
- Left and right levers 260 are connected together by upper center hinge 280 .
- the other end of levers 260 connect with respective jaws 230 through side axis hinge 270 .
- Left and right jaws 230 are connected together by main pivot 290 around which the jaws rotate.
- upper center hinge 280 is pushed downward and at the same time side axis hinges 270 rotate around the main pivot 290 .
- the first locking occurs when upper center hinge 280 is pushed below the center line formed between left and right side axis hinges 270 , and clamp 40 locks onto the bone.
- jaws 230 When clamp 40 is in the fully closed and locked position, jaws 230 are parallel to each other and separated by a set distance.
- the set closing distance between jaws 230 can be altered for different bone attachment applications by exchanging re-moveable jaw inserts 240 with the same of a different thickness.
- FIG. 7 illustrates spacer 900 that can be attached to the top surface of clamp adaptor 45 to ensure that robot 30 remains above the working area and out of any tissue that might occur when a patient has unusual body proportions.
- Spacer 900 attaches to connector pins 200 of clamp adaptor 45 and provides connector pins 910 , similar to connector pins 200 , for robot 30 attachment to the top surface of the spacer 900 .
- FIG. 8 illustrates such a K-wire connection.
- K-wires 950 are inserted into the bone by standard surgical procedures.
- Robot base 35 contains an elongated slot through which K-wires 950 are inserted.
- Screw 960 can then be turned and tighten pinch plate 970 against robot base 35 pinching K-wires 950 between pinch plate 970 and robot base 35 holding robot 30 tight with respect to K-wires 950 and bone 50 .
- FIG. 5 illustrates the registration system used to establish the position of the robot on the bone.
- This step 400 consists of taking a three-dimensional scan 410 of the patient, such as a CT or MRI scan.
- a surgeon then performs pre-operative planning 420 on the three-dimensional scan. For example, if the procedure to be done is a fracture fixation, the surgeon will study the three-dimensional image and the condition of the bone, choose the proper implant from a database containing implants of all types and sizes based on the present application, and electronically position and insert the implant, the screw, or the like. This is known in the art, for example, as described in “Marching Cubes: a high resolution 3D surface reconstruction algorithm”, W. E. Lorensen, H. E. Cline, Computer Graphics 21 (1987) 163-169 which is incorporated by reference.
- the parameters generated by the pre-operative planning 420 are stored in the control unit 10 for positioning the robot 30 during the actual surgical procedure.
- a phantom 320 ( FIG. 1 ) is attached to the lens of the C-arm device 300 and a blank C-arm image is taken, step 460 , FIG. 5 .
- the phantom 320 is used to correct for the distortion associated with the C-arm image.
- the phantom contains several reference objects and a large number of small reference objects.
- the control unit automatically recognizes the reference objects and creates distortion correction maps and calibration intrinsic parameters to correct for the imprecise C-arm image. Systems such as these are known in the art and described, for example, in Brack et al., “Accurate X-ray Navigation in Computer-Assisted Surgery”, Proc.
- An image referencing plate 800 ( FIG. 6 ) is attached to clamp 40 , step 465 , FIG. 5 , by receiving holes that receive connector pins 200 .
- the image referencing plate 800 ( FIG. 6 ) has three referencing markers 810 on it that show up very clear and precise in the C-arm image. The distance and angle between the referencing markers 810 are known such that the C-arm image can be calibrated in a secondary calibration step, step 465 , to accurately represent actual size of the image.
- At least two, but preferably three C-arm images are taken of the patient with the attached clamp 40 and image referencing plate 800 . These C-arm images are taken from different angles, preferably 0, 45, and 90 degrees, step 470 , FIG. 5 .
- the secondary calibration step, step 465 B can be accomplished by attaching the robot 30 to the clamp and taking multiple C-arm images. By knowing the dimensions, or by placing referencing markers on robot 30 and knowing the distance and angle between the referencing markers the C-arm images can be calibrated in a secondary calibration step, step 465 B.
- the next step of the process is co-registration, step 500 .
- the C-arm images are transferred into the control unit 10 as data, step 502 .
- the data of the images, step 502 , and the position of the C-arm, step 504 are correlated by knowing the position from which each images was taken, step 504 , and by aligning the referencing markers 810 ( FIG. 6 ) from the image referencing plate 800 ( FIG. 6 ).
- This stage can be referred to as robot to bone registration or co-registration.
- Step 600 is a process of estimating and matching the true surface contours or the objects in the images. Registration methods are either based on geometry or intensity of the image. Geometric based registration is achieved by finding features in the 2D fluoroscopic images and matching these features with corresponding features in the 3D image, acquired, for example, from a CT scan dataset, MRI image, ultrasound image or from a CAD model. The features can be known landmarks (anatomical landmarks or implanted fiducials), or contour points in the fluoroscopic image, matched with the registered object's surface. An algorithm that may be used to compute the transformation is the Iterative Closest Point (ICP) algorithm.
- ICP Iterative Closest Point
- the input to the algorithm are sets of back-projected rays from the fluoroscopic images, and a model of the registered object.
- the algorithm iteratively computes a transformation that approximates the ray sets to the model. For landmark registration, a match between each ray and the corresponding landmark is defined before searching for the transformation. Contour registration selects a new surface point to match with each ray on every iteration.
- the registration process uses two or more fluoroscopic images, as described in greater detail, for example, in Hamadeh, et al., “Towards automatic registration between CT and X-ray images: cooperation between 3D/2D registration and 2D edge detection”, Medical robotics and computer assisted surgery, 1995, Wiley 39-46, and Hamadeh, et al., “Automated 3-Dimensional Computed Tomographic and Fluoroscopic Image Registration”, Computer Aided Surgery, 1998, 3, which are incorporated herein by reference.
- anatomical landmarks in the images are detected and matched manually. Based on this match, an approximated initial guess is computed, with ray intersections, which are 3D points in the registration environment, being matched with the model's landmarks.
- the object's contour in the 2D image is registered with the model's surface.
- a likelihood estimator is used to remove outliers, or pixels not in the contour, from the sample point set.
- a signed distance function is defined to overcome any internal contours problems. The overall in-vitro accuracy of this method can be better than 2 mm.
- a single fluoroscopic image may be used for registration, achieving an accuracy of about 3 mm.
- This technique is based on a combinatorial search among matches of three points and three rays. The match with minimal average distance for the registration is then selected.
- This alternative is described in Tang, “Method for Intensity-based Registration with CT Images,” Masters Thesis: Department of Computer Science, Queen University, Ontario Canada, 1999, which is incorporated herein by reference.
- intensity-based registration is achieved by comparing fluoroscopic images with simulated X-rays (digitally reconstructed radiographs, or DRR's) from an estimated position.
- simulated X-rays digitally reconstructed radiographs, or DRR's
- the algorithm proceeds in three steps.
- the input is a CT data set, intrinsic camera parameters, one or more fluoroscopic images and an initial camera position estimate for each image.
- the algorithm generates one DRR for each given camera position.
- a dissimilarity measure is computed between the real and reconstructed image.
- new camera poses are computed that best reduce the dissimilarity between the images. The process is repeated until convergence is reached.
- the parametric space of camera positions in then searched incrementally from an initial configuration.
- the space is six-dimensional (three rotations and three translations). The advantages of this technique is that no segmentation is necessary. However, the search space is six-dimensional, and can contain may local minima.
- a benefit of the present invention is that it can utilize either of the above described registration methods.
- the initial location of the window is a very good guess of the location and therefore the intensity based method can be utilized.
- a faster and more accurate registration process is accomplished as between the fluorscopic and 3D images. This is done in step 600 , and occurs very quickly and with a high degree of accuracy because the registration process is performed on small windows of the images, rather than the images as a whole.
- windows are selected that specifically relate to the known location of the robot and/or its support member.
- Windows of about 20 mm by 20 mm located approximately adjacent to the clamp location, according to pre-operative calculation of the bone-robot attachment location, are selected from the C-arm (fluoroscopic) image data, step 610 .
- these windows may be selected as the area above the attached clamp 40 in the C-arm image and the tip of the transverse process of the vertebra covering the area where the surgical procedure is to take place.
- the same windows are chosen from both the pseudo three-dimensional hybrid C-arm image, step 510 , and also from the CT image (3D image), step 410 .
- the small windows chosen from the C-arm images and the CT scan image are then laid over each other and matched or registered by the control unit, step 620 , as described above. Focusing only on a small window of the C-arm image rather than looking for a matching anatomical landmark in the entire image, makes the process occur very fast and with the high degree of accuracy needed for precise procedures such as vertebra surgery.
- step 630 the remaining portion of the CT and C-arm image of the bones are overlaid, the registration windows are aligned, and the remaining bone is registered, step 630 . Since the windows have already been accurately registered this step occurs quickly and also with a high degree of accuracy.
- clamp 40 is located precisely on the bone, step 640 , of the CT image.
- the user attaches robot 30 to clamp 40 and thus, robot 30 is located precisely with respect to the bone, step 645 .
- robot 30 After robot 30 is co-registered 500 and registered 600 , its position is known relative to the patient's bone and therefore can move to align with the pre-operatively picked location such that the operation can virtually take place on the control unit.
- the user selects a pre-operatively planned location and task from step 420 by use of a joystick, mouse, touch screen, or the like, step 710 .
- the Robot 30 responds and moves sleeve 60 into position, step 720 , such that when the user inserts a surgical tool 70 through the opening in the sleeve 60 the surgical tool 70 will be precisely aligned with the location requiring the surgical procedure, step 730 .
- the surgeon can then insert a selected surgical tool 70 and operate without opening the surgical site to see the placement of the surgical tool because the surgeon can verify the positioning of the surgical tool 70 on the control unit 10 and display 20 .
- a further benefit of this system is that because the robot is miniature it can be freely attached to the bone of a patient and move with the body. Therefore, the robot system does not need a dynamic referencing device to maintain orientation with the body once it is registered. This creates a more precise and less complicated system that is versatile and user friendly as the surgeon can manipulate the patient into different surgical positions without disturbing the robot system.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Robotics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
A miniature surgical robot and a method for using it are disclosed. The miniature surgical robot attaches directly with the bone of a patient. Two-dimensional X-ray images of the robot on the bone are registered with three-dimensional images of the bone. This locates the robot precisely on the bone of the patient. The robot is then directed to pre-operative determined positions based on a pre-operative plan by the surgeon. The robot then moves to the requested surgical site and aligns a sleeve through which the surgeon can insert a surgical tool.
Description
- This Application is a continuation of co-pending U.S. application Ser. No. 09/912,687, which claims priority from U.S. Provisional Application Ser. No. 60/220,155, filed Jul. 24, 2000. The contents of both the above applications have been incorporated herein by reference.
- The present invention relates to a robotic device. Particularly, this invention relates to a robotic device that attaches to a bone of the patient and aids or performs surgical procedures.
- Generally, robots are used in many different industries for many different applications. One industry, for example, is the medical industry that uses robots in applications including assisting the surgeon during surgical procedures. Robots are especially suited for some surgical tasks because they can be constructed to be very steady, computer controlled, and precise in their movements. Characteristics such as these can be especially helpful during surgery on sensitive areas, such as, for example, the vertebral column but are applicable throughout the body.
- Typical vertebral column surgical procedures include vertebral fusion, insertion of medical devices such as pedicle screws, discography, percutaneous discectomy, or the like. These procedures typically require a large invasive operation that exposes the patient to a high risk of infection, excessive trauma, fluid loss, post operative pain, scaring, and a lengthy recovery time. Some difficulties relating to surgery on the vertebral column include micro-movement of the vertebral column during the operation, inherently small target objects of the procedure such as the pedicles, extremely delicate nearby nerve tissue, and limited operating room space because large equipment is needed to aid in the procedure, such as C-arm X-ray devices. Furthermore, the patient and operating room staff are exposed to large doses of radiation because these procedures require repeated X-raying and/or fluoroscoping of the surgical site so the surgeon can view the position of surgical tools or implants relative to non-visible body parts.
- A need exists for a device that can assist minimally invasive surgery with low radiation exposure while allowing the surgeon to precisely align and control or monitor the surgical procedure. Some prior art devices have attempted to accomplish this however, these devices are either too complicated, not sufficiently accurate, or consume too much operating room space.
- One such device is disclosed in U.S. Pat. No. 6,226,548. This device combines a navigation system, a bone mounted apparatus, and surgical tools that communicate with the navigation system. This apparatus primarily consists of a clamp that attaches to the patient's spine and extends outward forming a reference arc bearing emitters or a tracking means. All the surgical tools used in this procedure are fitted with emitters or a tracking means similar to the reference arc. The surgical suite is fitted with a navigation system capable of recognizing the emitters or tracking means of the reference arc and surgical tools, a computer system for interpreting the location of the tools, and a video display for the surgeon. After surgically placing the clamp and reference arc on the patient a CT or MRI is taken creating a three-dimensional image of the patient with the attached device. When the patient is in place in the surgical suite with the attached reference arc the navigation system locates the arc and the surgical tools and displays them, relative to each other, on the three-dimensional CT scan.
- While the device disclosed in the '548 patent offers some advantages in terms of accuracy and reduced trauma, the advantages of this type of prior art device are limited. The critical part of a surgical tool that must be monitored is the working end of the tool, whether that be a screwdriver or a drill bit or the like. These can not be tracked with such prior art systems. Transmitters or emitters cannot be attached to the working ends of tools so the computer must estimate the location of the working end by locating the tool generally and extrapolating. This causes inaccuracy and errors that can not be tolerated in spinal surgery or other high accuracy procedures where the smallest error can result in a serious and permanent outcome. Also, prior art devices such as these are hand held by the surgeon and thus, limited in accuracy to the surgeon's ability to hold and align the tool.
- Furthermore, when using this system, the user must be cautious to not block the line-or-sight between the tool mounted emitters or receivers, the reference arc bearing emitters or receivers, and the navigation system. This can severely limit the ability of the surgeon or surgical team as the tool may actually limit their ability to aid the patient. Also, while such prior art systems do reduce the incision size, they complicate the surgical procedure. Usually a patient is brought into a surgical suite ready for a procedure, the procedure is performed, completed, and the patient leaves. However, the '548 patent system requires the patient to be put through a surgical procedure to affix the clamp and referencing arc, then the patient is transported to a CT or MRI, then transported back to the surgical suite in a non-sterile condition for the substantial portion of the procedure to commence. Finally, this system has many components, such as the navigation system and the computer output unit, that clutter up the already limited space in the surgical suite.
- Therefore, there is a need in the art for a device with high precision and accuracy that can assist the surgeon in aligning the working end of the surgical tool such that delicate procedures can be preformed percutaneously with minimal radiation exposure to both the patient and the surgical staff.
- The present invention is directed to a device and method for assisting in surgical procedures. According to the invention, a robot is disclosed that precisely positions a surgical tool with respect to a surgical site. The robot attaches to the bone of a patient with a clamp or with wires such as K-wires. Actuators extend from the robot base and move away from and toward the base member. This manipulates balls that rotate within spherical swivel joints that in turn align a sleeve. A surgical tool such as a screw driver or a drill bit is inserted through the sleeve and thus is precisely aligned with a site requiring surgery.
- The present invention also includes a method for using the robot to assist in surgical procedures. Initially, three dimensional images are taken of the patient and the surgeon performs pre-operative planning of the procedure to be done on the images. This creates parameters that will later be used to direct the robot to the location where the surgical procedure is required. The robot is then attached to the patient by the clamp or the k-wire. C-arm images are taken of the patient with the attached clamp and these images are co-registered and calibrated such that a precise image of the bone with the robot attached is generated. This image is then registered, or matched, with the three dimensional image. This is accomplished in a highly efficient and accurate manner by taking small windows of the images where the surgery is to take place and registering these small portions. The small windows are chosen off the images by locating the bone attached clamp and selecting a window according to pre-operative calculation of the bone-robot attachment location. After these windows are chosen and registered, the remaining bone is registered by aligning the registered windows. At this point the robot is located precisely on the bone of the patient in the three dimensional image and can be manipulated by the surgeon to a pre-operative planned location for percutaneous insertion of surgical tools, medical devices, or implants.
- For a better understanding of the nature, objects, and function of the present invention, reference should be made to the following detailed description in conjunction with the accompanying drawings, in which:
-
FIG. 1 is an overview of an embodiment of a surgical system showing a control unit with a display, C-arm with a calibration phantom attached, and a robot used for aligning surgical tools attached to the patient according to the present invention; -
FIG. 2 is a perspective view showing a miniature surgical robot attached to a bone and aligning a surgical tool in an embodiment of the invention; -
FIG. 3 is a perspective view showing a clamp for attaching to a bone and adaptor for receiving a robot in an embodiment of the invention; -
FIG. 4 is a cross-sectional view ofFIG. 3 ; -
FIG. 5 is a flow chart of an embodiment of the method of using the present invention; -
FIG. 6 is a perspective view of an image referencing plate with three referencing markers attached; -
FIG. 7 is a perspective view of a spacer used to extend the clamp; and -
FIG. 8 is a perspective view showing a miniature surgical robot for aligning a surgical tool attached to a bone by K-wires in an embodiment of the invention. - Like reference numerals refer to corresponding elements throughout the several drawings.
- Referring to the illustrations and particularly to
FIG. 1 it can be seen that a preferred embodiment of the present invention generally includes an image guided, robot assisted, surgical system. Included in this system generally, as shown inFIG. 1 , is a bone attachedsurgical robot 30; acontrol unit 10 that matches data from CT scans and C-arm images to locaterobot 30 on the patient's bone and allows a surgeon to controlrobot 30, through the use of a mouse, joystick, touch screen, or the like; andvideo display 20.Control unit 10 generally includes a cpu and user interface communicating withdisplay 20 androbot 30. -
FIG. 2 illustratesrobot 30 according to one embodiment of the present invention attached withclamp 40 tovertebra 50.Robot 30 alignssleeve 60 through which surgical tool 70 such as a screwdriver, drill bit, Kirschner wire (K-wire), or the like can be inserted and precisely aligned with a site requiring a surgical procedure and thus, the operation can be conducted percutaneously or in traditional open procedures. - In a preferred embodiment of the invention,
robot 30 includesbase 35 that sits vertically onclamp adaptor 45. At least two pair ofactuators 80 extend frombase 35. Theactuators 80 extend from the base 35 forming a fixed angle 85 betweenbase 35 andactuator 80. This angle is generally between about 15-.pi.degrees and more preferably about 45 degrees. In one preferred embodiment, the points of attachment ofactuators 80 are spaced apart by about 50 mm in the Z direction and about 50 mm in the Y direction. Eachactuator 80 is capable of operating independently from theother actuators 80.Actuator 80 is similar to known linear actuators and includes a housing, a motor, a lead screw, an electrical connection, and a position sensor such as an optical encoder, an LVDT, or the like. In a preferred embodiment each actuator is approximately 5 mm in diameter and approximately 35 mm in length. - The end of
actuator 80 that is not fixedly attached to base 35 contains hinge joint 90. Hinge joint 90 links actuator 80 to rigid member 100. In a preferred embodiment member 100 is about 4 mm in diameter and 40 mm in length. Hinge joint 90 permits member 100 to freely rotate through about 270 degrees on an axis that runs parallel tobase 35. The other end of the rigid member 100 is fixed with solid connection 105 to ring member 110. There is no movement between rigid member 100 and ring member 110 at solid connection 105. - Upper ring member 110A and lower ring member 110B, solidly connected to individual rigid members 100, come together at spherical swivel joint 120. Each ring member 110 forms one half of an outer race of spherical swivel joint 120. Ring members 110 are free to rotate with respect to one another, but are held fixedly from separating in the Z axis direction. Contained between upper ring member 110A and lower ring member 110B, and free to swivel, is
ball 130. Passing throughball 130 issleeve 60.Sleeve 60 passes through both upper andlower balls 130, forming an aligning axis through which surgical tool 70 is passed. Asactuators 80 extend and retract, hingejoints 90 freely rotate about the Z axis andballs 130 swivel in the spherical swivel joints 120 formed by upper and lower ring members 110. A hollow axis is formed by the sleeve passing through each of upper andlower balls 130 such that a surgical tool 70 can be inserted through and be accurately aligned with the working location. - According to the present invention the above described
robot 30 is just one example of a robot configured for surgical assistance that may be utilized with the system according to the present invention. Other robot configurations that could satisfy the same tasks include, for example, a parallel robot constructed to the required dimensions, such as that described in Simaan, N., Glozman, D., and Shoham, M.: “Design Considerations of new types of Six-Degrees-of-Freedom Parallel Manipulators,” IEEE International Conference on Robotics and Automation, Belgium, 1998, which is incorporated by reference herein. - In a preferred embodiment of the invention,
robot 30 is attached with the bone of a patient byclamp 40. As shown inFIG. 3 and 4, clamp 40 comprisesbone clamping portion 42 andclamp adaptor 45. Initially, handles 210 extend fromclamp 40 and allow a user to hold, align, and affixclamp 40 onto a bone of the patient. The base of thehandles 210 fit overnuts 220, shown inFIG. 4 , located onclamp 40. Whenclamp 40 is in place, the user pusheshandles 210 toward each other to closejaws 230 onto the selected bone. When handles 210 are fully closed, or pushed together, a first locking (described below) occurs and clamp 40 is locked in place on the bone. The user then rotateshandles 210 in a clockwise direction, turning and tightening nuts 220.Nuts 220 tighten down on threadedstuds 250 andpinch clamp adaptor 45 ontobone clamping portion 42. This causes a second locking ofclamp 40 into place on the bone. The base of each threadedstud 250 has aspherical mating surface 255 so that whenclamp adaptor 45 is tightened down ontobone clamping portion 42 the clamp adaptor can self align itself onspherical mating surface 255 ofstud 250. This allows the top surface ofclamp adaptor 45 to maintain a horizontal surface for receiving therobot base 35. The handles, 210, are then removed by pulling straight up and away from theclamp 40. Protruding from the top surface ofclamp adaptor 45 are connection pins 200. Connection pins 200 align with receiving holes inrobot base 35 and when insertedlock robot 30 into place by some type of a snap ring or spring and ball bearing or plunger ball/pin. - With reference specifically to
FIG. 4 , it can be seen that threadedstuds 250 are embedded inlevers 260. Left andright levers 260 are connected together byupper center hinge 280. The other end oflevers 260 connect withrespective jaws 230 throughside axis hinge 270. Left andright jaws 230 are connected together by main pivot 290 around which the jaws rotate. When a user pusheshandles 210 together to closejaws 230,upper center hinge 280 is pushed downward and at the same time side axis hinges 270 rotate around the main pivot 290. The first locking occurs whenupper center hinge 280 is pushed below the center line formed between left and right side axis hinges 270, and clamp 40 locks onto the bone. Whenclamp 40 is in the fully closed and locked position,jaws 230 are parallel to each other and separated by a set distance. The set closing distance betweenjaws 230 can be altered for different bone attachment applications by exchanging re-moveable jaw inserts 240 with the same of a different thickness. -
FIG. 7 illustratesspacer 900 that can be attached to the top surface ofclamp adaptor 45 to ensure thatrobot 30 remains above the working area and out of any tissue that might occur when a patient has unusual body proportions.Spacer 900 attaches toconnector pins 200 ofclamp adaptor 45 and provides connector pins 910, similar to connector pins 200, forrobot 30 attachment to the top surface of thespacer 900. - Above described
clamp 40 is an example of one embodiment according to the invention by which a robot may be attached to a bone for assisting in a surgical procedure. Other attachment devices can also be incorporated with a robot such as, for example, K-wire connections.FIG. 8 illustrates such a K-wire connection. K-wires 950 are inserted into the bone by standard surgical procedures.Robot base 35 contains an elongated slot through which K-wires 950 are inserted. Screw 960 can then be turned and tighten pinch plate 970 againstrobot base 35 pinching K-wires 950 between pinch plate 970 androbot base 35 holdingrobot 30 tight with respect to K-wires 950 andbone 50. -
FIG. 5 illustrates the registration system used to establish the position of the robot on the bone. Initially there is a pre-operative step 400. This step 400 consists of taking a three-dimensional scan 410 of the patient, such as a CT or MRI scan. A surgeon then performspre-operative planning 420 on the three-dimensional scan. For example, if the procedure to be done is a fracture fixation, the surgeon will study the three-dimensional image and the condition of the bone, choose the proper implant from a database containing implants of all types and sizes based on the present application, and electronically position and insert the implant, the screw, or the like. This is known in the art, for example, as described in “Marching Cubes: a high resolution 3D surface reconstruction algorithm”, W. E. Lorensen, H. E. Cline, Computer Graphics 21 (1987) 163-169 which is incorporated by reference. The parameters generated by thepre-operative planning 420 are stored in thecontrol unit 10 for positioning therobot 30 during the actual surgical procedure. - With reference now to
FIG. 1, 5 , and 6 the next step is initial calibration of the C-arm 450. A phantom 320 (FIG. 1 ) is attached to the lens of the C-arm device 300 and a blank C-arm image is taken, step 460,FIG. 5 . Thephantom 320 is used to correct for the distortion associated with the C-arm image. The phantom contains several reference objects and a large number of small reference objects. The control unit automatically recognizes the reference objects and creates distortion correction maps and calibration intrinsic parameters to correct for the imprecise C-arm image. Systems such as these are known in the art and described, for example, in Brack et al., “Accurate X-ray Navigation in Computer-Assisted Surgery”, Proc. Of the 12.sub.th Int. Symp On Computer Assisted Radiology and Surgery, H. Lemke, et al., eds., Springer, 1998; Yaniv et al., “Fluoroscopic Image Processing for Computer-Aided Orthopaedic Surgery”, Proc. 1.sup.st Int. Conf. On Medical Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science 1496, Elsevier, et al., eds., 1998; Hofstetteret al., “Fluoroscopy Based Surgical Navigation—Concept and Clinical Applications”, Proc. 11.sup.th Int. Symp. on Computer Assisted Radiology and Surgery, H. U. Lemke, et al., eds., Springer 1997; Tsai, R., “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses”, IEEE Journal of Robotics and Automation, Vol. RA-3,No. 4, August 1987, which are incorporated by reference. - Next, the patient is brought into the operating room, a small incision is made according to standard surgical practice at the site where
clamp 40 is to be attached, and the clamp is attached to the selected bone using handles as described above, step 462,FIG. 5 .Handles 210 are then removed from theclamp 40. An image referencing plate 800 (FIG. 6 ) is attached to clamp 40,step 465,FIG. 5 , by receiving holes that receive connector pins 200. The image referencing plate 800 (FIG. 6 ) has three referencingmarkers 810 on it that show up very clear and precise in the C-arm image. The distance and angle between the referencingmarkers 810 are known such that the C-arm image can be calibrated in a secondary calibration step,step 465, to accurately represent actual size of the image. At least two, but preferably three C-arm images are taken of the patient with the attachedclamp 40 andimage referencing plate 800. These C-arm images are taken from different angles, preferably 0, 45, and 90 degrees, step 470,FIG. 5 . - In another embodiment of the present invention the secondary calibration step, step 465B, can be accomplished by attaching the
robot 30 to the clamp and taking multiple C-arm images. By knowing the dimensions, or by placing referencing markers onrobot 30 and knowing the distance and angle between the referencing markers the C-arm images can be calibrated in a secondary calibration step, step 465B. - The next step of the process is co-registration, step 500. The C-arm images are transferred into the
control unit 10 as data, step 502. At each location an image is taken from, the position of the C-arm is recorded,step 504, into thecontrol unit 10. The data of the images, step 502, and the position of the C-arm,step 504, are correlated by knowing the position from which each images was taken,step 504, and by aligning the referencing markers 810 (FIG. 6 ) from the image referencing plate 800 (FIG. 6 ). Thus, an accurate, pseudo three-dimensional image of the surgical site with theclamp 40 attached to the bone is generated. This stage can be referred to as robot to bone registration or co-registration. - According to a preferred embodiment of the invention, bone to bone registration next occurs in
step 600. Step 600 is a process of estimating and matching the true surface contours or the objects in the images. Registration methods are either based on geometry or intensity of the image. Geometric based registration is achieved by finding features in the 2D fluoroscopic images and matching these features with corresponding features in the 3D image, acquired, for example, from a CT scan dataset, MRI image, ultrasound image or from a CAD model. The features can be known landmarks (anatomical landmarks or implanted fiducials), or contour points in the fluoroscopic image, matched with the registered object's surface. An algorithm that may be used to compute the transformation is the Iterative Closest Point (ICP) algorithm. This algorithm is described, for example in Besl, P. J. and McKay, N. D., “A Method for Registration of 3D Shapes”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992, 14(2), 239-255, which is incorporated herein by reference. The input to the algorithm are sets of back-projected rays from the fluoroscopic images, and a model of the registered object. The algorithm iteratively computes a transformation that approximates the ray sets to the model. For landmark registration, a match between each ray and the corresponding landmark is defined before searching for the transformation. Contour registration selects a new surface point to match with each ray on every iteration. - Preferably, the registration process uses two or more fluoroscopic images, as described in greater detail, for example, in Hamadeh, et al., “Towards automatic registration between CT and X-ray images: cooperation between 3D/2D registration and 2D edge detection”, Medical robotics and computer assisted surgery, 1995, Wiley 39-46, and Hamadeh, et al., “Automated 3-Dimensional Computed Tomographic and Fluoroscopic Image Registration”, Computer Aided Surgery, 1998, 3, which are incorporated herein by reference. According to this method, anatomical landmarks in the images are detected and matched manually. Based on this match, an approximated initial guess is computed, with ray intersections, which are 3D points in the registration environment, being matched with the model's landmarks. Then, the object's contour in the 2D image is registered with the model's surface. A likelihood estimator is used to remove outliers, or pixels not in the contour, from the sample point set. A signed distance function is defined to overcome any internal contours problems. The overall in-vitro accuracy of this method can be better than 2 mm.
- In one alternative, a single fluoroscopic image may be used for registration, achieving an accuracy of about 3 mm. This technique is based on a combinatorial search among matches of three points and three rays. The match with minimal average distance for the registration is then selected. This alternative is described in Tang, “Method for Intensity-based Registration with CT Images,” Masters Thesis: Department of Computer Science, Queen University, Ontario Canada, 1999, which is incorporated herein by reference.
- In a further alternative according to the invention, intensity-based registration is achieved by comparing fluoroscopic images with simulated X-rays (digitally reconstructed radiographs, or DRR's) from an estimated position. Such a technique is generally described in Lemieux et al., “Patient-to computed-tomography image registration method based digitally reconstructed radiographs”, Medical Physics, 21, 1994, 1749-1760 and Murphy, M. “An automatic six-degree-of freedom image registration algorithm for image-guided frameless stereotactic surgery”, Medical Physics, 24(6), June 1997, which are incorporated by reference herein.
- When the camera position guess and the actual position are very close, the original and reconstructed image are very similar. Pixel intensity information is used to define a measure of similarity between the datasets. The similarity measure can include intensity values, cross-correlation, histogram correlation, and mutual information. The algorithm proceeds in three steps. The input is a CT data set, intrinsic camera parameters, one or more fluoroscopic images and an initial camera position estimate for each image. In the first step, the algorithm generates one DRR for each given camera position. In the second step, a dissimilarity measure is computed between the real and reconstructed image. In the third step, new camera poses are computed that best reduce the dissimilarity between the images. The process is repeated until convergence is reached. The parametric space of camera positions in then searched incrementally from an initial configuration. The space is six-dimensional (three rotations and three translations). The advantages of this technique is that no segmentation is necessary. However, the search space is six-dimensional, and can contain may local minima.
- A benefit of the present invention is that it can utilize either of the above described registration methods. By utilizing the dimensions of the bone attached robot and its attachment location, the initial location of the window is a very good guess of the location and therefore the intensity based method can be utilized. Thus, according to the present invention, a faster and more accurate registration process is accomplished as between the fluorscopic and 3D images. This is done in
step 600, and occurs very quickly and with a high degree of accuracy because the registration process is performed on small windows of the images, rather than the images as a whole. Preferably windows are selected that specifically relate to the known location of the robot and/or its support member. Windows of about 20 mm by 20 mm located approximately adjacent to the clamp location, according to pre-operative calculation of the bone-robot attachment location, are selected from the C-arm (fluoroscopic) image data, step 610. For example, these windows may be selected as the area above the attachedclamp 40 in the C-arm image and the tip of the transverse process of the vertebra covering the area where the surgical procedure is to take place. Generally, the same windows are chosen from both the pseudo three-dimensional hybrid C-arm image,step 510, and also from the CT image (3D image),step 410. The small windows chosen from the C-arm images and the CT scan image are then laid over each other and matched or registered by the control unit,step 620, as described above. Focusing only on a small window of the C-arm image rather than looking for a matching anatomical landmark in the entire image, makes the process occur very fast and with the high degree of accuracy needed for precise procedures such as vertebra surgery. - Next, the remaining portion of the CT and C-arm image of the bones are overlaid, the registration windows are aligned, and the remaining bone is registered, step 630. Since the windows have already been accurately registered this step occurs quickly and also with a high degree of accuracy. Now clamp 40 is located precisely on the bone,
step 640, of the CT image. Next, the user attachesrobot 30 to clamp 40 and thus,robot 30 is located precisely with respect to the bone,step 645. - After
robot 30 is co-registered 500 and registered 600, its position is known relative to the patient's bone and therefore can move to align with the pre-operatively picked location such that the operation can virtually take place on the control unit. The user selects a pre-operatively planned location and task fromstep 420 by use of a joystick, mouse, touch screen, or the like,step 710. TheRobot 30 responds and movessleeve 60 into position,step 720, such that when the user inserts a surgical tool 70 through the opening in thesleeve 60 the surgical tool 70 will be precisely aligned with the location requiring the surgical procedure, step 730. The surgeon can then insert a selected surgical tool 70 and operate without opening the surgical site to see the placement of the surgical tool because the surgeon can verify the positioning of the surgical tool 70 on thecontrol unit 10 anddisplay 20. Thus operating percutaneously or in general open procedures, with a high degree of accuracy, low trauma, small incisions, low chance of infection, and minimal exposure to radiation. A further benefit of this system is that because the robot is miniature it can be freely attached to the bone of a patient and move with the body. Therefore, the robot system does not need a dynamic referencing device to maintain orientation with the body once it is registered. This creates a more precise and less complicated system that is versatile and user friendly as the surgeon can manipulate the patient into different surgical positions without disturbing the robot system. - The present invention is illustrated herein by reference to a spinal vertebra attachment. However, it will be appreciated by those in the art that the teachings of the present invention are equally applicable to other bone attachments.
Claims (20)
1. A surgical system, comprising: a surgical robot for manipulating a surgical tool to a surgical site with precise positioning during a surgical procedure; an attachment member configured and dimensioned to attach the surgical robot to a bone associated with said surgical site; and a controller programmed prior to said surgical procedure to direct the robot to position the surgical tool at the surgical site.
2. The surgical system according to claim 1 , wherein said robot comprises: a base member; at least four actuators extending outward from the base member at fixed angles, said actuators being arranged in cooperating pairs, said pairs together defining a spherical joint at cooperating ends opposite the base member, and a surgical tool held by said spherical joints.
3. The surgical system according to claim 2 , wherein said surgical tool comprises at least one of a tool guide, a cutting member and a drilling member.
4. The surgical system according to claim 2 , wherein said actuators define a longitudinal axis and are configured to provide only translational movement along said axis.
5. The surgical system according to claim 2 , wherein surgical site lies at least approximately within a defined plane and said surgical robot is configured and dimensioned such that said base member is at least approximately perpendicular to said defined plane.
6. The surgical system according to claim 1 , wherein said robot comprises a miniature parallel robot.
7. A surgical system of claim 1 , wherein said robot comprises at least 3 actuators mounted on a base member, said actuator being configured for at least translational or rotational movement.
8. The surgical system according to claim 1 , wherein said attachment member comprises a robot receiving adaptor mounted on a bone attachment portion.
9. The surgical system according to claim 8 , wherein said bone attachment portion comprises a clamp having at least two jaws shaped to mate with a specific bone configuration.
10. The surgical system according to claim 8 , wherein said bone attachment portion comprises at least one wire configured and dimensioned to be received in bone holes.
11. The surgical system according to claim 1 , wherein said controller comprises a cpu and user interface communicating with said robot, said cpu containing a program for guiding the robot based on data generated from surgical site images.
12. The surgical system according to claim 11 , wherein said surgical site images are created prior to each surgical procedure requiring a new location for the support member.
13. A surgical system for facilitating a surgical procedure at a surgical site, comprising: a surgical robot including a base member; two pairs of actuators extending outward from the base member at fixed angles, wherein said actuators each have first and second ends, said first ends of a pair being spaced apart on said base member and said second ends of a pair coming together to define a tool holding element; an attachment member removably securable to the robot base member and configured and dimensioned to attach the surgical robot to a bone associated with said surgical site; and a controller including a cpu and user interface communicating with said robot, said cpu containing a program for guiding the robot based on data generated from surgical site images created prior to said surgical procedure.
14. A method for facilitating a surgical procedure at a patient surgical site, comprising: generating an initial three dimensional image of a patient surgical site; planning the surgical procedure utilizing said initial three dimensional image prior to conducting said procedure to provide a surgical plan referencing said initial three dimensional image; attaching at least a support member of a surgical robot to a patient bone associated with the planned surgical procedure at the surgical site; generating at least two radiographic images of the surgical site and support member; correlating said radiographic images to form a pseudo three dimensional image including an accurate position of said support member attached to the bone; selecting a window from said pseudo three dimensional image and registering said window with a similarly chosen window from said initial three dimensional image; and correlating the pseudo three dimensional image with the initial three dimensional image such that the support member is located with respect to the surgical plan.
15. The method according to claim 14 , wherein said window is selected approximately adjacent the support member.
16. The method according to claim 14 , wherein: said generating an initial three dimensional image comprises at least one of magnetic resonance imaging, CT, or Ultrasound; and said generating one radiographic image comprises C-arm imaging.
17. The method according to claim 16 , wherein said at least two C-arm images are taken from angles 90 degrees apart from each other.
18. The method according to claim 14 , further comprising: attaching a imaging referencing plate with at least three reference markers located thereon to said support member; and calibrating the radiographic images based on said reference markers prior to generating said radiographic image of the surgical site.
19. The method according to claim 14 , further comprising: mounting a surgical robot on said support member, said robot including at least one known reference dimension; and calibrating the radiographic images based on said reference dimension prior to generating said radiographic image of the surgical site.
20. The method according to claim 14 , wherein said correlating the pseudo three dimensional image with the initial three dimensional image comprises registering the remaining portions other than said window of said pseudo three dimensional image with the remaining portions other than said window of said three dimensional image.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/965,100 US20050171557A1 (en) | 2000-07-24 | 2004-10-15 | Miniature bone-attached surgical robot |
US12/725,487 US10058338B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot |
US12/725,481 US8571638B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot and method of use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22015500P | 2000-07-24 | 2000-07-24 | |
US09/912,687 US6837892B2 (en) | 2000-07-24 | 2001-07-24 | Miniature bone-mounted surgical robot |
US10/965,100 US20050171557A1 (en) | 2000-07-24 | 2004-10-15 | Miniature bone-attached surgical robot |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/912,687 Continuation US6837892B2 (en) | 2000-07-24 | 2001-07-24 | Miniature bone-mounted surgical robot |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/725,487 Continuation US10058338B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot |
US12/725,481 Continuation US8571638B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot and method of use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050171557A1 true US20050171557A1 (en) | 2005-08-04 |
Family
ID=25432274
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/912,687 Expired - Lifetime US6837892B2 (en) | 2000-07-24 | 2001-07-24 | Miniature bone-mounted surgical robot |
US10/965,100 Abandoned US20050171557A1 (en) | 2000-07-24 | 2004-10-15 | Miniature bone-attached surgical robot |
US12/725,481 Expired - Lifetime US8571638B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot and method of use thereof |
US12/725,487 Expired - Lifetime US10058338B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/912,687 Expired - Lifetime US6837892B2 (en) | 2000-07-24 | 2001-07-24 | Miniature bone-mounted surgical robot |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/725,481 Expired - Lifetime US8571638B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot and method of use thereof |
US12/725,487 Expired - Lifetime US10058338B2 (en) | 2000-07-24 | 2010-03-17 | Miniature bone-attached surgical robot |
Country Status (6)
Country | Link |
---|---|
US (4) | US6837892B2 (en) |
EP (1) | EP1414362B1 (en) |
JP (1) | JP2004535884A (en) |
AT (1) | ATE541529T1 (en) |
CA (1) | CA2454861C (en) |
WO (1) | WO2003009768A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050192575A1 (en) * | 2004-02-20 | 2005-09-01 | Pacheco Hector O. | Method of improving pedicle screw placement in spinal surgery |
US20050267354A1 (en) * | 2003-02-04 | 2005-12-01 | Joel Marquart | System and method for providing computer assistance with spinal fixation procedures |
US20060036264A1 (en) * | 2004-08-06 | 2006-02-16 | Sean Selover | Rigidly guided implant placement |
US20070055291A1 (en) * | 2004-08-06 | 2007-03-08 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US20080091066A1 (en) * | 2005-04-18 | 2008-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Camera holder device and method thereof |
US20080091302A1 (en) * | 2005-04-18 | 2008-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
CN100435735C (en) * | 2006-09-30 | 2008-11-26 | 南方医科大学 | Human body orthopedic navigation system |
WO2010064234A3 (en) * | 2008-12-01 | 2010-08-05 | Mazor Surgical Technologies Ltd. | Robot guided oblique spinal stabilization |
US20130123804A1 (en) * | 2005-04-18 | 2013-05-16 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
CN103479376A (en) * | 2013-08-29 | 2014-01-01 | 中国科学院长春光学精密机械与物理研究所 | Method for fully corresponding fusion of pre-operation CT data and intraoperative X-ray radiograph |
US9757206B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US9757204B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery rule based approach |
US9795282B2 (en) | 2011-09-20 | 2017-10-24 | M.S.T. Medical Surgery Technologies Ltd | Device and method for maneuvering endoscope |
US10866783B2 (en) | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US20210141597A1 (en) * | 2011-08-21 | 2021-05-13 | Transenterix Europe S.A.R.L. | Vocally actuated surgical control system |
US11033341B2 (en) | 2017-05-10 | 2021-06-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11065069B2 (en) | 2017-05-10 | 2021-07-20 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11135026B2 (en) | 2012-05-11 | 2021-10-05 | Peter L. Bono | Robotic surgical system |
US11173000B2 (en) | 2018-01-12 | 2021-11-16 | Peter L. Bono | Robotic surgical control system |
US11653979B2 (en) | 2016-10-27 | 2023-05-23 | Leucadia 6, Llc | Intraoperative fluoroscopic registration of vertebral bodies |
US11844543B2 (en) | 2017-10-23 | 2023-12-19 | Globus Medical, Inc. | Rotary oscillating/reciprocating surgical tool |
US11857351B2 (en) | 2018-11-06 | 2024-01-02 | Globus Medical, Inc. | Robotic surgical system and method |
Families Citing this family (259)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
KR20030002219A (en) * | 2001-06-30 | 2003-01-08 | 한국과학기술원 | Femur clamping robot mount for robotic total hip arthroplasty |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
CA2489584C (en) * | 2002-06-17 | 2011-02-15 | Mazor Surgical Technologies Ltd. | Robot for use with orthopaedic inserts |
US7359746B2 (en) * | 2002-09-09 | 2008-04-15 | Z-Kat, Inc. | Image guided interventional method and apparatus |
JP4731908B2 (en) | 2002-09-26 | 2011-07-27 | デピュイ・プロダクツ・インコーポレイテッド | Method and apparatus for controlling a surgical bar during an orthopedic procedure |
DE10322738A1 (en) * | 2003-05-20 | 2004-12-16 | Siemens Ag | Markerless automatic 2D C scan and preoperative 3D image fusion procedure for medical instrument use uses image based registration matrix generation |
DE10335388B4 (en) * | 2003-07-25 | 2006-06-22 | Aesculap Ag & Co. Kg | Set of surgical referencing devices |
US7209538B2 (en) | 2003-08-07 | 2007-04-24 | Xoran Technologies, Inc. | Intraoperative stereo imaging system |
DE10340151A1 (en) * | 2003-08-26 | 2005-04-21 | Aesculap Ag & Co Kg | Surgical holding device |
WO2005034757A1 (en) * | 2003-10-03 | 2005-04-21 | Xoran Technologies, Inc. | Ct imaging system for robotic intervention |
US7887567B2 (en) | 2003-10-06 | 2011-02-15 | Mazer Surgical Technologies, Ltd. | Apparatus for spinal fixation of vertebrae |
US20050107687A1 (en) * | 2003-11-14 | 2005-05-19 | Anderson Peter T. | System and method for distortion reduction in an electromagnetic tracker |
DE10353700B4 (en) * | 2003-11-18 | 2008-04-03 | Universität Heidelberg | Device for path control of a medical instrument and control unit therefor |
US8442677B2 (en) * | 2004-02-04 | 2013-05-14 | Mazor Surgical Technologies, Ltd. | Verification system for robot pose |
DE102004010332B3 (en) * | 2004-02-25 | 2005-10-20 | Aesculap Ag & Co Kg | Surgical holder for holding and positioning a surgical instrument comprises a frame having a first holding arm guide for holding and guiding a first holding arm |
US20060135959A1 (en) * | 2004-03-22 | 2006-06-22 | Disc Dynamics, Inc. | Nuclectomy method and apparatus |
US7300432B2 (en) * | 2004-04-21 | 2007-11-27 | Depuy Products, Inc. | Apparatus for securing a sensor to a surgical instrument for use in computer guided orthopaedic surgery |
US7620223B2 (en) * | 2004-04-22 | 2009-11-17 | Siemens Medical Solutions Usa, Inc. | Method and system for registering pre-procedural images with intra-procedural images using a pre-computed knowledge base |
US7366278B2 (en) * | 2004-06-30 | 2008-04-29 | Accuray, Inc. | DRR generation using a non-linear attenuation model |
US7327865B2 (en) * | 2004-06-30 | 2008-02-05 | Accuray, Inc. | Fiducial-less tracking with non-rigid image registration |
US7231076B2 (en) * | 2004-06-30 | 2007-06-12 | Accuray, Inc. | ROI selection in image registration |
US7426318B2 (en) * | 2004-06-30 | 2008-09-16 | Accuray, Inc. | Motion field generation for non-rigid image registration |
US7522779B2 (en) * | 2004-06-30 | 2009-04-21 | Accuray, Inc. | Image enhancement method and system for fiducial-less tracking of treatment targets |
CA2513202C (en) * | 2004-07-23 | 2015-03-31 | Mehran Anvari | Multi-purpose robotic operating system and method |
US7734119B2 (en) * | 2004-09-21 | 2010-06-08 | General Electric Company | Method and system for progressive multi-resolution three-dimensional image reconstruction using region of interest information |
US8361128B2 (en) * | 2004-09-30 | 2013-01-29 | Depuy Products, Inc. | Method and apparatus for performing a computer-assisted orthopaedic procedure |
US20090264939A9 (en) * | 2004-12-16 | 2009-10-22 | Martz Erik O | Instrument set and method for performing spinal nuclectomy |
WO2006075331A2 (en) * | 2005-01-13 | 2006-07-20 | Mazor Surgical Technologies Ltd. | Image-guided robotic system for keyhole neurosurgery |
US7789874B2 (en) * | 2005-05-03 | 2010-09-07 | Hansen Medical, Inc. | Support assembly for robotic catheter system |
US7330578B2 (en) * | 2005-06-23 | 2008-02-12 | Accuray Inc. | DRR generation and enhancement using a dedicated graphics device |
US7881771B2 (en) * | 2005-08-03 | 2011-02-01 | The Hong Kong Polytechnic University | Bone reposition device, method and system |
US7983777B2 (en) * | 2005-08-19 | 2011-07-19 | Mark Melton | System for biomedical implant creation and procurement |
US20070118055A1 (en) * | 2005-11-04 | 2007-05-24 | Smith & Nephew, Inc. | Systems and methods for facilitating surgical procedures involving custom medical implants |
US7895899B2 (en) * | 2005-12-03 | 2011-03-01 | Kelly Brian P | Multi-axis, programmable spine testing system |
DE102005059804A1 (en) * | 2005-12-14 | 2007-07-05 | Siemens Ag | Navigation of inserted medical instrument in a patient, e.g. a catheter, uses initial three dimensional image of the target zone to give a number of two-dimensional images for comparison with fluoroscopic images taken during the operation |
US8219177B2 (en) * | 2006-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US8219178B2 (en) * | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US8010181B2 (en) * | 2006-02-16 | 2011-08-30 | Catholic Healthcare West | System utilizing radio frequency signals for tracking and improving navigation of slender instruments during insertion in the body |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
DK3045273T3 (en) * | 2006-03-03 | 2019-02-25 | Universal Robots As | Joint for a robot |
JP4717683B2 (en) * | 2006-03-30 | 2011-07-06 | 株式会社日立メディコ | Medical image display device |
US20070276491A1 (en) * | 2006-05-24 | 2007-11-29 | Disc Dynamics, Inc. | Mold assembly for intervertebral prosthesis |
US8092536B2 (en) * | 2006-05-24 | 2012-01-10 | Disc Dynamics, Inc. | Retention structure for in situ formation of an intervertebral prosthesis |
US8491603B2 (en) * | 2006-06-14 | 2013-07-23 | MacDonald Dettwiller and Associates Inc. | Surgical manipulator |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US20080037843A1 (en) * | 2006-08-11 | 2008-02-14 | Accuray Incorporated | Image segmentation for DRR generation and image registration |
WO2008038284A2 (en) | 2006-09-25 | 2008-04-03 | Mazor Surgical Technologies Ltd. | Ct-free spinal surgical imaging system |
WO2008038282A2 (en) * | 2006-09-25 | 2008-04-03 | Mazor Surgical Technologies Ltd. | System for positioning of surgical inserts and tools |
US8126239B2 (en) * | 2006-10-20 | 2012-02-28 | Siemens Aktiengesellschaft | Registering 2D and 3D data using 3D ultrasound data |
DE202006019649U1 (en) | 2006-12-22 | 2007-08-16 | Brainlab Ag | Guiding tube -fixing device for attaching or fixing guiding tube at structure for supplying substance, has mounting element, fixed joint in fastening element and fixed holding device on joint |
DE102007011568A1 (en) * | 2007-03-08 | 2008-09-11 | Cas Innovations Ag | Medical clamp, in particular spinal clamp |
US8444631B2 (en) | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
EP2033670B1 (en) * | 2007-07-17 | 2015-09-02 | Brainlab AG | Attachment device for medical purposes, in particular for attaching a reference geometry for navigation-assisted operations to a body, in particular to a bone |
WO2009052315A2 (en) * | 2007-10-17 | 2009-04-23 | Robie Device Group, Llc | Methods, systems and apparatuses for torsional stabiliazation |
US8986309B1 (en) | 2007-11-01 | 2015-03-24 | Stephen B. Murphy | Acetabular template component and method of using same during hip arthrosplasty |
US9101431B2 (en) | 2007-11-01 | 2015-08-11 | Stephen B. Murphy | Guide for acetabular component positioning |
US8267938B2 (en) | 2007-11-01 | 2012-09-18 | Murphy Stephen B | Method and apparatus for determining acetabular component positioning |
US10335236B1 (en) | 2007-11-01 | 2019-07-02 | Stephen B. Murphy | Surgical system using a registration device |
US11992271B2 (en) | 2007-11-01 | 2024-05-28 | Stephen B. Murphy | Surgical system using a registration device |
US9679499B2 (en) * | 2008-09-15 | 2017-06-13 | Immersion Medical, Inc. | Systems and methods for sensing hand motion by measuring remote displacement |
DE102008052680A1 (en) | 2008-10-22 | 2010-04-29 | Surgitaix Ag | Device for the controlled adjustment of a surgical positioning unit |
US9196046B2 (en) * | 2009-03-27 | 2015-11-24 | Koninklijke Philips N.V. | Medical imaging |
US9168106B2 (en) | 2009-05-05 | 2015-10-27 | Blue Ortho | Device and method for instrument adjustment in computer assisted surgery |
ES2546295T3 (en) | 2009-05-06 | 2015-09-22 | Blue Ortho | Fixation system with reduced invasiveness for follow-up elements in computer-assisted surgery |
EP2448514B1 (en) | 2009-06-30 | 2015-06-24 | Blue Ortho | Adjustable guide in computer assisted orthopaedic surgery |
ES2382774B1 (en) * | 2010-02-12 | 2013-04-26 | Universitat Pompeu Fabra | METHOD FOR OBTAINING A THREE-DIMENSIONAL RECONSTRUCTION FROM ONE OR MORE PROJECTIVE VIEWS, AND USE OF THE SAME |
CN103118596B (en) * | 2010-05-04 | 2015-11-25 | 开创治疗股份有限公司 | For the system using pseudo-characteristic to carry out abdominal surface coupling |
CA2743937A1 (en) * | 2010-06-22 | 2011-12-22 | Queen's University At Kingston | C-arm pose estimation using intensity-based registration of imaging modalities |
US8942789B2 (en) * | 2010-10-07 | 2015-01-27 | Siemens Aktiengesellschaft | 2D3D overlay on a CPR basis for aneurysm repair |
EP2453325A1 (en) | 2010-11-16 | 2012-05-16 | Universal Robots ApS | Method and means for controlling a robot |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US9921712B2 (en) | 2010-12-29 | 2018-03-20 | Mako Surgical Corp. | System and method for providing substantially stable control of a surgical tool |
DE102011003642A1 (en) * | 2011-02-04 | 2012-08-09 | Siemens Aktiengesellschaft | Method for supporting minimally invasive engagement for insertion of mounting unit, involves using data bank containing geometric information of different medicinal mounting units |
US9308050B2 (en) | 2011-04-01 | 2016-04-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system and method for spinal and other surgeries |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2723270B1 (en) | 2011-06-27 | 2019-01-23 | Board of Regents of the University of Nebraska | On-board tool tracking system of computer assisted surgery |
CA3067299A1 (en) | 2011-09-02 | 2013-03-07 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
CN103889663B (en) | 2011-09-28 | 2016-09-28 | Ur机器人有限公司 | The calibration of robot and programming |
US9713499B2 (en) | 2011-12-05 | 2017-07-25 | Mazor Robotics Ltd. | Active bed mount for surgical robot |
US9956042B2 (en) | 2012-01-13 | 2018-05-01 | Vanderbilt University | Systems and methods for robot-assisted transurethral exploration and intervention |
US20130197354A1 (en) * | 2012-01-30 | 2013-08-01 | Siemens Aktiengesellschaft | Minimally invasive treatment of mitral regurgitation |
US9539726B2 (en) * | 2012-04-20 | 2017-01-10 | Vanderbilt University | Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots |
WO2013158974A1 (en) | 2012-04-20 | 2013-10-24 | Vanderbilt University | Dexterous wrists for surgical intervention |
US9549720B2 (en) | 2012-04-20 | 2017-01-24 | Vanderbilt University | Robotic device for establishing access channel |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
EP2863827B1 (en) | 2012-06-21 | 2022-11-16 | Globus Medical, Inc. | Surgical robot platform |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US10799298B2 (en) * | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9820818B2 (en) | 2012-08-03 | 2017-11-21 | Stryker Corporation | System and method for controlling a surgical manipulator based on implant parameters |
AU2013296278B2 (en) | 2012-08-03 | 2018-06-14 | Stryker Corporation | Systems and methods for robotic surgery |
US20140081659A1 (en) | 2012-09-17 | 2014-03-20 | Depuy Orthopaedics, Inc. | Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking |
JP6131606B2 (en) * | 2013-01-21 | 2017-05-24 | 株式会社島津製作所 | Radiation imaging apparatus and image processing method therefor |
US9672640B2 (en) * | 2013-01-24 | 2017-06-06 | Varian Medical Systems International Ag | Method for interactive manual matching and real-time projection calculation in imaging |
US9044863B2 (en) | 2013-02-06 | 2015-06-02 | Steelcase Inc. | Polarized enhanced confidentiality in mobile camera applications |
WO2014127353A1 (en) * | 2013-02-18 | 2014-08-21 | The Research Foundation For The State University Of New York | End effector for surgical system and method of use thereof |
AU2014240998B2 (en) | 2013-03-13 | 2018-09-20 | Stryker Corporation | System for arranging objects in an operating room in preparation for surgical procedures |
WO2014165060A2 (en) | 2013-03-13 | 2014-10-09 | Stryker Corporation | Systems and methods for establishing virtual constraint boundaries |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9289247B2 (en) * | 2013-03-15 | 2016-03-22 | Kyphon SÀRL | Surgical tool holder |
KR101418212B1 (en) | 2013-03-26 | 2014-07-10 | 박일형 | Minimally invasive surgery apparatus having manipulator for treating fractures |
US20150015582A1 (en) * | 2013-07-15 | 2015-01-15 | Markus Kaiser | Method and system for 2d-3d image registration |
FR3010628B1 (en) | 2013-09-18 | 2015-10-16 | Medicrea International | METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
FR3012030B1 (en) | 2013-10-18 | 2015-12-25 | Medicrea International | METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT |
US10076385B2 (en) | 2013-12-08 | 2018-09-18 | Mazor Robotics Ltd. | Method and apparatus for alerting a user to sensed lateral forces upon a guide-sleeve in a robot surgical system |
CA2932600C (en) | 2013-12-15 | 2022-05-10 | Mazor Robotics Ltd. | Semi-rigid bone attachment robotic surgery system |
US9241771B2 (en) | 2014-01-15 | 2016-01-26 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
EP3104803B1 (en) | 2014-02-11 | 2021-09-15 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
EP3113914A4 (en) | 2014-03-04 | 2017-12-27 | Universal Robots A/S | Safety system for industrial robot |
CN106659537B (en) | 2014-04-24 | 2019-06-11 | Kb医疗公司 | The surgical instrument holder used in conjunction with robotic surgical system |
WO2015185503A1 (en) * | 2014-06-06 | 2015-12-10 | Koninklijke Philips N.V. | Imaging system for a vertebral level |
CN107072673A (en) | 2014-07-14 | 2017-08-18 | Kb医疗公司 | Anti-skidding operating theater instruments for preparing hole in bone tissue |
DE112015003537T5 (en) | 2014-09-26 | 2017-07-13 | Teradyne, Inc. | tongs |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
EP3258872B1 (en) | 2015-02-18 | 2023-04-26 | KB Medical SA | Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
WO2017005272A1 (en) | 2015-07-08 | 2017-01-12 | Universal Robots A/S | Method for extending end user programming of an industrial robot with third party contributions |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
EP3136345A1 (en) * | 2015-08-24 | 2017-03-01 | FEI Company | Positional error correction in a tomographic imaging apparatus |
CN105213031B (en) * | 2015-08-26 | 2017-11-28 | 温州医科大学附属第二医院 | A kind of vertebra posting |
US10687905B2 (en) | 2015-08-31 | 2020-06-23 | KB Medical SA | Robotic surgical systems and methods |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US9911225B2 (en) * | 2015-09-29 | 2018-03-06 | Siemens Healthcare Gmbh | Live capturing of light map image sequences for image-based lighting of medical data |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
JPWO2017073055A1 (en) * | 2015-10-27 | 2018-08-16 | パナソニックIpマネジメント株式会社 | Transport device |
WO2017079655A2 (en) | 2015-11-04 | 2017-05-11 | Mcafee Paul C | Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation |
US12082893B2 (en) | 2015-11-24 | 2024-09-10 | Think Surgical, Inc. | Robotic pin placement |
US10220515B2 (en) * | 2015-11-30 | 2019-03-05 | Seiko Epson Corporation | Robot and control method for robot |
DE102015223921A1 (en) * | 2015-12-01 | 2017-06-01 | Siemens Healthcare Gmbh | Method for operating a medical robotic device and medical robotic device |
EP3397188B1 (en) | 2015-12-31 | 2020-09-09 | Stryker Corporation | System and methods for preparing surgery on a patient at a target site defined by a virtual object |
CA3011008A1 (en) | 2016-01-11 | 2017-07-20 | Mazor Robotics Ltd. | Surgical robotic system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US11064904B2 (en) | 2016-02-29 | 2021-07-20 | Extremity Development Company, Llc | Smart drill, jig, and method of orthopedic surgery |
CN109195527B (en) | 2016-03-13 | 2022-02-11 | 乌泽医疗有限公司 | Apparatus and method for use with bone surgery |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
TWI805545B (en) | 2016-04-12 | 2023-06-21 | 丹麥商環球機器人公司 | Method and computer program product for programming a robot by demonstration |
US20180036086A1 (en) * | 2016-08-03 | 2018-02-08 | Amith Derek Mendonca | Novel robotic surgical device |
US11051886B2 (en) * | 2016-09-27 | 2021-07-06 | Covidien Lp | Systems and methods for performing a surgical navigation procedure |
US11793394B2 (en) | 2016-12-02 | 2023-10-24 | Vanderbilt University | Steerable endoscope with continuum manipulator |
WO2018109556A1 (en) | 2016-12-12 | 2018-06-21 | Medicrea International | Systems and methods for patient-specific spinal implants |
WO2018112025A1 (en) | 2016-12-16 | 2018-06-21 | Mako Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
EP3360502A3 (en) | 2017-01-18 | 2018-10-31 | KB Medical SA | Robotic navigation of robotic surgical systems |
WO2018167246A1 (en) | 2017-03-15 | 2018-09-20 | Orthotaxy | System for guiding a surgical tool relative to a target axis in spine surgery |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
WO2018185755A1 (en) * | 2017-04-02 | 2018-10-11 | Mazor Robotics Ltd. | Three dimensional robotic bioprinter |
EP3612122B1 (en) | 2017-04-21 | 2023-12-20 | Medicrea International | A system for developing one or more patient-specific spinal implants |
US11221497B2 (en) | 2017-06-05 | 2022-01-11 | Steelcase Inc. | Multiple-polarization cloaking |
EP3651678A4 (en) * | 2017-07-08 | 2021-04-14 | Vuze Medical Ltd. | Apparatus and methods for use with image-guided skeletal procedures |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
US10967504B2 (en) | 2017-09-13 | 2021-04-06 | Vanderbilt University | Continuum robots with multi-scale motion through equilibrium modulation |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
EP3492032B1 (en) | 2017-11-09 | 2023-01-04 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
KR102583530B1 (en) * | 2017-11-16 | 2023-10-05 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Master/slave matching and control for remote operation |
US10918422B2 (en) | 2017-12-01 | 2021-02-16 | Medicrea International | Method and apparatus for inhibiting proximal junctional failure |
WO2019144904A1 (en) * | 2018-01-29 | 2019-08-01 | The University Of Hong Kong | Robotic stereotactic system for mri-guided neurosurgery |
US10893842B2 (en) | 2018-02-08 | 2021-01-19 | Covidien Lp | System and method for pose estimation of an imaging device and for determining the location of a medical device with respect to a target |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US11106124B2 (en) | 2018-02-27 | 2021-08-31 | Steelcase Inc. | Multiple-polarization cloaking for projected and writing surface view screens |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US10966736B2 (en) * | 2018-05-21 | 2021-04-06 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11065065B2 (en) * | 2019-02-22 | 2021-07-20 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11877801B2 (en) | 2019-04-02 | 2024-01-23 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US11925417B2 (en) | 2019-04-02 | 2024-03-12 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
WO2020263778A1 (en) * | 2019-06-24 | 2020-12-30 | Dm1 Llc | Optical system and apparatus for instrument projection and tracking |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11399965B2 (en) | 2019-09-09 | 2022-08-02 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
EP4042374A4 (en) * | 2019-10-11 | 2024-01-03 | Beyeonics Surgical Ltd. | System and method for improved electronic assisted medical procedures |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11457984B1 (en) | 2019-12-02 | 2022-10-04 | Arc Specialties, Inc. | Surgical process for knee replacement and knee resurfacing process therefor |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
US11890205B2 (en) | 2019-12-13 | 2024-02-06 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
EP4081153A1 (en) | 2019-12-23 | 2022-11-02 | Mazor Robotics Ltd. | Multi-arm robotic system for spine surgery with imaging guidance |
US11769251B2 (en) | 2019-12-26 | 2023-09-26 | Medicrea International | Systems and methods for medical image analysis |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US20210251591A1 (en) * | 2020-02-17 | 2021-08-19 | Globus Medical, Inc. | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
US11452492B2 (en) | 2020-04-21 | 2022-09-27 | Mazor Robotics Ltd. | System and method for positioning an imaging device |
US20210322112A1 (en) * | 2020-04-21 | 2021-10-21 | Mazor Robotics Ltd. | System and method for aligning an imaging device |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11882217B1 (en) | 2020-04-30 | 2024-01-23 | Verily Life Sciences Llc | Surgical robotic tool authorization system |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11980426B2 (en) | 2020-08-03 | 2024-05-14 | Warsaw Orthopedic, Inc. | System and method for preliminary registration |
US11931113B2 (en) | 2020-08-03 | 2024-03-19 | Mazor Robotics Ltd. | Systems, devices, and methods for retractor interference avoidance |
US20230346393A1 (en) * | 2020-08-18 | 2023-11-02 | Integrity Implants Inc. D/B/A Accelus | Powered osteotome trepanation tool |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US20220323114A1 (en) * | 2021-04-07 | 2022-10-13 | Ernest Wright | Spinal stabilization apparatus for the detection and prevention of a loss of robotic accuracy and method thereof |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
CA3229379A1 (en) * | 2021-11-02 | 2023-05-11 | Orthosoft Ulc | On-bone robotic system for computer-assisted surgery |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
WO2024035712A1 (en) * | 2022-08-08 | 2024-02-15 | Ohio State Innovation Foundation | Jigs and related methods for guiding a cutting instrument for controlled surgical cutting of a body portion of a patient |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4457311A (en) * | 1982-09-03 | 1984-07-03 | Medtronic, Inc. | Ultrasound imaging system for scanning the human back |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5167165A (en) * | 1990-12-17 | 1992-12-01 | Eden Medizinische Elektronik Gmbh | Device for positioning a measuring element |
US5281182A (en) * | 1991-05-15 | 1994-01-25 | Tomy Company, Ltd. | Remote control robot toy with torso and leg twist and torso tilt |
US5410638A (en) * | 1993-05-03 | 1995-04-25 | Northwestern University | System for positioning a medical instrument within a biotic structure using a micromanipulator |
US5546942A (en) * | 1994-06-10 | 1996-08-20 | Zhang; Zhongman | Orthopedic robot and method for reduction of long-bone fractures |
US5649956A (en) * | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5674221A (en) * | 1995-10-23 | 1997-10-07 | Orthopaedic Innovations, Inc. | External fixator with improved clamp and methods for use |
US5752962A (en) * | 1993-11-15 | 1998-05-19 | D'urso; Paul S. | Surgical procedures |
US5769092A (en) * | 1996-02-22 | 1998-06-23 | Integrated Surgical Systems, Inc. | Computer-aided system for revision total hip replacement surgery |
US5791231A (en) * | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
US5806518A (en) * | 1995-09-11 | 1998-09-15 | Integrated Surgical Systems | Method and system for positioning surgical robot |
US5814038A (en) * | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5824085A (en) * | 1996-09-30 | 1998-10-20 | Integrated Surgical Systems, Inc. | System and method for cavity generation for surgical planning and initial placement of a bone prosthesis |
US5993463A (en) * | 1997-05-15 | 1999-11-30 | Regents Of The University Of Minnesota | Remote actuation of trajectory guide |
US6226548B1 (en) * | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US6231526B1 (en) * | 1991-06-13 | 2001-05-15 | International Business Machines Corporation | System and method for augmentation of surgery |
US6236875B1 (en) * | 1994-10-07 | 2001-05-22 | Surgical Navigation Technologies | Surgical navigation systems including reference and localization frames |
US6246200B1 (en) * | 1998-08-04 | 2001-06-12 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6322567B1 (en) * | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6529765B1 (en) * | 1998-04-21 | 2003-03-04 | Neutar L.L.C. | Instrumented and actuated guidance fixture for sterotactic surgery |
US6752812B1 (en) * | 1997-05-15 | 2004-06-22 | Regent Of The University Of Minnesota | Remote actuation of trajectory guide |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4791934A (en) * | 1986-08-07 | 1988-12-20 | Picker International, Inc. | Computer tomography assisted stereotactic surgery system and method |
EP0427358B1 (en) * | 1989-11-08 | 1996-03-27 | George S. Allen | Mechanical arm for and interactive image-guided surgical system |
CA2260688A1 (en) | 1989-11-21 | 1991-05-21 | I.S.G. Technologies, Inc. | Probe-correlated viewing of anatomical image data |
US6347240B1 (en) * | 1990-10-19 | 2002-02-12 | St. Louis University | System and method for use in displaying images of a body part |
DE9117261U1 (en) * | 1990-10-19 | 1998-08-06 | St. Louis University, St. Louis, Mo. | Localization system for a surgical probe to be used on the head |
US5300080A (en) * | 1991-11-01 | 1994-04-05 | David Clayman | Stereotactic instrument guided placement |
DE4304570A1 (en) * | 1993-02-16 | 1994-08-18 | Mdc Med Diagnostic Computing | Device and method for preparing and supporting surgical procedures |
DE69432834T2 (en) * | 1993-04-26 | 2004-05-13 | St. Louis University | Display of the location of a surgical probe |
IL107523A (en) | 1993-11-07 | 2000-01-31 | Ultraguide Ltd | Articulated needle guide for ultrasound imaging and method of using same |
US5695501A (en) * | 1994-09-30 | 1997-12-09 | Ohio Medical Instrument Company, Inc. | Apparatus for neurosurgical stereotactic procedures |
US6246898B1 (en) * | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5690106A (en) * | 1995-06-30 | 1997-11-25 | Siemens Corporate Research, Inc. | Flexible image registration for rotational angiography |
US5682886A (en) | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
US5799055A (en) * | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
US6009212A (en) | 1996-07-10 | 1999-12-28 | Washington University | Method and apparatus for image registration |
US6314310B1 (en) * | 1997-02-14 | 2001-11-06 | Biosense, Inc. | X-ray guided surgical location system with extended mapping volume |
US6096050A (en) * | 1997-09-19 | 2000-08-01 | Surgical Navigation Specialist Inc. | Method and apparatus for correlating a body with an image of the body |
US5951475A (en) * | 1997-09-25 | 1999-09-14 | International Business Machines Corporation | Methods and apparatus for registering CT-scan data to multiple fluoroscopic images |
US6348058B1 (en) * | 1997-12-12 | 2002-02-19 | Surgical Navigation Technologies, Inc. | Image guided spinal surgery guide, system, and method for use thereof |
US5963613A (en) | 1997-12-31 | 1999-10-05 | Siemens Corporate Research, Inc. | C-arm calibration method for 3D reconstruction in an imaging system |
US6546277B1 (en) * | 1998-04-21 | 2003-04-08 | Neutar L.L.C. | Instrument guidance system for spinal and other surgery |
US6298262B1 (en) | 1998-04-21 | 2001-10-02 | Neutar, Llc | Instrument guidance for stereotactic surgery |
FR2779339B1 (en) * | 1998-06-09 | 2000-10-13 | Integrated Surgical Systems Sa | MATCHING METHOD AND APPARATUS FOR ROBOTIC SURGERY, AND MATCHING DEVICE COMPRISING APPLICATION |
US6118845A (en) | 1998-06-29 | 2000-09-12 | Surgical Navigation Technologies, Inc. | System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers |
US6778850B1 (en) * | 1999-03-16 | 2004-08-17 | Accuray, Inc. | Frameless radiosurgery treatment system and method |
US6470207B1 (en) * | 1999-03-23 | 2002-10-22 | Surgical Navigation Technologies, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
CA2306303A1 (en) * | 1999-04-23 | 2000-10-23 | Lutz T. Kynast | Microdrive for probes |
US6301495B1 (en) * | 1999-04-27 | 2001-10-09 | International Business Machines Corporation | System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan |
US6415171B1 (en) * | 1999-07-16 | 2002-07-02 | International Business Machines Corporation | System and method for fusing three-dimensional shape data on distorted images without correcting for distortion |
DE19936364A1 (en) | 1999-08-03 | 2001-02-15 | Siemens Ag | Identification and localisation of marks in a 3D medical scanning process |
AU4305201A (en) * | 1999-11-29 | 2001-06-04 | Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for transforming view orientations in image-guided surgery |
US7747312B2 (en) * | 2000-01-04 | 2010-06-29 | George Mason Intellectual Properties, Inc. | System and method for automatic shape registration and instrument tracking |
US6702821B2 (en) * | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US6711432B1 (en) * | 2000-10-23 | 2004-03-23 | Carnegie Mellon University | Computer-aided orthopedic surgery |
US6490475B1 (en) * | 2000-04-28 | 2002-12-03 | Ge Medical Systems Global Technology Company, Llc | Fluoroscopic tracking and visualization system |
EP1197185B1 (en) * | 2000-10-11 | 2004-07-14 | Stryker Leibinger GmbH & Co. KG | Device for determining or tracking the position of a bone |
WO2002062199A2 (en) * | 2001-01-16 | 2002-08-15 | Microdexterity Systems, Inc. | Surgical manipulator |
US7063705B2 (en) * | 2001-06-29 | 2006-06-20 | Sdgi Holdings, Inc. | Fluoroscopic locator and registration device |
US7198630B2 (en) * | 2002-12-17 | 2007-04-03 | Kenneth I. Lipow | Method and apparatus for controlling a surgical robot to mimic, harmonize and enhance the natural neurophysiological behavior of a surgeon |
US7327872B2 (en) * | 2004-10-13 | 2008-02-05 | General Electric Company | Method and system for registering 3D models of anatomical regions with projection images of the same |
-
2001
- 2001-07-24 US US09/912,687 patent/US6837892B2/en not_active Expired - Lifetime
-
2002
- 2002-05-22 CA CA2454861A patent/CA2454861C/en not_active Expired - Lifetime
- 2002-05-22 JP JP2003515165A patent/JP2004535884A/en active Pending
- 2002-05-22 EP EP02735926A patent/EP1414362B1/en not_active Expired - Lifetime
- 2002-05-22 WO PCT/IL2002/000399 patent/WO2003009768A1/en active Application Filing
- 2002-05-22 AT AT02735926T patent/ATE541529T1/en active
-
2004
- 2004-10-15 US US10/965,100 patent/US20050171557A1/en not_active Abandoned
-
2010
- 2010-03-17 US US12/725,481 patent/US8571638B2/en not_active Expired - Lifetime
- 2010-03-17 US US12/725,487 patent/US10058338B2/en not_active Expired - Lifetime
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4457311A (en) * | 1982-09-03 | 1984-07-03 | Medtronic, Inc. | Ultrasound imaging system for scanning the human back |
US5236432A (en) * | 1988-04-26 | 1993-08-17 | Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5408409A (en) * | 1990-05-11 | 1995-04-18 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5167165A (en) * | 1990-12-17 | 1992-12-01 | Eden Medizinische Elektronik Gmbh | Device for positioning a measuring element |
US5281182A (en) * | 1991-05-15 | 1994-01-25 | Tomy Company, Ltd. | Remote control robot toy with torso and leg twist and torso tilt |
US6231526B1 (en) * | 1991-06-13 | 2001-05-15 | International Business Machines Corporation | System and method for augmentation of surgery |
US5410638A (en) * | 1993-05-03 | 1995-04-25 | Northwestern University | System for positioning a medical instrument within a biotic structure using a micromanipulator |
US5791231A (en) * | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
US5752962A (en) * | 1993-11-15 | 1998-05-19 | D'urso; Paul S. | Surgical procedures |
US5546942A (en) * | 1994-06-10 | 1996-08-20 | Zhang; Zhongman | Orthopedic robot and method for reduction of long-bone fractures |
US6236875B1 (en) * | 1994-10-07 | 2001-05-22 | Surgical Navigation Technologies | Surgical navigation systems including reference and localization frames |
US5649956A (en) * | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5814038A (en) * | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5806518A (en) * | 1995-09-11 | 1998-09-15 | Integrated Surgical Systems | Method and system for positioning surgical robot |
US5674221A (en) * | 1995-10-23 | 1997-10-07 | Orthopaedic Innovations, Inc. | External fixator with improved clamp and methods for use |
US5769092A (en) * | 1996-02-22 | 1998-06-23 | Integrated Surgical Systems, Inc. | Computer-aided system for revision total hip replacement surgery |
US5824085A (en) * | 1996-09-30 | 1998-10-20 | Integrated Surgical Systems, Inc. | System and method for cavity generation for surgical planning and initial placement of a bone prosthesis |
US5993463A (en) * | 1997-05-15 | 1999-11-30 | Regents Of The University Of Minnesota | Remote actuation of trajectory guide |
US6752812B1 (en) * | 1997-05-15 | 2004-06-22 | Regent Of The University Of Minnesota | Remote actuation of trajectory guide |
US6226548B1 (en) * | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US6529765B1 (en) * | 1998-04-21 | 2003-03-04 | Neutar L.L.C. | Instrumented and actuated guidance fixture for sterotactic surgery |
US6246200B1 (en) * | 1998-08-04 | 2001-06-12 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6322567B1 (en) * | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050267354A1 (en) * | 2003-02-04 | 2005-12-01 | Joel Marquart | System and method for providing computer assistance with spinal fixation procedures |
US7235076B2 (en) * | 2004-02-20 | 2007-06-26 | Pacheco Hector O | Method of improving pedicle screw placement in spinal surgery |
US20050192575A1 (en) * | 2004-02-20 | 2005-09-01 | Pacheco Hector O. | Method of improving pedicle screw placement in spinal surgery |
US8016835B2 (en) | 2004-08-06 | 2011-09-13 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US20060036264A1 (en) * | 2004-08-06 | 2006-02-16 | Sean Selover | Rigidly guided implant placement |
US20070055291A1 (en) * | 2004-08-06 | 2007-03-08 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US8852210B2 (en) | 2004-08-06 | 2014-10-07 | DePuy Synthes Products, LLC | Rigidly guided implant placement |
US8182491B2 (en) | 2004-08-06 | 2012-05-22 | Depuy Spine, Inc. | Rigidly guided implant placement |
US10456010B2 (en) | 2005-04-18 | 2019-10-29 | Transenterix Europe S.A.R.L. | Device and methods of improving laparoscopic surgery |
US9295379B2 (en) | 2005-04-18 | 2016-03-29 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
US9943372B2 (en) * | 2005-04-18 | 2018-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
US10603110B2 (en) | 2005-04-18 | 2020-03-31 | Transenterix Europe S.A.R.L. | Device and methods of improving laparoscopic surgery |
US8388516B2 (en) | 2005-04-18 | 2013-03-05 | Mordehai Sholev | Camera holder device and method thereof |
US8414475B2 (en) * | 2005-04-18 | 2013-04-09 | M.S.T. Medical Surgery Technologies Ltd | Camera holder device and method thereof |
US20130123804A1 (en) * | 2005-04-18 | 2013-05-16 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
US20080091302A1 (en) * | 2005-04-18 | 2008-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
US20080091066A1 (en) * | 2005-04-18 | 2008-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Camera holder device and method thereof |
CN100435735C (en) * | 2006-09-30 | 2008-11-26 | 南方医科大学 | Human body orthopedic navigation system |
US9814535B2 (en) * | 2008-12-01 | 2017-11-14 | Mazor Robotics Ltd. | Robot guided oblique spinal stabilization |
US20170071682A1 (en) * | 2008-12-01 | 2017-03-16 | Mazor Robotics Ltd. | Robot Guided Oblique Spinal Stabilization |
WO2010064234A3 (en) * | 2008-12-01 | 2010-08-05 | Mazor Surgical Technologies Ltd. | Robot guided oblique spinal stabilization |
US20110319941A1 (en) * | 2008-12-01 | 2011-12-29 | Yossef Bar | Robot Guided Oblique Spinal Stabilization |
US8992580B2 (en) * | 2008-12-01 | 2015-03-31 | Mazor Robotics Ltd. | Robot guided oblique spinal stabilization |
US9937013B2 (en) | 2011-08-21 | 2018-04-10 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US11886772B2 (en) * | 2011-08-21 | 2024-01-30 | Asensus Surgical Europe S.a.r.l | Vocally actuated surgical control system |
US9757204B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery rule based approach |
US9757206B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US11561762B2 (en) * | 2011-08-21 | 2023-01-24 | Asensus Surgical Europe S.A.R.L. | Vocally actuated surgical control system |
US10866783B2 (en) | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US20210141597A1 (en) * | 2011-08-21 | 2021-05-13 | Transenterix Europe S.A.R.L. | Vocally actuated surgical control system |
US20230123443A1 (en) * | 2011-08-21 | 2023-04-20 | Asensus Surgical Europe S.a.r.l | Vocally actuated surgical control system |
US9795282B2 (en) | 2011-09-20 | 2017-10-24 | M.S.T. Medical Surgery Technologies Ltd | Device and method for maneuvering endoscope |
US11135026B2 (en) | 2012-05-11 | 2021-10-05 | Peter L. Bono | Robotic surgical system |
US11819300B2 (en) | 2012-05-11 | 2023-11-21 | Globus Medical, Inc. | Robotic surgical system and method |
CN103479376A (en) * | 2013-08-29 | 2014-01-01 | 中国科学院长春光学精密机械与物理研究所 | Method for fully corresponding fusion of pre-operation CT data and intraoperative X-ray radiograph |
US11653979B2 (en) | 2016-10-27 | 2023-05-23 | Leucadia 6, Llc | Intraoperative fluoroscopic registration of vertebral bodies |
US11065069B2 (en) | 2017-05-10 | 2021-07-20 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11033341B2 (en) | 2017-05-10 | 2021-06-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11701188B2 (en) | 2017-05-10 | 2023-07-18 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11937889B2 (en) | 2017-05-10 | 2024-03-26 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US12035985B2 (en) | 2017-05-10 | 2024-07-16 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11844543B2 (en) | 2017-10-23 | 2023-12-19 | Globus Medical, Inc. | Rotary oscillating/reciprocating surgical tool |
US11173000B2 (en) | 2018-01-12 | 2021-11-16 | Peter L. Bono | Robotic surgical control system |
US11857351B2 (en) | 2018-11-06 | 2024-01-02 | Globus Medical, Inc. | Robotic surgical system and method |
Also Published As
Publication number | Publication date |
---|---|
US20100204714A1 (en) | 2010-08-12 |
US8571638B2 (en) | 2013-10-29 |
ATE541529T1 (en) | 2012-02-15 |
EP1414362A1 (en) | 2004-05-06 |
WO2003009768A1 (en) | 2003-02-06 |
JP2004535884A (en) | 2004-12-02 |
US10058338B2 (en) | 2018-08-28 |
US6837892B2 (en) | 2005-01-04 |
CA2454861A1 (en) | 2003-02-06 |
US20100198230A1 (en) | 2010-08-05 |
CA2454861C (en) | 2011-04-26 |
EP1414362B1 (en) | 2012-01-18 |
US20020038118A1 (en) | 2002-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8571638B2 (en) | Miniature bone-attached surgical robot and method of use thereof | |
US11759272B2 (en) | System and method for registration between coordinate systems and navigation | |
US10102640B2 (en) | Registering three-dimensional image data of an imaged object with a set of two-dimensional projection images of the object | |
Lavallee et al. | Computer-assisted spine surgery: a technique for accurate transpedicular screw fixation using CT data and a 3-D optical localizer | |
WO2017211040A1 (en) | Special three-dimensional image calibrator, surgical positioning system and positioning method | |
US20240164848A1 (en) | System and Method for Registration Between Coordinate Systems and Navigation | |
WO2021089550A1 (en) | Robotic positioning of a device | |
US20200297430A1 (en) | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices | |
EP3865069B1 (en) | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones | |
CN117064557B (en) | Surgical robot for orthopedic surgery | |
Mitschke et al. | Interventions under video-augmented X-ray guidance: Application to needle placement | |
Oszwald et al. | Hands-on robotic distal interlocking in intramedullary nail fixation of femoral shaft fractures | |
US20210259711A1 (en) | 2d-image guided robotic distal locking system | |
Grzeszczuk et al. | A fluoroscopic X-ray registration process for three-dimensional surgical navigation | |
Zheng et al. | A novel parameter decomposition based optimization approach for automatic pose estimation of distal locking holes from single calibrated fluoroscopic image | |
US20230131337A1 (en) | Device For Computer-Assisted Surgery Having Two Arms And Method For Operating The Same | |
Zheng et al. | A novel parameter decomposition approach for recovering poses of distal locking holes from single calibrated fluoroscopic image | |
CN117398185A (en) | System for restoring registration of 3D image volumes | |
WO2021186217A1 (en) | Computer assisted surgery device having a robot arm and method for operating the same | |
Zheng et al. | A PRECISE APPROACH FOR RECOVERING POSES OF DISTAL LOCKING HOLES FROM SINGLE CALIBRATED X-RAY IMAGE FOR COMPUTER-ASSISTED INTRAMEDULLARY NAILING OF FEMORAL SHAFT FRACTURES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MAZOR ROBOTICS LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHOHAM, MOSHE;REEL/FRAME:031304/0569 Effective date: 20130930 |