US20050109371A1 - Post CMP scrubbing of substrates - Google Patents
Post CMP scrubbing of substrates Download PDFInfo
- Publication number
- US20050109371A1 US20050109371A1 US10/973,827 US97382704A US2005109371A1 US 20050109371 A1 US20050109371 A1 US 20050109371A1 US 97382704 A US97382704 A US 97382704A US 2005109371 A1 US2005109371 A1 US 2005109371A1
- Authority
- US
- United States
- Prior art keywords
- brush
- substrate
- scrubbing
- surface geometry
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 102
- 238000005201 scrubbing Methods 0.000 title claims abstract description 66
- 238000004140 cleaning Methods 0.000 claims abstract description 57
- 239000012530 fluid Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 26
- 239000000126 substance Substances 0.000 description 17
- 230000009471 action Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000001680 brushing effect Effects 0.000 description 3
- 235000012771 pancakes Nutrition 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/12—Brushes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
- B08B1/34—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members rotating about an axis parallel to the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67046—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
Definitions
- the present invention relates generally to systems for fabricating semiconductor devices, and is more particularly related to methods and apparatus for cleaning substrates.
- substrates such as thin slices or wafers of semiconductor material require polishing by a process that applies an abrasive slurry to a substrate's surfaces.
- slurry residue is generally cleaned or scrubbed from substrate surfaces via mechanical scrubbing devices, such as polyvinyl acetate (PVA) brushes, brushes made from other porous or sponge-like material, or brushes made with nylon bristles.
- PVA polyvinyl acetate
- An inventive cleaning apparatus for brush cleaning a surface of a substrate.
- the apparatus comprises a first brush having a first surface geometry adapted to scrub a major surface of the substrate, and a second brush having a second surface geometry different from the first surface geometry and adapted to scrub the major surface of the substrate.
- the cleaning apparatus comprises a first scrubbing apparatus having at least one brush with a profiled surface geometry, adapted to scrub a major surface of a substrate, and a second scrubbing apparatus having at least one brush with a smooth surface geometry, adapted to scrub a major surface of a substrate.
- the inventive method comprises scrubbing a first surface of the substrate with a brush having a first surface geometry, and then scrubbing the first surface of the substrate with a brush having a second surface geometry.
- the first and the second surface geometries also differ from each other.
- FIG. 1 is a partially schematic illustration of an inventive substrate cleaning system for cleaning a substrate in accordance with the present invention.
- FIG. 2A is a side, cross-sectional view of an exemplary nodular surface geometry that may be employed with the substrate cleaning system of FIG. 1 .
- FIG. 2B is a side, cross-sectional view of an exemplary smooth surface geometry that may be employed with the substrate cleaning system of FIG. 1 .
- FIG. 3 illustrates a process for brush cleaning a surface of a substrate in accordance with the present invention.
- the present invention includes a method of cleaning a substrate including scrubbing a major surface of a substrate with brushes of different (i.e., dissimilar) surface geometries.
- brushes of different (i.e., dissimilar) surface geometries are employed, one such brush having a profiled (e.g., nodular) surface geometry, and another such brush having a smooth surface geometry.
- the major surface of the substrate is initially scrubbed with the brush of the nodular geometry, and is subsequently scrubbed with the brush of the smooth geometry.
- the above order is reversed.
- a lower concentration of cleaning chemistry is employed when scrubbing with a profiled brush, and a higher concentration employed when scrubbing with a smooth brush.
- Effective cleaning of a substrate's surface via scrubbing with brushes of different surface geometries may be advantageously performed after CMP processing of the substrate surface.
- scrubbing a substrate with brushes of different surface geometries results in fewer particles remaining on the scrubbed surface as compared to the common practice in which no difference or gradient exists in the surface geometries of the brushes used to scrub a particular surface. While not intending to be bound by any particular theory, it is believed that better post CMP cleaning may be a result of a synergy involving different types of cleaning actions. For example, a brush having a profiled surface geometry (i.e., having raised surface features such as nodules) may contribute a stronger mechanical cleaning action, whereas a brush having a smooth surface geometry (e.g., a surface which includes no raised surface features or bristles) may contribute a proportionately stronger chemical cleaning action. It will be understood that chemical cleaning action includes reduction in adhesion of particles to the substrate surface. It further will be understood that surface geometry refers to brush surface profile rather than to a pore size of brush material.
- Embodiments of the current invention include a substrate cleaning system that includes a pair of scrubbing apparatuses having scrubber brushes of different surface geometries.
- an inventive substrate cleaning system 101 for cleaning a substrate S 1 includes a first scrubbing apparatus 103 which employs at least one brush 105 having a nodular surface geometry (e.g., such as is discussed in more detail below with regard to FIG. 2A ), and a second scrubbing apparatus 107 which employs at least one brush 109 having a smooth surface geometry (e.g., such as is discussed in more detail below with regard to FIG. 2B ).
- the brushes may, for example, be porous and/or sponge like, and/or may be comprised of a resilient material such as polyvinyl acetate (PVA).
- PVA polyvinyl acetate
- the brushes may comprise other and/or different materials, and may exhibit other and/or different material characteristics, provided that a difference in surface geometry between brushes is present. Note also that the brushes may be supported via any known support mechanism or mechanisms (not shown) and maybe enclosed within a chamber (not shown).
- Each of the exemplary scrubbing apparatuses shown in FIG. 1 may be employed to scrub a vertically oriented substrate (such as the substrate S 1 ), and may comprise a pair of brushes so as to permit scrubbing (e.g., simultaneous scrubbing) of both major surfaces of the substrate S 1 , as well as rollers 111 for supporting and rotating the substrate S 1 .
- Other numbers of brushes may be used, and other substrate orientations are possible, such as a horizontal orientation, or an inclined orientation.
- the brushes 105 , 109 are adapted to contact at least one of the same major surfaces of the substrate S 1 , for cleaning and/or removing slurry residue and/or other particulates/contaminants therefrom.
- the inventive substrate cleaning system 101 may further include a first fluid delivery unit 113 for delivering fluid to the first scrubbing apparatus 103 , and a second fluid delivery unit 115 for delivering fluid to the second scrubbing apparatus 107 .
- the same fluid delivery unit may deliver fluid to both scrubbing apparatuses.
- the same fluids may be delivered to both the scrubbing apparatuses, or different fluids may be delivered.
- the same chemical concentration or a different chemical concentration of the fluid may be delivered to each scrubbing apparatus.
- a solution of NH 4 OH at a concentration of approximately 0.05% is delivered to the first scrubbing apparatus 103
- a solution of NH 4 OH at a concentration of approximately 1.0% is delivered to the second scrubbing apparatus 107 .
- Greater or lesser concentrations of NH 4 OH may be used in either or both scrubbing apparatuses. Different types of chemicals may also and/or alternatively be used.
- the chemicals may, for example, be delivered in liquid form, and may aid the scrubbing process by washing slurry residue and/or other particulates/contaminants from brush and/or substrate surfaces, by facilitating dislodgement of particles/contaminants from substrate surfaces, and/or by dissolving or reducing adhesion of (e.g., via chemical reaction) particulates/contaminants disposed on brush and substrate surfaces.
- each scrubbing apparatus may include one or more spray bars 117 to which the fluid delivery unit may deliver fluid.
- the spray bar 117 may be located adjacent and to one side of the substrate S 1 , and may be used to direct a spray of fluid toward a first major surface of the substrate S 1 .
- Other methods of applying fluid to the surface of the substrate S 1 and/or to the brushes may be used.
- chemicals are delivered to each of the scrubbing apparatuses, and are sprayed on at least one major surface of the substrate S 1 by the spray bars 117 while the substrate S 1 is rotated at 50 RPM by the rollers 111 .
- DI water is sprayed on at least one major surface of the substrate S 1 for 30 seconds in order to rinse the substrate S 1 after scrubbing of the major surface by the profiled brushes 105 of the first scrubbing apparatus 103 , and is sprayed on the same major surface(s) of the substrate S 1 for 20 seconds in order to rinse the substrate S 1 after scrubbing of the major surface by the smooth brushes 109 of the second scrubbing apparatus 107 .
- the inventive substrate cleaning system 101 may further include a first drive device 119 which may be employed to rotate one or more of the brushes 105 of the first scrubbing apparatus 103 , and a second drive device 121 which may be employed to rotate one or more of the brushes 109 of the second scrubbing apparatus 107 .
- the same drive device may be employed to rotate one or more of the brushes of both scrubbing apparatuses.
- each brush is closed against the corresponding major surface of the substrate S 1 , and is rotated at 400 RPM so as to scrub the substrate S 1 . It has been found that scrubbing with the profiled brushes 105 for ten seconds, and scrubbing with the smooth brushes 109 for twenty seconds provides good particle removal.
- the inventive substrate cleaning system 101 may further include a controller 123 coupled to the first and second chemical delivery units 113 , 115 and/or to the first and second drive devices 119 , 121 , and may be adapted to control the operation of the same.
- the controller 123 may comprise a microprocessor, and the microprocessor may be programmed to activate and/or control the chemical delivery units so as to deliver chemicals to the scrubbing apparatuses at predetermined times and/or rates, and/or for a predetermined length of time.
- the microprocessor of the controller 123 may be programmed to activate and/or control the drive devices so as to rotate the brushes at predetermined times and/or rates, and/or for a predetermined length of time.
- the microprocessor of the controller 123 may exert similar control over the delivery of DI water, and/or over the rotation of the substrate S 1 by one or more of the rollers 11 .
- the present inventors observe that many important differences in the capacity of scrubber brushes to deliver different types and/or varying degrees of mechanical and/or cleaning actions can be attributed to surface geometry differences. For example, whether a brush is adapted to deliver shear forces of various sizes and directions beneficial for dislodging and wiping away surface particles otherwise resistant to removal via chemical action, or to provide a continuous region of brush/surface contact beneficial for trapping or otherwise maintaining fluid therebetween so as to dissolve and or reduce adhesion of surface particles which may otherwise be resistant to removal via mechanical scrubbing, would appear to be determined at least in part based on surface geometry.
- the brushes illustrated in FIGS. 2A and 2B have different surface geometries.
- profiled brush 105 may be considered to have a relatively rough surface geometry
- smooth brush 109 may be considered to have a relatively smooth surface geometry.
- the profiled brush 105 of FIG. 2A features a plurality of raised regions or nodules extending radially outward.
- the brush surface effectively comprises an inner surface 125 described by a diameter 127 , and an outer surface 129 described by a diameter 131 , the outer surface 129 essentially comprising a collection of respective outward facing surfaces of a plurality of nodules 133 extending from the inner surface 125 .
- the nodules of the particular embodiment have a height 135 and a width 137 , and are separated by a peripheral spacing distance 139 .
- profiled brushes examples include Rippey Symmetry nodule brushes, Texwipe Hydrocell nodule brushes, or the like.
- Other dimensions and/or configurations for a particular profiled brush 105 such as a combination of different sized nodules, are possible.
- the brush 105 being equipped with nodules such as the nodules 133 , has been observed to provide good mechanical cleaning action when the brush 105 is rotated against major surfaces of the substrate S 1 in the presence of cleaning chemicals, e.g., resulting in the dislodgement of particles that tend to resist removal via chemical cleaning action.
- the smooth brush 109 of FIG. 2B features no such raised regions or nodules.
- the brush surface essentially comprises a surface 141 , which in one embodiment is described by a diameter 143 , and is characterized in that it may or may not comprise numerous surface pores, but is also otherwise essentially peripherally and longitudinally (i.e., in a direction passing normally into the paper of FIG. 2A ) continuous (i.e., the surface 141 features no nodes, bristles, or other similar raised features of a large enough size such as may amount to differences in surface geometry as the term is used herein).
- smooth brushes examples include Rippey Symmetry smooth brushes, Texwipe Hydrocell smooth brushes, or the like.
- the smooth brush 109 of FIG. 2B being free of nodes and/or other discontinuities which may, for example, tend to prevent the brush 109 from providing a uniformly continuous contact pressure across the brush/surface interface, has been observed to provide good chemical cleaning action when the smooth brush 109 is rotated against surfaces of the substrate S 1 in the presence of cleaning chemicals, e.g., resulting in the reduced adhesion of and/or dissolution of particles that tend to resist removal via mechanical cleaning action.
- FIG. 3 illustrates a process 300 for brush cleaning a surface of a substrate S 1 .
- the process 300 may start at a step 301 , and proceed to a step 302 .
- the substrate S 1 is loaded into a first set of brushes.
- the substrate S 1 may be loaded into the first scrubbing apparatus 103 of FIG. 1 having the profiled brushes 105 of a nodular surface geometry as shown and described with respect to FIG. 2A .
- Other types of apparatus may be employed, as may other types of brushes (e.g., brushes having a substantially flat (rather than cylindrical) brushing surface such as a ‘pancake’ type brush).
- Such pancake brushes may be of either the nodular or smooth variety.
- a first fluid is applied to the substrate S 1 .
- the fluid may be, for example, an aqueous solution of NH 4 OH. Deionized water or other chemistries alternatively may be applied.
- One or more of many different methods and/or apparatus for applying the first fluid to the substrate S 1 may be employed, such as a spray bar similar to the spray bar 117 of FIG. 1 via the first fluid delivery apparatus 113 , a pressurized delivery of the first fluid outward of the brush surface via the pores of the brush surface, etc., e.g., so long as the first fluid is permitted to contact the surface of the substrate S 1 so as to facilitate cleaning thereof.
- the step 303 may accordingly occur before, during, and/or after the step 302 , e.g., as may be predetermined as part of an overall cleaning recipe.
- a step 304 the surface of the substrate S 1 is scrubbed by the brushes described above with respect to the step 302 .
- a profiled brush 105 such as is shown in FIG. 1 may be closed against the major surface of the substrate S 1 and rotated relative to the substrate for a first time period (e.g., ten seconds in duration) so as to create a mechanical cleaning action.
- the fluid application function of step 303 may also occur during the first time period in which the surface of the substrate S 1 is being scrubbed.
- the step of closing the scrubbing brush against the substrate S 1 may alternatively occur earlier, e.g., as part of one of the steps 302 or 303 .
- the substrate S 1 is loaded into a second set of brushes.
- the substrate S 1 may be loaded into the scrubbing apparatus 107 of FIG. 1 having the smooth brushes 109 of a smooth surface geometry as shown and described with respect to FIG. 2B .
- other types of apparatus may be employed, as may other numbers or types of brushes (e.g., pancake brushes having a substantially planar brushing surface, rather than a cylindrical-type brushing surface such as is shown in FIG. 1 ).
- the step 305 may also include unloading the substrate S 1 from the first set of brushes of step 302 before loading the substrate S 1 into the second set of brushes of step 305
- the step 305 may occur either before, simultaneously with, or after the step 302 .
- a brush having two different surface geometries or two or more brushes that have surface geometries that are different from each other, may be employed in a single scrubbing step.
- a fluid is applied to the substrate S 1 .
- the fluid used may be a chemistry, such as an aqueous solution of NH 4 OH, it being also understood that other chemistries or deionized water may be applied in addition or as an alternative thereto.
- one or more of many different methods and/or apparatus for applying the fluid to the substrate S 1 may be employed, e.g., so long as the fluid is permitted to contact the surface of the substrate S 1 so as to facilitate cleaning thereof.
- the step 306 may accordingly occur before, during, and/or after the step 305 .
- a step 307 the surface of the substrate S 1 is scrubbed by the brushes described above with respect to the step 305 .
- a smooth brush 109 such as is shown in FIG. 1 may be closed against the major surface of the substrate S 1 and rotated relative to the substrate for a second time period (e.g., twenty seconds in duration) so as to create a cleaning action.
- the fluid application function of step 306 may also occur as the surface of the substrate S 1 is scrubbed.
- the step of closing the brush against the substrate S 1 may alternatively occur earlier, e.g., as part of one of the steps 305 or 306 .
- the first and second time periods of the steps 304 and 307 may alternatively overlap and/or substantially coincide as is the case when a substrate travels through a path defined by a plurality of brushes (e.g., rather than rotating in place).
- the process 300 may then end at a step 308 .
- step 307 of the particular smooth brush 109 illustrated in FIG. 2B and described above may contribute to overall improved chemical cleaning
- other types of brushes than the smooth brush 109 of FIG. 2B may be used, including one or more embodiments of a brush that is relatively smooth with respect to the brush used in the step 304 , but which may not be entirely smooth.
- the brushes described above with respect to step 305 may be of a surface geometry that is different from that of the smooth brush 109 of FIG. 2B in that it contains surface features that are of a scale of a tenth of a millimeter or larger, but which are smaller by the same scale than the surface features of the profiled brush 105 of FIG. 2A , such that a difference in surface geometry in accordance with the present invention exists between the brushes used in the step 304 and the brushes used in the step 307 .
- steps 304 and 307 are performed sequentially, as opposed to simultaneously, other/additional steps may intervene therebetween, such as one or more rinsing steps (e.g., DI water rinse), and/or one or more drying steps (e.g., Marangoni drying).
- the order of the steps 304 and 307 may be reversed, e.g., such that a smooth brush is used first, followed by a profiled brush.
- both brush types may be incorporated within a single scrubbing apparatus, and/or the substrate S 1 may be caused to pass along and/or through a series of brushes of different surface geometries, and as such may not need to be rotated in place.
- the present process need not necessarily follow a chemical mechanical polishing (CMP) process. Accordingly, other types of substrate processing other than CMP processing may precede the present cleaning process, and/or the present process may be performed in the absence of CMP processing.
- CMP chemical mechanical polishing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
- The present application claims priority from U.S. Provisional Patent Application Ser. No. 60/514,708, filed Oct. 27, 2003, which is hereby incorporated by reference herein in its entirety.
- The present invention relates generally to systems for fabricating semiconductor devices, and is more particularly related to methods and apparatus for cleaning substrates.
- For fabrication of semiconductor devices, substrates such as thin slices or wafers of semiconductor material require polishing by a process that applies an abrasive slurry to a substrate's surfaces. After polishing, slurry residue is generally cleaned or scrubbed from substrate surfaces via mechanical scrubbing devices, such as polyvinyl acetate (PVA) brushes, brushes made from other porous or sponge-like material, or brushes made with nylon bristles.
- Using conventional scrubbing techniques, an undesirable number of particles may remain on scrubbed substrate surfaces. Accordingly, a need exists for improved methods and apparatus for scrubbing substrates.
- An inventive cleaning apparatus is provided for brush cleaning a surface of a substrate. The apparatus comprises a first brush having a first surface geometry adapted to scrub a major surface of the substrate, and a second brush having a second surface geometry different from the first surface geometry and adapted to scrub the major surface of the substrate.
- In one aspect the cleaning apparatus comprises a first scrubbing apparatus having at least one brush with a profiled surface geometry, adapted to scrub a major surface of a substrate, and a second scrubbing apparatus having at least one brush with a smooth surface geometry, adapted to scrub a major surface of a substrate.
- Also provided is an inventive method of cleaning a substrate. The inventive method comprises scrubbing a first surface of the substrate with a brush having a first surface geometry, and then scrubbing the first surface of the substrate with a brush having a second surface geometry. In this aspect the first and the second surface geometries also differ from each other.
- Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.
-
FIG. 1 is a partially schematic illustration of an inventive substrate cleaning system for cleaning a substrate in accordance with the present invention. -
FIG. 2A is a side, cross-sectional view of an exemplary nodular surface geometry that may be employed with the substrate cleaning system ofFIG. 1 . -
FIG. 2B is a side, cross-sectional view of an exemplary smooth surface geometry that may be employed with the substrate cleaning system ofFIG. 1 . -
FIG. 3 illustrates a process for brush cleaning a surface of a substrate in accordance with the present invention. - In an embodiment, the present invention includes a method of cleaning a substrate including scrubbing a major surface of a substrate with brushes of different (i.e., dissimilar) surface geometries. In some such embodiments, at least two brushes having different surface geometries are employed, one such brush having a profiled (e.g., nodular) surface geometry, and another such brush having a smooth surface geometry. In a first aspect, the major surface of the substrate is initially scrubbed with the brush of the nodular geometry, and is subsequently scrubbed with the brush of the smooth geometry. In a second aspect, the above order is reversed. In a further aspect, a lower concentration of cleaning chemistry is employed when scrubbing with a profiled brush, and a higher concentration employed when scrubbing with a smooth brush. Effective cleaning of a substrate's surface via scrubbing with brushes of different surface geometries may be advantageously performed after CMP processing of the substrate surface.
- The present inventors have discovered that scrubbing a substrate with brushes of different surface geometries results in fewer particles remaining on the scrubbed surface as compared to the common practice in which no difference or gradient exists in the surface geometries of the brushes used to scrub a particular surface. While not intending to be bound by any particular theory, it is believed that better post CMP cleaning may be a result of a synergy involving different types of cleaning actions. For example, a brush having a profiled surface geometry (i.e., having raised surface features such as nodules) may contribute a stronger mechanical cleaning action, whereas a brush having a smooth surface geometry (e.g., a surface which includes no raised surface features or bristles) may contribute a proportionately stronger chemical cleaning action. It will be understood that chemical cleaning action includes reduction in adhesion of particles to the substrate surface. It further will be understood that surface geometry refers to brush surface profile rather than to a pore size of brush material.
- Embodiments of the current invention include a substrate cleaning system that includes a pair of scrubbing apparatuses having scrubber brushes of different surface geometries. Specifically in the exemplary embodiment partially schematically illustrated in
FIG. 1 , an inventive substrate cleaning system 101 for cleaning a substrate S1 includes a first scrubbing apparatus 103 which employs at least onebrush 105 having a nodular surface geometry (e.g., such as is discussed in more detail below with regard toFIG. 2A ), and asecond scrubbing apparatus 107 which employs at least onebrush 109 having a smooth surface geometry (e.g., such as is discussed in more detail below with regard toFIG. 2B ). The brushes of the scrubbing apparatuses ofFIG. 1 may, for example, be porous and/or sponge like, and/or may be comprised of a resilient material such as polyvinyl acetate (PVA). The brushes may comprise other and/or different materials, and may exhibit other and/or different material characteristics, provided that a difference in surface geometry between brushes is present. Note also that the brushes may be supported via any known support mechanism or mechanisms (not shown) and maybe enclosed within a chamber (not shown). - Each of the exemplary scrubbing apparatuses shown in
FIG. 1 may be employed to scrub a vertically oriented substrate (such as the substrate S1), and may comprise a pair of brushes so as to permit scrubbing (e.g., simultaneous scrubbing) of both major surfaces of the substrate S1, as well as rollers 111 for supporting and rotating the substrate S1. Other numbers of brushes may be used, and other substrate orientations are possible, such as a horizontal orientation, or an inclined orientation. Thebrushes - The inventive substrate cleaning system 101 may further include a first
fluid delivery unit 113 for delivering fluid to the first scrubbing apparatus 103, and a secondfluid delivery unit 115 for delivering fluid to thesecond scrubbing apparatus 107. (Alternatively, the same fluid delivery unit may deliver fluid to both scrubbing apparatuses.) Whether one or two fluid delivery units are employed, the same fluids may be delivered to both the scrubbing apparatuses, or different fluids may be delivered. In cases in which the same fluid is delivered to each scrubbing apparatus, the same chemical concentration or a different chemical concentration of the fluid may be delivered to each scrubbing apparatus. In an embodiment, a solution of NH4OH at a concentration of approximately 0.05% is delivered to the first scrubbing apparatus 103, and a solution of NH4OH at a concentration of approximately 1.0% is delivered to thesecond scrubbing apparatus 107. Greater or lesser concentrations of NH4OH may be used in either or both scrubbing apparatuses. Different types of chemicals may also and/or alternatively be used. The chemicals may, for example, be delivered in liquid form, and may aid the scrubbing process by washing slurry residue and/or other particulates/contaminants from brush and/or substrate surfaces, by facilitating dislodgement of particles/contaminants from substrate surfaces, and/or by dissolving or reducing adhesion of (e.g., via chemical reaction) particulates/contaminants disposed on brush and substrate surfaces. - As also shown in
FIG. 1 , each scrubbing apparatus may include one ormore spray bars 117 to which the fluid delivery unit may deliver fluid. For example, thespray bar 117 may be located adjacent and to one side of the substrate S1, and may be used to direct a spray of fluid toward a first major surface of the substrate S1. Other methods of applying fluid to the surface of the substrate S1 and/or to the brushes may be used. In a particular embodiment, chemicals are delivered to each of the scrubbing apparatuses, and are sprayed on at least one major surface of the substrate S1 by thespray bars 117 while the substrate S1 is rotated at 50 RPM by the rollers 111. - In a particular embodiment, DI water is sprayed on at least one major surface of the substrate S1 for 30 seconds in order to rinse the substrate S1 after scrubbing of the major surface by the profiled
brushes 105 of the first scrubbing apparatus 103, and is sprayed on the same major surface(s) of the substrate S1 for 20 seconds in order to rinse the substrate S1 after scrubbing of the major surface by thesmooth brushes 109 of thesecond scrubbing apparatus 107. - The inventive substrate cleaning system 101 may further include a
first drive device 119 which may be employed to rotate one or more of thebrushes 105 of the first scrubbing apparatus 103, and asecond drive device 121 which may be employed to rotate one or more of thebrushes 109 of thesecond scrubbing apparatus 107. Alternatively, the same drive device may be employed to rotate one or more of the brushes of both scrubbing apparatuses. In a particular embodiment, each brush is closed against the corresponding major surface of the substrate S1, and is rotated at 400 RPM so as to scrub the substrate S1. It has been found that scrubbing with the profiledbrushes 105 for ten seconds, and scrubbing with thesmooth brushes 109 for twenty seconds provides good particle removal. - The inventive substrate cleaning system 101 may further include a
controller 123 coupled to the first and secondchemical delivery units second drive devices controller 123 may comprise a microprocessor, and the microprocessor may be programmed to activate and/or control the chemical delivery units so as to deliver chemicals to the scrubbing apparatuses at predetermined times and/or rates, and/or for a predetermined length of time. Similarly, the microprocessor of thecontroller 123 may be programmed to activate and/or control the drive devices so as to rotate the brushes at predetermined times and/or rates, and/or for a predetermined length of time. The microprocessor of thecontroller 123 may exert similar control over the delivery of DI water, and/or over the rotation of the substrate S1 by one or more of the rollers 11. - Without intending to be bound by theory, the present inventors observe that many important differences in the capacity of scrubber brushes to deliver different types and/or varying degrees of mechanical and/or cleaning actions can be attributed to surface geometry differences. For example, whether a brush is adapted to deliver shear forces of various sizes and directions beneficial for dislodging and wiping away surface particles otherwise resistant to removal via chemical action, or to provide a continuous region of brush/surface contact beneficial for trapping or otherwise maintaining fluid therebetween so as to dissolve and or reduce adhesion of surface particles which may otherwise be resistant to removal via mechanical scrubbing, would appear to be determined at least in part based on surface geometry.
- The brushes illustrated in
FIGS. 2A and 2B have different surface geometries. For example, as between the exemplary embodiment of a profiledbrush 105 shown in the end view ofFIG. 2A , and the exemplary embodiment of asmooth brush 109 shown in the end view ofFIG. 2B , profiledbrush 105 may be considered to have a relatively rough surface geometry, andsmooth brush 109 may be considered to have a relatively smooth surface geometry. - The profiled
brush 105 ofFIG. 2A features a plurality of raised regions or nodules extending radially outward. In a particular embodiment of thebrush 105 ofFIG. 2A , the brush surface effectively comprises aninner surface 125 described by adiameter 127, and anouter surface 129 described by adiameter 131, theouter surface 129 essentially comprising a collection of respective outward facing surfaces of a plurality ofnodules 133 extending from theinner surface 125. The nodules of the particular embodiment have aheight 135 and awidth 137, and are separated by aperipheral spacing distance 139. Examples of suitable profiled brushes that may be employed include Rippey Symmetry nodule brushes, Texwipe Hydrocell nodule brushes, or the like. Other dimensions and/or configurations for a particular profiledbrush 105, such as a combination of different sized nodules, are possible. Thebrush 105, being equipped with nodules such as thenodules 133, has been observed to provide good mechanical cleaning action when thebrush 105 is rotated against major surfaces of the substrate S1 in the presence of cleaning chemicals, e.g., resulting in the dislodgement of particles that tend to resist removal via chemical cleaning action. - The
smooth brush 109 ofFIG. 2B features no such raised regions or nodules. In a particular embodiment of thesmooth brush 109 ofFIG. 2A , the brush surface essentially comprises asurface 141, which in one embodiment is described by adiameter 143, and is characterized in that it may or may not comprise numerous surface pores, but is also otherwise essentially peripherally and longitudinally (i.e., in a direction passing normally into the paper ofFIG. 2A ) continuous (i.e., thesurface 141 features no nodes, bristles, or other similar raised features of a large enough size such as may amount to differences in surface geometry as the term is used herein). Examples of suitable smooth brushes that may be employed include Rippey Symmetry smooth brushes, Texwipe Hydrocell smooth brushes, or the like. Thesmooth brush 109 ofFIG. 2B , being free of nodes and/or other discontinuities which may, for example, tend to prevent thebrush 109 from providing a uniformly continuous contact pressure across the brush/surface interface, has been observed to provide good chemical cleaning action when thesmooth brush 109 is rotated against surfaces of the substrate S1 in the presence of cleaning chemicals, e.g., resulting in the reduced adhesion of and/or dissolution of particles that tend to resist removal via mechanical cleaning action. -
FIG. 3 illustrates a process 300 for brush cleaning a surface of a substrate S1. The process 300 may start at astep 301, and proceed to astep 302. - In
step 302, the substrate S1 is loaded into a first set of brushes. For example, the substrate S1 may be loaded into the first scrubbing apparatus 103 ofFIG. 1 having the profiled brushes 105 of a nodular surface geometry as shown and described with respect toFIG. 2A . Other types of apparatus may be employed, as may other types of brushes (e.g., brushes having a substantially flat (rather than cylindrical) brushing surface such as a ‘pancake’ type brush). Such pancake brushes may be of either the nodular or smooth variety. - In a
step 303, a first fluid is applied to the substrate S1. The fluid may be, for example, an aqueous solution of NH4OH. Deionized water or other chemistries alternatively may be applied. One or more of many different methods and/or apparatus for applying the first fluid to the substrate S1 may be employed, such as a spray bar similar to thespray bar 117 ofFIG. 1 via the firstfluid delivery apparatus 113, a pressurized delivery of the first fluid outward of the brush surface via the pores of the brush surface, etc., e.g., so long as the first fluid is permitted to contact the surface of the substrate S1 so as to facilitate cleaning thereof. Thestep 303 may accordingly occur before, during, and/or after thestep 302, e.g., as may be predetermined as part of an overall cleaning recipe. - In a
step 304, the surface of the substrate S1 is scrubbed by the brushes described above with respect to thestep 302. For example, a profiledbrush 105 such as is shown inFIG. 1 may be closed against the major surface of the substrate S1 and rotated relative to the substrate for a first time period (e.g., ten seconds in duration) so as to create a mechanical cleaning action. The fluid application function ofstep 303 may also occur during the first time period in which the surface of the substrate S1 is being scrubbed. The step of closing the scrubbing brush against the substrate S1 may alternatively occur earlier, e.g., as part of one of thesteps - In a
step 305, the substrate S1 is loaded into a second set of brushes. For example, the substrate S1 may be loaded into thescrubbing apparatus 107 ofFIG. 1 having thesmooth brushes 109 of a smooth surface geometry as shown and described with respect toFIG. 2B . As in thestep 302, other types of apparatus may be employed, as may other numbers or types of brushes (e.g., pancake brushes having a substantially planar brushing surface, rather than a cylindrical-type brushing surface such as is shown inFIG. 1 ). Further, although thestep 305 may also include unloading the substrate S1 from the first set of brushes ofstep 302 before loading the substrate S1 into the second set of brushes ofstep 305, thestep 305 may occur either before, simultaneously with, or after thestep 302. For example, a brush having two different surface geometries or two or more brushes that have surface geometries that are different from each other, may be employed in a single scrubbing step. - In a
step 306, a fluid is applied to the substrate S1. As instep 303, the fluid used may be a chemistry, such as an aqueous solution of NH4OH, it being also understood that other chemistries or deionized water may be applied in addition or as an alternative thereto. Also as in thestep 303, one or more of many different methods and/or apparatus for applying the fluid to the substrate S1 may be employed, e.g., so long as the fluid is permitted to contact the surface of the substrate S1 so as to facilitate cleaning thereof. Thestep 306 may accordingly occur before, during, and/or after thestep 305. - In a
step 307, the surface of the substrate S1 is scrubbed by the brushes described above with respect to thestep 305. For example, asmooth brush 109 such as is shown inFIG. 1 may be closed against the major surface of the substrate S1 and rotated relative to the substrate for a second time period (e.g., twenty seconds in duration) so as to create a cleaning action. The fluid application function ofstep 306 may also occur as the surface of the substrate S1 is scrubbed. As in thestep 304, the step of closing the brush against the substrate S1 may alternatively occur earlier, e.g., as part of one of thesteps steps step 308. - Although the use in
step 307 of the particularsmooth brush 109 illustrated inFIG. 2B and described above may contribute to overall improved chemical cleaning, other types of brushes than thesmooth brush 109 ofFIG. 2B may be used, including one or more embodiments of a brush that is relatively smooth with respect to the brush used in thestep 304, but which may not be entirely smooth. For example, the brushes described above with respect to step 305 may be of a surface geometry that is different from that of thesmooth brush 109 ofFIG. 2B in that it contains surface features that are of a scale of a tenth of a millimeter or larger, but which are smaller by the same scale than the surface features of the profiledbrush 105 ofFIG. 2A , such that a difference in surface geometry in accordance with the present invention exists between the brushes used in thestep 304 and the brushes used in thestep 307. - The foregoing description discloses only particular embodiments of the invention; modifications of the above disclosed methods and apparatus which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, a horizontal orientation of the substrate S1 within a scrubbing apparatus may be provided, rather than a vertical orientation as shown in
FIG. 1 , and the scrubbing apparatus may be equipped for scrubbing only one major surface and/or an edge surface of the substrate S1, rather than two major surfaces as shown. Also, if thesteps FIG. 3 are performed sequentially, as opposed to simultaneously, other/additional steps may intervene therebetween, such as one or more rinsing steps (e.g., DI water rinse), and/or one or more drying steps (e.g., Marangoni drying). The order of thesteps - Accordingly, while the present invention has been disclosed in connection with specific embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.
Claims (17)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/973,827 US20050109371A1 (en) | 2003-10-27 | 2004-10-26 | Post CMP scrubbing of substrates |
US12/249,927 US8372210B2 (en) | 2003-10-27 | 2008-10-11 | Post CMP scrubbing of substrates |
US13/753,469 US20130139851A1 (en) | 2003-10-27 | 2013-01-29 | Post cmp scrubbing of substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51470803P | 2003-10-27 | 2003-10-27 | |
US10/973,827 US20050109371A1 (en) | 2003-10-27 | 2004-10-26 | Post CMP scrubbing of substrates |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/249,927 Division US8372210B2 (en) | 2003-10-27 | 2008-10-11 | Post CMP scrubbing of substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050109371A1 true US20050109371A1 (en) | 2005-05-26 |
Family
ID=34594807
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/973,827 Abandoned US20050109371A1 (en) | 2003-10-27 | 2004-10-26 | Post CMP scrubbing of substrates |
US12/249,927 Expired - Fee Related US8372210B2 (en) | 2003-10-27 | 2008-10-11 | Post CMP scrubbing of substrates |
US13/753,469 Abandoned US20130139851A1 (en) | 2003-10-27 | 2013-01-29 | Post cmp scrubbing of substrates |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/249,927 Expired - Fee Related US8372210B2 (en) | 2003-10-27 | 2008-10-11 | Post CMP scrubbing of substrates |
US13/753,469 Abandoned US20130139851A1 (en) | 2003-10-27 | 2013-01-29 | Post cmp scrubbing of substrates |
Country Status (1)
Country | Link |
---|---|
US (3) | US20050109371A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060243304A1 (en) * | 2005-04-25 | 2006-11-02 | Applied Materials, Inc. | Methods and apparatus for cleaning an edge of a substrate |
US20090031512A1 (en) * | 2003-10-27 | 2009-02-05 | Applied Materials, Inc. | Post cmp scrubbing of substrates |
US20100078041A1 (en) * | 2008-10-01 | 2010-04-01 | Chen Hui Fred | Brush box cleaner module with force control |
US20100083984A1 (en) * | 2007-04-20 | 2010-04-08 | Invenpro (M) Sdn. BGhd | Apparatus and method for cleaning substrates/media disks |
US20110067727A1 (en) * | 2009-09-22 | 2011-03-24 | Applied Materials, Inc. | Brush alignment control mechanism |
CN102485358A (en) * | 2010-12-03 | 2012-06-06 | 中芯国际集成电路制造(上海)有限公司 | Wafer cleaning device and method |
CN102522357A (en) * | 2011-12-28 | 2012-06-27 | 清华大学 | Brushing device for wafer |
CN102779726A (en) * | 2011-05-13 | 2012-11-14 | 南亚科技股份有限公司 | Wafer cleaning method |
US9119461B2 (en) | 2012-04-26 | 2015-09-01 | Applied Materials, Inc. | High stiffness, anti-slip scrubber brush assembly, high-stiffness mandrel, subassemblies, and assembly methods |
USD745759S1 (en) * | 2012-01-12 | 2015-12-15 | Kent Research Corporation | Cleaning machine |
US20170018422A1 (en) * | 2014-02-20 | 2017-01-19 | Entegris, Inc. | Nodule ratios for targeted enhanced cleaning performance |
US9646859B2 (en) | 2010-04-30 | 2017-05-09 | Applied Materials, Inc. | Disk-brush cleaner module with fluid jet |
US20170170034A1 (en) * | 2014-07-04 | 2017-06-15 | Ebara Corporation | Cleaning device and roll cleaning member |
USD799768S1 (en) * | 2015-09-24 | 2017-10-10 | Ebara Corporation | Roller for substrate cleaning |
USD800401S1 (en) * | 2015-09-24 | 2017-10-17 | Ebara Corporation | Roller for substrate cleaning |
WO2018113347A1 (en) * | 2016-12-23 | 2018-06-28 | 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) | Concentric clamping structure of cleaning brush of cmp post-cleaning device, and usage method |
CN108212844A (en) * | 2017-12-27 | 2018-06-29 | 闫梦蝶 | A kind of auto parts machinery cleaning parts equipment |
US20190189470A1 (en) * | 2017-12-20 | 2019-06-20 | Samsung Electronics Co., Ltd. | Wafer cleaning apparatus |
USD878690S1 (en) * | 2013-09-27 | 2020-03-17 | Whirlpool Corporation | Container for a clothes washing machine |
US11322345B2 (en) * | 2015-09-30 | 2022-05-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Post-CMP cleaning and apparatus |
WO2023066405A1 (en) * | 2021-10-19 | 2023-04-27 | 杭州众硅电子科技有限公司 | Multi-wafer scrubbing device |
US11694909B2 (en) * | 2013-12-13 | 2023-07-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Brush cleaning apparatus, chemical-mechanical polishing (CMP) system and wafer processing method |
US11839907B2 (en) * | 2018-08-17 | 2023-12-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Breaking-in and cleaning method and apparatus for wafer-cleaning brush |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5645752B2 (en) * | 2011-05-25 | 2014-12-24 | 株式会社荏原製作所 | Substrate cleaning method and roll cleaning member |
US8992692B2 (en) | 2012-02-03 | 2015-03-31 | Stmicroelectronics, Inc. | Adjustable brush cleaning apparatus for semiconductor wafers and associated methods |
USD735427S1 (en) * | 2013-02-01 | 2015-07-28 | Ebara Corporation | Roller shaft for substrate cleaning |
USD735429S1 (en) * | 2013-09-24 | 2015-07-28 | Ebara Corporation | Roller shaft for substrate cleaning |
USD735431S1 (en) * | 2013-09-24 | 2015-07-28 | Ebara Corporation | Roller shaft for substrate cleaning |
USD735430S1 (en) * | 2013-09-24 | 2015-07-28 | Ebara Corporation | Roller shaft for substrate cleaning |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
KR20240015167A (en) | 2014-10-17 | 2024-02-02 | 어플라이드 머티어리얼스, 인코포레이티드 | Cmp pad construction with composite material properties using additive manufacturing processes |
US9776361B2 (en) | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
WO2017074773A1 (en) | 2015-10-30 | 2017-05-04 | Applied Materials, Inc. | An apparatus and method of forming a polishing article that has a desired zeta potential |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | Abrasive delivery polishing pads and manufacturing methods thereof |
KR20210042171A (en) | 2018-09-04 | 2021-04-16 | 어플라이드 머티어리얼스, 인코포레이티드 | Formulations for advanced polishing pads |
CN110639878B (en) * | 2019-10-16 | 2021-05-28 | 郑美花 | Method for cleaning waste lithium battery graphite rod |
US11470956B2 (en) | 2020-03-06 | 2022-10-18 | Applied Materials, Inc. | Brush, method of forming a brush, and structure embodied in a machine readable medium used in a design process |
CN112233971B (en) * | 2020-12-15 | 2021-03-16 | 华海清科(北京)科技有限公司 | Wafer cleaning method and wafer cleaning device |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
US12128455B2 (en) | 2022-08-15 | 2024-10-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Electrical cleaning tool for wafer polishing tool system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5647083A (en) * | 1994-06-30 | 1997-07-15 | Dainippon Screen Mfg. Co., Ltd. | Apparatus for cleaning substrates and methods for attaching/detaching and cleaning brushes of such apparatus |
US6733596B1 (en) * | 2002-12-23 | 2004-05-11 | Lam Research Corporation | Substrate cleaning brush preparation sequence, method, and system |
US7007333B1 (en) * | 2002-06-28 | 2006-03-07 | Lam Research Corporation | System and method for a combined contact and non-contact wafer cleaning module |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB123574A (en) | 1918-02-25 | 1919-02-25 | William Green | Improvements in or relating to Domestic Cleaning Appliances. |
US1503217A (en) * | 1923-12-17 | 1924-07-29 | John A Voulgares | Hat-renovating apparatus |
US2394338A (en) * | 1943-10-12 | 1946-02-05 | Turco Products Inc | Piston cleaning apparatus |
GB711598A (en) | 1951-03-29 | 1954-07-07 | Swinnertons Ltd | Improvements relating to brushing machines |
GB772599A (en) | 1954-01-23 | 1957-04-17 | Service Eng Ltd | Improvements relating to brushing machines |
US3640029A (en) * | 1970-02-16 | 1972-02-08 | Avedis Zildjian Avedis Co | Method of buffing a metal percussion instrument |
US3659304A (en) * | 1970-08-12 | 1972-05-02 | Lloyd H Leonard | Shoe cleaner and polisher |
US5221360A (en) * | 1987-04-27 | 1993-06-22 | Semitool, Inc. | Semiconductor processor methods |
JPS647691A (en) | 1987-06-30 | 1989-01-11 | Nippon Denki Home Electronics | Cleaning device |
JPH0710382B2 (en) | 1988-03-22 | 1995-02-08 | 松下電器産業株式会社 | Substrate cleaning apparatus and substrate cleaning method |
US5317778A (en) * | 1991-07-31 | 1994-06-07 | Shin-Etsu Handotai Co., Ltd. | Automatic cleaning apparatus for wafers |
JPH05134398A (en) | 1991-11-15 | 1993-05-28 | Seiko Epson Corp | Photomask cleaner, production for photomask and for semiconductor device |
US5379474A (en) * | 1991-12-16 | 1995-01-10 | Gs Food Corporation | Fingertip washer |
US5200571A (en) * | 1992-04-06 | 1993-04-06 | Gracey Doyle D | Primer pocket cleaner |
US5311634A (en) * | 1993-02-03 | 1994-05-17 | Nicholas Andros | Sponge cleaning pad |
US5485644A (en) * | 1993-03-18 | 1996-01-23 | Dainippon Screen Mfg. Co., Ltd. | Substrate treating apparatus |
JP3155652B2 (en) | 1993-09-16 | 2001-04-16 | 東京応化工業株式会社 | Substrate cleaning device |
JPH0786218A (en) | 1993-09-17 | 1995-03-31 | Dainippon Screen Mfg Co Ltd | Substrate cleaner |
CA2109867A1 (en) * | 1993-11-24 | 1995-05-25 | Fred Olechow | Fluid spray jet drive system for a rotatably mounted turntable |
TW316995B (en) * | 1995-01-19 | 1997-10-01 | Tokyo Electron Co Ltd | |
US5975098A (en) * | 1995-12-21 | 1999-11-02 | Dainippon Screen Mfg. Co., Ltd. | Apparatus for and method of cleaning substrate |
KR0175278B1 (en) * | 1996-02-13 | 1999-04-01 | 김광호 | Wafer Cleaner |
JP3380671B2 (en) | 1996-03-19 | 2003-02-24 | 大日本スクリーン製造株式会社 | Substrate cleaning device |
JP3393016B2 (en) | 1996-04-15 | 2003-04-07 | 大日本スクリーン製造株式会社 | Substrate cleaning apparatus and method |
US5861066A (en) * | 1996-05-01 | 1999-01-19 | Ontrak Systems, Inc. | Method and apparatus for cleaning edges of contaminated substrates |
US5675856A (en) * | 1996-06-14 | 1997-10-14 | Solid State Equipment Corp. | Wafer scrubbing device |
US5875507A (en) * | 1996-07-15 | 1999-03-02 | Oliver Design, Inc. | Wafer cleaning apparatus |
JP3278590B2 (en) * | 1996-08-23 | 2002-04-30 | 株式会社東芝 | Ultrasonic cleaning device and ultrasonic cleaning method |
EP0837493B8 (en) * | 1996-10-21 | 2007-11-07 | Ebara Corporation | Cleaning apparatus |
US5937469A (en) * | 1996-12-03 | 1999-08-17 | Intel Corporation | Apparatus for mechanically cleaning the edges of wafers |
US5868857A (en) * | 1996-12-30 | 1999-02-09 | Intel Corporation | Rotating belt wafer edge cleaning apparatus |
US5725414A (en) * | 1996-12-30 | 1998-03-10 | Intel Corporation | Apparatus for cleaning the side-edge and top-edge of a semiconductor wafer |
JPH10199849A (en) | 1997-01-14 | 1998-07-31 | Dainippon Screen Mfg Co Ltd | Substrate-treatment device |
JP3330300B2 (en) * | 1997-02-28 | 2002-09-30 | 東京エレクトロン株式会社 | Substrate cleaning device |
US5870793A (en) * | 1997-05-02 | 1999-02-16 | Integrated Process Equipment Corp. | Brush for scrubbing semiconductor wafers |
JPH1187288A (en) | 1997-09-05 | 1999-03-30 | Advanced Display:Kk | Substrate-cleaning method and device |
US5933902A (en) * | 1997-11-18 | 1999-08-10 | Frey; Bernhard M. | Wafer cleaning system |
JP3331168B2 (en) * | 1997-12-09 | 2002-10-07 | ティーディーケイ株式会社 | Cleaning method and apparatus |
US6070284A (en) * | 1998-02-04 | 2000-06-06 | Silikinetic Technology, Inc. | Wafer cleaning method and system |
JP3333733B2 (en) | 1998-02-20 | 2002-10-15 | 東京エレクトロン株式会社 | Cleaning equipment |
US6299698B1 (en) * | 1998-07-10 | 2001-10-09 | Applied Materials, Inc. | Wafer edge scrubber and method |
US6202658B1 (en) * | 1998-11-11 | 2001-03-20 | Applied Materials, Inc. | Method and apparatus for cleaning the edge of a thin disc |
US6290780B1 (en) * | 1999-03-19 | 2001-09-18 | Lam Research Corporation | Method and apparatus for processing a wafer |
US6523553B1 (en) * | 1999-03-30 | 2003-02-25 | Applied Materials, Inc. | Wafer edge cleaning method and apparatus |
CN1310860A (en) | 1999-03-30 | 2001-08-29 | 皇家菲利浦电子有限公司 | Semiconductor wafer cleaning apparatus and method |
US6575177B1 (en) * | 1999-04-27 | 2003-06-10 | Applied Materials Inc. | Semiconductor substrate cleaning system |
US6558471B2 (en) * | 2000-01-28 | 2003-05-06 | Applied Materials, Inc. | Scrubber operation |
US6439245B1 (en) * | 2000-06-30 | 2002-08-27 | Lam Research Corporation | Method for transferring wafers from a conveyor system to a wafer processing station |
US6698439B2 (en) * | 2000-07-03 | 2004-03-02 | Tokyo Electron Limited | Processing apparatus with sealing mechanism |
JP2002052370A (en) * | 2000-08-09 | 2002-02-19 | Ebara Corp | Substrate cleaning apparatus |
US20020121289A1 (en) * | 2001-03-05 | 2002-09-05 | Applied Materials, Inc. | Spray bar |
US6904637B2 (en) * | 2001-10-03 | 2005-06-14 | Applied Materials, Inc. | Scrubber with sonic nozzle |
US6986185B2 (en) * | 2001-10-30 | 2006-01-17 | Applied Materials Inc. | Methods and apparatus for determining scrubber brush pressure |
US6616516B1 (en) * | 2001-12-13 | 2003-09-09 | Lam Research Corporation | Method and apparatus for asymmetric processing of front side and back side of semiconductor substrates |
US7743449B2 (en) * | 2002-06-28 | 2010-06-29 | Lam Research Corporation | System and method for a combined contact and non-contact wafer cleaning module |
US20050109371A1 (en) * | 2003-10-27 | 2005-05-26 | Applied Materials, Inc. | Post CMP scrubbing of substrates |
KR101119961B1 (en) * | 2003-10-28 | 2012-03-15 | 어플라이드 머티어리얼스, 인코포레이티드 | Scrubber box and method for using the same |
US20050211276A1 (en) * | 2004-03-15 | 2005-09-29 | Applied Materials, Inc. | Lid for a semiconductor device processing apparatus and methods for using the same |
WO2007145904A2 (en) | 2006-06-05 | 2007-12-21 | Applied Materials, Inc. | Methods and apparatus for supporting a substrate in a horizontal orientation during cleaning |
-
2004
- 2004-10-26 US US10/973,827 patent/US20050109371A1/en not_active Abandoned
-
2008
- 2008-10-11 US US12/249,927 patent/US8372210B2/en not_active Expired - Fee Related
-
2013
- 2013-01-29 US US13/753,469 patent/US20130139851A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5647083A (en) * | 1994-06-30 | 1997-07-15 | Dainippon Screen Mfg. Co., Ltd. | Apparatus for cleaning substrates and methods for attaching/detaching and cleaning brushes of such apparatus |
US7007333B1 (en) * | 2002-06-28 | 2006-03-07 | Lam Research Corporation | System and method for a combined contact and non-contact wafer cleaning module |
US6733596B1 (en) * | 2002-12-23 | 2004-05-11 | Lam Research Corporation | Substrate cleaning brush preparation sequence, method, and system |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090031512A1 (en) * | 2003-10-27 | 2009-02-05 | Applied Materials, Inc. | Post cmp scrubbing of substrates |
US8372210B2 (en) | 2003-10-27 | 2013-02-12 | Applied Materials, Inc. | Post CMP scrubbing of substrates |
US20080216867A1 (en) * | 2005-04-25 | 2008-09-11 | Applied Materials, Inc. | Methods and apparatus for cleaning an edge of a substrate |
US20090038642A1 (en) * | 2005-04-25 | 2009-02-12 | Applied Materials, Inc. | Methods and apparatus for cleaning an edge of a substrate |
US20060243304A1 (en) * | 2005-04-25 | 2006-11-02 | Applied Materials, Inc. | Methods and apparatus for cleaning an edge of a substrate |
US8302242B2 (en) * | 2007-04-20 | 2012-11-06 | Invenpro (M) Sdn. Bhd. | Apparatus and method for cleaning substrates/media disks |
US20100083984A1 (en) * | 2007-04-20 | 2010-04-08 | Invenpro (M) Sdn. BGhd | Apparatus and method for cleaning substrates/media disks |
US8465595B2 (en) | 2007-04-20 | 2013-06-18 | Invenpro (M) Sdn. Bhd. | Apparatus and method for cleaning substrates/media disks |
US20100078041A1 (en) * | 2008-10-01 | 2010-04-01 | Chen Hui Fred | Brush box cleaner module with force control |
US7962990B2 (en) | 2008-10-01 | 2011-06-21 | Applied Materials, Inc. | Brush box cleaner module with force control |
US8181302B2 (en) | 2009-09-22 | 2012-05-22 | Applied Materials, Inc. | Brush alignment control mechanism |
US20110067727A1 (en) * | 2009-09-22 | 2011-03-24 | Applied Materials, Inc. | Brush alignment control mechanism |
US9646859B2 (en) | 2010-04-30 | 2017-05-09 | Applied Materials, Inc. | Disk-brush cleaner module with fluid jet |
CN102485358A (en) * | 2010-12-03 | 2012-06-06 | 中芯国际集成电路制造(上海)有限公司 | Wafer cleaning device and method |
CN102779726A (en) * | 2011-05-13 | 2012-11-14 | 南亚科技股份有限公司 | Wafer cleaning method |
US20120285484A1 (en) * | 2011-05-13 | 2012-11-15 | Li-Chung Liu | Method for cleaning a semiconductor wafer |
CN102522357A (en) * | 2011-12-28 | 2012-06-27 | 清华大学 | Brushing device for wafer |
USD745759S1 (en) * | 2012-01-12 | 2015-12-15 | Kent Research Corporation | Cleaning machine |
US9119461B2 (en) | 2012-04-26 | 2015-09-01 | Applied Materials, Inc. | High stiffness, anti-slip scrubber brush assembly, high-stiffness mandrel, subassemblies, and assembly methods |
USD878690S1 (en) * | 2013-09-27 | 2020-03-17 | Whirlpool Corporation | Container for a clothes washing machine |
US11694909B2 (en) * | 2013-12-13 | 2023-07-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Brush cleaning apparatus, chemical-mechanical polishing (CMP) system and wafer processing method |
US20170018422A1 (en) * | 2014-02-20 | 2017-01-19 | Entegris, Inc. | Nodule ratios for targeted enhanced cleaning performance |
US10790167B2 (en) * | 2014-02-20 | 2020-09-29 | Entegris, Inc. | Nodule ratios for targeted enhanced cleaning performance |
US10453708B2 (en) * | 2014-07-04 | 2019-10-22 | Ebara Corporation | Cleaning device and roll cleaning member |
US20170170034A1 (en) * | 2014-07-04 | 2017-06-15 | Ebara Corporation | Cleaning device and roll cleaning member |
USD800401S1 (en) * | 2015-09-24 | 2017-10-17 | Ebara Corporation | Roller for substrate cleaning |
USD799768S1 (en) * | 2015-09-24 | 2017-10-10 | Ebara Corporation | Roller for substrate cleaning |
US11322345B2 (en) * | 2015-09-30 | 2022-05-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Post-CMP cleaning and apparatus |
US11728157B2 (en) | 2015-09-30 | 2023-08-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Post-CMP cleaning and apparatus |
WO2018113347A1 (en) * | 2016-12-23 | 2018-06-28 | 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) | Concentric clamping structure of cleaning brush of cmp post-cleaning device, and usage method |
US20190189470A1 (en) * | 2017-12-20 | 2019-06-20 | Samsung Electronics Co., Ltd. | Wafer cleaning apparatus |
CN108212844A (en) * | 2017-12-27 | 2018-06-29 | 闫梦蝶 | A kind of auto parts machinery cleaning parts equipment |
US11839907B2 (en) * | 2018-08-17 | 2023-12-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Breaking-in and cleaning method and apparatus for wafer-cleaning brush |
WO2023066405A1 (en) * | 2021-10-19 | 2023-04-27 | 杭州众硅电子科技有限公司 | Multi-wafer scrubbing device |
Also Published As
Publication number | Publication date |
---|---|
US20090031512A1 (en) | 2009-02-05 |
US20130139851A1 (en) | 2013-06-06 |
US8372210B2 (en) | 2013-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8372210B2 (en) | Post CMP scrubbing of substrates | |
KR100709737B1 (en) | Method and apparatus for processing a wafer | |
US6733596B1 (en) | Substrate cleaning brush preparation sequence, method, and system | |
US6594847B1 (en) | Single wafer residue, thin film removal and clean | |
KR101379570B1 (en) | Method and apparatus for isolated bevel edge clean | |
US6182323B1 (en) | Ultraclean surface treatment device | |
US6711775B2 (en) | System for cleaning a semiconductor wafer | |
US6990704B2 (en) | Substrate cleaning apparatus and substrate cleaning method | |
KR20190074403A (en) | Wafer cleaning apparatus | |
JP4172567B2 (en) | Substrate cleaning tool and substrate cleaning apparatus | |
KR100621647B1 (en) | Method and apparatus for HF-HF cleaning | |
US6418584B1 (en) | Apparatus and process for cleaning a work piece | |
KR101017102B1 (en) | Wet type washing device of wafer and thereof method | |
US20150096591A1 (en) | Post-cmp hybrid wafer cleaning technique | |
JP7348021B2 (en) | Substrate cleaning equipment and substrate cleaning method | |
US20070221256A1 (en) | Methods and apparatus for improving edge cleaning of a substrate | |
US20010035197A1 (en) | Scrubber operation | |
JP2017069336A (en) | Substrate processing apparatus, cleaning method of suction holding unit, and storage medium | |
JP2021163955A (en) | Cleaning device for cleaning members, substrate cleaning device, and cleaning member assembly | |
JP2003309097A (en) | Method for cleaning scrub brush and cleaning dummy wafer for use therein | |
US6158448A (en) | System for cleaning sponge or porous polymeric products | |
JP4007677B2 (en) | Brush cleaning device and workpiece cleaning system | |
JP2000040684A (en) | Cleaning equipment | |
JPH0936076A (en) | Washing device | |
JP3065061B1 (en) | Wafer cleaning equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIN, GARRETT H.;KO, TERRY KIN-TING;HUEY, SIDNEY P.;REEL/FRAME:015611/0024;SIGNING DATES FROM 20041206 TO 20050114 Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIN, GARRETT H.;KO, TERRY KIN-TING;HUEY, SIDNEY P.;REEL/FRAME:015611/0094;SIGNING DATES FROM 20041206 TO 20050114 |
|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIN, GARRETT H.;KO, TERRY KIN-TING;HUEY, SIDNEY P.;REEL/FRAME:015655/0978;SIGNING DATES FROM 20041206 TO 20050114 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |