US20050107796A1 - Bone plates and methods for provisional fixation using same - Google Patents
Bone plates and methods for provisional fixation using same Download PDFInfo
- Publication number
- US20050107796A1 US20050107796A1 US10/952,047 US95204704A US2005107796A1 US 20050107796 A1 US20050107796 A1 US 20050107796A1 US 95204704 A US95204704 A US 95204704A US 2005107796 A1 US2005107796 A1 US 2005107796A1
- Authority
- US
- United States
- Prior art keywords
- bone
- hole
- bone plate
- holes
- locking screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8052—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded
- A61B17/8057—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded the interlocking form comprising a thread
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8004—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
- A61B17/8014—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones the extension or compression force being caused by interaction of the plate hole and the screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8061—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8085—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8605—Heads, i.e. proximal ends projecting from bone
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S606/00—Surgery
- Y10S606/915—Toolkit for installing or removing cortical plate
Definitions
- the invention relates generally to apparatuses for fixation of parts of a fractured bone, and, more particularly, to bone plates and bone plate assemblies for stabilization and compression of parts of a fractured bone and provisional fixation using holes in bone plates.
- Bone fractures lead to complex tissue injuries involving both the bone and the surrounding soft tissue. Treated in a conservative way, fractures often result in malalignment or non-unions and may also lead to stiffness of adjacent joints. To reduce the occurrence of these problems, open reduction and internal fixation of the bone can be carried out. Anatomical reduction and stable internal fixation with plates and screws are very successful in treating bone fractures.
- an existing plate and screw system includes a lag screw with a shallow thread form and a conical screw head. This limits the angulation of the screw, and the thread form is not optimal for lagging bone pieces together. This may be limiting in certain cases, for example with a distal femur fracture where a surgeon desires to lag the condyles. Because such existing plates do not accept large screws with spherical screw heads, surgeons are limited to lagging fragments outside the plate or using screws which are poorly designed for this application.
- Bone plate assemblies that combine compression screws and locking screws are ideal in certain clinical situations.
- Bone plates with combination slots including partially threaded openings, are well known to those skilled in the art.
- the partially threaded portions allow either locking or compression screws to be used.
- the slots are only partially threaded, the locking screws may not be able to maintain the fixed angular relationship between the screws and plate under physiological loads.
- the locking screws within the plate are only partially captured and thus only partially surrounded by threads.
- the slot may distort and allow the fixed angular relationship between the locking screw and plate to change. This can result in loss of fixation or loss of established intraoperative plate orientation.
- Because of the slot geometry translation of the plate with compression screws may be limited to a single direction, which may be disadvantageous in reduction and manipulation of fragments.
- provisional fixation techniques are also desirable. Provisional fixation of a bone plate to the bone allows the surgeon to fix the plate to the bone without the use of clamps or similar tools. In this way, the surgeon may place the bone plate in the proper position before inserting all of the locking screws into the bone plate and bone, while at the same time keeping excess instruments, such as clamps, out of the field of view of the surgeon and allowing for higher quality x-rays of the bone and bone plate construct during surgery.
- a bone plate includes an upper surface, a bone contacting surface, and at least one hole extending through the upper surface and the bone contacting surface that may interchangeably receive a locking screw and a compression screw, wherein each hole includes a thread that makes a complete revolution around the hole.
- a bone plate comprises an upper surface, a bone contacting surface, and a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole.
- Each hole may further include a top portion extending from the upper surface and a bottom threaded portion extending from the top portion to the bone contacting surface. The bottom portion may be tapered with an included angle of less than about thirty degrees.
- the threads of each hole may be configured to receive threads of a head of a locking screw.
- Each hole may be configured to threadably engage a head of a locking screw and fix the locking screw with respect to the bone plate.
- Each hole may be configured to engage a head of a compression screw and provide compression of fractured bone fragments.
- An exemplary embodiment of a method of reducing a bone fracture comprises inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws, drilling a hole in the bone through a second hole of the plurality of holes, and inserting a locking screw through the second hole and into engagement with the bone to fix the position of the bone plate.
- One or more additional provisional fixation pins may be inserted through one or more additional holes of the plurality of holes before or after drilling a hole in the bone.
- Each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
- Another exemplary embodiment of a method of reducing a fracture of a bone comprises inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws, drilling a hole in the bone through a second hole of the plurality of holes, and inserting a compression screw through the second hole and into engagement with the bone to lag a bone fragment to the bone plate.
- Another hole may be drilled in the bone through a third hole of the plurality of holes and a locking screw inserted through the third hole and into engagement with the bone to fix the position of the bone plate.
- One or more additional provisional fixation pins may be inserted through one or more additional holes of the plurality of holes before or after drilling a hole in the bone.
- Each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
- An exemplary embodiment of a bone plate assembly comprises a bone plate, at least one locking screw, at least one compression screw, and at least one provisional fixation pin.
- the bone plate includes an upper surface, a bone contacting surface, and a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole.
- the at least one provisional fixation pin may be received within at least one of the plurality of holes for receiving bone screws.
- the bone plate assembly may also include other provisional fixation pins that are to be used in pinholes that may be present in the bone plate, such that the bone plate assembly includes provisional fixation pins for use with both pinholes and other provisional fixation pins separately for use with holes for receiving bone screws.
- exemplary embodiments of this invention include bone plates, bone plate assemblies, and methods of fracture reduction and provisional fixation further described herein and in co-pending U.S. application Ser. No. 10/673,833, which is incorporated herein by reference.
- FIG. 1A shows a side view of an exemplary locking screw according to one embodiment of the present invention.
- FIG. 1B shows a cross-sectional view of the locking screw of FIG. 1A .
- FIG. 2A shows a top view of a portion of a bone plate, including a hole without the threads of the hole shown, according to one embodiment of the present invention.
- FIG. 2B shows a cross-sectional view of the portion of the bone plate shown in FIG. 2A as viewed along cross-section lines 2 B- 2 B of FIG. 2A .
- FIG. 2C shows a top view of the portion of the bone plate shown in FIGS. 2A and 2B , with the threads of the hole shown.
- FIG. 2D shows a cross-sectional view of the portion of the bone plate shown in FIGS. 2A-2C as viewed along cross-section lines 2 D- 2 D of FIG. 2C .
- FIG. 2E shows a detailed view of the hole of the portion of the bone plate shown in FIGS. 2A-2D .
- FIG. 3 shows a side view of the locking screw of FIGS. 1A and 1B threaded into the portion of the bone plate shown in FIGS. 2A-2E .
- FIG. 4 shows a side view of an exemplary compression screw for use according to one embodiment of the present invention.
- FIG. 5 shows a side view of the compression screw of FIG. 4 inserted into the portion of the bone plate shown in FIGS. 2A-2E .
- FIG. 6A shows a side view of an exemplary locking screw according to an embodiment of the present invention.
- FIG. 6B shows a cross-sectional view of the locking screw of FIG. 6A .
- FIG. 7A shows a top view of a portion of a bone plate according to an embodiment of the present invention.
- FIG. 7B shows a cross-sectional view of the portion of the bone plate shown in FIG. 7A as viewed along cross-section lines 7 B- 7 B of FIG. 7A .
- FIG. 7C shows a detailed view of the hole of the portion of the bone plate shown in FIGS. 7A and 7B .
- FIG. 8 shows a side view of the locking screw of FIGS. 6A and 6B threaded into the portion of the bone plate shown in FIGS. 7A-7C .
- FIG. 9 shows a side view of the compression screw of FIG. 4 inserted into the portion of the bone plate shown in FIGS. 7A-7C .
- FIGS. 10-27 are perspective views of various exemplary bone plate configurations according to various embodiments of the present invention.
- FIG. 28 shows a provisional fixation slot according to one embodiment of the present invention.
- FIGS. 29-33 are perspective views of various exemplary bone plate configurations according to various embodiments of the present invention.
- a bone plate includes an upper surface, a bone contacting surface, and at least one hole extending through the upper surface and the bone contacting surface that may interchangeably receive a locking screw and a compression screw.
- the bone plate may include additional openings that receive only compression screws or only locking screws.
- the bone plate may also include pinholes that accept provisional fixation pins, but that are not large enough to receive bone screws.
- a threaded head of an exemplary locking screw for use in accordance with this invention is received by threads in a corresponding hole such that the threads of the hole completely surround the threads of the head of the locking screw.
- This relationship between the head of the locking screw and the threads of the hole contributes to maintaining fixation of the bone plate and strengthening the plate and screw combination.
- a compression screw may also be received within the hole of the bone plate. As the compression screw is fully inserted within a bone, the head of the compression screw comes into contact with and rides along a top portion of the hole, allowing for fine adjustment of the position of the bone plate in more than one direction.
- FIGS. 1A and 1B show an exemplary locking screw for use according to one embodiment of the present invention.
- a locking screw 40 includes a threaded head 42 and a threaded shaft 44 .
- Locking screw 40 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art.
- the lead between the threads of head 42 and the threads of shaft 44 is broken.
- the threads in shaft 44 of locking screw 40 are single lead and the threads in head 42 are triple lead, providing locking screw 40 with same pitch throughout. It is preferable for certain embodiments of locking screws according to this invention to have a constant pitch.
- Locking screw 40 also includes an internal hex head 46 , as shown in FIG. 1B , that is used when tightening locking screw 40 into a bone plate and/or bone.
- FIGS. 2A-2E show different views of a portion of a bone plate according to an embodiment of the present invention.
- Bone plates generally include one or more holes or other openings, including pinholes that cannot receive bone screws, such as in the exemplary bone plates shown in FIGS. 10-27 and 29 - 33 , which are briefly described below.
- the bone plates shown in FIGS. 27 and 29 - 33 include only holes of the type described herein that may receive either locking screws or compression screws interchangeably.
- These bone plates also include non-threaded pinholes that may receive provisional fixation pins, but that cannot receive bone screws.
- the bone plates shown in FIGS. 10-26 generally include holes of the type described herein that may receive either locking screws or compression screws interchangeably, as well as other oblong or non-threaded openings for receiving bone screws. These bone plates may also include cross-shaped slots or pinholes for receiving provisional fixation pins as well.
- FIGS. 2A and 2B show hole 52 without its threads to help illustrate certain aspects of this embodiment of the invention, while FIGS. 2C-2E show hole 52 with its threads.
- hole 52 includes a top portion 58 extending downward from upper surface 54 .
- Top portion 58 extends from upper surface 54 at an angle of ⁇ 1 relative to the plane of top surface 54 , as shown in FIG. 2B .
- angle ⁇ 1 is about fifty-two degrees.
- a bottom portion 60 of hole 52 extends from the end of top portion 58 through bone contacting surface 56 of bone plate 50 .
- Bottom portion 60 includes threads 62 , as shown in FIGS. 2C-2E . Some of threads 62 may extend into top portion 58 depending on the particular embodiment, but top portion 58 is not completely threaded.
- bottom portion 60 is tapered.
- the included angle, ⁇ 2 shown in FIG. 2B of the taper of bottom portion 60 may be less than about thirty degrees, including zero degrees (i.e., no taper at all).
- ⁇ 2 is about twenty degrees.
- FIG. 3 shows a side view of locking screw 40 threaded into hole 52 of bone plate 50 .
- Head 42 of locking screw 40 is received by threads 62 of bone plate 50 .
- Threads 62 completely surround the threads of head 42 , and the top of head 42 is received completely within hole 52 such that head 42 of locking screw 40 sits flush with upper surface 54 of bone plate 50 .
- Shaft 44 of locking screw 40 is threaded into bone (not shown).
- Head 42 of locking screw 40 should be tapered such that it properly mates with threads 62 of hole 52 of bone plate 50 .
- a threaded portion of a head of a locking screw for use with certain embodiments of this invention should have a taper generally corresponding to the taper, if any, of the threads of the hole of the bone plate.
- FIG. 4 shows a side view of an exemplary compression screw for use according to an embodiment of the present invention.
- a compression screw 70 includes a head 72 and a threaded shaft 74 .
- FIG. 5 shows compression screw 70 inserted within hole 52 of bone plate 50 .
- head 72 of compression screw 70 rides along top portion 58 of bone plate 50 .
- compression screw 70 may pull or push bone plate 50 in a particular direction as head 72 of compression screw 70 comes into contact with and rides along top portion 58 of hole 52 of bone plate 50 .
- the angle ⁇ 1 shown in FIG. 2B , at top portion 58 of hole 52 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction.
- Compression screw 70 may move bone plate 50 in more than one direction as compression screw 70 is fully inserted within hole 52 . In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible.
- FIGS. 6A and 6B show another exemplary locking screw for use according to an embodiment of the present invention.
- a locking screw 80 includes a head 82 and a threaded shaft 84 . Similar to locking screw 40 shown in FIGS. 1A and 1B , locking screw 80 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art, and the lead between the threads of head 82 and the threads of shaft 84 is broken.
- the threads in shaft 84 of locking screw 80 are single lead and the threads in head 82 are triple lead, providing locking screw 80 with the same pitch throughout.
- the pitches and angles of thread form for exemplary 3.5 and 4.5 mm locking screws 80 are generally similar to those described above with reference to locking screw 40 .
- Locking screw 80 also includes an internal hex head 86 , as shown in FIG. 6B , that is used when tightening locking screw 80 into a bone plate and/or bone. As may be seen from FIGS. 1A, 1B , 6 A, and 6 B, only a portion of head 82 of locking screw 80 is threaded, whereas the entire head 42 of locking screw 40 is threaded. Additionally, the threaded portion of head 82 of locking screw 80 is not tapered, while head 42 of locking screw 40 is tapered. These differences are because locking screw 40 is designed to mate with hole 52 of bone plate 50 , while locking screw 80 is designed to mate with a hole 92 of a bone plate 90 , as further described below.
- FIGS. 7A-7C show different views of a portion of a bone plate according to an embodiment of the present invention.
- bone plates generally include one or more holes or other openings, such as in the exemplary bone plates shown in FIGS. 10-27 and 29 - 33 , but for ease of illustration, only a portion of bone plate 90 is shown in FIGS. 7A-7C .
- Bone plate 90 includes a hole 92 extending through an upper surface 94 and a bone contacting surface 96 of bone plate 90 .
- Hole 92 includes a top portion 98 extending downward from upper surface 94 .
- one side of top portion 98 includes a ramp that extends from upper surface 94 at an angle of ⁇ 3 relative to the plane of top surface 94 .
- angle ⁇ 3 is about fifty-two degrees.
- the remainder of top portion 98 is a concave recessed portion that is generally spherical in shape, as shown in FIG. 7B .
- a bottom portion 100 of hole 92 extends from the end of top portion 98 through bone contacting surface 96 of bone plate 90 .
- Bottom portion 100 includes threads 102 . Some of threads 102 may extend into top portion 98 depending on the particular embodiment, but top portion 98 generally has only the beginning of thread leads, if any threading.
- Bottom portion 100 is not tapered, but rather is generally cylindrical in shape. In certain embodiments, for example, bottom portion 60 of hole 52 of bone plate 50 , bottom portion 100 may be tapered at an included angle of less than about thirty degrees.
- FIG. 8 shows a side view of locking screw 80 threaded into hole 92 of bone plate 90 .
- Threads of head 92 of locking screw 90 are received by threads 102 of bone plate 90 .
- Threads 102 completely surround the threads of head 92 , and shaft 84 of locking screw 80 is threaded into bone (not shown).
- Head 82 of locking screw 80 is shaped such that its unthreaded portion bears against the ramp of top portion 98 of hole 92 of bone plate 90 .
- the threaded portion of head 82 is generally cylindrical (i.e., not tapered) so that it properly mates with threads 102 of hole 92 of bone plate 90 .
- a threaded portion of a head of a locking screw for use with certain embodiments of this invention should be shaped to generally correspond to the shape of threaded portion of the hole of the bone plate.
- FIG. 9 shows compression screw 70 inserted within hole 92 of bone plate 50 .
- head 72 of compression screw 70 sits within the concave recessed or spherical portion of top portion 98 of bone plate 90 .
- Head 72 of compression screw 70 contacts the side of top portion 98 that includes the ramp, but head 72 does not completely abut the ramp of top portion 98 .
- compression screw 70 may pull or push bone plate 90 in a particular direction as head 72 of compression screw 70 comes into contact with and rides along top portion 98 of hole 92 of bone plate 90 , similar to that described above with reference to FIG. 5 .
- the angle ⁇ 3 shown in FIG.
- top portion 98 of hole 92 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction. If top portion 98 were to extend straight down from upper surface 94 of bone plate 90 , compression would be less successful.
- Compression screw 70 may move bone plate 90 in more than one direction as compression screw 70 is fully inserted within hole 92 . In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible.
- Certain exemplary embodiments of bone plates according to this invention include holes, such as hole 52 or hole 92 , that not only receive compression or locking screws interchangeably but also accept multiple types of compression screw heads with varying outer and inner diameters and thread forms.
- a compression screw can be placed through such holes and use for fixation, provided the minor diameter of the screw shank does not exceed the minor diameter of the hole.
- the diameter of the head of the compression screw should not be less than the minor diameter of the hole because the compression screw would not then rest on any part of the bone plate as is necessary for fracture reduction.
- FIGS. 10-26 show various exemplary bone plate configurations that may include one or more holes, such as holes 52 and 92 described above, that are capable of interchangeably receiving compression screws and locking screws.
- the exemplary bone plates shown in FIGS. 10-26 may also include other openings configured to receive only locking screws or only compression screws, which is well understood by those skilled in the art.
- the exemplary bone plates shown in FIGS. 10-26 may also include pinholes or provisional fixation slots that may receive provisional fixation pins. All holes in the exemplary plates of FIGS. 10-26 include threads (not shown), while the other generally non-circular openings in these plates may or may not include threads depending on the purposes for which the opening is to be used. Pinholes and provisional fixation slots are not threaded.
- FIGS. 10-26 are further described in co-pending and commonly-assigned U.S. application Ser. No. 10/673,833, entitled “Bone Plates and Bone Plate Assemblies,” filed Sep. 29, 2003, which has been incorporated by reference herein in its entirety.
- FIGS. 10-26 Shown in some of the exemplary bone plates in FIGS. 10-26 are provisional fixation slots, such as, for example, slots 280 in FIGS. 10 and 11 , according to one embodiment of the present invention.
- FIG. 28 shows provisional fixation slot 280 in a portion of a bone plate 282 .
- Methods of provisional fixation using such slots are further described in co-pending U.S. application Ser. No. 10/673,833. Additionally, more detailed information regarding provisional fixation of a bone plate to a bone prior to permanent attachment of the plate to the bone is provided in U.S. Pat. No. 5,676,667 to Hausman, issued Oct. 14, 1997, and U.S. Pat. No. 5,968,046 to Castleman, issued Oct. 19, 1999, each of which is incorporated herein by reference in its entirety.
- certain embodiments of bone plates according to this invention include an upper surface, a bone contacting surface, and a plurality of holes extending through the upper surface and the bone contacting surface.
- Each hole may interchangeably receive locking and compression screw and includes a thread that makes a complete revolution around the hole (exemplary embodiments of such holes are hole 52 and hole 92 described above), and no other non-threaded holes or openings for receiving bone screws are present in the plates.
- Certain embodiments may also include non-threaded pinholes that are not capable of receiving bone screws, but which may be used for provisional fixation with provisional fixation pins.
- FIG. 29 shows a distal femur plate 290 contoured to treat fractures of the distal femur from the lateral side of the bone.
- Each hole 292 may interchangeably receive locking and compression screw and includes a thread (not shown) that makes a complete revolution around the hole.
- Pinholes 294 are also included, but pinholes 294 are too small to receive bone screws, are not threaded, and are used for provisional fixation accomplished with provisional fixation pins.
- the plates shown in FIGS. 27 and 30 - 33 likewise have holes and pinholes like holes 292 and pinholes 294 described above.
- FIG. 29 shows a distal femur plate 290 contoured to treat fractures of the distal femur from the lateral side of the bone.
- Each hole 292 may interchangeably receive locking and compression screw and includes a thread (not shown) that makes a complete revolution around the hole.
- Pinholes 294 are also included, but pinholes 294 are too small to receive bone screws
- FIG. 27 shows a proximal tibia plate 270 contoured to treat proximal tibia fractures from the medial side.
- FIG. 30 shows an anterior lateral distal plate 300 .
- FIG. 31 shows a medial distal tibia plate 310 .
- FIG. 32 shows a calcaneal plate 320 that is applied to the medial aspect of the calcaneus and used to treat calcaneal fractures.
- FIG. 33 shows a straight plate 330 used to treat small bone fractures. It should be understood that numerous other types or shapes of bone plates may be made such that every screw-receiving hole in the bone plate may interchangeably receive locking and compression screws and includes a thread that makes a complete revolution around the hole.
- provisional fixation pins may be used through either the pinholes or the screw-receiving holes of the bone plate.
- a 2 mm diameter provisional fixation pin may be used through a pinhole
- a 2.7 mm diameter provisional fixation pin may be used through a 3.5 mm screw-receiving hole
- a 3.5 mm diameter provisional fixation pin may be used through a 4.5 mm screw-receiving hole.
- provisional fixation is accomplished through the screw-receiving holes only.
- provisional fixation pins are used through these holes to secure the bone plate to the bone temporarily, a hole is drilled in the bone through one of the other screw-receiving holes of the bone plate. A locking or compression screw with an appropriate head diameter is then inserted into the bone for fixation or for lagging bone fragments to the plate. Provisional fixation provides for temporarily securing the bone plate to the bone before placing fixation screws through the bone plate, so that one can be certain the bone plate is properly positioned before placing bone screws for permanent fixation of the bone plate to the bone. Moreover, with provisional fixation, x-rays can be taken of the bone plate/construct without excess instruments in the field of view.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Bone plates with an upper surface, a bone contacting surface, and a plurality of holes extending through the upper and bone contact surfaces for receiving bone screws are disclosed. Each hole interchangeably accepts a compression screw for compression of a fracture and a locking screw that threads into the bone plate. Provisional fixation of a bone plate to a bone may be accomplished using provisional fixation pins through the screw-receiving holes of the bone plate.
Description
- This application is a continuation-in-part application of U.S. application Ser. No. 10/673,833, filed Sep. 29, 2003, now pending, the entire contents of which are hereby incorporated by reference.
- The invention relates generally to apparatuses for fixation of parts of a fractured bone, and, more particularly, to bone plates and bone plate assemblies for stabilization and compression of parts of a fractured bone and provisional fixation using holes in bone plates.
- Bone fractures lead to complex tissue injuries involving both the bone and the surrounding soft tissue. Treated in a conservative way, fractures often result in malalignment or non-unions and may also lead to stiffness of adjacent joints. To reduce the occurrence of these problems, open reduction and internal fixation of the bone can be carried out. Anatomical reduction and stable internal fixation with plates and screws are very successful in treating bone fractures.
- Good bone healing can also result from relative stability, where the clinical outcome is often dependent on obtaining correct length, axis, and rotation of the fractured bone rather than on precise anatomical reduction and absolute stability. To achieve this, while at the same time minimizing the amount of additional soft tissue trauma, treatment of multi-fragmented metaphyseal and diaphyseal fractures with plates and screws was developed.
- An existing solution is plate and screw systems where the screws are locked in the plate. The plate and screws form one stable system and the stability of the fracture is dependent upon the stiffness of the construct. No compression of the plate onto the bone is required, which reduces the risk of primary loss of reduction and preserves bone blood supply. Locking the screw into the plate to ensure angular, as well as axial, stability eliminates the possibility for the screw to toggle, slide, or be dislodged and thereby strongly reduces the risk of postoperative loss of reduction. As the relationship between the locking screws and the plate is fixed, locking screws provide a high resistance to shear or torsional forces, but locking screws have a limited capability to compress bone fragments.
- Furthermore, existing plates with openings that accept locking screws typically only accept certain screw sizes with specified types of screw heads. For example, an existing plate and screw system includes a lag screw with a shallow thread form and a conical screw head. This limits the angulation of the screw, and the thread form is not optimal for lagging bone pieces together. This may be limiting in certain cases, for example with a distal femur fracture where a surgeon desires to lag the condyles. Because such existing plates do not accept large screws with spherical screw heads, surgeons are limited to lagging fragments outside the plate or using screws which are poorly designed for this application.
- Because of these shortcomings, many surgeons began expressing the desire to have plate and screw systems (or bone plate assemblies) where the surgeon can choose intraoperatively whether to use the bone plate with compression screws (also referred to as cortical or cancellous screws), locking screws, or with a combination of both. This led to the development of a combination slot, a compression slot combined with a partially threaded opening, that could receive either a compression screw or a locking screw.
- Bone plate assemblies that combine compression screws and locking screws are ideal in certain clinical situations. Bone plates with combination slots, including partially threaded openings, are well known to those skilled in the art. The partially threaded portions allow either locking or compression screws to be used. Because the slots are only partially threaded, the locking screws may not be able to maintain the fixed angular relationship between the screws and plate under physiological loads. Specifically, the locking screws within the plate are only partially captured and thus only partially surrounded by threads. Under high stress and loading conditions, the slot may distort and allow the fixed angular relationship between the locking screw and plate to change. This can result in loss of fixation or loss of established intraoperative plate orientation. Because of the slot geometry, translation of the plate with compression screws may be limited to a single direction, which may be disadvantageous in reduction and manipulation of fragments.
- Additionally, bone plates that allow for a surgeon to use provisional fixation techniques are also desirable. Provisional fixation of a bone plate to the bone allows the surgeon to fix the plate to the bone without the use of clamps or similar tools. In this way, the surgeon may place the bone plate in the proper position before inserting all of the locking screws into the bone plate and bone, while at the same time keeping excess instruments, such as clamps, out of the field of view of the surgeon and allowing for higher quality x-rays of the bone and bone plate construct during surgery.
- Accordingly, there is a need for improved bone plates that may be used with both compression and locking screws for improved stabilization and compression of parts of a fractured bone. There is also a need for improved bone plates with holes that may be used for locking a bone plate to the bone, but that also accept different size screws with varying types of screw heads. Finally, there is need for improved bone plates that accept provisional fixation pins through the holes of the plate.
- The present invention provides bone plates and bone plate assemblies for stabilization and compression of parts of a fractured bone. According to an exemplary embodiment of the present invention, a bone plate includes an upper surface, a bone contacting surface, and at least one hole extending through the upper surface and the bone contacting surface that may interchangeably receive a locking screw and a compression screw, wherein each hole includes a thread that makes a complete revolution around the hole.
- According to an exemplary embodiment, a bone plate comprises an upper surface, a bone contacting surface, and a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole. Each hole may further include a top portion extending from the upper surface and a bottom threaded portion extending from the top portion to the bone contacting surface. The bottom portion may be tapered with an included angle of less than about thirty degrees. The threads of each hole may be configured to receive threads of a head of a locking screw. Each hole may be configured to threadably engage a head of a locking screw and fix the locking screw with respect to the bone plate. Each hole may be configured to engage a head of a compression screw and provide compression of fractured bone fragments.
- An exemplary embodiment of a method of reducing a bone fracture comprises inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws, drilling a hole in the bone through a second hole of the plurality of holes, and inserting a locking screw through the second hole and into engagement with the bone to fix the position of the bone plate. One or more additional provisional fixation pins may be inserted through one or more additional holes of the plurality of holes before or after drilling a hole in the bone. Each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
- Another exemplary embodiment of a method of reducing a fracture of a bone comprises inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws, drilling a hole in the bone through a second hole of the plurality of holes, and inserting a compression screw through the second hole and into engagement with the bone to lag a bone fragment to the bone plate. Another hole may be drilled in the bone through a third hole of the plurality of holes and a locking screw inserted through the third hole and into engagement with the bone to fix the position of the bone plate. One or more additional provisional fixation pins may be inserted through one or more additional holes of the plurality of holes before or after drilling a hole in the bone. Each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
- An exemplary embodiment of a bone plate assembly comprises a bone plate, at least one locking screw, at least one compression screw, and at least one provisional fixation pin. The bone plate includes an upper surface, a bone contacting surface, and a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole. The at least one provisional fixation pin may be received within at least one of the plurality of holes for receiving bone screws. The bone plate assembly may also include other provisional fixation pins that are to be used in pinholes that may be present in the bone plate, such that the bone plate assembly includes provisional fixation pins for use with both pinholes and other provisional fixation pins separately for use with holes for receiving bone screws.
- Other exemplary embodiments of this invention include bone plates, bone plate assemblies, and methods of fracture reduction and provisional fixation further described herein and in co-pending U.S. application Ser. No. 10/673,833, which is incorporated herein by reference.
-
FIG. 1A shows a side view of an exemplary locking screw according to one embodiment of the present invention. -
FIG. 1B shows a cross-sectional view of the locking screw ofFIG. 1A . -
FIG. 2A shows a top view of a portion of a bone plate, including a hole without the threads of the hole shown, according to one embodiment of the present invention. -
FIG. 2B shows a cross-sectional view of the portion of the bone plate shown inFIG. 2A as viewed alongcross-section lines 2B-2B ofFIG. 2A . -
FIG. 2C shows a top view of the portion of the bone plate shown inFIGS. 2A and 2B , with the threads of the hole shown. -
FIG. 2D shows a cross-sectional view of the portion of the bone plate shown inFIGS. 2A-2C as viewed alongcross-section lines 2D-2D ofFIG. 2C . -
FIG. 2E shows a detailed view of the hole of the portion of the bone plate shown inFIGS. 2A-2D . -
FIG. 3 shows a side view of the locking screw ofFIGS. 1A and 1B threaded into the portion of the bone plate shown inFIGS. 2A-2E . -
FIG. 4 shows a side view of an exemplary compression screw for use according to one embodiment of the present invention. -
FIG. 5 shows a side view of the compression screw ofFIG. 4 inserted into the portion of the bone plate shown inFIGS. 2A-2E . -
FIG. 6A shows a side view of an exemplary locking screw according to an embodiment of the present invention. -
FIG. 6B shows a cross-sectional view of the locking screw ofFIG. 6A . -
FIG. 7A shows a top view of a portion of a bone plate according to an embodiment of the present invention. -
FIG. 7B shows a cross-sectional view of the portion of the bone plate shown inFIG. 7A as viewed alongcross-section lines 7B-7B ofFIG. 7A . -
FIG. 7C shows a detailed view of the hole of the portion of the bone plate shown inFIGS. 7A and 7B . -
FIG. 8 shows a side view of the locking screw ofFIGS. 6A and 6B threaded into the portion of the bone plate shown inFIGS. 7A-7C . -
FIG. 9 shows a side view of the compression screw ofFIG. 4 inserted into the portion of the bone plate shown inFIGS. 7A-7C . -
FIGS. 10-27 are perspective views of various exemplary bone plate configurations according to various embodiments of the present invention. -
FIG. 28 shows a provisional fixation slot according to one embodiment of the present invention. -
FIGS. 29-33 are perspective views of various exemplary bone plate configurations according to various embodiments of the present invention. - The present invention provides bone plates and bone plate assemblies for stabilization and compression of parts of a fractured bone. According to certain exemplary embodiments of this invention, a bone plate includes an upper surface, a bone contacting surface, and at least one hole extending through the upper surface and the bone contacting surface that may interchangeably receive a locking screw and a compression screw. The bone plate may include additional openings that receive only compression screws or only locking screws. The bone plate may also include pinholes that accept provisional fixation pins, but that are not large enough to receive bone screws.
- A threaded head of an exemplary locking screw for use in accordance with this invention is received by threads in a corresponding hole such that the threads of the hole completely surround the threads of the head of the locking screw. This relationship between the head of the locking screw and the threads of the hole contributes to maintaining fixation of the bone plate and strengthening the plate and screw combination. As noted, a compression screw may also be received within the hole of the bone plate. As the compression screw is fully inserted within a bone, the head of the compression screw comes into contact with and rides along a top portion of the hole, allowing for fine adjustment of the position of the bone plate in more than one direction.
-
FIGS. 1A and 1B show an exemplary locking screw for use according to one embodiment of the present invention. A lockingscrew 40 includes a threadedhead 42 and a threadedshaft 44. Lockingscrew 40 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art. In the exemplary embodiment shown inFIGS. 1A and 1B , the lead between the threads ofhead 42 and the threads ofshaft 44 is broken. The threads inshaft 44 of lockingscrew 40 are single lead and the threads inhead 42 are triple lead, providing lockingscrew 40 with same pitch throughout. It is preferable for certain embodiments of locking screws according to this invention to have a constant pitch. In an exemplary 3.5 mm locking screw, the pitch is 1.25 mm and the angle of the thread form is about 45 to about 60 degrees. In an exemplary 4.5 mm locking screw, the pitch is 1.75 mm and the angle of the thread form is about 60 degrees. Lockingscrew 40 also includes an internal hex head 46, as shown inFIG. 1B , that is used when tightening lockingscrew 40 into a bone plate and/or bone. -
FIGS. 2A-2E show different views of a portion of a bone plate according to an embodiment of the present invention. For ease of illustration and for purposes of describing an exemplary embodiment of the present invention, only a portion ofbone plate 50 is shown inFIGS. 2A-2E . Bone plates generally include one or more holes or other openings, including pinholes that cannot receive bone screws, such as in the exemplary bone plates shown inFIGS. 10-27 and 29-33, which are briefly described below. For example, the bone plates shown inFIGS. 27 and 29 -33 include only holes of the type described herein that may receive either locking screws or compression screws interchangeably. These bone plates also include non-threaded pinholes that may receive provisional fixation pins, but that cannot receive bone screws. As other examples, the bone plates shown inFIGS. 10-26 generally include holes of the type described herein that may receive either locking screws or compression screws interchangeably, as well as other oblong or non-threaded openings for receiving bone screws. These bone plates may also include cross-shaped slots or pinholes for receiving provisional fixation pins as well. - The
particular bone plate 50 shown in these drawings includes ahole 52 extending through anupper surface 54 and abone contacting surface 56 ofbone plate 50.FIGS. 2A and 2B showhole 52 without its threads to help illustrate certain aspects of this embodiment of the invention, whileFIGS. 2C- 2E show hole 52 with its threads. It should be understood that the geometry ofhole 52 is the same throughout these drawings, although the geometry ofhole 52 is not as clearly visible in the drawings that show the threads ofhole 52. As seen most clearly inFIG. 2B ,hole 52 includes atop portion 58 extending downward fromupper surface 54.Top portion 58 extends fromupper surface 54 at an angle of θ 1 relative to the plane oftop surface 54, as shown inFIG. 2B . In an exemplary embodiment, angle θ 1 is about fifty-two degrees. - A
bottom portion 60 ofhole 52 extends from the end oftop portion 58 throughbone contacting surface 56 ofbone plate 50.Bottom portion 60 includesthreads 62, as shown inFIGS. 2C-2E . Some ofthreads 62 may extend intotop portion 58 depending on the particular embodiment, buttop portion 58 is not completely threaded. - In the exemplary embodiment shown in
FIGS. 2A-2E ,bottom portion 60 is tapered. The included angle, θ 2 shown inFIG. 2B , of the taper ofbottom portion 60 may be less than about thirty degrees, including zero degrees (i.e., no taper at all). The larger the included angle, thelarger hole 52 inbone plate 50 must be, which begins to compromise the strength of the plate if the included angle is much larger than about thirty degrees. In an exemplary embodiment, θ 2 is about twenty degrees. -
FIG. 3 shows a side view of lockingscrew 40 threaded intohole 52 ofbone plate 50.Head 42 of lockingscrew 40 is received bythreads 62 ofbone plate 50.Threads 62 completely surround the threads ofhead 42, and the top ofhead 42 is received completely withinhole 52 such thathead 42 of lockingscrew 40 sits flush withupper surface 54 ofbone plate 50.Shaft 44 of lockingscrew 40 is threaded into bone (not shown).Head 42 of lockingscrew 40 should be tapered such that it properly mates withthreads 62 ofhole 52 ofbone plate 50. Furthermore, a threaded portion of a head of a locking screw for use with certain embodiments of this invention should have a taper generally corresponding to the taper, if any, of the threads of the hole of the bone plate. -
FIG. 4 shows a side view of an exemplary compression screw for use according to an embodiment of the present invention. Acompression screw 70 includes ahead 72 and a threadedshaft 74.FIG. 5 showscompression screw 70 inserted withinhole 52 ofbone plate 50. As shown inFIG. 5 ,head 72 ofcompression screw 70 rides alongtop portion 58 ofbone plate 50. Asshaft 74 is threaded into a bone (not shown),compression screw 70 may pull or pushbone plate 50 in a particular direction ashead 72 ofcompression screw 70 comes into contact with and rides alongtop portion 58 ofhole 52 ofbone plate 50. The angle θ 1, shown inFIG. 2B , attop portion 58 ofhole 52 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction. Iftop portion 58 were to extend straight down fromupper surface 54 ofbone plate 50, compression would be less successful.Compression screw 70 may movebone plate 50 in more than one direction ascompression screw 70 is fully inserted withinhole 52. In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible. -
FIGS. 6A and 6B show another exemplary locking screw for use according to an embodiment of the present invention. A lockingscrew 80 includes ahead 82 and a threadedshaft 84. Similar to lockingscrew 40 shown inFIGS. 1A and 1B , lockingscrew 80 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art, and the lead between the threads ofhead 82 and the threads ofshaft 84 is broken. The threads inshaft 84 of lockingscrew 80 are single lead and the threads inhead 82 are triple lead, providing lockingscrew 80 with the same pitch throughout. The pitches and angles of thread form for exemplary 3.5 and 4.5mm locking screws 80 are generally similar to those described above with reference to lockingscrew 40. - Locking
screw 80 also includes aninternal hex head 86, as shown inFIG. 6B , that is used when tightening lockingscrew 80 into a bone plate and/or bone. As may be seen fromFIGS. 1A, 1B , 6A, and 6B, only a portion ofhead 82 of lockingscrew 80 is threaded, whereas theentire head 42 of lockingscrew 40 is threaded. Additionally, the threaded portion ofhead 82 of lockingscrew 80 is not tapered, whilehead 42 of lockingscrew 40 is tapered. These differences are because lockingscrew 40 is designed to mate withhole 52 ofbone plate 50, while lockingscrew 80 is designed to mate with ahole 92 of abone plate 90, as further described below. -
FIGS. 7A-7C show different views of a portion of a bone plate according to an embodiment of the present invention. As noted above, bone plates generally include one or more holes or other openings, such as in the exemplary bone plates shown inFIGS. 10-27 and 29-33, but for ease of illustration, only a portion ofbone plate 90 is shown inFIGS. 7A-7C . -
Bone plate 90 includes ahole 92 extending through anupper surface 94 and abone contacting surface 96 ofbone plate 90.Hole 92 includes atop portion 98 extending downward fromupper surface 94. As shown inFIG. 7B , one side oftop portion 98 includes a ramp that extends fromupper surface 94 at an angle of θ 3 relative to the plane oftop surface 94. In an exemplary embodiment, angle θ 3 is about fifty-two degrees. The remainder oftop portion 98 is a concave recessed portion that is generally spherical in shape, as shown inFIG. 7B . - A
bottom portion 100 ofhole 92 extends from the end oftop portion 98 throughbone contacting surface 96 ofbone plate 90.Bottom portion 100 includesthreads 102. Some ofthreads 102 may extend intotop portion 98 depending on the particular embodiment, buttop portion 98 generally has only the beginning of thread leads, if any threading.Bottom portion 100 is not tapered, but rather is generally cylindrical in shape. In certain embodiments, for example,bottom portion 60 ofhole 52 ofbone plate 50,bottom portion 100 may be tapered at an included angle of less than about thirty degrees. -
FIG. 8 shows a side view of lockingscrew 80 threaded intohole 92 ofbone plate 90. Threads ofhead 92 of lockingscrew 90 are received bythreads 102 ofbone plate 90.Threads 102 completely surround the threads ofhead 92, andshaft 84 of lockingscrew 80 is threaded into bone (not shown).Head 82 of lockingscrew 80 is shaped such that its unthreaded portion bears against the ramp oftop portion 98 ofhole 92 ofbone plate 90. Additionally, the threaded portion ofhead 82 is generally cylindrical (i.e., not tapered) so that it properly mates withthreads 102 ofhole 92 ofbone plate 90. A threaded portion of a head of a locking screw for use with certain embodiments of this invention should be shaped to generally correspond to the shape of threaded portion of the hole of the bone plate. -
FIG. 9 showscompression screw 70 inserted withinhole 92 ofbone plate 50. As shown inFIG. 9 ,head 72 ofcompression screw 70 sits within the concave recessed or spherical portion oftop portion 98 ofbone plate 90.Head 72 ofcompression screw 70 contacts the side oftop portion 98 that includes the ramp, buthead 72 does not completely abut the ramp oftop portion 98. Asshaft 74 is threaded into a bone (not shown),compression screw 70 may pull or pushbone plate 90 in a particular direction ashead 72 ofcompression screw 70 comes into contact with and rides alongtop portion 98 ofhole 92 ofbone plate 90, similar to that described above with reference toFIG. 5 . The angle θ 3, shown inFIG. 7B , attop portion 98 ofhole 92 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction. Iftop portion 98 were to extend straight down fromupper surface 94 ofbone plate 90, compression would be less successful.Compression screw 70 may movebone plate 90 in more than one direction ascompression screw 70 is fully inserted withinhole 92. In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible. - Certain exemplary embodiments of bone plates according to this invention include holes, such as
hole 52 orhole 92, that not only receive compression or locking screws interchangeably but also accept multiple types of compression screw heads with varying outer and inner diameters and thread forms. A compression screw can be placed through such holes and use for fixation, provided the minor diameter of the screw shank does not exceed the minor diameter of the hole. The diameter of the head of the compression screw should not be less than the minor diameter of the hole because the compression screw would not then rest on any part of the bone plate as is necessary for fracture reduction. -
FIGS. 10-26 show various exemplary bone plate configurations that may include one or more holes, such asholes FIGS. 10-26 may also include other openings configured to receive only locking screws or only compression screws, which is well understood by those skilled in the art. The exemplary bone plates shown inFIGS. 10-26 may also include pinholes or provisional fixation slots that may receive provisional fixation pins. All holes in the exemplary plates ofFIGS. 10-26 include threads (not shown), while the other generally non-circular openings in these plates may or may not include threads depending on the purposes for which the opening is to be used. Pinholes and provisional fixation slots are not threaded. The bone plates shown inFIGS. 10-26 are further described in co-pending and commonly-assigned U.S. application Ser. No. 10/673,833, entitled “Bone Plates and Bone Plate Assemblies,” filed Sep. 29, 2003, which has been incorporated by reference herein in its entirety. - Shown in some of the exemplary bone plates in
FIGS. 10-26 are provisional fixation slots, such as, for example,slots 280 inFIGS. 10 and 11 , according to one embodiment of the present invention.FIG. 28 showsprovisional fixation slot 280 in a portion of abone plate 282. Methods of provisional fixation using such slots are further described in co-pending U.S. application Ser. No. 10/673,833. Additionally, more detailed information regarding provisional fixation of a bone plate to a bone prior to permanent attachment of the plate to the bone is provided in U.S. Pat. No. 5,676,667 to Hausman, issued Oct. 14, 1997, and U.S. Pat. No. 5,968,046 to Castleman, issued Oct. 19, 1999, each of which is incorporated herein by reference in its entirety. - Preferably, certain embodiments of bone plates according to this invention include an upper surface, a bone contacting surface, and a plurality of holes extending through the upper surface and the bone contacting surface. Each hole may interchangeably receive locking and compression screw and includes a thread that makes a complete revolution around the hole (exemplary embodiments of such holes are
hole 52 andhole 92 described above), and no other non-threaded holes or openings for receiving bone screws are present in the plates. Certain embodiments may also include non-threaded pinholes that are not capable of receiving bone screws, but which may be used for provisional fixation with provisional fixation pins. - Several exemplary embodiments of such bone plates are shown in
FIGS. 27 and 29 -33. For example,FIG. 29 shows adistal femur plate 290 contoured to treat fractures of the distal femur from the lateral side of the bone. Eachhole 292 may interchangeably receive locking and compression screw and includes a thread (not shown) that makes a complete revolution around the hole.Pinholes 294 are also included, butpinholes 294 are too small to receive bone screws, are not threaded, and are used for provisional fixation accomplished with provisional fixation pins. The plates shown inFIGS. 27 and 30 -33 likewise have holes and pinholes likeholes 292 andpinholes 294 described above.FIG. 27 shows aproximal tibia plate 270 contoured to treat proximal tibia fractures from the medial side.FIG. 30 shows an anterior lateraldistal plate 300.FIG. 31 shows a medialdistal tibia plate 310.FIG. 32 shows acalcaneal plate 320 that is applied to the medial aspect of the calcaneus and used to treat calcaneal fractures.FIG. 33 shows astraight plate 330 used to treat small bone fractures. It should be understood that numerous other types or shapes of bone plates may be made such that every screw-receiving hole in the bone plate may interchangeably receive locking and compression screws and includes a thread that makes a complete revolution around the hole. - An exemplary embodiment of a method of fracture reduction utilizing provisional fixation pins through a screw-receiving hole of a bone plate is described below. Numerous other exemplary embodiments of methods of fracture reduction using compression screws and/or locking screws, as well as, optionally, provisional fixation pins, are further described in co-pending U.S. application Ser. No. 10/673,833, which is incorporated herein by reference.
- A fracture is reduced with convention forceps, and a bone plate of appropriate size and shape is placed over the fracture site. The bone plate is temporarily secured to the bone using provisional fixation pins. In a bone plate such as those shown in
FIGS. 27 and 29 -33 described above, provisional fixation pins may be used through either the pinholes or the screw-receiving holes of the bone plate. For example, a 2 mm diameter provisional fixation pin may be used through a pinhole, a 2.7 mm diameter provisional fixation pin may be used through a 3.5 mm screw-receiving hole, and a 3.5 mm diameter provisional fixation pin may be used through a 4.5 mm screw-receiving hole. In one embodiment, provisional fixation is accomplished through the screw-receiving holes only. - Once one or more provisional fixation pins are used through these holes to secure the bone plate to the bone temporarily, a hole is drilled in the bone through one of the other screw-receiving holes of the bone plate. A locking or compression screw with an appropriate head diameter is then inserted into the bone for fixation or for lagging bone fragments to the plate. Provisional fixation provides for temporarily securing the bone plate to the bone before placing fixation screws through the bone plate, so that one can be certain the bone plate is properly positioned before placing bone screws for permanent fixation of the bone plate to the bone. Moreover, with provisional fixation, x-rays can be taken of the bone plate/construct without excess instruments in the field of view.
- The foregoing description of exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above disclosure. The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to enable others skilled in the art to make and utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope.
Claims (20)
1. A bone plate comprising:
an upper surface;
a bone contacting surface; and
a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole.
2. The bone plate of claim 1 , wherein each hole further comprises:
a top portion extending from the upper surface; and
a bottom portion extending from the top portion to the bone contacting surface, wherein the bottom portion is threaded.
3. The bone plate of claim 2 , wherein the bottom portion is tapered with an included angle of less than about thirty degrees.
4. The bone plate of claim 2 , wherein threads of each hole are configured to receive threads of a head of a locking screw.
5. The bone plate of claim 1 , wherein each hole is configured to engage a head of a compression screw and provide compression of fractured bone fragments.
6. The bone plate of claim 1 , wherein each hole is configured to threadably engage a head of a locking screw and fix the locking screw with respect to the bone plate.
7. A method of reducing a fracture of a bone, the method comprising:
(a) inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws;
(b) drilling a hole in the bone through a second hole of the plurality of holes; and
(c) inserting a locking screw through the second hole and into engagement with the bone to fix the position of the bone plate.
8. The method of claim 7 , further comprising inserting one or more additional provisional fixation pins through one or more additional holes of the plurality of holes before step (b).
9. The method of claim 7 , wherein each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
10. A method of reducing a fracture of a bone, the method comprising:
(a) inserting a provisional fixation pin through a first hole in a bone plate to couple the bone plate to the bone, wherein the first hole is one of a plurality of holes in the bone plate for receiving bone screws;
(b) drilling a hole in the bone through a second hole of the plurality of holes; and
(c) inserting a compression screw through the second hole and into engagement with the bone to lag a bone fragment to the bone plate.
11. The method of claim 10 , further comprising inserting one or more additional provisional fixation pins through one or more additional holes of the plurality of holes before step (b).
12. The method of claim 10 , further comprising drilling another hole in the bone through a third hole of the plurality of holes and inserting a locking screw through the third hole and into engagement with the bone to fix the position of the bone plate.
13. The method of claim 10 , wherein each hole of the plurality of holes in the bone plate may interchangeably receive a locking screw and a compression screw and includes a thread that makes a complete revolution around the hole.
14. A bone plate assembly comprising:
a bone plate including:
an upper surface;
a bone contacting surface;
a plurality of holes for receiving bone screws, wherein each hole extends through the upper surface and the bone contacting surface, may interchangeably receive a locking screw and a compression screw, and includes a thread that makes a complete revolution around the hole;
at least one locking screw;
at least one compression screw; and
at least one provisional fixation pin that may be received within at least one of the plurality of holes for receiving bone screws.
15. The bone plate assembly of claim 14 , wherein the bone plate further comprises pinholes for receiving provisional fixation pins and the bone plate assembly further comprises at least one provisional fixation pin that may be received within the pinholes.
16. The bone plate assembly of claim 15 , where the at least one provisional fixation pin that may be received within the pinholes has a diameter of about 2 millimeters and the at least one provisional fixation pin that may be received in the plurality of holes for receiving bone screws has a diameter of about 2.7 or about 3.5 millimeters.
17. The bone plate assembly of claim 14 , wherein each of the plurality of holes for receiving bone screws is configured to engage a head of the compression screw and provide compression of fractured bone fragments.
18. The bone plate assembly of claim 14 , wherein each of the plurality of holes for receiving bone screws is configured to threadably engage a head of a locking screw and fix the locking screw with respect to the bone plate.
19. The bone plate assembly of claim 14 , wherein a head of the locking screw is tapered and includes threads that engage threads in the hole.
20. The bone plate assembly of claim 14 , wherein the locking screw includes a head with triple lead threads and a single lead threaded shaft such that all threads of the locking screw are of a substantially equivalent pitch and the lead is not continuous between the threads of the head and the threads of the shaft of the locking screw.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/952,047 US20050107796A1 (en) | 2003-09-29 | 2004-09-28 | Bone plates and methods for provisional fixation using same |
US11/259,854 US20060129151A1 (en) | 2002-08-28 | 2005-10-26 | Systems and methods for securing fractures using plates and cable clamps |
US11/644,303 US7909858B2 (en) | 2003-09-29 | 2006-12-22 | Bone plate systems using provisional fixation |
US13/051,715 US20110282393A1 (en) | 2003-09-29 | 2011-03-18 | Bone plate systems using provisional fixation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/673,833 US7179260B2 (en) | 2003-09-29 | 2003-09-29 | Bone plates and bone plate assemblies |
US10/952,047 US20050107796A1 (en) | 2003-09-29 | 2004-09-28 | Bone plates and methods for provisional fixation using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/673,833 Continuation-In-Part US7179260B2 (en) | 2002-08-28 | 2003-09-29 | Bone plates and bone plate assemblies |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/259,854 Continuation-In-Part US20060129151A1 (en) | 2002-08-28 | 2005-10-26 | Systems and methods for securing fractures using plates and cable clamps |
US11/644,303 Continuation US7909858B2 (en) | 2003-09-29 | 2006-12-22 | Bone plate systems using provisional fixation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050107796A1 true US20050107796A1 (en) | 2005-05-19 |
Family
ID=34376721
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/673,833 Expired - Lifetime US7179260B2 (en) | 2002-08-28 | 2003-09-29 | Bone plates and bone plate assemblies |
US10/952,047 Abandoned US20050107796A1 (en) | 2002-08-28 | 2004-09-28 | Bone plates and methods for provisional fixation using same |
US11/644,306 Expired - Lifetime US7905910B2 (en) | 2003-09-29 | 2006-12-22 | Bone plates and bone plate assemblies |
US11/644,303 Active 2025-10-12 US7909858B2 (en) | 2003-09-29 | 2006-12-22 | Bone plate systems using provisional fixation |
US13/051,715 Abandoned US20110282393A1 (en) | 2003-09-29 | 2011-03-18 | Bone plate systems using provisional fixation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/673,833 Expired - Lifetime US7179260B2 (en) | 2002-08-28 | 2003-09-29 | Bone plates and bone plate assemblies |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/644,306 Expired - Lifetime US7905910B2 (en) | 2003-09-29 | 2006-12-22 | Bone plates and bone plate assemblies |
US11/644,303 Active 2025-10-12 US7909858B2 (en) | 2003-09-29 | 2006-12-22 | Bone plate systems using provisional fixation |
US13/051,715 Abandoned US20110282393A1 (en) | 2003-09-29 | 2011-03-18 | Bone plate systems using provisional fixation |
Country Status (6)
Country | Link |
---|---|
US (5) | US7179260B2 (en) |
EP (1) | EP1670373A1 (en) |
JP (1) | JP2007507296A (en) |
AU (2) | AU2004277946B2 (en) |
CA (1) | CA2537438A1 (en) |
WO (1) | WO2005032386A1 (en) |
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040087954A1 (en) * | 2002-08-28 | 2004-05-06 | Allen C . Wayne | Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US20060129151A1 (en) * | 2002-08-28 | 2006-06-15 | Allen C W | Systems and methods for securing fractures using plates and cable clamps |
US20060149265A1 (en) * | 2004-09-07 | 2006-07-06 | Anthony James | Minimal thickness bone plate locking mechanism |
US20060167464A1 (en) * | 2004-09-23 | 2006-07-27 | Allen C W | Systems, methods, and apparatuses for tensioning an orthopedic surgical cable |
US20060235400A1 (en) * | 2003-08-26 | 2006-10-19 | Rolf Schneider | Bone plate |
US20070038220A1 (en) * | 2004-04-27 | 2007-02-15 | Shipp John I | Absorbable Fastener for Hernia Mesh Fixation |
US20070162016A1 (en) * | 2005-10-25 | 2007-07-12 | Matityahu Amir M | Bone fastening assembly and bushing and screw for use therewith |
US20070173843A1 (en) * | 2005-12-22 | 2007-07-26 | Matityahu Amir M | Drug delivering bone plate and method and targeting device for use therewith |
US20070233106A1 (en) * | 2006-02-24 | 2007-10-04 | Synthes (Usa) | Tibal plateau leveling osteotomy plate |
US20070270853A1 (en) * | 2006-04-11 | 2007-11-22 | Ebi, L.P. | Contoured bone plate |
US20080119894A1 (en) * | 2004-12-30 | 2008-05-22 | Konigsee Implantate Und Instrumente Zur Osteosynthese Gmbh | Osteosynthesis Plate, E.G. A Plate For The Head Of The Radius Or Humerus, With A Plurality Of Bore Holes For Receiving Bone Screws |
US20080140130A1 (en) * | 2004-01-26 | 2008-06-12 | Chan Jason S | Highly-versatile variable-angle bone plate system |
US20080188852A1 (en) * | 2007-02-05 | 2008-08-07 | Matityahu Amir M | Apparatus for Repositioning Portions of Fractured Bone and Method of Using Same |
US20080306550A1 (en) * | 2007-06-07 | 2008-12-11 | Matityahu Amir M | Spine repair assembly |
US20090270925A1 (en) * | 2008-04-23 | 2009-10-29 | Aryan Henry E | Bone plate system and method |
US20090275989A1 (en) * | 2008-05-01 | 2009-11-05 | Linares Medical Devices, Llc | Composite and surface mounted brace, kit and assembly for supporting a fractured bone |
US20100030276A1 (en) * | 2008-07-31 | 2010-02-04 | Dave Huebner | Periarticular Bone Plate With Biplanar Offset Head Member |
US20100030277A1 (en) * | 2008-07-31 | 2010-02-04 | Haidukewych George J | Periarticular bone plate with biplanar offset head member |
US20100076496A1 (en) * | 2004-01-26 | 2010-03-25 | Alberto Angel Fernandez | Variable Angle Locked Bone Fixation System |
US20100137865A1 (en) * | 2008-03-24 | 2010-06-03 | Mark Allen Frankle | Method and system for the intramedullary fixation of a fractured bone |
US20110009909A1 (en) * | 2006-12-27 | 2011-01-13 | D.L.P. | Osteosynthesis device comprising a support with a tapped orifice associated with a bearing surface for receiving an anchoring rod |
US20110009866A1 (en) * | 2009-07-09 | 2011-01-13 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US20110071575A1 (en) * | 2009-09-21 | 2011-03-24 | Jmea Corporation | Locking Securing Member |
US20110152948A1 (en) * | 2009-06-19 | 2011-06-23 | David Crook | Triple lead bone screw |
US20110224671A1 (en) * | 2009-09-14 | 2011-09-15 | Kenny Koay | Variable angle compression plate |
US8105367B2 (en) | 2003-09-29 | 2012-01-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US8382807B2 (en) | 2005-07-25 | 2013-02-26 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US20130086789A1 (en) * | 2007-09-26 | 2013-04-11 | Biomet C.V. | Modular bone plate system |
CN103393460A (en) * | 2013-08-23 | 2013-11-20 | 李明 | Universal posterior locking anatomic bone fracture plate for acetabulum |
US20140000092A1 (en) * | 2011-02-02 | 2014-01-02 | Biomet Manufacturing, Llc | Bone plate having combination locking and compression screw holes |
US8771324B2 (en) | 2011-05-27 | 2014-07-08 | Globus Medical, Inc. | Securing fasteners |
US20140309701A1 (en) * | 2005-01-28 | 2014-10-16 | Orthohelix Surgical Designs, Inc. | Orthopedic plates for use in clavicle repair and methods for their use |
US8940028B2 (en) | 2005-07-25 | 2015-01-27 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US9033985B2 (en) | 2008-05-01 | 2015-05-19 | Linares Medical Devices, Llc | Composite and surface mounted brace, kit and assembly for supporting a fractured bone |
USD734853S1 (en) | 2009-10-14 | 2015-07-21 | Nuvasive, Inc. | Bone plate |
CN105078559A (en) * | 2015-09-25 | 2015-11-25 | 李明 | General acetabulum back wall dissecting and locking bone plate |
US9451992B2 (en) * | 2010-12-01 | 2016-09-27 | Facet-Link Inc. | Variable angle bone screw fixation arrangement |
US9615866B1 (en) | 2004-10-18 | 2017-04-11 | Nuvasive, Inc. | Surgical fixation system and related methods |
US9700424B2 (en) | 2012-11-07 | 2017-07-11 | Foot Innovations, Llc | Joint arthroplasty systems, methods, and components |
US9943341B2 (en) | 2013-07-16 | 2018-04-17 | K2M, Llc | Retention plate member for a spinal plate system |
US10226287B2 (en) | 2014-03-31 | 2019-03-12 | Association For The Advancement Of Musculoskeletal | Bone plate with versatile screw holes |
US10231768B2 (en) | 2003-05-30 | 2019-03-19 | DePuy Synthes Products, Inc. | Methods for implanting bone plates |
US10299842B2 (en) | 2013-12-20 | 2019-05-28 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US10368928B2 (en) | 2017-03-13 | 2019-08-06 | Globus Medical, Inc. | Bone stabilization systems |
US10383668B2 (en) | 2016-08-17 | 2019-08-20 | Globus Medical, Inc. | Volar distal radius stabilization system |
US10390866B2 (en) | 2011-06-15 | 2019-08-27 | Smith & Nephew, Inc. | Variable angle locking implant |
EP3533402A1 (en) * | 2018-03-02 | 2019-09-04 | Globus Medical, Inc. | Distal tibial plating system |
US10420596B2 (en) | 2016-08-17 | 2019-09-24 | Globus Medical, Inc. | Volar distal radius stabilization system |
US10492841B2 (en) | 2014-07-10 | 2019-12-03 | Crossroads Extremity Systems, Llc | Bone implant and means of insertion |
US10499963B2 (en) * | 2014-12-16 | 2019-12-10 | Hae Sun Paik | Fixing instrument for open-type distal tibial osteotomy |
US10575884B2 (en) | 2016-08-17 | 2020-03-03 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US10624686B2 (en) | 2016-09-08 | 2020-04-21 | DePuy Synthes Products, Inc. | Variable angel bone plate |
US10631903B2 (en) | 2017-03-10 | 2020-04-28 | Globus Medical Inc. | Clavicle fixation system |
US10687873B2 (en) | 2016-08-17 | 2020-06-23 | Globus Medical Inc. | Stabilization systems |
US10687874B2 (en) | 2015-08-27 | 2020-06-23 | Globus Medical, Inc | Proximal humeral stabilization system |
US10751098B2 (en) | 2016-08-17 | 2020-08-25 | Globus Medical Inc. | Stabilization systems |
US10772665B2 (en) | 2018-03-29 | 2020-09-15 | DePuy Synthes Products, Inc. | Locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US10820930B2 (en) | 2016-09-08 | 2020-11-03 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10828074B2 (en) | 2015-11-20 | 2020-11-10 | Globus Medical, Inc. | Expandalbe intramedullary systems and methods of using the same |
US10828075B2 (en) | 2015-09-25 | 2020-11-10 | Globus Medical Inc. | Bone fixation devices having a locking feature |
US10856920B2 (en) | 2017-09-13 | 2020-12-08 | Globus Medical Inc. | Bone stabilization systems |
US10905477B2 (en) | 2017-03-13 | 2021-02-02 | Globus Medical, Inc. | Bone stabilization systems |
US10905476B2 (en) | 2016-09-08 | 2021-02-02 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10925651B2 (en) | 2018-12-21 | 2021-02-23 | DePuy Synthes Products, Inc. | Implant having locking holes with collection cavity for shavings |
US10945725B2 (en) | 2017-02-06 | 2021-03-16 | Crossroads Extremity Systems, Llc | Implant inserter |
US10993750B2 (en) | 2015-09-18 | 2021-05-04 | Smith & Nephew, Inc. | Bone plate |
US11013541B2 (en) | 2018-04-30 | 2021-05-25 | DePuy Synthes Products, Inc. | Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US11026727B2 (en) | 2018-03-20 | 2021-06-08 | DePuy Synthes Products, Inc. | Bone plate with form-fitting variable-angle locking hole |
US11039865B2 (en) | 2018-03-02 | 2021-06-22 | Stryker European Operations Limited | Bone plates and associated screws |
US11071570B2 (en) | 2018-03-02 | 2021-07-27 | Globus Medical, Inc. | Distal tibial plating system |
US11076898B2 (en) | 2015-08-27 | 2021-08-03 | Globus Medical, Inc. | Proximal humeral stabilization system |
US11096730B2 (en) | 2017-09-13 | 2021-08-24 | Globus Medical Inc. | Bone stabilization systems |
US11129627B2 (en) | 2019-10-30 | 2021-09-28 | Globus Medical, Inc. | Method and apparatus for inserting a bone plate |
US11141172B2 (en) | 2018-04-11 | 2021-10-12 | Globus Medical, Inc. | Method and apparatus for locking a drill guide in a polyaxial hole |
US11141204B2 (en) | 2016-08-17 | 2021-10-12 | Globus Medical Inc. | Wrist stabilization systems |
US11179149B2 (en) | 2017-02-07 | 2021-11-23 | Crossroads Extremity Systems, Llc | Counter-torque implant |
US11197704B2 (en) | 2016-04-19 | 2021-12-14 | Globus Medical, Inc. | Implantable compression screws |
US11197701B2 (en) * | 2016-08-17 | 2021-12-14 | Globus Medical, Inc. | Stabilization systems |
US11197682B2 (en) | 2015-08-27 | 2021-12-14 | Globus Medical, Inc. | Proximal humeral stabilization system |
US11202626B2 (en) | 2014-07-10 | 2021-12-21 | Crossroads Extremity Systems, Llc | Bone implant with means for multi directional force and means of insertion |
US11202663B2 (en) | 2019-02-13 | 2021-12-21 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US11213327B2 (en) | 2016-08-17 | 2022-01-04 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US11219527B2 (en) | 2011-02-16 | 2022-01-11 | Genesis Medical Devices Llc | Combination intra-medullary and extra-medullary fracture stabilization with aligning arm |
US11259851B2 (en) | 2003-08-26 | 2022-03-01 | DePuy Synthes Products, Inc. | Bone plate |
US11284920B2 (en) | 2016-03-02 | 2022-03-29 | Globus Medical Inc. | Fixators for bone stabilization and associated systems and methods |
US11291484B2 (en) | 2004-01-26 | 2022-04-05 | DePuy Synthes Products, Inc. | Highly-versatile variable-angle bone plate system |
US11317951B2 (en) | 2013-12-20 | 2022-05-03 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US11331128B2 (en) | 2016-08-17 | 2022-05-17 | Globus Medical Inc. | Distal radius stabilization system |
US11337739B2 (en) | 2017-12-20 | 2022-05-24 | Glabs X, Llc | Multiplanar fixation plate for fracture repair |
USD961081S1 (en) | 2020-11-18 | 2022-08-16 | Crossroads Extremity Systems, Llc | Orthopedic implant |
US11432857B2 (en) | 2016-08-17 | 2022-09-06 | Globus Medical, Inc. | Stabilization systems |
US11723647B2 (en) | 2019-12-17 | 2023-08-15 | Globus Medical, Inc. | Syndesmosis fixation assembly |
US11963847B2 (en) | 2021-11-03 | 2024-04-23 | DePuy Synthes Products, Inc. | TPLO plate compression system and method |
US12042200B2 (en) | 2016-09-22 | 2024-07-23 | Globus Medical, Inc. | Systems and methods for intramedullary nail implantation |
US12059183B2 (en) | 2020-07-31 | 2024-08-13 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements and screws |
US12064150B2 (en) | 2022-01-19 | 2024-08-20 | Globus Medical Inc. | System and method for treating bone fractures |
Families Citing this family (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE274856T1 (en) * | 1999-03-09 | 2004-09-15 | Synthes Ag | BONE PLATE |
US7695502B2 (en) * | 2000-02-01 | 2010-04-13 | Depuy Products, Inc. | Bone stabilization system including plate having fixed-angle holes together with unidirectional locking screws and surgeon-directed locking screws |
US20060041260A1 (en) * | 2000-02-01 | 2006-02-23 | Orbay Jorge L | Fixation system with plate having holes with divergent axes and multidirectional fixators for use therethrough |
AU2003251514B2 (en) * | 2002-06-11 | 2008-09-11 | Covidien Lp | Hernia mesh tacks |
US7780664B2 (en) | 2002-12-10 | 2010-08-24 | Depuy Products, Inc. | Endosteal nail |
US7776076B2 (en) * | 2004-05-11 | 2010-08-17 | Synthes Usa, Llc | Bone plate |
CA2544742A1 (en) * | 2003-11-05 | 2005-05-19 | Koenigsee Implantate Und Instrumente Zur Osteosynthese Gmbh | Plate used to stabilise distal radius fractures |
WO2006091827A2 (en) | 2005-02-25 | 2006-08-31 | Regents Of The University Of California | Device and template for canine humeral slide osteotomy |
US20050277937A1 (en) * | 2004-06-10 | 2005-12-15 | Leung Takkwong R | Bone plating system |
US8435238B2 (en) * | 2004-10-05 | 2013-05-07 | Michigan State University | Devices and methods for interlocking surgical screws and nails |
US7799062B2 (en) * | 2004-11-30 | 2010-09-21 | Stryker Trauma S.A. | Self-guiding threaded fastener |
US8172886B2 (en) | 2004-12-14 | 2012-05-08 | Depuy Products, Inc. | Bone plate with pre-assembled drill guide tips |
US20060149264A1 (en) * | 2004-12-20 | 2006-07-06 | Castaneda Javier E | Screw locking systems for bone plates |
US20060195085A1 (en) * | 2005-02-01 | 2006-08-31 | Inion Ltd. | System and method for stabilizing spine |
US8197523B2 (en) * | 2005-02-15 | 2012-06-12 | Apex Biomedical Company, Llc | Bone screw for positive locking but flexible engagement to a bone |
DE102005007674B4 (en) * | 2005-02-19 | 2007-02-01 | Aesculap Ag & Co. Kg | Orthopedic fixation system |
US20060241607A1 (en) * | 2005-03-31 | 2006-10-26 | Mark Myerson | Metatarsal fixation plate |
US7344538B2 (en) * | 2005-03-31 | 2008-03-18 | Depuy Products, Inc. | Mid-foot fixation plate |
AU2006247498A1 (en) * | 2005-05-18 | 2006-11-23 | Sonoma Orthopedic Products, Inc. | Minimally invasive actuable bone fixation devices, systems and methods of use |
WO2010037038A2 (en) | 2008-09-26 | 2010-04-01 | Sonoma Orthopedic Products, Inc. | Bone fixation device, tools and methods |
US8961516B2 (en) | 2005-05-18 | 2015-02-24 | Sonoma Orthopedic Products, Inc. | Straight intramedullary fracture fixation devices and methods |
US9060820B2 (en) | 2005-05-18 | 2015-06-23 | Sonoma Orthopedic Products, Inc. | Segmented intramedullary fracture fixation devices and methods |
DE102005042766B4 (en) * | 2005-07-13 | 2009-08-20 | Königsee Implantate und Instrumente zur Osteosynthese GmbH | Plate hole of a bone plate for osteosynthesis |
US7905909B2 (en) * | 2005-09-19 | 2011-03-15 | Depuy Products, Inc. | Bone stabilization system including multi-directional threaded fixation element |
DE502005002257D1 (en) * | 2005-12-23 | 2008-01-24 | Aap Implantate Ag | bone plate |
US7935126B2 (en) | 2006-03-20 | 2011-05-03 | Depuy Products, Inc. | Bone plate shaping system |
US7951178B2 (en) * | 2006-04-03 | 2011-05-31 | Acumed Llc | Bone plates with hybrid apertures |
US10085780B2 (en) | 2006-05-26 | 2018-10-02 | Mark Richard Cunliffe | Bone fixation device |
US20120029576A1 (en) * | 2006-05-26 | 2012-02-02 | Mark Richard Cunliffe | Bone Fixation Device |
US8057520B2 (en) * | 2006-07-18 | 2011-11-15 | Orthohelix Surgical Designs, Inc. | Calcaneal plate |
WO2008067022A2 (en) * | 2006-10-02 | 2008-06-05 | The Cleveland Clinic Foundation | Fastener assembly |
WO2008064347A2 (en) * | 2006-11-22 | 2008-05-29 | Sonoma Orthopedic Products, Inc. | Curved orthopedic tool |
WO2008064350A2 (en) * | 2006-11-22 | 2008-05-29 | Sonoma Orthopedic Products Inc. | Surgical tools for use in deploying bone repair devices |
US20080149115A1 (en) * | 2006-11-22 | 2008-06-26 | Sonoma Orthopedic Products, Inc. | Surgical station for orthopedic reconstruction surgery |
EP2094177A2 (en) | 2006-11-22 | 2009-09-02 | Sonoma Orthopedic Products, Inc. | Fracture fixation device, tools and methods |
FR2910802B1 (en) * | 2006-12-27 | 2009-03-06 | D L P Sarl | OSTEOSYNTHESIS DEVICE COMPRISING A SUPPORT PROVIDED WITH AT LEAST ONE TARGET ORIFICE AND AN ANCHORING ROD |
FR2910801B1 (en) * | 2006-12-27 | 2009-07-10 | D L P Sarl | OSTEOSYNTHESIS DEVICE COMPRISING A SUPPORT WITH TAPPED ORIFICE ASSOCIATED WITH SPHERE TRUNK SUPPORT FOR RECEPTION OF ANCHORING ROD |
FR2910803B1 (en) * | 2006-12-27 | 2009-07-10 | D L P Sarl | OSTEOSYNTHESIS DEVICE COMPRISING A SUPPORT WITH TAPPED ORIFICE ASSOCIATED WITH A PLANAR SUPPORT FOR THE RECEPTION OF AN ANCHORING ROD |
FR2910800B1 (en) * | 2006-12-27 | 2009-07-10 | D L P Sarl | OSTEOSYNTHESIS DEVICE COMPRISING A SUPPORT PROVIDED WITH AT LEAST ONE TARGETED ORIFICE ASSOCIATED WITH A CONE TRUNK SUPPORT FOR THE RECEPTION OF AN ANCHORING ROD |
US20080234749A1 (en) * | 2007-01-26 | 2008-09-25 | Zimmer Technology, Inc. | Bone plate providing threaded locking head screw capture |
ITVR20070017A1 (en) * | 2007-02-01 | 2008-08-02 | Giuseppe Lodola | PLANT FOR FIXING TWO BONE FRAMES ONE TO THE OTHER IN OSTEOTOMY INTERVENTIONS |
FR2917596B1 (en) * | 2007-06-21 | 2010-06-18 | Newdeal | FASTENING KIT FOR MEDICAL OR SURGICAL USE |
AR061999A1 (en) * | 2007-07-18 | 2008-08-10 | Pizzicara Mario Angel | BLOCKED PLATE OF COMBINED HOLES, STABILITY CONTROL AND DOUBLE ANGULATION, FOR UNION OF FRACTURED BONES |
KR101524518B1 (en) * | 2007-08-27 | 2015-06-01 | 알더 메디이큅 프라이빗 리미티드 | Bone plates and bone plate assemblies |
EP2397093B1 (en) | 2007-11-02 | 2015-12-02 | Biomet C.V. | Elbow fracture fixation system |
US20090130620A1 (en) * | 2007-11-19 | 2009-05-21 | Mohamadreza Yazdi | Bone supported palatal expansion appliance |
JP2009125553A (en) * | 2007-11-28 | 2009-06-11 | Biomet Japan Inc | Implant |
US8317842B2 (en) | 2007-11-30 | 2012-11-27 | Biomet C.V. | Distal tibia plating system |
EP2249717B1 (en) * | 2008-01-14 | 2015-02-25 | K2M, Inc. | Spinal fixation device |
US8267973B2 (en) | 2008-02-27 | 2012-09-18 | Shoulder Options, Inc. | Fixable suture anchor plate and method for tendon-to-bone repair |
US8343155B2 (en) * | 2008-05-15 | 2013-01-01 | Zimmer, Inc. | Cable button |
EP2299917A1 (en) * | 2008-06-10 | 2011-03-30 | Sonoma Orthopedic Products, Inc. | Fracture fixation device, tools and methods |
US8337533B2 (en) * | 2008-06-20 | 2012-12-25 | Osteomed Llc | Locking plate benders |
US20100057086A1 (en) * | 2008-08-29 | 2010-03-04 | Zimmer, Inc. | Anodized locking plate components |
ES2533802T3 (en) * | 2008-09-02 | 2015-04-14 | Stryker Trauma Sa | Locator device for a bone plate |
FR2936700B1 (en) * | 2008-10-02 | 2012-04-13 | Memometal Technologies | ORTHOPEDIC IMPLANT IN THE FORM OF A PLATE TO BE FIXED BETWEEN TWO BONE PARTS |
FR2936699B1 (en) * | 2008-10-02 | 2012-01-13 | Memometal Technologies | ORTHOPEDIC IMPLANT IN THE FORM OF A PLATE TO BE FIXED BETWEEN TWO BONE PARTS |
KR20100057240A (en) * | 2008-11-21 | 2010-05-31 | 주식회사 솔고 바이오메디칼 | Apparatus for bone fixation |
US8123815B2 (en) | 2008-11-24 | 2012-02-28 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US20100217327A1 (en) * | 2009-02-24 | 2010-08-26 | Vancelette David W | Plate and system for lateral treatment of a fracture of the calcaneus |
US8246664B2 (en) * | 2009-02-24 | 2012-08-21 | Osteomed Llc | Multiple bone fusion plate |
US8366719B2 (en) | 2009-03-18 | 2013-02-05 | Integrated Spinal Concepts, Inc. | Image-guided minimal-step placement of screw into bone |
JP2012521800A (en) | 2009-03-24 | 2012-09-20 | スタビリッツ オルトペディクス, エルエルシー | Orthopedic fixation device having a bioresorbable material layer |
US20100256687A1 (en) | 2009-04-01 | 2010-10-07 | Merete Medical Gmbh | Fixation Device and Method of Use for a Ludloff Osteotomy Procedure |
DE102009016394B4 (en) | 2009-04-07 | 2016-02-11 | Merete Medical Gmbh | Device for stable-angle fixation and compression of a fracture site or osteotomy on a bone |
US8529608B2 (en) * | 2009-04-28 | 2013-09-10 | Osteomed Llc | Bone plate with a transfixation screw hole |
JP5801287B2 (en) | 2009-05-15 | 2015-10-28 | スミス アンド ネフュー インコーポレーテッド | Proximal fixation system and method |
US8308810B2 (en) | 2009-07-14 | 2012-11-13 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US8834536B2 (en) | 2009-07-16 | 2014-09-16 | Nexxt Spine, LLC | Cervical plate fixation system |
US9095444B2 (en) | 2009-07-24 | 2015-08-04 | Warsaw Orthopedic, Inc. | Implant with an interference fit fastener |
US10390867B2 (en) | 2009-09-18 | 2019-08-27 | Biomet C.V. | Bone plate system and method |
CA2774688C (en) | 2009-09-18 | 2019-04-30 | Depuy Products, Inc. | Disposable orthopaedic surgery kit and components |
KR101045229B1 (en) | 2009-09-29 | 2011-06-30 | 주식회사 솔고 바이오메디칼 | Apparatus for bone fixation |
DE102009049168A1 (en) * | 2009-10-12 | 2011-04-28 | Normed Medizin-Technik Gmbh | Bone screw and system |
FR2951072B1 (en) * | 2009-10-13 | 2011-11-18 | Biotech Internat | SCAPHO-LUNAR STABILIZATION IMPLANT |
JP5922581B2 (en) * | 2009-10-28 | 2016-05-24 | スミス アンド ネフュー インコーポレーテッド | Threaded suture anchor |
US20110106157A1 (en) * | 2009-10-30 | 2011-05-05 | Warsaw Orthropedic, Inc. | Self-Locking Interference Bone Screw for use with Spinal Implant |
US8444680B2 (en) * | 2009-11-09 | 2013-05-21 | Arthrex, Inc. | Polyaxial bushing for locking plate |
BR112012011667B1 (en) * | 2009-11-17 | 2020-10-20 | Synthes Gmbh | combination of a buttress pin and an implant to be attached to a bone through the buttress pin |
FR2955247B1 (en) | 2010-01-21 | 2013-04-26 | Tornier Sa | GLENOIDAL COMPONENT OF SHOULDER PROSTHESIS |
ES2573811T3 (en) | 2009-12-22 | 2016-06-10 | Merete Medical Gmbh | Bone plaque system for osteosynthesis |
ES2525129T3 (en) * | 2009-12-30 | 2014-12-17 | Medartis Ag | Osteosynthesis plate for the treatment of fractures near a joint or osteotomies |
KR101734966B1 (en) * | 2010-02-25 | 2017-05-12 | 신세스 게엠바하 | Bone plate screw holes convertible to hooks |
US20110218580A1 (en) * | 2010-03-08 | 2011-09-08 | Stryker Trauma Sa | Bone fixation system with curved profile threads |
FR2956972B1 (en) | 2010-03-08 | 2012-12-28 | Memometal Technologies | ARTICULATED OSTEOSYNTHESIS PLATE |
FR2956971B1 (en) | 2010-03-08 | 2012-03-02 | Memometal Technologies | PLATE OSTEOSYNTHESIS SYSTEM |
US9113970B2 (en) | 2010-03-10 | 2015-08-25 | Orthohelix Surgical Designs, Inc. | System for achieving selectable fixation in an orthopedic plate |
US8419745B2 (en) | 2010-04-23 | 2013-04-16 | Biomet C.V. | Bone plate bender system |
ES2427981T3 (en) * | 2010-05-25 | 2013-11-05 | Stryker Trauma Sa | Bone fixation implant |
US8828084B2 (en) * | 2010-06-08 | 2014-09-09 | Kamran Aflatoon | Dynamic interbody cage anchor system |
US8790373B2 (en) * | 2010-07-15 | 2014-07-29 | Kamran Aflatoon | Dynamic inter-spinous process spacer |
US8753396B1 (en) | 2010-09-13 | 2014-06-17 | Theken Spine, Llc | Intervertebral implant having back-out prevention feature |
CN101972162B (en) * | 2010-10-21 | 2012-06-27 | 李明 | Self-locking acetabular posterior-wall posterior-column anatomical steel plate |
EP2476388B1 (en) * | 2011-01-17 | 2014-10-29 | HG Medical GmbH | Osteosynthesis plate, in particular radius plate or ulnar plate, for stabilising bone fractures |
FR2971144A1 (en) | 2011-02-08 | 2012-08-10 | Tornier Sa | GLENOIDAL IMPLANT FOR SHOULDER PROSTHESIS AND SURGICAL KIT |
WO2012125691A2 (en) * | 2011-03-14 | 2012-09-20 | Amit Sinha | Locking screws and plates |
KR101238405B1 (en) | 2011-03-15 | 2013-02-28 | 최길운 | Screw for treating bone fracture |
US8882775B2 (en) | 2011-04-15 | 2014-11-11 | DePuy Synthes Products, LLC | Fixation assembly |
EP3692937A1 (en) * | 2011-04-15 | 2020-08-12 | Synthes GmbH | Fixation assembly for an intervetebral implant |
US9005292B2 (en) * | 2011-05-10 | 2015-04-14 | Hooman M. MELAMED | Vertebral spacer |
DE202011051165U1 (en) | 2011-08-31 | 2011-11-14 | Merete Medical Gmbh | Anatomically adapted, plantar bone plate and bone plate system |
JP5856301B2 (en) * | 2011-09-16 | 2016-02-09 | ストライカー トラウマ ゲーエムベーハー | Multi-axis locking hole configuration |
US9241806B2 (en) * | 2011-09-26 | 2016-01-26 | Globus Medical, Inc. | Flexible anchoring and fusion devices and methods of using the same |
WO2013095191A1 (en) * | 2011-12-19 | 2013-06-27 | Общество С Ограниченной Ответственностью "Азбука Технологий" | Fixation device for the osteosynthesis of fractures of the proximal portion of the tibia |
US20130289630A1 (en) * | 2012-04-26 | 2013-10-31 | Daniel Duane Fritzinger | Conical-spherical thread form for variable angle locking systems |
DE102012103894B4 (en) | 2012-05-03 | 2016-10-27 | Merete Medical Gmbh | Bone plate system for osteosynthesis |
EP2852342A4 (en) * | 2012-05-22 | 2016-01-06 | Austofix Group Ltd | Bone fixation device |
EP2674127B1 (en) * | 2012-06-13 | 2014-12-17 | maxon motor ag | Implant |
IN2015DN01971A (en) | 2012-08-23 | 2015-08-14 | Synthes Gmbh | |
US9452005B2 (en) | 2012-08-23 | 2016-09-27 | DePuy Synthes Products, Inc. | Bone fixation system |
BR112015003749B1 (en) * | 2012-08-23 | 2022-03-03 | Synthes Gmbh | Bone fixation system |
US10004603B2 (en) | 2012-08-23 | 2018-06-26 | DePuy Synthes Products, Inc. | Bone implant |
US9204912B2 (en) | 2012-09-06 | 2015-12-08 | Orthohelix Surgical Designs, Inc. | Contoured calcaneal plate and a percutaneous drill guide for use therewith |
CN102824209A (en) * | 2012-09-11 | 2012-12-19 | 山东省文登市整骨科技开发有限公司 | Continuous stress internal fixing bracket system |
US9101426B2 (en) | 2012-10-11 | 2015-08-11 | Stryker Trauma Sa | Cable plug |
EP2922484B1 (en) | 2013-01-15 | 2018-07-25 | Zimmer GmbH | Surgical bone screw and implant system |
US8998550B2 (en) | 2013-02-11 | 2015-04-07 | James Michael Platt | Hardware attachment system |
US9016994B2 (en) | 2013-02-11 | 2015-04-28 | James Michael Platt | Threaded fastener |
US9107711B2 (en) | 2013-02-20 | 2015-08-18 | Stryker Trauma Sa | Screw thread with flattened peaks |
US9404525B2 (en) | 2013-03-14 | 2016-08-02 | Imds Llc | Polyaxial locking interface |
US9103367B2 (en) | 2013-03-14 | 2015-08-11 | Imds Llc | Polyaxial locking interface |
US9545276B2 (en) | 2013-03-15 | 2017-01-17 | Aristotech Industries Gmbh | Fixation device and method of use for a lapidus-type plantar hallux valgus procedure |
KR101521628B1 (en) * | 2013-06-11 | 2015-05-20 | 주식회사 제일메디칼코퍼레이션 | Calcaneus plate and calcaneus plate system |
US9510880B2 (en) * | 2013-08-13 | 2016-12-06 | Zimmer, Inc. | Polyaxial locking mechanism |
US9468479B2 (en) | 2013-09-06 | 2016-10-18 | Cardinal Health 247, Inc. | Bone plate |
CN103445849A (en) * | 2013-09-13 | 2013-12-18 | 勘武生 | Dynamic locking plate for treating fracture of neck of femur |
EP3777777B1 (en) | 2014-01-03 | 2023-04-05 | Howmedica Osteonics Corp. | Glenoid implant for a shoulder prosthesis |
US9770278B2 (en) | 2014-01-17 | 2017-09-26 | Arthrex, Inc. | Dual tip guide wire |
USD745162S1 (en) | 2014-01-27 | 2015-12-08 | Merete Medical Gmbh | Bone plate |
US10517657B1 (en) * | 2014-04-14 | 2019-12-31 | Avanti Orthopaedics, LLC | Load sharing bone plate |
US9814503B1 (en) * | 2014-04-14 | 2017-11-14 | Avanti Orthopaedics, LLC | Load sharing bone plate |
US11452553B1 (en) | 2014-04-14 | 2022-09-27 | Avanti Orthopaedics, LLC | Load sharing bone plate |
CN103919600A (en) * | 2014-04-17 | 2014-07-16 | 泰州市中兴医械科技有限公司 | Calcaneus threaded fixing type steel plate |
US9743965B2 (en) | 2014-06-20 | 2017-08-29 | DePuy Synthes Products, Inc. | Medial column fusion plates |
US9839456B2 (en) | 2014-06-20 | 2017-12-12 | DePuy Synthes Products, Inc. | Anterolateral calcaneal plate |
CN104055568A (en) * | 2014-06-27 | 2014-09-24 | 江苏艾迪尔医疗科技股份有限公司 | Proximal femur locking bone fracture plate |
US10869704B2 (en) | 2014-06-30 | 2020-12-22 | DePuy Synthes Products, Inc. | Metacarpal neck plate |
CN104083202A (en) * | 2014-07-28 | 2014-10-08 | 苏州市康力骨科器械有限公司 | Tibial plateau posterior column locking steel plate |
US10499968B2 (en) | 2014-08-08 | 2019-12-10 | Stryker European Holdings I, Llc | Cable plugs for bone plates |
US10258395B2 (en) | 2014-09-25 | 2019-04-16 | Stryker European Holdings I, Llc | Bone plate locking mechanism |
US9814499B2 (en) | 2014-09-30 | 2017-11-14 | Arthrex, Inc. | Intramedullary fracture fixation devices and methods |
CN105640632A (en) * | 2014-11-13 | 2016-06-08 | 无锡市闻泰百得医疗器械有限公司 | Bone plate structure |
US10722374B2 (en) | 2015-05-05 | 2020-07-28 | Tornier, Inc. | Convertible glenoid implant |
WO2017007565A2 (en) * | 2015-07-08 | 2017-01-12 | Tornier, Inc. | Reverse shoulder systems and methods |
US11020157B2 (en) | 2015-10-05 | 2021-06-01 | Arthrex, Inc. | Surgical screw system |
CN106725794B (en) * | 2016-11-30 | 2024-07-16 | 武勇 | Fibula locking plate |
US20180256225A1 (en) * | 2017-03-10 | 2018-09-13 | Chm Sp. Z O.O. | Set of bone plate and bone screw used to stabilize fractures |
US11033333B2 (en) | 2017-04-06 | 2021-06-15 | Stryker European Holdings I, Llc | Plate selection user interface and design tool with database |
KR102026110B1 (en) * | 2017-05-15 | 2019-09-27 | 김정욱 | Plate with improved hole for fixing bone |
EP3424452B1 (en) | 2017-06-16 | 2024-03-13 | Stryker European Operations Holdings LLC | Patient-specific bridging plates |
EP3453350A1 (en) * | 2017-09-06 | 2019-03-13 | Globus Medical, Inc. | Wrist stabilization systems |
CN107582159A (en) * | 2017-09-30 | 2018-01-16 | 苏州欣荣博尔特医疗器械有限公司 | Bone cement locking bone screw for locking bone fracture plate |
CA3079099A1 (en) | 2017-10-16 | 2019-04-25 | Imascap Sas | Shoulder implants |
WO2019185104A1 (en) | 2018-03-28 | 2019-10-03 | Elkhawaga Ahmed Mohamed Abou Elainen | The gear dynamic compression plates |
JP7022211B2 (en) * | 2018-06-12 | 2022-02-17 | オリンパステルモバイオマテリアル株式会社 | Bone plate and bone plate kit |
FR3082416B1 (en) * | 2018-06-19 | 2021-04-23 | Arnaud Destainville | MODULE AND TERMINAL MODULE FOR MODULAR BONE PLATE, MODULAR BONE PLATE THUS CONSTITUTED AND SYSTEM INCLUDING THE PLATE |
FR3082417B1 (en) * | 2018-06-19 | 2021-06-25 | Arnaud Destainville | MODULAR BONE PLATE MODULE AGENCY TO RECEIVE AN ANCHORING DEVICE, MODULAR BONE PLATE THUS CONSTITUTED AND SYSTEM INCLUDING THE PLATE AND ANCHORING DEVICE |
US10849665B2 (en) | 2018-10-29 | 2020-12-01 | Stryker European Operations Holdings Llc | Snap-fit cutting guides and plating systems |
US10864026B2 (en) * | 2019-02-08 | 2020-12-15 | Steris Instrument Management Services, Inc. | Tibial fixation plate |
CN110448370A (en) * | 2019-08-05 | 2019-11-15 | 贺新宁 | A kind of minimally invasive calcaneum combination bone plate |
JP7478810B2 (en) | 2019-08-09 | 2024-05-07 | ハウメディカ オステオニクス コーポレイション | Shoulder surgery kit |
EP4037589A1 (en) * | 2019-09-30 | 2022-08-10 | Mayo Foundation for Medical Education and Research | Method for optimization of orthopedic component design |
CN113796941B (en) * | 2021-07-27 | 2023-03-28 | 张英泽 | Bionic fixing system for tibiofibula |
Citations (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US575631A (en) * | 1897-01-19 | brooks | ||
US902040A (en) * | 1906-03-12 | 1908-10-27 | Homer W Wyckoff | Wire-connector. |
US2501978A (en) * | 1947-04-26 | 1950-03-28 | Wichman Heins | Bone splint |
US3866607A (en) * | 1973-08-09 | 1975-02-18 | Environmental Sciences Corp | Bone fracture compression device and method of usage |
USRE31628E (en) * | 1966-06-22 | 1984-07-10 | Synthes Ag | Osteosynthetic pressure plate construction |
US4484570A (en) * | 1980-05-28 | 1984-11-27 | Synthes Ltd. | Device comprising an implant and screws for fastening said implant to a bone, and a device for connecting two separated pieces of bone |
US5085660A (en) * | 1990-11-19 | 1992-02-04 | Lin Kwan C | Innovative locking plate system |
US5275601A (en) * | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
US5312410A (en) * | 1992-12-07 | 1994-05-17 | Danek Medical, Inc. | Surgical cable tensioner |
US5324291A (en) * | 1992-12-21 | 1994-06-28 | Smith & Nephew Richards, Inc. | Bone section reattachment apparatus and method |
US5395374A (en) * | 1993-09-02 | 1995-03-07 | Danek Medical, Inc. | Orthopedic cabling method and apparatus |
US5415658A (en) * | 1993-12-14 | 1995-05-16 | Pioneer Laboratories, Inc. | Surgical cable loop connector |
US5423820A (en) * | 1993-07-20 | 1995-06-13 | Danek Medical, Inc. | Surgical cable and crimp |
US5431659A (en) * | 1993-08-17 | 1995-07-11 | Texas Scottish Rite Hospital For Children | Pneumatic wire tensioner |
US5470333A (en) * | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5527310A (en) * | 1994-07-01 | 1996-06-18 | Cole; J. Dean | Modular pelvic fixation system and method |
US5536127A (en) * | 1994-10-13 | 1996-07-16 | Pennig; Dietmar | Headed screw construction for use in fixing the position of an intramedullary nail |
US5569253A (en) * | 1994-03-29 | 1996-10-29 | Danek Medical, Inc. | Variable-angle surgical cable crimp assembly and method |
US5601553A (en) * | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5665088A (en) * | 1993-10-06 | 1997-09-09 | Smith & Nephew Richards Inc. | Bone section reattachment apparatus and method |
US5676667A (en) * | 1995-12-08 | 1997-10-14 | Hausman; Michael | Bone fixation apparatus and method |
US5702399A (en) * | 1996-05-16 | 1997-12-30 | Pioneer Laboratories, Inc. | Surgical cable screw connector |
US5709686A (en) * | 1995-03-27 | 1998-01-20 | Synthes (U.S.A.) | Bone plate |
US5788697A (en) * | 1994-02-24 | 1998-08-04 | Pioneer Laboratories, Inc. | Cable tensioning device |
US5893856A (en) * | 1996-06-12 | 1999-04-13 | Mitek Surgical Products, Inc. | Apparatus and method for binding a first layer of material to a second layer of material |
US5902305A (en) * | 1996-07-11 | 1999-05-11 | Aesculap Ag & Co. Kg | Surgical tensioning device |
US5935133A (en) * | 1997-08-26 | 1999-08-10 | Spinal Concepts, Inc. | Surgical cable system and method |
US5954722A (en) * | 1997-07-29 | 1999-09-21 | Depuy Acromed, Inc. | Polyaxial locking plate |
US5960219A (en) * | 1996-12-24 | 1999-09-28 | Minolta Co., Ltd. | Distance metering device and an optical apparatus provided with the same |
US5968046A (en) * | 1998-06-04 | 1999-10-19 | Smith & Nephew, Inc. | Provisional fixation pin |
US6053921A (en) * | 1997-08-26 | 2000-04-25 | Spinal Concepts, Inc. | Surgical cable system and method |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6176861B1 (en) * | 1994-10-25 | 2001-01-23 | Sdgi Holdings, Inc. | Modular spinal system |
US6193721B1 (en) * | 1997-02-11 | 2001-02-27 | Gary K. Michelson | Multi-lock anterior cervical plating system |
US6206881B1 (en) * | 1995-09-06 | 2001-03-27 | Synthes (Usa) | Bone plate |
US6235033B1 (en) * | 2000-04-19 | 2001-05-22 | Synthes (Usa) | Bone fixation assembly |
US6306140B1 (en) * | 2001-01-17 | 2001-10-23 | Synthes (Usa) | Bone screw |
US6306136B1 (en) * | 1997-07-28 | 2001-10-23 | Dimso (Distribution Medicales Du Sud-Ouest) | Implant, in particular front cervical plate |
US6322562B1 (en) * | 1998-12-19 | 2001-11-27 | Dietmar Wolter | Fixation system for bones |
US20010047174A1 (en) * | 2000-05-12 | 2001-11-29 | Cosimo Donno | Connection of a bone screw to a bone plate |
US6355043B1 (en) * | 1999-03-01 | 2002-03-12 | Sulzer Orthopedics Ltd. | Bone screw for anchoring a marrow nail |
US6358250B1 (en) * | 2000-02-01 | 2002-03-19 | Hand Innovations, Inc. | Volar fixation system |
US6361537B1 (en) * | 2001-05-18 | 2002-03-26 | Cinci M. Anderson | Surgical plate with pawl and process for repair of a broken bone |
US20020045901A1 (en) * | 1999-03-09 | 2002-04-18 | Michael Wagner | Bone plate |
US20020058940A1 (en) * | 2000-06-26 | 2002-05-16 | Robert Frigg | Bone plate |
US6413259B1 (en) * | 2000-12-14 | 2002-07-02 | Blackstone Medical, Inc | Bone plate assembly including a screw retaining member |
US6440135B2 (en) * | 2000-02-01 | 2002-08-27 | Hand Innovations, Inc. | Volar fixation system with articulating stabilization pegs |
US6454769B2 (en) * | 1997-08-04 | 2002-09-24 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US20020143338A1 (en) * | 2000-02-01 | 2002-10-03 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US6475218B2 (en) * | 2000-06-30 | 2002-11-05 | Sofamor, S.N.C. | Spinal implant for an osteosynthesis device |
US6506191B1 (en) * | 1998-08-25 | 2003-01-14 | Medartis Ag | Osteosynthetic fastening device |
US6520965B2 (en) * | 2001-05-23 | 2003-02-18 | Alan Chervitz | Apparatus and method for orthopedic fixation |
US6623486B1 (en) * | 1999-09-13 | 2003-09-23 | Synthes (U.S.A.) | bone plating system |
US20040044345A1 (en) * | 2002-08-28 | 2004-03-04 | Demoss Richard Marshal | Shallow penetration bone screw |
US20040073218A1 (en) * | 2002-10-15 | 2004-04-15 | The University Of North Carolina At Chapel Hill | Multi-angular fastening apparatus and method for surgical bone screw/plate systems |
US6730091B1 (en) * | 1999-05-03 | 2004-05-04 | Medartis Ag | Blockable bone plate |
US20040087954A1 (en) * | 2002-08-28 | 2004-05-06 | Allen C . Wayne | Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20040138666A1 (en) * | 2003-01-10 | 2004-07-15 | Molz Fred J. | Flexible member tensioning instruments and methods |
US20040199169A1 (en) * | 2002-11-20 | 2004-10-07 | Koons Kirk C. | Cable clamp tool for surgical applications |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US6960213B2 (en) * | 2001-05-23 | 2005-11-01 | Medicinelodge, Inc. | Apparatus and method for orthopedic fixation |
US20060149265A1 (en) * | 2004-09-07 | 2006-07-06 | Anthony James | Minimal thickness bone plate locking mechanism |
US20060167464A1 (en) * | 2004-09-23 | 2006-07-27 | Allen C W | Systems, methods, and apparatuses for tensioning an orthopedic surgical cable |
Family Cites Families (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US31628A (en) * | 1861-03-05 | Improvement in sewing-machines | ||
US576631A (en) | 1897-02-09 | Malting-machine | ||
US2699774A (en) * | 1952-05-12 | 1955-01-18 | Livingston Herman Harrison | Bone pin locking device |
USRE28841E (en) | 1966-06-22 | 1976-06-08 | Synthes A.G. | Osteosynthetic pressure plate construction |
US3530854A (en) | 1968-07-11 | 1970-09-29 | John Kearney | Fracture nail assembly |
GB1421735A (en) * | 1972-01-11 | 1976-01-21 | Imagic Process Ltd | Copying |
US3868607A (en) * | 1973-10-15 | 1975-02-25 | Gen Dynamics Corp | Doubly adjustable waveguide pin switch |
CH645013A5 (en) * | 1980-04-14 | 1984-09-14 | Wenk Wilh Ag | Osteosynthetic COMPRESSION PLATE. |
CH645264A5 (en) | 1980-05-28 | 1984-09-28 | Straumann Inst Ag | FITTING WITH A PLATE AND SCREWS THAT FIX IT TO A BONE. |
AT378324B (en) * | 1982-09-13 | 1985-07-25 | Streli Elke | TINNED PLATE FOR FIXING THE BONES IN THE BODIES IN BONE BREAKS |
US4657001A (en) * | 1984-07-25 | 1987-04-14 | Fixel Irving E | Antirotational hip screw |
US4622959A (en) * | 1985-03-05 | 1986-11-18 | Marcus Randall E | Multi-use femoral intramedullary nail |
CH668174A5 (en) | 1985-08-30 | 1988-12-15 | Synthes Ag | OSTEOSYNTHETIC PRINT PLATE. |
US5190544A (en) | 1986-06-23 | 1993-03-02 | Pfizer Hospital Products Group, Inc. | Modular femoral fixation system |
US4776330A (en) | 1986-06-23 | 1988-10-11 | Pfizer Hospital Products Group, Inc. | Modular femoral fixation system |
US5151103A (en) | 1987-11-03 | 1992-09-29 | Synthes (U.S.A.) | Point contact bone compression plate |
MX170527B (en) | 1987-11-03 | 1993-08-30 | Synthes Ag | IMPLEMENTATION FOR OSTEOSYNTHESIS |
EP0355035B1 (en) | 1987-11-03 | 1994-05-18 | SYNTHES AG, Chur | Bone plate with conical holes |
US5057111A (en) | 1987-11-04 | 1991-10-15 | Park Joon B | Non-stress-shielding bone fracture healing device |
CH673762A5 (en) | 1987-12-02 | 1990-04-12 | Synthes Ag | |
US4836196A (en) * | 1988-01-11 | 1989-06-06 | Acromed Corporation | Surgically implantable spinal correction system |
FR2632029B1 (en) | 1988-05-30 | 1990-09-07 | Surer Patrick | DEVICE FOR FIXING A WORKPIECE ON A SUPPORT, IN PARTICULAR OF AN IMPLANT ON A BONE |
DE8808123U1 (en) * | 1988-06-24 | 1988-09-22 | Herzberg, Wolfgang, Dr. med., 2000 Wedel | Tab screw for osteosynthesis of pertrochanteric fractures |
IT1232572B (en) | 1989-02-10 | 1992-02-26 | Calderale Pasquale Mario | MEANS OF OSTEOSYNTHESIS FOR THE CONNECTION OF BONE FRACTURE SEGMENTS |
US5474553A (en) | 1989-04-18 | 1995-12-12 | Rainer Baumgart | System for setting tubular bone fractures |
US4927421A (en) * | 1989-05-15 | 1990-05-22 | Marlowe Goble E | Process of endosteal fixation of a ligament |
DE3923995A1 (en) | 1989-07-20 | 1991-01-31 | Lutz Biedermann | BONE STABILIZING ELEMENT |
US5041116A (en) | 1990-05-21 | 1991-08-20 | Wilson James T | Compression hip screw system |
CH681199A5 (en) | 1990-07-23 | 1993-02-15 | Synthes Ag | |
US5486176A (en) | 1991-03-27 | 1996-01-23 | Smith & Nephew Richards, Inc. | Angled bone fixation apparatus |
US5129901A (en) | 1991-06-10 | 1992-07-14 | Decoste Vern X | Cannulated orthopedic screw |
US5276601A (en) * | 1991-11-12 | 1994-01-04 | Albert Holzhacker | Lamp shade having at least two laterally spaced arrays of light deflectors |
CH686339A5 (en) | 1991-12-10 | 1996-03-15 | Synthes Ag | Nut for the plate fixation. |
US5304180A (en) | 1992-01-17 | 1994-04-19 | Slocum D Barclay | Tibial osteotomy fixation plate |
US5261910A (en) | 1992-02-19 | 1993-11-16 | Acromed Corporation | Apparatus for maintaining spinal elements in a desired spatial relationship |
US5197966A (en) | 1992-05-22 | 1993-03-30 | Sommerkamp T Greg | Radiodorsal buttress blade plate implant for repairing distal radius fractures |
DE4318150C2 (en) | 1993-06-01 | 1996-08-01 | Endocare Ag | Osteosynthesis tools for the treatment of subtrochanteric and pertrochanteric fractures as well as fractures of the femoral neck |
WO1994000066A1 (en) | 1992-06-25 | 1994-01-06 | Synthes Ag Chur | Osteosynthetic fixation device |
US5324290A (en) | 1992-09-24 | 1994-06-28 | Danek Medical, Inc. | Anterior thoracolumbar plate |
EP0599640B1 (en) | 1992-11-25 | 1998-08-26 | CODMAN & SHURTLEFF INC. | Osteosynthesis plate system |
DE59308616D1 (en) | 1993-01-25 | 1998-07-02 | Synthes Ag | COUNTER-TENSION DISC FOR PLATE OSTOSYNTHESIS |
US5387217A (en) | 1993-02-11 | 1995-02-07 | Sefcik; Frank | Disposable bone wire driver |
IL105183A (en) | 1993-03-28 | 1996-07-23 | Yehiel Gotfried | Surgical device for connection of fractured bones |
US5423520A (en) * | 1993-04-13 | 1995-06-13 | Iowa State University Research Foundation, Inc. | In-situ control system for atomization |
ES2185651T3 (en) | 1993-06-04 | 2003-05-01 | Smith & Nephew Inc | SURGICAL SCREW AND WASHER. |
DE4343117C2 (en) | 1993-12-17 | 1999-11-04 | Dietmar Wolter | Bone fixation system |
SE9402130D0 (en) | 1994-06-17 | 1994-06-17 | Sven Olerud | Device and method for plate fixation of legs |
AU3207895A (en) | 1994-08-23 | 1996-03-14 | Spine-Tech, Inc. | Cervical spine stabilization system |
US5810823A (en) | 1994-09-12 | 1998-09-22 | Synthes (U.S.A.) | Osteosynthetic bone plate and lock washer |
US5681311A (en) | 1994-09-15 | 1997-10-28 | Smith & Nephew, Inc. | Osteosynthesis apparatus |
US5674296A (en) | 1994-11-14 | 1997-10-07 | Spinal Dynamics Corporation | Human spinal disc prosthesis |
SE506404C2 (en) | 1994-11-22 | 1997-12-15 | Lars Johan Henrik Hansson | Control instruments intended for fixing bone fragments in case of bone fracture |
US5976141A (en) | 1995-02-23 | 1999-11-02 | Synthes (U.S.A.) | Threaded insert for bone plate screw hole |
US5609596A (en) | 1995-03-09 | 1997-03-11 | Smith & Nephew Richards Inc. | Guide rod holder for manipulating surgical wires and pins |
US5520690A (en) | 1995-04-13 | 1996-05-28 | Errico; Joseph P. | Anterior spinal polyaxial locking screw plate assembly |
US5607428A (en) | 1995-05-01 | 1997-03-04 | Lin; Kwan C. | Orthopedic fixation device having a double-threaded screw |
US5571184A (en) | 1995-06-07 | 1996-11-05 | Wright Medical Technology, Inc. | Graft fixation device and method of using |
CA2158890C (en) | 1995-09-22 | 2002-01-22 | John Runciman | Spherical washer for use with a bone screw |
DE19548395A1 (en) | 1995-12-22 | 1997-09-18 | Leibinger Gmbh | Osteosynthesis device |
US5899906A (en) | 1996-01-18 | 1999-05-04 | Synthes (U.S.A.) | Threaded washer |
US5957953A (en) | 1996-02-16 | 1999-09-28 | Smith & Nephew, Inc. | Expandable suture anchor |
US5776194A (en) | 1996-04-25 | 1998-07-07 | Nuvana Medical Innovations, Llc | Intermedullary rod apparatus and methods of repairing proximal humerus fractures |
FR2748387B1 (en) | 1996-05-13 | 1998-10-30 | Stryker France Sa | BONE FIXATION DEVICE, IN PARTICULAR TO THE SACRUM, IN OSTEOSYNTHESIS OF THE SPINE |
US5713900A (en) | 1996-05-31 | 1998-02-03 | Acromed Corporation | Apparatus for retaining bone portions in a desired spatial relationship |
US5843082A (en) | 1996-05-31 | 1998-12-01 | Acromed Corporation | Cervical spine stabilization method and system |
US5800433A (en) | 1996-05-31 | 1998-09-01 | Acromed Corporation | Spinal column retaining apparatus |
US5681312A (en) | 1996-05-31 | 1997-10-28 | Acromed Corporation | Spine construct with band clamp |
JP2000512186A (en) | 1996-06-14 | 2000-09-19 | デピュイ エース メディカル カンパニー | Upper limb bone plate |
DE19629011C2 (en) | 1996-07-18 | 2001-08-23 | Dietmar Wolter | Tools for osteosynthesis |
US5742872A (en) | 1996-09-24 | 1998-04-21 | Xerox Corporation | High voltage commutating connector for a rotating segmented electrode donor roll |
US5797911A (en) | 1996-09-24 | 1998-08-25 | Sdgi Holdings, Inc. | Multi-axial bone screw assembly |
FR2757370B1 (en) | 1996-12-20 | 1999-02-19 | Tornier Sa | IMPROVED PLATE OF FEMALE OSTEOSYNTHESIS |
US5741256A (en) | 1997-01-13 | 1998-04-21 | Synthes (U.S.A.) | Helical osteosynthetic implant |
US5935169A (en) | 1997-02-13 | 1999-08-10 | Chan; Kwan-Ho | Bone cement plug for deployment in a bone canal |
US5810821A (en) | 1997-03-28 | 1998-09-22 | Biomet Inc. | Bone fixation screw system |
US6017345A (en) | 1997-05-09 | 2000-01-25 | Spinal Innovations, L.L.C. | Spinal fixation plate |
US5891145A (en) | 1997-07-14 | 1999-04-06 | Sdgi Holdings, Inc. | Multi-axial screw |
US6030389A (en) | 1997-08-04 | 2000-02-29 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US5964767A (en) | 1997-09-12 | 1999-10-12 | Tapia; Eduardo Armando | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal |
JPH11174345A (en) | 1997-12-08 | 1999-07-02 | Fuji Photo Optical Co Ltd | Wide visual field ocular |
US7052499B2 (en) * | 1998-02-18 | 2006-05-30 | Walter Lorenz Surgical, Inc. | Method and apparatus for bone fracture fixation |
US5938664A (en) | 1998-03-31 | 1999-08-17 | Zimmer, Inc. | Orthopaedic bone plate |
US6139552A (en) | 1998-05-13 | 2000-10-31 | K. K. Hollyx | Bone jointer and a bone jointer fixing tool |
US5904683A (en) | 1998-07-10 | 1999-05-18 | Sulzer Spine-Tech Inc. | Anterior cervical vertebral stabilizing device |
DE29823113U1 (en) | 1998-12-28 | 2000-05-11 | Howmedica GmbH, 24232 Schönkirchen | Femoral neck screw |
US6221074B1 (en) | 1999-06-10 | 2001-04-24 | Orthodyne, Inc. | Femoral intramedullary rod system |
CN100386059C (en) | 1999-07-07 | 2008-05-07 | 斯恩蒂斯股份公司 | Bone screw with axially two-part screwn head |
DE19962317A1 (en) | 1999-09-14 | 2001-03-15 | Dietmar Wolter | Bone fixation system |
AU7420000A (en) * | 1999-09-14 | 2001-04-17 | Dietmar Wolter | Fixation system for bones |
DE19950252C2 (en) | 1999-10-18 | 2002-01-17 | Schaefer Micomed Gmbh | bone plate |
DE19952359C1 (en) | 1999-10-30 | 2001-03-22 | Aesculap Ag & Co Kg | Surgical connection has coupling element, two placement elements, bone plates, and holders |
AU775910B2 (en) | 2000-01-27 | 2004-08-19 | Synthes Gmbh | Bone plate |
US7282053B2 (en) | 2003-03-27 | 2007-10-16 | Depuy Products, Inc. | Method of using fracture fixation plate for performing osteotomy |
US6235031B1 (en) | 2000-02-04 | 2001-05-22 | Encore Medical Corporation | Intramedullary fracture fixation device |
US7258692B2 (en) | 2000-03-07 | 2007-08-21 | Zimmer, Inc. | Method and apparatus for reducing femoral fractures |
US6336930B1 (en) | 2000-03-07 | 2002-01-08 | Zimmer, Inc. | Polymer filled bone plate |
US6645209B2 (en) | 2000-04-04 | 2003-11-11 | Synthes (Usa) | Device for rotational stabilization of bone segments |
EP1272116B1 (en) | 2000-04-10 | 2004-09-29 | SYNTHES AG Chur | Osteosynthetic anchoring element |
ES2264692T3 (en) | 2000-05-31 | 2007-01-16 | Vese, Silvana | DEVICES FOR FIXING AN OSEA PLATE. |
AU757023B2 (en) | 2000-06-26 | 2003-01-30 | Stryker European Holdings I, Llc | Bone screw retaining system |
TWI243842B (en) * | 2000-07-07 | 2005-11-21 | Ciba Sc Holding Ag | Method of printing cellulosic fibre materials without an additional fixing process step |
JP4278289B2 (en) | 2000-07-27 | 2009-06-10 | 有限会社ケイオーアイ | Intramedullary nail |
JP4350283B2 (en) | 2000-09-06 | 2009-10-21 | 株式会社東芝 | Parallel controller system |
EP1192908A3 (en) | 2000-10-02 | 2004-05-26 | Howmedica Osteonics Corp. | System and method for spinal reconstruction |
US6605090B1 (en) | 2000-10-25 | 2003-08-12 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
US6740088B1 (en) | 2000-10-25 | 2004-05-25 | Sdgi Holdings, Inc. | Anterior lumbar plate and method |
US7104991B2 (en) * | 2001-02-27 | 2006-09-12 | Robert A Dixon | Method and device for using extended interference fit screw shanks for spinal stabilization |
US6511481B2 (en) | 2001-03-30 | 2003-01-28 | Triage Medical, Inc. | Method and apparatus for fixation of proximal femoral fractures |
US6443954B1 (en) | 2001-04-24 | 2002-09-03 | Dale G. Bramlet | Femoral nail intramedullary system |
US6648889B2 (en) | 2001-04-24 | 2003-11-18 | Dale G. Bramlet | Intramedullary hip nail with bifurcated lock |
PT1389963E (en) | 2001-05-28 | 2006-10-31 | Synthes Ag | BONE PLATE FOR FIXING PROXIMAL UMBER FRACTURES |
CA2443425C (en) | 2001-06-04 | 2009-09-15 | Gary Karlin Michelson | Dynamic anterior cervical plate system having moveable segments and instrumentation therefor |
JP4286130B2 (en) | 2001-06-04 | 2009-06-24 | ウォーソー・オーソペディック・インコーポレーテッド | Anterior cervical plate system having a vertebral body engaging fixture and a connecting plate, and its installation method |
US6916323B2 (en) | 2001-08-21 | 2005-07-12 | Depuy Products, Inc. | Method and apparatus for percutaneously securing a bone screw and a bone plate to a bone of a patient |
US6890335B2 (en) | 2001-08-24 | 2005-05-10 | Zimmer Spine, Inc. | Bone fixation device |
US7316687B2 (en) | 2001-08-24 | 2008-01-08 | Zimmer Technology, Inc. | Blade plate and instruments |
US6652529B2 (en) | 2001-09-12 | 2003-11-25 | Todd V. Swanson | Method and apparatus for treating supracondylar fractures of the femur |
FR2829920B1 (en) | 2001-09-26 | 2004-05-28 | Newdeal Sa | PLATE FOR FIXING THE BONES OF A JOINT, PARTICULARLY A METATARSO-PHALANGIAN JOINT |
US6835197B2 (en) | 2001-10-17 | 2004-12-28 | Christoph Andreas Roth | Bone fixation system |
SE522202C2 (en) * | 2001-10-29 | 2004-01-20 | Gen Orthopedics Internat Ab | System for fixing fractures |
US20040019353A1 (en) | 2002-02-01 | 2004-01-29 | Freid James M. | Spinal plate system for stabilizing a portion of a spine |
US6695846B2 (en) | 2002-03-12 | 2004-02-24 | Spinal Innovations, Llc | Bone plate and screw retaining mechanism |
FR2845269B1 (en) | 2002-10-07 | 2005-06-24 | Spine Next Sa | PLATE FASTENING SYSTEM |
FR2845588B1 (en) | 2002-10-09 | 2006-12-15 | Biotech Internat | SELF-LOCKING OSTEOSYNTHESIS DEVICE |
ES2297058T3 (en) | 2002-10-29 | 2008-05-01 | Synthes Gmbh | DEVICE FOR THE TREATMENT OF FEMUR FRACTURES. |
US7094238B2 (en) | 2002-11-22 | 2006-08-22 | Sdgi Holdings, Inc. | Variable angle adaptive plate |
CA2507840C (en) | 2002-12-02 | 2011-02-15 | Mathys Medizinaltechnik Ag | Implant for fixing bones |
KR101104660B1 (en) * | 2003-03-26 | 2012-01-13 | 그레이트베치 메디칼 에스에이 | Locking bone plate |
US7481829B2 (en) | 2003-04-21 | 2009-01-27 | Atlas Spine, Inc. | Bone fixation plate |
US6984234B2 (en) | 2003-04-21 | 2006-01-10 | Rsb Spine Llc | Bone plate stabilization system and method for its use |
US6945973B2 (en) | 2003-05-01 | 2005-09-20 | Nuvasive, Inc. | Slidable bone plate system |
US7951176B2 (en) * | 2003-05-30 | 2011-05-31 | Synthes Usa, Llc | Bone plate |
CN100553577C (en) * | 2003-06-20 | 2009-10-28 | 精密医疗责任有限公司 | Be used in the system of operation the blade plate tapping |
US7455673B2 (en) | 2003-07-08 | 2008-11-25 | Yechiel Gotfried | Intramedullary nail system and method for fixation of a fractured bone |
US7857839B2 (en) | 2003-09-03 | 2010-12-28 | Synthes Usa, Llc | Bone plate with captive clips |
US20050055024A1 (en) | 2003-09-08 | 2005-03-10 | James Anthony H. | Orthopaedic implant and screw assembly |
US7344537B1 (en) | 2004-03-05 | 2008-03-18 | Theken Spine, Llc | Bone fixation rod system |
US7229445B2 (en) * | 2004-06-21 | 2007-06-12 | Synthes (Usa) | Bone plate with bladed portion |
US7137987B2 (en) * | 2004-07-02 | 2006-11-21 | Wright Medical Technology, Inc. | Distal radius bone plating system with locking and non-locking screws |
DE102004035546A1 (en) | 2004-07-19 | 2006-02-16 | Wolter, Dietmar, Prof. Dr.Med. | Fixation system for bones and filling bodies for a bone fixation system |
-
2003
- 2003-09-29 US US10/673,833 patent/US7179260B2/en not_active Expired - Lifetime
-
2004
- 2004-09-28 CA CA002537438A patent/CA2537438A1/en not_active Abandoned
- 2004-09-28 WO PCT/US2004/031653 patent/WO2005032386A1/en active Application Filing
- 2004-09-28 AU AU2004277946A patent/AU2004277946B2/en not_active Ceased
- 2004-09-28 US US10/952,047 patent/US20050107796A1/en not_active Abandoned
- 2004-09-28 EP EP04785130A patent/EP1670373A1/en not_active Ceased
- 2004-09-28 JP JP2006533997A patent/JP2007507296A/en active Pending
-
2006
- 2006-12-22 US US11/644,306 patent/US7905910B2/en not_active Expired - Lifetime
- 2006-12-22 US US11/644,303 patent/US7909858B2/en active Active
-
2010
- 2010-10-29 AU AU2010238553A patent/AU2010238553A1/en not_active Abandoned
-
2011
- 2011-03-18 US US13/051,715 patent/US20110282393A1/en not_active Abandoned
Patent Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US575631A (en) * | 1897-01-19 | brooks | ||
US902040A (en) * | 1906-03-12 | 1908-10-27 | Homer W Wyckoff | Wire-connector. |
US2501978A (en) * | 1947-04-26 | 1950-03-28 | Wichman Heins | Bone splint |
USRE31628E (en) * | 1966-06-22 | 1984-07-10 | Synthes Ag | Osteosynthetic pressure plate construction |
US3866607A (en) * | 1973-08-09 | 1975-02-18 | Environmental Sciences Corp | Bone fracture compression device and method of usage |
US4484570A (en) * | 1980-05-28 | 1984-11-27 | Synthes Ltd. | Device comprising an implant and screws for fastening said implant to a bone, and a device for connecting two separated pieces of bone |
US5085660A (en) * | 1990-11-19 | 1992-02-04 | Lin Kwan C | Innovative locking plate system |
US5275601A (en) * | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
US5312410A (en) * | 1992-12-07 | 1994-05-17 | Danek Medical, Inc. | Surgical cable tensioner |
US5324291A (en) * | 1992-12-21 | 1994-06-28 | Smith & Nephew Richards, Inc. | Bone section reattachment apparatus and method |
US5470333A (en) * | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5423820A (en) * | 1993-07-20 | 1995-06-13 | Danek Medical, Inc. | Surgical cable and crimp |
US5431659A (en) * | 1993-08-17 | 1995-07-11 | Texas Scottish Rite Hospital For Children | Pneumatic wire tensioner |
US5395374A (en) * | 1993-09-02 | 1995-03-07 | Danek Medical, Inc. | Orthopedic cabling method and apparatus |
US5665088A (en) * | 1993-10-06 | 1997-09-09 | Smith & Nephew Richards Inc. | Bone section reattachment apparatus and method |
US5415658A (en) * | 1993-12-14 | 1995-05-16 | Pioneer Laboratories, Inc. | Surgical cable loop connector |
US6595994B2 (en) * | 1994-02-24 | 2003-07-22 | Pioneer Laboratories, Inc. | Cable tensioning device |
US6364885B1 (en) * | 1994-02-24 | 2002-04-02 | Pioneer Laboratories, Inc. | Cable tensioning device |
US20020058943A1 (en) * | 1994-02-24 | 2002-05-16 | Kilpela Thomas S. | Cable tensioning device |
US5935130A (en) * | 1994-02-24 | 1999-08-10 | Pioneer Laboratories, Inc. | Cable tensioning device |
US5788697A (en) * | 1994-02-24 | 1998-08-04 | Pioneer Laboratories, Inc. | Cable tensioning device |
US5569253A (en) * | 1994-03-29 | 1996-10-29 | Danek Medical, Inc. | Variable-angle surgical cable crimp assembly and method |
US5527310A (en) * | 1994-07-01 | 1996-06-18 | Cole; J. Dean | Modular pelvic fixation system and method |
US5601553A (en) * | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5536127A (en) * | 1994-10-13 | 1996-07-16 | Pennig; Dietmar | Headed screw construction for use in fixing the position of an intramedullary nail |
US6176861B1 (en) * | 1994-10-25 | 2001-01-23 | Sdgi Holdings, Inc. | Modular spinal system |
US5709686A (en) * | 1995-03-27 | 1998-01-20 | Synthes (U.S.A.) | Bone plate |
US6206881B1 (en) * | 1995-09-06 | 2001-03-27 | Synthes (Usa) | Bone plate |
US5676667A (en) * | 1995-12-08 | 1997-10-14 | Hausman; Michael | Bone fixation apparatus and method |
US5702399A (en) * | 1996-05-16 | 1997-12-30 | Pioneer Laboratories, Inc. | Surgical cable screw connector |
US5893856A (en) * | 1996-06-12 | 1999-04-13 | Mitek Surgical Products, Inc. | Apparatus and method for binding a first layer of material to a second layer of material |
US5902305A (en) * | 1996-07-11 | 1999-05-11 | Aesculap Ag & Co. Kg | Surgical tensioning device |
US5960219A (en) * | 1996-12-24 | 1999-09-28 | Minolta Co., Ltd. | Distance metering device and an optical apparatus provided with the same |
US6193721B1 (en) * | 1997-02-11 | 2001-02-27 | Gary K. Michelson | Multi-lock anterior cervical plating system |
US20030018335A1 (en) * | 1997-02-11 | 2003-01-23 | Michelson Gary K. | Anterior cervical plate system |
US6428542B1 (en) * | 1997-02-11 | 2002-08-06 | Gary K. Michelson | Single-lock anterior cervical plate |
US6306136B1 (en) * | 1997-07-28 | 2001-10-23 | Dimso (Distribution Medicales Du Sud-Ouest) | Implant, in particular front cervical plate |
US5954722A (en) * | 1997-07-29 | 1999-09-21 | Depuy Acromed, Inc. | Polyaxial locking plate |
US6454769B2 (en) * | 1997-08-04 | 2002-09-24 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US5935133A (en) * | 1997-08-26 | 1999-08-10 | Spinal Concepts, Inc. | Surgical cable system and method |
US6682533B1 (en) * | 1997-08-26 | 2004-01-27 | Spinal Concepts, Inc. | Surgical cable system and method |
US5964769A (en) * | 1997-08-26 | 1999-10-12 | Spinal Concepts, Inc. | Surgical cable system and method |
US6391030B1 (en) * | 1997-08-26 | 2002-05-21 | Spinal Concepts, Inc. | Surgical cable system and method |
US6053921A (en) * | 1997-08-26 | 2000-04-25 | Spinal Concepts, Inc. | Surgical cable system and method |
US5968046A (en) * | 1998-06-04 | 1999-10-19 | Smith & Nephew, Inc. | Provisional fixation pin |
US6506191B1 (en) * | 1998-08-25 | 2003-01-14 | Medartis Ag | Osteosynthetic fastening device |
US6322562B1 (en) * | 1998-12-19 | 2001-11-27 | Dietmar Wolter | Fixation system for bones |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6355043B1 (en) * | 1999-03-01 | 2002-03-12 | Sulzer Orthopedics Ltd. | Bone screw for anchoring a marrow nail |
US20020045901A1 (en) * | 1999-03-09 | 2002-04-18 | Michael Wagner | Bone plate |
US6730091B1 (en) * | 1999-05-03 | 2004-05-04 | Medartis Ag | Blockable bone plate |
US6623486B1 (en) * | 1999-09-13 | 2003-09-23 | Synthes (U.S.A.) | bone plating system |
US6358250B1 (en) * | 2000-02-01 | 2002-03-19 | Hand Innovations, Inc. | Volar fixation system |
US20020143338A1 (en) * | 2000-02-01 | 2002-10-03 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US6440135B2 (en) * | 2000-02-01 | 2002-08-27 | Hand Innovations, Inc. | Volar fixation system with articulating stabilization pegs |
US6235033B1 (en) * | 2000-04-19 | 2001-05-22 | Synthes (Usa) | Bone fixation assembly |
US20010037112A1 (en) * | 2000-04-19 | 2001-11-01 | Synthes (U.S.A.) | Bone fixation assembly |
US20010047174A1 (en) * | 2000-05-12 | 2001-11-29 | Cosimo Donno | Connection of a bone screw to a bone plate |
US6821278B2 (en) * | 2000-06-26 | 2004-11-23 | Synthes Ag Chur | Bone plate |
US20020058940A1 (en) * | 2000-06-26 | 2002-05-16 | Robert Frigg | Bone plate |
US6475218B2 (en) * | 2000-06-30 | 2002-11-05 | Sofamor, S.N.C. | Spinal implant for an osteosynthesis device |
US6413259B1 (en) * | 2000-12-14 | 2002-07-02 | Blackstone Medical, Inc | Bone plate assembly including a screw retaining member |
US6306140B1 (en) * | 2001-01-17 | 2001-10-23 | Synthes (Usa) | Bone screw |
US6361537B1 (en) * | 2001-05-18 | 2002-03-26 | Cinci M. Anderson | Surgical plate with pawl and process for repair of a broken bone |
US6520965B2 (en) * | 2001-05-23 | 2003-02-18 | Alan Chervitz | Apparatus and method for orthopedic fixation |
US6960213B2 (en) * | 2001-05-23 | 2005-11-01 | Medicinelodge, Inc. | Apparatus and method for orthopedic fixation |
US20040044345A1 (en) * | 2002-08-28 | 2004-03-04 | Demoss Richard Marshal | Shallow penetration bone screw |
US20040097942A1 (en) * | 2002-08-28 | 2004-05-20 | Allen C. Wayne | System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20040087954A1 (en) * | 2002-08-28 | 2004-05-06 | Allen C . Wayne | Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20040073218A1 (en) * | 2002-10-15 | 2004-04-15 | The University Of North Carolina At Chapel Hill | Multi-angular fastening apparatus and method for surgical bone screw/plate systems |
US20040199169A1 (en) * | 2002-11-20 | 2004-10-07 | Koons Kirk C. | Cable clamp tool for surgical applications |
US20040138666A1 (en) * | 2003-01-10 | 2004-07-15 | Molz Fred J. | Flexible member tensioning instruments and methods |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US20060149265A1 (en) * | 2004-09-07 | 2006-07-06 | Anthony James | Minimal thickness bone plate locking mechanism |
US20060167464A1 (en) * | 2004-09-23 | 2006-07-27 | Allen C W | Systems, methods, and apparatuses for tensioning an orthopedic surgical cable |
Cited By (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7250054B2 (en) | 2002-08-28 | 2007-07-31 | Smith & Nephew, Inc. | Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20040097942A1 (en) * | 2002-08-28 | 2004-05-20 | Allen C. Wayne | System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US20060129151A1 (en) * | 2002-08-28 | 2006-06-15 | Allen C W | Systems and methods for securing fractures using plates and cable clamps |
US20040087954A1 (en) * | 2002-08-28 | 2004-05-06 | Allen C . Wayne | Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US7255701B2 (en) | 2002-08-28 | 2007-08-14 | Smith & Nephew, Inc. | System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable |
US10231768B2 (en) | 2003-05-30 | 2019-03-19 | DePuy Synthes Products, Inc. | Methods for implanting bone plates |
US10653466B2 (en) | 2003-05-30 | 2020-05-19 | DePuy Synthes Products, Inc. | Bone plate |
US11419647B2 (en) | 2003-05-30 | 2022-08-23 | DePuy Synthes Products, Inc. | Bone plate |
US8876873B2 (en) | 2003-08-26 | 2014-11-04 | DePuy Synthes Products, LLC | Bone plate |
US9295505B2 (en) | 2003-08-26 | 2016-03-29 | DePuy Synthes Products, Inc. | Bone plate |
US10342586B2 (en) | 2003-08-26 | 2019-07-09 | DePuy Synthes Products, Inc. | Bone plate |
US11259851B2 (en) | 2003-08-26 | 2022-03-01 | DePuy Synthes Products, Inc. | Bone plate |
US8343196B2 (en) * | 2003-08-26 | 2013-01-01 | Synthes Usa, Llc | Bone plate |
US20060235400A1 (en) * | 2003-08-26 | 2006-10-19 | Rolf Schneider | Bone plate |
US8845698B2 (en) | 2003-08-26 | 2014-09-30 | DePuy Synthes Products, LLC | Bone plate |
US8852245B2 (en) | 2003-08-26 | 2014-10-07 | DePuy Synthes Products, LLC | Bone plate |
US20070276386A1 (en) * | 2003-09-29 | 2007-11-29 | Darin Gerlach | Bone plate systems using provisional fixation |
US8992581B2 (en) | 2003-09-29 | 2015-03-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US20070162020A1 (en) * | 2003-09-29 | 2007-07-12 | Darin Gerlach | Bone plates and bone plate assemblies |
US7179260B2 (en) | 2003-09-29 | 2007-02-20 | Smith & Nephew, Inc. | Bone plates and bone plate assemblies |
US8105367B2 (en) | 2003-09-29 | 2012-01-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US7909858B2 (en) | 2003-09-29 | 2011-03-22 | Smith & Nephew, Inc. | Bone plate systems using provisional fixation |
US7905910B2 (en) | 2003-09-29 | 2011-03-15 | Smith & Nephew, Inc. | Bone plates and bone plate assemblies |
US20100076496A1 (en) * | 2004-01-26 | 2010-03-25 | Alberto Angel Fernandez | Variable Angle Locked Bone Fixation System |
US20080140130A1 (en) * | 2004-01-26 | 2008-06-12 | Chan Jason S | Highly-versatile variable-angle bone plate system |
US8574268B2 (en) | 2004-01-26 | 2013-11-05 | DePuy Synthes Product, LLC | Highly-versatile variable-angle bone plate system |
US10335211B2 (en) | 2004-01-26 | 2019-07-02 | DePuy Synthes Products, Inc. | Highly-versatile variable-angle bone plate system |
US9168075B2 (en) | 2004-01-26 | 2015-10-27 | DePuy Synthes Products, Inc. | Variable angle locked bone fixation system |
US9314284B2 (en) | 2004-01-26 | 2016-04-19 | DePuy Synthes Products, Inc. | Highly-versatile variable-angle bone plate system |
US11291484B2 (en) | 2004-01-26 | 2022-04-05 | DePuy Synthes Products, Inc. | Highly-versatile variable-angle bone plate system |
US20110087240A1 (en) * | 2004-04-27 | 2011-04-14 | Tyco Healthcare Group Lp | Absorbable fastener for hernia mesh fixation |
US20070038220A1 (en) * | 2004-04-27 | 2007-02-15 | Shipp John I | Absorbable Fastener for Hernia Mesh Fixation |
US9332983B2 (en) | 2004-04-27 | 2016-05-10 | Covidien Lp | Absorbable fastener for hernia mesh fixation |
US10478179B2 (en) * | 2004-04-27 | 2019-11-19 | Covidien Lp | Absorbable fastener for hernia mesh fixation |
US20090118773A1 (en) * | 2004-09-07 | 2009-05-07 | Anthony James | Minimal thickness bone plate locking mechanism |
US20060149265A1 (en) * | 2004-09-07 | 2006-07-06 | Anthony James | Minimal thickness bone plate locking mechanism |
US8469966B2 (en) | 2004-09-23 | 2013-06-25 | Smith & Nephew, Inc. | Systems, methods, and apparatuses for tensioning an orthopedic surgical cable |
US20060167464A1 (en) * | 2004-09-23 | 2006-07-27 | Allen C W | Systems, methods, and apparatuses for tensioning an orthopedic surgical cable |
US9615866B1 (en) | 2004-10-18 | 2017-04-11 | Nuvasive, Inc. | Surgical fixation system and related methods |
US20080119894A1 (en) * | 2004-12-30 | 2008-05-22 | Konigsee Implantate Und Instrumente Zur Osteosynthese Gmbh | Osteosynthesis Plate, E.G. A Plate For The Head Of The Radius Or Humerus, With A Plurality Of Bore Holes For Receiving Bone Screws |
US9814504B2 (en) * | 2005-01-28 | 2017-11-14 | Orthohelix Surgical Design, Inc. | Orthopedic plate for use in small bone repair |
US20140309701A1 (en) * | 2005-01-28 | 2014-10-16 | Orthohelix Surgical Designs, Inc. | Orthopedic plates for use in clavicle repair and methods for their use |
US8940028B2 (en) | 2005-07-25 | 2015-01-27 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US9795424B2 (en) | 2005-07-25 | 2017-10-24 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10327822B2 (en) | 2005-07-25 | 2019-06-25 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10736680B2 (en) | 2005-07-25 | 2020-08-11 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8382807B2 (en) | 2005-07-25 | 2013-02-26 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10292741B2 (en) | 2005-07-25 | 2019-05-21 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US11896270B2 (en) | 2005-07-25 | 2024-02-13 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10080598B2 (en) | 2005-07-25 | 2018-09-25 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10092337B2 (en) | 2005-07-25 | 2018-10-09 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8888824B2 (en) | 2005-07-25 | 2014-11-18 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US7951179B2 (en) | 2005-10-25 | 2011-05-31 | Anthem Orthopaedics Llc | Bone attachment screw |
US8617223B2 (en) | 2005-10-25 | 2013-12-31 | Anthem Orthopaedics, Llc | Bone fastening assembly |
US20070162016A1 (en) * | 2005-10-25 | 2007-07-12 | Matityahu Amir M | Bone fastening assembly and bushing and screw for use therewith |
US20110152945A1 (en) * | 2005-10-25 | 2011-06-23 | Anthem Orthopaedics, Llc | Bone fastening assembly |
WO2007076490A3 (en) * | 2005-12-22 | 2007-11-29 | Anthem Orthopaedics Llc | Drug delivering bone plate and method and targeting device for use therewith |
US20070173843A1 (en) * | 2005-12-22 | 2007-07-26 | Matityahu Amir M | Drug delivering bone plate and method and targeting device for use therewith |
US8100952B2 (en) | 2005-12-22 | 2012-01-24 | Anthem Orthopaedics Llc | Drug delivering bone plate and method and targeting device for use therewith |
US10786290B2 (en) | 2006-02-24 | 2020-09-29 | DePuy Synthes Products, Inc. | Tibial plateau leveling osteotomy plate |
US20070233106A1 (en) * | 2006-02-24 | 2007-10-04 | Synthes (Usa) | Tibal plateau leveling osteotomy plate |
US11026728B2 (en) | 2006-02-24 | 2021-06-08 | DePuy Synthes Products, Inc. | Tibial plateau leveling osteotomy plate |
US8523921B2 (en) * | 2006-02-24 | 2013-09-03 | DePuy Synthes Products, LLC | Tibial plateau leveling osteotomy plate |
US11992250B2 (en) | 2006-02-24 | 2024-05-28 | DePuy Synthes Products, Inc. | Tibial plateau leveling osteotomy plate |
US10905479B2 (en) | 2006-02-24 | 2021-02-02 | DePuy Synthes Products, Inc. | Tibial plateau leveling osteotomy plate |
US8926675B2 (en) | 2006-04-11 | 2015-01-06 | Biomet Manufacturing, Llc | Contoured bone plate |
US9750550B2 (en) | 2006-04-11 | 2017-09-05 | Biomet Manufacturing, Llc | Contoured bone plate |
US20070270853A1 (en) * | 2006-04-11 | 2007-11-22 | Ebi, L.P. | Contoured bone plate |
US20110009909A1 (en) * | 2006-12-27 | 2011-01-13 | D.L.P. | Osteosynthesis device comprising a support with a tapped orifice associated with a bearing surface for receiving an anchoring rod |
US20080188852A1 (en) * | 2007-02-05 | 2008-08-07 | Matityahu Amir M | Apparatus for Repositioning Portions of Fractured Bone and Method of Using Same |
US8142432B2 (en) | 2007-02-05 | 2012-03-27 | Synthes Usa, Llc | Apparatus for repositioning portions of fractured bone and method of using same |
US20080306550A1 (en) * | 2007-06-07 | 2008-12-11 | Matityahu Amir M | Spine repair assembly |
US9072548B2 (en) | 2007-06-07 | 2015-07-07 | Anthem Orthopaedics Llc | Spine repair assembly |
US9101428B2 (en) * | 2007-09-26 | 2015-08-11 | Biomet C.V. | Modular bone plate system |
US20130086789A1 (en) * | 2007-09-26 | 2013-04-11 | Biomet C.V. | Modular bone plate system |
US20100137865A1 (en) * | 2008-03-24 | 2010-06-03 | Mark Allen Frankle | Method and system for the intramedullary fixation of a fractured bone |
US8425513B2 (en) * | 2008-03-24 | 2013-04-23 | Clavicle, Llc | Method and system for the intramedullary fixation of a fractured bone |
US20090270925A1 (en) * | 2008-04-23 | 2009-10-29 | Aryan Henry E | Bone plate system and method |
US8257407B2 (en) * | 2008-04-23 | 2012-09-04 | Aryan Henry E | Bone plate system and method |
US9033985B2 (en) | 2008-05-01 | 2015-05-19 | Linares Medical Devices, Llc | Composite and surface mounted brace, kit and assembly for supporting a fractured bone |
US20090275989A1 (en) * | 2008-05-01 | 2009-11-05 | Linares Medical Devices, Llc | Composite and surface mounted brace, kit and assembly for supporting a fractured bone |
US20100030276A1 (en) * | 2008-07-31 | 2010-02-04 | Dave Huebner | Periarticular Bone Plate With Biplanar Offset Head Member |
US20100030277A1 (en) * | 2008-07-31 | 2010-02-04 | Haidukewych George J | Periarticular bone plate with biplanar offset head member |
US8257405B2 (en) * | 2008-07-31 | 2012-09-04 | Biomet C.V. | Periarticular bone plate with biplanar offset head member |
US8262707B2 (en) | 2008-07-31 | 2012-09-11 | Biomet C.V. | Periarticular bone plate with biplanar offset head member |
US20110152948A1 (en) * | 2009-06-19 | 2011-06-23 | David Crook | Triple lead bone screw |
US8382811B2 (en) | 2009-06-19 | 2013-02-26 | U.S. Spine, Inc. | Triple lead bone screw |
US10368926B2 (en) | 2009-07-09 | 2019-08-06 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US8986353B2 (en) | 2009-07-09 | 2015-03-24 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US9572607B2 (en) | 2009-07-09 | 2017-02-21 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US20110009866A1 (en) * | 2009-07-09 | 2011-01-13 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US11337737B2 (en) | 2009-07-09 | 2022-05-24 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US11864803B2 (en) | 2009-07-09 | 2024-01-09 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US9888949B2 (en) | 2009-07-09 | 2018-02-13 | Orthohelix Surgical Designs, Inc. | Osteotomy plate, plate driver and method for their use |
US20110224671A1 (en) * | 2009-09-14 | 2011-09-15 | Kenny Koay | Variable angle compression plate |
US8758346B2 (en) | 2009-09-14 | 2014-06-24 | DePuy Synthes Products, LLC | Variable angle compression plate |
US8496692B2 (en) | 2009-09-21 | 2013-07-30 | Jmea Corporation | Locking securing member |
US20110071575A1 (en) * | 2009-09-21 | 2011-03-24 | Jmea Corporation | Locking Securing Member |
USD734853S1 (en) | 2009-10-14 | 2015-07-21 | Nuvasive, Inc. | Bone plate |
USD754857S1 (en) | 2009-10-14 | 2016-04-26 | Nuvasive, Inc. | Bone plate |
US9451992B2 (en) * | 2010-12-01 | 2016-09-27 | Facet-Link Inc. | Variable angle bone screw fixation arrangement |
US8790376B2 (en) * | 2011-02-02 | 2014-07-29 | Biomet Manufacturing, Llc | Bone plate having combination locking and compression screw holes |
US20140000092A1 (en) * | 2011-02-02 | 2014-01-02 | Biomet Manufacturing, Llc | Bone plate having combination locking and compression screw holes |
US11219527B2 (en) | 2011-02-16 | 2022-01-11 | Genesis Medical Devices Llc | Combination intra-medullary and extra-medullary fracture stabilization with aligning arm |
US10231763B2 (en) | 2011-05-27 | 2019-03-19 | Globus Medical, Inc. | Securing fasteners |
US8771324B2 (en) | 2011-05-27 | 2014-07-08 | Globus Medical, Inc. | Securing fasteners |
US9636156B2 (en) | 2011-05-27 | 2017-05-02 | Globus Medical, Inc. | Securing fasteners |
US11172967B2 (en) | 2011-05-27 | 2021-11-16 | Globus Medical Inc. | Securing fasteners |
US11986224B2 (en) | 2011-05-27 | 2024-05-21 | Globus Medical, Inc. | Securing fasteners |
US10405901B2 (en) | 2011-06-15 | 2019-09-10 | Smith & Nephew, Inc. | Variable angle locking implant |
US10448980B2 (en) | 2011-06-15 | 2019-10-22 | Smith & Nephew, Inc. | Variable angle locking implant |
US10390866B2 (en) | 2011-06-15 | 2019-08-27 | Smith & Nephew, Inc. | Variable angle locking implant |
US9700424B2 (en) | 2012-11-07 | 2017-07-11 | Foot Innovations, Llc | Joint arthroplasty systems, methods, and components |
US9943341B2 (en) | 2013-07-16 | 2018-04-17 | K2M, Llc | Retention plate member for a spinal plate system |
CN103393460B (en) * | 2013-08-23 | 2015-04-01 | 李明 | Universal posterior locking anatomic bone fracture plate for acetabulum |
CN103393460A (en) * | 2013-08-23 | 2013-11-20 | 李明 | Universal posterior locking anatomic bone fracture plate for acetabulum |
US10299842B2 (en) | 2013-12-20 | 2019-05-28 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US11317951B2 (en) | 2013-12-20 | 2022-05-03 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US11109902B2 (en) | 2013-12-20 | 2021-09-07 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US11871899B2 (en) | 2013-12-20 | 2024-01-16 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements |
US10226287B2 (en) | 2014-03-31 | 2019-03-12 | Association For The Advancement Of Musculoskeletal | Bone plate with versatile screw holes |
US11284887B2 (en) | 2014-07-10 | 2022-03-29 | Crossroads Extremity Systems, Llc | Bone implant with means for multi directional force and means of insertion |
US11998191B2 (en) | 2014-07-10 | 2024-06-04 | Crossroads Extremity Systems, Llc | Bone implant with means for multi directional force and means of insertion |
US11202626B2 (en) | 2014-07-10 | 2021-12-21 | Crossroads Extremity Systems, Llc | Bone implant with means for multi directional force and means of insertion |
US10492841B2 (en) | 2014-07-10 | 2019-12-03 | Crossroads Extremity Systems, Llc | Bone implant and means of insertion |
US10499963B2 (en) * | 2014-12-16 | 2019-12-10 | Hae Sun Paik | Fixing instrument for open-type distal tibial osteotomy |
US11931083B2 (en) | 2015-08-27 | 2024-03-19 | Globus Medical Inc. | Proximal humeral stabilization system |
US11076898B2 (en) | 2015-08-27 | 2021-08-03 | Globus Medical, Inc. | Proximal humeral stabilization system |
US11197682B2 (en) | 2015-08-27 | 2021-12-14 | Globus Medical, Inc. | Proximal humeral stabilization system |
US10687874B2 (en) | 2015-08-27 | 2020-06-23 | Globus Medical, Inc | Proximal humeral stabilization system |
US11617606B2 (en) | 2015-08-27 | 2023-04-04 | Globus Medical Inc. | Proximal humeral stabilization system |
US12059160B2 (en) | 2015-08-27 | 2024-08-13 | Globus Medical Inc. | Proximal humeral stabilization system |
US11974787B2 (en) | 2015-09-18 | 2024-05-07 | Smith & Nephew, Inc. | Bone plate |
US10993750B2 (en) | 2015-09-18 | 2021-05-04 | Smith & Nephew, Inc. | Bone plate |
US11534213B2 (en) | 2015-09-18 | 2022-12-27 | Smith & Nephew, Inc. | Bone plate |
US10828075B2 (en) | 2015-09-25 | 2020-11-10 | Globus Medical Inc. | Bone fixation devices having a locking feature |
CN105078559A (en) * | 2015-09-25 | 2015-11-25 | 李明 | General acetabulum back wall dissecting and locking bone plate |
US10828074B2 (en) | 2015-11-20 | 2020-11-10 | Globus Medical, Inc. | Expandalbe intramedullary systems and methods of using the same |
US11284920B2 (en) | 2016-03-02 | 2022-03-29 | Globus Medical Inc. | Fixators for bone stabilization and associated systems and methods |
US12042180B2 (en) | 2016-03-02 | 2024-07-23 | Globus Medical Inc. | Fixators for bone stabilization and associated systems and methods |
US11980404B2 (en) | 2016-04-19 | 2024-05-14 | Globus Medical, Inc. | Implantable compression screws |
US11197704B2 (en) | 2016-04-19 | 2021-12-14 | Globus Medical, Inc. | Implantable compression screws |
US10420596B2 (en) | 2016-08-17 | 2019-09-24 | Globus Medical, Inc. | Volar distal radius stabilization system |
US10751098B2 (en) | 2016-08-17 | 2020-08-25 | Globus Medical Inc. | Stabilization systems |
US11160590B2 (en) | 2016-08-17 | 2021-11-02 | Globus Medical, Inc. | Volar distal radius stabilization system |
US11141204B2 (en) | 2016-08-17 | 2021-10-12 | Globus Medical Inc. | Wrist stabilization systems |
US10575884B2 (en) | 2016-08-17 | 2020-03-03 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US11896271B2 (en) | 2016-08-17 | 2024-02-13 | Globus Medical, Inc. | Stabilization systems |
US11197701B2 (en) * | 2016-08-17 | 2021-12-14 | Globus Medical, Inc. | Stabilization systems |
US11957389B2 (en) | 2016-08-17 | 2024-04-16 | Globus Medical, Inc. | Systems and methods for bone fixation anchor, plate, and spacer devices |
US11986225B2 (en) | 2016-08-17 | 2024-05-21 | Globus Medical Inc. | Distal radius stabilization system |
US11992252B2 (en) | 2016-08-17 | 2024-05-28 | Globus Medical, Inc. | Distal radius stabilization system |
US11213327B2 (en) | 2016-08-17 | 2022-01-04 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US10383668B2 (en) | 2016-08-17 | 2019-08-20 | Globus Medical, Inc. | Volar distal radius stabilization system |
US11832857B2 (en) | 2016-08-17 | 2023-12-05 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US11432857B2 (en) | 2016-08-17 | 2022-09-06 | Globus Medical, Inc. | Stabilization systems |
US11612422B2 (en) | 2016-08-17 | 2023-03-28 | Globus Medical Inc. | Stabilization systems |
US11278332B2 (en) | 2016-08-17 | 2022-03-22 | Globus Medical, Inc. | Distal radius stabilization system |
US12004790B2 (en) | 2016-08-17 | 2024-06-11 | Globus Medical, Inc | Volar distal radius stabilization system |
US10687873B2 (en) | 2016-08-17 | 2020-06-23 | Globus Medical Inc. | Stabilization systems |
US11331128B2 (en) | 2016-08-17 | 2022-05-17 | Globus Medical Inc. | Distal radius stabilization system |
US11147599B2 (en) | 2016-08-17 | 2021-10-19 | Globus Medical Inc. | Systems and methods for bone fixation anchor, plate, and spacer devices |
US10820930B2 (en) | 2016-09-08 | 2020-11-03 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10624686B2 (en) | 2016-09-08 | 2020-04-21 | DePuy Synthes Products, Inc. | Variable angel bone plate |
US11529176B2 (en) | 2016-09-08 | 2022-12-20 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10905476B2 (en) | 2016-09-08 | 2021-02-02 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US12042200B2 (en) | 2016-09-22 | 2024-07-23 | Globus Medical, Inc. | Systems and methods for intramedullary nail implantation |
US11864753B2 (en) | 2017-02-06 | 2024-01-09 | Crossroads Extremity Systems, Llc | Implant inserter |
US10945725B2 (en) | 2017-02-06 | 2021-03-16 | Crossroads Extremity Systems, Llc | Implant inserter |
US11179149B2 (en) | 2017-02-07 | 2021-11-23 | Crossroads Extremity Systems, Llc | Counter-torque implant |
US10631903B2 (en) | 2017-03-10 | 2020-04-28 | Globus Medical Inc. | Clavicle fixation system |
US11357554B2 (en) | 2017-03-10 | 2022-06-14 | Globus Medical Inc. | Clavicle fixation system |
US11857229B2 (en) | 2017-03-10 | 2024-01-02 | Globus Medical, Inc. | Clavicle fixation system |
US10881438B2 (en) | 2017-03-10 | 2021-01-05 | Globus Medical, Inc. | Clavicle fixation system |
US10368928B2 (en) | 2017-03-13 | 2019-08-06 | Globus Medical, Inc. | Bone stabilization systems |
US12089883B2 (en) | 2017-03-13 | 2024-09-17 | Globus Medical, Inc. | Bone stabilization systems |
US10905477B2 (en) | 2017-03-13 | 2021-02-02 | Globus Medical, Inc. | Bone stabilization systems |
US11058467B2 (en) | 2017-03-13 | 2021-07-13 | Globus Medical, Inc. | Bone stabilization systems |
US10856920B2 (en) | 2017-09-13 | 2020-12-08 | Globus Medical Inc. | Bone stabilization systems |
US12042194B2 (en) | 2017-09-13 | 2024-07-23 | Globus Medical Inc. | Bone stabilization systems |
US11096730B2 (en) | 2017-09-13 | 2021-08-24 | Globus Medical Inc. | Bone stabilization systems |
US11607254B2 (en) | 2017-09-13 | 2023-03-21 | Globus Medical, Inc. | Bone stabilization systems |
US11871970B2 (en) | 2017-09-13 | 2024-01-16 | Globus Medical, Inc | Bone stabilization systems |
US11337739B2 (en) | 2017-12-20 | 2022-05-24 | Glabs X, Llc | Multiplanar fixation plate for fracture repair |
US11071570B2 (en) | 2018-03-02 | 2021-07-27 | Globus Medical, Inc. | Distal tibial plating system |
EP3533402A1 (en) * | 2018-03-02 | 2019-09-04 | Globus Medical, Inc. | Distal tibial plating system |
US12102363B2 (en) | 2018-03-02 | 2024-10-01 | Globus Medical Inc. | Distal tibial plating system |
US11771480B2 (en) | 2018-03-02 | 2023-10-03 | Globus Medical, Inc. | Distal tibial plating system |
US11224468B2 (en) | 2018-03-02 | 2022-01-18 | Globus Medical, Inc. | Distal tibial plating system |
US11039865B2 (en) | 2018-03-02 | 2021-06-22 | Stryker European Operations Limited | Bone plates and associated screws |
US11026727B2 (en) | 2018-03-20 | 2021-06-08 | DePuy Synthes Products, Inc. | Bone plate with form-fitting variable-angle locking hole |
US10772665B2 (en) | 2018-03-29 | 2020-09-15 | DePuy Synthes Products, Inc. | Locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US11779354B2 (en) | 2018-04-11 | 2023-10-10 | Globus Medical Inc. | Method and apparatus for locking a drill guide in a polyaxial hole |
US11141172B2 (en) | 2018-04-11 | 2021-10-12 | Globus Medical, Inc. | Method and apparatus for locking a drill guide in a polyaxial hole |
US11013541B2 (en) | 2018-04-30 | 2021-05-25 | DePuy Synthes Products, Inc. | Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US10925651B2 (en) | 2018-12-21 | 2021-02-23 | DePuy Synthes Products, Inc. | Implant having locking holes with collection cavity for shavings |
US12076063B2 (en) | 2019-02-13 | 2024-09-03 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US11202663B2 (en) | 2019-02-13 | 2021-12-21 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US11259848B2 (en) | 2019-02-13 | 2022-03-01 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US11826060B2 (en) | 2019-10-30 | 2023-11-28 | Globus Medical Inc. | Method and apparatus for inserting a bone plate |
US11129627B2 (en) | 2019-10-30 | 2021-09-28 | Globus Medical, Inc. | Method and apparatus for inserting a bone plate |
US11723647B2 (en) | 2019-12-17 | 2023-08-15 | Globus Medical, Inc. | Syndesmosis fixation assembly |
US12114850B2 (en) | 2019-12-17 | 2024-10-15 | Globus Medical, Inc. | Syndesmosis fixation assembly |
US12059183B2 (en) | 2020-07-31 | 2024-08-13 | Crossroads Extremity Systems, Llc | Bone plates with dynamic elements and screws |
USD961081S1 (en) | 2020-11-18 | 2022-08-16 | Crossroads Extremity Systems, Llc | Orthopedic implant |
US11963847B2 (en) | 2021-11-03 | 2024-04-23 | DePuy Synthes Products, Inc. | TPLO plate compression system and method |
US12064150B2 (en) | 2022-01-19 | 2024-08-20 | Globus Medical Inc. | System and method for treating bone fractures |
Also Published As
Publication number | Publication date |
---|---|
JP2007507296A (en) | 2007-03-29 |
US7179260B2 (en) | 2007-02-20 |
US20050070904A1 (en) | 2005-03-31 |
WO2005032386A1 (en) | 2005-04-14 |
US20070162020A1 (en) | 2007-07-12 |
US20110282393A1 (en) | 2011-11-17 |
US7905910B2 (en) | 2011-03-15 |
CA2537438A1 (en) | 2005-04-14 |
US7909858B2 (en) | 2011-03-22 |
AU2004277946A1 (en) | 2005-04-14 |
US20070276386A1 (en) | 2007-11-29 |
EP1670373A1 (en) | 2006-06-21 |
AU2004277946B2 (en) | 2010-07-29 |
AU2010238553A1 (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7909858B2 (en) | Bone plate systems using provisional fixation | |
US7780664B2 (en) | Endosteal nail | |
CA2487571C (en) | Intramedullary fixation device for metaphyseal long bone fractures | |
CA2539386C (en) | Anatomical distal radius fracture fixation plate and methods of using the same | |
US7341589B2 (en) | Bone plating system | |
CA2367088C (en) | Bone plate with conical screw threads | |
KR101524518B1 (en) | Bone plates and bone plate assemblies | |
US20060129151A1 (en) | Systems and methods for securing fractures using plates and cable clamps | |
US20040193155A1 (en) | Fracture fixation plate with particular plate hole and fastener engagement and methods of using the same | |
AU2003234384B2 (en) | Intramedullary fixation device for metaphyseal long bone fractures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SMITH & NEPHEW, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERLACH, DARIN;JAMES, ANTHONY;REEL/FRAME:016136/0513;SIGNING DATES FROM 20041027 TO 20041216 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |