US20050106704A1 - Methods and compositions for treating lupus erythematosus - Google Patents
Methods and compositions for treating lupus erythematosus Download PDFInfo
- Publication number
- US20050106704A1 US20050106704A1 US10/717,134 US71713403A US2005106704A1 US 20050106704 A1 US20050106704 A1 US 20050106704A1 US 71713403 A US71713403 A US 71713403A US 2005106704 A1 US2005106704 A1 US 2005106704A1
- Authority
- US
- United States
- Prior art keywords
- composition
- saccharomyces
- yeast cells
- yeast
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0004—Homeopathy; Vitalisation; Resonance; Dynamisation, e.g. esoteric applications; Oxygenation of blood
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/14—Yeasts or derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
- A61K36/062—Ascomycota
- A61K36/064—Saccharomycetales, e.g. baker's yeast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
Definitions
- the invention relates to yeast compositions that can treat lupus erythematosus and are useful as dietary supplements or medication. These compositions contain yeast cells obtainable by growth in electromagnetic fields with specific frequencies and field strengths.
- LEO Lupus erythematosus
- erythematosus is an autoimmune disease that causes inflammation and damage to various body tissues and parts, including joints, kidneys, heart, lungs, brain, blood vessels, and skin.
- the most common symptoms of LE include achy or swollen joints (arthritis), fever, prolonged or extreme fatigue, skin rashes and kidney problems.
- LE discoid lupus erythematosus
- SLE systemic lupus erythematosus
- drug-induced lupus neonatal lupus.
- DLE refers to a skin disorder in which a red, raised rash appears on the face, neck or scalp. DLE accounts for approximately 10% of all LE cases. SLE is more severe than DLE and can affect many parts of the body. About 70% of LE cases are SLE.
- Drug-induced lupus occurs with certain medications. The symptoms of drug-induced lupus, including arthritis, rash, fever and chest pain, usually fade when the medications are discontinued.
- Neonatal lupus is a rare form of lupus affecting newborn babies of women with SLE or certain other immune system disorders. At birth, these babies have skin rashes, liver abnormalities or low blood counts. These symptoms go away entirely over several months. However, some babies may have serious heart defects as a result of neonatal lupus.
- LE According to the Lupus Foundation of America, approximately 1.4 million Americans have LE. Although LE can affect both males and females at all ages, LE occurs 10 to 15 times more frequently among adult women than adult men. Also, LE is two to three times more common among African Americans, Hispanics, Asians and Native Americans. Although less frequent, LE can be hereditary.
- LE Even though the cause of LE is still unknown, LE is believed to be caused by a combination of genetic, environmental and possibly hormonal factors. LE can be characterized by periods of illness or flares, and periods of wellness or remission. Accordingly, the goals of effective treatment of LE are to prevent flares, minimize organ damage and complications, and maintain normal bodily functions. Commonly prescribed medications for LE include nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, corticosteroids, antimalarials and immunomodulating drugs.
- NSAIDs nonsteroidal anti-inflammatory drugs
- acetaminophen acetaminophen
- corticosteroids corticosteroids
- antimalarials antimalarials
- immunomodulating drugs include nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, corticosteroids, antimalarials and immunomodulating drugs.
- compositions comprising these activated yeast cells can therefore be used as medication, or dietary supplements in the form of health drinks or dietary pills (tablets or powder).
- This invention embraces a composition
- a composition comprising a plurality of yeast cells that have been cultured in an alternating electric field having a frequency in the range of about 9500-18500 MHz (e.g., 9800-10800, 12500-13500 and 17300-18300 MHz) and a field strength in the range of about 220-550 mV/cm (e.g., 250-270, 290-310, 350-380, 370-400, 380-410, 380-420, 410-450, 440-480, 460-500 and 480-520 mV/cm).
- the yeast cells are cultured for a period of time sufficient to be activated to produce substances useful in treating LE in a subject.
- the frequency and/or the field strength of the alternating electric field can be altered within the aforementioned ranges during said period of time.
- the yeast cells are exposed to a series of electromagnetic fields.
- An exemplary period of time is about 10-230 hours.
- compositions comprising a plurality of yeast cells that have been cultured under acidic conditions in an alternating electric field having a frequency in the range of about 16000-18000 MHz (e.g., 17000-18000 MHz) and a field strength in the range of about 350-470 mV/cm (e.g., 370-400 or 410-450 mV/cm).
- the yeast cells are exposed to a series of electromagnetic fields. An exemplary period of time is about 10-90 hours.
- Yeast cells that can be included in this composition can be derived from parent strains available from the China General Microbiological Culture Collection Center (“CGMCC”), China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China.
- Useful yeast species include, but are not limited to, those commonly used in food and pharmaceutical industries, such as Saccharomyces sp., Schizosaccharomyces pombe, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces rouxii, Saccharomyces cerevisiae, Saccharomyces carlsbergensis and Rhodotorula aurantiaca .
- the yeast cells can be derived from the strain Saccharomyces cerevisiae Hansen IFFI1413, Saccharomyces sp. AS2.311, Schizosaccharomyces pombe Lindner AS2.214, Saccharomyces sake Yabe ACCC2045, Saccharomyces uvarum Beijer IFFI1207, Saccharomyces rouxii Boutroux AS2.371, Saccharomyces cerevisiae Hansen Var.
- This invention further embraces a composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated to treat LE in a subject. Included in this invention are also methods of making these compositions.
- FIG. 1 is a schematic diagram showing an exemplary apparatus for activating yeast cells using electromagnetic fields.
- 1 yeast culture
- 2 container
- 3 power supply.
- FIG. 2 is a schematic diagram showing an exemplary apparatus for making yeast compositions of the invention.
- the apparatus comprises a signal generator and interconnected containers A, B and C.
- This invention is based on the discovery that certain yeast strains can be activated by electromagnetic fields (“EMF”) having specific frequencies and field strengths to become highly efficient in producing substances that prevent flares and minimize LE symptoms in a subject. Compositions containing these activated yeast cells are therefore useful in treating LE. Yeast compositions containing activated yeast cells can be used as medication, or dietary supplements in the form of health drinks or dietary pills (tablets or powder).
- EMF electromagnetic fields
- the activated yeast cells contained in the yeast compositions have been cultured to endure acidic conditions (pH 2.5-4.2), these cells can survive the gastric environment and pass on to the intestines. Once in the intestines, the yeast cells are ruptured by various digestive enzymes, and the anti-LE substances are released and readily absorbed.
- yeasts useful in this invention include, but are not limited to, yeasts of the genera Saccharomyces, Schizosaccharomyces , and Rhodotorula.
- Exemplary species within the above-listed genera include, but are not limited to, those illustrated in Table 1.
- Yeast strains useful for this invention can be obtained from laboratory cultures, or from publically accessible culture depositories, such as CGMCC and the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209.
- Non-limiting examples of useful strains are Saccharomyces cerevisiae Hansen IFFI1413, Saccharomyces sp.
- yeast compositions of this invention is not limited to starting with a pure strain of yeast.
- a yeast composition of the invention may be produced by culturing a mixture of yeast cells of different species or strains. The ability of any activated species or strain of yeasts to treat LE can be readily tested by methods known in the art. See, for instance, Example 1.
- An electromagnetic field useful in this invention can be generated and applied by various means well known in the art.
- the EMF can be generated by applying an alternating electric field or an oscillating magnetic field.
- Alternating electric fields can be applied to cell cultures through electrodes in direct contact with the culture medium, or through electromagnetic induction. See, e.g., FIG. 1 .
- Relatively high electric fields in the medium can be generated using a method in which the electrodes are in contact with the medium. Care must be taken to prevent electrolysis at the electrodes from introducing undesired ions into the culture and to prevent contact resistance, bubbles, or other features of electrolysis from dropping the field level below that intended.
- Electrodes should be matched to their environment, for example, using Ag—AgCl electrodes in solutions rich in chloride ions, and run at as low a voltage as possible. For general review, see Goodman et al., Effects of EMF on Molecules and Cells , International Review of Cytology, A Survey of Cell Biology, Vol. 158, Academic Press, 1995.
- the EMFs useful in this invention can also be generated by applying an oscillating magnetic field.
- An oscillating magnetic field can be generated by oscillating electric currents going through Helmholtz coils. Such a magnetic field in turn induces an electric field.
- the frequencies of EMFs useful in this invention range from about 9500-18500 MHz (e.g., 9800-10800, 12500-13500 and 17300-18300 MHz). Exemplary frequencies are 10345, 10369, 13053, 17826 and 17838 MHz.
- the field strength of the electric field useful in this invention ranges from about 220-550 mV/cm (e.g., 250-270, 290-310, 350-380, 370-400, 380-410, 380-420, 410-450, 440-480, 460-500 and 480-520 mV/cm). Exemplary field strengths are 259, 294, 363, 364, 374, 382, 387, 396, 406, 424, 453, 472 and 507 mV/cm.
- the yeast culture can remain in the same container while the same set of EMF generator and emitters is used to change the frequency and/or field strength.
- the EMFs in the series can each have a different frequency or a different field strength; or a different frequency and a different field strength. Such frequencies and field strengths are preferably within the above-described ranges.
- any practical number of EMFs can be used in a series, it may be preferred that the yeast culture be exposed to a total of, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or more EMFs in a series.
- the yeast culture is exposed to a series of EMFs, wherein the frequency of the electric field is alternated in the range of 9800-10800, 12500-13500 and 17300-18300 MHz.
- yeast cells can be activated after even a few hours of culturing in the presence of an EMF, it may be preferred that the activated yeast cells be allowed to multiply and grow in the presence of the EMF(s) for a total of about 120-364 hours.
- FIG. 1 illustrates an exemplary apparatus for generating alternating electric fields.
- An electric field of a desired frequency and intensity is generated by an AC source (3) capable of generating an alternating electric field, preferably in a sinusoidal wave form, in the frequency range of 10 to 20,000 MHz.
- Signal generators capable of generating signals with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output.
- the activation container (2) can be made from non-conductive material, e.g., plastics, glass or ceramic.
- the wire connecting the activation container (2) and the signal generator (3) is preferably a high frequency coaxial cable with a transmission frequency of at least 30 GHz.
- the alternating electric field can be applied to the culture by a variety of means, including placing the yeast culture (1) in close proximity to the signal emitters such as a metal wire or tube capable of transmitting EMFs.
- the metal wire or tube can be made of red copper, and be placed inside the container (2), reaching as deep as 3-30 cm. For example, if the fluid in the container (2) has a depth of 15-20 cm, 20-30 cm, 30-50 cm, 50-70 cm, 70-100 cm, 100-150 cm or 150-200 cm, the metal wire can be 3-5 cm, 5-7 cm, 7-10 cm, 10-15 cm, 15-20 cm, 20-30 cm and 25-30 cm from the bottom of the container (2), respectively.
- the number of electrode wires used depends on the volume of the culture as well as the diameter of the wires.
- the number of metal wires/tubes used can be from 1 to 10 (e.g., 2 to 3). It is recommended, though not mandated, that for a culture having a volume up to 10 L, metal wires/tubes having a diameter of 0.5 to 2.0 mm be used. For a culture having a volume between 10 L and 100 L, metal wires/tubes having a diameter of 3.0 to 5.0 mm can be used. For a culture having a volume in the range of 100-1000 L, metal wires/tubes having a diameter of 6.0 to 15.0 mm can be used. For a culture having a volume greater than 1000 L, metal wires/tubes having a diameter of 20.0 to 25.0 mm can be used.
- the electric field is applied by electrodes submerged in the culture (1).
- one of the electrodes can be a metal plate placed on the bottom of the container (2), and the other electrode can comprise a plurality of electrode wires evenly distributed in the culture (1) so as to achieve even distribution of the electric field energy.
- the number of electrode wires used depends on the volume of the culture as well as the diameter of the wires.
- Culture media useful in this invention contain sources of nutrients assimilable by yeast cells.
- Complex carbon-containing substances in a suitable form such as carbohydrates (e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.), can be the carbon sources for yeast cells.
- carbohydrates e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.
- the exact quantity of the carbon sources utilized in the medium can be adjusted in accordance with the other ingredients of the medium.
- the amount of carbohydrates varies between about 0.1% and 10% by weight of the medium and preferably between about 0.1% and 5% (e.g., about 2%). These carbon sources can be used individually or in combination.
- Amino acid-containing substances in suitable form e.g., beef extract and peptone
- the amount of amino acid containing substances varies between about 0.1% and 0.5% by weight of the medium and preferably between about 0.1% and 0.3% (e.g., about 0.25%).
- the inorganic salts which can be added to the culture medium are the customary salts capable of yielding sodium, potassium, calcium, phosphate, sulfate, carbonate, and like ions.
- Non-limiting examples of nutrient inorganic salts are (NH 4 ) 2 HPO 4 , KH 2 PO 4 , K 2 HPO 4 , CaCO 3 , MgSO 4 , NaCl, and CaSO 4 .
- yeast cells can be activated by being cultured in an appropriate medium under sterile conditions at 20-38° C., preferably at 28-32° C. (e.g., 30° C.) for a sufficient amount of time, e.g., 120-364 hours, in an alternating electric field or a series of alternating electric fields as described above.
- An exemplary culture medium is made by mixing 900 ml of distilled water with 18 g of mannitol, 50 ⁇ g of vitamin D, 50 ⁇ g of vitamin B 12 , 50 ⁇ g of vitamin B 3 , 100 ⁇ g of vitamin H, 100 ml fetal bovine serum, 0.20 g of KH 2 PO 4 , 0.25 g of MgSO 4 .7H 2 O, 0.3 g of NaCl, 0.2 g of CaSO 4 .2H 2 O, 4.0 g of CaCO 3 .5H 2 O, and 2.5 g of peptone.
- FIG. 1 An exemplary set-up of the culturing process is depicted in FIG. 1 .
- Untreated yeast cells are added to a culture medium at 1 ⁇ 10 8 cells per 1000 ml of the culture medium.
- the yeast cells may be Saccharomyces cerevisiae Hansen IFFI1413, or may be selected from any of the strains listed in Table 1.
- An exemplary activation process of the yeast cells involves the following sequence: the yeast cells are grown in the culture medium for 23-33 hours (e.g., 28 hours) at 28-32° C.
- the activated yeast cells are then recovered from the culture medium by various methods known in the art, dried (e.g., by lyophilization) and stored at about 4° C. in powder form.
- the resultant yeast powder preferably contains no less than 10 10 cells/g activated yeast.
- the activated yeast cells can be evaluated for their ability to treat LE using standard methods known in the art, such as those described in Section VII.
- the activated yeast cells of this invention must pass through the stomach before reaching the small intestine, where the effective components are released from these yeast cells, it is preferred that these yeasts be cultured under acidic conditions so as to acclimatize the cells to the gastric juice. This acclimatization process results in better viability of the yeast cells in the acidic gastric environment.
- the yeast powder containing activated yeast cells can be mixed with a highly acidic acclimatizing culture medium at 10 g (containing more than 10 10 activated cells per gram) per 1000 ml.
- the yeast mixture can then be cultured first in the presence of an alternating electric field having a frequency of 17826 MHz and a field strength in the range of 410-450 mV/cm (e.g., 424 mV/cm) at about 28 to 32° C. for 44-52 hours (e.g., 48 hours).
- the resultant yeast cells can then be further incubated in the presence of an alternating electric field having a frequency of 17838 MHz and a field strength in the range of 370-400 mV/cm (e.g., 374 mV/cm) at about 28 to 32° C. for 16-28 hours (e.g., 20 hours).
- the resulting acclimatized yeast cells are then recovered from the culture medium by various methods known in the art and are dried and stored either in powder form ( ⁇ 10 10 cells/g) at room temperature or in vacuum at 0-4° C.
- An exemplary acclimatizing culture medium is made by mixing 700 ml fresh pig gastric juice and 300 ml wild Chinese hawthorn extract.
- the pH of acclimatizing culture medium is adjusted to 2.5 with 0.1 M hydrochloric acid (HCl) and 0.2 M potassium hydrogen phthalate (C 6 H 4 (COOK)COOH).
- the fresh pig gastric juice is prepared as follows. At about 4 months of age, newborn Holland white pigs are sacrificed, and the entire contents of their stomachs are retrieved and mixed with 2000 ml of water under sterile conditions. The mixture is then allowed to stand for 6 hours at 4° C. under sterile conditions to precipitate food debris. The supernatant is collected for use in the acclimatizing culture medium.
- the wild Chinese hawthorn extract 500 g of fresh wild Chinese hawthorn is dried under sterile conditions to reduce water content ( ⁇ 8%). The dried fruit is then ground ( ⁇ 20 mesh) and added to 1500 ml of sterilized water. The hawthorn slurry is allowed to stand for 6 hours at 4° C. under sterile conditions. The hawthorn supernatant is collected to be used in the acclimatizing culture medium.
- This apparatus includes three containers, a first container (A), a second container (B), and a third container (C), each equipped with a pair of electrodes (4).
- One of the electrodes is a metal plate placed on the bottom of the containers, and the other electrode comprises a plurality of electrode wires evenly distributed in the space within the container to achieve even distribution of the electric field energy. All three pairs of electrodes are connected to a common signal generator.
- the culture medium used for this purpose is a mixed fruit extract solution containing the following ingredients per 1000 L: 300 L of wild Chinese hawthorn extract, 300 L of jujube extract, 300 L of Schisandra chinensis (Turez) Baill seeds extract, and 100 L of soy bean extract.
- hawthorn, jujube and Schisandra chinensis (Turez) Baill seeds extracts the fresh fruits are washed and dried under sterile conditions to reduce the water content to no higher than 8%.
- One hundred kilograms of the dried fruits are then ground ( ⁇ 20 mesh) and added to 400 L of sterilized water.
- the mixtures are stirred under sterile conditions at room temperature for twelve hours, and then centrifuged at 1000 rpm to remove insoluble residues.
- fresh soy beans are washed and dried under sterile conditions to reduce the water content to no higher than 8%.
- Thirty kilograms of dried soy beans are then ground into particles of no smaller than 20 mesh, and added to 130 L of sterilized water.
- the mixture is stirred under sterile conditions at room temperature for twelve hours and centrifuged at 1000 rpm to remove insoluble residues.
- the mixed fruit extract solution is prepared, it is autoclaved at 121° C. for 30 minutes and cooled to below 40° C. before use.
- yeast cells are then cultured in the presence of an alternating electric field having a frequency of 17826 MHz and a field strength of about 440-480 mV/cm (e.g., 453 mV/cm) at 28-32° C. under sterile conditions for 48 hours.
- the yeast cells are further incubated in an alternating electric field having a frequency of 17838 MHz and a field strength of 350-380 mV/cm (e.g., 364 mV/cm). The culturing continues for another 12 hours.
- the yeast culture is then transferred from the first container (A) to the second container (B) (if need be, a new batch of yeast culture can be started in the now available the first container (A)), and subjected to an alternating electric field having a frequency of 17826 MHz and a field strength of 460-500 mV/cm (e.g., 472 mV/cm) for 24 hours. Subsequently, the frequency and field strength of the electric field are changed to 17838 MHz and 380-410 mV/cm (e.g., 382 mV/cm), respectively. The culturing process continues for another 12 hours.
- the yeast culture is then transferred from the second container (B) to the third container (C), and subjected to an alternating electric field having a frequency of 17826 MHz and a field strength of 480-520 mV/cm (e.g., 507 mV/cm) for 24 hours. Subsequently the frequency and field strength of the electric field are changed to 17838 MHz and 380-420 mV/cm (e.g., 396 mV/cm), respectively. The culturing continues for another 12 hours.
- the yeast culture from the third container (C) can then be packaged into vacuum sealed bottles (30-50 ml/bottle or 100 ml/bottle) for use as medication or dietary supplement.
- the compositions may conveniently be formulated as health drinks. If desired, the final yeast culture can also be dried within 24 hours and stored in powder form.
- the dietary supplement can be taken by adults three to four times daily at a bottle per dose for a period of three to six months, preferably 10-30 minutes before meals and at bedtime. For children, the dose should be reduced to half of the dose for adults.
- the compositions of the invention can also be administered intravenously or peritoneally in the form of a sterile injectable preparation.
- a sterile preparation can be prepared as follows. A sterilized health drink composition is first treated under ultrasound ( ⁇ 18000 Hz) for 10 minutes and then centrifuged at 4355 rpm for another 10 minutes. The resulting supernatant is adjusted to pH 7.2-7.4 using 1 M NaOH and subsequently filtered through a membrane (0.22 ⁇ m for intravenous injection and 0.45 ⁇ m for peritoneal injection) under sterile conditions. The resulting sterile preparation is submerged in a 35-38° C. water bath for 30 minutes before use.
- the compositions of the invention may also be formulated with pharmaceutically acceptable carriers to be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, suspensions or solutions.
- the yeast compositions of the present invention are derived from yeasts used in food and pharmaceutical industries.
- the yeast compositions are thus devoid of side effects associated with many pharmaceutical compounds.
- the activated yeast composition used in the following example was prepared as described above, using Saccharomyces cerevisiae Hansen IFFI1413, cultured in the presence of an alternating electric field having the electric field frequency and field strength exemplified in the parentheses following the recommended ranges listed in Section IV, supra.
- Control (i.e., untreated) yeast composition was prepared in the same manner except that the yeast cells were cultured in the absence of EMFs. All compositions of interest were administered to patients orally.
- the criterion for selecting patients for the clinical study was one of the following: (1) positive test result for LE cells, (2) positive test result for anti-nDNA antibody, (3) positive test result for anti-Sm antibody, (4) urine protein ⁇ 0.5 g/d, (5) leukocyte count ⁇ 4.0 ⁇ 10 9 /L, (6) platelet count ⁇ 100 ⁇ 10 9 /L, (7) butterfly-shaped rash across the cheek and nose, and (8) non-rheumatoid arthritis.
- All patients were randomly divided into three groups, AY, NY and CK, with thirty-three patients per group.
- Patients in the AY group were given a bottle of the activated yeast composition three times a day at a bottle (30 ml) per dose for six months.
- Patients in the NY group were given the control yeast composition three times a day at half a bottle per dose for six months or at a bottle per dose if those between the ages of 13 and 18.
- Patients in the CK group were treated with conventional LE medications, such as Lincomycin, cyclophosphamide, prednisone, cyclosporine A and IgG in conjunction with conventional fever reducing, blood pressure lowering, or diuretic medications.
- the above results show that the activated yeast composition was more effective in minimizing and/or eliminating various symptoms in LE patients and normalizing urinary protein levels and/or leukocyte, lymphocyte, and/or platelet counts than both the control yeast composition and the conventional medications.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Botany (AREA)
- Alternative & Traditional Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Hematology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Polymers & Plastics (AREA)
- Virology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Compositions comprising a plurality of yeast cells, wherein said plurality of yeast cells are characterized by their ability to treat lupus erythematosus in a subject as a result of having been cultured in the presence of an alternating electric field having a specific frequency and a specific field strength. Also included are methods of making and using such compositions.
Description
- The invention relates to yeast compositions that can treat lupus erythematosus and are useful as dietary supplements or medication. These compositions contain yeast cells obtainable by growth in electromagnetic fields with specific frequencies and field strengths.
- Lupus erythematosus (LE) is an autoimmune disease that causes inflammation and damage to various body tissues and parts, including joints, kidneys, heart, lungs, brain, blood vessels, and skin. The most common symptoms of LE include achy or swollen joints (arthritis), fever, prolonged or extreme fatigue, skin rashes and kidney problems.
- There are several forms of LE: discoid lupus erythematosus (DLE), systemic lupus erythematosus (SLE), drug-induced lupus and neonatal lupus. DLE refers to a skin disorder in which a red, raised rash appears on the face, neck or scalp. DLE accounts for approximately 10% of all LE cases. SLE is more severe than DLE and can affect many parts of the body. About 70% of LE cases are SLE. Drug-induced lupus occurs with certain medications. The symptoms of drug-induced lupus, including arthritis, rash, fever and chest pain, usually fade when the medications are discontinued. Neonatal lupus is a rare form of lupus affecting newborn babies of women with SLE or certain other immune system disorders. At birth, these babies have skin rashes, liver abnormalities or low blood counts. These symptoms go away entirely over several months. However, some babies may have serious heart defects as a result of neonatal lupus.
- According to the Lupus Foundation of America, approximately 1.4 million Americans have LE. Although LE can affect both males and females at all ages, LE occurs 10 to 15 times more frequently among adult women than adult men. Also, LE is two to three times more common among African Americans, Hispanics, Asians and Native Americans. Although less frequent, LE can be hereditary.
- Even though the cause of LE is still unknown, LE is believed to be caused by a combination of genetic, environmental and possibly hormonal factors. LE can be characterized by periods of illness or flares, and periods of wellness or remission. Accordingly, the goals of effective treatment of LE are to prevent flares, minimize organ damage and complications, and maintain normal bodily functions. Commonly prescribed medications for LE include nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, corticosteroids, antimalarials and immunomodulating drugs.
- Because of the limited success of currently available medications and their potentially serious side effects, it is important to provide an alternative effective treatment for LE.
- This invention is based on the discovery that certain yeast cells can be activated by electromagnetic fields having specific frequencies and field strengths to produce substances useful in treating lupus erythematosus. Compositions comprising these activated yeast cells can therefore be used as medication, or dietary supplements in the form of health drinks or dietary pills (tablets or powder).
- This invention embraces a composition comprising a plurality of yeast cells that have been cultured in an alternating electric field having a frequency in the range of about 9500-18500 MHz (e.g., 9800-10800, 12500-13500 and 17300-18300 MHz) and a field strength in the range of about 220-550 mV/cm (e.g., 250-270, 290-310, 350-380, 370-400, 380-410, 380-420, 410-450, 440-480, 460-500 and 480-520 mV/cm). The yeast cells are cultured for a period of time sufficient to be activated to produce substances useful in treating LE in a subject. In one embodiment, the frequency and/or the field strength of the alternating electric field can be altered within the aforementioned ranges during said period of time. In other words, the yeast cells are exposed to a series of electromagnetic fields. An exemplary period of time is about 10-230 hours.
- Also included in this invention is a composition comprising a plurality of yeast cells that have been cultured under acidic conditions in an alternating electric field having a frequency in the range of about 16000-18000 MHz (e.g., 17000-18000 MHz) and a field strength in the range of about 350-470 mV/cm (e.g., 370-400 or 410-450 mV/cm). In one embodiment, the yeast cells are exposed to a series of electromagnetic fields. An exemplary period of time is about 10-90 hours.
- Yeast cells that can be included in this composition can be derived from parent strains available from the China General Microbiological Culture Collection Center (“CGMCC”), China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China. Useful yeast species include, but are not limited to, those commonly used in food and pharmaceutical industries, such as Saccharomyces sp., Schizosaccharomyces pombe, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces rouxii, Saccharomyces cerevisiae, Saccharomyces carlsbergensis and Rhodotorula aurantiaca. For instance, the yeast cells can be derived from the strain Saccharomyces cerevisiae Hansen IFFI1413, Saccharomyces sp. AS2.311, Schizosaccharomyces pombe Lindner AS2.214, Saccharomyces sake Yabe ACCC2045, Saccharomyces uvarum Beijer IFFI1207, Saccharomyces rouxii Boutroux AS2.371, Saccharomyces cerevisiae Hansen Var. ellipsoideus (Hansen) Dekker AS2.611, Saccharomyces carlsbergensis Hansen AS2.265, Rhodotorula rubar (Demme) Lodder AS2.103 or Saccharomyces cerevisiae Hansen AS2.139. Other useful yeast strains are illustrated in Table 1.
- This invention further embraces a composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated to treat LE in a subject. Included in this invention are also methods of making these compositions.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All publications and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting. Throughout this specification and claims, the word “comprise,” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. A subject includes a human and veterinary subject.
- Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
-
FIG. 1 is a schematic diagram showing an exemplary apparatus for activating yeast cells using electromagnetic fields. 1: yeast culture; 2: container; 3: power supply. -
FIG. 2 is a schematic diagram showing an exemplary apparatus for making yeast compositions of the invention. The apparatus comprises a signal generator and interconnected containers A, B and C. - This invention is based on the discovery that certain yeast strains can be activated by electromagnetic fields (“EMF”) having specific frequencies and field strengths to become highly efficient in producing substances that prevent flares and minimize LE symptoms in a subject. Compositions containing these activated yeast cells are therefore useful in treating LE. Yeast compositions containing activated yeast cells can be used as medication, or dietary supplements in the form of health drinks or dietary pills (tablets or powder).
- Since the activated yeast cells contained in the yeast compositions have been cultured to endure acidic conditions (pH 2.5-4.2), these cells can survive the gastric environment and pass on to the intestines. Once in the intestines, the yeast cells are ruptured by various digestive enzymes, and the anti-LE substances are released and readily absorbed.
- I. Yeast Strains Useful in the Invention
- The types of yeasts useful in this invention include, but are not limited to, yeasts of the genera Saccharomyces, Schizosaccharomyces, and Rhodotorula.
- Exemplary species within the above-listed genera include, but are not limited to, those illustrated in Table 1. Yeast strains useful for this invention can be obtained from laboratory cultures, or from publically accessible culture depositories, such as CGMCC and the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209. Non-limiting examples of useful strains (with accession numbers of CGMCC) are Saccharomyces cerevisiae Hansen IFFI1413, Saccharomyces sp. AS2.311, Schizosaccharomyces pombe Lindner AS2.214, Saccharomyces sake Yabe ACCC2045, Saccharomyces uvarum Beijer IFFI1207, Saccharomyces rouxii Boutroux AS2.371, Saccharomyces cerevisiae Hansen Var. ellipsoideus (Hansen) Dekker AS2.611, Saccharomyces carlsbergensis Hansen AS2.265, Rhodotorula rubar (Demme) Lodder AS2.103 or Saccharomyces cerevisiae Hansen AS2.139. Other useful yeast strains are illustrated in Table 1.
- Although it is preferred, the preparation of the yeast compositions of this invention is not limited to starting with a pure strain of yeast. A yeast composition of the invention may be produced by culturing a mixture of yeast cells of different species or strains. The ability of any activated species or strain of yeasts to treat LE can be readily tested by methods known in the art. See, for instance, Example 1.
TABLE 1 Exemplary Yeast Strains Saccharomyces cerevisiae Hansen ACCC2034 ACCC2035 ACCC2036 ACCC2037 ACCC2038 ACCC2039 ACCC2040 ACCC2041 ACCC2042 AS2.1 AS2.4 AS2.11 AS2.14 AS2.16 AS2.56 AS2.69 AS2.70 AS2.93 AS2.98 AS2.101 AS2.109 AS2.110 AS2.112 AS2.139 AS2.173 AS2.174 AS2.182 AS2.196 AS2.242 AS2.336 AS2.346 AS2.369 AS2.374 AS2.375 AS2.379 AS2.380 AS2.382 AS2.390 AS2.393 AS2.395 AS2.396 AS2.397 AS2.398 AS2.399 AS2.400 AS2.406 AS2.408 AS2.409 AS2.413 AS2.414 AS2.415 AS2.416 AS2.422 AS2.423 AS2.430 AS2.431 AS2.432 AS2.451 AS2.452 AS2.453 AS2.458 AS2.460 AS2.463 AS2.467 AS2.486 AS2.501 AS2.502 AS2.503 AS2.504 AS2.516 AS2.535 AS2.536 AS2.558 AS2.560 AS2.561 AS2.562 AS2.576 AS2.593 AS2.594 AS2.614 AS2.620 AS2.628 AS2.631 AS2.666 AS2.982 AS2.1190 AS2.1364 AS2.1396 IFFI1001 IFFI1002 IFFI1005 IFFI1006 IFFI1008 IFFI1009 IFFI1010 IFFI1012 IFFI1021 IFFI1027 IFFI1037 IFFI1042 IFFI1043 IFFI1045 IFFI1048 IFFI1049 IFFI1050 IFFI1052 IFFI1059 IFFI1060 IFFI1062 IFFI1063 IFFI1202 IFFI1203 IFFI1206 IFFI1209 IFFI1210 IFFI1211 IFFI1212 IFFI1213 IFFI1214 IFFI1215 IFFI1220 IFFI1221 IFFI1224 IFFI1247 IFFI1248 IFFI1251 IFFI1270 IFFI1277 IFFI1287 IFFI1289 IFFI1290 IFFI1291 IFFI1292 IFFI1293 IFFI1297 IFFI1300 IFFI1301 IFFI1302 IFFI1307 IFFI1308 IFFI1309 IFFI1310 IFFI1311 IFFI1331 IFFI1335 IFFI1336 IFFI1337 IFFI1338 IFFI1339 IFFI1340 IFFI1345 IFFI1348 IFFI1396 IFFI1397 IFFI1399 IFFI1411 IFFI1413 IFFI1441 IFFI1443 Saccharomyces cerevisiae Hansen Var. ellipsoideus (Hansen) Dekker ACCC2043 AS2.2 AS2.3 AS2.8 AS2.53 AS2.163 AS2.168 AS2.483 AS2.541 AS2.559 AS2.606 AS2.607 AS2.611 AS2.612 Saccharomyces chevalieri Guilliermond AS2.131 AS2.213 Saccharomyces delbrueckii AS2.285 Saccharomyces delbrueckii Lindner ver. mongolicus (Saito) Lodder et van Rij AS2.209 AS2.1157 Saccharomyces exiguous Hansen AS2.349 AS2.1158 Saccharomyces fermentati (Saito) Lodder et van Rij AS2.286 AS2.343 Saccharomyces logos van laer et Denamur ex Jorgensen AS2.156 AS2.327 AS2.335 Saccharomyces mellis (Fabian et Quinet) Lodder et kreger van Rij AS2.195 Saccharomyces mellis Microellipsoides Osterwalder AS2.699 Saccharomyces oviformis Osteralder AS2.100 Saccharomyces rosei (Guilliermond) Lodder et Kreger van Rij AS2.287 Saccharomyces rouxii Boutroux AS2.178 AS2.180 AS2.370 AS2.371 Saccharomyces sake Yabe ACCC2045 Candida arborea AS2.566 Candida lambica (Lindner et Genoud) van. Uden et Buckley AS2.1182 Candida krusei (Castellani) Berkhout AS2.1045 Candida lipolytica (Harrison) Diddens et Lodder AS2.1207 AS2.1216 AS2.1220 AS2.1379 AS2.1398 AS2.1399 AS2.1400 Candida parapsilosis (Ashford) Langeron et Talice Var. intermedia Van Rij et Verona AS2.491 Candida parapsilosis (Ashford) Langeron et Talice AS2.590 Candida pulcherrima (Lindner) Windisch AS2.492 Candida rugousa (Anderson) Diddens et Lodder AS2.511 AS2.1367 AS2.1369 AS2.1372 AS2.1373 AS2.1377 AS2.1378 AS2.1384 Candida tropicalis (Castellani) Berkhout ACCC2004 ACCC2005 ACCC2006 AS2.164 AS2.402 AS2.564 AS2.565 AS2.567 AS2.568 AS2.617 AS2.637 AS2.1387 AS2.1397 Candida utilis Henneberg Lodder et Kreger Van Rij AS2.120 AS2.281 AS2.1180 Crebrothecium ashbyii (Guillermond) Routein (Eremothecium ashbyii Guilliermond) AS2.481 AS2.482 AS2.1197 Geotrichum candidum Link ACCC2016 AS2.361 AS2.498 AS2.616 AS2.1035 AS2.1062 AS2.1080 AS2.1132 AS2.1175 AS2.1183 Hansenula anomala (Hansen)H et P sydow ACCC2018 AS2.294 AS2.295 AS2.296 AS2.297 AS2.298 AS2.299 AS2.300 AS2.302 AS2.338 AS2.339 AS2.340 AS2.341 AS2.470 AS2.592 AS2.641 AS2.642 AS2.782 AS2.635 AS2.794 Hansenula arabitolgens Fang AS2.887 Hansenula jadinii (A. et R Sartory Weill et Meyer) Wickerham ACCC2019 Hansenula saturnus (Klocker) H et P sydow ACCC2020 Hansenula schneggii (Weber) Dekker AS2.304 Hansenula subpelliculosa Bedford AS2.740 AS2.760 AS2.761 AS2.770 AS2.783 AS2.790 AS2.798 AS2.866 Kloeckera apiculata (Reess emend. Klocker) Janke ACCC2022 ACCC2023 AS2.197 AS2.496 AS2.714 ACCC2021 AS2.711 Lipomycess starkeyi Lodder et van Rij AS2.1390 ACCC2024 Pichia farinosa (Lindner) Hansen ACCC2025 ACCC2026 AS2.86 AS2.87 AS2.705 AS2.803 Pichia membranaefaciens Hansen ACCC2027 AS2.89 AS2.661 AS2.1039 Rhodosporidium toruloides Banno ACCC2028 Rhodotorula glutinis (Fresenius) Harrison AS2.2029 AS2.280 ACCC2030 AS2.102 AS2.107 AS2.278 AS2.499 AS2.694 AS2.703 AS2.704 AS2.1146 Rhodotorula minuta (Saito) Harrison AS2.277 Rhodotorula rubar (Demme) Lodder AS2.21 AS2.22 AS2.103 AS2.105 AS2.108 AS2.140 AS2.166 AS2.167 AS2.272 AS2.279 AS2.282 ACCC2031 Rhodotorula aurantiaca (Saito) Lodder AS2.102 AS2.107 AS2.278 AS2.499 AS2.694 AS2.703 AS2.1146 Saccharomyces carlsbergensis Hansen AS2.113 ACCC2032 ACCC2033 AS2.312 AS2.116 AS2.118 AS2.121 AS2.132 AS2.162 AS2.189 AS2.200 AS2.216 AS2.265 AS2.377 AS2.417 AS2.420 AS2.440 AS2.441 AS2.443 AS2.444 AS2.459 AS2.595 AS2.605 AS2.638 AS2.742 AS2.745 AS2.748 AS2.1042 Saccharomyces uvarum Beijer IFFI1023 IFFI1032 IFFI1036 IFFI1044 IFFI1072 IFFI1205 IFFI1207 Saccharomyces willianus Saccardo AS2.5 AS2.7 AS2.119 AS2.152 AS2.293 AS2.381 AS2.392 AS2.434 AS2.614 AS2.1189 Saccharomyces sp. AS2.311 Saccharomycodes ludwigii Hansen ACCC2044 AS2.243 AS2.508 Saccharomycodes sinenses Yue AS2.1395 Schizosaccharomyces octosporus Beijerinck ACCC2046 AS2.1148 Schizosaccharomyces pombe Lindner ACCC2047 ACCC2048 AS2.214 AS2.248 AS2.249 AS2.255 AS2.257 AS2.259 AS2.260 AS2.274 AS2.994 AS2.1043 AS2.1149 AS2.1178 IFFI1056 Sporobolomyces roseus Kluyver et van Niel ACCC2049 ACCC2050 AS2.19 AS2.962 AS2.1036 ACCC2051 AS2.261 AS2.262 Torulopsis candida (Saito) Lodder AS2.270 ACCC2052 Torulopsis famta (Harrison) Lodder et van Rij ACCC2053 AS2.685 Torulopsis globosa (Olson et Hammer) Lodder et van Rij ACCC2054 AS2.202 Torulopsis inconspicua Lodder et Kreger van Rij AS2.75 Trichosporon behrendii Lodder et Kreger van Rij ACCC2056 AS2.1193 Trichosporon capitatum Diddens et Lodder ACCC2056 AS2.1385 Trichosporon cutaneum (de Beurm et al.) Ota ACCC2057 AS2.25 AS2.570 AS2.571 AS2.1374 Wickerhamia fluorescens (Soneda) Soneda ACCC2058 AS2.1388
II. Application of Electromagnetic Fields - An electromagnetic field useful in this invention can be generated and applied by various means well known in the art. For instance, the EMF can be generated by applying an alternating electric field or an oscillating magnetic field.
- Alternating electric fields can be applied to cell cultures through electrodes in direct contact with the culture medium, or through electromagnetic induction. See, e.g.,
FIG. 1 . Relatively high electric fields in the medium can be generated using a method in which the electrodes are in contact with the medium. Care must be taken to prevent electrolysis at the electrodes from introducing undesired ions into the culture and to prevent contact resistance, bubbles, or other features of electrolysis from dropping the field level below that intended. Electrodes should be matched to their environment, for example, using Ag—AgCl electrodes in solutions rich in chloride ions, and run at as low a voltage as possible. For general review, see Goodman et al., Effects of EMF on Molecules and Cells, International Review of Cytology, A Survey of Cell Biology, Vol. 158, Academic Press, 1995. - The EMFs useful in this invention can also be generated by applying an oscillating magnetic field. An oscillating magnetic field can be generated by oscillating electric currents going through Helmholtz coils. Such a magnetic field in turn induces an electric field.
- The frequencies of EMFs useful in this invention range from about 9500-18500 MHz (e.g., 9800-10800, 12500-13500 and 17300-18300 MHz). Exemplary frequencies are 10345, 10369, 13053, 17826 and 17838 MHz. The field strength of the electric field useful in this invention ranges from about 220-550 mV/cm (e.g., 250-270, 290-310, 350-380, 370-400, 380-410, 380-420, 410-450, 440-480, 460-500 and 480-520 mV/cm). Exemplary field strengths are 259, 294, 363, 364, 374, 382, 387, 396, 406, 424, 453, 472 and 507 mV/cm.
- When a series of EMFs are applied to a yeast culture, the yeast culture can remain in the same container while the same set of EMF generator and emitters is used to change the frequency and/or field strength. The EMFs in the series can each have a different frequency or a different field strength; or a different frequency and a different field strength. Such frequencies and field strengths are preferably within the above-described ranges. Although any practical number of EMFs can be used in a series, it may be preferred that the yeast culture be exposed to a total of, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or more EMFs in a series. In one embodiment, the yeast culture is exposed to a series of EMFs, wherein the frequency of the electric field is alternated in the range of 9800-10800, 12500-13500 and 17300-18300 MHz.
- Although the yeast cells can be activated after even a few hours of culturing in the presence of an EMF, it may be preferred that the activated yeast cells be allowed to multiply and grow in the presence of the EMF(s) for a total of about 120-364 hours.
-
FIG. 1 illustrates an exemplary apparatus for generating alternating electric fields. An electric field of a desired frequency and intensity is generated by an AC source (3) capable of generating an alternating electric field, preferably in a sinusoidal wave form, in the frequency range of 10 to 20,000 MHz. Signal generators capable of generating signals with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output. The activation container (2) can be made from non-conductive material, e.g., plastics, glass or ceramic. The wire connecting the activation container (2) and the signal generator (3) is preferably a high frequency coaxial cable with a transmission frequency of at least 30 GHz. - The alternating electric field can be applied to the culture by a variety of means, including placing the yeast culture (1) in close proximity to the signal emitters such as a metal wire or tube capable of transmitting EMFs. The metal wire or tube can be made of red copper, and be placed inside the container (2), reaching as deep as 3-30 cm. For example, if the fluid in the container (2) has a depth of 15-20 cm, 20-30 cm, 30-50 cm, 50-70 cm, 70-100 cm, 100-150 cm or 150-200 cm, the metal wire can be 3-5 cm, 5-7 cm, 7-10 cm, 10-15 cm, 15-20 cm, 20-30 cm and 25-30 cm from the bottom of the container (2), respectively. The number of electrode wires used depends on the volume of the culture as well as the diameter of the wires. The number of metal wires/tubes used can be from 1 to 10 (e.g., 2 to 3). It is recommended, though not mandated, that for a culture having a volume up to 10 L, metal wires/tubes having a diameter of 0.5 to 2.0 mm be used. For a culture having a volume between 10 L and 100 L, metal wires/tubes having a diameter of 3.0 to 5.0 mm can be used. For a culture having a volume in the range of 100-1000 L, metal wires/tubes having a diameter of 6.0 to 15.0 mm can be used. For a culture having a volume greater than 1000 L, metal wires/tubes having a diameter of 20.0 to 25.0 mm can be used.
- In one embodiment, the electric field is applied by electrodes submerged in the culture (1). In this embodiment, one of the electrodes can be a metal plate placed on the bottom of the container (2), and the other electrode can comprise a plurality of electrode wires evenly distributed in the culture (1) so as to achieve even distribution of the electric field energy. The number of electrode wires used depends on the volume of the culture as well as the diameter of the wires.
- III. Culture Media
- Culture media useful in this invention contain sources of nutrients assimilable by yeast cells. Complex carbon-containing substances in a suitable form, such as carbohydrates (e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.), can be the carbon sources for yeast cells. The exact quantity of the carbon sources utilized in the medium can be adjusted in accordance with the other ingredients of the medium. In general, the amount of carbohydrates varies between about 0.1% and 10% by weight of the medium and preferably between about 0.1% and 5% (e.g., about 2%). These carbon sources can be used individually or in combination. Amino acid-containing substances in suitable form (e.g., beef extract and peptone) can also be added individually or in combination. In general, the amount of amino acid containing substances varies between about 0.1% and 0.5% by weight of the medium and preferably between about 0.1% and 0.3% (e.g., about 0.25%). Among the inorganic salts which can be added to the culture medium are the customary salts capable of yielding sodium, potassium, calcium, phosphate, sulfate, carbonate, and like ions. Non-limiting examples of nutrient inorganic salts are (NH4)2HPO4, KH2PO4, K2HPO4, CaCO3, MgSO4, NaCl, and CaSO4.
- IV. Electromagnetic Activation of Yeast Cells
- To activate or enhance the ability of yeast cells to produce substances beneficial for the treatment of LE, these cells can be activated by being cultured in an appropriate medium under sterile conditions at 20-38° C., preferably at 28-32° C. (e.g., 30° C.) for a sufficient amount of time, e.g., 120-364 hours, in an alternating electric field or a series of alternating electric fields as described above.
- An exemplary culture medium is made by mixing 900 ml of distilled water with 18 g of mannitol, 50 μg of vitamin D, 50 μg of vitamin B12, 50 μg of vitamin B3, 100 μg of vitamin H, 100 ml fetal bovine serum, 0.20 g of KH2PO4, 0.25 g of MgSO4.7H2O, 0.3 g of NaCl, 0.2 g of CaSO4.2H2O, 4.0 g of CaCO3.5H2O, and 2.5 g of peptone.
- An exemplary set-up of the culturing process is depicted in
FIG. 1 . Untreated yeast cells are added to a culture medium at 1×108 cells per 1000 ml of the culture medium. The yeast cells may be Saccharomyces cerevisiae Hansen IFFI1413, or may be selected from any of the strains listed in Table 1. An exemplary activation process of the yeast cells involves the following sequence: the yeast cells are grown in the culture medium for 23-33 hours (e.g., 28 hours) at 28-32° C. and then exposed to (1) an alternating electric field having a frequency of 10345 MHz and a field strength in the range of 290-310 mV/cm (e.g., 294 mV/cm) for 11-21 hours (e.g., 16 hours); (2) then to an alternating electric field having a frequency of 10369 MHz and a field strength in the range of 350-380 mV/cm (e.g., 363 mV/cm) for 37-47 hours (e.g., 42 hours); (3) then to an alternating electric field having a frequency of 13053 MHz and a field strength in the range of 370-400 mV/cm (e.g., 387 mV/cm) for 43-53 hours (e.g., 48 hours); (4) then to an alternating electric field having a frequency of 17826 MHz and a field strength in the range of 380-420 mV/cm (e.g., 406 mV/cm) for 37-47 hours (e.g., 42 hours); and (5) finally to an alternating electric field having a frequency of 17838 MHz and a field strength in the range of 250-270 mV/cm (e.g., 259 mV/cm) for 11-21 hours (e.g., 16 hours). The activated yeast cells are then recovered from the culture medium by various methods known in the art, dried (e.g., by lyophilization) and stored at about 4° C. in powder form. The resultant yeast powder preferably contains no less than 1010 cells/g activated yeast. - Subsequently, the activated yeast cells can be evaluated for their ability to treat LE using standard methods known in the art, such as those described in Section VII.
- V. Acclimatization of Yeast Cells to the Gastric Environment
- Because the activated yeast cells of this invention must pass through the stomach before reaching the small intestine, where the effective components are released from these yeast cells, it is preferred that these yeasts be cultured under acidic conditions so as to acclimatize the cells to the gastric juice. This acclimatization process results in better viability of the yeast cells in the acidic gastric environment.
- To achieve this, the yeast powder containing activated yeast cells can be mixed with a highly acidic acclimatizing culture medium at 10 g (containing more than 1010 activated cells per gram) per 1000 ml. The yeast mixture can then be cultured first in the presence of an alternating electric field having a frequency of 17826 MHz and a field strength in the range of 410-450 mV/cm (e.g., 424 mV/cm) at about 28 to 32° C. for 44-52 hours (e.g., 48 hours). The resultant yeast cells can then be further incubated in the presence of an alternating electric field having a frequency of 17838 MHz and a field strength in the range of 370-400 mV/cm (e.g., 374 mV/cm) at about 28 to 32° C. for 16-28 hours (e.g., 20 hours). The resulting acclimatized yeast cells are then recovered from the culture medium by various methods known in the art and are dried and stored either in powder form (≧1010 cells/g) at room temperature or in vacuum at 0-4° C.
- An exemplary acclimatizing culture medium is made by mixing 700 ml fresh pig gastric juice and 300 ml wild Chinese hawthorn extract. The pH of acclimatizing culture medium is adjusted to 2.5 with 0.1 M hydrochloric acid (HCl) and 0.2 M potassium hydrogen phthalate (C6H4(COOK)COOH). The fresh pig gastric juice is prepared as follows. At about 4 months of age, newborn Holland white pigs are sacrificed, and the entire contents of their stomachs are retrieved and mixed with 2000 ml of water under sterile conditions. The mixture is then allowed to stand for 6 hours at 4° C. under sterile conditions to precipitate food debris. The supernatant is collected for use in the acclimatizing culture medium. To prepare the wild Chinese hawthorn extract, 500 g of fresh wild Chinese hawthorn is dried under sterile conditions to reduce water content (≦8%). The dried fruit is then ground (≧20 mesh) and added to 1500 ml of sterilized water. The hawthorn slurry is allowed to stand for 6 hours at 4° C. under sterile conditions. The hawthorn supernatant is collected to be used in the acclimatizing culture medium.
- VI. Manufacture of Yeast Compositions
- To prepare the yeast compositions of the invention, an apparatus depicted in
FIG. 2 or an equivalent thereof can be used. This apparatus includes three containers, a first container (A), a second container (B), and a third container (C), each equipped with a pair of electrodes (4). One of the electrodes is a metal plate placed on the bottom of the containers, and the other electrode comprises a plurality of electrode wires evenly distributed in the space within the container to achieve even distribution of the electric field energy. All three pairs of electrodes are connected to a common signal generator. - The culture medium used for this purpose is a mixed fruit extract solution containing the following ingredients per 1000 L: 300 L of wild Chinese hawthorn extract, 300 L of jujube extract, 300 L of Schisandra chinensis (Turez) Baill seeds extract, and 100 L of soy bean extract. To prepare hawthorn, jujube and Schisandra chinensis (Turez) Baill seeds extracts, the fresh fruits are washed and dried under sterile conditions to reduce the water content to no higher than 8%. One hundred kilograms of the dried fruits are then ground (≧20 mesh) and added to 400 L of sterilized water. The mixtures are stirred under sterile conditions at room temperature for twelve hours, and then centrifuged at 1000 rpm to remove insoluble residues. To make the soy bean extract, fresh soy beans are washed and dried under sterile conditions to reduce the water content to no higher than 8%. Thirty kilograms of dried soy beans are then ground into particles of no smaller than 20 mesh, and added to 130 L of sterilized water. The mixture is stirred under sterile conditions at room temperature for twelve hours and centrifuged at 1000 rpm to remove insoluble residues. Once the mixed fruit extract solution is prepared, it is autoclaved at 121° C. for 30 minutes and cooled to below 40° C. before use.
- One thousand grams of the activated yeast powder prepared as described above (Section V, supra) is added to 1000 L of the mixed fruit extract solution, and the yeast solution is transferred to the first container (A) shown in
FIG. 2 . The yeast cells are then cultured in the presence of an alternating electric field having a frequency of 17826 MHz and a field strength of about 440-480 mV/cm (e.g., 453 mV/cm) at 28-32° C. under sterile conditions for 48 hours. The yeast cells are further incubated in an alternating electric field having a frequency of 17838 MHz and a field strength of 350-380 mV/cm (e.g., 364 mV/cm). The culturing continues for another 12 hours. - The yeast culture is then transferred from the first container (A) to the second container (B) (if need be, a new batch of yeast culture can be started in the now available the first container (A)), and subjected to an alternating electric field having a frequency of 17826 MHz and a field strength of 460-500 mV/cm (e.g., 472 mV/cm) for 24 hours. Subsequently, the frequency and field strength of the electric field are changed to 17838 MHz and 380-410 mV/cm (e.g., 382 mV/cm), respectively. The culturing process continues for another 12 hours.
- The yeast culture is then transferred from the second container (B) to the third container (C), and subjected to an alternating electric field having a frequency of 17826 MHz and a field strength of 480-520 mV/cm (e.g., 507 mV/cm) for 24 hours. Subsequently the frequency and field strength of the electric field are changed to 17838 MHz and 380-420 mV/cm (e.g., 396 mV/cm), respectively. The culturing continues for another 12 hours.
- The yeast culture from the third container (C) can then be packaged into vacuum sealed bottles (30-50 ml/bottle or 100 ml/bottle) for use as medication or dietary supplement. The compositions may conveniently be formulated as health drinks. If desired, the final yeast culture can also be dried within 24 hours and stored in powder form. The dietary supplement can be taken by adults three to four times daily at a bottle per dose for a period of three to six months, preferably 10-30 minutes before meals and at bedtime. For children, the dose should be reduced to half of the dose for adults.
- In some embodiments, the compositions of the invention can also be administered intravenously or peritoneally in the form of a sterile injectable preparation. Such a sterile preparation can be prepared as follows. A sterilized health drink composition is first treated under ultrasound (≧18000 Hz) for 10 minutes and then centrifuged at 4355 rpm for another 10 minutes. The resulting supernatant is adjusted to pH 7.2-7.4 using 1 M NaOH and subsequently filtered through a membrane (0.22 μm for intravenous injection and 0.45 μm for peritoneal injection) under sterile conditions. The resulting sterile preparation is submerged in a 35-38° C. water bath for 30 minutes before use. In other embodiments, the compositions of the invention may also be formulated with pharmaceutically acceptable carriers to be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, suspensions or solutions.
- The yeast compositions of the present invention are derived from yeasts used in food and pharmaceutical industries. The yeast compositions are thus devoid of side effects associated with many pharmaceutical compounds.
- In order that this invention be more fully understood, the following example is set forth. This example is for the purpose of illustration only and is not to be construed as limiting the scope of the invention in any way.
- The activated yeast composition used in the following example was prepared as described above, using Saccharomyces cerevisiae Hansen IFFI1413, cultured in the presence of an alternating electric field having the electric field frequency and field strength exemplified in the parentheses following the recommended ranges listed in Section IV, supra. Control (i.e., untreated) yeast composition was prepared in the same manner except that the yeast cells were cultured in the absence of EMFs. All compositions of interest were administered to patients orally.
- Ninety-nine patients with LE for five to eight years between 12 and 25 years old participated in the clinical study of the effects of the activated yeast composition on LE. A majority of the patients had DLE.
- The criterion for selecting patients for the clinical study was one of the following: (1) positive test result for LE cells, (2) positive test result for anti-nDNA antibody, (3) positive test result for anti-Sm antibody, (4) urine protein≧0.5 g/d, (5) leukocyte count<4.0×109/L, (6) platelet count<100×109/L, (7) butterfly-shaped rash across the cheek and nose, and (8) non-rheumatoid arthritis.
- All patients were randomly divided into three groups, AY, NY and CK, with thirty-three patients per group. Patients in the AY group were given a bottle of the activated yeast composition three times a day at a bottle (30 ml) per dose for six months. Patients in the NY group were given the control yeast composition three times a day at half a bottle per dose for six months or at a bottle per dose if those between the ages of 13 and 18. Patients in the CK group were treated with conventional LE medications, such as Lincomycin, cyclophosphamide, prednisone, cyclosporine A and IgG in conjunction with conventional fever reducing, blood pressure lowering, or diuretic medications.
- At the end of the six-month period, blood samples were collected from patients in all three groups and analyzed using standard tests known in the art. The results of the analysis are summarized in Table 2.
TABLE 2 Group CK NY AY LE Cells: Positive 33 (100%) 33 (100%) 2 (6.1%) LE Cells: Negative 0 0 31 (93.9%) Butterfly-Shaped Rash: 33 (100%) 33 (100%) 0 Remained Butterfly-Shaped Rash: 0 0 33 Disappeared Urinary Protein: ≧0.5 g/d 27 (81.8%) 33 (100%) 0 Urinary Protein: <0.5 g/d & 6 (18.2%) 0 2 (6.1%) Abnormal Urinary Protein: Normal 0 0 31 (93.9%) Leukocyte Count: <4.0 × 109/L 31 (93.9%) 33 (100%) 0 Leukocyte Count: 2 (6.1%) 0 2 (6.1%) >4.0 × 109/L & Abnormal Leukocyte Count: Normal 0 0 31 (93.9%) Lymphocyte Count: 24 (72.7%) 33 (100%) 0 <1.5 × 109/L Lymphocyte Count: 7 (21.2%) 0 3 (9.1%) >1.5 × 109/L & Abnormal Lymphocyte Count: Normal 0 0 30 (90.9%) Platelet Count: <100 × 109/L 29 (87.9%) 33 (100%) 0 Platelet Count: >100 × 109/L & 4 (12.1%) 0 5 (15.2%) Abnormal Platelet Count: Normal 0 0 28 (84.8%) Anti-Sm Antibodies: Positive 31 (93.9%) 33 (100%) 0 Anti-Sm Antibodies: Negative 2 (6.1%) 0 33 (100%) Anti-nDNA Antibodies: Positive 28 (84.9%) 33 (100%) 2 (6.1%) Anti-nDNA Antibodies: 5 (15.1%) 0 31 (93.9%) Negative Non-Rheumatoid Arthritis: 22 (66.7%) 33 (100%) 0 Remained Non-Rheumatoid Arthritis: 11 (33.3%) 0 33 (100%) Disappeared - The above results show that the activated yeast composition was more effective in minimizing and/or eliminating various symptoms in LE patients and normalizing urinary protein levels and/or leukocyte, lymphocyte, and/or platelet counts than both the control yeast composition and the conventional medications.
Claims (12)
1. A composition comprising a plurality of yeast cells, wherein said plurality of yeast cells are characterized by their ability to treat lupus erythematosus in a subject, as a result of having been cultured in the presence of an alternating electric field having a frequency in the range of 9500-18500 MHz and a field strength in the range of 220 to 550 mV/cm, as compared to yeast cells not having been so cultured.
2. The composition of claim 1 , wherein said frequency is in the range of about 9800-10800, 12500-13500 or 17300-18300 MHz.
3. The composition of claim 1 , wherein said field strength is in the range of 250-270, 290-310, 350-380, 370-400, 380-410, 380-420, 410-450, 440-480, 460-500 or 480-520 mV/cm.
4. The composition of claim 1 , wherein said yeast cells are derived from cells of the species Saccharomyces sp., Schizosaccharomyces pombe, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces rouxii, Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Rhodotorula aurantiaca.
5. The composition of claim 1 , wherein said yeast cells are derived from cells of the strain deposited at the China General Microbiological Culture Collection Center with an accession number selected from the group consisting of IFFI1413, AS2.311, AS2.214, ACCC2045, IFFI1207, AS2.371, AS2.611, AS2.265, AS2.103 and AS2.139.
6. The composition of claim 1 , wherein said composition is in the form of a tablet, powder, or a health drink.
7. The composition of claim 6 , wherein said composition is in the form of a health drink.
8. The composition of claim 1 , wherein said lupus erythematosus is discoid lupus erythematosus, systemic lupus erythematosus, drug-induced lupus or neonatal lupus.
9. A method of preparing a yeast composition, comprising culturing a plurality of yeast cells in the presence of an alternating electric field having a frequency in the range of 9500-18500 MHz and a field strength in the range of 220 to 550 mV/cm for a period of time to result in the capability of said composition in treating lupus erythematosus in a subject.
10. The method of claim 9 , wherein said frequency is in the range of about 9800-10800, 12500-13500 or 17300-18300 MHz.
11. A method for treating lupus erythematosus in a subject, comprising orally administering to said subject the composition of claim 1 .
12. The method of claim 11 comprising oral administration.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/717,134 US20050106704A1 (en) | 2003-11-18 | 2003-11-18 | Methods and compositions for treating lupus erythematosus |
PCT/GB2004/004881 WO2005049086A1 (en) | 2003-11-18 | 2004-11-18 | Yeast compositions and their uses as dietary supplement or medicine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/717,134 US20050106704A1 (en) | 2003-11-18 | 2003-11-18 | Methods and compositions for treating lupus erythematosus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050106704A1 true US20050106704A1 (en) | 2005-05-19 |
Family
ID=34574533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/717,134 Abandoned US20050106704A1 (en) | 2003-11-18 | 2003-11-18 | Methods and compositions for treating lupus erythematosus |
Country Status (1)
Country | Link |
---|---|
US (1) | US20050106704A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20050150264A1 (en) * | 2001-03-01 | 2005-07-14 | Ultra Biotech Limited | Biological fertilizer compositions comprising garbage |
US20050155400A1 (en) * | 2000-09-05 | 2005-07-21 | Ultra Biotech Limited | Biological fertilizer based on yeasts |
US20060024326A1 (en) * | 2003-06-11 | 2006-02-02 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US20060024281A1 (en) * | 2001-03-01 | 2006-02-02 | Ultra Biotech Limited | Biological fertilizer compositions comprising poultry manure |
US20060029613A1 (en) * | 2003-06-11 | 2006-02-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US20060051321A1 (en) * | 2003-06-11 | 2006-03-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of testicular cancer |
US7172888B2 (en) | 2003-06-11 | 2007-02-06 | Ultra Biotech Limited | Biological compositions and methods for treatment of lung cancer |
US20070041995A1 (en) * | 2002-06-28 | 2007-02-22 | Ultra Biotech Limited | Oral compositions for HIV-infected subjects |
US20070105209A1 (en) * | 2002-06-18 | 2007-05-10 | Ultra Biotech Limited | Feed additives for reducing odor of animal waste products |
US7256026B2 (en) | 2002-06-28 | 2007-08-14 | Ultra Biotech Limited | Oral compositions for white blood cell activation and proliferation |
WO2023277778A1 (en) * | 2021-06-29 | 2023-01-05 | Milmed Unico Ab | Yeast for the treatment of inflammation |
Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4081367A (en) * | 1977-01-24 | 1978-03-28 | Bio-Kinetics Inc. | Purification of waste water high in carbohydrates and simultaneous production of high protein feed product |
US4183807A (en) * | 1977-09-12 | 1980-01-15 | National Tax Administration Agency | Treatment of waste water rich in nutrients |
US4211645A (en) * | 1976-07-16 | 1980-07-08 | Abitibi Paper Company Ltd. | Foam flotation activated sludge process |
US4816158A (en) * | 1986-03-18 | 1989-03-28 | Niigata Engineering Co., Ltd. | Method for treating waste water from a catalytic cracking unit |
US5075008A (en) * | 1989-10-17 | 1991-12-24 | Research Association Of Biotechnology For Organic Fertilizer | Process for high-load treatment of carbohydrate containing waste water |
US5106594A (en) * | 1990-03-30 | 1992-04-21 | Stericycle, Inc. | Apparatus for processing medical waste |
US5416010A (en) * | 1993-06-10 | 1995-05-16 | The United States Of America As Represented By The Secretary Of Agriculture | Olpidium zoospores as vectors of recombinant DNA to plants |
US5476787A (en) * | 1992-04-24 | 1995-12-19 | Director-General Of Agency Of Industrial Science And Technology | Method of removing nitrogen impurities from water using hydrocarbon-producing microalga |
US5567314A (en) * | 1993-10-01 | 1996-10-22 | Nishihara Environmental Sanatation Res. Corp. | Apparatus for biologically treating lipid-containing waste water |
US5578486A (en) * | 1994-08-05 | 1996-11-26 | International Tlb Research Institute, Inc. | Recombinant microbial fertilizer and methods for its production |
US5707524A (en) * | 1996-02-16 | 1998-01-13 | Shane Agra Corporation | Process for waste water treatment |
US5879928A (en) * | 1995-10-31 | 1999-03-09 | Neozyme International, Inc. | Composition for the treatment for municipal and industrial waste-water |
US6391618B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for degrading environmental toxins |
US6391617B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Yeast compositions for converting bio-available nitrogen in a culture medium to intracellular nitrogen |
US6391619B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for suppressing growth of algae |
US6436695B1 (en) * | 2001-03-01 | 2002-08-20 | Ultra Biotech Limited | Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus |
US6440713B1 (en) * | 2001-03-01 | 2002-08-27 | Ultra Biotech Limited | Methods and compositions for suppressing growth of pathogenic microbes |
US20020123127A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for reducing odor |
US20020123129A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading nitrogen-containing compounds |
US20020123130A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading polymeric compounds |
US6649383B1 (en) * | 2002-06-28 | 2003-11-18 | Ultra Biotech Limited | Dietary supplements beneficial for the gastrointestinal system |
US6660508B1 (en) * | 2002-06-28 | 2003-12-09 | Ultra Biotech Limited | Dietary supplements for treating hyperlipemia |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20030235570A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for cattle |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20040001857A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for treating hypertension |
US20040001815A1 (en) * | 2002-06-28 | 2004-01-01 | Ling Yuk Cheung | Dietary supplements for regulating male hormone |
US20040001859A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Anti-aging dietary supplements |
US20040001813A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for sheep |
US20040001858A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements beneficial for the liver |
US20040001861A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for improving memory |
US20040001860A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for enhancing the immune system |
US20040001814A1 (en) * | 2002-06-18 | 2004-01-01 | Cheung Ling Yuk | Feed additives for pigs |
US20040005680A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for white blood cell activation and proliferation |
US20040005337A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Dietary supplements for improving kidney function |
US20040005335A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for HIV-infected subjects |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US20040253261A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of pancreatic cancer |
US20040253262A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lymphoma |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US20040253264A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of brain cancer |
US20040253256A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of prostate cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US20040253251A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of ovarian cancer |
US20040253259A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of kidney cancer |
US20040253253A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of stomach cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US20040253263A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of colorectal cancer |
US20040253265A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of bladder cancer |
US20040253492A1 (en) * | 2003-06-13 | 2004-12-16 | Hrl Laboratories, Llc. | Ammonia fuel cell |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
-
2003
- 2003-11-18 US US10/717,134 patent/US20050106704A1/en not_active Abandoned
Patent Citations (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4211645A (en) * | 1976-07-16 | 1980-07-08 | Abitibi Paper Company Ltd. | Foam flotation activated sludge process |
US4559305A (en) * | 1976-07-16 | 1985-12-17 | Abitibi Paper Company Ltd. | Microbial culture system |
US4081367A (en) * | 1977-01-24 | 1978-03-28 | Bio-Kinetics Inc. | Purification of waste water high in carbohydrates and simultaneous production of high protein feed product |
US4183807A (en) * | 1977-09-12 | 1980-01-15 | National Tax Administration Agency | Treatment of waste water rich in nutrients |
US4816158A (en) * | 1986-03-18 | 1989-03-28 | Niigata Engineering Co., Ltd. | Method for treating waste water from a catalytic cracking unit |
US5075008A (en) * | 1989-10-17 | 1991-12-24 | Research Association Of Biotechnology For Organic Fertilizer | Process for high-load treatment of carbohydrate containing waste water |
US5106594A (en) * | 1990-03-30 | 1992-04-21 | Stericycle, Inc. | Apparatus for processing medical waste |
US5476787A (en) * | 1992-04-24 | 1995-12-19 | Director-General Of Agency Of Industrial Science And Technology | Method of removing nitrogen impurities from water using hydrocarbon-producing microalga |
US5416010A (en) * | 1993-06-10 | 1995-05-16 | The United States Of America As Represented By The Secretary Of Agriculture | Olpidium zoospores as vectors of recombinant DNA to plants |
US5567314A (en) * | 1993-10-01 | 1996-10-22 | Nishihara Environmental Sanatation Res. Corp. | Apparatus for biologically treating lipid-containing waste water |
US5578486A (en) * | 1994-08-05 | 1996-11-26 | International Tlb Research Institute, Inc. | Recombinant microbial fertilizer and methods for its production |
US5879928A (en) * | 1995-10-31 | 1999-03-09 | Neozyme International, Inc. | Composition for the treatment for municipal and industrial waste-water |
US5707524A (en) * | 1996-02-16 | 1998-01-13 | Shane Agra Corporation | Process for waste water treatment |
US6036854A (en) * | 1996-02-16 | 2000-03-14 | Shane-Agra Corporation | System for waste water treatment |
US6391618B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for degrading environmental toxins |
US6391617B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Yeast compositions for converting bio-available nitrogen in a culture medium to intracellular nitrogen |
US6391619B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for suppressing growth of algae |
US6436695B1 (en) * | 2001-03-01 | 2002-08-20 | Ultra Biotech Limited | Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus |
US6440713B1 (en) * | 2001-03-01 | 2002-08-27 | Ultra Biotech Limited | Methods and compositions for suppressing growth of pathogenic microbes |
US20020123127A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for reducing odor |
US20020123129A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading nitrogen-containing compounds |
US20020123130A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading polymeric compounds |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20040001813A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for sheep |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20030235570A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for cattle |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20040001814A1 (en) * | 2002-06-18 | 2004-01-01 | Cheung Ling Yuk | Feed additives for pigs |
US20040001815A1 (en) * | 2002-06-28 | 2004-01-01 | Ling Yuk Cheung | Dietary supplements for regulating male hormone |
US6649383B1 (en) * | 2002-06-28 | 2003-11-18 | Ultra Biotech Limited | Dietary supplements beneficial for the gastrointestinal system |
US20040001859A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Anti-aging dietary supplements |
US20040001857A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for treating hypertension |
US20040001858A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements beneficial for the liver |
US20040001861A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for improving memory |
US20040001860A1 (en) * | 2002-06-28 | 2004-01-01 | Cheung Ling Yuk | Dietary supplements for enhancing the immune system |
US6660508B1 (en) * | 2002-06-28 | 2003-12-09 | Ultra Biotech Limited | Dietary supplements for treating hyperlipemia |
US20040005680A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for white blood cell activation and proliferation |
US20040005337A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Dietary supplements for improving kidney function |
US20040005335A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for HIV-infected subjects |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20040253259A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of kidney cancer |
US20040253261A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of pancreatic cancer |
US20040253262A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lymphoma |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US20040253264A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of brain cancer |
US20040253256A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of prostate cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US20040253251A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of ovarian cancer |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US20040253253A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of stomach cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US20040253263A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of colorectal cancer |
US20040253265A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of bladder cancer |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253492A1 (en) * | 2003-06-13 | 2004-12-16 | Hrl Laboratories, Llc. | Ammonia fuel cell |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050155400A1 (en) * | 2000-09-05 | 2005-07-21 | Ultra Biotech Limited | Biological fertilizer based on yeasts |
US20050150264A1 (en) * | 2001-03-01 | 2005-07-14 | Ultra Biotech Limited | Biological fertilizer compositions comprising garbage |
US7422997B2 (en) | 2001-03-01 | 2008-09-09 | Ultra Biotech Limited | Method to enhance plant growth with a biological fertilizer composition comprising poultry manure and electromagnetic field treated yeasts |
US20060024281A1 (en) * | 2001-03-01 | 2006-02-02 | Ultra Biotech Limited | Biological fertilizer compositions comprising poultry manure |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20070105209A1 (en) * | 2002-06-18 | 2007-05-10 | Ultra Biotech Limited | Feed additives for reducing odor of animal waste products |
US20070041995A1 (en) * | 2002-06-28 | 2007-02-22 | Ultra Biotech Limited | Oral compositions for HIV-infected subjects |
US7256026B2 (en) | 2002-06-28 | 2007-08-14 | Ultra Biotech Limited | Oral compositions for white blood cell activation and proliferation |
US20060029613A1 (en) * | 2003-06-11 | 2006-02-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US7172888B2 (en) | 2003-06-11 | 2007-02-06 | Ultra Biotech Limited | Biological compositions and methods for treatment of lung cancer |
US7172889B2 (en) | 2003-06-11 | 2007-02-06 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US7163813B2 (en) | 2003-06-11 | 2007-01-16 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US20060051321A1 (en) * | 2003-06-11 | 2006-03-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of testicular cancer |
US20060024326A1 (en) * | 2003-06-11 | 2006-02-02 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
WO2023277778A1 (en) * | 2021-06-29 | 2023-01-05 | Milmed Unico Ab | Yeast for the treatment of inflammation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6753008B2 (en) | Dietary supplements beneficial for the liver | |
US6709849B2 (en) | Dietary supplements for regulating male hormone | |
US6793933B2 (en) | Dietary supplements for enhancing the immune system | |
US6660508B1 (en) | Dietary supplements for treating hyperlipemia | |
US6759055B2 (en) | Dietary supplements for improving kidney function | |
US6756050B2 (en) | Dietary supplements for improving memory | |
US20070053931A1 (en) | Dietary supplements for treating hypertension | |
US20070036820A1 (en) | Yeast compositions useful as anti-aging dietary supplements | |
US20080233625A1 (en) | Dietary supplements for regulating the central nervous system | |
US7078202B2 (en) | Methods and compositions for treating vascular dementia | |
US6964864B2 (en) | Methods and compositions for treating gastritis | |
US6913914B2 (en) | Methods and compositions for treating hepatitis B | |
US20050106704A1 (en) | Methods and compositions for treating lupus erythematosus | |
US6977168B2 (en) | Methods and compositions for treating nephrotic syndrome | |
US7208159B2 (en) | Methods and compositions for treating gastroparesis | |
US7259001B2 (en) | Methods and compositions for treating male sexual dysfunction | |
US6913913B2 (en) | Methods and compositions for treating renal failure | |
US7297522B2 (en) | Methods and compositions for treating epilepsy | |
US20050106166A1 (en) | Methods and compositions for treating liver cirrhosis | |
US20050106705A1 (en) | Methods and compositions for treating hyperlipemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ULTRA BIOTECH LIMITED, ISLE OF MAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEUNG, LING YUK;REEL/FRAME:015274/0198 Effective date: 20040413 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |