US20050078455A1 - Appartus including circuit board and heat sink and method of making the apparatus - Google Patents
Appartus including circuit board and heat sink and method of making the apparatus Download PDFInfo
- Publication number
- US20050078455A1 US20050078455A1 US10/681,920 US68192003A US2005078455A1 US 20050078455 A1 US20050078455 A1 US 20050078455A1 US 68192003 A US68192003 A US 68192003A US 2005078455 A1 US2005078455 A1 US 2005078455A1
- Authority
- US
- United States
- Prior art keywords
- metal inserts
- heat sink
- circuit board
- upper portion
- mounting holes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 239000002184 metal Substances 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims abstract description 81
- 239000004033 plastic Substances 0.000 claims description 22
- 238000005476 soldering Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
- H01L23/4006—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
Definitions
- FIG. 1 is a schematic plan view of a heat sink provided according to some embodiments.
- FIG. 2 is schematic plan view of an attachment assembly provided according to some embodiments for use in mounting the heat sink of FIG. 1 to a circuit board.
- FIG. 3 is an isometric view, taken from above, of a portion of the attachment assembly of FIG. 2 .
- FIG. 4 is an isometric view, taken from below, of a portion of the attachment assembly of FIG. 2 .
- FIG. 5 is a partial, isometric, partially exploded view showing an apparatus that includes the heat sink of FIG. 1 and the attachment assembly of FIG. 2 .
- FIG. 6 is an isometric, partially exploded view showing some details of the apparatus of FIG. 5 .
- FIG. 7 is a flow chart that illustrates a process for assembling the apparatus of FIG. 5 according to some embodiments.
- FIGS. 8-11 are partial, schematic, side cross-sectional views showing sequential stages of assembling the apparatus of FIG. 5 .
- FIG. 12 is a view similar to FIGS. 8-11 , showing a detail of the apparatus of FIG. 5 in an assembled condition.
- FIG. 13 is another partial schematic side cross-sectional view of the apparatus of FIG. 5 .
- FIG. 1 is a schematic plan view of a heat sink 20 provided according to some embodiments.
- the heat sink 20 includes a base 22 on which a heat dissipation structure (indicated in phantom at 24 ) is supported.
- the heat dissipation structure 24 may take the form of fins 25 shown in FIG. 5 .
- Other configurations of a heat dissipation structure may be employed.
- mounting holes 26 e.g. four mounting holes
- the heat sink 20 may be composed of any suitable heat conducting and dissipating structure, including, for example, copper fins on a copper base. Additionally or alternatively, the heat sink 20 may include other components such as active components that may include a fan and/or a vapor chamber.
- FIG. 2 is a schematic plan view of an attachment assembly 30 provided according to some embodiments for use in mounting the heat sink 20 to a circuit board (e.g. the circuit board 32 indicated in FIG. 5 ).
- the attachment assembly 30 may include a plastic frame 34 , which may be substantially rectangular, e.g. in the form of a hollow rectangle, which includes a central, substantially rectangular opening 36 .
- the plastic frame 34 has corners 38 at which metal inserts (schematically indicated at 40 in FIG. 2 ) are mounted.
- FIG. 3 is an isometric view, taken from above, showing details of one of the metal inserts 40 mounted at one of the corners 38 of the plastic frame 34 of the attachment assembly 30 .
- FIG. 4 is an isometric view, taken from below, showing the metal insert 40 and the 38 of the plastic frame 34 .
- the metal insert 40 (all of the inserts 40 may be identical), includes an upper portion 42 , a middle portion 44 and a pair of lower members 46 .
- the upper portion 42 may include a pair of barrel segments 48 which face each other (i.e., have their respective concave surfaces facing each other) to define a substantially cylindrical space 50 ( FIG. 3 ) having an open end defining a substantially circular opening 52 .
- the cylindrical space 50 is oriented so as to have its central axis (not indicated) in a vertical orientation.
- the middle portion 44 of the metal insert 40 flares outwardly and downwardly, as indicated at 54 , to form a bracket 56 ( FIG. 4 ) from which the lower members 46 extend downwardly.
- the bracket 56 may generally take the form of three sides of a rectangle, as seen from FIG. 4 .
- the bracket 56 may emerge a short distance downwardly from a lower surface 58 of the corner 38 of the plastic frame 34 .
- the metal inserts 40 may be mounted in the plastic frame 34 by the middle portions 44 of the metal inserts 40 .
- the middle portions 44 of the metal inserts 40 may be embedded in the plastic frame 34 at the corners 38 of the plastic frame 34 , with the upper portions 42 of the metal inserts 40 extending upwardly from the plastic frame 34 and the lower members 46 of the metal inserts 40 extending downwardly from the plastic frame 34 .
- the lower members 46 may each be pin-shaped and may have tapered tips 60 .
- the plastic frame 34 may be formed of a number of different materials, including, for example, liquid crystal polymer (LCP) or polycarbonate, or another plastic material that has suitable thermal resistance to allow for the soldering of the metal inserts 40 , as described below.
- LCP liquid crystal polymer
- the plastic frame 34 may be formed by molding around the metal inserts 40 so as to embed at least partially the middle portions 44 of the metal inserts 40 in the plastic frame 34 .
- Each metal insert 40 may be a unitary body formed of a suitable metal such as brass.
- the metal inserts 40 may be at least partially plated with tin (e.g., at the lower members 46 ) to aid in wetting the metal inserts 40 during soldering.
- the metal inserts may be formed of copper or a tin-plated metal other than brass.
- FIG. 5 is a partial, isometric, partially exploded view showing an apparatus 70 formed by installing the heat sink 20 on the circuit board 32 via the attachment assembly 30 .
- FIG. 5 shows one corner of the heat sink 20 and indicates in part how the heat sink 20 is mounted on the circuit board 32 .
- FIG. 6 is an isometric, partially exploded view showing some details of the apparatus 70 at the corner of the heat sink 20 on a larger scale than FIG. 5 .
- the upper portion 42 of the metal insert 40 is received in a mounting hole 26 of the heat sink 20 .
- a fastener 72 is provided to secure the upper portion 42 of the metal insert 40 to the mounting hole 26 of the heat sink 20 .
- the fastener 72 may be a tapered pan head screw with suitable threading to produce threads in the inner (concave) surfaces of the barrel segments 48 which make up the upper portion 42 of the metal insert 40 .
- FIG. 7 is a flow chart that illustrates a process for assembling at least a part of the apparatus 70 according to some embodiments.
- an attachment assembly like the assembly 30 shown in FIGS. 2-4 may be provided.
- the lower members 46 of the metal inserts 40 of the attachment assembly 30 may be inserted through holes 104 formed in the circuit board 32 .
- the attachment assembly 30 may have standoffs, which are not shown, on the lower surface 58 of the plastic frame 34 to set a spacing between the circuit board 32 and the plastic frame 34 , as shown in FIG. 9 .)
- the lower members 46 of the metal inserts 40 may be soldered to the circuit board 32 (solder indicated at 108 ).
- the soldering may, for example, be performed in accordance with conventional principles for wave soldering.
- the heat sink 20 may be installed on the metal inserts 40 (only one of which is shown in FIG. 10 ) in a manner such that the upper portions 42 of the metal inserts 40 are inserted into the mounting holes 26 of the heat sink 20 by lowering the heat sink 20 toward the plastic frame 34 of the attachment assembly 30 .
- a respective fastener 72 may be inserted into the opening 52 ( FIG. 3 ) and driven into the respective upper portion 42 of each of the metal inserts 40 (with the upper portions 42 received within the mounting holes 26 of the heat sink 20 ) to secure the heat sink 20 to the metal inserts 40 .
- This may be done while holding the heat sink down on an integrated circuit (IC) die 113 ( FIG. 13 , not shown in FIGS. 8-12 ).
- IC integrated circuit
- the tapered, threaded portion 114 of the fastener 72 swage-forms or expands the upper portion 42 of the metal insert 40 by pushing the barrel segments 48 of the upper portion 42 against the sides of the mounting hole 26 of the heat sink 20 .
- the driving of the fastener 72 may, for example, be performed with a motorized screw driver (not shown) which may be arranged to limit the maximum torque applied by the screw driver to a predetermined torque, such as 20 inch-pounds.
- FIG. 12 A result of the operation 112 illustrated in FIG. 11 is shown in FIG. 12 , wherein the barrel segments 48 of the upper portion 42 of the metal insert 40 are sandwiched between the fastener 72 and the sides of the mounting hole 26 of the heat sink 20 .
- the heat sink 20 is secured to the metal inserts 40 of the attachment assembly 30 , and is secured via the metal inserts 40 to the circuit board 32 .
- the circuit board 32 is effectively stiffened in the region at and around the heat sink 20 , which may aid in protecting neighboring devices on the circuit board 32 from damage to their connections to the circuit board 32 in the event of dynamic forces applied to the circuit board during transportation or handling thereof or as a result of thermal cycling.
- the metal inserts may provide a degree of compliance to dynamic forces which also may aid in preventing damage to device connections to the circuit board.
- attachment assembly 30 may be rather lightweight, formation of reliable and high quality solder joints 108 ( FIG. 9 ) during the soldering operation 106 ( FIG. 7 ) may be promoted.
- FIG. 13 is partial schematic side cross-sectional view showing other aspects of the apparatus 70 .
- an IC package 120 is mounted on the circuit board 32 .
- the IC package 120 may include a package substrate 122 connected to the circuit board 32 by a ball grid array (BGA) connector 124 and the IC die 113 connected to the package substrate 122 by another BGA connector 126 .
- the IC die may be thermally coupled to the heat sink 20 via a thermal interface material 128 , so that the heat sink 20 may function to cool the IC die 113 during operation of the apparatus 70 .
- Portions of the attachment assembly 30 (and particularly portions of the plastic frame 34 ) are also shown in cross-section.
- the IC die 113 may comprise a processor, for example.
- the circuit board 32 may be the motherboard of a computer.
- the attachment assembly 30 may not be employed, and instead individual ones of metal inserts, not incorporated in an attachment assembly, may be inserted into holes 104 of the circuit board 32 and soldered to the circuit board 32 .
- two attachment assemblies, each having a pair of metal inserts may be employed instead of the attachment assembly 30 which includes four metal inserts.
- using the attachment assembly having four metal inserts as illustrated herein may aid in streamlining assembly of the apparatus 70 .
- the total number of metal inserts employed may be more or less than the four metal inserts (and four mounting holes) shown.
- each metal insert may have only one pin-shaped lower member, or may have three or more pin-shaped lower members, rather than the two lower members shown in the drawings.
- shape of the lower members of the metal inserts may be varied from the pin shape that is shown in the drawings.
- the fastener 72 need not be a pan head screw.
- screws having other types of heads may be employed as the fasteners 72 .
- the apparatus 70 may also include other components of a typical electronic device, including for example a chassis in which the circuit board 32 may be mounted, a housing, a power supply, signal interfaces, and so forth.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
In some embodiments, an apparatus includes a circuit board, a plurality of metal inserts, and a heat sink having a plurality of mounting holes. Each of the metal inserts may include at least one lower member soldered to the circuit board, and an upper portion received in a respective one of the mounting holes of the heat sink and secured to the respective one of the mounting holes by a respective fastener.
Description
- Many integrated circuits generate heat that must be dissipated by a cooling arrangement such as a heat sink that is thermally coupled to the integrated circuit. As integrated circuits have advanced and become more complex, the amount of heat to be dissipated has increased, leading to an increase in size of the heat sinks employed to cool integrated circuits. The increase in size of heat sinks may compromise typical techniques used to mount heat sinks on circuit boards that carry the integrated circuits to be cooled.
-
FIG. 1 is a schematic plan view of a heat sink provided according to some embodiments. -
FIG. 2 is schematic plan view of an attachment assembly provided according to some embodiments for use in mounting the heat sink ofFIG. 1 to a circuit board. -
FIG. 3 is an isometric view, taken from above, of a portion of the attachment assembly ofFIG. 2 . -
FIG. 4 is an isometric view, taken from below, of a portion of the attachment assembly ofFIG. 2 . -
FIG. 5 is a partial, isometric, partially exploded view showing an apparatus that includes the heat sink ofFIG. 1 and the attachment assembly ofFIG. 2 . -
FIG. 6 is an isometric, partially exploded view showing some details of the apparatus ofFIG. 5 . -
FIG. 7 is a flow chart that illustrates a process for assembling the apparatus ofFIG. 5 according to some embodiments. -
FIGS. 8-11 are partial, schematic, side cross-sectional views showing sequential stages of assembling the apparatus ofFIG. 5 . -
FIG. 12 is a view similar toFIGS. 8-11 , showing a detail of the apparatus ofFIG. 5 in an assembled condition. -
FIG. 13 is another partial schematic side cross-sectional view of the apparatus ofFIG. 5 . -
FIG. 1 is a schematic plan view of aheat sink 20 provided according to some embodiments. Theheat sink 20 includes abase 22 on which a heat dissipation structure (indicated in phantom at 24) is supported. (For example, theheat dissipation structure 24 may take the form offins 25 shown inFIG. 5 . Other configurations of a heat dissipation structure may be employed.) Continuing to refer toFIG. 1 , mounting holes 26 (e.g. four mounting holes) are provided at corners of thebase 22 of theheat sink 20. Theheat sink 20 may be composed of any suitable heat conducting and dissipating structure, including, for example, copper fins on a copper base. Additionally or alternatively, theheat sink 20 may include other components such as active components that may include a fan and/or a vapor chamber. -
FIG. 2 is a schematic plan view of anattachment assembly 30 provided according to some embodiments for use in mounting theheat sink 20 to a circuit board (e.g. thecircuit board 32 indicated inFIG. 5 ). Continuing to refer toFIG. 2 , theattachment assembly 30 may include aplastic frame 34, which may be substantially rectangular, e.g. in the form of a hollow rectangle, which includes a central, substantiallyrectangular opening 36. Theplastic frame 34 hascorners 38 at which metal inserts (schematically indicated at 40 inFIG. 2 ) are mounted. -
FIG. 3 is an isometric view, taken from above, showing details of one of themetal inserts 40 mounted at one of thecorners 38 of theplastic frame 34 of theattachment assembly 30.FIG. 4 is an isometric view, taken from below, showing themetal insert 40 and the 38 of theplastic frame 34. As seen fromFIGS. 3 and 4 , the metal insert 40 (all of theinserts 40 may be identical), includes anupper portion 42, amiddle portion 44 and a pair oflower members 46. Theupper portion 42 may include a pair ofbarrel segments 48 which face each other (i.e., have their respective concave surfaces facing each other) to define a substantially cylindrical space 50 (FIG. 3 ) having an open end defining a substantiallycircular opening 52. Thecylindrical space 50 is oriented so as to have its central axis (not indicated) in a vertical orientation. - The
middle portion 44 of the metal insert 40 flares outwardly and downwardly, as indicated at 54, to form a bracket 56 (FIG. 4 ) from which thelower members 46 extend downwardly. Thebracket 56 may generally take the form of three sides of a rectangle, as seen fromFIG. 4 . Thebracket 56 may emerge a short distance downwardly from alower surface 58 of thecorner 38 of theplastic frame 34. - The
metal inserts 40 may be mounted in theplastic frame 34 by themiddle portions 44 of themetal inserts 40. For example, themiddle portions 44 of themetal inserts 40 may be embedded in theplastic frame 34 at thecorners 38 of theplastic frame 34, with theupper portions 42 of themetal inserts 40 extending upwardly from theplastic frame 34 and thelower members 46 of themetal inserts 40 extending downwardly from theplastic frame 34. - The
lower members 46 may each be pin-shaped and may have taperedtips 60. - The
plastic frame 34 may be formed of a number of different materials, including, for example, liquid crystal polymer (LCP) or polycarbonate, or another plastic material that has suitable thermal resistance to allow for the soldering of themetal inserts 40, as described below. Theplastic frame 34 may be formed by molding around themetal inserts 40 so as to embed at least partially themiddle portions 44 of themetal inserts 40 in theplastic frame 34. - Each
metal insert 40 may be a unitary body formed of a suitable metal such as brass. Themetal inserts 40 may be at least partially plated with tin (e.g., at the lower members 46) to aid in wetting themetal inserts 40 during soldering. In other embodiments, the metal inserts may be formed of copper or a tin-plated metal other than brass. -
FIG. 5 is a partial, isometric, partially exploded view showing anapparatus 70 formed by installing theheat sink 20 on thecircuit board 32 via theattachment assembly 30.FIG. 5 shows one corner of theheat sink 20 and indicates in part how theheat sink 20 is mounted on thecircuit board 32.FIG. 6 is an isometric, partially exploded view showing some details of theapparatus 70 at the corner of theheat sink 20 on a larger scale thanFIG. 5 . Referring toFIG. 6 , theupper portion 42 of themetal insert 40 is received in amounting hole 26 of theheat sink 20. Afastener 72 is provided to secure theupper portion 42 of themetal insert 40 to themounting hole 26 of theheat sink 20. For example, thefastener 72, as illustrated, may be a tapered pan head screw with suitable threading to produce threads in the inner (concave) surfaces of thebarrel segments 48 which make up theupper portion 42 of themetal insert 40. -
FIG. 7 is a flow chart that illustrates a process for assembling at least a part of theapparatus 70 according to some embodiments. As indicated at 100 inFIG. 7 , initially an attachment assembly like theassembly 30 shown inFIGS. 2-4 may be provided. Then, as indicated at 102 inFIG. 7 and as schematically illustrated inFIG. 8 , thelower members 46 of themetal inserts 40 of theattachment assembly 30 may be inserted throughholes 104 formed in thecircuit board 32. (Theattachment assembly 30 may have standoffs, which are not shown, on thelower surface 58 of theplastic frame 34 to set a spacing between thecircuit board 32 and theplastic frame 34, as shown inFIG. 9 .) - Next, as indicated at 106 in
FIG. 7 and as schematically illustrated inFIG. 9 , thelower members 46 of themetal inserts 40 may be soldered to the circuit board 32 (solder indicated at 108). The soldering may, for example, be performed in accordance with conventional principles for wave soldering. - Then, as indicated at 110 in
FIG. 7 and as schematically illustrated inFIG. 10 , theheat sink 20 may be installed on the metal inserts 40 (only one of which is shown inFIG. 10 ) in a manner such that theupper portions 42 of themetal inserts 40 are inserted into themounting holes 26 of theheat sink 20 by lowering theheat sink 20 toward theplastic frame 34 of theattachment assembly 30. - In a subsequent operation to 106 (
FIG. 7 ), as indicated at 112 inFIG. 7 and as schematically illustrated inFIG. 11 , arespective fastener 72 may be inserted into the opening 52 (FIG. 3 ) and driven into the respectiveupper portion 42 of each of the metal inserts 40 (with theupper portions 42 received within themounting holes 26 of the heat sink 20) to secure theheat sink 20 to themetal inserts 40. This may be done while holding the heat sink down on an integrated circuit (IC) die 113 (FIG. 13 , not shown inFIGS. 8-12 ). As thefastener 72 is driven into theupper portion 42 of themetal insert 40, the tapered, threadedportion 114 of thefastener 72 swage-forms or expands theupper portion 42 of themetal insert 40 by pushing thebarrel segments 48 of theupper portion 42 against the sides of themounting hole 26 of theheat sink 20. The driving of thefastener 72 may, for example, be performed with a motorized screw driver (not shown) which may be arranged to limit the maximum torque applied by the screw driver to a predetermined torque, such as 20 inch-pounds. - A result of the
operation 112 illustrated inFIG. 11 is shown inFIG. 12 , wherein thebarrel segments 48 of theupper portion 42 of themetal insert 40 are sandwiched between thefastener 72 and the sides of themounting hole 26 of theheat sink 20. In this way, theheat sink 20 is secured to themetal inserts 40 of theattachment assembly 30, and is secured via themetal inserts 40 to thecircuit board 32. - With this heat sink attachment arrangement, the
circuit board 32 is effectively stiffened in the region at and around theheat sink 20, which may aid in protecting neighboring devices on thecircuit board 32 from damage to their connections to thecircuit board 32 in the event of dynamic forces applied to the circuit board during transportation or handling thereof or as a result of thermal cycling. Moreover, the metal inserts may provide a degree of compliance to dynamic forces which also may aid in preventing damage to device connections to the circuit board. - Furthermore, since the
attachment assembly 30 may be rather lightweight, formation of reliable and high quality solder joints 108 (FIG. 9 ) during the soldering operation 106 (FIG. 7 ) may be promoted. -
FIG. 13 is partial schematic side cross-sectional view showing other aspects of theapparatus 70. - As seen from
FIG. 13 , anIC package 120 is mounted on thecircuit board 32. TheIC package 120 may include apackage substrate 122 connected to thecircuit board 32 by a ball grid array (BGA)connector 124 and the IC die 113 connected to thepackage substrate 122 by anotherBGA connector 126. The IC die may be thermally coupled to theheat sink 20 via athermal interface material 128, so that theheat sink 20 may function to cool the IC die 113 during operation of theapparatus 70. Portions of the attachment assembly 30 (and particularly portions of the plastic frame 34) are also shown in cross-section. In some embodiments the IC die 113 may comprise a processor, for example. Thecircuit board 32 may be the motherboard of a computer. - In some embodiments, the
attachment assembly 30 may not be employed, and instead individual ones of metal inserts, not incorporated in an attachment assembly, may be inserted intoholes 104 of thecircuit board 32 and soldered to thecircuit board 32. In other embodiments, two attachment assemblies, each having a pair of metal inserts, may be employed instead of theattachment assembly 30 which includes four metal inserts. However, using the attachment assembly having four metal inserts as illustrated herein may aid in streamlining assembly of theapparatus 70. - The total number of metal inserts employed (and the total number of mounting holes provided in the heat sink) may be more or less than the four metal inserts (and four mounting holes) shown.
- Furthermore, in some embodiments, each metal insert may have only one pin-shaped lower member, or may have three or more pin-shaped lower members, rather than the two lower members shown in the drawings. Generally, the shape of the lower members of the metal inserts may be varied from the pin shape that is shown in the drawings.
- The
fastener 72 need not be a pan head screw. For example, screws having other types of heads may be employed as thefasteners 72. - Although not shown in the drawings, the
apparatus 70 may also include other components of a typical electronic device, including for example a chassis in which thecircuit board 32 may be mounted, a housing, a power supply, signal interfaces, and so forth. - The several embodiments described herein are solely for the purpose of illustration. The various features described herein need not all be used together, and any one or more of those features may be incorporated in a single embodiment. Therefore, persons skilled in the art will recognize from this description that other embodiments may be practiced with various modifications and alterations.
Claims (26)
1. An apparatus comprising:
a circuit board;
a plurality of metal inserts; and
a heat sink having a plurality of mounting holes;
each of the metal inserts including:
at least one lower member soldered to the circuit board; and
an upper portion received in a respective one of the mounting holes of the heat sink and secured to the respective one of the mounting holes by a respective fastener.
2. The apparatus of claim 1 , wherein each of the fasteners is received within the upper portion of a respective one of the metal inserts.
3. The apparatus of claim 2 , wherein the upper portion of each of the metal inserts is swage-formed by the respective fastener to the respective one of the mounting holes of the heat sink.
4. The apparatus of claim 3 , wherein each of the fasteners is a tapered screw.
5. The apparatus of claim 2 , wherein the upper portion of each of the metal inserts is held between the respective fastener and the respective one of the mounting holes of the heat sink.
6. The apparatus of claim 1 , wherein the upper portion of each of the metal inserts includes a pair of barrel segments which together define a substantially cylindrical space in which the respective fastener is received.
7. The apparatus of claim 1 , wherein each of the metal inserts includes a pair of lower members soldered to the circuit board.
8. The apparatus of claim 1 , wherein the plurality of metal inserts includes four metal inserts.
9. The apparatus of claim 8 , further comprising:
a substantially rectangular plastic frame between the circuit board and the heat sink, the frame having four corners, a respective one of the four metal inserts being mounted at each of the four corners of the frame.
10. An article of manufacture comprising:
a substantially rectangular plastic frame having four corners;
four metal inserts each mounted at a respective one of the four corners of the frame, each of the metal inserts including:
at least one pin-shaped lower member to be soldered to a circuit board; and
an upper portion to be secured to a heat sink.
11. The article of claim 10 , wherein the upper portion of each of the metal inserts includes a pair of barrel segments which together define a substantially cylindrical space.
12. The article of claim 11 , wherein each of the metal inserts includes a pair of pin-shaped lower members.
13. A method comprising:
soldering a plurality of metal inserts to a circuit board;
installing a heat sink on the soldered metal inserts such that a respective upper portion of each of the metal inserts is inserted into a respective mounting hole of the heat sink; and
driving a respective screw into the respective upper portion of each of the metal inserts to secure the heat sink to the metal inserts.
14. The method of claim 13 , further comprising:
before the soldering of the metal inserts, inserting at least one pin-shaped lower member of each of the metal inserts into a respective hole in the circuit board.
15. The method of claim 14 , wherein the soldering of the metal inserts includes wave soldering.
16. The method of claim 13 , wherein the plurality of metal inserts includes four metal inserts.
17. The method of claim 16 , wherein the four metal inserts are mounted in a substantially rectangular plastic frame before the soldering of the metal inserts, each of the four metal inserts being located at a respective corner of the frame.
18. A system comprising:
a circuit board;
a processor mounted on the circuit board;
a plurality of metal inserts; and
a heat sink that is thermally coupled to the processor, the heat sink having a plurality of mounting holes;
each of the metal inserts including:
at least one lower member soldered to the circuit board; and
an upper portion received in a respective one of the mounting holes of the heat sink and secured to the respective one of the mounting holes by a respective fastener.
19. The system of claim 18 , wherein each of the fasteners is received within the upper portion of a respective one of the metal inserts.
20. The system of claim 19 , wherein the upper portion of each of the metal inserts is swage-formed by the respective fastener to the respective one of the mounting holes of the heat sink.
21. The system of claim 20 , wherein each of the fasteners is a tapered screw.
22. The system of claim 19 , wherein the upper portion of each of the metal inserts is held between the respective fastener and the respective one of the mounting holes of the heat sink.
23. The system of claim 18 , wherein the upper portion of each of the metal inserts includes a pair of barrel segments which together define a substantially cylindrical space in which the respective fastener is received.
24. The system of claim 18 , wherein each of the metal inserts includes a pair of lower members soldered to the circuit board.
25. The system of claim 18 , wherein the plurality of metal inserts includes four metal inserts.
26. The system of claim 25 , further comprising:
a substantially rectangular plastic frame between the circuit board and the heat sink, the frame having four corners, a respective one of the four metal inserts being mounted at each of the four corners of the frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/681,920 US7023702B2 (en) | 2003-10-09 | 2003-10-09 | Apparatus including circuit board and heat sink and method of making the apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/681,920 US7023702B2 (en) | 2003-10-09 | 2003-10-09 | Apparatus including circuit board and heat sink and method of making the apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050078455A1 true US20050078455A1 (en) | 2005-04-14 |
US7023702B2 US7023702B2 (en) | 2006-04-04 |
Family
ID=34422391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/681,920 Expired - Fee Related US7023702B2 (en) | 2003-10-09 | 2003-10-09 | Apparatus including circuit board and heat sink and method of making the apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US7023702B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010022562A1 (en) * | 2010-06-02 | 2011-12-08 | Vincotech Holdings S.à.r.l. | An electrical power module and method for connecting an electrical power module to a circuit board and a heat sink |
WO2013075759A1 (en) * | 2011-11-25 | 2013-05-30 | Huawei Technologies Co., Ltd. | Heat sink device and method for producing a heat sink device |
CN103413794A (en) * | 2013-08-16 | 2013-11-27 | 中国科学院深圳先进技术研究院 | Radiating packaging structure of semiconductor power device |
CN105957848A (en) * | 2016-07-18 | 2016-09-21 | 株洲中车时代电气股份有限公司 | Base plate with integrated heat tubes and module device thereof |
US20200235035A1 (en) * | 2019-01-22 | 2020-07-23 | Asia Vital Components Co., Ltd. | Locating unit with base seat locating structure |
US20210242630A1 (en) * | 2020-02-03 | 2021-08-05 | Rockwell Collins, Inc. | Circuit Board Separation Mechanism |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200612347A (en) * | 2004-10-06 | 2006-04-16 | Advanced Flash Memory Card Technology Co Ltd | Structure of memory card and producing method thereof |
US20080310118A1 (en) * | 2007-06-18 | 2008-12-18 | Dell Products L.P. | CPU Heat Sink Mounting Method And Apparatus |
WO2017111839A1 (en) * | 2015-12-26 | 2017-06-29 | Intel Corporation | Swaging process for complex integrated heat spreaders |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321423A (en) * | 1980-05-15 | 1982-03-23 | Aavid Engineering, Inc. | Heat sink fastenings |
US4446504A (en) * | 1981-06-08 | 1984-05-01 | Thermalloy Incorporated | Mounting means with solderable studs |
US4546408A (en) * | 1983-05-16 | 1985-10-08 | Illinois Tool Works Inc. | Electrically insulated heat sink assemblies and insulators used therein |
US4652971A (en) * | 1982-10-18 | 1987-03-24 | Illinois Tool Works Inc. | Printed circuit board fastener |
US5901039A (en) * | 1994-12-29 | 1999-05-04 | Bull S.A. | Mounting device for electronic components |
US6095701A (en) * | 1997-12-23 | 2000-08-01 | Datacard Corporation | Adjustable print head mounting mechanism |
-
2003
- 2003-10-09 US US10/681,920 patent/US7023702B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321423A (en) * | 1980-05-15 | 1982-03-23 | Aavid Engineering, Inc. | Heat sink fastenings |
US4446504A (en) * | 1981-06-08 | 1984-05-01 | Thermalloy Incorporated | Mounting means with solderable studs |
US4652971A (en) * | 1982-10-18 | 1987-03-24 | Illinois Tool Works Inc. | Printed circuit board fastener |
US4546408A (en) * | 1983-05-16 | 1985-10-08 | Illinois Tool Works Inc. | Electrically insulated heat sink assemblies and insulators used therein |
US5901039A (en) * | 1994-12-29 | 1999-05-04 | Bull S.A. | Mounting device for electronic components |
US6095701A (en) * | 1997-12-23 | 2000-08-01 | Datacard Corporation | Adjustable print head mounting mechanism |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010022562A1 (en) * | 2010-06-02 | 2011-12-08 | Vincotech Holdings S.à.r.l. | An electrical power module and method for connecting an electrical power module to a circuit board and a heat sink |
WO2013075759A1 (en) * | 2011-11-25 | 2013-05-30 | Huawei Technologies Co., Ltd. | Heat sink device and method for producing a heat sink device |
CN103413794A (en) * | 2013-08-16 | 2013-11-27 | 中国科学院深圳先进技术研究院 | Radiating packaging structure of semiconductor power device |
CN105957848A (en) * | 2016-07-18 | 2016-09-21 | 株洲中车时代电气股份有限公司 | Base plate with integrated heat tubes and module device thereof |
US20200235035A1 (en) * | 2019-01-22 | 2020-07-23 | Asia Vital Components Co., Ltd. | Locating unit with base seat locating structure |
US10879149B2 (en) * | 2019-01-22 | 2020-12-29 | Asia Vital Components Co., Ltd. | Locating unit with base seat locating structure |
US20210242630A1 (en) * | 2020-02-03 | 2021-08-05 | Rockwell Collins, Inc. | Circuit Board Separation Mechanism |
US11121504B2 (en) * | 2020-02-03 | 2021-09-14 | Rockwell Collins, Inc. | Circuit board separation mechanism |
Also Published As
Publication number | Publication date |
---|---|
US7023702B2 (en) | 2006-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5969949A (en) | Interfitting heat sink and heat spreader slug | |
US5673176A (en) | Integrated circuit dual cooling paths and method for constructing same | |
US6493233B1 (en) | PCB-to-chassis mounting schemes | |
US7209354B2 (en) | Ball grid array package with heat sink device | |
US5933324A (en) | Apparatus for dissipating heat from a conductive layer in a circuit board | |
US6888719B1 (en) | Methods and apparatuses for transferring heat from microelectronic device modules | |
US9373563B2 (en) | Semiconductor assembly having a housing | |
US6153932A (en) | Fix base of integrated circuit chipset and heat sink | |
JP5223212B2 (en) | Electronic component mounting structure with heat sink | |
CN109727937B (en) | Assemblies including heat dissipating elements and related systems and methods | |
JPH02305498A (en) | Cold plate assembly | |
US20030067746A1 (en) | Cooling device capable of contacting target with smaller urging force | |
JPH0823182A (en) | Equipment and method for dissipating heat of integrated circuit | |
US7023702B2 (en) | Apparatus including circuit board and heat sink and method of making the apparatus | |
US4695924A (en) | Two piece heat sink with serrated coupling | |
JP4796873B2 (en) | Heat dissipation device | |
US7265985B2 (en) | Heat sink and component support assembly | |
US5734554A (en) | Heat sink and fan for cooling CPU chip | |
US6377463B1 (en) | Retention module for processor and chipset thermal solutions | |
US20070025086A1 (en) | Electronic device with sliding type heatsink | |
US5805418A (en) | Cooling cap method and apparatus for tab packaged integrated circuits | |
US5969946A (en) | Heat dissipating electrical apparatus | |
JP4007205B2 (en) | Heat sink holding device, heat sink holding method, semiconductor device with heat sink, and mounting method of semiconductor device | |
US20050072563A1 (en) | Heat sink structure | |
JP5023735B2 (en) | Cold plate and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MACGREGOR, MIKE G.;REEL/FRAME:014599/0419 Effective date: 20031008 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100404 |